forked from Trusted-AI/adversarial-robustness-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_started_xgboost.py
74 lines (57 loc) · 2.45 KB
/
get_started_xgboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
The script demonstrates a simple example of using ART with XGBoost. The example train a small model on the MNIST dataset
and creates adversarial examples using the Zeroth Order Optimization attack. Here we provide a pretrained model to the
ART classifier.
The parameters are chosen for reduced computational requirements of the script and not optimised for accuracy.
"""
import xgboost as xgb
import numpy as np
from art.attacks.evasion import ZooAttack
from art.estimators.classification import XGBoostClassifier
from art.utils import load_mnist
# Step 1: Load the MNIST dataset
(x_train, y_train), (x_test, y_test), min_pixel_value, max_pixel_value = load_mnist()
# Step 1a: Flatten dataset
x_test = x_test[0:5]
y_test = y_test[0:5]
nb_samples_train = x_train.shape[0]
nb_samples_test = x_test.shape[0]
x_train = x_train.reshape((nb_samples_train, 28 * 28))
x_test = x_test.reshape((nb_samples_test, 28 * 28))
# Step 2: Create the model
params = {"objective": "multi:softprob", "eval_metric": ["mlogloss", "merror"], "num_class": 10}
dtrain = xgb.DMatrix(x_train, label=np.argmax(y_train, axis=1))
dtest = xgb.DMatrix(x_test, label=np.argmax(y_test, axis=1))
evals = [(dtest, "test"), (dtrain, "train")]
model = xgb.train(params=params, dtrain=dtrain, num_boost_round=2, evals=evals)
# Step 3: Create the ART classifier
classifier = XGBoostClassifier(
model=model, clip_values=(min_pixel_value, max_pixel_value), nb_features=28 * 28, nb_classes=10
)
# Step 4: Train the ART classifier
# The model has already been trained in step 2
# Step 5: Evaluate the ART classifier on benign test examples
predictions = classifier.predict(x_test)
accuracy = np.sum(np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(y_test)
print("Accuracy on benign test examples: {}%".format(accuracy * 100))
# Step 6: Generate adversarial test examples
attack = ZooAttack(
classifier=classifier,
confidence=0.0,
targeted=False,
learning_rate=1e-1,
max_iter=200,
binary_search_steps=10,
initial_const=1e-3,
abort_early=True,
use_resize=False,
use_importance=False,
nb_parallel=5,
batch_size=1,
variable_h=0.01,
)
x_test_adv = attack.generate(x=x_test, y=y_test)
# Step 7: Evaluate the ART classifier on adversarial test examples
predictions = classifier.predict(x_test_adv)
accuracy = np.sum(np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(y_test)
print("Accuracy on adversarial test examples: {}%".format(accuracy * 100))