forked from Trusted-AI/adversarial-robustness-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
135 lines (125 loc) · 4.02 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import codecs
import os
from setuptools import find_packages, setup
with open("README.md", "r") as fh:
long_description = fh.read()
install_requires = [
"numpy>=1.18.0",
"scipy>=1.4.1",
"scikit-learn>=0.22.2,<1.2.0",
"six",
"setuptools",
"tqdm",
]
docs_require = [
"sphinx >= 1.4",
"sphinx_rtd_theme",
"sphinx-autodoc-annotation",
"sphinx-autodoc-typehints",
"matplotlib",
"numpy>=1.18.0",
"scipy>=1.4.1",
"six>=1.13.0",
"scikit-learn>=0.22.2,<1.2.0",
"Pillow>=6.0.0",
]
def read(rel_path):
here = os.path.abspath(os.path.dirname(__file__))
with codecs.open(os.path.join(here, rel_path), "r", encoding="utf-8") as fp:
return fp.read()
def get_version(rel_path):
for line in read(rel_path).splitlines():
if line.startswith("__version__"):
delim = '"' if '"' in line else "'"
return line.split(delim)[1]
raise RuntimeError("Unable to find version string.")
setup(
name="adversarial-robustness-toolbox",
version=get_version("art/__init__.py"),
description="Toolbox for adversarial machine learning.",
long_description=long_description,
long_description_content_type="text/markdown",
author="Irina Nicolae",
author_email="irinutza.n@gmail.com",
maintainer="Beat Buesser",
maintainer_email="beat.buesser@ie.ibm.com",
url="https://github.com/Trusted-AI/adversarial-robustness-toolbox",
license="MIT",
install_requires=install_requires,
extras_require={
"docs": docs_require,
"catboost": ["catboost"],
"gpy": ["GPy"],
"keras": ["keras", "h5py"],
"lightgbm": ["lightgbm"],
"mxnet": ["mxnet"],
"tensorflow": ["tensorflow", "tensorflow_addons", "h5py"],
"tensorflow_image": ["tensorflow", "tensorflow_addons", "h5py", "Pillow", "ffmpeg-python", "opencv-python"],
"tensorflow_audio": ["tensorflow", "tensorflow_addons", "h5py", "pydub", "resampy", "librosa"],
"pytorch": ["torch", "torchvision"],
"pytorch_image": ["torch", "torchvision", "kornia", "Pillow", "ffmpeg-python", "opencv-python"],
"pytorch_audio": ["torch", "torchvision", "torchaudio", "pydub", "resampy", "librosa"],
"xgboost": ["xgboost"],
"lingvo_asr": ["tensorflow-gpu==2.1.0", "lingvo==0.6.4", "pydub", "resampy", "librosa"],
"all": [
"mxnet",
"catboost",
"lightgbm",
"tensorflow",
"tensorflow-addons",
"h5py",
"torch",
"torchvision",
"xgboost",
"pandas",
"kornia",
"matplotlib",
"Pillow",
"statsmodels",
"pydub",
"resampy",
"ffmpeg-python",
"cma",
"librosa",
"opencv-python",
"numba",
],
"non_framework": [
"matplotlib",
"Pillow",
"statsmodels",
"pydub",
"resampy",
"ffmpeg-python",
"cma",
"pandas",
"librosa",
"opencv-python",
"pytest",
"pytest-flake8",
"pytest-mock",
"pytest-cov",
"requests",
"sortedcontainers",
"numba",
"timm",
"multiprocess",
]
},
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Security",
],
packages=find_packages(),
include_package_data=True,
)