-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnaivebayes.py
967 lines (840 loc) · 31.7 KB
/
naivebayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
'''
UMID: hbrendan, petermas
Names: Brendan Hart, Peter Mascheroni
Class: EECS 486
'''
import os
import sys
import re
import operator
import random
import math
import reviewdataNB
import linking_and_metrics
masterTok = []
months = ["january", "february", "march", "april", "may", "june", "july", "august", "september", "october",
"november", "december"]
wordBeforeYear = ["in", "during", "year"]
# mapping between punctuation to element with regex expression to remove unecessary punctionation
punctionation = {"." : ".", "," : ",", "(" : "\(", ")" : "\)", "?" : "\?", "=" : "=", ";" : ";", ":" : ":",
"{" : "{", "}" : "}", "--" : "--", "[" : "[", "]" : "]", "*" : "*", "/" : "\/"}
# list of contractions retrieved from here: https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions
contractions = {
"ain't": ["am not", "are not", "is not", "has not", "have not", "cash me outside"],
"aren't": ["are not", "am not"],
"can't": ["cannot"],
"can't've": ["cannot have"],
"'cause": ["because"],
"could've": ["could have"],
"couldn't": ["could not"],
"couldn't've": ["could not have"],
"didn't": ["did not"],
"doesn't": ["does not"],
"don't": ["do not"],
"hadn't": ["had not"],
"hadn't've": ["had not have"],
"hasn't": ["has not"],
"haven't": ["have not"],
"he'd": ["he had", "he would"],
"he'd've": ["he would have"],
"he'll": ["he will"],
"he'll've": ["he will have"],
"he's": ["he has", "he is"],
"how'd": ["how did"],
"how'd'y": ["how do you"],
"how'll": ["how will"],
"how's": ["how has", "how is", "how does"],
"I'd": ["I had", "I would"],
"I'd've": ["I would have"],
"I'll": ["I will"],
"I'll've": ["I will have"],
"I'm": ["I am"],
"I've": ["I have"],
"isn't": ["is not"],
"it'd": ["it had", "it would"],
"it'd've": ["it would have"],
"it'll": ["it will"],
"it'll've": ["it will have"],
"it's": ["it has", "it is"],
"let's": ["let us"],
"ma'am": ["madam", "m'lady"],
"mayn't": ["may not"],
"might've": ["might have"],
"mightn't": ["might not"],
"mightn't've": ["might not have"],
"must've": ["must have"],
"mustn't": ["must not"],
"mustn't've": ["must not have"],
"needn't": ["need not"],
"needn't've": ["need not have"],
"o'clock": ["of the clock"],
"oughtn't": ["ought not"],
"oughtn't've": ["ought not have"],
"she'd": ["she had", "she would"],
"she'd've": ["she would have"],
"she'll": ["she will"],
"she'll've": ["she will have"],
"she's": ["she has", "she is"],
"should've": ["should have"],
"shouldn't": ["should not"],
"shouldn't've": ["should not have"],
"so've": ["so have"],
"so's": ["so as", "so is"],
"that'd": ["that would", "that had"],
"that'd've": ["that would have"],
"that's": ["that has", "that is"],
"there'd": ["there had", "there would"],
"there'd've": ["there would have"],
"there's": ["there has", "there is"],
"they'd": ["they had", "they would"],
"they'd've": ["they would have"],
"they'll": ["they will"],
"they'll've": ["they will have"],
"they're": ["they are"],
"they've": ["they have"],
"to've": ["to have"],
"wasn't": ["was not"],
"we'd": ["we had", "we would"],
"we'd've": ["we would have"],
"we'll": ["we will"],
"we'll've": ["we will have"],
"we're": ["we are"],
"we've": ["we have"],
"weren't": ["were not"],
"what'll": ["what will"],
"what'll've": ["what will have"],
"what're": ["what are"],
"what's": ["what has", "what is"],
"what've": ["what have"],
"when's": ["when has", "when is"],
"when've": ["when have"],
"where'd": ["where did"],
"where's": ["where has", "where is"],
"where've": ["where have"],
"who'll": ["who will"],
"who'll've": ["who will have"],
"who's": ["who has", "who is"],
"who've": ["who have"],
"why's": ["why has", "why is"],
"why've": ["why have"],
"will've": ["will have"],
"won't": ["will not"],
"won't've": ["will not have"],
"would've": ["would have"],
"wouldn't": ["would not"],
"wouldn't've": ["would not have"],
"y'all": ["you all"],
"y'all'd": ["you all would"],
"y'all'd've": ["you all would have"],
"y'all're": ["you all are"],
"y'all've": ["you all have"],
"you'd": ["you had", "you would"],
"you'd've": ["you would have"],
"you'll": ["you will"],
"you'll've": ["you will have"],
"you're": ["you are"],
"you've": ["you have"]
}
classes = ["nothelpful", "helpful"]
"""Porter Stemming Algorithm
This is the Porter stemming algorithm, ported to Python from the
version coded up in ANSI C by the author. It may be be regarded
as canonical, in that it follows the algorithm presented in
Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
no. 3, pp 130-137,
only differing from it at the points maked --DEPARTURE-- below.
