diff --git "a/Week16_\341\204\207\341\205\251\341\206\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.ipynb" "b/Week16_\341\204\207\341\205\251\341\206\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.ipynb" new file mode 100644 index 0000000..fca2bee --- /dev/null +++ "b/Week16_\341\204\207\341\205\251\341\206\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyNSdPTMgWUAkFdV3YQ2PMEM"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["#**Week16_복습과제_우정연**"],"metadata":{"id":"ej0mfnFBYpaU"}},{"cell_type":"markdown","source":["##**9.5 콘텐츠 기반 필터링 실습 - TMDB 5000 영화 데이터 세트**"],"metadata":{"id":"nLnGpqXSYtmW"}},{"cell_type":"markdown","source":["- 유명한 영화 데이터 정보 사이트인 IMDB의 영화 중 주요 5000개 영화에 대한 메타 정보를 새롭게 가공해 캐글에서 제공하는 데이터 세트\n","- 콘텐츠 기반 필터링 수행"],"metadata":{"id":"0U9t21badHyZ"}},{"cell_type":"markdown","source":["###**[장르 속성을 이용한 영화 콘텐츠 기반 필터링]**\n","- 콘텐츠 기반 필터링: 사용자가 특정 영화를 감상하고 그 영화를 좋아했다면 그 영화와 비슷한 특성/속성, 구성 요소 등을 가진 다른 영화를 추천하는 것\n"," - 영화(또는 상품/서비스) 간의 유사성을 판단하는 기준이 영화를 구성하는 다양한 콘텐츠(장르, 감독, 배우, 평점, 키워드, 영화 설명)를 기반으로 하는 방식\n","- 영화 장르 속성을 기반으로 한 콘텐츠 기반 필터링 추천 시스템\n"," - 장르 칼럼 값의 유사도를 비교한 뒤 그중 높은 평점을 가지는 영화를 추천하는 방식"],"metadata":{"id":"FGxtkxqbdjmi"}},{"cell_type":"markdown","source":["###**[데이터 로딩 및 가공]**"],"metadata":{"id":"w0_J-gTDe3Jp"}},{"cell_type":"code","execution_count":1,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":223},"id":"LrIHoW2AYhVT","executionInfo":{"status":"ok","timestamp":1736647966759,"user_tz":-540,"elapsed":30076,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"89fc81c4-a7ac-4785-da22-9806ae7374fa"},"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n","(4803, 20)\n"]},{"output_type":"execute_result","data":{"text/plain":[" budget genres \\\n","0 237000000 [{\"id\": 28, \"name\": \"Action\"}, {\"id\": 12, \"nam... \n","\n"," homepage id \\\n","0 http://www.avatarmovie.com/ 19995 \n","\n"," keywords original_language \\\n","0 [{\"id\": 1463, \"name\": \"culture clash\"}, {\"id\":... en \n","\n"," original_title overview \\\n","0 Avatar In the 22nd century, a paraplegic Marine is di... \n","\n"," popularity production_companies \\\n","0 150.437577 [{\"name\": \"Ingenious Film Partners\", \"id\": 289... \n","\n"," production_countries release_date revenue \\\n","0 [{\"iso_3166_1\": \"US\", \"name\": \"United States o... 2009-12-10 2787965087 \n","\n"," runtime spoken_languages status \\\n","0 162.0 [{\"iso_639_1\": \"en\", \"name\": \"English\"}, {\"iso... Released \n","\n"," tagline title vote_average vote_count \n","0 Enter the World of Pandora. Avatar 7.2 11800 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
budgetgenreshomepageidkeywordsoriginal_languageoriginal_titleoverviewpopularityproduction_companiesproduction_countriesrelease_daterevenueruntimespoken_languagesstatustaglinetitlevote_averagevote_count
0237000000[{\"id\": 28, \"name\": \"Action\"}, {\"id\": 12, \"nam...http://www.avatarmovie.com/19995[{\"id\": 1463, \"name\": \"culture clash\"}, {\"id\":...enAvatarIn the 22nd century, a paraplegic Marine is di...150.437577[{\"name\": \"Ingenious Film Partners\", \"id\": 289...[{\"iso_3166_1\": \"US\", \"name\": \"United States o...2009-12-102787965087162.0[{\"iso_639_1\": \"en\", \"name\": \"English\"}, {\"iso...ReleasedEnter the World of Pandora.Avatar7.211800
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"movies","summary":"{\n \"name\": \"movies\",\n \"rows\": 4803,\n \"fields\": [\n {\n \"column\": \"budget\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 40722391,\n \"min\": 0,\n \"max\": 380000000,\n \"num_unique_values\": 436,\n \"samples\": [\n 439000,\n 68000000,\n 700000\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"genres\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1175,\n \"samples\": [\n \"[{\\\"id\\\": 14, \\\"name\\\": \\\"Fantasy\\\"}, {\\\"id\\\": 12, \\\"name\\\": \\\"Adventure\\\"}, {\\\"id\\\": 16, \\\"name\\\": \\\"Animation\\\"}]\",\n \"[{\\\"id\\\": 28, \\\"name\\\": \\\"Action\\\"}, {\\\"id\\\": 35, \\\"name\\\": \\\"Comedy\\\"}, {\\\"id\\\": 80, \\\"name\\\": \\\"Crime\\\"}, {\\\"id\\\": 18, \\\"name\\\": \\\"Drama\\\"}]\",\n \"[{\\\"id\\\": 12, \\\"name\\\": \\\"Adventure\\\"}, {\\\"id\\\": 16, \\\"name\\\": \\\"Animation\\\"}, {\\\"id\\\": 10751, \\\"name\\\": \\\"Family\\\"}, {\\\"id\\\": 14, \\\"name\\\": \\\"Fantasy\\\"}, {\\\"id\\\": 878, \\\"name\\\": \\\"Science Fiction\\\"}]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"homepage\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1691,\n \"samples\": [\n \"https://www.warnerbros.com/running-scared\",\n \"http://www.51birchstreet.com/index.php\",\n \"http://movies2.foxjapan.com/glee/\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 88694,\n \"min\": 5,\n \"max\": 459488,\n \"num_unique_values\": 4803,\n \"samples\": [\n 8427,\n 13006,\n 18041\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"keywords\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4222,\n \"samples\": [\n \"[{\\\"id\\\": 782, \\\"name\\\": \\\"assassin\\\"}, {\\\"id\\\": 1872, \\\"name\\\": \\\"loss of father\\\"}, {\\\"id\\\": 2908, \\\"name\\\": \\\"secret society\\\"}, {\\\"id\\\": 3045, \\\"name\\\": \\\"mission of murder\\\"}, {\\\"id\\\": 9748, \\\"name\\\": \\\"revenge\\\"}]\",\n \"[{\\\"id\\\": 2987, \\\"name\\\": \\\"gang war\\\"}, {\\\"id\\\": 4942, \\\"name\\\": \\\"victim of murder\\\"}, {\\\"id\\\": 5332, \\\"name\\\": \\\"greed\\\"}, {\\\"id\\\": 6062, \\\"name\\\": \\\"hostility\\\"}, {\\\"id\\\": 156212, \\\"name\\\": \\\"spaghetti western\\\"}]\",\n \"[{\\\"id\\\": 703, \\\"name\\\": \\\"detective\\\"}, {\\\"id\\\": 1299, \\\"name\\\": \\\"monster\\\"}, {\\\"id\\\": 6101, \\\"name\\\": \\\"engine\\\"}, {\\\"id\\\": 10988, \\\"name\\\": \\\"based on tv series\\\"}, {\\\"id\\\": 15162, \\\"name\\\": \\\"dog\\\"}]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"original_language\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 37,\n \"samples\": [\n \"xx\",\n \"ta\",\n \"es\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"original_title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4801,\n \"samples\": [\n \"I Spy\",\n \"Love Letters\",\n \"Sleepover\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"overview\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4800,\n \"samples\": [\n \"When the Switchblade, the most sophisticated prototype stealth fighter created yet, is stolen from the U.S. government, one of the United States' top spies, Alex Scott, is called to action. What he doesn't expect is to get teamed up with a cocky civilian, World Class Boxing Champion Kelly Robinson, on a dangerous top secret espionage mission. Their assignment: using equal parts skill and humor, catch Arnold Gundars, one of the world's most successful arms dealers.\",\n \"When \\\"street smart\\\" rapper Christopher \\\"C-Note\\\" Hawkins (Big Boi) applies for a membership to all-white Carolina Pines Country Club, the establishment's proprietors are hardly ready to oblige him.\",\n \"As their first year of high school looms ahead, best friends Julie, Hannah, Yancy and Farrah have one last summer sleepover. Little do they know they're about to embark on the adventure of a lifetime. Desperate to shed their nerdy status, they take part in a night-long scavenger hunt that pits them against their popular archrivals. Everything under the sun goes on -- from taking Yancy's father's car to sneaking into nightclubs!\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"popularity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 31.816649749537806,\n \"min\": 0.0,\n \"max\": 875.581305,\n \"num_unique_values\": 4802,\n \"samples\": [\n 13.267631,\n 0.010909,\n 5.842299\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"production_companies\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3697,\n \"samples\": [\n \"[{\\\"name\\\": \\\"Paramount Pictures\\\", \\\"id\\\": 4}, {\\\"name\\\": \\\"Cherry Alley Productions\\\", \\\"id\\\": 2232}]\",\n \"[{\\\"name\\\": \\\"Twentieth Century Fox Film Corporation\\\", \\\"id\\\": 306}, {\\\"name\\\": \\\"Dune Entertainment\\\", \\\"id\\\": 444}, {\\\"name\\\": \\\"Regency Enterprises\\\", \\\"id\\\": 508}, {\\\"name\\\": \\\"Guy Walks into a Bar Productions\\\", \\\"id\\\": 2645}, {\\\"name\\\": \\\"Deep River Productions\\\", \\\"id\\\": 2646}, {\\\"name\\\": \\\"Friendly Films (II)\\\", \\\"id\\\": 81136}]\",\n \"[{\\\"name\\\": \\\"Twentieth Century Fox Film Corporation\\\", \\\"id\\\": 306}]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"production_countries\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 469,\n \"samples\": [\n \"[{\\\"iso_3166_1\\\": \\\"ES\\\", \\\"name\\\": \\\"Spain\\\"}, {\\\"iso_3166_1\\\": \\\"GB\\\", \\\"name\\\": \\\"United Kingdom\\\"}, {\\\"iso_3166_1\\\": \\\"US\\\", \\\"name\\\": \\\"United States of America\\\"}, {\\\"iso_3166_1\\\": \\\"FR\\\", \\\"name\\\": \\\"France\\\"}]\",\n \"[{\\\"iso_3166_1\\\": \\\"US\\\", \\\"name\\\": \\\"United States of America\\\"}, {\\\"iso_3166_1\\\": \\\"CA\\\", \\\"name\\\": \\\"Canada\\\"}, {\\\"iso_3166_1\\\": \\\"DE\\\", \\\"name\\\": \\\"Germany\\\"}]\",\n \"[{\\\"iso_3166_1\\\": \\\"DE\\\", \\\"name\\\": \\\"Germany\\\"}, {\\\"iso_3166_1\\\": \\\"ES\\\", \\\"name\\\": \\\"Spain\\\"}, {\\\"iso_3166_1\\\": \\\"GB\\\", \\\"name\\\": \\\"United Kingdom\\\"}, {\\\"iso_3166_1\\\": \\\"US\\\", \\\"name\\\": \\\"United States of America\\\"}]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"release_date\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 3280,\n \"samples\": [\n \"1966-10-16\",\n \"1987-07-31\",\n \"1993-09-23\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"revenue\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 162857100,\n \"min\": 0,\n \"max\": 2787965087,\n \"num_unique_values\": 3297,\n \"samples\": [\n 11833696,\n 10462500,\n 17807569\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"runtime\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 22.611934588844207,\n \"min\": 0.0,\n \"max\": 338.0,\n \"num_unique_values\": 156,\n \"samples\": [\n 74.0,\n 85.0,\n 170.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"spoken_languages\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 544,\n \"samples\": [\n \"[{\\\"iso_639_1\\\": \\\"es\\\", \\\"name\\\": \\\"Espa\\\\u00f1ol\\\"}, {\\\"iso_639_1\\\": \\\"en\\\", \\\"name\\\": \\\"English\\\"}, {\\\"iso_639_1\\\": \\\"fr\\\", \\\"name\\\": \\\"Fran\\\\u00e7ais\\\"}, {\\\"iso_639_1\\\": \\\"hu\\\", \\\"name\\\": \\\"Magyar\\\"}]\",\n \"[{\\\"iso_639_1\\\": \\\"en\\\", \\\"name\\\": \\\"English\\\"}, {\\\"iso_639_1\\\": \\\"it\\\", \\\"name\\\": \\\"Italiano\\\"}, {\\\"iso_639_1\\\": \\\"pt\\\", \\\"name\\\": \\\"Portugu\\\\u00eas\\\"}]\",\n \"[{\\\"iso_639_1\\\": \\\"de\\\", \\\"name\\\": \\\"Deutsch\\\"}, {\\\"iso_639_1\\\": \\\"it\\\", \\\"name\\\": \\\"Italiano\\\"}, {\\\"iso_639_1\\\": \\\"la\\\", \\\"name\\\": \\\"Latin\\\"}, {\\\"iso_639_1\\\": \\\"pl\\\", \\\"name\\\": \\\"Polski\\\"}]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"status\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Released\",\n \"Post Production\",\n \"Rumored\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"tagline\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3944,\n \"samples\": [\n \"When you're 17, every day is war.\",\n \"An Unspeakable Horror. A Creative Genius. Captured For Eternity.\",\n \"May the schwartz be with you\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 4800,\n \"samples\": [\n \"I Spy\",\n \"Who's Your Caddy?\",\n \"Sleepover\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_average\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.1946121628478925,\n \"min\": 0.0,\n \"max\": 10.0,\n \"num_unique_values\": 71,\n \"samples\": [\n 5.1,\n 7.2,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1234,\n \"min\": 0,\n \"max\": 13752,\n \"num_unique_values\": 1609,\n \"samples\": [\n 7604,\n 3428,\n 225\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":1}],"source":["import pandas as pd\n","import numpy as np\n","import warnings; warnings.filterwarnings('ignore')\n","\n","from google.colab import drive\n","drive.mount('/content/drive')\n","\n","\n","movies = pd.read_csv('drive/My Drive/Colab Notebooks/data/archive/tmdb_5000_movies.csv')\n","print(movies.shape)\n","movies.head(1)"]},{"cell_type":"code","source":["movies_df = movies[['id', 'title', 'genres', 'vote_average', 'vote_count', 'popularity',\n"," 'keywords', 'overview']]\n","\n","pd.set_option('max_colwidth', 100)\n","movies_df[['genres', 'keywords']][:1]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":98},"id":"MMFPmu9ZhIs0","executionInfo":{"status":"ok","timestamp":1736647966760,"user_tz":-540,"elapsed":6,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"58c48423-0264-4e3d-9f0e-d73076a61206"},"execution_count":2,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" genres \\\n","0 [{\"id\": 28, \"name\": \"Action\"}, {\"id\": 12, \"name\": \"Adventure\"}, {\"id\": 14, \"name\": \"Fantasy\"}, {... \n","\n"," keywords \n","0 [{\"id\": 1463, \"name\": \"culture clash\"}, {\"id\": 2964, \"name\": \"future\"}, {\"id\": 3386, \"name\": \"sp... "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
genreskeywords
0[{\"id\": 28, \"name\": \"Action\"}, {\"id\": 12, \"name\": \"Adventure\"}, {\"id\": 14, \"name\": \"Fantasy\"}, {...[{\"id\": 1463, \"name\": \"culture clash\"}, {\"id\": 2964, \"name\": \"future\"}, {\"id\": 3386, \"name\": \"sp...
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"movies_df[['genres', 'keywords']][:1]\",\n \"rows\": 1,\n \"fields\": [\n {\n \"column\": \"genres\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"[{\\\"id\\\": 28, \\\"name\\\": \\\"Action\\\"}, {\\\"id\\\": 12, \\\"name\\\": \\\"Adventure\\\"}, {\\\"id\\\": 14, \\\"name\\\": \\\"Fantasy\\\"}, {\\\"id\\\": 878, \\\"name\\\": \\\"Science Fiction\\\"}]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"keywords\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"[{\\\"id\\\": 1463, \\\"name\\\": \\\"culture clash\\\"}, {\\\"id\\\": 2964, \\\"name\\\": \\\"future\\\"}, {\\\"id\\\": 3386, \\\"name\\\": \\\"space war\\\"}, {\\\"id\\\": 3388, \\\"name\\\": \\\"space colony\\\"}, {\\\"id\\\": 3679, \\\"name\\\": \\\"society\\\"}, {\\\"id\\\": 3801, \\\"name\\\": \\\"space travel\\\"}, {\\\"id\\\": 9685, \\\"name\\\": \\\"futuristic\\\"}, {\\\"id\\\": 9840, \\\"name\\\": \\\"romance\\\"}, {\\\"id\\\": 9882, \\\"name\\\": \\\"space\\\"}, {\\\"id\\\": 9951, \\\"name\\\": \\\"alien\\\"}, {\\\"id\\\": 10148, \\\"name\\\": \\\"tribe\\\"}, {\\\"id\\\": 10158, \\\"name\\\": \\\"alien planet\\\"}, {\\\"id\\\": 10987, \\\"name\\\": \\\"cgi\\\"}, {\\\"id\\\": 11399, \\\"name\\\": \\\"marine\\\"}, {\\\"id\\\": 13065, \\\"name\\\": \\\"soldier\\\"}, {\\\"id\\\": 14643, \\\"name\\\": \\\"battle\\\"}, {\\\"id\\\": 14720, \\\"name\\\": \\\"love affair\\\"}, {\\\"id\\\": 165431, \\\"name\\\": \\\"anti war\\\"}, {\\\"id\\\": 193554, \\\"name\\\": \\\"power relations\\\"}, {\\\"id\\\": 206690, \\\"name\\\": \\\"mind and soul\\\"}, {\\\"id\\\": 209714, \\\"name\\\": \\\"3d\\\"}]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":2}]},{"cell_type":"code","source":["from ast import literal_eval\n","movies_df['genres'] = movies_df['genres'].apply(literal_eval)\n","movies_df['keywords'] = movies_df['keywords'].apply(literal_eval)\n","\n","movies_df['genres'] = movies_df['genres'].apply(lambda x : [y['name'] for y in x])\n","movies_df['keywords'] = movies_df['keywords'].apply(lambda x : [ y['name'] for y in x])\n","movies_df[['genres', 'keywords']][:1]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":98},"id":"Q40yqG43hoK-","executionInfo":{"status":"ok","timestamp":1736647967273,"user_tz":-540,"elapsed":518,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"05a38269-b39d-4ab5-a253-a6a07b06d6c6"},"execution_count":3,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" genres \\\n","0 [Action, Adventure, Fantasy, Science Fiction] \n","\n"," keywords \n","0 [culture clash, future, space war, space colony, society, space travel, futuristic, romance, spa... "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
genreskeywords
0[Action, Adventure, Fantasy, Science Fiction][culture clash, future, space war, space colony, society, space travel, futuristic, romance, spa...
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"movies_df[['genres', 'keywords']][:1]\",\n \"rows\": 1,\n \"fields\": [\n {\n \"column\": \"genres\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"keywords\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":3}]},{"cell_type":"markdown","source":["###**[장르 콘텐츠 유사도 측정]**\n","- genres 칼럼은 여러 개의 개별 장르가 리스트로 구성돼 있음\n"," - genres를 문자열로 변경한 뒤 이를 CountVectorizer로 피처 벡터화한 행렬 데이터 값을 코사인 유사도로 비교하는 방법\n"," 1. 문자열로 변환된 genres 칼럼을 Count 기반으로 피처 벡터화 변환\n"," 2. genres 문자열을 피처 벡터화 행렬로 변환한 데이터 세트를 코사인 유사도를 통해 비교. 이를 위해 데이터 세트의 레코드 별로 타 레코드와 장르에서 코사인 유사도 값을 가지는 객체를 생성\n"," 3. 장르 유사도가 높은 영화 중 평점이 높은 순으로 영화 추천\n"," "],"metadata":{"id":"yLpt_SVriOEN"}},{"cell_type":"code","source":["from sklearn.feature_extraction.text import CountVectorizer\n","\n","# CountVectorizer를 적용하기 위해 공백 문자로 word 단위가 구분되는 문자열로 변환\n","movies_df['genres_literal'] = movies_df['genres'].apply(lambda x : (' ').join(x))\n","count_vect = CountVectorizer(min_df = 0.0, ngram_range = (1,2))\n","genre_mat = count_vect.fit_transform(movies_df['genres_literal'])\n","print(genre_mat.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"lAjsawNHi3M8","executionInfo":{"status":"ok","timestamp":1736647970173,"user_tz":-540,"elapsed":2903,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"29fba238-f159-4a94-efef-132219b5ee7d"},"execution_count":4,"outputs":[{"output_type":"stream","name":"stdout","text":["(4803, 276)\n"]}]},{"cell_type":"markdown","source":["- cosine_similarity(): 코사인 유사도 계산\n"," - 기준 행과 비교 행의 코사인 유사도를 행렬 형태로 반환하는 함수"],"metadata":{"id":"-i29huO1jk44"}},{"cell_type":"code","source":["from sklearn.metrics.pairwise import cosine_similarity\n","\n","genre_sim = cosine_similarity(genre_mat, genre_mat)\n","print(genre_sim.shape)\n","print(genre_sim[:1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"RGEaZVQzjuoy","executionInfo":{"status":"ok","timestamp":1736647970806,"user_tz":-540,"elapsed":636,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"e4c04263-6b88-429e-faab-8264570ab7e3"},"execution_count":5,"outputs":[{"output_type":"stream","name":"stdout","text":["(4803, 4803)\n","[[1. 0.59628479 0.4472136 ... 0. 0. 0. ]]\n"]}]},{"cell_type":"markdown","source":["- genre_sim 객체: movies_df의 genre_literal 칼럼을 피처 벡터화한 행렬(genre_mat) 데이터의 행 별 유사도 정보를 가지고 있음.\n"," - movies_df DataFrame의 행별 장르 유사도 값을 가지고 있음\n","- movies_df의 개별 레코드에 대해 가장 장르 유사도가 높은 순으로 다른 레코드 추출\n"," - genre_sim 객체 이용"],"metadata":{"id":"1ZVgMW8GkEok"}},{"cell_type":"code","source":["genre_sim_sorted_ind = genre_sim.argsort()[:, ::-1]\n","print(genre_sim_sorted_ind[:1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"FRYv5LSnkmIZ","executionInfo":{"status":"ok","timestamp":1736647972147,"user_tz":-540,"elapsed":1342,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"62750ba2-26c7-401c-fa87-7f7bda484850"},"execution_count":6,"outputs":[{"output_type":"stream","name":"stdout","text":["[[ 0 3494 813 ... 3038 3037 2401]]\n"]}]},{"cell_type":"markdown","source":["- 반환 값이 의미하는 것\n"," - 0번 레코드의 경우 자신인 0번 레코드를 제외하면 3494번 레코드가 가장 유사도가 높고, 그 다음이 813번, 가장 유사도가 낮은 레코드는 2401번 레코드"],"metadata":{"id":"BVYJe4gSku_T"}},{"cell_type":"markdown","source":["###**[장르 콘텐츠 필터링을 이용한 영화 추천]**\n","- find_sim_movie()\n"," - 장르 유사도에 따라 영화를 추천하는 함수"],"metadata":{"id":"1dXB02mqk7iT"}},{"cell_type":"code","source":["def find_sim_movie(df, sorted_ind, title_name, top_n = 10):\n"," # 인자로 입력된 movies_df DataFrame에서 'title' 칼럼이 입력된 title_name 값인 DataFrame 추출\n"," title_movie = df[df['title'] == title_name]\n","\n"," # title_named를 가진 DataFrame의 index 객체를 ndarray로 반환하고\n"," # sorted_ind 인자로 입력된 genre_sim_sorted_ind 객체에서 유사도 순으로 top_n개의 index 추출\n"," title_index = title_movie.index.values\n"," similar_indexes = sorted_ind[title_index, :(top_n)]\n","\n"," # 추출된 top_n index 출력. top_n index는 2차원 데이터임\n"," # dataframe에서 index로 사용하기 위해 1차원 array로 변경\n"," print(similar_indexes)\n"," similar_indexes = similar_indexes.reshape(-1)\n","\n"," return df.iloc[similar_indexes]"],"metadata":{"id":"76RQEG91lEyg","executionInfo":{"status":"ok","timestamp":1736647972147,"user_tz":-540,"elapsed":16,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"execution_count":7,"outputs":[]},{"cell_type":"code","source":["similar_movies = find_sim_movie(movies_df, genre_sim_sorted_ind, 'The Godfather', 10)\n","similar_movies[['title', 'vote_average']]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":381},"id":"Qfeo_9a2mNRc","executionInfo":{"status":"ok","timestamp":1736647972147,"user_tz":-540,"elapsed":15,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"a3e547fb-c81a-4556-857c-72ccfad1a7db"},"execution_count":8,"outputs":[{"output_type":"stream","name":"stdout","text":["[[2731 1243 3636 1946 2640 4065 1847 4217 883 3866]]\n"]},{"output_type":"execute_result","data":{"text/plain":[" title vote_average\n","2731 The Godfather: Part II 8.3\n","1243 Mean Streets 7.2\n","3636 Light Sleeper 5.7\n","1946 The Bad Lieutenant: Port of Call - New Orleans 6.0\n","2640 Things to Do in Denver When You're Dead 6.7\n","4065 Mi America 0.0\n","1847 GoodFellas 8.2\n","4217 Kids 6.8\n","883 Catch Me If You Can 7.7\n","3866 City of God 8.1"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
titlevote_average
2731The Godfather: Part II8.3
1243Mean Streets7.2
3636Light Sleeper5.7
1946The Bad Lieutenant: Port of Call - New Orleans6.0
2640Things to Do in Denver When You're Dead6.7
4065Mi America0.0
1847GoodFellas8.2
4217Kids6.8
883Catch Me If You Can7.7
3866City of God8.1
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"similar_movies[['title', 'vote_average']]\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Catch Me If You Can\",\n \"Mean Streets\",\n \"Mi America\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_average\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.4467892793981623,\n \"min\": 0.0,\n \"max\": 8.3,\n \"num_unique_values\": 10,\n \"samples\": [\n 7.7,\n 7.2,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":8}]},{"cell_type":"markdown","source":["- 대부 2편이 가장 먼저 추천, 1847의 '좋은 친구들'도 비슷한 유형으로 추천\n","- 낯선 영화도 많음 -> 개선 필요!\n","- 더 많은 후보군을 선정한 뒤 영화의 평점에 따라 필터링 후 최종 추천하는 방식으로 변경\n"," - 'vote_average' 값 이용\n"," - 왜곡된 데이터를 가짐"],"metadata":{"id":"ikonlLfUme8P"}},{"cell_type":"code","source":["movies_df[['title', 'vote_average', 'vote_count']].sort_values('vote_average',\n"," ascending = False)[:10]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":363},"id":"mgbYXPZTnY7H","executionInfo":{"status":"ok","timestamp":1736647972147,"user_tz":-540,"elapsed":13,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"ff13fc86-c7dc-40a1-e487-065a9e25c462"},"execution_count":9,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" title vote_average vote_count\n","3519 Stiff Upper Lips 10.0 1\n","4247 Me You and Five Bucks 10.0 2\n","4045 Dancer, Texas Pop. 81 10.0 1\n","4662 Little Big Top 10.0 1\n","3992 Sardaarji 9.5 2\n","2386 One Man's Hero 9.3 2\n","2970 There Goes My Baby 8.5 2\n","1881 The Shawshank Redemption 8.5 8205\n","2796 The Prisoner of Zenda 8.4 11\n","3337 The Godfather 8.4 5893"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
titlevote_averagevote_count
3519Stiff Upper Lips10.01
4247Me You and Five Bucks10.02
4045Dancer, Texas Pop. 8110.01
4662Little Big Top10.01
3992Sardaarji9.52
2386One Man's Hero9.32
2970There Goes My Baby8.52
1881The Shawshank Redemption8.58205
2796The Prisoner of Zenda8.411
3337The Godfather8.45893
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \" ascending = False)[:10]\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"The Prisoner of Zenda\",\n \"Me You and Five Bucks\",\n \"One Man's Hero\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_average\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7366591251499343,\n \"min\": 8.4,\n \"max\": 10.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 9.5,\n 8.4,\n 9.3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3020,\n \"min\": 1,\n \"max\": 8205,\n \"num_unique_values\": 5,\n \"samples\": [\n 2,\n 5893,\n 8205\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":9}]},{"cell_type":"markdown","source":["- 왜곡된 평점 데이터를 회피할 수 있도록 평점에 평가 횟수를 반영할 수 있는 새로운 평가 방식이 필요\n","- 유명한 영화 평점 사이트인 IMDB - 평가 횟수에 대한 가중치가 부여된 평점 방식을 사용\n"," - 가중 평점 공식\n"," - Weighted Rating = (v/(v+m)) * R + (m/(v+m)) * C\n"," - v: 개별 영화에 평점을 투표한 횟수\n"," - m: 평점을 부여하기 위한 최소 투표 횟수\n"," - R: 개별 영화에 대한 평균 평점\n"," - C: 전체 영화에 대한 평균 평점"],"metadata":{"id":"j6tjIONynnYF"}},{"cell_type":"code","source":["C = movies_df['vote_average'].mean()\n","m = movies_df['vote_count'].quantile(0.6)\n","print('C:', round(C, 3), 'm:', round(m,3))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"i5k5uijNoTc3","executionInfo":{"status":"ok","timestamp":1736647972147,"user_tz":-540,"elapsed":12,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"c6509aa3-3e58-4cf9-c281-7199bb81018c"},"execution_count":10,"outputs":[{"output_type":"stream","name":"stdout","text":["C: 6.092 m: 370.2\n"]}]},{"cell_type":"code","source":["percentile = 0.6\n","m = movies['vote_count'].quantile(percentile)\n","C = movies['vote_average'].mean()\n","\n","def weighted_vote_average(record):\n"," v = record['vote_count']\n"," R = record['vote_average']\n","\n"," return ( (v/(v+m)) * R ) + ( (m/(m+v)) * C )\n","\n","movies['weighted_vote'] = movies.apply(weighted_vote_average, axis = 1)\n","movies_df = movies.copy()\n","\n","movies_df[['title', 'vote_average', 'weighted_vote', 'vote_count']].sort_values('weighted_vote', ascending = False)[:10]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":363},"id":"yKB-NPLEokG8","executionInfo":{"status":"ok","timestamp":1736647972148,"user_tz":-540,"elapsed":11,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"17200a13-480e-4770-8f3a-a8a943dd2fee"},"execution_count":11,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" title vote_average weighted_vote vote_count\n","1881 The Shawshank Redemption 8.5 8.396052 8205\n","3337 The Godfather 8.4 8.263591 5893\n","662 Fight Club 8.3 8.216455 9413\n","3232 Pulp Fiction 8.3 8.207102 8428\n","65 The Dark Knight 8.2 8.136930 12002\n","1818 Schindler's List 8.3 8.126069 4329\n","3865 Whiplash 8.3 8.123248 4254\n","809 Forrest Gump 8.2 8.105954 7927\n","2294 Spirited Away 8.3 8.105867 3840\n","2731 The Godfather: Part II 8.3 8.079586 3338"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
titlevote_averageweighted_votevote_count
1881The Shawshank Redemption8.58.3960528205
3337The Godfather8.48.2635915893
662Fight Club8.38.2164559413
3232Pulp Fiction8.38.2071028428
65The Dark Knight8.28.13693012002
1818Schindler's List8.38.1260694329
3865Whiplash8.38.1232484254
809Forrest Gump8.28.1059547927
2294Spirited Away8.38.1058673840
2731The Godfather: Part II8.38.0795863338
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"movies_df[['title', 'vote_average', 'weighted_vote', 'vote_count']]\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Spirited Away\",\n \"The Godfather\",\n \"Schindler's List\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_average\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.08755950357709151,\n \"min\": 8.2,\n \"max\": 8.5,\n \"num_unique_values\": 4,\n \"samples\": [\n 8.4,\n 8.2,\n 8.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"weighted_vote\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.09696608479450805,\n \"min\": 8.07958629828635,\n \"max\": 8.39605162693645,\n \"num_unique_values\": 10,\n \"samples\": [\n 8.105867158639835,\n 8.263590802034972,\n 8.126068673669016\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2866,\n \"min\": 3338,\n \"max\": 12002,\n \"num_unique_values\": 10,\n \"samples\": [\n 3840,\n 5893,\n 4329\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":11}]},{"cell_type":"markdown","source":["- 새롭게 정의된 평점 기준에 따라 영화 추천\n"," - 장르 유사성이 높은 영화를 top_n의 2배수만큼 후보군으로 선정한 뒤 weighted_vote 칼럼 값이 높은 순으로 top_n만큼 추출하는 방식으로 find_sim_movie() 함수 변경"],"metadata":{"id":"5G49nIo_qON9"}},{"cell_type":"code","source":["def find_sim_movie(df, sorted_ind, title_name, top_n = 10):\n","\n"," title_movie = df[df['title'] == title_name]\n"," title_index = title_movie.index.values\n","\n"," # top_n의 2배에 해당하는 장르 유사성이 높은 인덱스 추출\n"," similar_indexes = sorted_ind[title_index, :(top_n*2)]\n"," similar_indexes = similar_indexes.reshape(-1)\n"," # 기준 영화 인덱스는 제외\n"," similar_indexes = similar_indexes[similar_indexes != title_index]\n","\n"," # top_n의 2배에 해당하는 후보군에서 weighted_vote가 높은 순으로 top_n만큼 추출\n"," return df.iloc[similar_indexes].sort_values('weighted_vote', ascending = False)[:top_n]\n","\n","similar_movies = find_sim_movie(movies_df, genre_sim_sorted_ind, 'The Godfather', 10)\n","similar_movies[['title', 'vote_average', 'weighted_vote']]\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":363},"id":"Sfixwb7DqNva","executionInfo":{"status":"ok","timestamp":1736647972148,"user_tz":-540,"elapsed":10,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"c31f799c-894e-4c78-8ccf-69688e5cb450"},"execution_count":12,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" title vote_average weighted_vote\n","2731 The Godfather: Part II 8.3 8.079586\n","1847 GoodFellas 8.2 7.976937\n","3866 City of God 8.1 7.759693\n","1663 Once Upon a Time in America 8.2 7.657811\n","883 Catch Me If You Can 7.7 7.557097\n","281 American Gangster 7.4 7.141396\n","4041 This Is England 7.4 6.739664\n","1149 American Hustle 6.8 6.717525\n","1243 Mean Streets 7.2 6.626569\n","2839 Rounders 6.9 6.530427"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
titlevote_averageweighted_vote
2731The Godfather: Part II8.38.079586
1847GoodFellas8.27.976937
3866City of God8.17.759693
1663Once Upon a Time in America8.27.657811
883Catch Me If You Can7.77.557097
281American Gangster7.47.141396
4041This Is England7.46.739664
1149American Hustle6.86.717525
1243Mean Streets7.26.626569
2839Rounders6.96.530427
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"similar_movies[['title', 'vote_average', 'weighted_vote']]\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Mean Streets\",\n \"GoodFellas\",\n \"American Gangster\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"vote_average\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5613475849338901,\n \"min\": 6.8,\n \"max\": 8.3,\n \"num_unique_values\": 8,\n \"samples\": [\n 8.2,\n 6.8,\n 8.3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"weighted_vote\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5954507780784589,\n \"min\": 6.530427473190107,\n \"max\": 8.07958629828635,\n \"num_unique_values\": 10,\n \"samples\": [\n 6.626568667932654,\n 7.976937256676415,\n 7.1413961709782265\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":12}]},{"cell_type":"markdown","source":["##**9.6 아이템 기반 최근접 이웃 협업 필터링 실습**\n","- 최근접 이웃 협업 필터링\n"," - 사용자 기반\n"," - 아이템 기반: 추천 정확도가 일반적으로 더 뛰어남"],"metadata":{"id":"aziuP-ussCh3"}},{"cell_type":"markdown","source":["###**[데이터 가공 및 변환]**"],"metadata":{"id":"5U2cqVRJtO3O"}},{"cell_type":"code","source":["import pandas as pd\n","import numpy as np\n","\n","movies = pd.read_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/movies.csv')\n","ratings = pd.read_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/ratings.csv')\n","print(movies.shape)\n","print(ratings.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"VTfQF8M8tN6S","executionInfo":{"status":"ok","timestamp":1736647973586,"user_tz":-540,"elapsed":1447,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"8f0a7cea-88d1-4c36-b0dd-7621fa5b1217"},"execution_count":13,"outputs":[{"output_type":"stream","name":"stdout","text":["(9742, 3)\n","(100836, 4)\n"]}]},{"cell_type":"markdown","source":["- 협업 필터링: ratings.csv 데이터 세트와 같이 사용자와 아이템 간의 평점에 기반에 추천하는 시스템\n","- ratings.csv의 DataFrame인 ratings를 이용해 아이템 기반의 최근접 이웃 협업 필터링 구현\n"," - 로우(행) 레벨 형태의 원본 데이터 세트를 모든 사용자를 로우로, 모든 영화를 칼럼으로 구성한 데이터 세트로 변경\n"," - pivot_table() 함수 이용"],"metadata":{"id":"gPTrryu5ttEE"}},{"cell_type":"code","source":["ratings = ratings[['userId', 'movieId', 'rating']]\n","ratings_matrix = ratings.pivot_table('rating', index='userId', columns = 'movieId')\n","ratings_matrix.head(3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":224},"id":"VexKEHZpuFzy","executionInfo":{"status":"ok","timestamp":1736647973587,"user_tz":-540,"elapsed":9,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"4b12b9a5-631a-4677-b23d-95c287b08369"},"execution_count":14,"outputs":[{"output_type":"execute_result","data":{"text/plain":["movieId 1 2 3 4 5 6 7 8 \\\n","userId \n","1 4.0 NaN 4.0 NaN NaN 4.0 NaN NaN \n","2 NaN NaN NaN NaN NaN NaN NaN NaN \n","3 NaN NaN NaN NaN NaN NaN NaN NaN \n","\n","movieId 9 10 ... 193565 193567 193571 193573 193579 193581 \\\n","userId ... \n","1 NaN NaN ... NaN NaN NaN NaN NaN NaN \n","2 NaN NaN ... NaN NaN NaN NaN NaN NaN \n","3 NaN NaN ... NaN NaN NaN NaN NaN NaN \n","\n","movieId 193583 193585 193587 193609 \n","userId \n","1 NaN NaN NaN NaN \n","2 NaN NaN NaN NaN \n","3 NaN NaN NaN NaN \n","\n","[3 rows x 9724 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
movieId12345678910...193565193567193571193573193579193581193583193585193587193609
userId
14.0NaN4.0NaNNaN4.0NaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n","

3 rows × 9724 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"ratings_matrix"}},"metadata":{},"execution_count":14}]},{"cell_type":"markdown","source":["- 사용자가 평점을 매기지 않은 영화가 칼럼으로 변환 -> NaN 값으로 할당\n","- NaN -> 0\n","- 칼럼명을 movieId가 아닌 영화명(title)으로 변경"],"metadata":{"id":"cSpLgTTvujOf"}},{"cell_type":"code","source":["# title 칼럼을 얻기 위해 movies와 조인\n","rating_movies = pd.merge(ratings, movies, on='movieId')\n","\n","# columns='title'로 title 칼럼으로 피벗 수행\n","ratings_matrix = rating_movies.pivot_table('rating', index = 'userId', columns='title')\n","\n","# NaN 값을 모두 0으로 변환\n","ratings_matrix = ratings_matrix.fillna(0)\n","ratings_matrix.head(3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":346},"id":"8W4oYaHuuy1F","executionInfo":{"status":"ok","timestamp":1736647973587,"user_tz":-540,"elapsed":7,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"845f6fbb-3de7-4aa6-8c65-3635b51f3cca"},"execution_count":15,"outputs":[{"output_type":"execute_result","data":{"text/plain":["title '71 (2014) 'Hellboy': The Seeds of Creation (2004) \\\n","userId \n","1 0.0 0.0 \n","2 0.0 0.0 \n","3 0.0 0.0 \n","\n","title 'Round Midnight (1986) 'Salem's Lot (2004) \\\n","userId \n","1 0.0 0.0 \n","2 0.0 0.0 \n","3 0.0 0.0 \n","\n","title 'Til There Was You (1997) 'Tis the Season for Love (2015) \\\n","userId \n","1 0.0 0.0 \n","2 0.0 0.0 \n","3 0.0 0.0 \n","\n","title 'burbs, The (1989) 'night Mother (1986) (500) Days of Summer (2009) \\\n","userId \n","1 0.0 0.0 0.0 \n","2 0.0 0.0 0.0 \n","3 0.0 0.0 0.0 \n","\n","title *batteries not included (1987) ... Zulu (2013) [REC] (2007) \\\n","userId ... \n","1 0.0 ... 0.0 0.0 \n","2 0.0 ... 0.0 0.0 \n","3 0.0 ... 0.0 0.0 \n","\n","title [REC]² (2009) [REC]³ 3 Génesis (2012) \\\n","userId \n","1 0.0 0.0 \n","2 0.0 0.0 \n","3 0.0 0.0 \n","\n","title anohana: The Flower We Saw That Day - The Movie (2013) \\\n","userId \n","1 0.0 \n","2 0.0 \n","3 0.0 \n","\n","title eXistenZ (1999) xXx (2002) xXx: State of the Union (2005) \\\n","userId \n","1 0.0 0.0 0.0 \n","2 0.0 0.0 0.0 \n","3 0.0 0.0 0.0 \n","\n","title ¡Three Amigos! (1986) À nous la liberté (Freedom for Us) (1931) \n","userId \n","1 4.0 0.0 \n","2 0.0 0.0 \n","3 0.0 0.0 \n","\n","[3 rows x 9719 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
title'71 (2014)'Hellboy': The Seeds of Creation (2004)'Round Midnight (1986)'Salem's Lot (2004)'Til There Was You (1997)'Tis the Season for Love (2015)'burbs, The (1989)'night Mother (1986)(500) Days of Summer (2009)*batteries not included (1987)...Zulu (2013)[REC] (2007)[REC]² (2009)[REC]³ 3 Génesis (2012)anohana: The Flower We Saw That Day - The Movie (2013)eXistenZ (1999)xXx (2002)xXx: State of the Union (2005)¡Three Amigos! (1986)À nous la liberté (Freedom for Us) (1931)
userId
10.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.04.00.0
20.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
30.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n","

3 rows × 9719 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"ratings_matrix"}},"metadata":{},"execution_count":15}]},{"cell_type":"markdown","source":["###**[영화 간 유사도 산출]**\n","- cosine_similarity() 이용\n"," - cosine_similarity() 함수는 행을 기준으로 서로 다른 행을 비교해 유사도를 산출\n"," - ratings_matrix는 userId가 기준인 행 레벨 데이터이므로 여기에 cosine_similarity()를 적용하면 영화 간의 유사도가 아닌 사용자 간의 유사도가 만들어짐\n","- 영화를 기준으로 cosine_similarity()를 적용하려면 현재의 ratings_matrix가 행 기준이 영화가 되고 열 기준이 사용자가 돼야 함\n"," - transpose() 함수를 이용해 ratings_matrix 데이터의 행과 열의 위치를 변경"],"metadata":{"id":"p-vKXHq3vVHw"}},{"cell_type":"code","source":["ratings_matrix_T = ratings_matrix.transpose()\n","ratings_matrix_T.head(3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":346},"id":"8NVcTH9Yv96v","executionInfo":{"status":"ok","timestamp":1736647974249,"user_tz":-540,"elapsed":668,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"2f4733e9-0c95-4897-fe59-7a71fdb12806"},"execution_count":16,"outputs":[{"output_type":"execute_result","data":{"text/plain":["userId 1 2 3 4 5 6 7 \\\n","title \n","'71 (2014) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n","'Round Midnight (1986) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n","\n","userId 8 9 10 ... 601 602 603 \\\n","title ... \n","'71 (2014) 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n","'Round Midnight (1986) 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n","\n","userId 604 605 606 607 608 609 610 \n","title \n","'71 (2014) 0.0 0.0 0.0 0.0 0.0 0.0 4.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n","'Round Midnight (1986) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n","\n","[3 rows x 610 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
userId12345678910...601602603604605606607608609610
title
'71 (2014)0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.04.0
'Hellboy': The Seeds of Creation (2004)0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
'Round Midnight (1986)0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n","

