-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnew.js
169 lines (151 loc) · 6.48 KB
/
new.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// 1. Import document loaders for different file formats
import { DirectoryLoader } from "langchain/document_loaders/fs/directory";
// import { JSONLoader } from "langchain/document_loaders/fs/json";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { CSVLoader } from "langchain/document_loaders/fs/csv";
import { PDFLoader } from "langchain/document_loaders/fs/pdf";
import { DocxLoader } from "langchain/document_loaders/fs/docx";
import { ChatPromptTemplate } from "@langchain/core/prompts";
// 2. Import OpenAI language model and other related modules
import { OpenAI } from "@langchain/openai";
import { RetrievalQAChain } from "langchain/chains";
import { HNSWLib } from "@langchain/community/vectorstores/hnswlib";
import { OpenAIEmbeddings } from "@langchain/openai";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { ChatMessageHistory } from "langchain/stores/message/in_memory";
// 3. Import Tiktoken for token counting
import { Tiktoken } from "@dqbd/tiktoken/lite";
import { load } from "@dqbd/tiktoken/load";
import registry from "@dqbd/tiktoken/registry.json" assert { type: "json" };
import models from "@dqbd/tiktoken/model_to_encoding.json" assert { type: "json" };
import { MemoryVectorStore } from "langchain/vectorstores/memory";
// 4. Import dotenv for loading environment variables and fs for file system operations
import dotenv from "dotenv";
import fs from "fs";
dotenv.config();
// 5. Initialize the document loader with supported file formats
const loader = new DirectoryLoader("./data", {
".json": (path) => new JSONLoader(path),
".txt": (path) => new TextLoader(path),
".csv": (path) => new CSVLoader(path),
".pdf": (path) => new PDFLoader(path),
".docx": (path) => new DocxLoader(path),
});
// 6. Load documents from the specified directory
console.log("Loading docs...");
const docs = await loader.load();
console.log("Docs loaded.");
// 7. Define a function to calculate the cost of tokenizing the documents
async function calculateCost() {
const modelName = "text-embedding-ada-002";
const modelKey = models[modelName];
const model = await load(registry[modelKey]);
const encoder = new Tiktoken(
model.bpe_ranks,
model.special_tokens,
model.pat_str
);
const tokens = encoder.encode(JSON.stringify(docs));
const tokenCount = tokens.length;
const ratePerThousandTokens = 0.0004;
const cost = (tokenCount / 1000) * ratePerThousandTokens;
encoder.free();
return cost;
}
const VECTOR_STORE_PATH = "Data.index";
// 8. Define a function to normalize the content of the documents
function normalizeDocuments(docs) {
return docs.map((doc) => {
if (typeof doc.pageContent === "string") {
return doc.pageContent;
} else if (Array.isArray(doc.pageContent)) {
return doc.pageContent.join("\n");
}
});
}
const formPrompt = ChatPromptTemplate.fromMessages([
[
"system",
`You are Nexa, a friendly chatbot designed for personalized career counseling. Your goal is to assist users in making informed decisions about their future career paths based on their individual profiles. You specialize in providing advice to students in Pakistan transitioning from 10th grade/school/O-levels to Intermediate/A-levels or from 12th grade/college/Inter to university/bachelor's degree/associate degree/diploma.
You will get name, academicStatus, percentageCgpa, fieldProgram, and interests based on user data. Suggest the best colleges or universities to the user and give the response in the form of a report like JSON object. Always provide the response in the following JSON format:
{{
"Name": "user name",
"Academic Status": "Academic Status",
"Percentage/CGPA": "Percentage/CGPA",
"Field/Program of Interest": "Field/Program of Interest",
"Interests": "Interests",
"Recommended Colleges or Universities": {{
"1.": "College/University 1",
"2.": "College/University 2",
"3.": "College/University 3",
"4.": "College/University 4"
}}
}}
Always answer the user's questions based on the below context:
{context}`,
],
["human", "{question}"],
]);
const messageHistory = new ChatMessageHistory();
// 9. Define the main function to run the entire process
export const ask = async (question, chatType) => {
// 10. Calculate the cost of tokenizing the documents
console.log("Calculating cost...");
const cost = await calculateCost();
console.log("Cost calculated:", cost);
// 11. Check if the cost is within the acceptable limit
if (cost <= 1) {
// 12. Initialize the OpenAI language model
const model = new OpenAI({
temperature: 1,
maxTokens: 300,
modelName: "gpt-3.5-turbo-1106",
});
let vectorStore;
// 13. Check if an existing vector store is available
console.log("Checking for existing vector store...");
if (fs.existsSync(VECTOR_STORE_PATH)) {
// 14. Load the existing vector store
console.log("Loading existing vector store...");
vectorStore = await HNSWLib.load(
VECTOR_STORE_PATH,
new OpenAIEmbeddings()
);
console.log("Vector store loaded.");
} else {
// 15. Create a new vector store if one does not exist
console.log("Creating new vector store...");
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 1000,
});
const normalizedDocs = normalizeDocuments(docs);
const splitDocs = await textSplitter.createDocuments(normalizedDocs);
// 16. Generate the vector store from the documents
vectorStore = await HNSWLib.fromDocuments(
splitDocs,
new OpenAIEmbeddings()
);
// 17. Save the vector store to the specified path
await vectorStore.save(VECTOR_STORE_PATH);
console.log("Vector store created.");
}
await messageHistory.addMessage({
content: question,
additional_kwargs: {},
});
// 18. Create a retrieval chain using the language model and vector store
console.log("Creating retrieval chain...");
const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever(), {
prompt: formPrompt,
messageHistory: messageHistory,
});
// 19. Query the retrieval chain with the specified question
console.log("Querying chain...");
const res = await chain.invoke({ query: question });
console.log({ res });
return res;
} else {
// 20. If the cost exceeds the limit, skip the embedding process
console.log("The cost of embedding exceeds $1. Skipping embeddings.");
}
};