See also http://www.tartarus.org/~martin/PorterStemmer
The algorithm as described in the paper could be exactly replicated
by adjusting the points of DEPARTURE, but this is barely necessary,
because (a) the points of DEPARTURE are definitely improvements, and
(b) no encoding of the Porter stemmer I have seen is anything like
as exact as this version, even with the points of DEPARTURE!
Vivake Gupta (v@nano.com)
Release 1: January 2001
Further adjustments by Santiago Bruno (bananabruno@gmail.com)
to allow word input not restricted to one word per line, leading
to:
release 2: July 2008
"""
class PorterStemmer:
def __init__(self):
"""The main part of the stemming algorithm starts here.
b is a buffer holding a word to be stemmed. The letters are in b[k0],
b[k0+1] ... ending at b[k]. In fact k0 = 0 in this demo program. k is
readjusted downwards as the stemming progresses. Zero termination is
not in fact used in the algorithm.
Note that only lower case sequences are stemmed. Forcing to lower case
should be done before stem(...) is called.
"""
self.b = "" # buffer for word to be stemmed
self.k = 0
self.k0 = 0
self.j = 0 # j is a general offset into the string
def cons(self, i):
"""cons(i) is TRUE <=> b[i] is a consonant."""
if self.b[i] == 'a' or self.b[i] == 'e' or self.b[i] == 'i' or self.b[i] == 'o' or self.b[i] == 'u':
return 0
if self.b[i] == 'y':
if i == self.k0:
return 1
else:
return (not self.cons(i - 1))
return 1
def m(self):
"""m() measures the number of consonant sequences between k0 and j.
if c is a consonant sequence and v a vowel sequence, and <..>
indicates arbitrary presence,
<c><v> gives 0
<c>vc<v> gives 1
<c>vcvc<v> gives 2
<c>vcvcvc<v> gives 3
....
"""
n = 0
i = self.k0
while 1:
if i > self.j:
return n
if not self.cons(i):
break
i = i + 1
i = i + 1
while 1:
while 1:
if i > self.j:
return n
if self.cons(i):
break
i = i + 1
i = i + 1
n = n + 1
while 1:
if i > self.j:
return n
if not self.cons(i):
break
i = i + 1
i = i + 1
def vowelinstem(self):
"""vowelinstem() is TRUE <=> k0,...j contains a vowel"""
for i in range(self.k0, self.j + 1):
if not self.cons(i):
return 1
return 0
def doublec(self, j):
"""doublec(j) is TRUE <=> j,(j-1) contain a double consonant."""
if j < (self.k0 + 1):
return 0
if (self.b[j] != self.b[j-1]):
return 0
return self.cons(j)
def cvc(self, i):
"""cvc(i) is TRUE <=> i-2,i-1,i has the form consonant - vowel - consonant
and also if the second c is not w,x or y. this is used when trying to
restore an e at the end of a short e.g.
cav(e), lov(e), hop(e), crim(e), but
snow, box, tray.