3 rows × 610 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"ratings_matrix_T"}},"metadata":{},"execution_count":16}]},{"cell_type":"code","source":["from sklearn.metrics.pairwise import cosine_similarity\n","\n","item_sim = cosine_similarity(ratings_matrix_T, ratings_matrix_T)\n","\n","# cosine_similarity()로 반환된 넘파이 행렬을 영화명을 매핑해 DataFrame으로 변환\n","item_sim_df = pd.DataFrame(data = item_sim, index = ratings_matrix.columns,\n"," columns = ratings_matrix.columns)\n","\n","print(item_sim_df.shape)\n","item_sim_df.head(3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":485},"id":"Y9WrTInA0oCN","executionInfo":{"status":"ok","timestamp":1736647978546,"user_tz":-540,"elapsed":4298,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"6b4bca81-1fc0-4965-a092-6ad6e0fd453e"},"execution_count":17,"outputs":[{"output_type":"stream","name":"stdout","text":["(9719, 9719)\n"]},{"output_type":"execute_result","data":{"text/plain":["title '71 (2014) \\\n","title \n","'71 (2014) 1.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 \n","'Round Midnight (1986) 0.0 \n","\n","title 'Hellboy': The Seeds of Creation (2004) \\\n","title \n","'71 (2014) 0.000000 \n","'Hellboy': The Seeds of Creation (2004) 1.000000 \n","'Round Midnight (1986) 0.707107 \n","\n","title 'Round Midnight (1986) \\\n","title \n","'71 (2014) 0.000000 \n","'Hellboy': The Seeds of Creation (2004) 0.707107 \n","'Round Midnight (1986) 1.000000 \n","\n","title 'Salem's Lot (2004) \\\n","title \n","'71 (2014) 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 \n","'Round Midnight (1986) 0.0 \n","\n","title 'Til There Was You (1997) \\\n","title \n","'71 (2014) 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 \n","'Round Midnight (1986) 0.0 \n","\n","title 'Tis the Season for Love (2015) \\\n","title \n","'71 (2014) 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 \n","'Round Midnight (1986) 0.0 \n","\n","title 'burbs, The (1989) \\\n","title \n","'71 (2014) 0.000000 \n","'Hellboy': The Seeds of Creation (2004) 0.000000 \n","'Round Midnight (1986) 0.176777 \n","\n","title 'night Mother (1986) \\\n","title \n","'71 (2014) 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 \n","'Round Midnight (1986) 0.0 \n","\n","title (500) Days of Summer (2009) \\\n","title \n","'71 (2014) 0.141653 \n","'Hellboy': The Seeds of Creation (2004) 0.000000 \n","'Round Midnight (1986) 0.000000 \n","\n","title *batteries not included (1987) ... \\\n","title ... \n","'71 (2014) 0.0 ... \n","'Hellboy': The Seeds of Creation (2004) 0.0 ... \n","'Round Midnight (1986) 0.0 ... \n","\n","title Zulu (2013) [REC] (2007) \\\n","title \n","'71 (2014) 0.0 0.342055 \n","'Hellboy': The Seeds of Creation (2004) 0.0 0.000000 \n","'Round Midnight (1986) 0.0 0.000000 \n","\n","title [REC]² (2009) \\\n","title \n","'71 (2014) 0.543305 \n","'Hellboy': The Seeds of Creation (2004) 0.000000 \n","'Round Midnight (1986) 0.000000 \n","\n","title [REC]³ 3 Génesis (2012) \\\n","title \n","'71 (2014) 0.707107 \n","'Hellboy': The Seeds of Creation (2004) 0.000000 \n","'Round Midnight (1986) 0.000000 \n","\n","title anohana: The Flower We Saw That Day - The Movie (2013) \\\n","title \n","'71 (2014) 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 \n","'Round Midnight (1986) 0.0 \n","\n","title eXistenZ (1999) xXx (2002) \\\n","title \n","'71 (2014) 0.0 0.139431 \n","'Hellboy': The Seeds of Creation (2004) 0.0 0.000000 \n","'Round Midnight (1986) 0.0 0.000000 \n","\n","title xXx: State of the Union (2005) \\\n","title \n","'71 (2014) 0.327327 \n","'Hellboy': The Seeds of Creation (2004) 0.000000 \n","'Round Midnight (1986) 0.000000 \n","\n","title ¡Three Amigos! (1986) \\\n","title \n","'71 (2014) 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 \n","'Round Midnight (1986) 0.0 \n","\n","title À nous la liberté (Freedom for Us) (1931) \n","title \n","'71 (2014) 0.0 \n","'Hellboy': The Seeds of Creation (2004) 0.0 \n","'Round Midnight (1986) 0.0 \n","\n","[3 rows x 9719 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
title'71 (2014)'Hellboy': The Seeds of Creation (2004)'Round Midnight (1986)'Salem's Lot (2004)'Til There Was You (1997)'Tis the Season for Love (2015)'burbs, The (1989)'night Mother (1986)(500) Days of Summer (2009)*batteries not included (1987)...Zulu (2013)[REC] (2007)[REC]² (2009)[REC]³ 3 Génesis (2012)anohana: The Flower We Saw That Day - The Movie (2013)eXistenZ (1999)xXx (2002)xXx: State of the Union (2005)¡Three Amigos! (1986)À nous la liberté (Freedom for Us) (1931)
title
'71 (2014)1.00.0000000.0000000.00.00.00.0000000.00.1416530.0...0.00.3420550.5433050.7071070.00.00.1394310.3273270.00.0
'Hellboy': The Seeds of Creation (2004)0.01.0000000.7071070.00.00.00.0000000.00.0000000.0...0.00.0000000.0000000.0000000.00.00.0000000.0000000.00.0
'Round Midnight (1986)0.00.7071071.0000000.00.00.00.1767770.00.0000000.0...0.00.0000000.0000000.0000000.00.00.0000000.0000000.00.0
\n","

3 rows × 9719 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"item_sim_df"}},"metadata":{},"execution_count":17}]},{"cell_type":"code","source":["item_sim_df[\"Godfather, The (1972)\"].sort_values(ascending = False)[:6]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":304},"id":"Vsc7y7mO1sbF","executionInfo":{"status":"ok","timestamp":1736647978546,"user_tz":-540,"elapsed":8,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"326d0dad-f0d8-470d-95c0-e0bc4e99a3c3"},"execution_count":18,"outputs":[{"output_type":"execute_result","data":{"text/plain":["title\n","Godfather, The (1972) 1.000000\n","Godfather: Part II, The (1974) 0.821773\n","Goodfellas (1990) 0.664841\n","One Flew Over the Cuckoo's Nest (1975) 0.620536\n","Star Wars: Episode IV - A New Hope (1977) 0.595317\n","Fargo (1996) 0.588614\n","Name: Godfather, The (1972), dtype: float64"],"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
Godfather, The (1972)
title
Godfather, The (1972)1.000000
Godfather: Part II, The (1974)0.821773
Goodfellas (1990)0.664841
One Flew Over the Cuckoo's Nest (1975)0.620536
Star Wars: Episode IV - A New Hope (1977)0.595317
Fargo (1996)0.588614
\n","

"]},"metadata":{},"execution_count":18}]},{"cell_type":"code","source":["item_sim_df[\"Inception (2010)\"].sort_values(ascending = False)[1:6]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":272},"id":"iRYPnz-E14Sf","executionInfo":{"status":"ok","timestamp":1736647978546,"user_tz":-540,"elapsed":6,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"1181a045-0627-442b-b199-d400352f6932"},"execution_count":19,"outputs":[{"output_type":"execute_result","data":{"text/plain":["title\n","Dark Knight, The (2008) 0.727263\n","Inglourious Basterds (2009) 0.646103\n","Shutter Island (2010) 0.617736\n","Dark Knight Rises, The (2012) 0.617504\n","Fight Club (1999) 0.615417\n","Name: Inception (2010), dtype: float64"],"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
Inception (2010)
title
Dark Knight, The (2008)0.727263
Inglourious Basterds (2009)0.646103
Shutter Island (2010)0.617736
Dark Knight Rises, The (2012)0.617504
Fight Club (1999)0.615417
\n","

"]},"metadata":{},"execution_count":19}]},{"cell_type":"markdown","source":["###**[아이템 기반 최근접 이웃 협업 필터링으로 개인화된 영화 추천]**\n","- 앞 예제: 사용자 평점을 기준으로 유사도 생성 -> 개인적인 취향을 반영하지 않고 영화 간 유사도만을 기준으로 추천한 것임\n","- 영화 유사도 데이터를 이용한 최근접 이웃 협업 필터링으로 개인에게 최적화된 영화 추천 구현\n"," - 가장 큰 특징: 개인이 아직 관람하지 않은 영화를 추천\n"," - 아직 관람하지 않은 영화에 대해 아이템 유사도와 기존 관람한 영화의 평점 데이터를 기반으로 새롭게 모든 영화의 예측 평점을 계산한 후 높은 예측 평점을 가진 영화를 추천하는 방식\n"," ![스크린샷 2025-01-11 오후 7.13.59.png]()\n"," ![스크린샷 2025-01-11 오후 7.17.19.png]()"],"metadata":{"id":"h9E4TdS01164"}},{"cell_type":"markdown","source":["- Si,N와 Ru,N에 나오는 N의 값은 아이템의 최근접 이웃 범위 계수(item neighbor)를 의미\n"," - 특정 아이템과 유사도가 가장 높은 Top-N개의 다른 아이템을 추출하는 데 사용됨"],"metadata":{"id":"e-Rv3wVm3VLL"}},{"cell_type":"code","source":["def predict_rating(ratings_arr, item_sim_arr):\n"," ratings_pred = ratings_arr.dot(item_sim_arr)/np.array([np.abs(item_sim_arr).sum(axis = 1)])\n"," return ratings_pred\n","ratings_pred = predict_rating(ratings_matrix.values, item_sim_df.values)\n","ratings_pred_matrix = pd.DataFrame(data=ratings_pred, index = ratings_matrix.index,\n"," columns = ratings_matrix.columns)\n","ratings_pred_matrix.head(3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":346},"id":"QW_-X3E02GLZ","executionInfo":{"status":"ok","timestamp":1736647984800,"user_tz":-540,"elapsed":6259,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"213fd092-936f-4f97-9537-64df0656ace6"},"execution_count":20,"outputs":[{"output_type":"execute_result","data":{"text/plain":["title '71 (2014) 'Hellboy': The Seeds of Creation (2004) \\\n","userId \n","1 0.070345 0.577855 \n","2 0.018260 0.042744 \n","3 0.011884 0.030279 \n","\n","title 'Round Midnight (1986) 'Salem's Lot (2004) \\\n","userId \n","1 0.321696 0.227055 \n","2 0.018861 0.000000 \n","3 0.064437 0.003762 \n","\n","title 'Til There Was You (1997) 'Tis the Season for Love (2015) \\\n","userId \n","1 0.206958 0.194615 \n","2 0.000000 0.035995 \n","3 0.003749 0.002722 \n","\n","title 'burbs, The (1989) 'night Mother (1986) (500) Days of Summer (2009) \\\n","userId \n","1 0.249883 0.102542 0.157084 \n","2 0.013413 0.002314 0.032213 \n","3 0.014625 0.002085 0.005666 \n","\n","title *batteries not included (1987) ... Zulu (2013) [REC] (2007) \\\n","userId ... \n","1 0.178197 ... 0.113608 0.181738 \n","2 0.014863 ... 0.015640 0.020855 \n","3 0.006272 ... 0.006923 0.011665 \n","\n","title [REC]² (2009) [REC]³ 3 Génesis (2012) \\\n","userId \n","1 0.133962 0.128574 \n","2 0.020119 0.015745 \n","3 0.011800 0.012225 \n","\n","title anohana: The Flower We Saw That Day - The Movie (2013) \\\n","userId \n","1 0.006179 \n","2 0.049983 \n","3 0.000000 \n","\n","title eXistenZ (1999) xXx (2002) xXx: State of the Union (2005) \\\n","userId \n","1 0.212070 0.192921 0.136024 \n","2 0.014876 0.021616 0.024528 \n","3 0.008194 0.007017 0.009229 \n","\n","title ¡Three Amigos! (1986) À nous la liberté (Freedom for Us) (1931) \n","userId \n","1 0.292955 0.720347 \n","2 0.017563 0.000000 \n","3 0.010420 0.084501 \n","\n","[3 rows x 9719 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
title'71 (2014)'Hellboy': The Seeds of Creation (2004)'Round Midnight (1986)'Salem's Lot (2004)'Til There Was You (1997)'Tis the Season for Love (2015)'burbs, The (1989)'night Mother (1986)(500) Days of Summer (2009)*batteries not included (1987)...Zulu (2013)[REC] (2007)[REC]² (2009)[REC]³ 3 Génesis (2012)anohana: The Flower We Saw That Day - The Movie (2013)eXistenZ (1999)xXx (2002)xXx: State of the Union (2005)¡Three Amigos! (1986)À nous la liberté (Freedom for Us) (1931)
userId
10.0703450.5778550.3216960.2270550.2069580.1946150.2498830.1025420.1570840.178197...0.1136080.1817380.1339620.1285740.0061790.2120700.1929210.1360240.2929550.720347
20.0182600.0427440.0188610.0000000.0000000.0359950.0134130.0023140.0322130.014863...0.0156400.0208550.0201190.0157450.0499830.0148760.0216160.0245280.0175630.000000
30.0118840.0302790.0644370.0037620.0037490.0027220.0146250.0020850.0056660.006272...0.0069230.0116650.0118000.0122250.0000000.0081940.0070170.0092290.0104200.084501
\n","

3 rows × 9719 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"ratings_pred_matrix"}},"metadata":{},"execution_count":20}]},{"cell_type":"markdown","source":["- 예측 평점이 사용자별 영화의 실제 평점과 영화의 코사인 유사도를 내적한 값이기에 기존에 영황를 관람하지 않아 0에 해당했던 실제 영화 평점이 예측에서는 값이 부여되는 경우가 많이 발생\n","- 예측 평점이 실제 평점에 비해 작을 수 있음\n"," - 내적 결과를 코사인 유사도 벡터 합으로 나누었기 때문에 생기는 현상\n","- 원래의 실제 평점과 얼마나 차이가 있는지 확인\n"," - 예측 평가 지표 MSE 적용\n"," - 사용자가 영화의 평점을 주지 않은 경우: 앞에서는 평점을 0으로 부과 / but 개인화된 예측 점수는 평점을 주지 않은 영화에 대해서도 아이템 유사도에 기반해 평점을 예측\n"," - 실제와 예측 평점의 차이는 기존에 평점이 부여된 데이터에 대해서만 오차 정도를 측정"],"metadata":{"id":"qbBQF7dn4i74"}},{"cell_type":"code","source":["from sklearn.metrics import mean_squared_error\n","\n","# 사용자가 평점을 부여한 영화에 대해서만 예측 성능 평가 MSE를 구함\n","def get_mse(pred, actual):\n"," # 평점이 있는 실제 영화만 추출\n"," pred = pred[actual.nonzero()].flatten()\n"," actual = actual[actual.nonzero()].flatten()\n"," return mean_squared_error(pred, actual)\n","\n","print('아이템 기반 모든 최근접 이웃 MSE: ', get_mse(ratings_pred, ratings_matrix.values))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"XzE1US9e6xJC","executionInfo":{"status":"ok","timestamp":1736647984801,"user_tz":-540,"elapsed":4,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"11154690-56f5-4b44-d3c6-a852306d3d9d"},"execution_count":21,"outputs":[{"output_type":"stream","name":"stdout","text":["아이템 기반 모든 최근접 이웃 MSE: 9.895354759094706\n"]}]},{"cell_type":"markdown","source":["- 실제 값과 예측 값은 서로 스케일이 다르므로 MSE가 클 수도 있음\n","- 중요한 것은 MSE를 감소시키는 방향으로 개선하는 것\n","- predict_rating() 함수: 해당 영화와 다른 모든 영화 간의 유사도 벡터를 적용한 것\n"," - 특정 영화와 가장 비슷한 유사도를 가지는 영화에 대해서만 유사도 벡터를 적용하는 함수로 변경 predict_rating_topsim(rating_arr, item_sim_arr, n = 20)"],"metadata":{"id":"EYn8lfJi7NWW"}},{"cell_type":"code","source":["def predict_rating_topsim(ratings_arr, item_sim_arr, n=20):\n"," # 사용자-아이템 평점 행렬 크기만큼 0으로 채운 예측 행렬 초기화\n"," pred = np.zeros(ratings_arr.shape)\n","\n"," # 사용자-아이템 평점 행렬의 열 크기만큼 루프 수행\n"," for col in range(ratings_arr.shape[1]):\n"," # 유사도 행렬에서 유사도가 큰 순으로 n개 데이터 행렬의 인덱스 반환\n"," top_n_items = np.argsort(item_sim_arr[:, col])[:-n-1:-1]\n","\n"," # 개인화된 예측 평점을 계산\n"," for row in range(ratings_arr.shape[0]):\n"," # top_n_items의 유사도와 평점을 곱하여 예측 평점 계산\n"," pred[row, col] = item_sim_arr[col, top_n_items].dot(ratings_arr[row, top_n_items].T)\n"," pred[row, col] /= np.sum(np.abs(item_sim_arr[col, top_n_items]))\n","\n"," return pred\n","\n","# 예측 평점 행렬 계산\n","ratings_pred = predict_rating_topsim(ratings_matrix.values, item_sim_df.values, n=20)\n","\n","# MSE 계산 (get_mse 함수는 별도로 정의되어 있어야 합니다)\n","print('아이템 기반 최근접 TOP-20 이웃 MSE: ', get_mse(ratings_pred, ratings_matrix.values))\n","\n","# 계산된 예측 평점 데이터를 DataFrame으로 변환\n","ratings_pred_matrix = pd.DataFrame(data=ratings_pred, index=ratings_matrix.index, columns=ratings_matrix.columns)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"7oJzkC-JDk6A","executionInfo":{"status":"ok","timestamp":1736648074636,"user_tz":-540,"elapsed":89838,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"df45620a-a2ca-452f-e11b-2bbb6ae4c1f0"},"execution_count":22,"outputs":[{"output_type":"stream","name":"stdout","text":["아이템 기반 최근접 TOP-20 이웃 MSE: 3.6949827608772314\n"]}]},{"cell_type":"markdown","source":["- MSE 향상됨\n","- 특정 사용자에 대해 영화 추천"],"metadata":{"id":"-UgHsrFe9IXu"}},{"cell_type":"code","source":["user_rating_id = ratings_matrix.loc[9, :]\n","user_rating_id[user_rating_id > 0].sort_values(ascending = False)[:10]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":429},"id":"rtY_PCAx9Nvv","executionInfo":{"status":"ok","timestamp":1736648074637,"user_tz":-540,"elapsed":9,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"21bb7ef6-9757-4ac3-ab96-4fa3a3fdc842"},"execution_count":23,"outputs":[{"output_type":"execute_result","data":{"text/plain":["title\n","Adaptation (2002) 5.0\n","Citizen Kane (1941) 5.0\n","Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981) 5.0\n","Producers, The (1968) 5.0\n","Lord of the Rings: The Two Towers, The (2002) 5.0\n","Lord of the Rings: The Fellowship of the Ring, The (2001) 5.0\n","Back to the Future (1985) 5.0\n","Austin Powers in Goldmember (2002) 5.0\n","Minority Report (2002) 4.0\n","Witness (1985) 4.0\n","Name: 9, dtype: float64"],"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
9
title
Adaptation (2002)5.0
Citizen Kane (1941)5.0
Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)5.0
Producers, The (1968)5.0
Lord of the Rings: The Two Towers, The (2002)5.0
Lord of the Rings: The Fellowship of the Ring, The (2001)5.0
Back to the Future (1985)5.0
Austin Powers in Goldmember (2002)5.0
Minority Report (2002)4.0
Witness (1985)4.0
\n","

"]},"metadata":{},"execution_count":23}]},{"cell_type":"markdown","source":["- 사용자에게 아이템 기반 협업 필터링을 통해 영화 추천\n"," - get_unseen_movies(): 먼저 사용자가 이미 평점을 준 영화를 제외하고 추천할 수 있도록 평점을 주지 않은 영화를 리스트 객체로 반환하는 함수"],"metadata":{"id":"f_-7wITv9akU"}},{"cell_type":"code","source":["def get_unseen_movies(ratings_matrix, userId):\n"," # userId로 입력받은 사용자의 모든 영화 정보를 추출해 Series로 반환함\n"," # 반환된 user_rating은 영화명(title)을 인덱스로 가지는 Series 객체임\n"," user_rating = ratings_matrix.loc[userId, :]\n","\n"," # user_rating이 0보다 크면 기존에 관람한 영화임. 대상 인덱스를 추출해 list 객체로 만듬\n"," already_seen = user_rating[user_rating > 0].index.tolist()\n","\n"," # 모든 영화명을 list 객체로 만듬\n"," movies_list = ratings_matrix.columns.tolist()\n","\n"," # list comprehension으로 already_seen에 해당하는 영화는 movies_list에서 제외함\n"," unseen_list = [movie for movie in movies_list if movie not in already_seen]\n","\n"," return unseen_list"],"metadata":{"id":"meJG1BiP9oSn","executionInfo":{"status":"ok","timestamp":1736648074637,"user_tz":-540,"elapsed":8,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"execution_count":24,"outputs":[]},{"cell_type":"code","source":["def recomm_movie_by_userid(pred_df, userId, unseen_list, top_n = 10):\n"," # 예측 평점 DataFrame에서 사용자 id 인덱스와 unseen_list로 들어온 영화명 칼럼을 추출해\n"," # 가장 예측 평점이 높은 순으로 정렬함\n"," recomm_movies = pred_df.loc[userId, unseen_list].sort_values(ascending = False)[:top_n]\n"," return recomm_movies\n","\n","# 사용자가 관람하지 않는 영화명 추출\n","unseen_list = get_unseen_movies(ratings_matrix, 9)\n","\n","# 아이템 기반의 최근접 이웃 협업 필터링으로 영화 추천\n","recomm_movies = recomm_movie_by_userid(ratings_pred_matrix, 9, unseen_list, top_n=10)\n","\n","# 평점 데이터를 DataFrame으로 생성\n","recomm_movies = pd.DataFrame(data = recomm_movies.values, index = recomm_movies.index,\n"," columns = ['pred_score'])\n","recomm_movies"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":394},"id":"Nzga-mfaCnmv","executionInfo":{"status":"ok","timestamp":1736648074637,"user_tz":-540,"elapsed":8,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"531a77a3-84ab-42d5-e424-bdb30d6dafca"},"execution_count":25,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" pred_score\n","title \n","Shrek (2001) 0.866202\n","Spider-Man (2002) 0.857854\n","Last Samurai, The (2003) 0.817473\n","Indiana Jones and the Temple of Doom (1984) 0.816626\n","Matrix Reloaded, The (2003) 0.800990\n","Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philosopher's Stone) (2001) 0.765159\n","Gladiator (2000) 0.740956\n","Matrix, The (1999) 0.732693\n","Pirates of the Caribbean: The Curse of the Black Pearl (2003) 0.689591\n","Lord of the Rings: The Return of the King, The (2003) 0.676711"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
pred_score
title
Shrek (2001)0.866202
Spider-Man (2002)0.857854
Last Samurai, The (2003)0.817473
Indiana Jones and the Temple of Doom (1984)0.816626
Matrix Reloaded, The (2003)0.800990
Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philosopher's Stone) (2001)0.765159
Gladiator (2000)0.740956
Matrix, The (1999)0.732693
Pirates of the Caribbean: The Curse of the Black Pearl (2003)0.689591
Lord of the Rings: The Return of the King, The (2003)0.676711
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"recomm_movies","summary":"{\n \"name\": \"recomm_movies\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Pirates of the Caribbean: The Curse of the Black Pearl (2003)\",\n \"Spider-Man (2002)\",\n \"Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philosopher's Stone) (2001)\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"pred_score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06614432811511851,\n \"min\": 0.6767108283499336,\n \"max\": 0.8662018746933645,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.6895905595608812,\n 0.8578535950426878,\n 0.7651586070058114\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":25}]},{"cell_type":"markdown","source":["##**9.7 행렬 분해를 이용한 잠재 요인 협업 필터링 실습**\n","- 행렬 분해를 이용한 잠재 요인 협업 필터링 구현\n","- 행렬 분해 잠재 요인 협업 필터링\n"," - SVD 나 NMF 등을 적용 가능\n"," - 일반적으로 행렬 분해에는 SVD가 자주 사용되지만 사용자-아이템 평점 행렬에는 사용자가 평점을 매기지 않은 null 데이터가 많아 주로 SGD나 ALS 기반 행렬분해를 이용\n"," - 본 예제: SGD 기반의 행렬 분해를 구현하고 이를 기반으로 사용자에게 영화 추천\n"," - 확률적 경사 하강법을 이용"],"metadata":{"id":"qJhqKu-KE0nq"}},{"cell_type":"code","source":["def matrix_factorization(R, K, steps = 100, learning_rate = 0.01, r_lambda = 0.01):\n"," num_users, num_items = R.shape\n"," # P와 Q 매트릭스의 크기를 지정하고 정규 분포를 가진 랜덤 값으로 입력\n"," np.random.seed(1)\n"," P = np.random.normal(scale = 1./K, size = (num_users, K))\n"," Q = np.random.normal(scale = 1./K, size = (num_items, K))\n","\n"," prev_rmse = 10000\n"," break_count = 0\n","\n"," # R > 0인 행 위치, 열 위치, 값을 non_zeros 리스트 객체에 저장\n"," non_zeros = [ (i, j, R[i, j]) for i in range(num_users) for j in range(num_items) if R[i,j]>0 ]\n","\n"," # SGD 기법으로 P와 Q 매트릭스를 계속 업데이트\n"," for step in range(steps):\n"," for i, j, r in non_zeros:\n"," # 실제 값과 예측 값의 차이인 오류값 구함\n"," eij = r - np.dot(P[i, :], Q[j, :].T)\n"," # Regularization을 반영한 SGD 업데이트 공식 적용\n"," P[i, :] = P[i, :] + learning_rate * (eij * Q[j, :] - r_lambda * P[i, :])\n"," Q[j, :] = Q[j, :] + learning_rate * (eij * P[i, :] - r_lambda * Q[j, :])\n","\n"," rmse = get_rmse(R, P, Q, non_zeros)\n"," if (step % 10) == 0:\n"," print('### iteration step: ', step, \" rmse: \", rmse)\n","\n"," return P,Q"],"metadata":{"id":"P8tyPhykFWYI","executionInfo":{"status":"ok","timestamp":1736648074637,"user_tz":-540,"elapsed":7,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"execution_count":26,"outputs":[]},{"cell_type":"code","source":["from sklearn.metrics import mean_squared_error\n","\n","def get_rmse(R, P, Q, non_zeros):\n"," error = 0\n"," # 두 개의 분해된 행렬 P와 Q.T의 내적으로 예측 R 행렬 생성\n"," full_pred_matrix = np.dot(P, Q.T)\n","\n"," # 실제 R 행렬에서 널이 아닌 값의 위치 인덱스 추출해 실제 R 행렬과 예측 행렬의 RMSE 추출\n"," x_non_zero_ind = [non_zero[0] for non_zero in non_zeros]\n"," y_non_zero_ind = [non_zero[1] for non_zero in non_zeros]\n"," R_non_zeros = R[x_non_zero_ind, y_non_zero_ind]\n"," full_pred_matrix_non_zeros = full_pred_matrix[x_non_zero_ind, y_non_zero_ind]\n"," mse = mean_squared_error(R_non_zeros, full_pred_matrix_non_zeros)\n"," rmse = np.sqrt(mse)\n","\n"," return rmse"],"metadata":{"id":"w_bNHw9DIkML","executionInfo":{"status":"ok","timestamp":1736648074637,"user_tz":-540,"elapsed":6,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"execution_count":27,"outputs":[]},{"cell_type":"markdown","source":["- matrix_factorization() 함수를 이용해 행렬 분해"],"metadata":{"id":"SU5-i_mwItkD"}},{"cell_type":"code","source":["movies = pd.read_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/movies.csv')\n","ratings = pd.read_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/ratings.csv')\n","ratings = ratings[['userId', 'movieId', 'rating']]\n","ratings_matrix = ratings.pivot_table('rating', index = 'userId', columns = 'movieId')\n","\n","# title 칼럼을 얻기 위해 movies와 조인 수행\n","rating_movies = pd.merge(ratings, movies, on='movieId')\n","# columns = 'title' 로 title 칼럼으로 pivot 수행\n","ratings_matrix = rating_movies.pivot_table('rating', index = 'userId', columns = 'title')\n","\n","P, Q = matrix_factorization(ratings_matrix.values, K = 50, steps = 100, learning_rate = 0.01,\n"," r_lambda = 0.01)\n","pred_matrix = np.dot(P, Q.T)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"3myjUQbAG6qQ","outputId":"41f086af-95e0-4a98-8656-f53f7e66cfd1","executionInfo":{"status":"error","timestamp":1736662940715,"user_tz":-540,"elapsed":444030,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"execution_count":28,"outputs":[{"metadata":{"tags":null},"name":"stdout","output_type":"stream","text":["\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n","### iteration step: 0 rmse: 2.9871688379972077\n","### iteration step: 0 rmse: 2.9871760812162016\n","### iteration step: 0 rmse: 2.9871787637561815\n","### iteration step: 0 rmse: 2.987172927868749\n","### iteration step: 0 rmse: 2.9871638181056\n","### iteration step: 0 rmse: 2.9871533877060092\n","### iteration step: 0 rmse: 2.9871364458206915\n","### iteration step: 0 rmse: 2.9871276085318113\n","### iteration step: 0 rmse: 2.9871152866051305\n","### iteration step: 0 rmse: 2.9871079832796754\n","### iteration step: 0 rmse: 2.987101605807159\n","### iteration step: 0 rmse: 2.987115238204058\n","### iteration step: 0 rmse: 2.98712239967821\n","### iteration step: 0 rmse: 2.987113735366527\n","### iteration step: 0 rmse: 2.987115906773373\n","### iteration step: 0 rmse: 2.9871139358387873\n","### iteration step: 0 rmse: 2.9870970514071877\n","### iteration step: 0 rmse: 2.987084826829029\n","### iteration step: 0 rmse: 2.987086582265424\n","### iteration step: 0 rmse: 2.987085676852322\n","### iteration step: 0 rmse: 2.98709047301655\n","### iteration step: 0 rmse: 2.9870746709427856\n","### iteration step: 0 rmse: 2.987075224701675\n","### iteration step: 0 rmse: 2.9870800860934454\n","### iteration step: 0 rmse: 2.9870942112861725\n","### iteration step: 0 rmse: 2.987089730970593\n","### iteration step: 0 rmse: 2.987077000377135\n","### iteration step: 0 rmse: 2.9870641655275\n","### iteration step: 0 rmse: 2.987062016528842\n","### iteration step: 0 rmse: 2.9870626812209182\n","### iteration step: 0 rmse: 2.9870579619025315\n","### iteration step: 0 rmse: 2.9870497728377305\n","### iteration step: 0 rmse: 2.9870429331597528\n","### iteration step: 0 rmse: 2.9870418623587405\n","### iteration step: 0 rmse: 2.987030821884188\n","### iteration step: 0 rmse: 2.987019083595779\n","### iteration step: 0 rmse: 2.9870142110909046\n","### iteration step: 0 rmse: 2.9870105905658577\n","### iteration step: 0 rmse: 2.986998213867803\n","### iteration step: 0 rmse: 2.9869937011042356\n","### iteration step: 0 rmse: 2.986972336966985\n","### iteration step: 0 rmse: 2.986953747090029\n","### iteration step: 0 rmse: 2.986935067201069\n","### iteration step: 0 rmse: 2.986902139478385\n","### iteration step: 0 rmse: 2.9868854456066916\n","### iteration step: 0 rmse: 2.986883670747379\n","### iteration step: 0 rmse: 2.986864794592368\n","### iteration step: 0 rmse: 2.986841734860102\n","### iteration step: 0 rmse: 2.986789481928901\n","### iteration step: 0 rmse: 2.9867590043719288\n","### iteration step: 0 rmse: 2.986733949956938\n","### iteration step: 0 rmse: 2.9867266637171515\n","### iteration step: 0 rmse: 2.986712943476407\n","### iteration step: 0 rmse: 2.9866517165436575\n","### iteration step: 0 rmse: 2.986593874995102\n","### iteration step: 0 rmse: 2.9864863718048205\n","### iteration step: 0 rmse: 2.9864059918967247\n","### iteration step: 0 rmse: 2.9864055012389032\n","### iteration step: 0 rmse: 2.9863801666558687\n","### iteration step: 0 rmse: 2.98630147598033\n","### iteration step: 0 rmse: 2.986201101207391\n","### iteration step: 0 rmse: 2.9861251776006363\n","### iteration step: 0 rmse: 2.9860961279357268\n","### iteration step: 0 rmse: 2.9860240535498477\n","### iteration step: 0 rmse: 2.9859756997253113\n","### iteration step: 0 rmse: 2.985930632257241\n","### iteration step: 0 rmse: 2.98590401626969\n","### iteration step: 0 rmse: 2.9858578843846053\n","### iteration step: 0 rmse: 2.985838501197711\n","### iteration step: 0 rmse: 2.9857843669152953\n","### iteration step: 0 rmse: 2.9857310299667588\n","### iteration step: 0 rmse: 2.985658429662506\n","### iteration step: 0 rmse: 2.9855964560981763\n","### iteration step: 0 rmse: 2.9855500221649653\n","### iteration step: 0 rmse: 2.9855022534387348\n","### iteration step: 0 rmse: 2.985442839960101\n","### iteration step: 0 rmse: 2.9853869880572166\n","### iteration step: 0 rmse: 2.9853386300188927\n","### iteration step: 0 rmse: 2.985298628194775\n","### iteration step: 0 rmse: 2.98524058591654\n","### iteration step: 0 rmse: 2.9852121098031685\n","### iteration step: 0 rmse: 2.9851830961260353\n","### iteration step: 0 rmse: 2.9851554936577323\n","### iteration step: 0 rmse: 2.985130281168044\n","### iteration step: 0 rmse: 2.9851197381657935\n","### iteration step: 0 rmse: 2.9850904970600554\n","### iteration step: 0 rmse: 2.9850717964313347\n","### iteration step: 0 rmse: 2.985041495105338\n","### iteration step: 0 rmse: 2.9850291547942955\n","### iteration step: 0 rmse: 2.9849983170132783\n","### iteration step: 0 rmse: 2.9849622695814766\n","### iteration step: 0 rmse: 2.984939968736822\n","### iteration step: 0 rmse: 2.9849236388989557\n","### iteration step: 0 rmse: 2.984905147630263\n","### iteration step: 0 rmse: 2.9848805101781153\n","### iteration step: 0 rmse: 2.9848544370578627\n","### iteration step: 0 rmse: 2.984834030488874\n","### iteration step: 0 rmse: 2.984824352971068\n","### iteration step: 0 rmse: 2.9847927539994656\n","### iteration step: 0 rmse: 2.984765092135799\n","### iteration step: 0 rmse: 2.984746267137834\n","### iteration step: 0 rmse: 2.9847311023987793\n","### iteration step: 0 rmse: 2.9847193902674967\n","### iteration step: 0 rmse: 2.984694135146343\n","### iteration step: 0 rmse: 2.984687476074598\n","### iteration step: 0 rmse: 2.9846771198152626\n","### iteration step: 0 rmse: 2.9846698952843034\n","### iteration step: 0 rmse: 2.9846520538203625\n","### iteration step: 0 rmse: 2.9846437157713925\n","### iteration step: 0 rmse: 2.9846347872732975\n","### iteration step: 0 rmse: 2.984619652680731\n","### iteration step: 0 rmse: 2.9846031274920484\n","### iteration step: 0 rmse: 2.9846017203065998\n","### iteration step: 0 rmse: 2.9845896696476726\n","### iteration step: 0 rmse: 2.9845861668761655\n","### iteration step: 0 rmse: 2.984572856118234\n","### iteration step: 0 rmse: 2.9845592654685786\n","### iteration step: 0 rmse: 2.9845516198468984\n","### iteration step: 0 rmse: 2.9845400934345307\n","### iteration step: 0 rmse: 2.984529601155328\n","### iteration step: 0 rmse: 2.9845271953900023\n","### iteration step: 0 rmse: 2.98451637773974\n","### iteration step: 0 rmse: 2.9845026032996906\n","### iteration step: 0 rmse: 2.9844880660070245\n","### iteration step: 0 rmse: 2.9844805221864807\n","### iteration step: 0 rmse: 2.9844695153542395\n","### iteration step: 0 rmse: 2.9844570432277306\n","### iteration step: 0 rmse: 2.9844428970506174\n","### iteration step: 0 rmse: 2.984424015123301\n","### iteration step: 0 rmse: 2.9844218008745096\n","### iteration step: 0 rmse: 2.984420529132873\n","### iteration step: 0 rmse: 2.9844177114881214\n","### iteration step: 0 rmse: 2.9844144604076437\n","### iteration step: 0 rmse: 2.984403940678751\n","### iteration step: 0 rmse: 2.984402161794791\n","### iteration step: 0 rmse: 2.984401582612494\n","### iteration step: 0 rmse: 2.984388309630005\n","### iteration step: 0 rmse: 2.9843818106253557\n","### iteration step: 0 rmse: 2.9843797944296933\n","### iteration step: 0 rmse: 2.9843720390153505\n","### iteration step: 0 rmse: 2.9843718595869757\n","### iteration step: 0 rmse: 2.9843713409747212\n","### iteration step: 0 rmse: 2.9843365960037924\n","### iteration step: 0 rmse: 2.9843313144959107\n","### iteration step: 0 rmse: 2.984328182857457\n","### iteration step: 0 rmse: 2.9843271776183005\n","### iteration step: 0 rmse: 2.984321290886025\n","### iteration step: 0 rmse: 2.984309598327125\n","### iteration step: 0 rmse: 2.984303834700603\n","### iteration step: 0 rmse: 2.9843027589838655\n","### iteration step: 0 rmse: 2.9843015076822748\n","### iteration step: 0 rmse: 2.984298030105096\n","### iteration step: 0 rmse: 2.9842843869545104\n","### iteration step: 0 rmse: 2.9842785349834386\n","### iteration step: 0 rmse: 2.9842708823026665\n","### iteration step: 0 rmse: 2.984249645472065\n","### iteration step: 0 rmse: 2.984248943966067\n","### iteration step: 0 rmse: 2.984242400028028\n","### iteration step: 0 rmse: 2.9842369110156235\n","### iteration step: 0 rmse: 2.9842334912485358\n","### iteration step: 0 rmse: 2.984214420563795\n","### iteration step: 0 rmse: 2.984192397681468\n","### iteration step: 0 rmse: 2.9841735042799495\n","### iteration step: 0 rmse: 2.984164641497088\n","### iteration step: 0 rmse: 2.984164263285305\n","### iteration step: 0 rmse: 2.984151068882876\n","### iteration step: 0 rmse: 2.9841379945679978\n","### iteration step: 0 rmse: 2.9841363777600964\n","### iteration step: 0 rmse: 2.984095727145631\n","### iteration step: 0 rmse: 2.984089527865336\n","### iteration step: 0 rmse: 2.9840821074389963\n","### iteration step: 0 rmse: 2.9840745879866386\n","### iteration step: 0 rmse: 2.9840599119273885\n","### iteration step: 0 rmse: 2.9840380102273336\n","### iteration step: 0 rmse: 2.9840224204484307\n","### iteration step: 0 rmse: 2.984007759645971\n","### iteration step: 0 rmse: 2.983939837876816\n","### iteration step: 0 rmse: 2.983938287801085\n","### iteration step: 0 rmse: 2.983916694741759\n","### iteration step: 0 rmse: 2.983910462042924\n","### iteration step: 0 rmse: 2.9838656375070256\n","### iteration step: 0 rmse: 2.983827297647299\n","### iteration step: 0 rmse: 2.9837561668399295\n","### iteration step: 0 rmse: 2.983720641917012\n","### iteration step: 0 rmse: 2.9836782191050415\n","### iteration step: 0 rmse: 2.9836472224164847\n","### iteration step: 0 rmse: 2.9836321800279126\n","### iteration step: 0 rmse: 2.983600348125953\n","### iteration step: 0 rmse: 2.9835973796679944\n","### iteration step: 0 rmse: 2.983581786128669\n","### iteration step: 0 rmse: 2.983554456008696\n","### iteration step: 0 rmse: 2.9835389824286866\n","### iteration step: 0 rmse: 2.9834901486728467\n","### iteration step: 0 rmse: 2.9834637485624684\n","### iteration step: 0 rmse: 2.9834306389239162\n","### iteration step: 0 rmse: 2.9834030585492535\n","### iteration step: 0 rmse: 2.983402085525454\n","### iteration step: 0 rmse: 2.9833851119748767\n","### iteration step: 0 rmse: 2.983367699061396\n","### iteration step: 0 rmse: 2.983334865872065\n","### iteration step: 0 rmse: 2.983321550864759\n","### iteration step: 0 rmse: 2.983300202423837\n","### iteration step: 0 rmse: 2.9832883608122565\n","### iteration step: 0 rmse: 2.983281310536072\n","### iteration step: 0 rmse: 2.983246112519424\n","### iteration step: 0 rmse: 2.983214756360719\n","### iteration step: 0 rmse: 2.983189662713471\n","### iteration step: 0 rmse: 2.9831715638986305\n","### iteration step: 0 rmse: 2.9831551024489933\n","### iteration step: 0 rmse: 2.9831280059361824\n","### iteration step: 0 rmse: 2.9831195299240743\n","### iteration step: 0 rmse: 2.9831043185628765\n","### iteration step: 0 rmse: 2.9830836009174706\n","### iteration step: 0 rmse: 2.983065722636736\n","### iteration step: 0 rmse: 2.983054838359206\n","### iteration step: 0 rmse: 2.983052716866979\n","### iteration step: 0 rmse: 2.983033866630675\n","### iteration step: 0 rmse: 2.9830252653472997\n","### iteration step: 0 rmse: 2.9830091714515423\n","### iteration step: 0 rmse: 2.9829867926723495\n","### iteration step: 0 rmse: 2.9829682931257286\n","### iteration step: 0 rmse: 2.9829584758058036\n","### iteration step: 0 rmse: 2.9829482497441973\n","### iteration step: 0 rmse: 2.982931119103309\n","### iteration step: 0 rmse: 2.982920243844182\n","### iteration step: 0 rmse: 2.9829096642811797\n","### iteration step: 0 rmse: 2.9828933254706556\n","### iteration step: 0 rmse: 2.9828960622728222\n","### iteration step: 0 rmse: 2.982895829560067\n","### iteration step: 0 rmse: 2.9828708914392625\n","### iteration step: 0 rmse: 2.982834043065056\n","### iteration step: 0 rmse: 2.982813757394082\n","### iteration step: 0 rmse: 2.9827881852811307\n","### iteration step: 0 rmse: 2.9827708062613403\n","### iteration step: 0 rmse: 2.982748496600033\n","### iteration step: 0 rmse: 2.9827347786298493\n","### iteration step: 0 rmse: 2.9827071541806394\n","### iteration step: 0 rmse: 2.98269679202224\n","### iteration step: 0 rmse: 2.9826839136449323\n","### iteration step: 0 rmse: 2.9826833072112953\n","### iteration step: 0 rmse: 2.982677797522621\n","### iteration step: 0 rmse: 2.982661442910991\n","### iteration step: 0 rmse: 2.9826568192374587\n","### iteration step: 0 rmse: 2.9826519038924455\n","### iteration step: 0 rmse: 2.9826400329027734\n","### iteration step: 0 rmse: 2.9826304614672274\n","### iteration step: 0 rmse: 2.9826261924361135\n","### iteration step: 0 rmse: 2.9826130539713103\n","### iteration step: 0 rmse: 2.9826111753187945\n","### iteration step: 0 rmse: 2.9825994845468857\n","### iteration step: 0 rmse: 2.9825847471611224\n","### iteration step: 0 rmse: 2.982570550146069\n","### iteration step: 0 rmse: 2.98256417799163\n","### iteration step: 0 rmse: 2.982553947317668\n","### iteration step: 0 rmse: 2.9825305050918915\n","### iteration step: 0 rmse: 2.9825323559697616\n","### iteration step: 0 rmse: 2.98253039578887\n","### iteration step: 0 rmse: 2.9825244474589354\n","### iteration step: 0 rmse: 2.9825246198134634\n","### iteration step: 0 rmse: 2.9825081397501525\n","### iteration step: 0 rmse: 2.9824900417116704\n","### iteration step: 0 rmse: 2.9824864727912703\n","### iteration step: 0 rmse: 2.9824664239083116\n","### iteration step: 0 rmse: 2.982462731214745\n","### iteration step: 0 rmse: 2.982462932655007\n","### iteration step: 0 rmse: 2.9824594753951583\n","### iteration step: 0 rmse: 2.9824593049934527\n","### iteration step: 0 rmse: 2.9824612187713804\n","### iteration step: 0 rmse: 2.9824514959277337\n","### iteration step: 0 rmse: 2.9824510989836113\n","### iteration step: 0 rmse: 2.982450519002445\n","### iteration step: 0 rmse: 2.9824507720158913\n","### iteration step: 0 rmse: 2.982449620150574\n","### iteration step: 0 rmse: 2.9824508893544777\n","### iteration step: 0 rmse: 2.982450090433884\n","### iteration step: 0 rmse: 2.9824452961683647\n","### iteration step: 0 rmse: 2.9824497264299383\n","### iteration step: 0 rmse: 2.9824403062346136\n","### iteration step: 0 rmse: 2.982440123337809\n","### iteration step: 0 rmse: 2.982443547415214\n","### iteration step: 0 rmse: 2.9824412631164385\n","### iteration step: 0 rmse: 2.9824198529342807\n","### iteration step: 0 rmse: 2.9824148593282604\n","### iteration step: 0 rmse: 2.9823957517745447\n","### iteration step: 0 rmse: 2.9823919173977815\n","### iteration step: 0 rmse: 2.9823885539243276\n","### iteration step: 0 rmse: 2.982381493614444\n","### iteration step: 0 rmse: 2.982379516932641\n","### iteration step: 0 rmse: 2.9823770268848353\n","### iteration step: 0 rmse: 2.982379290672046\n","### iteration step: 0 rmse: 2.982380172598405\n","### iteration step: 0 rmse: 2.9823753402257713\n","### iteration step: 0 rmse: 2.982376419147483\n","### iteration step: 0 rmse: 2.9823454318936045\n","### iteration step: 0 rmse: 2.9823487955330124\n","### iteration step: 0 rmse: 2.9823424422952893\n","### iteration step: 0 rmse: 2.9823274745464112\n","### iteration step: 0 rmse: 2.982331632261515\n","### iteration step: 0 rmse: 2.9823215653347264\n","### iteration step: 0 rmse: 2.9823016824551276\n","### iteration step: 0 rmse: 2.9822989040039594\n","### iteration step: 0 rmse: 2.982289065021687\n","### iteration step: 0 rmse: 2.9822832158644133\n","### iteration step: 0 rmse: 2.982273981856784\n","### iteration step: 0 rmse: 2.9822741886736406\n","### iteration step: 0 rmse: 2.982273028231712\n","### iteration step: 0 rmse: 2.9822741150183893\n","### iteration step: 0 rmse: 2.982264125384262\n","### iteration step: 0 rmse: 2.982254418337551\n","### iteration step: 0 rmse: 2.982258255088834\n","### iteration step: 0 rmse: 2.9822578510567643\n","### iteration step: 0 rmse: 2.9822499621674936\n","### iteration step: 0 rmse: 2.9822246710923146\n","### iteration step: 0 rmse: 2.9822221165957616\n","### iteration step: 0 rmse: 2.982220275790371\n","### iteration step: 0 rmse: 2.9822212458750834\n","### iteration step: 0 rmse: 2.9822161022009857\n","### iteration step: 0 rmse: 2.9821905308364913\n","### iteration step: 0 rmse: 2.9821591449372087\n","### iteration step: 0 rmse: 2.9821511842977726\n","### iteration step: 0 rmse: 2.9821512461680206\n","### iteration step: 0 rmse: 2.98213204317205\n","### iteration step: 0 rmse: 2.9821330253992127\n","### iteration step: 0 rmse: 2.9821140634011893\n","### iteration step: 0 rmse: 2.9821071146288007\n","### iteration step: 0 rmse: 2.982107797343609\n","### iteration step: 0 rmse: 2.9821018422414824\n","### iteration step: 0 rmse: 2.9821000804213353\n","### iteration step: 0 rmse: 2.9820952342781606\n","### iteration step: 0 rmse: 2.982096504516103\n","### iteration step: 0 rmse: 2.982089229580877\n","### iteration step: 0 rmse: 2.9820902175247803\n","### iteration step: 0 rmse: 2.9820739415126853\n","### iteration step: 0 rmse: 2.9820711609454142\n","### iteration step: 0 rmse: 2.982071112960267\n","### iteration step: 0 rmse: 2.982072465998885\n","### iteration step: 0 rmse: 2.9820657875587866\n","### iteration step: 0 rmse: 2.982064747745413\n","### iteration step: 0 rmse: 2.9820569690699523\n","### iteration step: 0 rmse: 2.982058236207442\n","### iteration step: 0 rmse: 2.9820380868069214\n","### iteration step: 0 rmse: 2.9820335744030775\n","### iteration step: 0 rmse: 2.9820259679760164\n","### iteration step: 0 rmse: 2.9820276728332393\n","### iteration step: 0 rmse: 2.982026467050159\n","### iteration step: 0 rmse: 2.981998771660831\n","### iteration step: 0 rmse: 2.982006872949961\n","### iteration step: 0 rmse: 2.9819960282430036\n","### iteration step: 0 rmse: 2.9819971058701378\n","### iteration step: 0 rmse: 2.9819524037980534\n","### iteration step: 0 rmse: 2.981941476303577\n","### iteration step: 0 rmse: 2.9819373503966253\n","### iteration step: 0 rmse: 2.9819335905643944\n","### iteration step: 0 rmse: 2.9819293776972633\n","### iteration step: 0 rmse: 2.9819168550193185\n","### iteration step: 0 rmse: 2.981904302871578\n","### iteration step: 0 rmse: 2.981906361469612\n","### iteration step: 0 rmse: 2.9819057640613447\n","### iteration step: 0 rmse: 2.981880057117025\n","### iteration step: 0 rmse: 2.9818736755126514\n","### iteration step: 0 rmse: 2.981872450963247\n","### iteration step: 0 rmse: 2.981816432658533\n","### iteration step: 0 rmse: 2.9818187618322085\n","### iteration step: 0 rmse: 2.9818128898481526\n","### iteration step: 0 rmse: 2.9817988411816607\n","### iteration step: 0 rmse: 2.9817791921337204\n","### iteration step: 0 rmse: 2.981780831980316\n","### iteration step: 0 rmse: 2.9817571709224944\n","### iteration step: 0 rmse: 2.9817209551548176\n","### iteration step: 0 rmse: 2.98170018383966\n","### iteration step: 0 rmse: 2.981706099873389\n","### iteration step: 0 rmse: 2.981699956091216\n","### iteration step: 0 rmse: 2.9817020193883144\n","### iteration step: 0 rmse: 2.981693233598575\n","### iteration step: 0 rmse: 2.9816905419338045\n","### iteration step: 0 rmse: 2.981688515824441\n","### iteration step: 0 rmse: 2.98165291536249\n","### iteration step: 0 rmse: 2.9816493832580413\n","### iteration step: 0 rmse: 2.981618484032788\n","### iteration step: 0 rmse: 2.9816118960856377\n","### iteration step: 0 rmse: 2.981609494115815\n","### iteration step: 0 rmse: 2.9816071172265874\n","### iteration step: 0 rmse: 2.981600816932577\n","### iteration step: 0 rmse: 2.9815953236892856\n","### iteration step: 0 rmse: 2.981595271856211\n","### iteration step: 0 rmse: 2.9815713083082875\n","### iteration step: 0 rmse: 2.981547096070861\n","### iteration step: 0 rmse: 2.981545315198048\n","### iteration step: 0 rmse: 2.98153079184755\n","### iteration step: 0 rmse: 2.9815114811926073\n","### iteration step: 0 rmse: 2.9815121494524397\n","### iteration step: 0 rmse: 2.981487771398923\n","### iteration step: 0 rmse: 2.981488553456713\n","### iteration step: 0 rmse: 2.9814868589447\n","### iteration step: 0 rmse: 2.9814889521393306\n","### iteration step: 0 rmse: 2.9814686135856103\n","### iteration step: 0 rmse: 2.981422500964034\n","### iteration step: 0 rmse: 2.981400360500009\n","### iteration step: 0 rmse: 2.9813963144249076\n","### iteration step: 0 rmse: 2.9813911566204263\n","### iteration step: 0 rmse: 2.981391003167187\n","### iteration step: 0 rmse: 2.9813890760783313\n","### iteration step: 0 rmse: 2.9813855644202722\n","### iteration step: 0 rmse: 2.9813663135006085\n","### iteration step: 0 rmse: 2.981357947341106\n","### iteration step: 0 rmse: 2.981356600410661\n","### iteration step: 0 rmse: 2.981350358762512\n","### iteration step: 0 rmse: 2.981347297748839\n","### iteration step: 0 rmse: 2.981334319467386\n","### iteration step: 0 rmse: 2.9813089330318445\n","### iteration step: 0 rmse: 2.9812871719074954\n","### iteration step: 0 rmse: 2.981279953474899\n","### iteration step: 0 rmse: 2.9812696190439403\n","### iteration step: 0 rmse: 2.981238344022396\n","### iteration step: 0 rmse: 2.9812378441434273\n","### iteration step: 0 rmse: 2.9812192310435104\n","### iteration step: 0 rmse: 2.981217220045766\n","### iteration step: 0 rmse: 2.9812082434475595\n","### iteration step: 0 rmse: 2.98118737417711\n","### iteration step: 0 rmse: 2.981184614011309\n","### iteration step: 0 rmse: 2.981164847523904\n","### iteration step: 0 rmse: 2.9811637068343053\n","### iteration step: 0 rmse: 2.981159753879924\n","### iteration step: 0 rmse: 2.981143986444623\n","### iteration step: 0 rmse: 2.9810740641512665\n","### iteration step: 0 rmse: 2.9810210858954833\n","### iteration step: 0 rmse: 2.9810151605259865\n","### iteration step: 0 rmse: 2.981018084378379\n","### iteration step: 0 rmse: 2.981018809692221\n","### iteration step: 0 rmse: 2.9810151418976703\n","### iteration step: 0 rmse: 2.981012898168037\n","### iteration step: 0 rmse: 2.981012177039753\n","### iteration step: 0 rmse: 2.980997190197971\n","### iteration step: 0 rmse: 2.9809586997345265\n","### iteration step: 0 rmse: 2.9809144081007215\n","### iteration step: 0 rmse: 2.980912239859664\n","### iteration step: 0 rmse: 2.9808571940521937\n","### iteration step: 0 rmse: 2.9808580146224073\n","### iteration step: 0 rmse: 2.980840475498695\n","### iteration step: 0 rmse: 2.980838540460032\n","### iteration step: 0 rmse: 2.9808384043203793\n","### iteration step: 0 rmse: 2.9808128332650257\n","### iteration step: 0 rmse: 2.9808063659430744\n","### iteration step: 0 rmse: 2.980731478418715\n","### iteration step: 0 rmse: 2.980719521096952\n","### iteration step: 0 rmse: 2.9806652979021986\n","### iteration step: 0 rmse: 2.9806550798500533\n","### iteration step: 0 rmse: 2.9805405604559416\n","### iteration step: 0 rmse: 2.98049630908432\n","### iteration step: 0 rmse: 2.980481720852333\n","### iteration step: 0 rmse: 2.9804107086553495\n","### iteration step: 0 rmse: 2.9803912126853085\n","### iteration step: 0 rmse: 2.9803832254700366\n","### iteration step: 0 rmse: 2.9803792997813083\n","### iteration step: 0 rmse: 2.9803743798079254\n","### iteration step: 0 rmse: 2.9803600174748293\n","### iteration step: 0 rmse: 2.9803548875565746\n","### iteration step: 0 rmse: 2.9803514242124223\n","### iteration step: 0 rmse: 2.98034633841855\n","### iteration step: 0 rmse: 2.980337602728971\n","### iteration step: 0 rmse: 2.9803316696611475\n","### iteration step: 0 rmse: 2.9803201081908903\n","### iteration step: 0 rmse: 2.980317831294606\n","### iteration step: 0 rmse: 2.980320341064823\n","### iteration step: 0 rmse: 2.9803054795595267\n","### iteration step: 0 rmse: 2.980308546669237\n","### iteration step: 0 rmse: 2.9802820509382117\n","### iteration step: 0 rmse: 2.9802693895750787\n","### iteration step: 0 rmse: 2.9801559155616557\n","### iteration step: 0 rmse: 2.98013671358776\n","### iteration step: 0 rmse: 2.980118200487492\n","### iteration step: 0 rmse: 2.980049835955206\n","### iteration step: 0 rmse: 2.9800210679715144\n","### iteration step: 0 rmse: 2.9799967963968\n","### iteration step: 0 rmse: 2.9799923062682128\n","### iteration step: 0 rmse: 2.9799318716495242\n","### iteration step: 0 rmse: 2.9799300429827955\n","### iteration step: 0 rmse: 2.9799262909211555\n","### iteration step: 0 rmse: 2.9799175124476327\n","### iteration step: 0 rmse: 2.9798565390508487\n","### iteration step: 0 rmse: 2.9798439000559322\n","### iteration step: 0 rmse: 2.979842718517848\n","### iteration step: 0 rmse: 2.9798048625923714\n","### iteration step: 0 rmse: 2.979781676540318\n","### iteration step: 0 rmse: 2.9797156531297024\n","### iteration step: 0 rmse: 2.9797002131808856\n","### iteration step: 0 rmse: 2.9796833235051126\n","### iteration step: 0 rmse: 2.9796837769262416\n","### iteration step: 0 rmse: 2.979659627738025\n","### iteration step: 0 rmse: 2.979589349906032\n","### iteration step: 0 rmse: 2.979518279278356\n","### iteration step: 0 rmse: 2.9794938659495585\n","### iteration step: 0 rmse: 2.9794881647629103\n","### iteration step: 0 rmse: 2.979480868529949\n","### iteration step: 0 rmse: 2.9794493335883008\n","### iteration step: 0 rmse: 2.9794437319290448\n","### iteration step: 0 rmse: 2.979318516297041\n","### iteration step: 0 rmse: 2.9793009146668292\n","### iteration step: 0 rmse: 2.979260936916555\n","### iteration step: 0 rmse: 2.979227999357228\n","### iteration step: 0 rmse: 2.9792261903241677\n","### iteration step: 0 rmse: 2.979183736980274\n","### iteration step: 0 rmse: 2.9791728008919764\n","### iteration step: 0 rmse: 2.9791241825021864\n","### iteration step: 0 rmse: 2.9790780624279827\n","### iteration step: 0 rmse: 2.9790687110178333\n","### iteration step: 0 rmse: 2.979054078272475\n","### iteration step: 0 rmse: 2.97901259819346\n","### iteration step: 0 rmse: 2.9790040483846845\n","### iteration step: 0 rmse: 2.978998627327176\n","### iteration step: 0 rmse: 2.9789911348051556\n","### iteration step: 0 rmse: 2.978941096120705\n","### iteration step: 0 rmse: 2.9789042205011764\n","### iteration step: 0 rmse: 2.978903304571089\n","### iteration step: 0 rmse: 2.9789030262796774\n","### iteration step: 0 rmse: 2.9788994468291055\n","### iteration step: 0 rmse: 2.9788993473471006\n","### iteration step: 0 rmse: 2.978874014547016\n","### iteration step: 0 rmse: 2.978874859213362\n","### iteration step: 0 rmse: 2.978872987052052\n","### iteration step: 0 rmse: 2.97875321554752\n","### iteration step: 0 rmse: 2.9787415737224334\n","### iteration step: 0 rmse: 2.9787313197122174\n","### iteration step: 0 rmse: 2.9786722979690805\n","### iteration step: 0 rmse: 2.978653894251348\n","### iteration step: 0 rmse: 2.9785859846233427\n","### iteration step: 0 rmse: 2.978584421289302\n","### iteration step: 0 rmse: 2.9784860400026845\n","### iteration step: 0 rmse: 2.978407015871953\n","### iteration step: 0 rmse: 2.9783763216211856\n","### iteration step: 0 rmse: 2.978341229578595\n","### iteration step: 0 rmse: 2.978338775281371\n","### iteration step: 0 rmse: 2.9783328436501897\n","### iteration step: 0 rmse: 2.9783197755750312\n","### iteration step: 0 rmse: 2.978310316570291\n","### iteration step: 0 rmse: 2.978272245948479\n","### iteration step: 0 rmse: 2.978220663875921\n","### iteration step: 0 rmse: 2.9781890859164526\n","### iteration step: 0 rmse: 2.978116204277861\n","### iteration step: 0 rmse: 2.978083346128458\n","### iteration step: 0 rmse: 2.978023642371304\n","### iteration step: 0 rmse: 2.9779983379878336\n","### iteration step: 0 rmse: 2.977995550190247\n","### iteration step: 0 rmse: 2.97797802068386\n","### iteration step: 0 rmse: 2.977959653526879\n","### iteration step: 0 rmse: 2.9779120949919853\n","### iteration step: 0 rmse: 2.977879902976013\n","### iteration step: 0 rmse: 2.9777978741722415\n","### iteration step: 0 rmse: 2.977781320288812\n","### iteration step: 0 rmse: 2.9777347343168112\n","### iteration step: 0 rmse: 2.9777315202688124\n","### iteration step: 0 rmse: 2.977710419078878\n","### iteration step: 0 rmse: 2.977599197879111\n","### iteration step: 0 rmse: 2.9775807109341543\n","### iteration step: 0 rmse: 2.9775642962535582\n","### iteration step: 0 rmse: 2.977558788008713\n","### iteration step: 0 rmse: 2.9775488436935396\n","### iteration step: 0 rmse: 2.9775451584602672\n","### iteration step: 0 rmse: 2.9775399018998203\n","### iteration step: 0 rmse: 2.977358462216625\n","### iteration step: 0 rmse: 2.9773128381303784\n","### iteration step: 0 rmse: 2.977256070106609\n","### iteration step: 0 rmse: 2.9772548220462456\n","### iteration step: 0 rmse: 2.9772476468827067\n","### iteration step: 0 rmse: 2.9772264464199916\n","### iteration step: 0 rmse: 2.977178526407929\n","### iteration step: 0 rmse: 2.977175127385954\n","### iteration step: 0 rmse: 2.977172395594132\n","### iteration step: 0 rmse: 2.9770562005359484\n","### iteration step: 0 rmse: 2.976923333996924\n","### iteration step: 0 rmse: 2.9769219371553226\n","### iteration step: 0 rmse: 2.976917293208154\n","### iteration step: 0 rmse: 2.9768178822557196\n","### iteration step: 0 rmse: 2.976747974949688\n","### iteration step: 0 rmse: 2.9767125858526753\n","### iteration step: 0 rmse: 2.9766989673211715\n","### iteration step: 0 rmse: 2.9766712932871773\n","### iteration step: 0 rmse: 2.976673092728712\n","### iteration step: 0 rmse: 2.976601593529107\n","### iteration step: 0 rmse: 2.976601606316735\n","### iteration step: 0 rmse: 2.9765849392446904\n","### iteration step: 0 rmse: 2.9765768700450232\n","### iteration step: 0 rmse: 2.9765736265465237\n","### iteration step: 0 rmse: 2.9765505408829322\n","### iteration step: 0 rmse: 2.9765492490397554\n","### iteration step: 0 rmse: 2.9764520295552397\n","### iteration step: 0 rmse: 2.9764469754459286\n","### iteration step: 0 rmse: 2.9764372499556395\n","### iteration step: 0 rmse: 2.976370833235015\n","### iteration step: 0 rmse: 2.976371528174172\n","### iteration step: 0 rmse: 2.976333094335254\n","### iteration step: 0 rmse: 2.9763285599041485\n","### iteration step: 0 rmse: 2.9762532140880866\n","### iteration step: 0 rmse: 2.976203552927582\n","### iteration step: 0 rmse: 2.976149927102117\n","### iteration step: 0 rmse: 2.9760853852638873\n","### iteration step: 0 rmse: 2.9760050157804114\n","### iteration step: 0 rmse: 2.976000276233715\n","### iteration step: 0 rmse: 2.9759126416562593\n","### iteration step: 0 rmse: 2.975910685922541\n","### iteration step: 0 rmse: 2.9759048377895274\n","### iteration step: 0 rmse: 2.975808967855207\n","### iteration step: 0 rmse: 2.9756948498638964\n","### iteration step: 0 rmse: 2.975637509621287\n","### iteration step: 0 rmse: 2.9755743185417707\n","### iteration step: 0 rmse: 2.9755314893254026\n","### iteration step: 0 rmse: 2.9755078870370064\n","### iteration step: 0 rmse: 2.9754923292995015\n","### iteration step: 0 rmse: 2.975477269971728\n","### iteration step: 0 rmse: 2.9754512272328797\n","### iteration step: 0 rmse: 2.9753743528289793\n","### iteration step: 0 rmse: 2.975312340423547\n","### iteration step: 0 rmse: 2.9753111208556398\n","### iteration step: 0 rmse: 2.97518755041019\n","### iteration step: 0 rmse: 2.975061034384529\n","### iteration step: 0 rmse: 2.9750379163900864\n","### iteration step: 0 rmse: 2.9750060653400885\n","### iteration step: 0 rmse: 2.9750009911397672\n","### iteration step: 0 rmse: 2.974925721012104\n","### iteration step: 0 rmse: 2.9748601812192326\n","### iteration step: 0 rmse: 2.9748374179994532\n","### iteration step: 0 rmse: 2.974822417412885\n","### iteration step: 0 rmse: 2.9747104590928957\n","### iteration step: 0 rmse: 2.9746789120853343\n","### iteration step: 0 rmse: 2.9746779040518985\n","### iteration step: 0 rmse: 2.9746109055946324\n","### iteration step: 0 rmse: 2.9746098693206293\n","### iteration step: 0 rmse: 2.974606034915783\n","### iteration step: 0 rmse: 2.974489787590502\n","### iteration step: 0 rmse: 2.974425066831527\n","### iteration step: 0 rmse: 2.974425792777368\n","### iteration step: 0 rmse: 2.97439606807514\n","### iteration step: 0 rmse: 2.974382529582626\n","### iteration step: 0 rmse: 2.974319565337929\n","### iteration step: 0 rmse: 2.9743308624073697\n","### iteration step: 0 rmse: 2.974261046909759\n","### iteration step: 0 rmse: 2.9741908546389566\n","### iteration step: 0 rmse: 2.974116667575565\n","### iteration step: 0 rmse: 2.9741176702278502\n","### iteration step: 0 rmse: 2.9741088602935184\n","### iteration step: 0 rmse: 2.9740893613187986\n","### iteration step: 0 rmse: 2.974032596000559\n","### iteration step: 0 rmse: 2.974013993296883\n","### iteration step: 0 rmse: 2.9739754805956786\n","### iteration step: 0 rmse: 2.9739620353002563\n","### iteration step: 0 rmse: 2.9739490004381928\n","### iteration step: 0 rmse: 2.9739372627264236\n","### iteration step: 0 rmse: 2.97390190448457\n","### iteration step: 0 rmse: 2.9738630541833384\n","### iteration step: 0 rmse: 2.9738315035720766\n","### iteration step: 0 rmse: 2.9738281080026474\n","### iteration step: 0 rmse: 2.9738282114418624\n","### iteration step: 0 rmse: 2.9738245618566523\n","### iteration step: 0 rmse: 2.9737627118381185\n","### iteration step: 0 rmse: 2.9737017101981453\n","### iteration step: 0 rmse: 2.973664118018922\n","### iteration step: 0 rmse: 2.973661218175848\n","### iteration step: 0 rmse: 2.9736573038861014\n","### iteration step: 0 rmse: 2.9736419241788674\n","### iteration step: 0 rmse: 2.973635896918596\n","### iteration step: 0 rmse: 2.973622387987243\n","### iteration step: 0 rmse: 2.9736062306612374\n","### iteration step: 0 rmse: 2.973574233588149\n","### iteration step: 0 rmse: 2.9735706690774975\n","### iteration step: 0 rmse: 2.9736047790720224\n","### iteration step: 0 rmse: 2.9735402675512743\n","### iteration step: 0 rmse: 2.973531767968433\n","### iteration step: 0 rmse: 2.973522209488602\n","### iteration step: 0 rmse: 2.9735092883222207\n","### iteration step: 0 rmse: 2.9734922795086796\n","### iteration step: 0 rmse: 2.9734412781414186\n","### iteration step: 0 rmse: 2.973435205192302\n","### iteration step: 0 rmse: 2.9734174339385633\n","### iteration step: 0 rmse: 2.973405182382663\n","### iteration step: 0 rmse: 2.9733733889026004\n","### iteration step: 0 rmse: 2.9733675952672143\n","### iteration step: 0 rmse: 2.973311375327002\n","### iteration step: 0 rmse: 2.973307617564216\n","### iteration step: 0 rmse: 2.9733023392389533\n","### iteration step: 0 rmse: 2.973300306615383\n","### iteration step: 0 rmse: 2.9733010764779806\n","### iteration step: 0 rmse: 2.9732958344016596\n","### iteration step: 0 rmse: 2.9732952172256573\n","### iteration step: 0 rmse: 2.973241192218565\n","### iteration step: 0 rmse: 2.9732113223918164\n","### iteration step: 0 rmse: 2.9731960892036104\n","### iteration step: 0 rmse: 2.9731696252656348\n","### iteration step: 0 rmse: 2.973163960860487\n","### iteration step: 0 rmse: 2.9731523747703186\n","### iteration step: 0 rmse: 2.9731478708091554\n","### iteration step: 0 rmse: 2.9731744276900876\n","### iteration step: 0 rmse: 2.973178000657018\n","### iteration step: 0 rmse: 2.973122959144471\n","### iteration step: 0 rmse: 2.9730998009430647\n","### iteration step: 0 rmse: 2.973085467206061\n","### iteration step: 0 rmse: 2.973056455559991\n","### iteration step: 0 rmse: 2.973027141642035\n","### iteration step: 0 rmse: 2.9730018155205267\n","### iteration step: 0 rmse: 2.9730042634648424\n","### iteration step: 0 rmse: 2.9729908700507335\n","### iteration step: 0 rmse: 2.972977047028479\n","### iteration step: 0 rmse: 2.9729557240621087\n","### iteration step: 0 rmse: 2.972951027740139\n","### iteration step: 0 rmse: 2.972953755392161\n","### iteration step: 0 rmse: 2.972950659619882\n","### iteration step: 0 rmse: 2.9729386727103937\n","### iteration step: 0 rmse: 2.9729334776188896\n","### iteration step: 0 rmse: 2.972922993239065\n","### iteration step: 0 rmse: 2.972913212220222\n","### iteration step: 0 rmse: 2.9729015946937496\n","### iteration step: 0 rmse: 2.972864558663457\n","### iteration step: 0 rmse: 2.9728618832540645\n","### iteration step: 0 rmse: 2.9728650004989823\n","### iteration step: 0 rmse: 2.972862184296064\n","### iteration step: 0 rmse: 2.972865276288031\n","### iteration step: 0 rmse: 2.9728055134144733\n","### iteration step: 0 rmse: 2.9728050343015044\n","### iteration step: 0 rmse: 2.9727743730522254\n","### iteration step: 0 rmse: 2.972723493555275\n","### iteration step: 0 rmse: 2.972686086213414\n","### iteration step: 0 rmse: 2.972685180095439\n","### iteration step: 0 rmse: 2.972653581249728\n","### iteration step: 0 rmse: 2.972642449223765\n","### iteration step: 0 rmse: 2.972642993138867\n","### iteration step: 0 rmse: 2.972616629579745\n","### iteration step: 0 rmse: 2.97259278895731\n","### iteration step: 0 rmse: 2.9725538888905834\n","### iteration step: 0 rmse: 2.972541585883176\n","### iteration step: 0 rmse: 2.9724864700828255\n","### iteration step: 0 rmse: 2.9724715749425488\n","### iteration step: 0 rmse: 2.972462413982972\n","### iteration step: 0 rmse: 2.9724289981754466\n","### iteration step: 0 rmse: 2.972426480763411\n","### iteration step: 0 rmse: 2.9724426017911867\n","### iteration step: 0 rmse: 2.9724262016178873\n","### iteration step: 0 rmse: 2.9723813076241954\n","### iteration step: 0 rmse: 2.972355451877481\n","### iteration step: 0 rmse: 2.9723250699077726\n","### iteration step: 0 rmse: 2.972294727440839\n","### iteration step: 0 rmse: 2.972273350327983\n","### iteration step: 0 rmse: 2.9722209065794765\n","### iteration step: 0 rmse: 2.972221826255337\n","### iteration step: 0 rmse: 2.9722216909313137\n","### iteration step: 0 rmse: 2.9722455241132497\n","### iteration step: 0 rmse: 2.972242820280967\n","### iteration step: 0 rmse: 2.972240346986557\n","### iteration step: 0 rmse: 2.972226195053352\n","### iteration step: 0 rmse: 2.9722175557729176\n","### iteration step: 0 rmse: 2.9722115845704034\n","### iteration step: 0 rmse: 2.972161790058033\n","### iteration step: 0 rmse: 2.9721372923497396\n","### iteration step: 0 rmse: 2.972115983647553\n","### iteration step: 0 rmse: 2.9721021707087685\n","### iteration step: 0 rmse: 2.972086183071374\n","### iteration step: 0 rmse: 2.972041761710079\n","### iteration step: 0 rmse: 2.9720384477118165\n","### iteration step: 0 rmse: 2.9720145202546706\n","### iteration step: 0 rmse: 2.971976790554231\n","### iteration step: 0 rmse: 2.9719352808713593\n","### iteration step: 0 rmse: 2.9719116781230484\n","### iteration step: 0 rmse: 2.971876699158825\n","### iteration step: 0 rmse: 2.9718527548363576\n","### iteration step: 0 rmse: 2.971849806298626\n","### iteration step: 0 rmse: 2.9718489104865737\n","### iteration step: 0 rmse: 2.971846750381655\n","### iteration step: 0 rmse: 2.9718364910095514\n","### iteration step: 0 rmse: 2.97191068141151\n","### iteration step: 0 rmse: 2.9718631383099097\n","### iteration step: 0 rmse: 2.971854154157334\n","### iteration step: 0 rmse: 2.9718187678467305\n","### iteration step: 0 rmse: 2.971812596202934\n","### iteration step: 0 rmse: 2.9717975234051837\n","### iteration step: 0 rmse: 2.971763820977358\n","### iteration step: 0 rmse: 2.971726839577821\n","### iteration step: 0 rmse: 2.971666813758573\n","### iteration step: 0 rmse: 2.9716414072791935\n","### iteration step: 0 rmse: 2.97166429915008\n","### iteration step: 0 rmse: 2.9716345140829974\n","### iteration step: 0 rmse: 2.9715973614924454\n","### iteration step: 0 rmse: 2.971534981857814\n","### iteration step: 0 rmse: 2.9714763453360034\n","### iteration step: 0 rmse: 2.9714433784348873\n","### iteration step: 0 rmse: 2.9714352840897313\n","### iteration step: 0 rmse: 2.971424883465469\n","### iteration step: 0 rmse: 2.971393176377156\n","### iteration step: 0 rmse: 2.971363048293929\n","### iteration step: 0 rmse: 2.9713203010117426\n","### iteration step: 0 rmse: 2.971305992918435\n","### iteration step: 0 rmse: 2.9712898405035695\n","### iteration step: 0 rmse: 2.971266192970977\n","### iteration step: 0 rmse: 2.971274384646615\n","### iteration step: 0 rmse: 2.971270240074448\n","### iteration step: 0 rmse: 2.9712531800687425\n","### iteration step: 0 rmse: 2.971274488619498\n","### iteration step: 0 rmse: 2.9712613456763917\n","### iteration step: 0 rmse: 2.971261161520073\n","### iteration step: 0 rmse: 2.971266143400773\n","### iteration step: 0 rmse: 2.97126419463716\n","### iteration step: 0 rmse: 2.9712437498174533\n","### iteration step: 0 rmse: 2.9712424918373608\n","### iteration step: 0 rmse: 2.9712260041213496\n","### iteration step: 0 rmse: 2.9711907334784584\n","### iteration step: 0 rmse: 2.97119921091908\n","### iteration step: 0 rmse: 2.97120711524838\n","### iteration step: 0 rmse: 2.971196141582708\n","### iteration step: 0 rmse: 2.9711939246605263\n","### iteration step: 0 rmse: 2.9711891210516823\n","### iteration step: 0 rmse: 2.971181634722446\n","### iteration step: 0 rmse: 2.9712191374814214\n","### iteration step: 0 rmse: 2.971212025569689\n","### iteration step: 0 rmse: 2.971183102939427\n","### iteration step: 0 rmse: 2.971173055744145\n","### iteration step: 0 rmse: 2.9711713004994125\n","### iteration step: 0 rmse: 2.9711544574002535\n","### iteration step: 0 rmse: 2.971143263194269\n","### iteration step: 0 rmse: 2.9711476955271077\n","### iteration step: 0 rmse: 2.9711604235259985\n","### iteration step: 0 rmse: 2.9711319302749675\n","### iteration step: 0 rmse: 2.9711221558086747\n","### iteration step: 0 rmse: 2.971158761446447\n","### iteration step: 0 rmse: 2.971156213301517\n","### iteration step: 0 rmse: 2.9711514730388573\n","### iteration step: 0 rmse: 2.9711370937357358\n","### iteration step: 0 rmse: 2.9711323397820966\n","### iteration step: 0 rmse: 2.971116910719699\n","### iteration step: 0 rmse: 2.9710969451902205\n","### iteration step: 0 rmse: 2.9710776939366244\n","### iteration step: 0 rmse: 2.971074516327832\n","### iteration step: 0 rmse: 2.971106115367066\n","### iteration step: 0 rmse: 2.971077836443592\n","### iteration step: 0 rmse: 2.9710788155173637\n","### iteration step: 0 rmse: 2.971026342705705\n","### iteration step: 0 rmse: 2.9709983010119325\n","### iteration step: 0 rmse: 2.9709851877757134\n","### iteration step: 0 rmse: 2.9709638486156402\n","### iteration step: 0 rmse: 2.9709454172522003\n","### iteration step: 0 rmse: 2.9709183478495214\n","### iteration step: 0 rmse: 2.970898351253661\n","### iteration step: 0 rmse: 2.970892018166107\n","### iteration step: 0 rmse: 2.9708881923375405\n","### iteration step: 0 rmse: 2.9708694210369\n","### iteration step: 0 rmse: 2.970853046792963\n","### iteration step: 0 rmse: 2.970827169047997\n","### iteration step: 0 rmse: 2.9708260231846473\n","### iteration step: 0 rmse: 2.970805922140957\n","### iteration step: 0 rmse: 2.9708042479645407\n","### iteration step: 0 rmse: 2.9708132613181446\n","### iteration step: 0 rmse: 2.9708133796441474\n","### iteration step: 0 rmse: 2.970806032214991\n","### iteration step: 0 rmse: 2.9707796758988403\n","### iteration step: 0 rmse: 2.970774841969457\n","### iteration step: 0 rmse: 2.970758410004489\n","### iteration step: 0 rmse: 2.970711975397981\n","### iteration step: 0 rmse: 2.9706905311372247\n","### iteration step: 0 rmse: 2.9706763333595942\n","### iteration step: 0 rmse: 2.9706574418400344\n","### iteration step: 0 rmse: 2.9706559839784887\n","### iteration step: 0 rmse: 2.970640123132225\n","### iteration step: 0 rmse: 2.9706072725329324\n","### iteration step: 0 rmse: 2.9705889947751976\n","### iteration step: 0 rmse: 2.9705713571505163\n","### iteration step: 0 rmse: 2.970596458119534\n","### iteration step: 0 rmse: 2.9705955659608603\n","### iteration step: 0 rmse: 2.970580859970329\n","### iteration step: 0 rmse: 2.970564631370498\n","### iteration step: 0 rmse: 2.9705481018057696\n","### iteration step: 0 rmse: 2.970504444028838\n","### iteration step: 0 rmse: 2.9704740414292665\n","### iteration step: 0 rmse: 2.9704467216665016\n","### iteration step: 0 rmse: 2.9704338957775844\n","### iteration step: 0 rmse: 2.970450197125239\n","### iteration step: 0 rmse: 2.9704485910120924\n","### iteration step: 0 rmse: 2.9704227869082303\n","### iteration step: 0 rmse: 2.970392602897985\n","### iteration step: 0 rmse: 2.9703855610757066\n","### iteration step: 0 rmse: 2.970372231678303\n","### iteration step: 0 rmse: 2.9703670760651852\n","### iteration step: 0 rmse: 2.9703501052395715\n","### iteration step: 0 rmse: 2.9703059488949917\n","### iteration step: 0 rmse: 2.97027855030438\n","### iteration step: 0 rmse: 2.9702526837277015\n","### iteration step: 0 rmse: 2.970241045211626\n","### iteration step: 0 rmse: 2.9702333464607453\n","### iteration step: 0 rmse: 2.9702251558661867\n","### iteration step: 0 rmse: 2.9702075634129854\n","### iteration step: 0 rmse: 2.9702021468928668\n","### iteration step: 0 rmse: 2.9701858739684615\n","### iteration step: 0 rmse: 2.9701715603433363\n","### iteration step: 0 rmse: 2.970182490234545\n","### iteration step: 0 rmse: 2.9701603418033837\n","### iteration step: 0 rmse: 2.9701460403914197\n","### iteration step: 0 rmse: 2.97014724876226\n","### iteration step: 0 rmse: 2.9701447142737734\n","### iteration step: 0 rmse: 2.97013680851652\n","### iteration step: 0 rmse: 2.9701033696570063\n","### iteration step: 0 rmse: 2.970088039347965\n","### iteration step: 0 rmse: 2.9700757784179532\n","### iteration step: 0 rmse: 2.9700632597510412\n","### iteration step: 0 rmse: 2.9700182428192923\n","### iteration step: 0 rmse: 2.9699725409439695\n","### iteration step: 0 rmse: 2.9699685713773074\n","### iteration step: 0 rmse: 2.9699645160974866\n","### iteration step: 0 rmse: 2.9699729829056296\n","### iteration step: 0 rmse: 2.96995733409928\n","### iteration step: 0 rmse: 2.969938488116454\n","### iteration step: 0 rmse: 2.969935687907426\n","### iteration step: 0 rmse: 2.9699519863783466\n","### iteration step: 0 rmse: 2.9699434309213864\n","### iteration step: 0 rmse: 2.969909938792253\n","### iteration step: 0 rmse: 2.969905005208645\n","### iteration step: 0 rmse: 2.9698869225151827\n","### iteration step: 0 rmse: 2.9698633894767115\n","### iteration step: 0 rmse: 2.9698481966182233\n","### iteration step: 0 rmse: 2.9698313998269485\n","### iteration step: 0 rmse: 2.969825311129504\n","### iteration step: 0 rmse: 2.9698497317210384\n","### iteration step: 0 rmse: 2.969862554699492\n","### iteration step: 0 rmse: 2.969858929757763\n","### iteration step: 0 rmse: 2.969901928906806\n","### iteration step: 0 rmse: 2.969888396264285\n","### iteration step: 0 rmse: 2.969876388217796\n","### iteration step: 0 rmse: 2.96986764577159\n","### iteration step: 0 rmse: 2.969844022559904\n","### iteration step: 0 rmse: 2.9698299874356953\n","### iteration step: 0 rmse: 2.9698212120176803\n","### iteration step: 0 rmse: 2.9698449469558117\n","### iteration step: 0 rmse: 2.9698175217222365\n","### iteration step: 0 rmse: 2.9698233161029943\n","### iteration step: 0 rmse: 2.969821613398132\n","### iteration step: 0 rmse: 2.9698148168338476\n","### iteration step: 0 rmse: 2.9698083338194925\n","### iteration step: 0 rmse: 2.969848501417595\n","### iteration step: 0 rmse: 2.969820577550286\n","### iteration step: 0 rmse: 2.9698448316583033\n","### iteration step: 0 rmse: 2.969820859768741\n","### iteration step: 0 rmse: 2.969799617547564\n","### iteration step: 0 rmse: 2.9697741306228673\n","### iteration step: 0 rmse: 2.969763865579019\n","### iteration step: 0 rmse: 2.9697544375404585\n","### iteration step: 0 rmse: 2.969730311751843\n","### iteration step: 0 rmse: 2.9697287653676447\n","### iteration step: 0 rmse: 2.969715635612146\n","### iteration step: 0 rmse: 2.96971098426084\n","### iteration step: 0 rmse: 2.969685841839169\n","### iteration step: 0 rmse: 2.9696525812524652\n","### iteration step: 0 rmse: 2.969645532628759\n","### iteration step: 0 rmse: 2.969620543328679\n","### iteration step: 0 rmse: 2.9696122340449924\n","### iteration step: 0 rmse: 2.969597350354655\n","### iteration step: 0 rmse: 2.9695841059152444\n","### iteration step: 0 rmse: 2.9695865300763815\n","### iteration step: 0 rmse: 2.969574678839789\n","### iteration step: 0 rmse: 2.9695742197249664\n","### iteration step: 0 rmse: 2.9695682000621364\n","### iteration step: 0 rmse: 2.9695664136258735\n","### iteration step: 0 rmse: 2.969543470815462\n","### iteration step: 0 rmse: 2.969541533566644\n","### iteration step: 0 rmse: 2.969546412553518\n","### iteration step: 0 rmse: 2.9695416206744367\n","### iteration step: 0 rmse: 2.9695427430960026\n","### iteration step: 0 rmse: 2.96952327584821\n","### iteration step: 0 rmse: 2.9695161060790727\n","### iteration step: 0 rmse: 2.9695353921806436\n","### iteration step: 0 rmse: 2.9695244727763046\n","### iteration step: 0 rmse: 2.9695138043975513\n","### iteration step: 0 rmse: 2.9695486354854865\n","### iteration step: 0 rmse: 2.9695238298447135\n","### iteration step: 0 rmse: 2.96951111304449\n","### iteration step: 0 rmse: 2.9695060054794125\n","### iteration step: 0 rmse: 2.969499430480272\n","### iteration step: 0 rmse: 2.969481984283324\n","### iteration step: 0 rmse: 2.9695039316541187\n","### iteration step: 0 rmse: 2.9695033000283573\n","### iteration step: 0 rmse: 2.9694861222767392\n","### iteration step: 0 rmse: 2.96947435688161\n","### iteration step: 0 rmse: 2.9694626454084\n","### iteration step: 0 rmse: 2.9694469275353597\n","### iteration step: 0 rmse: 2.9694393142540862\n","### iteration step: 0 rmse: 2.969434683275656\n","### iteration step: 0 rmse: 2.969440253444866\n","### iteration step: 0 rmse: 2.9694485898177363\n","### iteration step: 0 rmse: 2.9695032835540642\n","### iteration step: 0 rmse: 2.9695007281894457\n","### iteration step: 0 rmse: 2.969475842852797\n","### iteration step: 0 rmse: 2.969468377170565\n","### iteration step: 0 rmse: 2.969477133143681\n","### iteration step: 0 rmse: 2.9694474182217228\n","### iteration step: 0 rmse: 2.9694329616490993\n","### iteration step: 0 rmse: 2.9693977844841557\n","### iteration step: 0 rmse: 2.969410322258699\n","### iteration step: 0 rmse: 2.969430378040212\n","### iteration step: 0 rmse: 2.9694230184644845\n","### iteration step: 0 rmse: 2.9694102189072833\n","### iteration step: 0 rmse: 2.9693888384682356\n","### iteration step: 0 rmse: 2.9693643975912467\n","### iteration step: 0 rmse: 2.969340340114429\n","### iteration step: 0 rmse: 2.9693179249074997\n","### iteration step: 0 rmse: 2.969290314816505\n","### iteration step: 0 rmse: 2.9692660601990886\n","### iteration step: 0 rmse: 2.9692458254251317\n","### iteration step: 0 rmse: 2.969289087308166\n","### iteration step: 0 rmse: 2.969255733327893\n","### iteration step: 0 rmse: 2.969242705516534\n","### iteration step: 0 rmse: 2.9692330542739542\n","### iteration step: 0 rmse: 2.9692331151315625\n","### iteration step: 0 rmse: 2.9692171819678808\n","### iteration step: 0 rmse: 2.969211871256561\n","### iteration step: 0 rmse: 2.9692066372891857\n","### iteration step: 0 rmse: 2.9692387330337957\n","### iteration step: 0 rmse: 2.9692058484387256\n","### iteration step: 0 rmse: 2.9691973972196153\n","### iteration step: 0 rmse: 2.969177098511406\n","### iteration step: 0 rmse: 2.96915714564661\n","### iteration step: 0 rmse: 2.9691714214205693\n","### iteration step: 0 rmse: 2.9691717402335285\n","### iteration step: 0 rmse: 2.9691586875755016\n","### iteration step: 0 rmse: 2.9691371863670075\n","### iteration step: 0 rmse: 2.9691251715458202\n","### iteration step: 0 rmse: 2.9691237615989343\n","### iteration step: 0 rmse: 2.9691250084580885\n","### iteration step: 0 rmse: 2.969108763387265\n","### iteration step: 0 rmse: 2.969104355997229\n","### iteration step: 0 rmse: 2.9691141413875597\n","### iteration step: 0 rmse: 2.9691112823012067\n","### iteration step: 0 rmse: 2.969090763799146\n","### iteration step: 0 rmse: 2.9690844766744884\n","### iteration step: 0 rmse: 2.9690668495572616\n","### iteration step: 0 rmse: 2.9690570522555895\n","### iteration step: 0 rmse: 2.969045783184112\n","### iteration step: 0 rmse: 2.9690173284406396\n","### iteration step: 0 rmse: 2.969012123933552\n","### iteration step: 0 rmse: 2.9690242118463064\n","### iteration step: 0 rmse: 2.969018711296199\n","### iteration step: 0 rmse: 2.968987062776893\n","### iteration step: 0 rmse: 2.968986977255533\n","### iteration step: 0 rmse: 2.96898916649526\n","### iteration step: 0 rmse: 2.9689750206653884\n","### iteration step: 0 rmse: 2.968963225894063\n","### iteration step: 0 rmse: 2.968951025888038\n","### iteration step: 0 rmse: 2.9689510333678504\n","### iteration step: 0 rmse: 2.968931931984724\n","### iteration step: 0 rmse: 2.9689217790978852\n","### iteration step: 0 rmse: 2.968920986553491\n","### iteration step: 0 rmse: 2.9688937216468245\n","### iteration step: 0 rmse: 2.968892550648324\n","### iteration step: 0 rmse: 2.968885225289822\n","### iteration step: 0 rmse: 2.968903316275344\n","### iteration step: 0 rmse: 2.9689185882694566\n","### iteration step: 0 rmse: 2.968913096451836\n","### iteration step: 0 rmse: 2.968967574861122\n","### iteration step: 0 rmse: 2.9690019043038696\n","### iteration step: 0 rmse: 2.9690343067451095\n","### iteration step: 0 rmse: 2.969058130131196\n","### iteration step: 0 rmse: 2.9690987011195813\n","### iteration step: 0 rmse: 2.9691251403359273\n","### iteration step: 0 rmse: 2.9691027672303614\n","### iteration step: 0 rmse: 2.9690781641328927\n","### iteration step: 0 rmse: 2.9690653650235075\n","### iteration step: 0 rmse: 2.969053318124104\n","### iteration step: 0 rmse: 2.9690372941085577\n","### iteration step: 0 rmse: 2.9690143762132744\n","### iteration step: 0 rmse: 2.9690204819270765\n","### iteration step: 0 rmse: 2.969025196003948\n","### iteration step: 0 rmse: 2.969011004970284\n","### iteration step: 0 rmse: 2.968998792224027\n","### iteration step: 0 rmse: 2.968997864341763\n","### iteration step: 0 rmse: 2.9689744662856135\n","### iteration step: 0 rmse: 2.9689392283184004\n","### iteration step: 0 rmse: 2.968920395151456\n","### iteration step: 0 rmse: 2.9689238941235074\n","### iteration step: 0 rmse: 2.9689053565915753\n","### iteration step: 0 rmse: 2.9688995365734314\n","### iteration step: 0 rmse: 2.96887165709615\n","### iteration step: 0 rmse: 