"""
if i < (self.k0 + 2) or not self.cons(i) or self.cons(i-1) or not self.cons(i-2):
return 0
ch = self.b[i]
if ch == 'w' or ch == 'x' or ch == 'y':
return 0
return 1
def ends(self, s):
"""ends(s) is TRUE <=> k0,...k ends with the string s."""
length = len(s)
if s[length - 1] != self.b[self.k]: # tiny speed-up
return 0
if length > (self.k - self.k0 + 1):
return 0
if self.b[self.k-length+1:self.k+1] != s:
return 0
self.j = self.k - length
return 1
def setto(self, s):
"""setto(s) sets (j+1),...k to the characters in the string s, readjusting k."""
length = len(s)
self.b = self.b[:self.j+1] + s + self.b[self.j+length+1:]
self.k = self.j + length
def r(self, s):
"""r(s) is used further down."""
if self.m() > 0:
self.setto(s)
def step1ab(self):
"""step1ab() gets rid of plurals and -ed or -ing. e.g.
caresses -> caress
ponies -> poni
ties -> ti
caress -> caress
cats -> cat
feed -> feed
agreed -> agree
disabled -> disable
matting -> mat
mating -> mate
meeting -> meet
milling -> mill
messing -> mess
meetings -> meet
"""
if self.b[self.k] == 's':
if self.ends("sses"):
self.k = self.k - 2
elif self.ends("ies"):
self.setto("i")
elif self.b[self.k - 1] != 's':
self.k = self.k - 1
if self.ends("eed"):
if self.m() > 0:
self.k = self.k - 1
elif (self.ends("ed") or self.ends("ing")) and self.vowelinstem():
self.k = self.j
if self.ends("at"): self.setto("ate")
elif self.ends("bl"): self.setto("ble")
elif self.ends("iz"): self.setto("ize")
elif self.doublec(self.k):
self.k = self.k - 1
ch = self.b[self.k]
if ch == 'l' or ch == 's' or ch == 'z':
self.k = self.k + 1
elif (self.m() == 1 and self.cvc(self.k)):
self.setto("e")
def step1c(self):
"""step1c() turns terminal y to i when there is another vowel in the stem."""
if (self.ends("y") and self.vowelinstem()):
self.b = self.b[:self.k] + 'i' + self.b[self.k+1:]
def step2(self):
"""step2() maps double suffices to single ones.
so -ization ( = -ize plus -ation) maps to -ize etc. note that the
string before the suffix must give m() > 0.
"""
if self.b[self.k - 1] == 'a':
if self.ends("ational"): self.r("ate")
elif self.ends("tional"): self.r("tion")
elif self.b[self.k - 1] == 'c':
if self.ends("enci"): self.r("ence")
elif self.ends("anci"): self.r("ance")
elif self.b[self.k - 1] == 'e':
if self.ends("izer"): self.r("ize")
elif self.b[self.k - 1] == 'l':
if self.ends("bli"): self.r("ble") # --DEPARTURE--
# To match the published algorithm, replace this phrase with
# if self.ends("abli"): self.r("able")
elif self.ends("alli"): self.r("al")
elif self.ends("entli"): self.r("ent")
elif self.ends("eli"): self.r("e")
elif self.ends("ousli"): self.r("ous")
elif self.b[self.k - 1] == 'o':
if self.ends("ization"): self.r("ize")
elif self.ends("ation"): self.r("ate")
elif self.ends("ator"): self.r("ate")
elif self.b[self.k - 1] == 's':
if self.ends("alism"): self.r("al")
elif self.ends("iveness"): self.r("ive")
elif self.ends("fulness"): self.r("ful")
elif self.ends("ousness"): self.r("ous")
elif self.b[self.k - 1] == 't':
if self.ends("aliti"): self.r("al")
elif self.ends("iviti"): self.r("ive")
elif self.ends("biliti"): self.r("ble")
elif self.b[self.k - 1] == 'g': # --DEPARTURE--
if self.ends("logi"): self.r("log")
# To match the published algorithm, delete this phrase
def step3(self):
"""step3() dels with -ic-, -full, -ness etc. similar strategy to step2."""