2.968851307241433\n","### iteration step: 0 rmse: 2.968873510726814\n","### iteration step: 0 rmse: 2.9689014250623753\n","### iteration step: 0 rmse: 2.968883552808101\n","### iteration step: 0 rmse: 2.9688811730483273\n","### iteration step: 0 rmse: 2.968847690354924\n","### iteration step: 0 rmse: 2.9688475436516857\n","### iteration step: 0 rmse: 2.9688233129902657\n","### iteration step: 0 rmse: 2.968816484913317\n","### iteration step: 0 rmse: 2.968795081032582\n","### iteration step: 0 rmse: 2.9687816710780974\n","### iteration step: 0 rmse: 2.968773732646334\n","### iteration step: 0 rmse: 2.968760079433166\n","### iteration step: 0 rmse: 2.9687593986234067\n","### iteration step: 0 rmse: 2.968756713745042\n","### iteration step: 0 rmse: 2.9687404613968345\n","### iteration step: 0 rmse: 2.968728667731902\n","### iteration step: 0 rmse: 2.96873592350429\n","### iteration step: 0 rmse: 2.9687213681305473\n","### iteration step: 0 rmse: 2.968716208348321\n","### iteration step: 0 rmse: 2.968714284404816\n","### iteration step: 0 rmse: 2.968719585066684\n","### iteration step: 0 rmse: 2.9687082433769048\n","### iteration step: 0 rmse: 2.9686935092112563\n","### iteration step: 0 rmse: 2.9686877120570916\n","### iteration step: 0 rmse: 2.9686736423948616\n","### iteration step: 0 rmse: 2.968678547712645\n","### iteration step: 0 rmse: 2.968671296467015\n","### iteration step: 0 rmse: 2.9686654220967936\n","### iteration step: 0 rmse: 2.9686437510197763\n","### iteration step: 0 rmse: 2.9686388624411313\n","### iteration step: 0 rmse: 2.9686361908883487\n","### iteration step: 0 rmse: 2.968626515911433\n","### iteration step: 0 rmse: 2.968623637989678\n","### iteration step: 0 rmse: 2.9686204825439195\n","### iteration step: 0 rmse: 2.9686430279111096\n","### iteration step: 0 rmse: 2.9686210808411975\n","### iteration step: 0 rmse: 2.968598104745634\n","### iteration step: 0 rmse: 2.968578153784635\n","### iteration step: 0 rmse: 2.968558635649093\n","### iteration step: 0 rmse: 2.9685678582558315\n","### iteration step: 0 rmse: 2.9685583370221895\n","### iteration step: 0 rmse: 2.9685561414055903\n","### iteration step: 0 rmse: 2.9685416198473584\n","### iteration step: 0 rmse: 2.968561864925473\n","### iteration step: 0 rmse: 2.9685527706296115\n","### iteration step: 0 rmse: 2.9685680192889286\n","### iteration step: 0 rmse: 2.9685814675818913\n","### iteration step: 0 rmse: 2.968562288229953\n","### iteration step: 0 rmse: 2.9685486509295567\n","### iteration step: 0 rmse: 2.9685339638410015\n","### iteration step: 0 rmse: 2.9685202112520708\n","### iteration step: 0 rmse: 2.9685036762157515\n","### iteration step: 0 rmse: 2.968500197647115\n","### iteration step: 0 rmse: 2.9684825533972656\n","### iteration step: 0 rmse: 2.9684716547281966\n","### iteration step: 0 rmse: 2.968505273639182\n","### iteration step: 0 rmse: 2.968487481064558\n","### iteration step: 0 rmse: 2.968480024733978\n","### iteration step: 0 rmse: 2.9684818820019396\n","### iteration step: 0 rmse: 2.968462628575542\n","### iteration step: 0 rmse: 2.9684513752950292\n","### iteration step: 0 rmse: 2.9684668597723953\n","### iteration step: 0 rmse: 2.9684695273861186\n","### iteration step: 0 rmse: 2.9684682594217975\n","### iteration step: 0 rmse: 2.968517240352803\n","### iteration step: 0 rmse: 2.968484127512997\n","### iteration step: 0 rmse: 2.968471400312879\n","### iteration step: 0 rmse: 2.9684598269185236\n","### iteration step: 0 rmse: 2.9684949647623937\n","### iteration step: 0 rmse: 2.9684942291620557\n","### iteration step: 0 rmse: 2.968529993797866\n","### iteration step: 0 rmse: 2.968508416107283\n","### iteration step: 0 rmse: 2.968513347362994\n","### iteration step: 0 rmse: 2.9685449779507636\n","### iteration step: 0 rmse: 2.9685437155638073\n","### iteration step: 0 rmse: 2.968539434134462\n","### iteration step: 0 rmse: 2.9685383214640195\n","### iteration step: 0 rmse: 2.9685184872336707\n","### iteration step: 0 rmse: 2.9684929843738974\n","### iteration step: 0 rmse: 2.968486882843891\n","### iteration step: 0 rmse: 2.968521890294689\n","### iteration step: 0 rmse: 2.9685029365735183\n","### iteration step: 0 rmse: 2.968501565331756\n","### iteration step: 0 rmse: 2.9685016016848587\n","### iteration step: 0 rmse: 2.968494795785722\n","### iteration step: 0 rmse: 2.9684897785131428\n","### iteration step: 0 rmse: 2.9684824705500286\n","### iteration step: 0 rmse: 2.968473914593594\n","### iteration step: 0 rmse: 2.9684622357724813\n","### iteration step: 0 rmse: 2.9684538849895703\n","### iteration step: 0 rmse: 2.968431460087839\n","### iteration step: 0 rmse: 2.968418276559946\n","### iteration step: 0 rmse: 2.968387201865877\n","### iteration step: 0 rmse: 2.9683588422018956\n","### iteration step: 0 rmse: 2.968374259942914\n","### iteration step: 0 rmse: 2.9683945879986258\n","### iteration step: 0 rmse: 2.9683740712823816\n","### iteration step: 0 rmse: 2.968363349348823\n","### iteration step: 0 rmse: 2.9683504394972355\n","### iteration step: 0 rmse: 2.968344718218662\n","### iteration step: 0 rmse: 2.9683264987204527\n","### iteration step: 0 rmse: 2.9683599979256776\n","### iteration step: 0 rmse: 2.968343252527325\n","### iteration step: 0 rmse: 2.968316969657561\n","### iteration step: 0 rmse: 2.968304832706699\n","### iteration step: 0 rmse: 2.968312706517864\n","### iteration step: 0 rmse: 2.9683253289287914\n","### iteration step: 0 rmse: 2.968315122224115\n","### iteration step: 0 rmse: 2.968327829147487\n","### iteration step: 0 rmse: 2.9683230074633284\n","### iteration step: 0 rmse: 2.9683077531096616\n","### iteration step: 0 rmse: 2.9682764469891487\n","### iteration step: 0 rmse: 2.96828102024615\n","### iteration step: 0 rmse: 2.9683065180140904\n","### iteration step: 0 rmse: 2.968274834836573\n","### iteration step: 0 rmse: 2.9682572467480823\n","### iteration step: 0 rmse: 2.968250041147433\n","### iteration step: 0 rmse: 2.968237085156949\n","### iteration step: 0 rmse: 2.9682138834534437\n","### iteration step: 0 rmse: 2.96819223167543\n","### iteration step: 0 rmse: 2.9681686530261766\n","### iteration step: 0 rmse: 2.968155955206008\n","### iteration step: 0 rmse: 2.968151460299719\n","### iteration step: 0 rmse: 2.968133724171539\n","### iteration step: 0 rmse: 2.968122244799991\n","### iteration step: 0 rmse: 2.968112281912866\n","### iteration step: 0 rmse: 2.9681264305815507\n","### iteration step: 0 rmse: 2.968118456085576\n","### iteration step: 0 rmse: 2.9681307008850277\n","### iteration step: 0 rmse: 2.9681233564232876\n","### iteration step: 0 rmse: 2.9681141473052306\n","### iteration step: 0 rmse: 2.968082914101779\n","### iteration step: 0 rmse: 2.9680579624030488\n","### iteration step: 0 rmse: 2.9680578807653415\n","### iteration step: 0 rmse: 2.9680578887688807\n","### iteration step: 0 rmse: 2.9680573492037245\n","### iteration step: 0 rmse: 2.9680568295028342\n","### iteration step: 0 rmse: 2.96805631044421\n","### iteration step: 0 rmse: 2.968055563247084\n","### iteration step: 0 rmse: 2.968053485844231\n","### iteration step: 0 rmse: 2.9680477312634634\n","### iteration step: 0 rmse: 2.968045786652884\n","### iteration step: 0 rmse: 2.9680429946903395\n","### iteration step: 0 rmse: 2.9680413323306976\n","### iteration step: 0 rmse: 2.968041794272627\n","### iteration step: 0 rmse: 2.9680414621487885\n","### iteration step: 0 rmse: 2.968030883517571\n","### iteration step: 0 rmse: 2.9680302352536865\n","### iteration step: 0 rmse: 2.968026501259862\n","### iteration step: 0 rmse: 2.9680262907275496\n","### iteration step: 0 rmse: 2.9680222422660414\n","### iteration step: 0 rmse: 2.9680220822179963\n","### iteration step: 0 rmse: 2.968020042665779\n","### iteration step: 0 rmse: 2.9680073182584072\n","### iteration step: 0 rmse: 2.968001498051463\n","### iteration step: 0 rmse: 2.9679936826382014\n","### iteration step: 0 rmse: 2.9679890268831595\n","### iteration step: 0 rmse: 2.9679857295223\n","### iteration step: 0 rmse: 2.9679827457848837\n","### iteration step: 0 rmse: 2.9679726126257684\n","### iteration step: 0 rmse: 2.9679533444609563\n","### iteration step: 0 rmse: 2.967948862057241\n","### iteration step: 0 rmse: 2.9679385964188985\n","### iteration step: 0 rmse: 2.9679355759431654\n","### iteration step: 0 rmse: 2.967930497410007\n","### iteration step: 0 rmse: 2.967913247439182\n","### iteration step: 0 rmse: 2.967906794777115\n","### iteration step: 0 rmse: 2.9679040307772593\n","### iteration step: 0 rmse: 2.967902862039118\n","### iteration step: 0 rmse: 2.9679028110424444\n","### iteration step: 0 rmse: 2.967893548818778\n","### iteration step: 0 rmse: 2.967873088788147\n","### iteration step: 0 rmse: 2.967848852646745\n","### iteration step: 0 rmse: 2.967832644867637\n","### iteration step: 0 rmse: 2.967828310627987\n","### iteration step: 0 rmse: 2.9678192165887234\n","### iteration step: 0 rmse: 2.967780646044424\n","### iteration step: 0 rmse: 2.9677726895159333\n","### iteration step: 0 rmse: 2.9677602577057582\n","### iteration step: 0 rmse: 2.96772272928812\n","### iteration step: 0 rmse: 2.9677036134588386\n","### iteration step: 0 rmse: 2.9676912546356387\n","### iteration step: 0 rmse: 2.967661427529224\n","### iteration step: 0 rmse: 2.9676399342986457\n","### iteration step: 0 rmse: 2.9676368495186582\n","### iteration step: 0 rmse: 2.9676156557133857\n","### iteration step: 0 rmse: 2.967603773778929\n","### iteration step: 0 rmse: 2.967596980711919\n","### iteration step: 0 rmse: 2.9675926292065067\n","### iteration step: 0 rmse: 2.9675831199526095\n","### iteration step: 0 rmse: 2.9675699620265306\n","### iteration step: 0 rmse: 2.967561995905511\n","### iteration step: 0 rmse: 2.9675467632521193\n","### iteration step: 0 rmse: 2.967521570143786\n","### iteration step: 0 rmse: 2.9675207378999664\n","### iteration step: 0 rmse: 2.9675181106530815\n","### iteration step: 0 rmse: 2.9674852291828273\n","### iteration step: 0 rmse: 2.9674629218203736\n","### iteration step: 0 rmse: 2.967448530765401\n","### iteration step: 0 rmse: 2.9674360632155783\n","### iteration step: 0 rmse: 2.967423926748\n","### iteration step: 0 rmse: 2.967406653386664\n","### iteration step: 0 rmse: 2.967399276367651\n","### iteration step: 0 rmse: 2.9673680332618964\n","### iteration step: 0 rmse: 2.9673521808322123\n","### iteration step: 0 rmse: 2.9673517216418404\n","### iteration step: 0 rmse: 2.9673363701174114\n","### iteration step: 0 rmse: 2.967314294255289\n","### iteration step: 0 rmse: 2.9673010502784054\n","### iteration step: 0 rmse: 2.967288404390868\n","### iteration step: 0 rmse: 2.9672634921568473\n","### iteration step: 0 rmse: 2.9672463054659377\n","### iteration step: 0 rmse: 2.9672370638690437\n","### iteration step: 0 rmse: 2.9672125007329013\n","### iteration step: 0 rmse: 2.9671963051264285\n","### iteration step: 0 rmse: 2.9671852640777847\n","### iteration step: 0 rmse: 2.967176391690438\n","### iteration step: 0 rmse: 2.967164576939633\n","### iteration step: 0 rmse: 2.9671554259097617\n","### iteration step: 0 rmse: 2.967151824896377\n","### iteration step: 0 rmse: 2.9671327111484334\n","### iteration step: 0 rmse: 2.967116459802119\n","### iteration step: 0 rmse: 2.9671093014523477\n","### iteration step: 0 rmse: 2.967089663042437\n","### iteration step: 0 rmse: 2.9670793961040047\n","### iteration step: 0 rmse: 2.9670705327266944\n","### iteration step: 0 rmse: 2.9670601088968134\n","### iteration step: 0 rmse: 2.9670431317111694\n","### iteration step: 0 rmse: 2.967035524655192\n","### iteration step: 0 rmse: 2.9670293976068005\n","### iteration step: 0 rmse: 2.967020218383055\n","### iteration step: 0 rmse: 2.967012310919341\n","### iteration step: 0 rmse: 2.967011584876005\n","### iteration step: 0 rmse: 2.9670122925661557\n","### iteration step: 0 rmse: 2.9670118004444412\n","### iteration step: 0 rmse: 2.9670121787715216\n","### iteration step: 0 rmse: 2.967012592178875\n","### iteration step: 0 rmse: 2.9670127425499064\n","### iteration step: 0 rmse: 2.967013293755131\n","### iteration step: 0 rmse: 2.9670137205340965\n","### iteration step: 0 rmse: 2.967013209696173\n","### iteration step: 0 rmse: 2.967013219815052\n","### iteration step: 0 rmse: 2.967013160971428\n","### iteration step: 0 rmse: 2.9670128675045495\n","### iteration step: 0 rmse: 2.9670114177655353\n","### iteration step: 0 rmse: 2.96701198357966\n","### iteration step: 0 rmse: 2.967012847056244\n","### iteration step: 0 rmse: 2.967011358492451\n","### iteration step: 0 rmse: 2.96700759211201\n","### iteration step: 0 rmse: 2.967005612399166\n","### iteration step: 0 rmse: 2.9670051828711594\n","### iteration step: 0 rmse: 2.967004742350579\n","### iteration step: 0 rmse: 2.9670042182675025\n","### iteration step: 0 rmse: 2.967002759818726\n","### iteration step: 0 rmse: 2.9670024991762096\n","### iteration step: 0 rmse: 2.967003043894389\n","### iteration step: 0 rmse: 2.9670010663623128\n","### iteration step: 0 rmse: 2.96700101052527\n","### iteration step: 0 rmse: 2.967000552811907\n","### iteration step: 0 rmse: 2.9670005334018397\n","### iteration step: 0 rmse: 2.966999751356225\n","### iteration step: 0 rmse: 2.966999361464147\n","### iteration step: 0 rmse: 2.9669972609545723\n","### iteration step: 0 rmse: 2.9669886765927678\n","### iteration step: 0 rmse: 2.9669889203898574\n","### iteration step: 0 rmse: 2.966987536250141\n","### iteration step: 0 rmse: 2.9669868578549905\n","### iteration step: 0 rmse: 2.966984060245448\n","### iteration step: 0 rmse: 2.9669825242766086\n","### iteration step: 0 rmse: 2.9669816139125755\n","### iteration step: 0 rmse: 2.96698175664657\n","### iteration step: 0 rmse: 2.9669818434583806\n","### iteration step: 0 rmse: 2.9669794526916053\n","### iteration step: 0 rmse: 2.9669721582836335\n","### iteration step: 0 rmse: 2.966962975081608\n","### iteration step: 0 rmse: 2.966963948287752\n","### iteration step: 0 rmse: 2.9669576507470805\n","### iteration step: 0 rmse: 2.9669568831066004\n","### iteration step: 0 rmse: 2.966953602868057\n","### iteration step: 0 rmse: 2.9669545272339635\n","### iteration step: 0 rmse: 2.966941991496806\n","### iteration step: 0 rmse: 2.9669328579703382\n","### iteration step: 0 rmse: 2.966924442874816\n","### iteration step: 0 rmse: 2.9669240870162317\n","### iteration step: 0 rmse: 2.9669220247963017\n","### iteration step: 0 rmse: 2.966921173375016\n","### iteration step: 0 rmse: 2.966911012096631\n","### iteration step: 0 rmse: 2.966901592926609\n","### iteration step: 0 rmse: 2.9668946156395433\n","### iteration step: 0 rmse: 2.9668886665101835\n","### iteration step: 0 rmse: 2.966887509841616\n","### iteration step: 0 rmse: 2.966876749888497\n","### iteration step: 0 rmse: 2.9668762097809136\n","### iteration step: 0 rmse: 2.96687249798291\n","### iteration step: 0 rmse: 2.9668629159141418\n","### iteration step: 0 rmse: 2.9668622980608474\n","### iteration step: 0 rmse: 2.9668476352557276\n","### iteration step: 0 rmse: 2.966847458354116\n","### iteration step: 0 rmse: 2.966841254428828\n","### iteration step: 0 rmse: 2.9668408770850077\n","### iteration step: 0 rmse: 2.9668402342460505\n","### iteration step: 0 rmse: 2.966839852820337\n","### iteration step: 0 rmse: 2.9668179465365143\n","### iteration step: 0 rmse: 2.966817537161232\n","### iteration step: 0 rmse: 2.966815962159594\n","### iteration step: 0 rmse: 2.9668076047006027\n","### iteration step: 0 rmse: 2.9668069173426233\n","### iteration step: 0 rmse: 2.9668001132791817\n","### iteration step: 0 rmse: 2.9667973450070253\n","### iteration step: 0 rmse: 2.9667949975792194\n","### iteration step: 0 rmse: 2.9667779480053746\n","### iteration step: 0 rmse: 2.966770400508451\n","### iteration step: 0 rmse: 2.9667705411472896\n","### iteration step: 0 rmse: 2.966769925468437\n","### iteration step: 0 rmse: 2.966768268469074\n","### iteration step: 0 rmse: 2.9667589670973107\n","### iteration step: 0 rmse: 2.966755568038959\n","### iteration step: 0 rmse: 2.96673385389681\n","### iteration step: 0 rmse: 2.9667279092349745\n","### iteration step: 0 rmse: 2.9667280276534207\n","### iteration step: 0 rmse: 2.966724900087976\n","### iteration step: 0 rmse: 2.9667229532140142\n","### iteration step: 0 rmse: 2.9667101386249253\n","### iteration step: 0 rmse: 2.966700973927967\n","### iteration step: 0 rmse: 2.966692440171514\n","### iteration step: 0 rmse: 2.9666909945769815\n","### iteration step: 0 rmse: 2.966690738036912\n","### iteration step: 0 rmse: 2.9666621573052834\n","### iteration step: 0 rmse: 2.9666607223437294\n","### iteration step: 0 rmse: 2.9666530653658136\n","### iteration step: 0 rmse: 2.966649788188611\n","### iteration step: 0 rmse: 2.9666415701571114\n","### iteration step: 0 rmse: 2.9666419358188576\n","### iteration step: 0 rmse: 2.9666276360794055\n","### iteration step: 0 rmse: 2.9666226458812477\n","### iteration step: 0 rmse: 2.9666087345286223\n","### iteration step: 0 rmse: 2.966557285030264\n","### iteration step: 0 rmse: 2.96654894034057\n","### iteration step: 0 rmse: 2.9665370590542675\n","### iteration step: 0 rmse: 2.9665057320258126\n","### iteration step: 0 rmse: 2.966502629092973\n","### iteration step: 0 rmse: 2.966494468172091\n","### iteration step: 0 rmse: 2.9664621305123156\n","### iteration step: 0 rmse: 2.9664566676256845\n","### iteration step: 0 rmse: 2.966449741300658\n","### iteration step: 0 rmse: 2.9664402252812363\n","### iteration step: 0 rmse: 2.9664030490513342\n","### iteration step: 0 rmse: 2.9663678110188534\n","### iteration step: 0 rmse: 2.966328754099539\n","### iteration step: 0 rmse: 2.966296228268817\n","### iteration step: 0 rmse: 2.966250461170176\n","### iteration step: 0 rmse: 2.9662147461202726\n","### iteration step: 0 rmse: 2.966211370448351\n","### iteration step: 0 rmse: 2.9662052985697884\n","### iteration step: 0 rmse: 2.9661835108697785\n","### iteration step: 0 rmse: 2.966158299465183\n","### iteration step: 0 rmse: 2.966147822182682\n","### iteration step: 0 rmse: 2.9661362977301304\n","### iteration step: 0 rmse: 2.9661092243173774\n","### iteration step: 0 rmse: 2.9660942534474053\n","### iteration step: 0 rmse: 2.9660807891171017\n","### iteration step: 0 rmse: 2.966045358191378\n","### iteration step: 0 rmse: 2.9660209366028956\n","### iteration step: 0 rmse: 2.9660204446752143\n","### iteration step: 0 rmse: 2.965988236306884\n","### iteration step: 0 rmse: 2.9659645232558898\n","### iteration step: 0 rmse: 2.965940511075142\n","### iteration step: 0 rmse: 2.9659334889785214\n","### iteration step: 0 rmse: 2.965929740749334\n","### iteration step: 0 rmse: 2.9659034356028333\n","### iteration step: 0 rmse: 2.965892239192494\n","### iteration step: 0 rmse: 2.965890340912179\n","### iteration step: 0 rmse: 2.9658716031116694\n","### iteration step: 0 rmse: 2.9658646394993364\n","### iteration step: 0 rmse: 2.965864116163632\n","### iteration step: 0 rmse: 2.965852032581274\n","### iteration step: 0 rmse: 2.965840001021281\n","### iteration step: 0 rmse: 2.965826920219562\n","### iteration step: 0 rmse: 2.9658225640950477\n","### iteration step: 0 rmse: 2.9658182716033505\n","### iteration step: 0 rmse: 2.9658143427418135\n","### iteration step: 0 rmse: 2.965784012324708\n","### iteration step: 0 rmse: 2.9657558955462044\n","### iteration step: 0 rmse: 2.9657310739216345\n","### iteration step: 0 rmse: 2.9657275427626777\n","### iteration step: 0 rmse: 2.9656980823591326\n","### iteration step: 0 rmse: 2.9656836126316715\n","### iteration step: 0 rmse: 2.9656680168826974\n","### iteration step: 0 rmse: 2.965668000876635\n","### iteration step: 0 rmse: 2.96566355496975\n","### iteration step: 0 rmse: 2.9656530066387465\n","### iteration step: 0 rmse: 2.965643247412928\n","### iteration step: 0 rmse: 2.965615975722745\n","### iteration step: 0 rmse: 2.965609392007522\n","### iteration step: 0 rmse: 2.965600838697381\n","### iteration step: 0 rmse: 2.9655812549557905\n","### iteration step: 0 rmse: 2.96556046764014\n","### iteration step: 0 rmse: 2.965556563934337\n","### iteration step: 0 rmse: 2.965549775466483\n","### iteration step: 0 rmse: 2.9655322495917904\n","### iteration step: 0 rmse: 2.965519269287704\n","### iteration step: 0 rmse: 2.9655082109463655\n","### iteration step: 0 rmse: 2.9654994763769893\n","### iteration step: 0 rmse: 2.965489183952782\n","### iteration step: 0 rmse: 2.9654788581369003\n","### iteration step: 0 rmse: 2.9654539234521997\n","### iteration step: 0 rmse: 2.96543702351187\n","### iteration step: 0 rmse: 2.9654337481482904\n","### iteration step: 0 rmse: 2.9654207479434755\n","### iteration step: 0 rmse: 2.9654073597437254\n","### iteration step: 0 rmse: 2.9653803197601256\n","### iteration step: 0 rmse: 2.9653704610381375\n","### iteration step: 0 rmse: 2.9653560878120797\n","### iteration step: 0 rmse: 2.965369473907531\n","### iteration step: 0 rmse: 2.9653600650395147\n","### iteration step: 0 rmse: 2.9653593454774287\n","### iteration step: 0 rmse: 2.9653434720785508\n","### iteration step: 0 rmse: 2.9653318153930788\n","### iteration step: 0 rmse: 2.9653158216657385\n","### iteration step: 0 rmse: 2.965307967757625\n","### iteration step: 0 rmse: 2.9653000229498607\n","### iteration step: 0 rmse: 2.965284538659267\n","### iteration step: 0 rmse: 2.965278681646846\n","### iteration step: 0 rmse: 2.965275645659865\n","### iteration step: 0 rmse: 2.965272207113444\n","### iteration step: 0 rmse: 2.965263677528139\n","### iteration step: 0 rmse: 2.965264005404923\n","### iteration step: 0 rmse: 2.965247406425766\n","### iteration step: 0 rmse: 2.9652335608482834\n","### iteration step: 0 rmse: 2.965217963083536\n","### iteration step: 0 rmse: 2.9652133673030687\n","### iteration step: 0 rmse: 2.9652050987021084\n","### iteration step: 0 rmse: 2.965200922270801\n","### iteration step: 0 rmse: 2.9651921441845746\n","### iteration step: 0 rmse: 2.9651820157994244\n","### iteration step: 0 rmse: 2.965179797580741\n","### iteration step: 0 rmse: 2.9651729937504254\n","### iteration step: 0 rmse: 2.9651696533070937\n","### iteration step: 0 rmse: 2.965167543235486\n","### iteration step: 0 rmse: 2.965151558311055\n","### iteration step: 0 rmse: 2.965145978992917\n","### iteration step: 0 rmse: 2.965142024755857\n","### iteration step: 0 rmse: 2.965138030020003\n","### iteration step: 0 rmse: 2.965129189962517\n","### iteration step: 0 rmse: 2.9651246360269377\n","### iteration step: 0 rmse: 2.965115717568966\n","### iteration step: 0 rmse: 2.9651074130274955\n","### iteration step: 0 rmse: 2.9651000985182274\n","### iteration step: 0 rmse: 2.9650920738439357\n","### iteration step: 0 rmse: 2.965081328787799\n","### iteration step: 0 rmse: 2.9650864050147145\n","### iteration step: 0 rmse: 2.965079821446614\n","### iteration step: 0 rmse: 2.9650730014556324\n","### iteration step: 0 rmse: 2.965072072700962\n","### iteration step: 0 rmse: 2.965079325312893\n","### iteration step: 0 rmse: 2.965069562395451\n","### iteration step: 0 rmse: 2.9650688952665587\n","### iteration step: 0 rmse: 2.965062633846004\n","### iteration step: 0 rmse: 2.9650621777967023\n","### iteration step: 0 rmse: 2.965062008557051\n","### iteration step: 0 rmse: 2.9650723012657827\n","### iteration step: 0 rmse: 2.9650696410673834\n","### iteration step: 0 rmse: 2.9650694665338384\n","### iteration step: 0 rmse: 2.9650582827488217\n","### iteration step: 0 rmse: 2.9650597890968267\n","### iteration step: 0 rmse: 2.9650590498643288\n","### iteration step: 0 rmse: 2.965055906910572\n","### iteration step: 0 rmse: 2.9650543805965683\n","### iteration step: 0 rmse: 2.965041712024543\n","### iteration step: 0 rmse: 2.9650404382648277\n","### iteration step: 0 rmse: 2.965049074088522\n","### iteration step: 0 rmse: 2.9650471685805035\n","### iteration step: 0 rmse: 2.965054907117036\n","### iteration step: 0 rmse: 2.9650461260229215\n","### iteration step: 0 rmse: 2.965045410309448\n","### iteration step: 0 rmse: 2.9650358034460353\n","### iteration step: 0 rmse: 2.9650392038897575\n","### iteration step: 0 rmse: 2.9650277700438075\n","### iteration step: 0 rmse: 2.9650319911291656\n","### iteration step: 0 rmse: 2.965033238879878\n","### iteration step: 0 rmse: 2.9650135887499096\n","### iteration step: 0 rmse: 2.9649938945688925\n","### iteration step: 0 rmse: 2.9649907254265155\n","### iteration step: 0 rmse: 2.96498792228243\n","### iteration step: 0 rmse: 2.964976640395709\n","### iteration step: 0 rmse: 2.964970464882016\n","### iteration step: 0 rmse: 2.9649713259470594\n","### iteration step: 0 rmse: 2.9649668614312543\n","### iteration step: 0 rmse: 2.9649616785432844\n","### iteration step: 0 rmse: 2.9649472716679344\n","### iteration step: 0 rmse: 2.964914929316839\n","### iteration step: 0 rmse: 2.964918034383738\n","### iteration step: 0 rmse: 2.9649113083431287\n","### iteration step: 0 rmse: 2.9648876224985927\n","### iteration step: 0 rmse: 2.964881507396322\n","### iteration step: 0 rmse: 2.9648803450114825\n","### iteration step: 0 rmse: 2.964878578026131\n","### iteration step: 0 rmse: 2.96488008342311\n","### iteration step: 0 rmse: 2.964871289207907\n","### iteration step: 0 rmse: 2.964856249027445\n","### iteration step: 0 rmse: 2.964842943963803\n","### iteration step: 0 rmse: 2.964834449780706\n","### iteration step: 0 rmse: 2.964839908005606\n","### iteration step: 0 rmse: 2.964839752856262\n","### iteration step: 0 rmse: 2.9648461981819736\n","### iteration step: 0 rmse: 2.9648355721531945\n","### iteration step: 0 rmse: 2.9648316108480257\n","### iteration step: 0 rmse: 2.9648333304450745\n","### iteration step: 0 rmse: 2.9648286857030235\n","### iteration step: 0 rmse: 2.964815683189616\n","### iteration step: 0 rmse: 2.9648135088399767\n","### iteration step: 0 rmse: 2.9648033302113217\n","### iteration step: 0 rmse: 2.9647980732848436\n","### iteration step: 0 rmse: 2.9647712465865634\n","### iteration step: 0 rmse: 2.9647803061327918\n","### iteration step: 0 rmse: 2.9647809343966025\n","### iteration step: 0 rmse: 2.9647719577522245\n","### iteration step: 0 rmse: 2.964746031564409\n","### iteration step: 0 rmse: 2.9647476648204334\n","### iteration step: 0 rmse: 2.9647397374542988\n","### iteration step: 0 rmse: 2.9647424163888867\n","### iteration step: 0 rmse: 2.9647435004549796\n","### iteration step: 0 rmse: 2.9647405594896186\n","### iteration step: 0 rmse: 2.9647388713203897\n","### iteration step: 0 rmse: 2.9647382864031657\n","### iteration step: 0 rmse: 2.964734564282505\n","### iteration step: 0 rmse: 2.9647378997060096\n","### iteration step: 0 rmse: 2.9647160664734353\n","### iteration step: 0 rmse: 2.96469975492963\n","### iteration step: 0 rmse: 2.9647027771421306\n","### iteration step: 0 rmse: 2.9646988229804756\n","### iteration step: 0 rmse: 2.964688833966592\n","### iteration step: 0 rmse: 2.9646912512643966\n","### iteration step: 0 rmse: 2.964651307084066\n","### iteration step: 0 rmse: 2.9646204133826233\n","### iteration step: 0 rmse: 2.9646011807206003\n","### iteration step: 0 rmse: 2.9646049007970054\n","### iteration step: 0 rmse: 2.9646043223148864\n","### iteration step: 0 rmse: 2.964601249321601\n","### iteration step: 0 rmse: 2.9646028065164485\n","### iteration step: 0 rmse: 2.9646074906337625\n","### iteration step: 0 rmse: 2.9646038308338256\n","### iteration step: 0 rmse: 2.9646045469375992\n","### iteration step: 0 rmse: 2.964602947049815\n","### iteration step: 0 rmse: 2.964604910590039\n","### iteration step: 0 rmse: 2.9646026941038475\n","### iteration step: 0 rmse: 2.964593042272789\n","### iteration step: 0 rmse: 2.9645908419489726\n","### iteration step: 0 rmse: 2.9645862172864574\n","### iteration step: 0 rmse: 2.964581412167202\n","### iteration step: 0 rmse: 2.964537341926029\n","### iteration step: 0 rmse: 2.964531379914708\n","### iteration step: 0 rmse: 2.9644921746082322\n","### iteration step: 0 rmse: 2.964481407966863\n","### iteration step: 0 rmse: 2.9644722149180898\n","### iteration step: 0 rmse: 2.964436756170663\n","### iteration step: 0 rmse: 2.96442460695618\n","### iteration step: 0 rmse: 2.964421106433141\n","### iteration step: 0 rmse: 2.9643644469065653\n","### iteration step: 0 rmse: 2.964348370658852\n","### iteration step: 0 rmse: 2.964351424611093\n","### iteration step: 0 rmse: 2.9643505686392952\n","### iteration step: 0 rmse: 2.9643445799688384\n","### iteration step: 0 rmse: 2.9643304730412905\n","### iteration step: 0 rmse: 2.9643244458046953\n","### iteration step: 0 rmse: 2.964327216555815\n","### iteration step: 0 rmse: 2.9643134754226037\n","### iteration step: 0 rmse: 2.964280891181115\n","### iteration step: 0 rmse: 2.964275573999492\n","### iteration step: 0 rmse: 2.9642409530923484\n","### iteration step: 0 rmse: 2.96417681049857\n","### iteration step: 0 rmse: 2.964178432598268\n","### iteration step: 0 rmse: 2.9641720761295054\n","### iteration step: 0 rmse: 2.9641713012084083\n","### iteration step: 0 rmse: 2.96415147352414\n","### iteration step: 0 rmse: 2.964159039261663\n","### iteration step: 0 rmse: 2.9641368802139474\n","### iteration step: 0 rmse: 2.9641285377953093\n","### iteration step: 0 rmse: 2.9641305509917433\n","### iteration step: 0 rmse: 2.9640548308030317\n","### iteration step: 0 rmse: 2.9640410634597014\n","### iteration step: 0 rmse: 2.964014910560329\n","### iteration step: 0 rmse: 2.963995454615172\n","### iteration step: 0 rmse: 2.963998259756014\n","### iteration step: 0 rmse: 2.9639938141434934\n","### iteration step: 0 rmse: 2.963983614853619\n","### iteration step: 0 rmse: 2.963925107575793\n","### iteration step: 0 rmse: 2.963916894303644\n","### iteration step: 0 rmse: 2.963907560246356\n","### iteration step: 0 rmse: 2.963875415889173\n","### iteration step: 0 rmse: 2.963860605982003\n","### iteration step: 0 rmse: 2.9638635895520906\n","### iteration step: 0 rmse: 2.963811421073993\n","### iteration step: 0 rmse: 2.9637756446933823\n","### iteration step: 0 rmse: 2.9637633809549873\n","### iteration step: 0 rmse: 2.963736524791353\n","### iteration step: 0 rmse: 2.9637221557085764\n","### iteration step: 0 rmse: 2.963624707481628\n","### iteration step: 0 rmse: 2.9635766842635505\n","### iteration step: 0 rmse: 2.9635742622326235\n","### iteration step: 0 rmse: 2.963498371885165\n","### iteration step: 0 rmse: 2.963460791018419\n","### iteration step: 0 rmse: 2.9634553659439775\n","### iteration step: 0 rmse: 2.963447524235058\n","### iteration step: 0 rmse: 2.9634241035695252\n","### iteration step: 0 rmse: 2.9634148282795683\n","### iteration step: 0 rmse: 2.963370731906894\n","### iteration step: 0 rmse: 2.9633586381108423\n","### iteration step: 0 rmse: 2.963354079332056\n","### iteration step: 0 rmse: 2.96333165584894\n","### iteration step: 0 rmse: 2.9633046551556785\n","### iteration step: 0 rmse: 2.963289492429193\n","### iteration step: 0 rmse: 2.9632626709847467\n","### iteration step: 0 rmse: 2.963256445062049\n","### iteration step: 0 rmse: 2.9632445277961854\n","### iteration step: 0 rmse: 2.963242357619606\n","### iteration step: 0 rmse: 2.9631898017310108\n","### iteration step: 0 rmse: 2.963190353604853\n","### iteration step: 0 rmse: 2.9631733892919243\n","### iteration step: 0 rmse: 2.9631635531001437\n","### iteration step: 0 rmse: 2.9631713864119793\n","### iteration step: 0 rmse: 2.963173459502561\n","### iteration step: 0 rmse: 2.9631768938800938\n","### iteration step: 0 rmse: 2.963173302708864\n","### iteration step: 0 rmse: 2.963159397921631\n","### iteration step: 0 rmse: 2.9631342497160063\n","### iteration step: 0 rmse: 2.9631263667276526\n","### iteration step: 0 rmse: 2.9630914089162195\n","### iteration step: 0 rmse: 2.96306522429931\n","### iteration step: 0 rmse: 2.9629836059415675\n","### iteration step: 0 rmse: 2.9629134975959337\n","### iteration step: 0 rmse: 2.962910116995318\n","### iteration step: 0 rmse: 2.962907812795212\n","### iteration step: 0 rmse: 2.962833193134434\n","### iteration step: 0 rmse: 2.9628157590440294\n","### iteration step: 0 rmse: 2.962817509129761\n","### iteration step: 0 rmse: 2.9628120070422943\n","### iteration step: 0 rmse: 2.9628026399838436\n","### iteration step: 0 rmse: 2.9627574902283125\n","### iteration step: 0 rmse: 2.962739214841274\n","### iteration step: 0 rmse: 2.962687934587327\n","### iteration step: 0 rmse: 2.962684516810176\n","### iteration step: 0 rmse: 2.9626787147866187\n","### iteration step: 0 rmse: 2.962673701130285\n","### iteration step: 0 rmse: 2.962675456028245\n","### iteration step: 0 rmse: 2.962622996274889\n","### iteration step: 0 rmse: 2.9626210036712255\n","### iteration step: 0 rmse: 2.962611206117737\n","### iteration step: 0 rmse: 2.962609203374098\n","### iteration step: 0 rmse: 2.9625547263910343\n","### iteration step: 0 rmse: 2.9625468948868274\n","### iteration step: 0 rmse: 2.962511612809979\n","### iteration step: 0 rmse: 2.962476567381542\n","### iteration step: 0 rmse: 2.962470345699605\n","### iteration step: 0 rmse: 2.962466736425377\n","### iteration step: 0 rmse: 2.96245829007268\n","### iteration step: 0 rmse: 2.962429138819782\n","### iteration step: 0 rmse: 2.9624149594433833\n","### iteration step: 0 rmse: 2.9623554585731453\n","### iteration step: 0 rmse: 2.9623192724149026\n","### iteration step: 0 rmse: 2.9623221030356186\n","### iteration step: 0 rmse: 2.962215084053444\n","### iteration step: 0 rmse: 2.962196163098145\n","### iteration step: 0 rmse: 2.962187568532017\n","### iteration step: 0 rmse: 2.9620555124481545\n","### iteration step: 0 rmse: 2.96203208821029\n","### iteration step: 0 rmse: 2.962032698768838\n","### iteration step: 0 rmse: 2.962031982285387\n","### iteration step: 0 rmse: 2.962016490132525\n","### iteration step: 0 rmse: 2.961978018721084\n","### iteration step: 0 rmse: 2.9619729527110876\n","### iteration step: 0 rmse: 2.9619566905451293\n","### iteration step: 0 rmse: 2.9619521717067703\n","### iteration step: 0 rmse: 2.961931860746806\n","### iteration step: 0 rmse: 2.96192615153325\n","### iteration step: 0 rmse: 2.9618596857410435\n","### iteration step: 0 rmse: 2.961849199641181\n","### iteration step: 0 rmse: 2.9618383601818996\n","### iteration step: 0 rmse: 2.9617788310484743\n","### iteration step: 0 rmse: 2.9617799410898584\n","### iteration step: 0 rmse: 2.9617736617412547\n","### iteration step: 0 rmse: 2.961769805092192\n","### iteration step: 0 rmse: 2.9617596739264105\n","### iteration step: 0 rmse: 2.9617155360395677\n","### iteration step: 0 rmse: 2.961704616212168\n","### iteration step: 0 rmse: 2.9615896338034244\n","### iteration step: 0 rmse: 2.9615518939076564\n","### iteration step: 0 rmse: 2.961520835599626\n","### iteration step: 0 rmse: 2.961493474047746\n","### iteration step: 0 rmse: 2.96149065124825\n","### iteration step: 0 rmse: 2.9614812522904437\n","### iteration step: 0 rmse: 2.9614650462726573\n","### iteration step: 0 rmse: 2.961428294828847\n","### iteration step: 0 rmse: 2.961425341662526\n","### iteration step: 0 rmse: 2.9614194339995294\n","### iteration step: 0 rmse: 2.9613977203701345\n","### iteration step: 0 rmse: 2.9612793851501658\n","### iteration step: 0 rmse: 2.96123948187649\n","### iteration step: 0 rmse: 2.961230648450801\n","### iteration step: 0 rmse: 2.9611866238096045\n","### iteration step: 0 rmse: 2.961072910396427\n","### iteration step: 0 rmse: 2.961051611554333\n","### iteration step: 0 rmse: 2.9610536239587066\n","### iteration step: 0 rmse: 2.961045031488286\n","### iteration step: 0 rmse: 2.9610428512074263\n","### iteration step: 0 rmse: 2.961036629822098\n","### iteration step: 0 rmse: 2.9610339397522516\n","### iteration step: 0 rmse: 2.9610408899613567\n","### iteration step: 0 rmse: 2.96101091760012\n","### iteration step: 0 rmse: 2.9610081435866213\n","### iteration step: 0 rmse: 2.961006647754428\n","### iteration step: 0 rmse: 2.960973628617052\n","### iteration step: 0 rmse: 2.960857346456533\n","### iteration step: 0 rmse: 2.9608533857699584\n","### iteration step: 0 rmse: 2.9608274945894304\n","### iteration step: 0 rmse: 2.9607873385076315\n","### iteration step: 0 rmse: 2.9607732811186325\n","### iteration step: 0 rmse: 2.960769150386017\n","### iteration step: 0 rmse: 2.960719771186171\n","### iteration step: 0 rmse: 2.9606857318656115\n","### iteration step: 0 rmse: 2.9606621373037907\n","### iteration step: 0 rmse: 2.9606569182900144\n","### iteration step: 0 rmse: 2.960652636003469\n","### iteration step: 0 rmse: 2.9606507983343064\n","### iteration step: 0 rmse: 2.960597366860279\n","### iteration step: 0 rmse: 2.960588224105191\n","### iteration step: 0 rmse: 2.9605443623587098\n","### iteration step: 0 rmse: 2.9605297699403614\n","### iteration step: 0 rmse: 2.960489714715992\n","### iteration step: 0 rmse: 2.9604096595598763\n","### iteration step: 0 rmse: 2.960370125940036\n","### iteration step: 0 rmse: 2.960354030899734\n","### iteration step: 0 rmse: 2.960338978168474\n","### iteration step: 0 rmse: 2.960315547769839\n","### iteration step: 0 rmse: 2.960186403746628\n","### iteration step: 0 rmse: 2.9601831297570125\n","### iteration step: 0 rmse: 2.960144797970104\n","### iteration step: 0 rmse: 2.9601183232173827\n","### iteration step: 0 rmse: 2.960067003755736\n","### iteration step: 0 rmse: 2.960053273051519\n","### iteration step: 0 rmse: 2.960045273260507\n","### iteration step: 0 rmse: 2.959979699908037\n","### iteration step: 0 rmse: 2.9599292064408256\n","### iteration step: 0 rmse: 2.959804568937059\n","### iteration step: 0 rmse: 2.959793690770604\n","### iteration step: 0 rmse: 2.959730440292954\n","### iteration step: 0 rmse: 2.9596982184286142\n","### iteration step: 0 rmse: 2.9596230774478616\n","### iteration step: 0 rmse: 2.9596094697823174\n","### iteration step: 0 rmse: 2.9594859375889646\n","### iteration step: 0 rmse: 2.9594883430306242\n","### iteration step: 0 rmse: 2.959459692692202\n","### iteration step: 0 rmse: 2.9594198980633926\n","### iteration step: 0 rmse: 2.959405261717829\n","### iteration step: 0 rmse: 2.9594093571385174\n","### iteration step: 0 rmse: 2.959343285195688\n","### iteration step: 0 rmse: 2.9592851672597424\n","### iteration step: 0 rmse: 2.9592731922328337\n","### iteration step: 0 rmse: 2.959255858167485\n","### iteration step: 0 rmse: 2.9591636315267915\n","### iteration step: 0 rmse: 2.9591598173386897\n","### iteration step: 0 rmse: 2.959144499642659\n","### iteration step: 0 rmse: 2.9591452023405016\n","### iteration step: 0 rmse: 2.9589932208884453\n","### iteration step: 0 rmse: 2.958982127312646\n","### iteration step: 0 rmse: 2.9589424395845576\n","### iteration step: 0 rmse: 2.958913204923465\n","### iteration step: 0 rmse: 2.9588824058779992\n","### iteration step: 0 rmse: 2.9588473044987134\n","### iteration step: 0 rmse: 2.958833648015573\n","### iteration step: 0 rmse: 2.9588338637739984\n","### iteration step: 0 rmse: 2.958834272335815\n","### iteration step: 0 rmse: 2.9587618584631565\n","### iteration step: 0 rmse: 2.9586814450072243\n","### iteration step: 0 rmse: 2.9586822207996244\n","### iteration step: 0 rmse: 2.958663817124722\n","### iteration step: 0 rmse: 2.958662135955599\n","### iteration step: 0 rmse: 2.958623624875938\n","### iteration step: 0 rmse: 2.9585541599058653\n","### iteration step: 0 rmse: 2.9585315807701145\n","### iteration step: 0 rmse: 2.9585303620880583\n","### iteration step: 0 rmse: 2.958517325870693\n","### iteration step: 0 rmse: 2.9585028539782368\n","### iteration step: 0 rmse: 2.9584044655850725\n","### iteration step: 0 rmse: 2.958381606658341\n","### iteration step: 0 rmse: 2.9583608908591117\n","### iteration step: 0 rmse: 2.9583610640507816\n","### iteration step: 0 rmse: 2.9583489877489866\n","### iteration step: 0 rmse: 2.9583459527354257\n","### iteration step: 0 rmse: 2.9582955127630917\n","### iteration step: 0 rmse: 2.9582825396890597\n","### iteration step: 0 rmse: 2.958200252521025\n","### iteration step: 0 rmse: 2.958204056283838\n","### iteration step: 0 rmse: 2.958136824594718\n","### iteration step: 0 rmse: 2.958136399467832\n","### iteration step: 0 rmse: 2.9579952718880573\n","### iteration step: 0 rmse: 2.95776311418231\n","### iteration step: 0 rmse: 2.95776313741133\n","### iteration step: 0 rmse: 2.9577267513794046\n","### iteration step: 0 rmse: 2.9576716760586725\n","### iteration step: 0 rmse: 2.9575294832355468\n","### iteration step: 0 rmse: 2.9575164702069068\n","### iteration step: 0 rmse: 2.9574467005177514\n","### iteration step: 0 rmse: 2.957415558380548\n","### iteration step: 0 rmse: 2.9574106990936677\n","### iteration step: 0 rmse: 2.9573866704028853\n","### iteration step: 0 rmse: 2.957267780112212\n","### iteration step: 0 rmse: 2.957196075236346\n","### iteration step: 0 rmse: 2.9571091121453867\n","### iteration step: 0 rmse: 2.9570790022158437\n","### iteration step: 0 rmse: 2.9570496169174647\n","### iteration step: 0 rmse: 2.95705060234132\n","### iteration step: 0 rmse: 2.9570397417992984\n","### iteration step: 0 rmse: 2.956951801083338\n","### iteration step: 0 rmse: 2.956913831384\n","### iteration step: 0 rmse: 2.95691672467287\n","### iteration step: 0 rmse: 2.956851123790263\n","### iteration step: 0 rmse: 2.956772211907051\n","### iteration step: 0 rmse: 2.95676626047711\n","### iteration step: 0 rmse: 2.9567236739682183\n","### iteration step: 0 rmse: 2.9566105018046023\n","### iteration step: 0 rmse: 2.9566012742834142\n","### iteration step: 0 rmse: 2.9565954481689003\n","### iteration step: 0 rmse: 2.9565440605383637\n","### iteration step: 0 rmse: 2.95654355260034\n","### iteration step: 0 rmse: 2.9565272093166612\n","### iteration step: 0 rmse: 2.956450247268194\n","### iteration step: 0 rmse: 2.9564510328121925\n","### iteration step: 0 rmse: 2.9563600678722586\n","### iteration step: 0 rmse: 2.956275007659237\n","### iteration step: 0 rmse: 2.956276252813901\n","### iteration step: 0 rmse: 2.956268766055828\n","### iteration step: 0 rmse: 2.956151694427151\n","### iteration step: 0 rmse: 2.9560568101608955\n","### iteration step: 0 rmse: 2.9560437725063036\n","### iteration step: 0 rmse: 2.9560309819767467\n","### iteration step: 0 rmse: 2.955972312262083\n","### iteration step: 0 rmse: 2.9558807557761244\n","### iteration step: 0 rmse: 2.9558642402169104\n","### iteration step: 0 rmse: 2.9557802998043803\n","### iteration step: 0 rmse: 2.955748798502449\n","### iteration step: 0 rmse: 2.955749648171648\n","### iteration step: 0 rmse: 2.9557460553377815\n","### iteration step: 0 rmse: 2.9556418187407187\n","### iteration step: 0 rmse: 2.955623671491708\n","### iteration step: 0 rmse: 2.955558311947111\n","### iteration step: 0 rmse: 2.9555349264828474\n","### iteration step: 0 rmse: 2.9555331427529743\n","### iteration step: 0 rmse: 2.955530565541367\n","### iteration step: 0 rmse: 2.9555178508190134\n","### iteration step: 0 rmse: 2.9554814381677113\n","### iteration step: 0 rmse: 2.955419768415993\n","### iteration step: 0 rmse: 2.9553609543567094\n","### iteration step: 0 rmse: 2.955311176007597\n","### iteration step: 0 rmse: 2.955314329842033\n","### iteration step: 0 rmse: 2.9553041422248576\n","### iteration step: 0 rmse: 2.9552391809566965\n","### iteration step: 0 rmse: 2.955153913470819\n","### iteration step: 0 rmse: 2.9551265274337393\n","### iteration step: 0 rmse: 2.955106698500885\n","### iteration step: 0 rmse: 2.955106835208452\n","### iteration step: 0 rmse: 2.9550364572385055\n","### iteration step: 0 rmse: 2.954957404579316\n","### iteration step: 0 rmse: 2.954876486583869\n","### iteration step: 0 rmse: 2.9548122267402745\n","### iteration step: 0 rmse: 2.9547251865694384\n","### iteration step: 0 rmse: 2.9546610760577257\n","### iteration step: 0 rmse: 2.954574181422327\n","### iteration step: 0 rmse: 2.954546224304859\n","### iteration step: 0 rmse: 2.9545153236501163\n","### iteration step: 0 rmse: 2.954497950621484\n","### iteration step: 0 rmse: 2.95449145163608\n","### iteration step: 0 rmse: 2.954381361250417\n","### iteration step: 0 rmse: 2.9542814713096326\n","### iteration step: 0 rmse: 2.954274934547288\n","### iteration step: 0 rmse: 2.954218664046694\n","### iteration step: 0 rmse: 2.954174016913801\n","### iteration step: 0 rmse: 2.954138931734938\n","### iteration step: 0 rmse: 2.954111243600254\n","### iteration step: 0 rmse: 2.9540743173234993\n","### iteration step: 0 rmse: 2.954075186077692\n","### iteration step: 0 rmse: 2.954048001486183\n","### iteration step: 0 rmse: 2.9539977906346393\n","### iteration step: 0 rmse: 2.9539473408455774\n","### iteration step: 0 rmse: 2.9539378858728678\n","### iteration step: 0 rmse: 2.953929786655418\n","### iteration step: 0 rmse: 2.9539033091330085\n","### iteration step: 0 rmse: 2.953860661715526\n","### iteration step: 0 rmse: 2.9538161174481457\n","### iteration step: 0 rmse: 2.953785578599261\n","### iteration step: 0 rmse: 2.9537355851058997\n","### iteration step: 0 rmse: 2.953732712428163\n","### iteration step: 0 rmse: 2.953675680685874\n","### iteration step: 0 rmse: 2.953611633089085\n","### iteration step: 0 rmse: 2.9535606346264727\n","### iteration step: 0 rmse: 2.953482342952961\n","### iteration step: 0 rmse: 2.953425422195278\n","### iteration step: 0 rmse: 2.9533667054503576\n","### iteration step: 0 rmse: 2.953317095874006\n","### iteration step: 0 rmse: 2.9533157471741744\n","### iteration step: 0 rmse: 2.9532342696704488\n","### iteration step: 0 rmse: 2.9532025442151943\n","### iteration step: 0 rmse: 2.9531924358182993\n","### iteration step: 0 rmse: 2.953190755127562\n","### iteration step: 0 rmse: 2.9531098802123874\n","### iteration step: 0 rmse: 2.9531096605857017\n","### iteration step: 0 rmse: 2.953063022671895\n","### iteration step: 0 rmse: 2.953058810285438\n","### iteration step: 0 rmse: 2.953043094056042\n","### iteration step: 0 rmse: 2.953042661042198\n","### iteration step: 0 rmse: 2.953028244998054\n","### iteration step: 0 rmse: 2.952991821777198\n","### iteration step: 0 rmse: 2.952973113205761\n","### iteration step: 0 rmse: 2.9529649988632265\n","### iteration step: 0 rmse: 2.9529236201390066\n","### iteration step: 0 rmse: 2.952920324079737\n","### iteration step: 0 rmse: 2.952913172011129\n","### iteration step: 0 rmse: 2.9528630247766228\n","### iteration step: 0 rmse: 2.95283277341136\n","### iteration step: 0 rmse: 2.95279162060515\n","### iteration step: 0 rmse: 2.952735893712209\n","### iteration step: 0 rmse: 2.952731218183054\n","### iteration step: 0 rmse: 2.9526963581068464\n","### iteration step: 0 rmse: 2.952692958784307\n","### iteration step: 0 rmse: 2.952680191446841\n","### iteration step: 0 rmse: 2.9526144005735886\n","### iteration step: 0 rmse: 2.952566324163083\n","### iteration step: 0 rmse: 2.95250525072077\n","### iteration step: 0 rmse: 2.9524943984651055\n","### iteration step: 0 rmse: 2.952473015209257\n","### iteration step: 0 rmse: 2.952450085921254\n","### iteration step: 0 rmse: 2.9524380474351117\n","### iteration step: 0 rmse: 2.9524101007311954\n","### iteration step: 0 rmse: 2.9523961918505104\n","### iteration step: 0 rmse: 2.952384590728878\n","### iteration step: 0 rmse: 2.9523668100691736\n","### iteration step: 0 rmse: 2.9523501669286003\n","### iteration step: 0 rmse: 2.9523440668397782\n","### iteration step: 0 rmse: 2.952283538244126\n","### iteration step: 0 rmse: 2.9522392270142137\n","### iteration step: 0 rmse: 2.952219228966519\n","### iteration step: 0 rmse: 2.9521712223655063\n","### iteration step: 0 rmse: 2.952171263280831\n","### iteration step: 0 rmse: 2.952163744188461\n","### iteration step: 0 rmse: 2.9521386969539933\n","### iteration step: 0 rmse: 2.9520815632969306\n","### iteration step: 0 rmse: 2.9520710761880586\n","### iteration step: 0 rmse: 2.952023852361525\n","### iteration step: 0 rmse: 2.9519966509365654\n","### iteration step: 0 rmse: 2.95199417024192\n","### iteration step: 0 rmse: 2.951986981185388\n","### iteration step: 0 rmse: 2.951940737071694\n","### iteration step: 0 rmse: 2.951890926163837\n","### iteration step: 0 rmse: 2.9518840271505717\n","### iteration step: 0 rmse: 2.9518607825384757\n","### iteration step: 0 rmse: 2.9519052258358514\n","### iteration step: 0 rmse: 2.951918979224802\n","### iteration step: 0 rmse: 2.951923672174099\n","### iteration step: 0 rmse: 2.9519182506038995\n","### iteration step: 0 rmse: 2.9518647610514366\n","### iteration step: 0 rmse: 2.951850924293242\n","### iteration step: 0 rmse: 2.951847379552619\n","### iteration step: 0 rmse: 2.951789591918231\n","### iteration step: 0 rmse: 2.9517758048305955\n","### iteration step: 0 rmse: 2.9517776539169733\n","### iteration step: 0 rmse: 2.9517536656431047\n","### iteration step: 0 rmse: 2.9517051315636915\n","### iteration step: 0 rmse: 2.9516672659023744\n","### iteration step: 0 rmse: 2.951621226673127\n","### iteration step: 0 rmse: 2.9515795102826368\n","### iteration step: 0 rmse: 2.951577234792734\n","### iteration step: 0 rmse: 2.951566612735706\n","### iteration step: 0 rmse: 2.9515571333836803\n","### iteration step: 0 rmse: 2.9515420058544786\n","### iteration step: 0 rmse: 2.9515162898745624\n","### iteration step: 0 rmse: 2.9514903712137124\n","### iteration step: 0 rmse: 2.9514740037647504\n","### iteration step: 0 rmse: 2.9514700203741664\n","### iteration step: 0 rmse: 2.951466596421995\n","### iteration step: 0 rmse: 2.951443797942246\n","### iteration step: 0 rmse: 2.9514218052450136\n","### iteration step: 0 rmse: 2.951490814022109\n","### iteration step: 0 rmse: 2.9514759057012374\n","### iteration step: 0 rmse: 2.951468596938693\n","### iteration step: 0 rmse: 2.9514518622607535\n","### iteration step: 0 rmse: 2.95144596134198\n","### iteration step: 0 rmse: 2.9514203582385417\n","### iteration step: 0 rmse: 2.9514187879627802\n","### iteration step: 0 rmse: 2.95138545100116\n","### iteration step: 0 rmse: 2.9513463703135376\n","### iteration step: 0 rmse: 2.951300387028214\n","### iteration step: 0 rmse: 2.9513006203193926\n","### iteration step: 0 rmse: 2.95128326540587\n","### iteration step: 0 rmse: 2.9512445345442297\n","### iteration step: 0 rmse: 2.9512140171598746\n","### iteration step: 0 rmse: 2.9512101108174447\n","### iteration step: 0 rmse: 2.9511893061218886\n","### iteration step: 0 rmse: 2.9511797080216997\n","### iteration step: 0 rmse: 2.951173532260613\n","### iteration step: 0 rmse: 2.951172112669454\n","### iteration step: 0 rmse: 2.9511624335669\n","### iteration step: 0 rmse: 2.951152408680874\n","### iteration step: 0 rmse: 2.9511102462941796\n","### iteration step: 0 rmse: 2.9511056438181655\n","### iteration step: 0 rmse: 2.951079691766337\n","### iteration step: 0 rmse: 2.9510783166384558\n","### iteration step: 0 rmse: 2.9510484254563325\n","### iteration step: 0 rmse: 2.9510456818442927\n","### iteration step: 0 rmse: 2.951044479404102\n","### iteration step: 0 rmse: 2.9509993511873347\n","### iteration step: 0 rmse: 2.9509867386654625\n","### iteration step: 0 rmse: 2.950984522453769\n","### iteration step: 0 rmse: 2.9509374728688065\n","### iteration step: 0 rmse: 2.950933820058696\n","### iteration step: 0 rmse: 2.950934176394707\n","### iteration step: 0 rmse: 2.9509222091507428\n","### iteration step: 0 rmse: 2.9509182882727965\n","### iteration step: 0 rmse: 2.950897669138547\n","### iteration step: 0 rmse: 2.950882445717564\n","### iteration step: 0 rmse: 2.9508684156214002\n","### iteration step: 0 rmse: 2.9508654744895404\n","### iteration step: 0 rmse: 2.950860746559247\n","### iteration step: 0 rmse: 2.950823599847323\n","### iteration step: 0 rmse: 2.95080479968079\n","### iteration step: 0 rmse: 2.950794021719676\n","### iteration step: 0 rmse: 2.9507660343536344\n","### iteration step: 0 rmse: 2.950742627160575\n","### iteration step: 0 rmse: 2.9507388853849155\n","### iteration step: 0 rmse: 2.9507291629493535\n","### iteration step: 0 rmse: 2.950753321355997\n","### iteration step: 0 rmse: 2.950793868525262\n","### iteration step: 0 rmse: 2.9508188882452466\n","### iteration step: 0 rmse: 2.950834670163285\n","### iteration step: 0 rmse: 2.950791509303311\n","### iteration step: 0 rmse: 2.9507997825763237\n","### iteration step: 0 rmse: 2.950763346791913\n","### iteration step: 0 rmse: 2.9507522623055613\n","### iteration step: 0 rmse: 2.9507497016400746\n","### iteration step: 0 rmse: 2.9507066799533805\n","### iteration step: 0 rmse: 2.950702451552158\n","### iteration step: 0 rmse: 2.9506973104590513\n","### iteration step: 0 rmse: 2.9506945039692245\n","### iteration step: 0 rmse: 2.950691087381367\n","### iteration step: 0 rmse: 2.950656038952272\n","### iteration step: 0 rmse: 2.950662262941844\n","### iteration step: 0 rmse: 2.9506579138835507\n","### iteration step: 0 rmse: 2.950643632867228\n","### iteration step: 0 rmse: 2.950640209027014\n","### iteration step: 0 rmse: 2.9506180749595092\n","### iteration step: 0 rmse: 2.950587897285549\n","### iteration step: 0 rmse: 2.950573294267344\n","### iteration step: 0 rmse: 2.95049942930988\n","### iteration step: 0 rmse: 2.9504811319120923\n","### iteration step: 0 rmse: 2.9504613700710123\n","### iteration step: 0 rmse: 2.9504881269636822\n","### iteration step: 0 rmse: 2.9505154782733163\n","### iteration step: 0 rmse: 2.9505401333875936\n","### iteration step: 0 rmse: 2.9505253738735346\n","### iteration step: 0 rmse: 2.950548920251519\n","### iteration step: 0 rmse: 2.95054581885255\n","### iteration step: 0 rmse: 2.950530880093615\n","### iteration step: 0 rmse: 2.950520941538004\n","### iteration step: 0 rmse: 2.9505163895547684\n","### iteration step: 0 rmse: 2.9505104645324582\n","### iteration step: 0 rmse: 2.950497397297097\n","### iteration step: 0 rmse: 2.9504941071181676\n","### iteration step: 0 rmse: 2.9504999837909724\n","### iteration step: 0 rmse: 2.9504639337116503\n","### iteration step: 0 rmse: 2.9504511985563497\n","### iteration step: 0 rmse: 2.9504281610729457\n","### iteration step: 0 rmse: 2.950409153657962\n","### iteration step: 0 rmse: 2.950381625458136\n","### iteration step: 0 rmse: 2.9503605873440253\n","### iteration step: 0 rmse: 2.9503191010160137\n","### iteration step: 0 rmse: 2.9502965608104352\n","### iteration step: 0 rmse: 2.9502920471860117\n","### iteration step: 0 rmse: 2.9502758874783193\n","### iteration step: 0 rmse: 2.9502412214911837\n","### iteration step: 0 rmse: 2.950195535117455\n","### iteration step: 0 rmse: 2.95017008560922\n","### iteration step: 0 rmse: 2.9501534334557764\n","### iteration step: 0 rmse: 2.950116334723978\n","### iteration step: 0 rmse: 2.950090104714032\n","### iteration step: 0 rmse: 2.9500735523213253\n","### iteration step: 0 rmse: 2.950015981136653\n","### iteration step: 0 rmse: 2.9499867355326583\n","### iteration step: 0 rmse: 2.949957014276283\n","### iteration step: 0 rmse: 2.949951504816571\n","### iteration step: 0 rmse: 2.9499281649062454\n","### iteration step: 0 rmse: 2.949906916300386\n","### iteration step: 0 rmse: 2.949900642530474\n","### iteration step: 0 rmse: 2.9498834908117937\n","### iteration step: 0 rmse: 2.9499004714829185\n","### iteration step: 0 rmse: 2.949865713826253\n","### iteration step: 0 rmse: 2.949832929194364\n","### iteration step: 0 rmse: 2.949864440719732\n","### iteration step: 0 rmse: 2.949885308415464\n","### iteration step: 0 rmse: 2.9499010887833714\n","### iteration step: 0 rmse: 2.9498882259805455\n","### iteration step: 0 rmse: 2.94986842633053\n","### iteration step: 0 rmse: 2.9498392045163793\n","### iteration step: 0 rmse: 2.949808025297294\n","### iteration step: 0 rmse: 2.949771812319455\n","### iteration step: 0 rmse: 2.9497463757973477\n","### iteration step: 0 rmse: 2.9497297793007213\n","### iteration step: 0 rmse: 2.949764272357224\n","### iteration step: 0 rmse: 2.949731449354415\n","### iteration step: 0 rmse: 2.94976793838828\n","### iteration step: 0 rmse: 2.9497813172645446\n","### iteration step: 0 rmse: 2.9497635138562623\n","### iteration step: 0 rmse: 2.9497416352679293\n","### iteration step: 0 rmse: 2.949740811810215\n","### iteration step: 0 rmse: 2.9496874473689383\n","### iteration step: 0 rmse: 2.949659459891147\n","### iteration step: 0 rmse: 2.9496376002634\n","### iteration step: 0 rmse: 2.949624756691158\n","### iteration step: 0 rmse: 2.9495935147837424\n","### iteration step: 0 rmse: 2.9495746726552197\n","### iteration step: 0 rmse: 2.9495599136731525\n","### iteration step: 0 rmse: 2.9495525725102962\n","### iteration step: 0 rmse: 2.9495613025359675\n","### iteration step: 0 rmse: 2.949557776452738\n","### iteration step: 0 rmse: 2.9495336641442074\n","### iteration step: 0 rmse: 2.9495259246163337\n","### iteration step: 0 rmse: 2.9495617604499262\n","### iteration step: 0 rmse: 2.9495431444961477\n","### iteration step: 0 rmse: 2.9495104743914586\n","### iteration step: 0 rmse: 2.949474374208402\n","### iteration step: 0 rmse: 2.949435855733667\n","### iteration step: 0 rmse: 2.9494219545260485\n","### iteration step: 0 rmse: 2.9494020236951894\n","### iteration step: 0 rmse: 2.9493607431144393\n","### iteration step: 0 rmse: 2.949328987959994\n","### iteration step: 0 rmse: 2.949312471743143\n","### iteration step: 0 rmse: 2.9493313647093267\n","### iteration step: 0 rmse: 2.9493586368496376\n","### iteration step: 0 rmse: 2.9493338352032437\n","### iteration step: 0 rmse: 2.949320367228742\n","### iteration step: 0 rmse: 2.9493028147885068\n","### iteration step: 0 rmse: 2.949260521428394\n","### iteration step: 0 rmse: 2.9492471393487087\n","### iteration step: 0 rmse: 2.949235287115888\n","### iteration step: 0 rmse: 2.949262170557759\n","### iteration step: 0 rmse: 2.9492193271976315\n","### iteration step: 0 rmse: 2.9492095482658787\n","### iteration step: 0 rmse: 2.9491861503767605\n","### iteration step: 0 rmse: 2.949178251854907\n","### iteration step: 0 rmse: 2.949154858655427\n","### iteration step: 0 rmse: 2.9491405803860826\n","### iteration step: 0 rmse: 2.9490960263631383\n","### iteration step: 0 rmse: 2.9490902362445013\n","### iteration step: 0 rmse: 2.949060832529067\n","### iteration step: 0 rmse: 2.949040944928173\n","### iteration step: 0 rmse: 2.949014959395278\n","### iteration step: 0 rmse: 2.9490118075524983\n","### iteration step: 0 rmse: 2.9490146278938894\n","### iteration step: 0 rmse: 2.9489864057046487\n","### iteration step: 0 rmse: 2.94897880917613\n","### iteration step: 0 rmse: 2.948962066248871\n","### iteration step: 0 rmse: 2.948941968467964\n","### iteration step: 0 rmse: 2.948938569643869\n","### iteration step: 0 rmse: 2.948937190835235\n","### iteration step: 0 rmse: 2.948904096455143\n","### iteration step: 0 rmse: 2.9488876820614194\n","### iteration step: 0 rmse: 2.9488733634791156\n","### iteration step: 0 rmse: 2.9488274256949962\n","### iteration step: 0 rmse: 2.948796028499099\n","### iteration step: 0 rmse: 2.9487845501847594\n","### iteration step: 0 rmse: 2.9487630814637833\n","### iteration step: 0 rmse: 2.948751687491477\n","### iteration step: 0 rmse: 2.94874856364189\n","### iteration step: 0 rmse: 2.948740409379149\n","### iteration step: 0 rmse: 2.9487365068982143\n","### iteration step: 0 rmse: 2.9487213219600474\n","### iteration step: 0 rmse: 2.9487121973342227\n","### iteration step: 0 rmse: 2.9487074510517615\n","### iteration step: 0 rmse: 2.9487333691984916\n","### iteration step: 0 rmse: 2.9487297768091847\n","### iteration step: 0 rmse: 2.9487040046132553\n","### iteration step: 0 rmse: 2.9486818114260367\n","### iteration step: 0 rmse: 2.948657795498037\n","### iteration step: 0 rmse: 2.948638888473742\n","### iteration step: 0 rmse: 2.948634012266169\n","### iteration step: 0 rmse: 2.948652022999705\n","### iteration step: 0 rmse: 2.948615120685323\n","### iteration step: 0 rmse: 2.9486136147177513\n","### iteration step: 0 rmse: 2.948597706699923\n","### iteration step: 0 rmse: 2.9485920592694774\n","### iteration step: 0 rmse: 2.9485880674507046\n","### iteration step: 0 rmse: 2.948552416640115\n","### iteration step: 0 rmse: 2.94854357218599\n","### iteration step: 0 rmse: 2.9485326900496385\n","### iteration step: 0 rmse: 2.94852212138724\n","### iteration step: 0 rmse: 2.9485219490679206\n","### iteration step: 0 rmse: 2.948515821383549\n","### iteration step: 0 rmse: 2.948527797495594\n","### iteration step: 0 rmse: 2.948519502111302\n","### iteration step: 0 rmse: 2.9484913395261736\n","### iteration step: 0 rmse: 2.948480939161529\n","### iteration step: 0 rmse: 2.948505063951204\n","### iteration step: 0 rmse: 2.9484803956393852\n","### iteration step: 0 rmse: 2.948461585129577\n","### iteration step: 0 rmse: 2.9484356193701933\n","### iteration step: 0 rmse: 2.948398597141404\n","### iteration step: 0 rmse: 2.9483856242657254\n","### iteration step: 0 rmse: 2.9484000680645366\n","### iteration step: 0 rmse: 2.9483948006272906\n","### iteration step: 0 rmse: 2.948379982519059\n","### iteration step: 0 rmse: 2.9483644365929793\n","### iteration step: 0 rmse: 2.9483508535831437\n","### iteration step: 0 rmse: 2.9483301889950724\n","### iteration step: 0 rmse: 2.948318831855536\n","### iteration step: 0 rmse: 2.948290629302821\n","### iteration step: 0 rmse: 2.948290347656594\n","### iteration step: 0 rmse: 2.948285861010481\n","### iteration step: 0 rmse: 2.948295707938656\n","### iteration step: 0 rmse: 2.948283241292134\n","### iteration step: 0 rmse: 2.948280049198306\n","### iteration step: 0 rmse: 2.9482702309334416\n","### iteration step: 0 rmse: 2.9482672716166047\n","### iteration step: 0 rmse: 2.9482626364076214\n","### iteration step: 0 rmse: 2.9482478023907728\n","### iteration step: 0 rmse: 2.948227708451862\n","### iteration step: 0 rmse: 2.948219748708874\n","### iteration step: 0 rmse: 2.9481982520923142\n","### iteration step: 0 rmse: 2.9481770449328533\n","### iteration step: 0 rmse: 2.94816023237361\n","### iteration step: 0 rmse: 2.9481290636763533\n","### iteration step: 0 rmse: 2.9481139844679256\n","### iteration step: 0 rmse: 2.948094993732128\n","### iteration step: 0 rmse: 2.9480921344114783\n","### iteration step: 0 rmse: 2.9480967789020824\n","### iteration step: 0 rmse: 2.9480573066980655\n","### iteration step: 0 rmse: 2.948060115428499\n","### iteration step: 0 rmse: 2.9480392153834845\n","### iteration step: 0 rmse: 2.948033603708612\n","### iteration step: 0 rmse: 2.948018721146878\n","### iteration step: 0 rmse: 2.948000364206926\n","### iteration step: 0 rmse: 2.947987216036428\n","### iteration step: 0 rmse: 2.947977654987578\n","### iteration step: 0 rmse: 2.9479866031054773\n","### iteration step: 0 rmse: 2.947982961018489\n","### iteration step: 0 rmse: 2.948001475222019\n","### iteration step: 0 rmse: 2.9480272509397776\n","### iteration step: 0 rmse: 2.9480548597213563\n","### iteration step: 0 rmse: 2.948057612045512\n","### iteration step: 0 rmse: 2.9480359385946207\n","### iteration step: 0 rmse: 2.948027114252643\n","### iteration step: 0 rmse: 2.948021369207811\n","### iteration step: 0 rmse: 2.9480087682095886\n","### iteration step: 0 rmse: 2.947991031440004\n","### iteration step: 0 rmse: 2.947966362351342\n","### iteration step: 0 rmse: 2.947978470480903\n","### iteration step: 0 rmse: 2.9479587611360096\n","### iteration step: 0 rmse: 2.947955721515004\n","### iteration step: 0 rmse: 2.9479333593592485\n","### iteration step: 0 rmse: 2.9479468803844844\n","### iteration step: 0 rmse: 2.947936116915466\n","### iteration step: 0 rmse: 2.947946788622809\n","### iteration step: 0 rmse: 2.9479412737425434\n","### iteration step: 0 rmse: 2.9479259992268996\n","### iteration step: 0 rmse: 2.9479037945330586\n","### iteration step: 0 rmse: 2.947893570323103\n","### iteration step: 0 rmse: 2.9478853737396244\n","### iteration step: 0 rmse: 2.9478723404799587\n","### iteration step: 0 rmse: 2.9478600848829\n","### iteration step: 0 rmse: 2.9478463030049116\n","### iteration step: 0 rmse: 2.9478247977710255\n","### iteration step: 0 rmse: 2.947830302828316\n","### iteration step: 0 rmse: 2.9478584281461386\n","### iteration step: 0 rmse: 2.9478383122936305\n","### iteration step: 0 rmse: 2.947832662161926\n","### iteration step: 0 rmse: 2.9478000406298075\n","### iteration step: 0 rmse: 2.9477949671300974\n","### iteration step: 0 rmse: 2.9477914403300822\n","### iteration step: 0 rmse: 2.9478305107568294\n","### iteration step: 0 rmse: 2.9478433056430045\n","### iteration step: 0 rmse: 2.947837532829013\n","### iteration step: 0 rmse: 2.947821586168796\n","### iteration step: 0 rmse: 2.9477970249510146\n","### iteration step: 0 rmse: 2.9478109828518027\n","### iteration step: 0 rmse: 2.94780590596634\n","### iteration step: 0 rmse: 2.9477823899008184\n","### iteration step: 0 rmse: 2.947791924160851\n","### iteration step: 0 rmse: 2.94777945412619\n","### iteration step: 0 rmse: 2.947775395955724\n","### iteration step: 0 rmse: 2.9477862780704216\n","### iteration step: 0 rmse: 2.9477561488640784\n","### iteration step: 0 rmse: 2.947739949326336\n","### iteration step: 0 rmse: 2.947720077040953\n","### iteration step: 0 rmse: 2.947715747773567\n","### iteration step: 0 rmse: 2.9477221336236017\n","### iteration step: 0 rmse: 2.947708480376065\n","### iteration step: 0 rmse: 2.947705977369193\n","### iteration step: 0 rmse: 2.9476924321083353\n","### iteration step: 0 rmse: 2.9476787166470197\n","### iteration step: 0 rmse: 2.9476658752549167\n","### iteration step: 0 rmse: 2.947659121529339\n","### iteration step: 0 rmse: 2.947642030037748\n","### iteration step: 0 rmse: 2.9476369763560406\n","### iteration step: 0 rmse: 2.9476326813361777\n","### iteration step: 0 rmse: 2.947644795905168\n","### iteration step: 0 rmse: 2.9476431350805465\n","### iteration step: 0 rmse: 2.947647380528918\n","### iteration step: 0 rmse: 2.947652269801762\n","### iteration step: 0 rmse: 2.947656709559008\n","### iteration step: 0 rmse: 2.9476566810190694\n","### iteration step: 0 rmse: 2.947628731515286\n","### iteration step: 0 rmse: 2.947623928055581\n","### iteration step: 0 rmse: 2.9476046949538848\n","### iteration step: 0 rmse: 2.9475746635325604\n","### iteration step: 0 rmse: 2.9475492691223946\n","### iteration step: 0 rmse: 2.9475413333233265\n","### iteration step: 0 rmse: 2.9475204931823598\n","### iteration step: 0 rmse: 2.947514195482215\n","### iteration step: 0 rmse: 2.947493796574186\n","### iteration step: 0 rmse: 2.9474820733079476\n","### iteration step: 0 rmse: 2.9474892816161504\n","### iteration step: 0 rmse: 2.9474803633303415\n","### iteration step: 0 rmse: 2.9474779636647686\n","### iteration step: 0 rmse: 2.9474679030354634\n","### iteration step: 0 rmse: 2.9474493124907566\n","### iteration step: 0 rmse: 2.947447787022337\n","### iteration step: 0 rmse: 2.9474409300248396\n","### iteration step: 0 rmse: 2.9474249467316005\n","### iteration step: 0 rmse: 2.947420946255914\n","### iteration step: 0 rmse: 2.9474049078811735\n","### iteration step: 0 rmse: 2.947382725884691\n","### iteration step: 0 rmse: 2.9474039409298345\n","### iteration step: 0 rmse: 2.9474107023651777\n","### iteration step: 0 rmse: 2.947391701377859\n","### iteration step: 0 rmse: 2.9473726223694876\n","### iteration step: 0 rmse: 2.9473957287345334\n","### iteration step: 0 rmse: 2.947387353681306\n","### iteration step: 0 rmse: 2.9473962072475746\n","### iteration step: 0 rmse: 2.947370240207792\n","### iteration step: 0 rmse: 2.9473600566914753\n","### iteration step: 0 rmse: 2.9473460860377303\n","### iteration step: 0 rmse: 2.9473410019452673\n","### iteration step: 0 rmse: 2.947330261065249\n","### iteration step: 0 rmse: 2.947314329381422\n","### iteration step: 0 rmse: 2.9472906115592954\n","### iteration step: 0 rmse: 2.947282313539303\n","### iteration step: 0 rmse: 2.947281624137963\n","### iteration step: 0 rmse: 2.9472847799490793\n","### iteration step: 0 rmse: 2.947309443293511\n","### iteration step: 0 rmse: 2.9473504021476917\n","### iteration step: 0 rmse: 2.947338606030489\n","### iteration step: 0 rmse: 2.947341304126108\n","### iteration step: 0 rmse: 2.9473204017356225\n","### iteration step: 0 rmse: 2.947301569580792\n","### iteration step: 0 rmse: 2.947289290803778\n","### iteration step: 0 rmse: 2.9472681235024716\n","### iteration step: 0 rmse: 2.947246498476249\n","### iteration step: 0 rmse: 2.9472565171368443\n","### iteration step: 0 rmse: 2.9472397022107533\n","### iteration step: 0 rmse: 2.9472286112396566\n","### iteration step: 0 rmse: 2.9472259303596826\n","### iteration step: 0 rmse: 2.9472053719124505\n","### iteration step: 0 rmse: 2.947249746320086\n","### iteration step: 0 rmse: 2.9472395771598245\n","### iteration step: 0 rmse: 2.947230627306825\n","### iteration step: 0 rmse: 2.9472120849774694\n","### iteration step: 0 rmse: 2.94722087674953\n","### iteration step: 0 rmse: 2.9472067883319415\n","### iteration step: 0 rmse: 2.9471943484719434\n","### iteration step: 0 rmse: 2.947214011759949\n","### iteration step: 0 rmse: 2.9472177730189717\n","### iteration step: 0 rmse: 2.9472427336975846\n","### iteration step: 0 rmse: 2.9472351944850015\n","### iteration step: 0 rmse: 2.947222057257791\n","### iteration step: 0 rmse: 2.947222465065115\n","### iteration step: 0 rmse: 2.9472295378992457\n","### iteration step: 0 rmse: 2.947231486520399\n","### iteration step: 0 rmse: 2.9472450857749015\n","### iteration step: 0 rmse: 2.9472197062257437\n","### iteration step: 0 rmse: 2.947205183796308\n","### iteration step: 0 rmse: 2.947216960931634\n","### iteration step: 0 rmse: 2.94719018191156\n","### iteration step: 0 rmse: 2.947188139574922\n","### iteration step: 0 rmse: 2.9471706738891563\n","### iteration step: 0 rmse: 2.9471454897055276\n","### iteration step: 0 rmse: 2.947153330452353\n","### iteration step: 0 rmse: 2.9471641933683097\n","### iteration step: 0 rmse: 2.947156495112864\n","### iteration step: 0 rmse: 2.9471400261391048\n","### iteration step: 0 rmse: 2.9471347635764924\n","### iteration step: 0 rmse: 2.947110747215644\n","### iteration step: 0 rmse: 2.9470973200068578\n","### iteration step: 0 rmse: 2.9470763084745117\n","### iteration step: 0 rmse: 2.9470501928582182\n","### iteration step: 0 rmse: 2.947035391089368\n","### iteration step: 0 rmse: 2.9470270088134973\n","### iteration step: 0 rmse: 2.947022799223665\n","### iteration step: 0 rmse: 2.9470063936813493\n","### iteration step: 0 rmse: 2.946999892429223\n","### iteration step: 0 rmse: 2.946967855217667\n","### iteration step: 0 rmse: 2.9469753249103907\n","### iteration step: 0 rmse: 2.947002350310335\n","### iteration step: 0 rmse: 2.9470122952849973\n","### iteration step: 0 rmse: 2.9470232665897598\n","### iteration step: 0 rmse: 2.9470218135189277\n","### iteration step: 0 rmse: 2.9469942887427\n","### iteration step: 0 rmse: 2.946981229635479\n","### iteration step: 0 rmse: 2.946994811373272\n","### iteration step: 0 rmse: 2.946978386051585\n","### iteration step: 0 rmse: 2.946967107822225\n","### iteration step: 0 rmse: 2.9469814984699214\n","### iteration step: 0 rmse: 2.9469798770942632\n","### iteration step: 0 rmse: 2.9469786853795386\n","### iteration step: 0 rmse: 2.946978587252159\n","### iteration step: 0 rmse: 2.946998672878588\n","### iteration step: 0 rmse: 2.9470153763679816\n","### iteration step: 0 rmse: 2.9470254417531083\n","### iteration step: 0 rmse: 2.947019455945157\n","### iteration step: 0 rmse: 2.9469949139610656\n","### iteration step: 0 rmse: 2.946989171785525\n","### iteration step: 0 rmse: 2.9469837099629013\n","### iteration step: 0 rmse: 2.9469745006998176\n","### iteration step: 0 rmse: 2.946958604512223\n","### iteration step: 0 rmse: 2.9469579805229835\n","### iteration step: 0 rmse: 2.9469515491491087\n","### iteration step: 0 rmse: 2.946925088177668\n","### iteration step: 0 rmse: 2.94690586541721\n","### iteration step: 0 rmse: 2.9468991855960285\n","### iteration step: 0 rmse: 2.9468965729155134\n","### iteration step: 0 rmse: 2.9469176872596656\n","### iteration step: 0 rmse: 2.946914791210383\n","### iteration step: 0 rmse: 2.946896817873869\n","### iteration step: 0 rmse: 2.9468914318275523\n","### iteration step: 0 rmse: 2.9468723540702624\n","### iteration step: 0 rmse: 2.9468506786443376\n","### iteration step: 0 rmse: 2.9468297576249602\n","### iteration step: 0 rmse: 2.9468135089607634\n","### iteration step: 0 rmse: 2.946808784304313\n","### iteration step: 0 rmse: 2.9467889912484364\n","### iteration step: 0 rmse: 2.946777201254447\n","### iteration step: 0 rmse: 2.9467751995288842\n","### iteration step: 0 rmse: 2.9467471204992592\n","### iteration step: 0 rmse: 2.9467427965475412\n","### iteration step: 0 rmse: 2.946726315336858\n","### iteration step: 0 rmse: 2.9467254024783154\n","### iteration step: 0 rmse: 2.9467187454575905\n","### iteration step: 0 rmse: 2.9467481442434016\n","### iteration step: 0 rmse: 2.9467325559773294\n","### iteration step: 0 rmse: 2.9467268065616437\n","### iteration step: 0 rmse: 2.9467193016682245\n","### iteration step: 0 rmse: 2.946713087831133\n","### iteration step: 0 rmse: 2.9467177905587594\n","### iteration step: 0 rmse: 2.946743721716754\n","### iteration step: 0 rmse: 2.9467523859268496\n","### iteration step: 0 rmse: 2.9467393158343036\n","### iteration step: 0 rmse: 2.946726852655591\n","### iteration step: 0 rmse: 2.9467199217484663\n","### iteration step: 0 rmse: 2.94670600705094\n","### iteration step: 0 rmse: 2.946705881993298\n","### iteration step: 0 rmse: 2.9466938592193483\n","### iteration step: 0 rmse: 2.946690953618826\n","### iteration step: 0 rmse: 2.946669456939603\n","### iteration step: 0 rmse: 2.946666265831359\n","### iteration step: 0 rmse: 2.9466474027691447\n","### iteration step: 0 rmse: 2.946667917756629\n","### iteration step: 0 rmse: 2.94666078625801\n","### iteration step: 0 rmse: 2.9466491184569166\n","### iteration step: 0 rmse: 2.9466380172644104\n","### iteration step: 0 rmse: 2.9466361847004756\n","### iteration step: 0 rmse: 2.946608411457868\n","### iteration step: 0 rmse: 2.946579380198388\n","### iteration step: 0 rmse: 2.946561155232549\n","### iteration step: 0 rmse: 2.946543367975393\n","### iteration step: 0 rmse: 2.946542978002272\n","### iteration step: 0 rmse: 2.9465376486298323\n","### iteration step: 0 rmse: 2.9465228687037404\n","### iteration step: 0 rmse: 2.946529956544668\n","### iteration step: 0 rmse: 2.946526590963818\n","### iteration step: 0 rmse: 2.9465083801768714\n","### iteration step: 0 rmse: 2.946502851680587\n","### iteration step: 0 rmse: 2.9464905849544456\n","### iteration step: 0 rmse: 2.946494028378376\n","### iteration step: 0 rmse: 2.946469783823497\n","### iteration step: 0 rmse: 2.9464565139711536\n","### iteration step: 0 rmse: 2.9464500902669877\n","### iteration step: 0 rmse: 2.9464334698540733\n","### iteration step: 0 rmse: 2.9464301649319933\n","### iteration step: 0 rmse: 2.946443996889926\n","### iteration step: 0 rmse: 2.946440412001606\n","### iteration step: 0 rmse: 2.9464355242757514\n","### iteration step: 0 rmse: 2.946487231495667\n","### iteration step: 0 rmse: 2.9464765430624835\n","### iteration step: 0 rmse: 2.9464889790033184\n","### iteration step: 0 rmse: 2.9464684264143606\n","### iteration step: 0 rmse: 2.9464658131050694\n","### iteration step: 0 rmse: 2.9464585763748645\n","### iteration step: 0 rmse: 2.9464412158401014\n","### iteration step: 0 rmse: 2.946456211557902\n","### iteration step: 0 rmse: 2.9464399837724615\n","### iteration step: 0 rmse: 2.9464333018921693\n","### iteration step: 0 rmse: 2.946427535641089\n","### iteration step: 0 rmse: 2.9464123486166054\n","### iteration step: 0 rmse: 2.946400655022262\n","### iteration step: 0 rmse: 2.9463908897089737\n","### iteration step: 0 rmse: 2.946379338206872\n","### iteration step: 0 rmse: 2.946383877905198\n","### iteration step: 0 rmse: 2.9463720021111897\n","### iteration step: 0 rmse: 2.946361857235363\n","### iteration step: 0 rmse: 2.946382345099984\n","### iteration step: 0 rmse: 2.9463825285666343\n","### iteration step: 0 rmse: 2.9463717528683078\n","### iteration step: 0 rmse: 2.946375325654255\n","### iteration step: 0 rmse: 2.946363400416629\n","### iteration step: 0 rmse: 2.946337227569114\n","### iteration step: 0 rmse: 2.946318464528679\n","### iteration step: 0 rmse: 2.9462982694271322\n","### iteration step: 0 rmse: 2.9462959611771278\n","### iteration step: 0 rmse: 2.9462850991075618\n","### iteration step: 0 rmse: 2.946274872409123\n","### iteration step: 0 rmse: 2.9462515078928253\n","### iteration step: 0 rmse: 2.94626927029256\n","### iteration step: 0 rmse: 2.9462511427378675\n","### iteration step: 0 rmse: 2.9462384916525535\n","### iteration step: 0 rmse: 2.946226163885527\n","### iteration step: 0 rmse: 2.9462211768276054\n","### iteration step: 0 rmse: 2.9462062897825523\n","### iteration step: 0 rmse: 2.946199933224308\n","### iteration step: 0 rmse: 2.946191545775216\n","### iteration step: 0 rmse: 2.946179930783449\n","### iteration step: 0 rmse: 2.946164492390172\n","### iteration step: 0 rmse: 2.946148021737303\n","### iteration step: 0 rmse: 2.946146397266063\n","### iteration step: 0 rmse: 2.946130779667639\n","### iteration step: 0 rmse: 2.9461239289813252\n","### iteration step: 0 rmse: 2.946128358277525\n","### iteration step: 0 rmse: 2.9461241275461747\n","### iteration