if self.b[self.k] == 'e':
if self.ends("icate"): self.r("ic")
elif self.ends("ative"): self.r("")
elif self.ends("alize"): self.r("al")
elif self.b[self.k] == 'i':
if self.ends("iciti"): self.r("ic")
elif self.b[self.k] == 'l':
if self.ends("ical"): self.r("ic")
elif self.ends("ful"): self.r("")
elif self.b[self.k] == 's':
if self.ends("ness"): self.r("")
def step4(self):
"""step4() takes off -ant, -ence etc., in context <c>vcvc<v>."""
if self.b[self.k - 1] == 'a':
if self.ends("al"): pass
else: return
elif self.b[self.k - 1] == 'c':
if self.ends("ance"): pass
elif self.ends("ence"): pass
else: return
elif self.b[self.k - 1] == 'e':
if self.ends("er"): pass
else: return
elif self.b[self.k - 1] == 'i':
if self.ends("ic"): pass
else: return
elif self.b[self.k - 1] == 'l':
if self.ends("able"): pass
elif self.ends("ible"): pass
else: return
elif self.b[self.k - 1] == 'n':
if self.ends("ant"): pass
elif self.ends("ement"): pass
elif self.ends("ment"): pass
elif self.ends("ent"): pass
else: return
elif self.b[self.k - 1] == 'o':
if self.ends("ion") and (self.b[self.j] == 's' or self.b[self.j] == 't'): pass
elif self.ends("ou"): pass
# takes care of -ous
else: return
elif self.b[self.k - 1] == 's':
if self.ends("ism"): pass
else: return
elif self.b[self.k - 1] == 't':
if self.ends("ate"): pass
elif self.ends("iti"): pass
else: return
elif self.b[self.k - 1] == 'u':
if self.ends("ous"): pass
else: return
elif self.b[self.k - 1] == 'v':
if self.ends("ive"): pass
else: return
elif self.b[self.k - 1] == 'z':
if self.ends("ize"): pass
else: return
else:
return
if self.m() > 1:
self.k = self.j
def step5(self):
"""step5() removes a final -e if m() > 1, and changes -ll to -l if
m() > 1.
"""
self.j = self.k
if self.b[self.k] == 'e':
a = self.m()
if a > 1 or (a == 1 and not self.cvc(self.k-1)):
self.k = self.k - 1
if self.b[self.k] == 'l' and self.doublec(self.k) and self.m() > 1:
self.k = self.k -1
def stem(self, p, i, j):
"""In stem(p,i,j), p is a char pointer, and the string to be stemmed
is from p[i] to p[j] inclusive. Typically i is zero and j is the
offset to the last character of a string, (p[j+1] == '\0'). The
stemmer adjusts the characters p[i] ... p[j] and returns the new
end-point of the string, k. Stemming never increases word length, so
i <= k <= j. To turn the stemmer into a module, declare 'stem' as
extern, and delete the remainder of this file.
"""
# copy the parameters into statics
self.b = p
self.k = j
self.k0 = i
if self.k <= self.k0 + 1:
return self.b # --DEPARTURE--
# With this line, strings of length 1 or 2 don't go through the
# stemming process, although no mention is made of this in the
# published algorithm. Remove the line to match the published
# algorithm.
self.step1ab()
self.step1c()
self.step2()
self.step3()
self.step4()
self.step5()
return self.b[self.k0:self.k+1]
def stemWords(cleanTokens):
stemmedTokens = []
porter = PorterStemmer()
for tok in cleanTokens:
output = porter.stem(tok, 0, len(tok) - 1)
stemmedTokens.append(output)
return stemmedTokens
def removeStopwords(tokenizedText):
stopWords = {'a', 'all', 'an', 'and', 'any', 'are', 'as', 'at', 'be', 'been', 'but', 'by', 'few', 'from', 'for',
'have', 'he', 'her', 'here', 'him', 'his', 'how', 'i', 'in', 'is', 'it', 'its', 'many', 'me', 'my',
'none', 'of', 'on', 'or', 'our', 'she', 'some', 'the', 'their', 'them', 'there', 'they', 'that',
'this', 'to', 'us', 'was', 'what', 'when', 'where', 'which', 'who', 'why', 'will', 'with', 'you',
'your'}
if tokenizedText in stopWords:
return True
else:
return False
def tokenizeText(string_in, bigram):
yearWords = {
'in',
'by',
'during',
'year',
'january',
'february',
'march',
'april',
'may',
'june',
'july',
'august',
'september',
'october',
'november',
'december'
}
digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u',
'v', 'w', 'x', 'y', 'z']
junk = ['//', ':', '=', '/', '?', ',', ';', '(', ')', '--', ".", "," , "(" , ")" , "?" , "=" , ";" , ":" ,
"{" , "}" , "--" , "[" , "]" , "*" , "/" ]
wordList = string_in.split()
tokenList = []
previous_word = ''
count = -1
for word in wordList:
count += 1
# accrinym
if word.isupper():
continue
word = word.lower()
# remove standalone punctiation -> will cause infite loop
if word == '.' or word == ',' or word == '/' or word == '(' or word == ')' or word == '?' or \
word == "'" or word == ";" or word == ":" or word == "{" or word == "}" or \
word == "-" or word == "[" or word == "]" or word == "=" or word == "*" or word == \
"--" or word == "'":
continue
if word[-1] != "'" and ord(word[-1]) < 97 or ord(word[0]) > 122:
word = word[:-1]
if len(word) == 1 or len(word) == 0:
continue
# date check here
if word.isdigit() and len(word) == 4 and wordList[count - 1] in yearWords:
month = wordList[count - 1]
tokenList = tokenList[:-1]
tok = month + ' ' + word
if removeStopwords(tok):
continue
if bigram:
if previous_word is '' or previous_word is ' ':
previous_word = tok
continue
toke_in = previous_word + ' ' + tok
tokenList.append(toke_in)
previous_word = tok
else:
tokenList.append(tok)
continue
if word.isdigit():
continue
# if word has number in it through out
letterF = 0
numkF = 0
slashF = 0
dotF = 0
for l in word:
if l in alphabet:
letterF = 1
if l in digits:
numkF = 1
if l == '/':
slashF = 1
if l == '.':
dotF = 1
if letterF and numkF and slashF:
continue
if letterF and numkF and slashF and dotF:
continue
for l in word:
if l in junk:
wordJunk = word.split()
for j in wordJunk:
if len(j) > 1:
if removeStopwords(j):
continue
if bigram:
if previous_word is '' or previous_word is ' ':
previous_word = j
continue
toke_in = previous_word + ' ' + j
tokenList.append(toke_in)
previous_word = j
else:
tokenList.append(j)
continue
# remove non letters at beginning of words
if ord(word[0]) < 97 or ord(word[0]) > 122:
word = word.split(word[0])[0]
if len(word) == 1:
if word == 'a' or word == 'i':
if removeStopwords(word):
continue
if bigram:
if previous_word is '' or previous_word is ' ':
previous_word = word
continue
toke_in = previous_word + ' ' + word
tokenList.append(toke_in)
previous_word = word
else:
tokenList.append(word)
else:
continue
if len(word) == 0:
continue
# need to leave hyphen words
# remove non letter at end of words:
if ord(word[-1]) < 97 or ord(word[-1]) > 122:
word = word[:-1]
if len(word) == 1:
if word == 'a' or word == 'i':