step: 0 rmse: 2.9461309357614134\n","### iteration step: 0 rmse: 2.9461233197028083\n","### iteration step: 0 rmse: 2.9461270136119975\n","### iteration step: 0 rmse: 2.9461158405877668\n","### iteration step: 0 rmse: 2.9461058762226116\n","### iteration step: 0 rmse: 2.9460967634892645\n","### iteration step: 0 rmse: 2.9461108073395823\n","### iteration step: 0 rmse: 2.946104128093664\n","### iteration step: 0 rmse: 2.946090289657443\n","### iteration step: 0 rmse: 2.946077527037756\n","### iteration step: 0 rmse: 2.9460922905080666\n","### iteration step: 0 rmse: 2.946085043900837\n","### iteration step: 0 rmse: 2.9460680787288167\n","### iteration step: 0 rmse: 2.946063285082953\n","### iteration step: 0 rmse: 2.9460328810970964\n","### iteration step: 0 rmse: 2.946019508975319\n","### iteration step: 0 rmse: 2.9460126184477944\n","### iteration step: 0 rmse: 2.946010912729347\n","### iteration step: 0 rmse: 2.9460042473370587\n","### iteration step: 0 rmse: 2.9459975738596396\n","### iteration step: 0 rmse: 2.9459815131754907\n","### iteration step: 0 rmse: 2.9459673915458686\n","### iteration step: 0 rmse: 2.9459598810559835\n","### iteration step: 0 rmse: 2.9459358177884583\n","### iteration step: 0 rmse: 2.9459215603486455\n","### iteration step: 0 rmse: 2.9459224404598174\n","### iteration step: 0 rmse: 2.9459118779864424\n","### iteration step: 0 rmse: 2.9459233773988855\n","### iteration step: 0 rmse: 2.9459185194661437\n","### iteration step: 0 rmse: 2.9459079031061823\n","### iteration step: 0 rmse: 2.945892074774591\n","### iteration step: 0 rmse: 2.9458901920147724\n","### iteration step: 0 rmse: 2.9459036883977108\n","### iteration step: 0 rmse: 2.9459014251859776\n","### iteration step: 0 rmse: 2.9458840577066465\n","### iteration step: 0 rmse: 2.945877359925109\n","### iteration step: 0 rmse: 2.945877651666395\n","### iteration step: 0 rmse: 2.945871590242185\n","### iteration step: 0 rmse: 2.9458654368428077\n","### iteration step: 0 rmse: 2.9458639900111807\n","### iteration step: 0 rmse: 2.9458554071839065\n","### iteration step: 0 rmse: 2.945851693168546\n","### iteration step: 0 rmse: 2.945847675654095\n","### iteration step: 0 rmse: 2.9458465449830746\n","### iteration step: 0 rmse: 2.9458406668300845\n","### iteration step: 0 rmse: 2.9458247755723255\n","### iteration step: 0 rmse: 2.9458199243886587\n","### iteration step: 0 rmse: 2.945811225029243\n","### iteration step: 0 rmse: 2.9458120515721093\n","### iteration step: 0 rmse: 2.9458099405441773\n","### iteration step: 0 rmse: 2.945803041234743\n","### iteration step: 0 rmse: 2.945789664796319\n","### iteration step: 0 rmse: 2.9457873691710077\n","### iteration step: 0 rmse: 2.9457734756169214\n","### iteration step: 0 rmse: 2.9457668105235264\n","### iteration step: 0 rmse: 2.945761333874918\n","### iteration step: 0 rmse: 2.945760407274516\n","### iteration step: 0 rmse: 2.945744403532682\n","### iteration step: 0 rmse: 2.945736491216984\n","### iteration step: 0 rmse: 2.9457353103787174\n","### iteration step: 0 rmse: 2.9457308629006564\n","### iteration step: 0 rmse: 2.945722176198666\n","### iteration step: 0 rmse: 2.9456723611722646\n","### iteration step: 0 rmse: 2.945667246664494\n","### iteration step: 0 rmse: 2.945632216001072\n","### iteration step: 0 rmse: 2.945619911242783\n","### iteration step: 0 rmse: 2.9456052669372133\n","### iteration step: 0 rmse: 2.9455760770658665\n","### iteration step: 0 rmse: 2.9455612753112166\n","### iteration step: 0 rmse: 2.9455359535121324\n","### iteration step: 0 rmse: 2.945526095967336\n","### iteration step: 0 rmse: 2.945519872395741\n","### iteration step: 0 rmse: 2.9455196370568326\n","### iteration step: 0 rmse: 2.9454995990376784\n","### iteration step: 0 rmse: 2.945481185421476\n","### iteration step: 0 rmse: 2.9454720184791414\n","### iteration step: 0 rmse: 2.945469921989671\n","### iteration step: 0 rmse: 2.9454509199690566\n","### iteration step: 0 rmse: 2.9454401209461265\n","### iteration step: 0 rmse: 2.9454321284303155\n","### iteration step: 0 rmse: 2.945357687845779\n","### iteration step: 0 rmse: 2.9453187140404546\n","### iteration step: 0 rmse: 2.945272605283158\n","### iteration step: 0 rmse: 2.945259761424397\n","### iteration step: 0 rmse: 2.94523399177706\n","### iteration step: 0 rmse: 2.9452300522206363\n","### iteration step: 0 rmse: 2.9451540727363836\n","### iteration step: 0 rmse: 2.945147192261024\n","### iteration step: 0 rmse: 2.9451300440441606\n","### iteration step: 0 rmse: 2.94511675760468\n","### iteration step: 0 rmse: 2.945063564912693\n","### iteration step: 0 rmse: 2.9450563834615515\n","### iteration step: 0 rmse: 2.945037792186357\n","### iteration step: 0 rmse: 2.945027327662204\n","### iteration step: 0 rmse: 2.945000409902554\n","### iteration step: 0 rmse: 2.944968513140005\n","### iteration step: 0 rmse: 2.944944975935297\n","### iteration step: 0 rmse: 2.9449412327248776\n","### iteration step: 0 rmse: 2.944907783914679\n","### iteration step: 0 rmse: 2.9448617785967257\n","### iteration step: 0 rmse: 2.9448135582885415\n","### iteration step: 0 rmse: 2.9447494869571824\n","### iteration step: 0 rmse: 2.944709714275875\n","### iteration step: 0 rmse: 2.944670128143216\n","### iteration step: 0 rmse: 2.9446697232210655\n","### iteration step: 0 rmse: 2.944660577618203\n","### iteration step: 0 rmse: 2.944640978987777\n","### iteration step: 0 rmse: 2.9446378929945407\n","### iteration step: 0 rmse: 2.944542689766312\n","### iteration step: 0 rmse: 2.944521229920684\n","### iteration step: 0 rmse: 2.9444563491879636\n","### iteration step: 0 rmse: 2.944396241298238\n","### iteration step: 0 rmse: 2.944369995084324\n","### iteration step: 0 rmse: 2.944302211200906\n","### iteration step: 0 rmse: 2.9442849136047906\n","### iteration step: 0 rmse: 2.944221512963865\n","### iteration step: 0 rmse: 2.944142070530665\n","### iteration step: 0 rmse: 2.9441271229826125\n","### iteration step: 0 rmse: 2.944098353241166\n","### iteration step: 0 rmse: 2.944050007058087\n","### iteration step: 0 rmse: 2.944047188265972\n","### iteration step: 0 rmse: 2.9440334803312327\n","### iteration step: 0 rmse: 2.944006989252018\n","### iteration step: 0 rmse: 2.9440015343259964\n","### iteration step: 0 rmse: 2.9439513646653994\n","### iteration step: 0 rmse: 2.9439155507054906\n","### iteration step: 0 rmse: 2.943879270213387\n","### iteration step: 0 rmse: 2.9438598040147803\n","### iteration step: 0 rmse: 2.9438254765316088\n","### iteration step: 0 rmse: 2.9437836327470035\n","### iteration step: 0 rmse: 2.943747322923435\n","### iteration step: 0 rmse: 2.943728204649983\n","### iteration step: 0 rmse: 2.9437103344065587\n","### iteration step: 0 rmse: 2.943704307440084\n","### iteration step: 0 rmse: 2.9436701047848333\n","### iteration step: 0 rmse: 2.9436463468663727\n","### iteration step: 0 rmse: 2.9436181493214852\n","### iteration step: 0 rmse: 2.943570877880011\n","### iteration step: 0 rmse: 2.943545077626857\n","### iteration step: 0 rmse: 2.943535873354127\n","### iteration step: 0 rmse: 2.9435089837397483\n","### iteration step: 0 rmse: 2.943487786787368\n","### iteration step: 0 rmse: 2.943469681946076\n","### iteration step: 0 rmse: 2.943454774849946\n","### iteration step: 0 rmse: 2.9434476609576663\n","### iteration step: 0 rmse: 2.9434271292591645\n","### iteration step: 0 rmse: 2.9433859333606134\n","### iteration step: 0 rmse: 2.9433432029069824\n","### iteration step: 0 rmse: 2.9433320533707836\n","### iteration step: 0 rmse: 2.9433139933357353\n","### iteration step: 0 rmse: 2.94329429696317\n","### iteration step: 0 rmse: 2.943266623579593\n","### iteration step: 0 rmse: 2.9432353633671844\n","### iteration step: 0 rmse: 2.943209354242335\n","### iteration step: 0 rmse: 2.943173135062387\n","### iteration step: 0 rmse: 2.943138677326918\n","### iteration step: 0 rmse: 2.943112582265494\n","### iteration step: 0 rmse: 2.943088875485924\n","### iteration step: 0 rmse: 2.9430807212439714\n","### iteration step: 0 rmse: 2.943090194101691\n","### iteration step: 0 rmse: 2.943066662132421\n","### iteration step: 0 rmse: 2.9430498955752724\n","### iteration step: 0 rmse: 2.943037434190771\n","### iteration step: 0 rmse: 2.9430334822628144\n","### iteration step: 0 rmse: 2.9430252802404864\n","### iteration step: 0 rmse: 2.943004626595853\n","### iteration step: 0 rmse: 2.9430020967818433\n","### iteration step: 0 rmse: 2.9429897054318084\n","### iteration step: 0 rmse: 2.9429632399632215\n","### iteration step: 0 rmse: 2.9429584349062106\n","### iteration step: 0 rmse: 2.942933724294946\n","### iteration step: 0 rmse: 2.9429058772543026\n","### iteration step: 0 rmse: 2.9428786936969877\n","### iteration step: 0 rmse: 2.9428614063174883\n","### iteration step: 0 rmse: 2.9428481718222352\n","### iteration step: 0 rmse: 2.9428227968372997\n","### iteration step: 0 rmse: 2.942805602534381\n","### iteration step: 0 rmse: 2.9427922161102376\n","### iteration step: 0 rmse: 2.9427782183526516\n","### iteration step: 0 rmse: 2.942765537571482\n","### iteration step: 0 rmse: 2.9427467069087925\n","### iteration step: 0 rmse: 2.942734874151296\n","### iteration step: 0 rmse: 2.9427159380762067\n","### iteration step: 0 rmse: 2.9427363543338148\n","### iteration step: 0 rmse: 2.942761210376716\n","### iteration step: 0 rmse: 2.9427539231741773\n","### iteration step: 0 rmse: 2.942763867603712\n","### iteration step: 0 rmse: 2.942771325383496\n","### iteration step: 0 rmse: 2.942775958206599\n","### iteration step: 0 rmse: 2.9427771742401094\n","### iteration step: 0 rmse: 2.942765762300968\n","### iteration step: 0 rmse: 2.9427555275139428\n","### iteration step: 0 rmse: 2.9427463566175205\n","### iteration step: 0 rmse: 2.9427380106615058\n","### iteration step: 0 rmse: 2.9427331733011703\n","### iteration step: 0 rmse: 2.942715440854104\n","### iteration step: 0 rmse: 2.942698784601961\n","### iteration step: 0 rmse: 2.9426867777173973\n","### iteration step: 0 rmse: 2.9426709439436305\n","### iteration step: 0 rmse: 2.94265377308671\n","### iteration step: 0 rmse: 2.942640080912231\n","### iteration step: 0 rmse: 2.9426424154965667\n","### iteration step: 0 rmse: 2.9426338662457914\n","### iteration step: 0 rmse: 2.9426267783923072\n","### iteration step: 0 rmse: 2.942617592927027\n","### iteration step: 0 rmse: 2.9426043736674456\n","### iteration step: 0 rmse: 2.942600300846433\n","### iteration step: 0 rmse: 2.9425823301105165\n","### iteration step: 0 rmse: 2.942573079447313\n","### iteration step: 0 rmse: 2.942554746649407\n","### iteration step: 0 rmse: 2.942553903112436\n","### iteration step: 0 rmse: 2.942557675194673\n","### iteration step: 0 rmse: 2.942549102315814\n","### iteration step: 0 rmse: 2.9425328043624144\n","### iteration step: 0 rmse: 2.942533814436202\n","### iteration step: 0 rmse: 2.9425270401634465\n","### iteration step: 0 rmse: 2.9425149053265276\n","### iteration step: 0 rmse: 2.9424994007717955\n","### iteration step: 0 rmse: 2.942496653046656\n","### iteration step: 0 rmse: 2.9424759200690795\n","### iteration step: 0 rmse: 2.9424611170515\n","### iteration step: 0 rmse: 2.9424415383878517\n","### iteration step: 0 rmse: 2.94244428639023\n","### iteration step: 0 rmse: 2.9424427078280457\n","### iteration step: 0 rmse: 2.9424456859193313\n","### iteration step: 0 rmse: 2.9424452338947766\n","### iteration step: 0 rmse: 2.942438195771222\n","### iteration step: 0 rmse: 2.9424378423999\n","### iteration step: 0 rmse: 2.942437249214858\n","### iteration step: 0 rmse: 2.942435380683104\n","### iteration step: 0 rmse: 2.942434175053369\n","### iteration step: 0 rmse: 2.942433008258689\n","### iteration step: 0 rmse: 2.9424306177672577\n","### iteration step: 0 rmse: 2.9424289268602144\n","### iteration step: 0 rmse: 2.9424260255904535\n","### iteration step: 0 rmse: 2.9424217850668803\n","### iteration step: 0 rmse: 2.9424284507125202\n","### iteration step: 0 rmse: 2.942425373255046\n","### iteration step: 0 rmse: 2.9424120137132697\n","### iteration step: 0 rmse: 2.9424111336165053\n","### iteration step: 0 rmse: 2.9424065580049423\n","### iteration step: 0 rmse: 2.9423978242792335\n","### iteration step: 0 rmse: 2.9423952793429096\n","### iteration step: 0 rmse: 2.942398551562356\n","### iteration step: 0 rmse: 2.942393805495014\n","### iteration step: 0 rmse: 2.9423911612788407\n","### iteration step: 0 rmse: 2.9423820012471396\n","### iteration step: 0 rmse: 2.9423848305388116\n","### iteration step: 0 rmse: 2.9423755818562007\n","### iteration step: 0 rmse: 2.9423634373944068\n","### iteration step: 0 rmse: 2.9423519670214437\n","### iteration step: 0 rmse: 2.942348338232981\n","### iteration step: 0 rmse: 2.942325520169661\n","### iteration step: 0 rmse: 2.942318956587694\n","### iteration step: 0 rmse: 2.9422906610504076\n","### iteration step: 0 rmse: 2.9422851184376286\n","### iteration step: 0 rmse: 2.94228622220578\n","### iteration step: 0 rmse: 2.9422851319439247\n","### iteration step: 0 rmse: 2.9422843384008073\n","### iteration step: 0 rmse: 2.9422445779775845\n","### iteration step: 0 rmse: 2.942218704117259\n","### iteration step: 0 rmse: 2.9422024141678578\n","### iteration step: 0 rmse: 2.942200604101653\n","### iteration step: 0 rmse: 2.9422013462437335\n","### iteration step: 0 rmse: 2.9421924823613264\n","### iteration step: 0 rmse: 2.942190494834095\n","### iteration step: 0 rmse: 2.9421847612990546\n","### iteration step: 0 rmse: 2.942173250478279\n","### iteration step: 0 rmse: 2.9421701139188077\n","### iteration step: 0 rmse: 2.9421645190471586\n","### iteration step: 0 rmse: 2.94214566810444\n","### iteration step: 0 rmse: 2.9421283627824533\n","### iteration step: 0 rmse: 2.942121196227407\n","### iteration step: 0 rmse: 2.942118585183188\n","### iteration step: 0 rmse: 2.9421025496047437\n","### iteration step: 0 rmse: 2.9420855682305356\n","### iteration step: 0 rmse: 2.9420615031291715\n","### iteration step: 0 rmse: 2.9420591698468375\n","### iteration step: 0 rmse: 2.9420548339632204\n","### iteration step: 0 rmse: 2.942030079944128\n","### iteration step: 0 rmse: 2.9419996554485643\n","### iteration step: 0 rmse: 2.941992380064749\n","### iteration step: 0 rmse: 2.9419892077693826\n","### iteration step: 0 rmse: 2.941967696369906\n","### iteration step: 0 rmse: 2.9419596690479435\n","### iteration step: 0 rmse: 2.941935244141946\n","### iteration step: 0 rmse: 2.9419121342459387\n","### iteration step: 0 rmse: 2.941891987179561\n","### iteration step: 0 rmse: 2.9418847998712505\n","### iteration step: 0 rmse: 2.9418782165635617\n","### iteration step: 0 rmse: 2.941881442802763\n","### iteration step: 0 rmse: 2.941881389142299\n","### iteration step: 0 rmse: 2.941873743016698\n","### iteration step: 0 rmse: 2.94186843059131\n","### iteration step: 0 rmse: 2.9418289243128437\n","### iteration step: 0 rmse: 2.9418138627368804\n","### iteration step: 0 rmse: 2.9418009372596496\n","### iteration step: 0 rmse: 2.941800737219164\n","### iteration step: 0 rmse: 2.941753338861178\n","### iteration step: 0 rmse: 2.9417324948181487\n","### iteration step: 0 rmse: 2.9417262093231455\n","### iteration step: 0 rmse: 2.9417154915691084\n","### iteration step: 0 rmse: 2.941687252918048\n","### iteration step: 0 rmse: 2.9416638870236738\n","### iteration step: 0 rmse: 2.941647360750061\n","### iteration step: 0 rmse: 2.941632632909031\n","### iteration step: 0 rmse: 2.94162126925595\n","### iteration step: 0 rmse: 2.9416191200856803\n","### iteration step: 0 rmse: 2.941590703731747\n","### iteration step: 0 rmse: 2.941554485937697\n","### iteration step: 0 rmse: 2.941495581481392\n","### iteration step: 0 rmse: 2.941498223022647\n","### iteration step: 0 rmse: 2.9414936716982716\n","### iteration step: 0 rmse: 2.9414676069241636\n","### iteration step: 0 rmse: 2.9414591685039255\n","### iteration step: 0 rmse: 2.9414548534944274\n","### iteration step: 0 rmse: 2.941431758172004\n","### iteration step: 0 rmse: 2.941423495811792\n","### iteration step: 0 rmse: 2.9413925446648026\n","### iteration step: 0 rmse: 2.941362281336386\n","### iteration step: 0 rmse: 2.9413068995501943\n","### iteration step: 0 rmse: 2.941301230239248\n","### iteration step: 0 rmse: 2.9412922822668386\n","### iteration step: 0 rmse: 2.941267974966141\n","### iteration step: 0 rmse: 2.9412642530827\n","### iteration step: 0 rmse: 2.9412627965347533\n","### iteration step: 0 rmse: 2.9412088610906575\n","### iteration step: 0 rmse: 2.941197465812405\n","### iteration step: 0 rmse: 2.941187839587564\n","### iteration step: 0 rmse: 2.9411769643920347\n","### iteration step: 0 rmse: 2.9411544590813636\n","### iteration step: 0 rmse: 2.9411119567680872\n","### iteration step: 0 rmse: 2.9410497015305856\n","### iteration step: 0 rmse: 2.9410061695612453\n","### iteration step: 0 rmse: 2.940972738943164\n","### iteration step: 0 rmse: 2.940965835619172\n","### iteration step: 0 rmse: 2.9409456373102265\n","### iteration step: 0 rmse: 2.9409430397956533\n","### iteration step: 0 rmse: 2.940828154055864\n","### iteration step: 0 rmse: 2.9407485695767206\n","### iteration step: 0 rmse: 2.94074415203551\n","### iteration step: 0 rmse: 2.940722551204888\n","### iteration step: 0 rmse: 2.9406881343996623\n","### iteration step: 0 rmse: 2.9406733973826498\n","### iteration step: 0 rmse: 2.9406230535287374\n","### iteration step: 0 rmse: 2.9406120492430334\n","### iteration step: 0 rmse: 2.9405404534044206\n","### iteration step: 0 rmse: 2.9405178329998742\n","### iteration step: 0 rmse: 2.9405112761760392\n","### iteration step: 0 rmse: 2.9405083526898212\n","### iteration step: 0 rmse: 2.940500303289159\n","### iteration step: 0 rmse: 2.9404944346625963\n","### iteration step: 0 rmse: 2.9404649765294497\n","### iteration step: 0 rmse: 2.9404287185412743\n","### iteration step: 0 rmse: 2.9404300402234855\n","### iteration step: 0 rmse: 2.9404260513013725\n","### iteration step: 0 rmse: 2.9404248428239255\n","### iteration step: 0 rmse: 2.9403483303654427\n","### iteration step: 0 rmse: 2.9403449605621645\n","### iteration step: 0 rmse: 2.9402835323665317\n","### iteration step: 0 rmse: 2.9401823240346165\n","### iteration step: 0 rmse: 2.9401797963006095\n","### iteration step: 0 rmse: 2.9401491504067025\n","### iteration step: 0 rmse: 2.9401371595639927\n","### iteration step: 0 rmse: 2.940092631310649\n","### iteration step: 0 rmse: 2.940078847233077\n","### iteration step: 0 rmse: 2.940067963814059\n","### iteration step: 0 rmse: 2.9400144622513076\n","### iteration step: 0 rmse: 2.9399831730491464\n","### iteration step: 0 rmse: 2.939972543940734\n","### iteration step: 0 rmse: 2.9399569112228083\n","### iteration step: 0 rmse: 2.9399302655680413\n","### iteration step: 0 rmse: 2.93988742942861\n","### iteration step: 0 rmse: 2.9398214220497865\n","### iteration step: 0 rmse: 2.9398119846551563\n","### iteration step: 0 rmse: 2.939804138167378\n","### iteration step: 0 rmse: 2.939758281869693\n","### iteration step: 0 rmse: 2.9397003524788423\n","### iteration step: 0 rmse: 2.939599250282174\n","### iteration step: 0 rmse: 2.939553809858145\n","### iteration step: 0 rmse: 2.939499867206858\n","### iteration step: 0 rmse: 2.939476653359744\n","### iteration step: 0 rmse: 2.9394373164481005\n","### iteration step: 0 rmse: 2.9393857277945687\n","### iteration step: 0 rmse: 2.9393581861232287\n","### iteration step: 0 rmse: 2.9393136591544646\n","### iteration step: 0 rmse: 2.9393103086573356\n","### iteration step: 0 rmse: 2.9392889238099174\n","### iteration step: 0 rmse: 2.939266849905045\n","### iteration step: 0 rmse: 2.9392396280789597\n","### iteration step: 0 rmse: 2.9391997169288433\n","### iteration step: 0 rmse: 2.9391524245334177\n","### iteration step: 0 rmse: 2.939127478382558\n","### iteration step: 0 rmse: 2.9391049077425557\n","### iteration step: 0 rmse: 2.9390830807164634\n","### iteration step: 0 rmse: 2.9390605208810867\n","### iteration step: 0 rmse: 2.9390378612023778\n","### iteration step: 0 rmse: 2.9390131093686134\n","### iteration step: 0 rmse: 2.938898061087968\n","### iteration step: 0 rmse: 2.9388271842325557\n","### iteration step: 0 rmse: 2.9388115779610255\n","### iteration step: 0 rmse: 2.938780840566386\n","### iteration step: 0 rmse: 2.9387489535092666\n","### iteration step: 0 rmse: 2.938748810706104\n","### iteration step: 0 rmse: 2.938743807293406\n","### iteration step: 0 rmse: 2.938743961897666\n","### iteration step: 0 rmse: 2.938658049641212\n","### iteration step: 0 rmse: 2.938632038616943\n","### iteration step: 0 rmse: 2.938592310466176\n","### iteration step: 0 rmse: 2.938512606848435\n","### iteration step: 0 rmse: 2.9384779040130486\n","### iteration step: 0 rmse: 2.938455114519634\n","### iteration step: 0 rmse: 2.938399931093599\n","### iteration step: 0 rmse: 2.938328217136067\n","### iteration step: 0 rmse: 2.9383134046725066\n","### iteration step: 0 rmse: 2.938272183195288\n","### iteration step: 0 rmse: 2.9382699537998724\n","### iteration step: 0 rmse: 2.9382167499751217\n","### iteration step: 0 rmse: 2.9382083061692867\n","### iteration step: 0 rmse: 2.938180357634519\n","### iteration step: 0 rmse: 2.938153498200394\n","### iteration step: 0 rmse: 2.9380479449797483\n","### iteration step: 0 rmse: 2.9379911609490006\n","### iteration step: 0 rmse: 2.93792950278463\n","### iteration step: 0 rmse: 2.937827798780974\n","### iteration step: 0 rmse: 2.9378279105513583\n","### iteration step: 0 rmse: 2.937822597639218\n","### iteration step: 0 rmse: 2.937730358220637\n","### iteration step: 0 rmse: 2.937580941214864\n","### iteration step: 0 rmse: 2.937549024142606\n","### iteration step: 0 rmse: 2.937422345700149\n","### iteration step: 0 rmse: 2.937417991471191\n","### iteration step: 0 rmse: 2.9373687196614946\n","### iteration step: 0 rmse: 2.9373092973312533\n","### iteration step: 0 rmse: 2.9372821508933113\n","### iteration step: 0 rmse: 2.9372042353827004\n","### iteration step: 0 rmse: 2.937189260077785\n","### iteration step: 0 rmse: 2.9371422518189054\n","### iteration step: 0 rmse: 2.9370680257051145\n","### iteration step: 0 rmse: 2.9370638543832395\n","### iteration step: 0 rmse: 2.9369623994123706\n","### iteration step: 0 rmse: 2.936945373568657\n","### iteration step: 0 rmse: 2.936874141847122\n","### iteration step: 0 rmse: 2.9368160132389773\n","### iteration step: 0 rmse: 2.936814163276505\n","### iteration step: 0 rmse: 2.936796695847757\n","### iteration step: 0 rmse: 2.9367830928254777\n","### iteration step: 0 rmse: 2.936710675776645\n","### iteration step: 0 rmse: 2.9366206212088133\n","### iteration step: 0 rmse: 2.9365162913397627\n","### iteration step: 0 rmse: 2.9364746168507736\n","### iteration step: 0 rmse: 2.9364223103688225\n","### iteration step: 0 rmse: 2.936422139458231\n","### iteration step: 0 rmse: 2.936387507976456\n","### iteration step: 0 rmse: 2.936334658845839\n","### iteration step: 0 rmse: 2.9361680152404057\n","### iteration step: 0 rmse: 2.9361304394866483\n","### iteration step: 0 rmse: 2.9360704703007245\n","### iteration step: 0 rmse: 2.9360270494828944\n","### iteration step: 0 rmse: 2.935981625187636\n","### iteration step: 0 rmse: 2.9358668325959902\n","### iteration step: 0 rmse: 2.9358091101266552\n","### iteration step: 0 rmse: 2.9357816755900443\n","### iteration step: 0 rmse: 2.935726626647303\n","### iteration step: 0 rmse: 2.9356975219840926\n","### iteration step: 0 rmse: 2.935646822728626\n","### iteration step: 0 rmse: 2.9356164450947317\n","### iteration step: 0 rmse: 2.93557919017688\n","### iteration step: 0 rmse: 2.9355694177467724\n","### iteration step: 0 rmse: 2.9355336472518094\n","### iteration step: 0 rmse: 2.935443962058035\n","### iteration step: 0 rmse: 2.9353899167963364\n","### iteration step: 0 rmse: 2.935321153366562\n","### iteration step: 0 rmse: 2.9353078278618487\n","### iteration step: 0 rmse: 2.9352406297298286\n","### iteration step: 0 rmse: 2.935114227144959\n","### iteration step: 0 rmse: 2.935054208819218\n","### iteration step: 0 rmse: 2.934932401506209\n","### iteration step: 0 rmse: 2.9347427805176807\n","### iteration step: 0 rmse: 2.9347366230621\n","### iteration step: 0 rmse: 2.9347042620774544\n","### iteration step: 0 rmse: 2.9346811875576977\n","### iteration step: 0 rmse: 2.934611804154005\n","### iteration step: 0 rmse: 2.9345624287797336\n","### iteration step: 0 rmse: 2.9344435255939314\n","### iteration step: 0 rmse: 2.9343695235174434\n","### iteration step: 0 rmse: 2.93436861426106\n","### iteration step: 0 rmse: 2.934341035741605\n","### iteration step: 0 rmse: 2.9343277369688403\n","### iteration step: 0 rmse: 2.934311845673874\n","### iteration step: 0 rmse: 2.934298773361391\n","### iteration step: 0 rmse: 2.9342844055358843\n","### iteration step: 0 rmse: 2.934262857537454\n","### iteration step: 0 rmse: 2.934272527763168\n","### iteration step: 0 rmse: 2.934206101514385\n","### iteration step: 0 rmse: 2.9341730396582197\n","### iteration step: 0 rmse: 2.934171869207047\n","### iteration step: 0 rmse: 2.9341641983682787\n","### iteration step: 0 rmse: 2.9341623809836728\n","### iteration step: 0 rmse: 2.9340750481555316\n","### iteration step: 0 rmse: 2.934003805342086\n","### iteration step: 0 rmse: 2.933968359362186\n","### iteration step: 0 rmse: 2.933926578309021\n","### iteration step: 0 rmse: 2.933868868244162\n","### iteration step: 0 rmse: 2.9338291265815677\n","### iteration step: 0 rmse: 2.933791091797111\n","### iteration step: 0 rmse: 2.9337332370667273\n","### iteration step: 0 rmse: 2.9336913417713086\n","### iteration step: 0 rmse: 2.9336762140822943\n","### iteration step: 0 rmse: 2.9335826758970396\n","### iteration step: 0 rmse: 2.9334877323119133\n","### iteration step: 0 rmse: 2.933404906135613\n","### iteration step: 0 rmse: 2.933323717982382\n","### iteration step: 0 rmse: 2.933193472126098\n","### iteration step: 0 rmse: 2.9331225967024337\n","### iteration step: 0 rmse: 2.9330935315243747\n","### iteration step: 0 rmse: 2.933047283253792\n","### iteration step: 0 rmse: 2.9330180923391325\n","### iteration step: 0 rmse: 2.9329630857524274\n","### iteration step: 0 rmse: 2.932938500577516\n","### iteration step: 0 rmse: 2.9328946327786376\n","### iteration step: 0 rmse: 2.9328727524313662\n","### iteration step: 0 rmse: 2.9328228802611083\n","### iteration step: 0 rmse: 2.9327835908475617\n","### iteration step: 0 rmse: 2.932764355516269\n","### iteration step: 0 rmse: 2.93274357561632\n","### iteration step: 0 rmse: 2.932688407952081\n","### iteration step: 0 rmse: 2.932621688729798\n","### iteration step: 0 rmse: 2.9325300561037753\n","### iteration step: 0 rmse: 2.932446319678508\n","### iteration step: 0 rmse: 2.932373697793009\n","### iteration step: 0 rmse: 2.9323630575444266\n","### iteration step: 0 rmse: 2.93235937092269\n","### iteration step: 0 rmse: 2.9322887024332926\n","### iteration step: 0 rmse: 2.932231875713023\n","### iteration step: 0 rmse: 2.932175791641055\n","### iteration step: 0 rmse: 2.9321182149698215\n","### iteration step: 0 rmse: 2.9320485800012297\n","### iteration step: 0 rmse: 2.9320014555417666\n","### iteration step: 0 rmse: 2.931977607713739\n","### iteration step: 0 rmse: 2.93196086646038\n","### iteration step: 0 rmse: 2.93189215543633\n","### iteration step: 0 rmse: 2.9318888931095843\n","### iteration step: 0 rmse: 2.9318697986050832\n","### iteration step: 0 rmse: 2.9318340887922263\n","### iteration step: 0 rmse: 2.931773697134286\n","### iteration step: 0 rmse: 2.931729596440757\n","### iteration step: 0 rmse: 2.931723571266143\n","### iteration step: 0 rmse: 2.9316610248408317\n","### iteration step: 0 rmse: 2.9316347640512133\n","### iteration step: 0 rmse: 2.931577065339915\n","### iteration step: 0 rmse: 2.9315596826343873\n","### iteration step: 0 rmse: 2.9315118070982855\n","### iteration step: 0 rmse: 2.931503632343967\n","### iteration step: 0 rmse: 2.9314960428512213\n","### iteration step: 0 rmse: 2.931478307703817\n","### iteration step: 0 rmse: 2.931462872856614\n","### iteration step: 0 rmse: 2.9314216059817655\n","### iteration step: 0 rmse: 2.9314025179033707\n","### iteration step: 0 rmse: 2.931327303726384\n","### iteration step: 0 rmse: 2.9313026167837397\n","### iteration step: 0 rmse: 2.9312515939303774\n","### iteration step: 0 rmse: 2.9311961416697123\n","### iteration step: 0 rmse: 2.9311670247721495\n","### iteration step: 0 rmse: 2.931102852326531\n","### iteration step: 0 rmse: 2.9311026201975\n","### iteration step: 0 rmse: 2.9310928203267044\n","### iteration step: 0 rmse: 2.9310891097720426\n","### iteration step: 0 rmse: 2.9311318741069683\n","### iteration step: 0 rmse: 2.931132488101929\n","### iteration step: 0 rmse: 2.9311293884867906\n","### iteration step: 0 rmse: 2.9311101450237884\n","### iteration step: 0 rmse: 2.9311205208633044\n","### iteration step: 0 rmse: 2.9310992650780237\n","### iteration step: 0 rmse: 2.9310739676208635\n","### iteration step: 0 rmse: 2.9310145852956557\n","### iteration step: 0 rmse: 2.93101293769746\n","### iteration step: 0 rmse: 2.930966110573931\n","### iteration step: 0 rmse: 2.9309431344727557\n","### iteration step: 0 rmse: 2.9309299684280625\n","### iteration step: 0 rmse: 2.930892333434976\n","### iteration step: 0 rmse: 2.930892551799084\n","### iteration step: 0 rmse: 2.9308801457554794\n","### iteration step: 0 rmse: 2.930879209367\n","### iteration step: 0 rmse: 2.930855960371892\n","### iteration step: 0 rmse: 2.9308486572900923\n","### iteration step: 0 rmse: 2.9308481160954742\n","### iteration step: 0 rmse: 2.9307918532753128\n","### iteration step: 0 rmse: 2.930753763555672\n","### iteration step: 0 rmse: 2.930719134280081\n","### iteration step: 0 rmse: 2.930673593082871\n","### iteration step: 0 rmse: 2.930663127461587\n","### iteration step: 0 rmse: 2.930626242936993\n","### iteration step: 0 rmse: 2.930622990194234\n","### iteration step: 0 rmse: 2.930610944567668\n","### iteration step: 0 rmse: 2.9306009250275133\n","### iteration step: 0 rmse: 2.930617915946469\n","### iteration step: 0 rmse: 2.930624043746171\n","### iteration step: 0 rmse: 2.9306349368868783\n","### iteration step: 0 rmse: 2.930590559367564\n","### iteration step: 0 rmse: 2.930574023526614\n","### iteration step: 0 rmse: 2.930562634983548\n","### iteration step: 0 rmse: 2.930501556776902\n","### iteration step: 0 rmse: 2.930458701674103\n","### iteration step: 0 rmse: 2.9304448514041277\n","### iteration step: 0 rmse: 2.9304450602623264\n","### iteration step: 0 rmse: 2.9305073496193486\n","### iteration step: 0 rmse: 2.930476252890484\n","### iteration step: 0 rmse: 2.9304273338975473\n","### iteration step: 0 rmse: 2.930422256854354\n","### iteration step: 0 rmse: 2.930409730024126\n","### iteration step: 0 rmse: 2.930364475234926\n","### iteration step: 0 rmse: 2.9303376650930297\n","### iteration step: 0 rmse: 2.9302908207988856\n","### iteration step: 0 rmse: 2.9303228891728947\n","### iteration step: 0 rmse: 2.9303256457229065\n","### iteration step: 0 rmse: 2.930327230805095\n","### iteration step: 0 rmse: 2.930325284559796\n","### iteration step: 0 rmse: 2.9303227723477545\n","### iteration step: 0 rmse: 2.9302850157115703\n","### iteration step: 0 rmse: 2.9302760691405125\n","### iteration step: 0 rmse: 2.930250993172674\n","### iteration step: 0 rmse: 2.930283114688058\n","### iteration step: 0 rmse: 2.9302732715404987\n","### iteration step: 0 rmse: 2.9303026374833103\n","### iteration step: 0 rmse: 2.9302813032054864\n","### iteration step: 0 rmse: 2.9302772211234913\n","### iteration step: 0 rmse: 2.930255447374687\n","### iteration step: 0 rmse: 2.930226876741471\n","### iteration step: 0 rmse: 2.930205990388211\n","### iteration step: 0 rmse: 2.930211945226013\n","### iteration step: 0 rmse: 2.930205849507367\n","### iteration step: 0 rmse: 2.9302111941715134\n","### iteration step: 0 rmse: 2.93019371302964\n","### iteration step: 0 rmse: 2.9301675185966687\n","### iteration step: 0 rmse: 2.930148491750632\n","### iteration step: 0 rmse: 2.9301655357892757\n","### iteration step: 0 rmse: 2.930150762854804\n","### iteration step: 0 rmse: 2.9301236352043407\n","### iteration step: 0 rmse: 2.9301013367642024\n","### iteration step: 0 rmse: 2.93007992294347\n","### iteration step: 0 rmse: 2.9300694909126084\n","### iteration step: 0 rmse: 2.9300290180564543\n","### iteration step: 0 rmse: 2.930027809881669\n","### iteration step: 0 rmse: 2.930022029108861\n","### iteration step: 0 rmse: 2.930030000784277\n","### iteration step: 0 rmse: 2.9299942533205035\n","### iteration step: 0 rmse: 2.9299883370769915\n","### iteration step: 0 rmse: 2.9299643104933804\n","### iteration step: 0 rmse: 2.929942964240322\n","### iteration step: 0 rmse: 2.9299233597414447\n","### iteration step: 0 rmse: 2.9299183173960976\n","### iteration step: 0 rmse: 2.929904567303711\n","### iteration step: 0 rmse: 2.929880540703802\n","### iteration step: 0 rmse: 2.929853899534081\n","### iteration step: 0 rmse: 2.9298208838139894\n","### iteration step: 0 rmse: 2.9298444964488586\n","### iteration step: 0 rmse: 2.929890215130016\n","### iteration step: 0 rmse: 2.9298750134341844\n","### iteration step: 0 rmse: 2.9298767119389355\n","### iteration step: 0 rmse: 2.9298624420303496\n","### iteration step: 0 rmse: 2.929868135984099\n","### iteration step: 0 rmse: 2.9298660306739603\n","### iteration step: 0 rmse: 2.929864184436339\n","### iteration step: 0 rmse: 2.929854919359137\n","### iteration step: 0 rmse: 2.92986479206147\n","### iteration step: 0 rmse: 2.929883456814807\n","### iteration step: 0 rmse: 2.929891818971546\n","### iteration step: 0 rmse: 2.9298769659798256\n","### iteration step: 0 rmse: 2.9298663875469773\n","### iteration step: 0 rmse: 2.929851120598166\n","### iteration step: 0 rmse: 2.929825627441096\n","### iteration step: 0 rmse: 2.929794547381604\n","### iteration step: 0 rmse: 2.929803299822832\n","### iteration step: 0 rmse: 2.9297916090427947\n","### iteration step: 0 rmse: 2.929766128609537\n","### iteration step: 0 rmse: 2.9297528171065292\n","### iteration step: 0 rmse: 2.9297479589949917\n","### iteration step: 0 rmse: 2.9297308179668993\n","### iteration step: 0 rmse: 2.9296865899986084\n","### iteration step: 0 rmse: 2.929663104938639\n","### iteration step: 0 rmse: 2.9296438442651147\n","### iteration step: 0 rmse: 2.929647538179131\n","### iteration step: 0 rmse: 2.9296363800957956\n","### iteration step: 0 rmse: 2.9296391163029543\n","### iteration step: 0 rmse: 2.929658080827705\n","### iteration step: 0 rmse: 2.9296129981981904\n","### iteration step: 0 rmse: 2.9295934814469247\n","### iteration step: 0 rmse: 2.929562210537806\n","### iteration step: 0 rmse: 2.92952529871199\n","### iteration step: 0 rmse: 2.9295273140652207\n","### iteration step: 0 rmse: 2.92952771095746\n","### iteration step: 0 rmse: 2.929498627780042\n","### iteration step: 0 rmse: 2.929478816855686\n","### iteration step: 0 rmse: 2.9294672514593576\n","### iteration step: 0 rmse: 2.9294734042085993\n","### iteration step: 0 rmse: 2.9294802157579736\n","### iteration step: 0 rmse: 2.9294586701562344\n","### iteration step: 0 rmse: 2.9294358413278854\n","### iteration step: 0 rmse: 2.9294056119401533\n","### iteration step: 0 rmse: 2.9293944490242274\n","### iteration step: 0 rmse: 2.929359062733514\n","### iteration step: 0 rmse: 2.929335303138945\n","### iteration step: 0 rmse: 2.929325087347303\n","### iteration step: 0 rmse: 2.929302064438983\n","### iteration step: 0 rmse: 2.9293057735913757\n","### iteration step: 0 rmse: 2.9293069805474987\n","### iteration step: 0 rmse: 2.9292965042315346\n","### iteration step: 0 rmse: 2.9292795789679222\n","### iteration step: 0 rmse: 2.929267138214985\n","### iteration step: 0 rmse: 2.9292626447388064\n","### iteration step: 0 rmse: 2.9292501035108325\n","### iteration step: 0 rmse: 2.9292497859735733\n","### iteration step: 0 rmse: 2.9292562995927387\n","### iteration step: 0 rmse: 2.9292436836513183\n","### iteration step: 0 rmse: 2.92924868963604\n","### iteration step: 0 rmse: 2.9292391910521705\n","### iteration step: 0 rmse: 2.929223158553958\n","### iteration step: 0 rmse: 2.9292158397142365\n","### iteration step: 0 rmse: 2.929221920411625\n","### iteration step: 0 rmse: 2.9291952481874532\n","### iteration step: 0 rmse: 2.929218567382781\n","### iteration step: 0 rmse: 2.9292569713777157\n","### iteration step: 0 rmse: 2.929276048121906\n","### iteration step: 0 rmse: 2.9292940177926887\n","### iteration step: 0 rmse: 2.929293836559616\n","### iteration step: 0 rmse: 2.9292688838324685\n","### iteration step: 0 rmse: 2.929248300139667\n","### iteration step: 0 rmse: 2.9292974026228853\n","### iteration step: 0 rmse: 2.9292693122904905\n","### iteration step: 0 rmse: 2.929256109676921\n","### iteration step: 0 rmse: 2.9292818887816567\n","### iteration step: 0 rmse: 2.929269676362531\n","### iteration step: 0 rmse: 2.9292741632207697\n","### iteration step: 0 rmse: 2.9292573031463083\n","### iteration step: 0 rmse: 2.9292490696793703\n","### iteration step: 0 rmse: 2.929235851865392\n","### iteration step: 0 rmse: 2.9292244905038602\n","### iteration step: 0 rmse: 2.929208594187712\n","### iteration step: 0 rmse: 2.929207704049037\n","### iteration step: 0 rmse: 2.9292272682645244\n","### iteration step: 0 rmse: 2.929195056763658\n","### iteration step: 0 rmse: 2.9291783076748183\n","### iteration step: 0 rmse: 2.92918163195557\n","### iteration step: 0 rmse: 2.9291821591800096\n","### iteration step: 0 rmse: 2.9291832816703263\n","### iteration step: 0 rmse: 2.92920793763621\n","### iteration step: 0 rmse: 2.929198031318141\n","### iteration step: 0 rmse: 2.9291766791637412\n","### iteration step: 0 rmse: 2.929146349795856\n","### iteration step: 0 rmse: 2.9291460604777595\n","### iteration step: 0 rmse: 2.92914481193019\n","### iteration step: 0 rmse: 2.9291535078975746\n","### iteration step: 0 rmse: 2.9291526330754887\n","### iteration step: 0 rmse: 2.9291448381242\n","### iteration step: 0 rmse: 2.9291480528592144\n","### iteration step: 0 rmse: 2.929129430725115\n","### iteration step: 0 rmse: 2.92911826358383\n","### iteration step: 0 rmse: 2.929097054195023\n","### iteration step: 0 rmse: 2.929082009467954\n","### iteration step: 0 rmse: 2.9290816374030446\n","### iteration step: 0 rmse: 2.929068697136242\n","### iteration step: 0 rmse: 2.9290619525859447\n","### iteration step: 0 rmse: 2.9290326099346427\n","### iteration step: 0 rmse: 2.929017779043085\n","### iteration step: 0 rmse: 2.928989444080108\n","### iteration step: 0 rmse: 2.928982378275015\n","### iteration step: 0 rmse: 2.928966608096333\n","### iteration step: 0 rmse: 2.928952221229529\n","### iteration step: 0 rmse: 2.9289360199971717\n","### iteration step: 0 rmse: 2.9289165234551944\n","### iteration step: 0 rmse: 2.928932461120219\n","### iteration step: 0 rmse: 2.9289024820786262\n","### iteration step: 0 rmse: 2.9288847013896424\n","### iteration step: 0 rmse: 2.928874918886606\n","### iteration step: 0 rmse: 2.9288654788348643\n","### iteration step: 0 rmse: 2.928849853346253\n","### iteration step: 0 rmse: 2.9288346425978378\n","### iteration step: 0 rmse: 2.928852001425853\n","### iteration step: 0 rmse: 2.9288272260133725\n","### iteration step: 0 rmse: 2.928803578438978\n","### iteration step: 0 rmse: 2.9287887366714114\n","### iteration step: 0 rmse: 2.928753755885279\n","### iteration step: 0 rmse: 2.928731911999442\n","### iteration step: 0 rmse: 2.92872337341037\n","### iteration step: 0 rmse: 2.928712762264038\n","### iteration step: 0 rmse: 2.9287157735280327\n","### iteration step: 0 rmse: 2.928706633141133\n","### iteration step: 0 rmse: 2.928696275973435\n","### iteration step: 0 rmse: 2.9286819915581086\n","### iteration step: 0 rmse: 2.928665298197799\n","### iteration step: 0 rmse: 2.928693625472751\n","### iteration step: 0 rmse: 2.928696704357038\n","### iteration step: 0 rmse: 2.928679851858453\n","### iteration step: 0 rmse: 2.92868290830034\n","### iteration step: 0 rmse: 2.928674804097049\n","### iteration step: 0 rmse: 2.9286723402553783\n","### iteration step: 0 rmse: 2.928702800513059\n","### iteration step: 0 rmse: 2.92870148751784\n","### iteration step: 0 rmse: 2.928700700284174\n","### iteration step: 0 rmse: 2.92869214508298\n","### iteration step: 0 rmse: 2.9286901112172514\n","### iteration step: 0 rmse: 2.928688551288364\n","### iteration step: 0 rmse: 2.928679288153768\n","### iteration step: 0 rmse: 2.928678839006821\n","### iteration step: 0 rmse: 2.928684255781328\n","### iteration step: 0 rmse: 2.9287043977076572\n","### iteration step: 0 rmse: 2.9287043724445914\n","### iteration step: 0 rmse: 2.928703432223777\n","### iteration step: 0 rmse: 2.928703413847841\n","### iteration step: 0 rmse: 2.9286851289434304\n","### iteration step: 0 rmse: 2.9287031159641983\n","### iteration step: 0 rmse: 2.928712824903923\n","### iteration step: 0 rmse: 2.9286933164941056\n","### iteration step: 0 rmse: 2.928686271208196\n","### iteration step: 0 rmse: 2.928655130855933\n","### iteration step: 0 rmse: 2.9286512659979893\n","### iteration step: 0 rmse: 2.92864687267553\n","### iteration step: 0 rmse: 2.9286319348063667\n","### iteration step: 0 rmse: 2.9286224776957024\n","### iteration step: 0 rmse: 2.9286015400975325\n","### iteration step: 0 rmse: 2.9285789258304393\n","### iteration step: 0 rmse: 2.928569027948126\n","### iteration step: 0 rmse: 2.928560448110426\n","### iteration step: 0 rmse: 2.928542363179696\n","### iteration step: 0 rmse: 2.9285350124345446\n","### iteration step: 0 rmse: 2.928543235477656\n","### iteration step: 0 rmse: 2.928520184565145\n","### iteration step: 0 rmse: 2.928519337318995\n","### iteration step: 0 rmse: 2.9285229347994983\n","### iteration step: 0 rmse: 2.9285128696888565\n","### iteration step: 0 rmse: 2.9284969308477695\n","### iteration step: 0 rmse: 2.9284931593184558\n","### iteration step: 0 rmse: 2.928483276383876\n","### iteration step: 0 rmse: 2.928480812657953\n","### iteration step: 0 rmse: 2.928485277307837\n","### iteration step: 0 rmse: 2.928496703098191\n","### iteration step: 0 rmse: 2.9285026494384945\n","### iteration step: 0 rmse: 2.928505506854055\n","### iteration step: 0 rmse: 2.9284905682821463\n","### iteration step: 0 rmse: 2.928491740795629\n","### iteration step: 0 rmse: 2.928488619843017\n","### iteration step: 0 rmse: 2.928482782225941\n","### iteration step: 0 rmse: 2.928483982907724\n","### iteration step: 0 rmse: 2.928496849598533\n","### iteration step: 0 rmse: 2.928495004339835\n","### iteration step: 0 rmse: 2.9284707439024364\n","### iteration step: 0 rmse: 2.92845227423998\n","### iteration step: 0 rmse: 2.9284396366490544\n","### iteration step: 0 rmse: 2.9284471267623817\n","### iteration step: 0 rmse: 2.9284282484748907\n","### iteration step: 0 rmse: 2.9284219484389595\n","### iteration step: 0 rmse: 2.9284358679788354\n","### iteration step: 0 rmse: 2.9284368263196026\n","### iteration step: 0 rmse: 2.9284273581781535\n","### iteration step: 0 rmse: 2.928412490026912\n","### iteration step: 0 rmse: 2.9284158181100404\n","### iteration step: 0 rmse: 2.9284039066834944\n","### iteration step: 0 rmse: 2.9284030455730656\n","### iteration step: 0 rmse: 2.928401986967282\n","### iteration step: 0 rmse: 2.9284003657449187\n","### iteration step: 0 rmse: 2.9283986706606537\n","### iteration step: 0 rmse: 2.9283836686921036\n","### iteration step: 0 rmse: 2.928399738768338\n","### iteration step: 0 rmse: 2.9283877301709067\n","### iteration step: 0 rmse: 2.92836702039372\n","### iteration step: 0 rmse: 2.928369640255481\n","### iteration step: 0 rmse: 2.9283632248222915\n","### iteration step: 0 rmse: 2.9283579003930202\n","### iteration step: 0 rmse: 2.9283557445266575\n","### iteration step: 0 rmse: 2.928357028235398\n","### iteration step: 0 rmse: 2.928342693879927\n","### iteration step: 0 rmse: 2.9283370472895696\n","### iteration step: 0 rmse: 2.9283336165197116\n","### iteration step: 0 rmse: 2.9283199149945998\n","### iteration step: 0 rmse: 2.9283135292575073\n","### iteration step: 0 rmse: 2.928315676790091\n","### iteration step: 0 rmse: 2.9283050046242947\n","### iteration step: 0 rmse: 2.9282968277500436\n","### iteration step: 0 rmse: 2.9282791579016547\n","### iteration step: 0 rmse: 2.9282755823548032\n","### iteration step: 0 rmse: 2.928282722775689\n","### iteration step: 0 rmse: 2.9282881160177996\n","### iteration step: 0 rmse: 2.9282750520933463\n","### iteration step: 0 rmse: 2.9282586783098536\n","### iteration step: 0 rmse: 2.9282566117205184\n","### iteration step: 0 rmse: 2.928251935102153\n","### iteration step: 0 rmse: 2.928244736228526\n","### iteration step: 0 rmse: 2.9282345894021895\n","### iteration step: 0 rmse: 2.928236543857103\n","### iteration step: 0 rmse: 2.928233161248099\n","### iteration step: 0 rmse: 2.928230091421582\n","### iteration step: 0 rmse: 2.9282351076598827\n","### iteration step: 0 rmse: 2.928230311550775\n","### iteration step: 0 rmse: 2.9282176485418705\n","### iteration step: 0 rmse: 2.9282201437588706\n","### iteration step: 0 rmse: 2.928218356831146\n","### iteration step: 0 rmse: 2.9282182300996795\n","### iteration step: 0 rmse: 2.9282095875333485\n","### iteration step: 0 rmse: 2.928207891200723\n","### iteration step: 0 rmse: 2.9282207267225027\n","### iteration step: 0 rmse: 2.928219331142951\n","### iteration step: 0 rmse: 2.928206793876098\n","### iteration step: 0 rmse: 2.9282035597458242\n","### iteration step: 0 rmse: 2.928196948905647\n","### iteration step: 0 rmse: 2.928203280489597\n","### iteration step: 0 rmse: 2.9281991416930104\n","### iteration step: 0 rmse: 2.928190630353085\n","### iteration step: 0 rmse: 2.928197351636403\n","### iteration step: 0 rmse: 2.928190376926671\n","### iteration step: 0 rmse: 2.9281857987087645\n","### iteration step: 0 rmse: 2.9281809056053727\n","### iteration step: 0 rmse: 2.928177190976114\n","### iteration step: 0 rmse: 2.9281712099523145\n","### iteration step: 0 rmse: 2.9281719827360755\n","### iteration step: 0 rmse: 2.9281681346842663\n","### iteration step: 0 rmse: 2.9281681027871103\n","### iteration step: 0 rmse: 2.9281592750795986\n","### iteration step: 0 rmse: 2.928160240937573\n","### iteration step: 0 rmse: 2.928166556404585\n","### iteration step: 0 rmse: 2.9281689709388785\n","### iteration step: 0 rmse: 2.928178021551172\n","### iteration step: 0 rmse: 2.92816457571465\n","### iteration step: 0 rmse: 2.928162905416539\n","### iteration step: 0 rmse: 2.928171879762206\n","### iteration step: 0 rmse: 2.9281713444094106\n","### iteration step: 0 rmse: 2.9281651249471303\n","### iteration step: 0 rmse: 2.928156636402886\n","### iteration step: 0 rmse: 2.928170253293224\n","### iteration step: 0 rmse: 2.928179668308186\n","### iteration step: 0 rmse: 2.9281832933789618\n","### iteration step: 0 rmse: 2.9281883901231867\n","### iteration step: 0 rmse: 2.92818673324084\n","### iteration step: 0 rmse: 2.9281713335817843\n","### iteration step: 0 rmse: 2.9281539401577286\n","### iteration step: 0 rmse: 2.928139214823436\n","### iteration step: 0 rmse: 2.9281348387263613\n","### iteration step: 0 rmse: 2.9281334873007383\n","### iteration step: 0 rmse: 2.9281320486549864\n","### iteration step: 0 rmse: 2.9281320839688023\n","### iteration step: 0 rmse: 2.928122585542877\n","### iteration step: 0 rmse: 2.928121656925026\n","### iteration step: 0 rmse: 2.9281025533154947\n","### iteration step: 0 rmse: 2.928106993634954\n","### iteration step: 0 rmse: 2.9281059596772323\n","### iteration step: 0 rmse: 2.928101174098227\n","### iteration step: 0 rmse: 2.9281080638848365\n","### iteration step: 0 rmse: 2.928098044323921\n","### iteration step: 0 rmse: 2.9280899115890793\n","### iteration step: 0 rmse: 2.9280745193820956\n","### iteration step: 0 rmse: 2.9281031898171044\n","### iteration step: 0 rmse: 2.928102697502363\n","### iteration step: 0 rmse: 2.9280921553209613\n","### iteration step: 0 rmse: 2.928107892044195\n","### iteration step: 0 rmse: 2.9281124112389536\n","### iteration step: 0 rmse: 2.9281088321249102\n","### iteration step: 0 rmse: 2.928110838256321\n","### iteration step: 0 rmse: 2.928114798032124\n","### iteration step: 0 rmse: 2.928129288879159\n","### iteration step: 0 rmse: 2.928119724491066\n","### iteration step: 0 rmse: 2.9281245343079854\n","### iteration step: 0 rmse: 2.928120948898246\n","### iteration step: 0 rmse: 2.9281168720380166\n","### iteration step: 0 rmse: 2.928106860640326\n","### iteration step: 0 rmse: 2.9280962024002903\n","### iteration step: 0 rmse: 2.9280888663473843\n","### iteration step: 0 rmse: 2.9280919122206894\n","### iteration step: 0 rmse: 2.9280802893948827\n","### iteration step: 0 rmse: 2.928068295003145\n","### iteration step: 0 rmse: 2.928088404921893\n","### iteration step: 0 rmse: 2.928080068746801\n","### iteration step: 0 rmse: 2.9280773096268518\n","### iteration step: 0 rmse: 2.9280815146076953\n","### iteration step: 0 rmse: 2.928095116421685\n","### iteration step: 0 rmse: 2.9280812885276846\n","### iteration step: 0 rmse: 2.9280721609567992\n","### iteration step: 0 rmse: 2.9280720557918145\n","### iteration step: 0 rmse: 2.9280611800465848\n","### iteration step: 0 rmse: 2.92807465026877\n","### iteration step: 0 rmse: 2.9280692192256668\n","### iteration step: 0 rmse: 2.928070061763746\n","### iteration step: 0 rmse: 2.9280607446221727\n","### iteration step: 0 rmse: 2.928055374648065\n","### iteration step: 0 rmse: 2.928056090066328\n","### iteration step: 0 rmse: 2.928074383963298\n","### iteration step: 0 rmse: 2.9281026302646036\n","### iteration step: 0 rmse: 2.928116980191843\n","### iteration step: 0 rmse: 2.928112242256452\n","### iteration step: 0 rmse: 2.928102453319411\n","### iteration step: 0 rmse: 2.928093916176121\n","### iteration step: 0 rmse: 2.928108138699185\n","### iteration step: 0 rmse: 2.9280916553906047\n","### iteration step: 0 rmse: 2.9280841235945356\n","### iteration step: 0 rmse: 2.9280841140523375\n","### iteration step: 0 rmse: 2.928093035978473\n","### iteration step: 0 rmse: 2.928094424630749\n","### iteration step: 0 rmse: 2.9280870992200456\n","### iteration step: 0 rmse: 2.928098709647258\n","### iteration step: 0 rmse: 2.928087475261232\n","### iteration step: 0 rmse: 2.9280960472807953\n","### iteration step: 0 rmse: 2.9280931591230623\n","### iteration step: 0 rmse: 2.9280971688066466\n","### iteration step: 0 rmse: 2.928090937742057\n","### iteration step: 0 rmse: 2.9280982845859223\n","### iteration step: 0 rmse: 2.928094815096582\n","### iteration step: 0 rmse: 2.928083197662307\n","### iteration step: 0 rmse: 2.928092515768647\n","### iteration step: 0 rmse: 2.928088407692194\n","### iteration step: 0 rmse: 2.9280785901769524\n","### iteration step: 0 rmse: 2.9280652830735567\n","### iteration step: 0 rmse: 2.9280617793228454\n","### iteration step: 0 rmse: 2.928065631444347\n","### iteration step: 0 rmse: 2.9280533849291737\n","### iteration step: 0 rmse: 2.9280569884071475\n","### iteration step: 0 rmse: 2.928047863952902\n","### iteration step: 0 rmse: 2.9280518557767077\n","### iteration step: 0 rmse: 2.9280514355523524\n","### iteration step: 0 rmse: 2.9280395627365303\n","### iteration step: 0 rmse: 2.9280333941054386\n","### iteration step: 0 rmse: 2.9280265992962082\n","### iteration step: 0 rmse: 2.9280213335123784\n","### iteration step: 0 rmse: 2.9280175335369854\n","### iteration step: 0 rmse: 2.928008432961025\n","### iteration step: 0 rmse: 2.9280055277828336\n","### iteration step: 0 rmse: 2.9280062503529423\n","### iteration step: 0 rmse: 2.928008396352556\n","### iteration step: 0 rmse: 2.928008114049941\n","### iteration step: 0 rmse: 2.9280138070007014\n","### iteration step: 0 rmse: 2.9280203655466455\n","### iteration step: 0 rmse: 2.928031674867869\n","### iteration step: 0 rmse: 2.9280244447191826\n","### iteration step: 0 rmse: 2.9280346388979654\n","### iteration step: 0 rmse: 2.9280280762601465\n","### iteration step: 0 rmse: 2.9280184725382763\n","### iteration step: 0 rmse: 2.9280278290572532\n","### iteration step: 0 rmse: 2.928019791207719\n","### iteration step: 0 rmse: 2.9280236835390805\n","### iteration step: 0 rmse: 2.928019764944504\n","### iteration step: 0 rmse: 2.9280209537923936\n","### iteration step: 0 rmse: 2.928019278131501\n","### iteration step: 0 rmse: 2.928025659559549\n","### iteration step: 0 rmse: 2.928019372681194\n","### iteration step: 0 rmse: 2.928015557198797\n","### iteration step: 0 rmse: 2.928029047258277\n","### iteration step: 0 rmse: 2.9280260290285214\n","### iteration step: 0 rmse: 2.9280174938795698\n","### iteration step: 0 rmse: 2.9280014553982396\n","### iteration step: 0 rmse: 2.9280008488522467\n","### iteration step: 0 rmse: 2.927999447297804\n","### iteration step: 0 rmse: 2.9279928420377117\n","### iteration step: 0 rmse: 2.9279916674747524\n","### iteration step: 0 rmse: 2.927995046890105\n","### iteration step: 0 rmse: 2.927980976966354\n","### iteration step: 0 rmse: 2.9279697049342897\n","### iteration step: 0 rmse: 2.9279696333043645\n","### iteration step: 0 rmse: 2.9279695894269278\n","### iteration step: 0 rmse: 2.9279680965876294\n","### iteration step: 0 rmse: 2.927965534111541\n","### iteration step: 0 rmse: 2.9279593659982814\n","### iteration step: 0 rmse: 2.9279571618589944\n","### iteration step: 0 rmse: 2.927953089144869\n","### iteration step: 0 rmse: 2.927942934671684\n","### iteration step: 0 rmse: 2.927935516811322\n","### iteration step: 0 rmse: 2.9279315352660475\n","### iteration step: 0 rmse: 2.9279243461191236\n","### iteration step: 0 rmse: 2.927902152636381\n","### iteration step: 0 rmse: 2.9278817686551886\n","### iteration step: 0 rmse: 2.9278644329218078\n","### iteration step: 0 rmse: 2.927863215968709\n","### iteration step: 0 rmse: 2.927862476313624\n","### iteration step: 0 rmse: 2.9278455415446176\n","### iteration step: 0 rmse: 2.9278432646088635\n","### iteration step: 0 rmse: 2.9278411971175164\n","### iteration step: 0 rmse: 2.9278346824931405\n","### iteration step: 0 rmse: 2.9278346679889684\n","### iteration step: 0 rmse: 2.9278328665485143\n","### iteration step: 0 rmse: 2.9278224709200265\n","### iteration step: 0 rmse: 2.9278132086425455\n","### iteration step: 0 rmse: 2.9278019730425697\n","### iteration step: 0 rmse: 2.9277846697990837\n","### iteration step: 0 rmse: 2.927780877848572\n","### iteration step: 0 rmse: 2.9277635557669273\n","### iteration step: 0 rmse: 2.927755000911438\n","### iteration step: 0 rmse: 2.927745379127183\n","### iteration step: 0 rmse: 2.9277420412078645\n","### iteration step: 0 rmse: 2.9277391695136834\n","### iteration step: 0 rmse: 2.927725121885973\n","### iteration step: 0 rmse: 2.927719135514357\n","### iteration step: 0 rmse: 2.927712927759151\n","### iteration step: 0 rmse: 2.927704741297623\n","### iteration step: 0 rmse: 2.927696560307434\n","### iteration step: 0 rmse: 2.927691039271037\n","### iteration step: 0 rmse: 2.9276914086832226\n","### iteration step: 0 rmse: 2.9276947109651954\n","### iteration step: 0 rmse: 2.927704166835745\n","### iteration step: 0 rmse: 2.927702296949235\n","### iteration step: 0 rmse: 2.927703293039703\n","### iteration step: 0 rmse: 2.927700001002167\n","### iteration step: 0 rmse: 2.927699004379564\n","### iteration step: 0 rmse: 2.92770416527818\n","### iteration step: 0 rmse: 2.927701982351407\n","### iteration step: 0 rmse: 2.9276976105193864\n","### iteration step: 0 rmse: 2.9276884696051946\n","### iteration step: 0 rmse: 2.927691943826307\n","### iteration step: 0 rmse: 2.9276891296880154\n","### iteration step: 0 rmse: 2.9276893775421837\n","### iteration step: 0 rmse: 2.9276899405313097\n","### iteration step: 0 rmse: 2.927681896483587\n","### iteration step: 0 rmse: 2.9276824851691625\n","### iteration step: 0 rmse: 2.927683705564312\n","### iteration step: 0 rmse: 2.927680522253832\n","### iteration step: 0 rmse: 2.9276719082731084\n","### iteration step: 0 rmse: 2.92766270441202\n","### iteration step: 0 rmse: 2.9276555641537985\n","### iteration step: 0 rmse: 2.9276515416837\n","### iteration step: 0 rmse: 2.9276448753389195\n","### iteration step: 0 rmse: 2.927649087400188\n","### iteration step: 0 rmse: 2.9276457630477513\n","### iteration step: 0 rmse: 2.9276489718093557\n","### iteration step: 0 rmse: 2.927649021822809\n","### iteration step: 0 rmse: 2.9276428990549186\n","### iteration step: 0 rmse: 2.927641349561324\n","### iteration step: 0 rmse: 2.927643627213785\n","### iteration step: 0 rmse: 2.9276352328210904\n","### iteration step: 0 rmse: 2.927636709190908\n","### iteration step: 0 rmse: 2.927636737333393\n","### iteration step: 0 rmse: 2.9276350695749715\n","### iteration step: 0 rmse: 2.927621494708744\n","### iteration step: 0 rmse: 2.9276232803874604\n","### iteration step: 0 rmse: 2.927623276482683\n","### iteration step: 0 rmse: 2.9276171779070306\n","### iteration step: 0 rmse: 2.927614525719995\n","### iteration step: 0 rmse: 2.9276070301173385\n","### iteration step: 0 rmse: 2.9276127039334727\n","### iteration step: 0 rmse: 2.9276116648410975\n","### iteration step: 0 rmse: 2.92760011122866\n","### iteration step: 0 rmse: 2.927583907430866\n","### iteration step: 0 rmse: 2.9275778521329134\n","### iteration step: 0 rmse: 2.9275840696797175\n","### iteration step: 0 rmse: 2.9275865390710845\n","### iteration step: 0 rmse: 2.927569154982377\n","### iteration step: 0 rmse: 2.927550900122943\n","### iteration step: 0 rmse: 2.9275522929836133\n","### iteration step: 0 rmse: 2.9275246862113304\n","### iteration step: 0 rmse: 2.927489153185367\n","### iteration step: 0 rmse: 2.9274909253099484\n","### iteration step: 0 rmse: 2.9274885053294755\n","### iteration step: 0 rmse: 2.927487213223665\n","### iteration step: 0 rmse: 2.9274904585805412\n","### iteration step: 0 rmse: 2.9274755333927254\n","### iteration step: 0 rmse: 2.927444887200491\n","### iteration step: 0 rmse: 2.9274361981013812\n","### iteration step: 0 rmse: 2.9274391107672213\n","### iteration step: 0 rmse: 2.9274381658345376\n","### iteration step: 0 rmse: 2.927433479485104\n","### iteration step: 0 rmse: 2.9274057325307066\n","### iteration step: 0 rmse: 2.9274033741962144\n","### iteration step: 0 rmse: 2.927394819269708\n","### iteration step: 0 rmse: 2.9273872405157766\n","### iteration step: 0 rmse: 2.927360527259855\n","### iteration step: 0 rmse: 2.9273387685733483\n","### iteration step: 0 rmse: 2.9273334855306317\n","### iteration step: 0 rmse: 2.9273223301377405\n","### iteration step: 0 rmse: 2.927311351007543\n","### iteration step: 0 rmse: 2.9273042841976937\n","### iteration step: 0 rmse: 2.927302686479451\n","### iteration step: 0 rmse: 2.927288274581654\n","### iteration step: 0 rmse: 2.9272520687997843\n","### iteration step: 0 rmse: 2.927245409891312\n","### iteration step: 0 rmse: 2.9272405257851752\n","### iteration step: 0 rmse: 2.927236325100319\n","### iteration step: 0 rmse: 2.9272095084125676\n","### iteration step: 0 rmse: 2.9272126370661025\n","### iteration step: 0 rmse: 2.9272147295891\n","### iteration step: 0 rmse: 2.9272208950877054\n","### iteration step: 0 rmse: 2.9272191194137562\n","### iteration step: 0 rmse: 2.9271862764509335\n","### iteration step: 0 rmse: 2.927175304393629\n","### iteration step: 0 rmse: 2.9271686081236092\n","### iteration step: 0 rmse: 2.927169594020586\n","### iteration step: 0 rmse: 2.9271539392724946\n","### iteration step: 0 rmse: 2.927112440784369\n","### iteration step: 0 rmse: 2.9270813328631022\n","### iteration step: 0 rmse: 2.9270771415289163\n","### iteration step: 0 rmse: 2.9270499611757246\n","### iteration step: 0 rmse: 2.9270446187520753\n","### iteration step: 0 rmse: 2.926971218496565\n","### iteration step: 0 rmse: 2.926959601322736\n","### iteration step: 0 rmse: 2.9269571883401237\n","### iteration step: 0 rmse: 2.926950947690827\n","### iteration step: 0 rmse: 2.926941103054918\n","### iteration step: 0 rmse: 2.9269437791257604\n","### iteration step: 0 rmse: 2.9269402188349902\n","### iteration step: 0 rmse: 2.9269344686557996\n","### iteration step: 0 rmse: 2.9269358087073383\n","### iteration step: 0 rmse: 2.9269316833123766\n","### iteration step: 0 rmse: 2.926859347906375\n","### iteration step: 0 rmse: 2.926817982035595\n","### iteration step: 0 rmse: 2.9267960753368225\n","### iteration step: 0 rmse: 2.9267917381402766\n","### iteration step: 0 rmse: 2.9267726453941183\n","### iteration step: 0 rmse: 2.9267761311367684\n","### iteration step: 0 rmse: 2.926778580630229\n","### iteration step: 0 rmse: 2.9267701484242856\n","### iteration step: 0 rmse: 2.926762752786913\n","### iteration step: 0 rmse: 2.9267745901803255\n","### iteration step: 0 rmse: 2.9267631001564056\n","### iteration step: 0 rmse: 2.926742957608969\n","### iteration step: 0 rmse: 2.9267398971110397\n","### iteration step: 0 rmse: 2.9267449202104596\n","### iteration step: 0 rmse: 2.926743430688592\n","### iteration step: 0 rmse: 2.926744165999161\n","### iteration step: 0 rmse: 2.9267337418289836\n","### iteration step: 0 rmse: 2.926703176570384\n","### iteration step: 0 rmse: 2.926704584029156\n","### iteration step: 0 rmse: 2.9267110591034173\n","### iteration step: 0 rmse: 2.9267108026151925\n","### iteration step: 0 rmse: 2.9266984403543255\n","### iteration step: 0 rmse: 2.9266540149602016\n","### iteration step: 0 rmse: 2.9266354333885682\n","### iteration step: 0 rmse: 2.9265541958383197\n","### iteration step: 0 rmse: 2.926555819284144\n","### iteration step: 0 rmse: 2.926539695774084\n","### iteration step: 0 rmse: 2.9265062110660223\n","### iteration step: 0 rmse: 2.926480576714802\n","### iteration step: 0 rmse: 2.9264800753948337\n","### iteration step: 0 rmse: 2.926477221719608\n","### iteration step: 0 rmse: 2.9264547395965375\n","### iteration step: 0 rmse: 2.9264551453323913\n","### iteration step: 0 rmse: 2.9264286258886187\n","### iteration step: 0 rmse: 2.9264280256204684\n","### iteration step: 0 rmse: 2.9264190161052372\n","### iteration step: 0 rmse: 2.926391725287623\n","### iteration step: 0 rmse: 2.9263564849716204\n","### iteration step: 0 rmse: 2.9262594236219837\n","### iteration step: 0 rmse: 2.9262568561129085\n","### iteration step: 0 rmse: 2.926247358897277\n","### iteration step: 0 rmse: 2.926249500382274\n","### iteration step: 0 rmse: 2.926187941731052\n","### iteration step: 0 rmse: 2.9261820061414316\n","### iteration step: 0 rmse: 2.9261842566127694\n","### iteration step: 0 rmse: 2.9261555652031155\n","### iteration step: 0 rmse: 2.9261479472774523\n","### iteration step: 0 rmse: 2.9261455643390275\n","### iteration step: 0 rmse: 2.926142582853925\n","### iteration step: 0 rmse: 2.9261430659094025\n","### iteration step: 0 rmse: 2.92613869726874\n","### iteration step: 0 rmse: 2.9260808953718898\n","### iteration step: 0 rmse: 2.9260678503992676\n","### iteration step: 0 rmse: 2.9260647372435784\n","### iteration step: 0 rmse: 2.9260663933116327\n","### iteration step: 0 rmse: 2.9260332246219143\n","### iteration step: 0 rmse: 2.9260264501281785\n","### iteration step: 0 rmse: 2.9260255584620305\n","### iteration step: 0 rmse: 2.925964188325907\n","### iteration step: 0 rmse: 2.9258957521881706\n","### iteration step: 0 rmse: 2.9258906007965115\n","### iteration step: 0 rmse: 2.9258285189128292\n","### iteration step: 0 rmse: 2.925757337632211\n","### iteration step: 0 rmse: 2.925708411327374\n","### iteration step: 0 rmse: 2.925709368322236\n","### iteration step: 0 rmse: 2.9257098547526903\n","### iteration step: 0 rmse: 2.9256937491281563\n","### iteration step: 0 rmse: 2.9256914028175007\n","### iteration step: 0 rmse: 2.9256730004035267\n","### iteration step: 0 rmse: 2.9255112916267367\n","### iteration step: 0 rmse: 2.925442105541781\n","### iteration step: 0 rmse: 2.9253419236628164\n","### iteration step: 0 rmse: 2.9253159153079746\n","### iteration step: 0 rmse: 2.925301769955691\n","### iteration step: 0 rmse: 2.9253061885450307\n","### iteration step: 0 rmse: 2.925254779903909\n","### iteration step: 0 rmse: 2.9252343450902765\n","### iteration step: 0 rmse: 2.9252249747156025\n","### iteration step: 0 rmse: 2.9251916543055705\n","### iteration step: 0 rmse: 2.92516960642038\n","### iteration step: 0 rmse: 2.925156691977015\n","### iteration step: 0 rmse: 2.9251508531240042\n","### iteration step: 0 rmse: 2.9251425040312014\n","### iteration step: 0 rmse: 2.925129315095053\n","### iteration step: 0 rmse: 2.925078078397366\n","### iteration step: 0 rmse: 2.9250607013655086\n","### iteration step: 0 rmse: 2.9250402547452454\n","### iteration step: 0 rmse: 2.925043572443116\n","### iteration step: 0 rmse: 2.92496375734232\n","### iteration step: 0 rmse: 2.9249775163003804\n","### iteration step: 0 rmse: 2.924974269692045\n","### iteration step: 0 rmse: 2.924970905328518\n","### iteration step: 0 rmse: 2.9249700304241717\n","### iteration step: 0 rmse: 2.924933426949351\n","### iteration step: 0 rmse: 2.924940563503018\n","### iteration step: 0 rmse: 2.924932345231755\n","### iteration step: 0 rmse: 2.924896480990017\n","### iteration step: 0 rmse: 2.9248310705236276\n","### iteration step: 0 rmse: 2.924784296220652\n","### iteration step: 0 rmse: 2.924750684494242\n","### iteration step: 0 rmse: 2.9247206038554707\n","### iteration step: 0 rmse: 2.924681330367005\n","### iteration step: 0 rmse: 2.9246692563655334\n","### iteration step: 0 rmse: 2.924639396753396\n","### iteration step: 0 rmse: 2.9246368408133856\n","### iteration step: 0 rmse: 2.9245570002481887\n","### iteration step: 0 rmse: 2.9244570747399097\n","### iteration step: 0 rmse: 2.9243518900751106\n","### iteration step: 0 rmse: 2.9243492601750125\n","### iteration step: 0 rmse: 2.924256901932091\n","### iteration step: 0 rmse: 2.9241444945878685\n","### iteration step: 0 rmse: 2.92411293841865\n","### iteration step: 0 rmse: 2.9240942294682464\n","### iteration step: 0 rmse: 2.924082000015569\n","### iteration step: 0 rmse: 2.924074700851622\n","### iteration step: 0 rmse: 2.924030264638837\n","### iteration step: 0 rmse: 2.92399796939922\n","### iteration step: 0 rmse: 2.923989426996688\n","### iteration step: 0 rmse: 2.9239931260967142\n","### iteration step: 0 rmse: 2.923910889411057\n","### iteration step: 0 rmse: 2.923806587631373\n","### iteration step: 0 rmse: 2.9238074420497844\n","### iteration step: 0 rmse: 2.9237940484475495\n","### iteration step: 0 rmse: 2.923784256414853\n","### iteration step: 0 rmse: 2.923758559935623\n","### iteration step: 0 rmse: 2.9237592183073082\n","### iteration step: 0 rmse: 2.9236612329607685\n","### iteration step: 0 rmse: 2.9236561631489715\n","### iteration step: 0 rmse: 2.923555256419474\n","### iteration step: 0 rmse: 2.923548467277523\n","### iteration step: 0 rmse: 2.9235242115475617\n","### iteration step: 0 rmse: 2.9235093049431637\n","### iteration step: 0 rmse: 2.9234948490085775\n","### iteration step: 0 rmse: 2.9234954849813417\n","### iteration step: 0 rmse: 2.9234700401828486\n","### iteration step: 0 rmse: 2.923452407044608\n","### iteration step: 0 rmse: 2.9234075656913636\n","### iteration step: 0 rmse: 2.923407940464008\n","### iteration step: 0 rmse: 2.9233959045357225\n","### iteration step: 0 rmse: 2.9233856302012864\n","### iteration step: 0 rmse: 2.9233868054486263\n","### iteration step: 0 rmse: 2.923308766212797\n","### iteration step: 0 rmse: 2.9233005917739914\n","### iteration step: 0 rmse: 2.9233066540711636\n","### iteration step: 0 rmse: 2.9232702916766375\n","### iteration step: 0 rmse: 2.9232408579648053\n","### iteration step: 0 rmse: 2.9232363010786733\n","### iteration step: 0 rmse: 2.9231967421396217\n","### iteration step: 0 rmse: 2.923109643156118\n","### iteration step: 0 rmse: 2.923113383942896\n","### iteration step: 0 rmse: 2.9230699909249775\n","### iteration step: 0 rmse: 2.92300983430497\n","### iteration step: 0 rmse: 2.9230108062059577\n","### iteration step: 0 rmse: 2.9229642263119233\n","### iteration step: 0 rmse: 2.9229522698284374\n","### iteration step: 0 rmse: 2.9229391491719476\n","### iteration step: 0 rmse: 2.922921246744546\n","### iteration step: 0 rmse: 2.9229041207295787\n","### iteration step: 0 rmse: 2.9228605360547375\n","### iteration step: 0 rmse: 2.922861868075568\n","### iteration step: 0 rmse: 2.9228336911290813\n","### iteration step: 0 rmse: 2.9228267718683436\n","### iteration step: 0 rmse: 2.9228287376752644\n","### iteration step: 0 rmse: 2.9228210165852486\n","### iteration step: 0 rmse: 2.9226332102451957\n","### iteration step: 0 rmse: 2.9226342160201675\n","### iteration step: 0 rmse: 2.9226280761352497\n","### iteration step: 0 rmse: 2.9226238162100704\n","### iteration step: 0 rmse: 2.9226173649859084\n","### iteration step: 0 rmse: 2.9225909951369946\n","### iteration step: 0 rmse: 2.9225966061082245\n","### iteration step: 0 rmse: 2.9225629212876987\n","### iteration step: 0 rmse: 2.92251908782124\n","### iteration step: 0 rmse: 2.9224644133984437\n","### iteration step: 0 rmse: 2.9223642910099015\n","### iteration step: 0 rmse: 2.9221694165841843\n","### iteration step: 0 rmse: 2.9221682429510736\n","### iteration step: 0 rmse: 2.9221713814562538\n","### iteration step: 0 rmse: 2.9221668634936755\n","### iteration step: 0 rmse: 2.922166926445607\n","### iteration step: 0 rmse: 2.9221179713280296\n","### iteration step: 0 rmse: 2.922083339622359\n","### iteration step: 0 rmse: 2.9220373249471057\n","### iteration step: 0 rmse: 2.9219834221691907\n","### iteration step: 0 rmse: 2.9219784559345796\n","### iteration step: 0 rmse: 2.9219676653556106\n","### iteration step: 0 rmse: 2.9219551731450326\n","### iteration step: 0 rmse: 2.9219561075496254\n","### iteration step: 0 rmse: 2.9218488525655175\n","### iteration step: 0 rmse: 2.921835778103927\n","### iteration step: 0 rmse: 2.921836357607309\n","### iteration step: 0 rmse: 2.9218367958756426\n","### iteration step: 0 rmse: 2.9218220754059328\n","### iteration step: 0 rmse: 2.921819850787386\n","### iteration step: 0 rmse: 2.9218133671389834\n","### iteration step: 0 rmse: 2.921813752095185\n","### iteration step: 0 rmse: 2.9218008492199954\n","### iteration step: 0 rmse: 2.9217984450442045\n","### iteration step: 0 rmse: 2.9217981757545752\n","### iteration step: 0 rmse: 2.921800309404815\n","### iteration step: 0 rmse: 2.9217477553143496\n","### iteration step: 0 rmse: 2.921701865578356\n","### iteration step: 0 rmse: 2.921699244068374\n","### iteration step: 0 rmse: 2.9216916815719522\n","### iteration step: 0 rmse: 2.9216845118130235\n","### iteration step: 0 rmse: 2.9216903512862045\n","### iteration step: 0 rmse: 2.921478073266558\n","### iteration step: 0 rmse: 2.921477788514169\n","### iteration step: 0 rmse: 2.921442187462969\n","### iteration step: 0 rmse: 2.9214235070811707\n","### iteration step: 0 rmse: 2.9213623970913294\n","### iteration step: 0 rmse: 2.9213560541498436\n","### iteration step: 0 rmse: 2.921323945762711\n","### iteration step: 0 rmse: 2.9213020671736407\n","### iteration step: 0 rmse: 2.921300466789693\n","### iteration step: 0 rmse: 2.9213002769600473\n","### iteration step: 0 rmse: 2.9210564833011525\n","### iteration step: 0 rmse: 2.921054661618074\n","### iteration step: 0 rmse: 2.9210560166211614\n","### iteration step: 0 rmse: 2.920990735360656\n","### iteration step: 0 rmse: 2.920973515809071\n","### iteration step: 0 rmse: 2.9208499350793247\n","### iteration step: 0 rmse: 2.920833638548712\n","### iteration step: 0 rmse: 2.9207194907663525\n","### iteration step: 0 rmse: 2.9206380350269336\n","### iteration step: 0 rmse: 2.9206414411458694\n","### iteration step: 0 rmse: 2.920607358972415\n","### iteration step: 0 rmse: 2.920502090644563\n","### iteration step: 0 rmse: 2.9204852684219937\n","### iteration step: 0 rmse: 2.9204588113413488\n","### iteration step: 0 rmse: 2.920454679008572\n","### iteration step: 0 rmse: 2.920449082257026\n","### iteration step: 0 rmse: 2.9202352318031983\n","### iteration step: 0 rmse: 2.9202249912156146\n","### iteration step: 0 rmse: 2.920216638258202\n","### iteration step: 0 rmse: 2.920215960696835\n","### iteration step: 0 rmse: 2.9201827798205837\n","### iteration step: 0 rmse: 2.920171548799892\n","### iteration step: 0 rmse: 2.9201638190014525\n","### iteration step: 0 rmse: 2.9199811407321814\n","### iteration step: 0 rmse: 2.919977148245765\n","### iteration step: 0 rmse: 2.9199757773827844\n","### iteration step: 0 rmse: 2.9199426218590623\n","### iteration step: 0 rmse: 2.9199408837047645\n","### iteration step: 0 rmse: 2.9199343901849324\n","### iteration step: 0 rmse: 2.919834930854511\n","### iteration step: 0 rmse: 2.9198213887989124\n","### iteration step: 0 rmse: 2.919810194774297\n","### iteration step: 0 rmse: 2.919671638115415\n","### iteration step: 0 rmse: 2.919672813642604\n","### iteration step: 0 rmse: 2.919669384230257\n","### iteration step: 0 rmse: 2.919469310942732\n","### iteration step: 0 rmse: 2.919457853179408\n","### iteration step: 0 rmse: 2.9194124443821434\n","### iteration step: 0 rmse: 2.919327795660325\n","### iteration step: 0 rmse: 2.919246366663925\n","### iteration step: 0 rmse: 2.9192291823774\n","### iteration step: 0 rmse: 2.919199366398609\n","### iteration step: 0 rmse: 2.9191310794617165\n","### iteration step: 0 rmse: 2.9191250105760758\n","### iteration step: 0 rmse: 2.9191195587452285\n","### iteration step: 0 rmse: 2.9190895783285855\n","### iteration step: 0 rmse: 2.9190764166629575\n","### iteration step: 0 rmse: 2.9190222902602048\n","### iteration step: 0 rmse: 2.919021087031777\n","### iteration step: 0 rmse: 2.9189934494509817\n","### iteration step: 0 rmse: 2.918900710620785\n","### iteration step: 0 rmse: 2.918894262268534\n","### iteration step: 0 rmse: 2.918847115008195\n","### iteration step: 0 rmse: 2.9187514325223325\n","### iteration step: 0 rmse: 2.918513497063337\n","### iteration step: 0 rmse: 2.9185141607507634\n","### iteration step: 0 rmse: 2.9185070125502244\n","### iteration step: 0 rmse: 2.9184031090943656\n","### iteration step: 0 rmse: 2.9183146671392626\n","### iteration step: 0 rmse: 2.9182679787943675\n","### iteration step: 0 rmse: 2.918268657556077\n","### iteration step: 0 rmse: 2.9182527521522688\n","### iteration step: 0 rmse: 2.9182375427768257\n","### iteration step: 0 rmse: 2.9181090376330405\n","### iteration step: 0 rmse: 2.9180878467591627\n","### iteration step: 0 rmse: 2.918060107367564\n","### iteration step: 0 rmse: 2.918064052120591\n","### iteration step: 0 rmse: 2.918033803805375\n","### iteration step: 0 rmse: 2.9179264973107415\n","### iteration step: 0 rmse: 2.9178918434606644\n","### iteration step: 0 rmse: 2.917886443226342\n","### iteration step: 0 rmse: 2.9178328979889936\n","### iteration step: 0 rmse: 2.917622217235283\n","### iteration step: 0 rmse: 2.917598601929853\n","### iteration step: 0 rmse: 2.9175839062777755\n","### iteration step: 0 rmse: 2.9175503429891436\n","### iteration step: 0 rmse: 2.91748492927737\n","### iteration step: 0 rmse: 2.917463522500274\n","### iteration step: 0 rmse: 2.917331124163762\n","### iteration step: 0 rmse: 2.917321880394075\n","### iteration step: 0 rmse: 2.917317470252598\n","### iteration step: 0 rmse: 2.917214108593738\n","### iteration step: 0 rmse: 2.917090024050811\n","### iteration step: 0 rmse: 2.917077549405316\n","### iteration step: 0 rmse: 2.9170610247169226\n","### iteration step: 0 rmse: 2.9170616448822644\n","### iteration step: 0 rmse: 2.916880309021943\n","### iteration step: 0 rmse: 2.916653199742008\n","### iteration step: 0 rmse: 2.9165858045578292\n","### iteration step: 0 rmse: 2.9165413240871696\n","### iteration step: 0 rmse: 2.916526153610443\n","### iteration step: 0 rmse: 2.9165095660653493\n","### iteration step: 0 rmse: 2.9165083745462765\n","### iteration step: 0 rmse: 2.916449289030299\n","### iteration step: 0 rmse: 2.9164263431014787\n","### iteration step: 0 rmse: 2.916282115017811\n","### iteration step: 0 rmse: 2.9161777830549136\n","### iteration step: 0 rmse: 2.916141219540974\n","### iteration step: 0 rmse: 2.916038792437572\n","### iteration step: 0 rmse: 2.9159184431429073\n","### iteration step: 0 rmse: 2.915922067731306\n","### iteration step: 0 rmse: 2.9159177527106683\n","### iteration step: 0 rmse: 2.9159106723923447\n","### iteration step: 0 rmse: 2.915900315496861\n","### iteration step: 0 rmse: 2.9158965077469015\n","### iteration step: 0 rmse: 2.9157884042606192\n","### iteration step: 0 rmse: 2.915772252115196\n","### iteration step: 0 rmse: 2.9157672956991623\n","### iteration step: 0 rmse: 2.915678864344241\n","### iteration step: 0 rmse: 2.9157337007014488\n","### iteration step: 0 rmse: 2.9156816674966057\n","### iteration step: 0 rmse: 2.9156630101873047\n","### iteration step: 0 rmse: 2.91564878171021\n","### iteration step: 0 rmse: 2.915625526091146\n","### iteration step: 0 rmse: 2.9155784053014835\n","### iteration step: 0 rmse: 2.9155567464862893\n","### iteration step: 0 rmse: 2.9154240844844796\n","### iteration step: 0 rmse: 2.9154243045076265\n","### iteration step: 0 rmse: 2.915314904350359\n","### iteration step: 0 rmse: 2.9153159247879943\n","### iteration step: 0 