if removeStopwords(word):
continue
if bigram:
if previous_word is '' or previous_word is ' ':
previous_word = word
continue
toke_in = previous_word + ' ' + word
tokenList.append(toke_in)
previous_word = word
else:
tokenList.append(word)
else:
continue
if len(word) == 0:
continue
# contractions check here
# if word in contractions:
# tokenList.append(contractions[word])
# continue
if word[0] == "'" and word[-1] == "'":
word = word.replace("'", '')
if removeStopwords(word):
continue
if bigram:
if previous_word is '' or previous_word is ' ':
previous_word = word
continue
toke_in = previous_word + ' ' + word
tokenList.append(toke_in)
previous_word = word
else:
tokenList.append(word)
continue
elif word[0] == "'":
word = word.replace("'", '')
if removeStopwords(word):
continue
if bigram:
if previous_word is '' or previous_word is ' ':
previous_word = word
continue
toke_in = previous_word + ' ' + word
tokenList.append(toke_in)
previous_word = word
else:
tokenList.append(word)
continue
if "'s" in word and word[-1] == 's':
words = word.split("'")
if removeStopwords(words[0]):
continue
if bigram:
if previous_word is '' or previous_word is ' ':
previous_word = word
continue
toke_in = previous_word + ' ' + words[0]
tokenList.append(toke_in)
previous_word = words[0]
toke_in = previous_word + ' ' + "'s"
tokenList.append(toke_in)
previous_word = "'s"
else:
tokenList.append(words[0])
tokenList.append("'s")
continue
if len(word) == 1:
if word is not 'a' or word is not 'i':
continue
if removeStopwords(word):
continue
if bigram:
if previous_word is '' or previous_word is ' ':
previous_word = word
continue
toke_in = previous_word + ' ' + word
tokenList.append(toke_in)
previous_word = word
else:
tokenList.append(word)
return tokenList
def trainNaiveBayes(train_list_in, params, outfile_in):
dicts = []
numClasses = len(classes)
for i in range(0, (numClasses)):
dicts.append({})
# get vocab, number of truth, lie docs, prob(class), # of word x in class c, # of words in c
vocabulary = {}
numDocsPerClass = {}
totNumDocs = 0
numWordsPerClass = {}
for classy in classes:
numWordsPerClass[classy] = 0
helpful_benchmark = 0.5
counter = 0
mark = int(math.floor(len(train_list_in) * .1))
percent = 0
for file in train_list_in:
counter += 1
if counter % mark is 0:
percent += 10
print(str(percent) + '%')
classDocBelongsTo = 0
if file.favorableRating >= helpful_benchmark:
classDocBelongsTo = 1
if classes[classDocBelongsTo] in numDocsPerClass:
numDocsPerClass[classes[classDocBelongsTo]] += 1
else:
numDocsPerClass[classes[classDocBelongsTo]] = 1
# get text to base text
baseText = file.reviewText
# tokenize text
tokens = tokenizeText(baseText, params['bigram'])
# if params['stop'] == True:
# tokens = removeStopwords(tokens)
if params['stem'] == True:
tokens = stemWords(tokens)
for tok in tokens:
# vocabulary
if tok in vocabulary:
vocabulary[tok] += 1
else:
vocabulary[tok] = 1
# num of word x in class c
if tok in dicts[classDocBelongsTo]:
dicts[classDocBelongsTo][tok] += 1
else:
dicts[classDocBelongsTo][tok] = 1
# num words in class
numWordsPerClass[classes[classDocBelongsTo]] += 1
totNumDocs += 1
vocab = len((vocabulary))
# class probabilties
for key, value in numDocsPerClass.items():
numDocsPerClass[key] = float(value)/float(totNumDocs)
# word conditional probabilities
for counter, classDict in enumerate(dicts):
for key, value in classDict.items():
classDict[key] = (float(value) + 1)/(float(numWordsPerClass[classes[counter]]) + vocab)
# print out top 10
if params["condProb"] == True:
for counter, classDict in enumerate(dicts):
sortedCondProbs = sorted(classDict.items(), key=operator.itemgetter(1), reverse=True)
count = 0
outfile_in.write("Top 30 Conditional Probabilities for " + classes[counter] + " class" + "\n")
for val in sortedCondProbs:
if count == 30:
break
outfile_in.write(str(val[0]) + " " + str(val[1]) + '\n')
count += 1
return numDocsPerClass, dicts, vocabulary, numWordsPerClass
def testNaiveBayes(testFile, classProbabilities, conditionalProbabilities, vocabulary, numWordsPerClass, params):
# get text from file_class in
baseText = testFile.reviewText
# tokenize text
tokens = tokenizeText(baseText, params['bigram'])
# if params['stop'] == True:
# tokens = removeStopwords(tokens)
if params['stem'] == True:
tokens = stemWords(tokens)
probPerClass = {}
# init prob
for classy in classes:
probPerClass[classy] = 0
numberVocab = len(vocabulary)
for counter, classy in enumerate(classes):
wordProbClass = 1
for tok in tokens:
probWord = 0
if tok in conditionalProbabilities[counter]:
probWord = conditionalProbabilities[counter][tok]
else:
probWord = 1.0/float((numberVocab + numWordsPerClass[classes[counter]]))
wordProbClass = wordProbClass*probWord
probClassStatment = wordProbClass * classProbabilities[classes[counter]]
probPerClass[classes[counter]] = probClassStatment
classification = max(probPerClass.items(), key=operator.itemgetter(1))[0]
# print("Predicted classification: " + str(classification))
return classification
def run_file_in(file_in):
print('___MAIN_FUNCTION_BEGINNING___')
porter = PorterStemmer()
data_in = file_in
min_votes = 10
min_text_length = 10
print('___START_TRAINING___')
onlyfiles = reviewdataNB.readInReviewData(data_in, min_votes, min_text_length)
print('reviews: ' + str(len(onlyfiles)))
print('___FINISHED_READING_DATA___')
random.shuffle(onlyfiles)
train_range = int(math.floor(len(onlyfiles) * 0.3))
training_list = onlyfiles[train_range:]
test_list = onlyfiles[:train_range]
right = 0
wrong = 0
params = {"stem": False, "stop": True, "condProb": True, 'bigram': True}
outfile_name = 'output70|30/' + str(data_in.replace('.json', ''))
outfile_name += str(min_votes) + '_' + str(min_text_length)
if params['stem']:
outfile_name += 'Stem'
else:
outfile_name += 'NoStem'
outfile_name += 'Results.txt'
outfile = open(outfile_name, 'w')
wordProbabilitiesList = []
# train on the 80% of input set
classProbabilities, wordConditionalProbabilities, vocabulary, numWordsPerClass = trainNaiveBayes(training_list,
params, outfile)
print('___FINISHED_TRAINING___')
helpful_benchmark = 0.5
counter = 0
mark = int(math.floor(len(test_list) * .1))
percent = 0
for review in test_list:
counter += 1
if counter % mark is 0:
percent += 10
print(str(percent) + '%')
wordProbabilitiesList.append(wordConditionalProbabilities)
classification = testNaiveBayes(review, classProbabilities, wordConditionalProbabilities,
vocabulary, numWordsPerClass, params)
# accuracy of classification
identifyDoc = []
if review.favorableRating >= helpful_benchmark:
identifyDoc.append(1)
else:
identifyDoc.append(0)
classDocBelongsTo = identifyDoc[0]
if classification == classes[classDocBelongsTo]:
right += 1
else:
wrong += 1
rightAccuracy = float(right) / float(train_range)
wrongAccuracy = float(wrong) / float(train_range)
outfile.write("Total Docs right: " + str(right) + "\n")
outfile.write("Percentage of docs classified as right: " + str(rightAccuracy) + "\n")
outfile.write("Percentage of docs classified as wrong: " + str(wrongAccuracy) + "\n")
print("Total Docs right: " + str(right))
print("Percentage of docs classified as right: " + str(rightAccuracy))
print("Percentage of docs classified as wrong: " + str(wrongAccuracy))
def main():
file_list = [
'reviews_Apps_for_Android.json',
'reviews_Amazon_Instant_Video.json',
'reviews_Grocery_and_Gourmet_Food.json',
'reviews_Toys_and_Games.json',
'reviews_Sports_and_Outdoors.json'
]
ctr = 0
for file in file_list:
ctr += 1
run_file_in(file)
print('___FILE:_' + str(ctr) + '_DONE___')
print('!!!END_OF_MAIN!!!')
if __name__ == '__main__':
porter = PorterStemmer()
main()