rmse: 2.91531273098278\n","### iteration step: 0 rmse: 2.9151700922136716\n","### iteration step: 0 rmse: 2.9150169245531483\n","### iteration step: 0 rmse: 2.9150063171006786\n","### iteration step: 0 rmse: 2.9149866118157903\n","### iteration step: 0 rmse: 2.914965061158356\n","### iteration step: 0 rmse: 2.9149155020155026\n","### iteration step: 0 rmse: 2.9148960940002007\n","### iteration step: 0 rmse: 2.9148092140447153\n","### iteration step: 0 rmse: 2.9147219783318\n","### iteration step: 0 rmse: 2.914717155530636\n","### iteration step: 0 rmse: 2.9147109183603077\n","### iteration step: 0 rmse: 2.9146722858897185\n","### iteration step: 0 rmse: 2.914671848237401\n","### iteration step: 0 rmse: 2.9146094881697002\n","### iteration step: 0 rmse: 2.9145934950783383\n","### iteration step: 0 rmse: 2.9145169020558663\n","### iteration step: 0 rmse: 2.914414088093593\n","### iteration step: 0 rmse: 2.9143980194331314\n","### iteration step: 0 rmse: 2.9142512504955684\n","### iteration step: 0 rmse: 2.914246091544494\n","### iteration step: 0 rmse: 2.914215086833732\n","### iteration step: 0 rmse: 2.91417271388101\n","### iteration step: 0 rmse: 2.9141714411041066\n","### iteration step: 0 rmse: 2.9141713162710934\n","### iteration step: 0 rmse: 2.914163832353934\n","### iteration step: 0 rmse: 2.91411446629862\n","### iteration step: 0 rmse: 2.9140298425998186\n","### iteration step: 0 rmse: 2.9138999882873833\n","### iteration step: 0 rmse: 2.913788119311269\n","### iteration step: 0 rmse: 2.91365057947485\n","### iteration step: 0 rmse: 2.913613875921808\n","### iteration step: 0 rmse: 2.9135535465336146\n","### iteration step: 0 rmse: 2.9134717202102505\n","### iteration step: 0 rmse: 2.9134309400436664\n","### iteration step: 0 rmse: 2.913286915867707\n","### iteration step: 0 rmse: 2.9132556750822087\n","### iteration step: 0 rmse: 2.913133742071661\n","### iteration step: 0 rmse: 2.9131350984267343\n","### iteration step: 0 rmse: 2.913126085652787\n","### iteration step: 0 rmse: 2.9131149845141726\n","### iteration step: 0 rmse: 2.9131106084672655\n","### iteration step: 0 rmse: 2.91296532935494\n","### iteration step: 0 rmse: 2.9128574937133678\n","### iteration step: 0 rmse: 2.9128495898455293\n","### iteration step: 0 rmse: 2.9128389564067216\n","### iteration step: 0 rmse: 2.912817052649359\n","### iteration step: 0 rmse: 2.912857716541997\n","### iteration step: 0 rmse: 2.9128357949164094\n","### iteration step: 0 rmse: 2.9127644910087196\n","### iteration step: 0 rmse: 2.9127125683962514\n","### iteration step: 0 rmse: 2.912600011536693\n","### iteration step: 0 rmse: 2.9125994683890095\n","### iteration step: 0 rmse: 2.9125718479895353\n","### iteration step: 0 rmse: 2.9125601631851707\n","### iteration step: 0 rmse: 2.912465408378705\n","### iteration step: 0 rmse: 2.9124528949722057\n","### iteration step: 0 rmse: 2.9124480400035786\n","### iteration step: 0 rmse: 2.9124436659971704\n","### iteration step: 0 rmse: 2.912400512304652\n","### iteration step: 0 rmse: 2.912316868728849\n","### iteration step: 0 rmse: 2.9122833255585374\n","### iteration step: 0 rmse: 2.9122238597253993\n","### iteration step: 0 rmse: 2.9122113033486885\n","### iteration step: 0 rmse: 2.912198865457376\n","### iteration step: 0 rmse: 2.912177236105864\n","### iteration step: 0 rmse: 2.9121412180199964\n","### iteration step: 0 rmse: 2.912110845741889\n","### iteration step: 0 rmse: 2.9120470994791012\n","### iteration step: 0 rmse: 2.9120086522914836\n","### iteration step: 0 rmse: 2.9119322907458343\n","### iteration step: 0 rmse: 2.911873230958037\n","### iteration step: 0 rmse: 2.911752443704847\n","### iteration step: 0 rmse: 2.911650298319812\n","### iteration step: 0 rmse: 2.911606062464372\n","### iteration step: 0 rmse: 2.9115228174374974\n","### iteration step: 0 rmse: 2.911447516794383\n","### iteration step: 0 rmse: 2.9113770330599227\n","### iteration step: 0 rmse: 2.9113382732918343\n","### iteration step: 0 rmse: 2.9113348011879205\n","### iteration step: 0 rmse: 2.9113277983510373\n","### iteration step: 0 rmse: 2.911322689119349\n","### iteration step: 0 rmse: 2.911322700944763\n","### iteration step: 0 rmse: 2.9113238900250304\n","### iteration step: 0 rmse: 2.9112952591004224\n","### iteration step: 0 rmse: 2.9112968188914827\n","### iteration step: 0 rmse: 2.911284036852755\n","### iteration step: 0 rmse: 2.9112651323343717\n","### iteration step: 0 rmse: 2.9112457012079758\n","### iteration step: 0 rmse: 2.9112433698564635\n","### iteration step: 0 rmse: 2.911215078942564\n","### iteration step: 0 rmse: 2.9111111690393123\n","### iteration step: 0 rmse: 2.9110773383311384\n","### iteration step: 0 rmse: 2.9110143714732066\n","### iteration step: 0 rmse: 2.910951800148313\n","### iteration step: 0 rmse: 2.910902193769801\n","### iteration step: 0 rmse: 2.910824374817358\n","### iteration step: 0 rmse: 2.91079492354293\n","### iteration step: 0 rmse: 2.9107641590847395\n","### iteration step: 0 rmse: 2.910711472898769\n","### iteration step: 0 rmse: 2.9106728571408222\n","### iteration step: 0 rmse: 2.910669996159183\n","### iteration step: 0 rmse: 2.9106698670018605\n","### iteration step: 0 rmse: 2.9106528240064007\n","### iteration step: 0 rmse: 2.910632393427943\n","### iteration step: 0 rmse: 2.9106305924216773\n","### iteration step: 0 rmse: 2.9105681667826175\n","### iteration step: 0 rmse: 2.910528015400831\n","### iteration step: 0 rmse: 2.910525656294819\n","### iteration step: 0 rmse: 2.9104781158562716\n","### iteration step: 0 rmse: 2.910464636868401\n","### iteration step: 0 rmse: 2.910408199951082\n","### iteration step: 0 rmse: 2.9103719374079433\n","### iteration step: 0 rmse: 2.910366528219925\n","### iteration step: 0 rmse: 2.910364527630193\n","### iteration step: 0 rmse: 2.9103638453185754\n","### iteration step: 0 rmse: 2.910363024817879\n","### iteration step: 0 rmse: 2.910315195724012\n","### iteration step: 0 rmse: 2.9102623511945676\n","### iteration step: 0 rmse: 2.9102349734383153\n","### iteration step: 0 rmse: 2.9102011935353684\n","### iteration step: 0 rmse: 2.910197449989796\n","### iteration step: 0 rmse: 2.910118199254456\n","### iteration step: 0 rmse: 2.9100776550627563\n","### iteration step: 0 rmse: 2.9100572843846053\n","### iteration step: 0 rmse: 2.9100159309731697\n","### iteration step: 0 rmse: 2.9100152400051744\n","### iteration step: 0 rmse: 2.9100151088386177\n","### iteration step: 0 rmse: 2.9100077847498196\n","### iteration step: 0 rmse: 2.9099821294807082\n","### iteration step: 0 rmse: 2.9098841512632565\n","### iteration step: 0 rmse: 2.9098296697490853\n","### iteration step: 0 rmse: 2.909767988901584\n","### iteration step: 0 rmse: 2.909722956504702\n","### iteration step: 0 rmse: 2.9096451846626334\n","### iteration step: 0 rmse: 2.9096380556396557\n","### iteration step: 0 rmse: 2.9095623928174494\n","### iteration step: 0 rmse: 2.9095116782941712\n","### iteration step: 0 rmse: 2.9094704199401225\n","### iteration step: 0 rmse: 2.9094205792539585\n","### iteration step: 0 rmse: 2.9093994287648233\n","### iteration step: 0 rmse: 2.909393202184434\n","### iteration step: 0 rmse: 2.9093825461483074\n","### iteration step: 0 rmse: 2.9093784117331225\n","### iteration step: 0 rmse: 2.909348369059214\n","### iteration step: 0 rmse: 2.9093155731583487\n","### iteration step: 0 rmse: 2.9092774268126136\n","### iteration step: 0 rmse: 2.909230561125703\n","### iteration step: 0 rmse: 2.90919813483103\n","### iteration step: 0 rmse: 2.90910640640615\n","### iteration step: 0 rmse: 2.909066521373578\n","### iteration step: 0 rmse: 2.9090304435894714\n","### iteration step: 0 rmse: 2.9090776117731787\n","### iteration step: 0 rmse: 2.909038666234511\n","### iteration step: 0 rmse: 2.9090175822604514\n","### iteration step: 0 rmse: 2.909051953970558\n","### iteration step: 0 rmse: 2.909024040808569\n","### iteration step: 0 rmse: 2.909047277449929\n","### iteration step: 0 rmse: 2.9089995826787423\n","### iteration step: 0 rmse: 2.908958017424595\n","### iteration step: 0 rmse: 2.9089285334058164\n","### iteration step: 0 rmse: 2.908909523132903\n","### iteration step: 0 rmse: 2.9088987171081517\n","### iteration step: 0 rmse: 2.90889458759573\n","### iteration step: 0 rmse: 2.9088595789075704\n","### iteration step: 0 rmse: 2.9088141111012553\n","### iteration step: 0 rmse: 2.9087793069070043\n","### iteration step: 0 rmse: 2.9087751142574296\n","### iteration step: 0 rmse: 2.908772016262351\n","### iteration step: 0 rmse: 2.9087681804630057\n","### iteration step: 0 rmse: 2.908742259939391\n","### iteration step: 0 rmse: 2.9087291804078608\n","### iteration step: 0 rmse: 2.908686742176219\n","### iteration step: 0 rmse: 2.9086587537020763\n","### iteration step: 0 rmse: 2.908657717197782\n","### iteration step: 0 rmse: 2.9086187214841366\n","### iteration step: 0 rmse: 2.9086284446606427\n","### iteration step: 0 rmse: 2.908605742664558\n","### iteration step: 0 rmse: 2.908532978427697\n","### iteration step: 0 rmse: 2.908504304176811\n","### iteration step: 0 rmse: 2.9085113832113114\n","### iteration step: 0 rmse: 2.9084896495187453\n","### iteration step: 0 rmse: 2.908479746929117\n","### iteration step: 0 rmse: 2.908444910528896\n","### iteration step: 0 rmse: 2.908397958170551\n","### iteration step: 0 rmse: 2.9083913512368604\n","### iteration step: 0 rmse: 2.9083714736731174\n","### iteration step: 0 rmse: 2.9083535741898596\n","### iteration step: 0 rmse: 2.908326253270352\n","### iteration step: 0 rmse: 2.908294296672733\n","### iteration step: 0 rmse: 2.9082909000019246\n","### iteration step: 0 rmse: 2.9082745181785588\n","### iteration step: 0 rmse: 2.908198195784732\n","### iteration step: 0 rmse: 2.90816187301918\n","### iteration step: 0 rmse: 2.908139822161522\n","### iteration step: 0 rmse: 2.9081137833075315\n","### iteration step: 0 rmse: 2.9080925453860464\n","### iteration step: 0 rmse: 2.9080622156466327\n","### iteration step: 0 rmse: 2.9080579447636263\n","### iteration step: 0 rmse: 2.908082125842581\n","### iteration step: 0 rmse: 2.9080666397661608\n","### iteration step: 0 rmse: 2.908030389715362\n","### iteration step: 0 rmse: 2.9080150851393913\n","### iteration step: 0 rmse: 2.9079892213634397\n","### iteration step: 0 rmse: 2.9080168748784456\n","### iteration step: 0 rmse: 2.908025796522542\n","### iteration step: 0 rmse: 2.9080195616023725\n","### iteration step: 0 rmse: 2.9080180639006277\n","### iteration step: 0 rmse: 2.9079633567297622\n","### iteration step: 0 rmse: 2.9079477765524433\n","### iteration step: 0 rmse: 2.907942754012014\n","### iteration step: 0 rmse: 2.907916997450561\n","### iteration step: 0 rmse: 2.9079145926196865\n","### iteration step: 0 rmse: 2.907892321487698\n","### iteration step: 0 rmse: 2.9078671012297903\n","### iteration step: 0 rmse: 2.90781990930724\n","### iteration step: 0 rmse: 2.907760779229023\n","### iteration step: 0 rmse: 2.907703780216008\n","### iteration step: 0 rmse: 2.907675427996097\n","### iteration step: 0 rmse: 2.907665286236123\n","### iteration step: 0 rmse: 2.9076061339085624\n","### iteration step: 0 rmse: 2.9075837266356026\n","### iteration step: 0 rmse: 2.907581716231946\n","### iteration step: 0 rmse: 2.907575195397362\n","### iteration step: 0 rmse: 2.9075093559376466\n","### iteration step: 0 rmse: 2.907496913464434\n","### iteration step: 0 rmse: 2.907463521189072\n","### iteration step: 0 rmse: 2.90743701493484\n","### iteration step: 0 rmse: 2.9073950699137545\n","### iteration step: 0 rmse: 2.9073788046371734\n","### iteration step: 0 rmse: 2.9073574006571627\n","### iteration step: 0 rmse: 2.9073284430272675\n","### iteration step: 0 rmse: 2.9073371036977593\n","### iteration step: 0 rmse: 2.907306668713689\n","### iteration step: 0 rmse: 2.90726746438239\n","### iteration step: 0 rmse: 2.9072479218249394\n","### iteration step: 0 rmse: 2.9072435076365\n","### iteration step: 0 rmse: 2.9072348766815717\n","### iteration step: 0 rmse: 2.9072036328287507\n","### iteration step: 0 rmse: 2.9072201896897023\n","### iteration step: 0 rmse: 2.9072133797893067\n","### iteration step: 0 rmse: 2.907185386216527\n","### iteration step: 0 rmse: 2.9071793996887636\n","### iteration step: 0 rmse: 2.9071503915442554\n","### iteration step: 0 rmse: 2.9071618685484175\n","### iteration step: 0 rmse: 2.907134043427404\n","### iteration step: 0 rmse: 2.9070790377274096\n","### iteration step: 0 rmse: 2.907056662461002\n","### iteration step: 0 rmse: 2.9070333805623614\n","### iteration step: 0 rmse: 2.9069769945791184\n","### iteration step: 0 rmse: 2.906959968855141\n","### iteration step: 0 rmse: 2.9069710676560794\n","### iteration step: 0 rmse: 2.9069661894531174\n","### iteration step: 0 rmse: 2.9069436559901836\n","### iteration step: 0 rmse: 2.906931636346877\n","### iteration step: 0 rmse: 2.9068918631360603\n","### iteration step: 0 rmse: 2.906885951314993\n","### iteration step: 0 rmse: 2.9068790092104186\n","### iteration step: 0 rmse: 2.9068631111930734\n","### iteration step: 0 rmse: 2.9068595546078497\n","### iteration step: 0 rmse: 2.9068554267605395\n","### iteration step: 0 rmse: 2.9068380231135365\n","### iteration step: 0 rmse: 2.9068268026891335\n","### iteration step: 0 rmse: 2.9067971630113774\n","### iteration step: 0 rmse: 2.906782175682682\n","### iteration step: 0 rmse: 2.9067228244738867\n","### iteration step: 0 rmse: 2.906704583366977\n","### iteration step: 0 rmse: 2.9066986219332622\n","### iteration step: 0 rmse: 2.906652026532748\n","### iteration step: 0 rmse: 2.9066248853285495\n","### iteration step: 0 rmse: 2.906578856691751\n","### iteration step: 0 rmse: 2.9066031250561966\n","### iteration step: 0 rmse: 2.906631789647952\n","### iteration step: 0 rmse: 2.906659487676416\n","### iteration step: 0 rmse: 2.9066585748836604\n","### iteration step: 0 rmse: 2.9066479659757936\n","### iteration step: 0 rmse: 2.906637397380087\n","### iteration step: 0 rmse: 2.9066191744473873\n","### iteration step: 0 rmse: 2.9066329827075736\n","### iteration step: 0 rmse: 2.906624768361367\n","### iteration step: 0 rmse: 2.906633739532142\n","### iteration step: 0 rmse: 2.906612003515288\n","### iteration step: 0 rmse: 2.906632230589378\n","### iteration step: 0 rmse: 2.9066097759547946\n","### iteration step: 0 rmse: 2.9065742232685534\n","### iteration step: 0 rmse: 2.906516344265341\n","### iteration step: 0 rmse: 2.9064917612062984\n","### iteration step: 0 rmse: 2.9064753585428713\n","### iteration step: 0 rmse: 2.906449200619619\n","### iteration step: 0 rmse: 2.906410830585147\n","### iteration step: 0 rmse: 2.9063848437704376\n","### iteration step: 0 rmse: 2.906366206796675\n","### iteration step: 0 rmse: 2.906360848823353\n","### iteration step: 0 rmse: 2.9063555901805134\n","### iteration step: 0 rmse: 2.906346342979665\n","### iteration step: 0 rmse: 2.906308021982408\n","### iteration step: 0 rmse: 2.906323202547847\n","### iteration step: 0 rmse: 2.906316006594387\n","### iteration step: 0 rmse: 2.906304436379244\n","### iteration step: 0 rmse: 2.9062878574157285\n","### iteration step: 0 rmse: 2.9062912944650168\n","### iteration step: 0 rmse: 2.9062948935536297\n","### iteration step: 0 rmse: 2.9063103742122154\n","### iteration step: 0 rmse: 2.9062913843473854\n","### iteration step: 0 rmse: 2.9062639428696846\n","### iteration step: 0 rmse: 2.9062513808727317\n","### iteration step: 0 rmse: 2.9062314766793884\n","### iteration step: 0 rmse: 2.9062020919138623\n","### iteration step: 0 rmse: 2.906193088069535\n","### iteration step: 0 rmse: 2.9061915235792495\n","### iteration step: 0 rmse: 2.90618342919205\n","### iteration step: 0 rmse: 2.9061896812264356\n","### iteration step: 0 rmse: 2.9061774020258815\n","### iteration step: 0 rmse: 2.9062038577115765\n","### iteration step: 0 rmse: 2.9062002441601438\n","### iteration step: 0 rmse: 2.906165901998555\n","### iteration step: 0 rmse: 2.9061440159583083\n","### iteration step: 0 rmse: 2.9061493316265263\n","### iteration step: 0 rmse: 2.906123377454271\n","### iteration step: 0 rmse: 2.9061183523962035\n","### iteration step: 0 rmse: 2.906094728961299\n","### iteration step: 0 rmse: 2.906083972691653\n","### iteration step: 0 rmse: 2.906044243990451\n","### iteration step: 0 rmse: 2.9059886748995982\n","### iteration step: 0 rmse: 2.905967021432806\n","### iteration step: 0 rmse: 2.90595149669506\n","### iteration step: 0 rmse: 2.9059449195797735\n","### iteration step: 0 rmse: 2.9059667100928133\n","### iteration step: 0 rmse: 2.9059576401568785\n","### iteration step: 0 rmse: 2.905957281512805\n","### iteration step: 0 rmse: 2.9059801047396583\n","### iteration step: 0 rmse: 2.9059424510496723\n","### iteration step: 0 rmse: 2.905909365575788\n","### iteration step: 0 rmse: 2.905916918541845\n","### iteration step: 0 rmse: 2.9058970346870616\n","### iteration step: 0 rmse: 2.905851088357747\n","### iteration step: 0 rmse: 2.9058249904552667\n","### iteration step: 0 rmse: 2.9057965014474947\n","### iteration step: 0 rmse: 2.905828525535209\n","### iteration step: 0 rmse: 2.905845758414923\n","### iteration step: 0 rmse: 2.905873154428385\n","### iteration step: 0 rmse: 2.9058583376347413\n","### iteration step: 0 rmse: 2.9058376296650117\n","### iteration step: 0 rmse: 2.9058140192591253\n","### iteration step: 0 rmse: 2.905806916280713\n","### iteration step: 0 rmse: 2.905786992145289\n","### iteration step: 0 rmse: 2.905816890396836\n","### iteration step: 0 rmse: 2.9058110308968272\n","### iteration step: 0 rmse: 2.9058208250868853\n","### iteration step: 0 rmse: 2.905819318505835\n","### iteration step: 0 rmse: 2.905803444880969\n","### iteration step: 0 rmse: 2.9057807633334973\n","### iteration step: 0 rmse: 2.9057453176338592\n","### iteration step: 0 rmse: 2.905746978601584\n","### iteration step: 0 rmse: 2.905723009004661\n","### iteration step: 0 rmse: 2.9057095419251966\n","### iteration step: 0 rmse: 2.905674654785974\n","### iteration step: 0 rmse: 2.905670992738906\n","### iteration step: 0 rmse: 2.905637562103495\n","### iteration step: 0 rmse: 2.905638613225841\n","### iteration step: 0 rmse: 2.9056153588418154\n","### iteration step: 0 rmse: 2.9056072208223678\n","### iteration step: 0 rmse: 2.9055774652872173\n","### iteration step: 0 rmse: 2.9055728547992183\n","### iteration step: 0 rmse: 2.9055717402896795\n","### iteration step: 0 rmse: 2.9055684789067073\n","### iteration step: 0 rmse: 2.90556688077488\n","### iteration step: 0 rmse: 2.9055517928192804\n","### iteration step: 0 rmse: 2.905539856939545\n","### iteration step: 0 rmse: 2.905521752457112\n","### iteration step: 0 rmse: 2.905480507029839\n","### iteration step: 0 rmse: 2.905434824867755\n","### iteration step: 0 rmse: 2.9054335317533053\n","### iteration step: 0 rmse: 2.9054316924467987\n","### iteration step: 0 rmse: 2.905423651578748\n","### iteration step: 0 rmse: 2.905399101476199\n","### iteration step: 0 rmse: 2.9053882991264492\n","### iteration step: 0 rmse: 2.905372123950259\n","### iteration step: 0 rmse: 2.9053536764021306\n","### iteration step: 0 rmse: 2.9053292263009554\n","### iteration step: 0 rmse: 2.905312222324694\n","### iteration step: 0 rmse: 2.9053243307897527\n","### iteration step: 0 rmse: 2.9053147979873204\n","### iteration step: 0 rmse: 2.9053369624532195\n","### iteration step: 0 rmse: 2.9053287083715644\n","### iteration step: 0 rmse: 2.905288760235898\n","### iteration step: 0 rmse: 2.905279021563298\n","### iteration step: 0 rmse: 2.905254998455228\n","### iteration step: 0 rmse: 2.905233371002517\n","### iteration step: 0 rmse: 2.905185672205238\n","### iteration step: 0 rmse: 2.9051817904141806\n","### iteration step: 0 rmse: 2.9051583685929963\n","### iteration step: 0 rmse: 2.9051488950541833\n","### iteration step: 0 rmse: 2.9051425471325625\n","### iteration step: 0 rmse: 2.9051400013912674\n","### iteration step: 0 rmse: 2.90510663306863\n","### iteration step: 0 rmse: 2.905095445839583\n","### iteration step: 0 rmse: 2.905074131167233\n","### iteration step: 0 rmse: 2.90505199849651\n","### iteration step: 0 rmse: 2.9050322574028034\n","### iteration step: 0 rmse: 2.9050112523859672\n","### iteration step: 0 rmse: 2.9049972252101015\n","### iteration step: 0 rmse: 2.9050031289920417\n","### iteration step: 0 rmse: 2.9049906203170663\n","### iteration step: 0 rmse: 2.9049544894141133\n","### iteration step: 0 rmse: 2.9049497156631165\n","### iteration step: 0 rmse: 2.9049687939623112\n","### iteration step: 0 rmse: 2.9049553438439344\n","### iteration step: 0 rmse: 2.9049500837818445\n","### iteration step: 0 rmse: 2.9049353392273596\n","### iteration step: 0 rmse: 2.90492219282324\n","### iteration step: 0 rmse: 2.904917090596418\n","### iteration step: 0 rmse: 2.9049132344892827\n","### iteration step: 0 rmse: 2.9049214973368636\n","### iteration step: 0 rmse: 2.9049006226837952\n","### iteration step: 0 rmse: 2.904911126871308\n","### iteration step: 0 rmse: 2.9049167913683545\n","### iteration step: 0 rmse: 2.9049096223685273\n","### iteration step: 0 rmse: 2.904883276229967\n","### iteration step: 0 rmse: 2.9048791124411073\n","### iteration step: 0 rmse: 2.904861553470877\n","### iteration step: 0 rmse: 2.9048524590196836\n","### iteration step: 0 rmse: 2.904849556342783\n","### iteration step: 0 rmse: 2.904860516116534\n","### iteration step: 0 rmse: 2.904849192663231\n","### iteration step: 0 rmse: 2.9048719287574043\n","### iteration step: 0 rmse: 2.904866571245127\n","### iteration step: 0 rmse: 2.9048481684697416\n","### iteration step: 0 rmse: 2.90483264355768\n","### iteration step: 0 rmse: 2.904842866381486\n","### iteration step: 0 rmse: 2.904854469812151\n","### iteration step: 0 rmse: 2.9048336126060867\n","### iteration step: 0 rmse: 2.904817444146554\n","### iteration step: 0 rmse: 2.9048039055774297\n","### iteration step: 0 rmse: 2.9047930818808543\n","### iteration step: 0 rmse: 2.904772940975641\n","### iteration step: 0 rmse: 2.9047397967833897\n","### iteration step: 0 rmse: 2.9047626231896744\n","### iteration step: 0 rmse: 2.9047539150840413\n","### iteration step: 0 rmse: 2.9047288872642665\n","### iteration step: 0 rmse: 2.9047206646859767\n","### iteration step: 0 rmse: 2.9047549815029274\n","### iteration step: 0 rmse: 2.9047207429046673\n","### iteration step: 0 rmse: 2.9047022153446918\n","### iteration step: 0 rmse: 2.904684906609979\n","### iteration step: 0 rmse: 2.9046746563627117\n","### iteration step: 0 rmse: 2.904651246706049\n","### iteration step: 0 rmse: 2.904699354651163\n","### iteration step: 0 rmse: 2.90469673397463\n","### iteration step: 0 rmse: 2.9046640396231145\n","### iteration step: 0 rmse: 2.9046567855779037\n","### iteration step: 0 rmse: 2.9046490662107196\n","### iteration step: 0 rmse: 2.9046342546135966\n","### iteration step: 0 rmse: 2.9046266682774675\n","### iteration step: 0 rmse: 2.9046238074211383\n","### iteration step: 0 rmse: 2.9046148721770506\n","### iteration step: 0 rmse: 2.904598298941906\n","### iteration step: 0 rmse: 2.9046179373085717\n","### iteration step: 0 rmse: 2.9046114379450043\n","### iteration step: 0 rmse: 2.904590673291367\n","### iteration step: 0 rmse: 2.904577469234353\n","### iteration step: 0 rmse: 2.9045738978965416\n","### iteration step: 0 rmse: 2.9045573433014025\n","### iteration step: 0 rmse: 2.9045550455117937\n","### iteration step: 0 rmse: 2.904529362998181\n","### iteration step: 0 rmse: 2.904522801104681\n","### iteration step: 0 rmse: 2.9045171377343717\n","### iteration step: 0 rmse: 2.904527377145439\n","### iteration step: 0 rmse: 2.9045164742508183\n","### iteration step: 0 rmse: 2.904506722312858\n","### iteration step: 0 rmse: 2.9044941357111616\n","### iteration step: 0 rmse: 2.904481493334568\n","### iteration step: 0 rmse: 2.9044784853080023\n","### iteration step: 0 rmse: 2.904464860124018\n","### iteration step: 0 rmse: 2.904452367472497\n","### iteration step: 0 rmse: 2.904449007208299\n","### iteration step: 0 rmse: 2.9044427554731644\n","### iteration step: 0 rmse: 2.9044369038849545\n","### iteration step: 0 rmse: 2.9044441836152317\n","### iteration step: 0 rmse: 2.904438746887028\n","### iteration step: 0 rmse: 2.9044822891829156\n","### iteration step: 0 rmse: 2.90449641357779\n","### iteration step: 0 rmse: 2.90450165302438\n","### iteration step: 0 rmse: 2.904491092971236\n","### iteration step: 0 rmse: 2.9044864551376923\n","### iteration step: 0 rmse: 2.9044753639444814\n","### iteration step: 0 rmse: 2.9044694724052804\n","### iteration step: 0 rmse: 2.904446505452373\n","### iteration step: 0 rmse: 2.9044423663280123\n","### iteration step: 0 rmse: 2.9044267326478965\n","### iteration step: 0 rmse: 2.9044086532721107\n","### iteration step: 0 rmse: 2.904401644224539\n","### iteration step: 0 rmse: 2.904390975328679\n","### iteration step: 0 rmse: 2.9043865477645743\n","### iteration step: 0 rmse: 2.9043829636470537\n","### iteration step: 0 rmse: 2.904388892659785\n","### iteration step: 0 rmse: 2.9043860282573646\n","### iteration step: 0 rmse: 2.9043757814172646\n","### iteration step: 0 rmse: 2.904373623846162\n","### iteration step: 0 rmse: 2.904365298824191\n","### iteration step: 0 rmse: 2.904359986858579\n","### iteration step: 0 rmse: 2.904349777979156\n","### iteration step: 0 rmse: 2.904341622193002\n","### iteration step: 0 rmse: 2.9043183025597568\n","### iteration step: 0 rmse: 2.9043124978524983\n","### iteration step: 0 rmse: 2.904326546081453\n","### iteration step: 0 rmse: 2.904318553216986\n","### iteration step: 0 rmse: 2.9042946054699024\n","### iteration step: 0 rmse: 2.904289235618469\n","### iteration step: 0 rmse: 2.9042820847783153\n","### iteration step: 0 rmse: 2.904273845002424\n","### iteration step: 0 rmse: 2.904266244713674\n","### iteration step: 0 rmse: 2.9042729924916357\n","### iteration step: 0 rmse: 2.9042538825087365\n","### iteration step: 0 rmse: 2.9042595457478173\n","### iteration step: 0 rmse: 2.904263302882427\n","### iteration step: 0 rmse: 2.9042593413476423\n","### iteration step: 0 rmse: 2.904241597757461\n","### iteration step: 0 rmse: 2.904233177064302\n","### iteration step: 0 rmse: 2.904216107814007\n","### iteration step: 0 rmse: 2.9041937299375378\n","### iteration step: 0 rmse: 2.90417892310663\n","### iteration step: 0 rmse: 2.9041618834040515\n","### iteration step: 0 rmse: 2.904143579205126\n","### iteration step: 0 rmse: 2.9041445017553333\n","### iteration step: 0 rmse: 2.904130427285976\n","### iteration step: 0 rmse: 2.9041469242173337\n","### iteration step: 0 rmse: 2.904143263394062\n","### iteration step: 0 rmse: 2.9041359341453044\n","### iteration step: 0 rmse: 2.9041297326761697\n","### iteration step: 0 rmse: 2.9041347481910202\n","### iteration step: 0 rmse: 2.9041333856203098\n","### iteration step: 0 rmse: 2.9041300373768957\n","### iteration step: 0 rmse: 2.904205383093638\n","### iteration step: 0 rmse: 2.9041970091244904\n","### iteration step: 0 rmse: 2.90418867891407\n","### iteration step: 0 rmse: 2.904162069277718\n","### iteration step: 0 rmse: 2.904154414571925\n","### iteration step: 0 rmse: 2.9041436819061843\n","### iteration step: 0 rmse: 2.9041420843730856\n","### iteration step: 0 rmse: 2.904136644675509\n","### iteration step: 0 rmse: 2.904132231657681\n","### iteration step: 0 rmse: 2.904122329500337\n","### iteration step: 0 rmse: 2.9041050201991854\n","### iteration step: 0 rmse: 2.9040927302664334\n","### iteration step: 0 rmse: 2.9040695571563546\n","### iteration step: 0 rmse: 2.9040483925636416\n","### iteration step: 0 rmse: 2.904059755810633\n","### iteration step: 0 rmse: 2.9040478184439933\n","### iteration step: 0 rmse: 2.904045308725645\n","### iteration step: 0 rmse: 2.9040224879538488\n","### iteration step: 0 rmse: 2.9040114326386623\n","### iteration step: 0 rmse: 2.9039945738313695\n","### iteration step: 0 rmse: 2.9039914674310245\n","### iteration step: 0 rmse: 2.903979890089607\n","### iteration step: 0 rmse: 2.903971115598709\n","### iteration step: 0 rmse: 2.9039496067131823\n","### iteration step: 0 rmse: 2.9039392788404923\n","### iteration step: 0 rmse: 2.9039331541330364\n","### iteration step: 0 rmse: 2.9039366756327207\n","### iteration step: 0 rmse: 2.9040373471562315\n","### iteration step: 0 rmse: 2.904023549022126\n","### iteration step: 0 rmse: 2.904020783449612\n","### iteration step: 0 rmse: 2.904042413045236\n","### iteration step: 0 rmse: 2.904040915275631\n","### iteration step: 0 rmse: 2.9040490164845743\n","### iteration step: 0 rmse: 2.904037514092126\n","### iteration step: 0 rmse: 2.9040420643044578\n","### iteration step: 0 rmse: 2.904030286740552\n","### iteration step: 0 rmse: 2.904072329689501\n","### iteration step: 0 rmse: 2.9040900995411074\n","### iteration step: 0 rmse: 2.90406160520788\n","### iteration step: 0 rmse: 2.904043449011285\n","### iteration step: 0 rmse: 2.904039774187444\n","### iteration step: 0 rmse: 2.904031049062105\n","### iteration step: 0 rmse: 2.9040261012511728\n","### iteration step: 0 rmse: 2.9040238580040594\n","### iteration step: 0 rmse: 2.904064895008211\n","### iteration step: 0 rmse: 2.904053542971831\n","### iteration step: 0 rmse: 2.9040348049692417\n","### iteration step: 0 rmse: 2.9040129374510557\n","### iteration step: 0 rmse: 2.904019146170418\n","### iteration step: 0 rmse: 2.9040258451226406\n","### iteration step: 0 rmse: 2.9040130066942442\n","### iteration step: 0 rmse: 2.904004937375935\n","### iteration step: 0 rmse: 2.9040197289907868\n","### iteration step: 0 rmse: 2.904004151827156\n","### iteration step: 0 rmse: 2.9039821066179163\n","### iteration step: 0 rmse: 2.903972942002758\n","### iteration step: 0 rmse: 2.903972722138797\n","### iteration step: 0 rmse: 2.9039778329410373\n","### iteration step: 0 rmse: 2.9039639457914026\n","### iteration step: 0 rmse: 2.9039535724731835\n","### iteration step: 0 rmse: 2.9039317913151064\n","### iteration step: 0 rmse: 2.9039167850271306\n","### iteration step: 0 rmse: 2.903923476962696\n","### iteration step: 0 rmse: 2.9038825254110754\n","### iteration step: 0 rmse: 2.9038676264352437\n","### iteration step: 0 rmse: 2.9038565521863795\n","### iteration step: 0 rmse: 2.903855588099039\n","### iteration step: 0 rmse: 2.9038709912141\n","### iteration step: 0 rmse: 2.9038429345645116\n","### iteration step: 0 rmse: 2.9038402026725447\n","### iteration step: 0 rmse: 2.903834979323976\n","### iteration step: 0 rmse: 2.9038477286797635\n","### iteration step: 0 rmse: 2.9038437324659037\n","### iteration step: 0 rmse: 2.903850778768705\n","### iteration step: 0 rmse: 2.9038335046574657\n","### iteration step: 0 rmse: 2.903817576119207\n","### iteration step: 0 rmse: 2.903799718893324\n","### iteration step: 0 rmse: 2.9038013273001586\n","### iteration step: 0 rmse: 2.903805099222534\n","### iteration step: 0 rmse: 2.903794715837916\n","### iteration step: 0 rmse: 2.903789041513749\n","### iteration step: 0 rmse: 2.903817366893963\n","### iteration step: 0 rmse: 2.903810780666551\n","### iteration step: 0 rmse: 2.9037925910155504\n","### iteration step: 0 rmse: 2.9037855981540632\n","### iteration step: 0 rmse: 2.903776397934033\n","### iteration step: 0 rmse: 2.9037503877829027\n","### iteration step: 0 rmse: 2.903742843999936\n","### iteration step: 0 rmse: 2.9037327590163655\n","### iteration step: 0 rmse: 2.903719841196196\n","### iteration step: 0 rmse: 2.90370450582399\n","### iteration step: 0 rmse: 2.903696864644918\n","### iteration step: 0 rmse: 2.9036963609981945\n","### iteration step: 0 rmse: 2.9037081438727834\n","### iteration step: 0 rmse: 2.9036975839795343\n","### iteration step: 0 rmse: 2.903707264247983\n","### iteration step: 0 rmse: 2.9037202079742497\n","### iteration step: 0 rmse: 2.9037254311547915\n","### iteration step: 0 rmse: 2.903730251011075\n","### iteration step: 0 rmse: 2.9037513089768923\n","### iteration step: 0 rmse: 2.903764652998889\n","### iteration step: 0 rmse: 2.903774428517726\n","### iteration step: 0 rmse: 2.903768111788343\n","### iteration step: 0 rmse: 2.903769347775602\n","### iteration step: 0 rmse: 2.9037508983560567\n","### iteration step: 0 rmse: 2.9037362584436646\n","### iteration step: 0 rmse: 2.9037143598317763\n","### iteration step: 0 rmse: 2.903707116892769\n","### iteration step: 0 rmse: 2.9037011182296553\n","### iteration step: 0 rmse: 2.903694736870085\n","### iteration step: 0 rmse: 2.9036665830199078\n","### iteration step: 0 rmse: 2.903670371367895\n","### iteration step: 0 rmse: 2.903651681842868\n","### iteration step: 0 rmse: 2.9036341264080328\n","### iteration step: 0 rmse: 2.9036286148330674\n","### iteration step: 0 rmse: 2.9036193885951347\n","### iteration step: 0 rmse: 2.903602201595431\n","### iteration step: 0 rmse: 2.9035918216358887\n","### iteration step: 0 rmse: 2.903579821873331\n","### iteration step: 0 rmse: 2.9035724545612123\n","### iteration step: 0 rmse: 2.903560415097648\n","### iteration step: 0 rmse: 2.9035405702740698\n","### iteration step: 0 rmse: 2.9035234491299824\n","### iteration step: 0 rmse: 2.903499694139736\n","### iteration step: 0 rmse: 2.903498861478157\n","### iteration step: 0 rmse: 2.9034890687616555\n","### iteration step: 0 rmse: 2.9034868146677684\n","### iteration step: 0 rmse: 2.9034827210242327\n","### iteration step: 0 rmse: 2.9034481241571455\n","### iteration step: 0 rmse: 2.903452282993376\n","### iteration step: 0 rmse: 2.903443602148525\n","### iteration step: 0 rmse: 2.9034528750045987\n","### iteration step: 0 rmse: 2.9034257227452653\n","### iteration step: 0 rmse: 2.9034160297712956\n","### iteration step: 0 rmse: 2.903407523121267\n","### iteration step: 0 rmse: 2.903401228436261\n","### iteration step: 0 rmse: 2.903410132892528\n","### iteration step: 0 rmse: 2.9034053577676553\n","### iteration step: 0 rmse: 2.903404860750556\n","### iteration step: 0 rmse: 2.9033866200049196\n","### iteration step: 0 rmse: 2.9033778580537013\n","### iteration step: 0 rmse: 2.9033744248432343\n","### iteration step: 0 rmse: 2.903380967046664\n","### iteration step: 0 rmse: 2.90337957414921\n","### iteration step: 0 rmse: 2.9033609160168687\n","### iteration step: 0 rmse: 2.9033526850675955\n","### iteration step: 0 rmse: 2.9033404101544646\n","### iteration step: 0 rmse: 2.9033516605938243\n","### iteration step: 0 rmse: 2.9033525535833484\n","### iteration step: 0 rmse: 2.9033449804020615\n","### iteration step: 0 rmse: 2.903337991566599\n","### iteration step: 0 rmse: 2.9033401741427616\n","### iteration step: 0 rmse: 2.9033391484806574\n","### iteration step: 0 rmse: 2.903323889697063\n","### iteration step: 0 rmse: 2.903332967738125\n","### iteration step: 0 rmse: 2.903330145397297\n","### iteration step: 0 rmse: 2.903322538707933\n","### iteration step: 0 rmse: 2.9033202411888137\n","### iteration step: 0 rmse: 2.9033126484549836\n","### iteration step: 0 rmse: 2.903311798574608\n","### iteration step: 0 rmse: 2.9032956394417075\n","### iteration step: 0 rmse: 2.903288492320411\n","### iteration step: 0 rmse: 2.9032836536384106\n","### iteration step: 0 rmse: 2.903259111011033\n","### iteration step: 0 rmse: 2.903262868773048\n","### iteration step: 0 rmse: 2.9032535616285418\n","### iteration step: 0 rmse: 2.903240397679762\n","### iteration step: 0 rmse: 2.903217200902\n","### iteration step: 0 rmse: 2.903196246395726\n","### iteration step: 0 rmse: 2.9031949497260943\n","### iteration step: 0 rmse: 2.9031690425287433\n","### iteration step: 0 rmse: 2.9031645878407435\n","### iteration step: 0 rmse: 2.9031557987690917\n","### iteration step: 0 rmse: 2.903141815825726\n","### iteration step: 0 rmse: 2.9031303247100735\n","### iteration step: 0 rmse: 2.903153536159045\n","### iteration step: 0 rmse: 2.903147536210182\n","### iteration step: 0 rmse: 2.9031177426977983\n","### iteration step: 0 rmse: 2.903087261738986\n","### iteration step: 0 rmse: 2.9030555956943562\n","### iteration step: 0 rmse: 2.9030455177672656\n","### iteration step: 0 rmse: 2.9030490026065943\n","### iteration step: 0 rmse: 2.9030435716533267\n","### iteration step: 0 rmse: 2.903035185323792\n","### iteration step: 0 rmse: 2.903013297344137\n","### iteration step: 0 rmse: 2.903011639633314\n","### iteration step: 0 rmse: 2.902993394493067\n","### iteration step: 0 rmse: 2.9029975752902333\n","### iteration step: 0 rmse: 2.9029807209109397\n","### iteration step: 0 rmse: 2.9029742581255444\n","### iteration step: 0 rmse: 2.9029553959745367\n","### iteration step: 0 rmse: 2.902928018052143\n","### iteration step: 0 rmse: 2.902910663424042\n","### iteration step: 0 rmse: 2.9029146397311703\n","### iteration step: 0 rmse: 2.9029061793271644\n","### iteration step: 0 rmse: 2.902891254879866\n","### iteration step: 0 rmse: 2.9028789372530084\n","### iteration step: 0 rmse: 2.9028600894195904\n","### iteration step: 0 rmse: 2.9028671817514846\n","### iteration step: 0 rmse: 2.902887462414813\n","### iteration step: 0 rmse: 2.902873448952166\n","### iteration step: 0 rmse: 2.902860852229337\n","### iteration step: 0 rmse: 2.902854933674752\n","### iteration step: 0 rmse: 2.902844536276728\n","### iteration step: 0 rmse: 2.90283937343376\n","### iteration step: 0 rmse: 2.9028229871655724\n","### iteration step: 0 rmse: 2.90282005432403\n","### iteration step: 0 rmse: 2.902814187616663\n","### iteration step: 0 rmse: 2.9028173110377016\n","### iteration step: 0 rmse: 2.9028206641149477\n","### iteration step: 0 rmse: 2.9028238914460727\n","### iteration step: 0 rmse: 2.9028219045336368\n","### iteration step: 0 rmse: 2.9028422668512364\n","### iteration step: 0 rmse: 2.9028448340828983\n","### iteration step: 0 rmse: 2.9028469696451094\n","### iteration step: 0 rmse: 2.9028321684068166\n","### iteration step: 0 rmse: 2.9028209376207705\n","### iteration step: 0 rmse: 2.902830414117489\n","### iteration step: 0 rmse: 2.9028233551433558\n","### iteration step: 0 rmse: 2.902823616404708\n","### iteration step: 0 rmse: 2.9028149022349736\n","### iteration step: 0 rmse: 2.902810341070342\n","### iteration step: 0 rmse: 2.9028022791631756\n","### iteration step: 0 rmse: 2.902783304348453\n","### iteration step: 0 rmse: 2.9027737606304678\n","### iteration step: 0 rmse: 2.9027624739410616\n","### iteration step: 0 rmse: 2.9027499607347553\n","### iteration step: 0 rmse: 2.9027404846384366\n","### iteration step: 0 rmse: 2.902737623186029\n","### iteration step: 0 rmse: 2.9027320363947853\n","### iteration step: 0 rmse: 2.902732044886217\n","### iteration step: 0 rmse: 2.9027324359138045\n","### iteration step: 0 rmse: 2.9027340332749896\n","### iteration step: 0 rmse: 2.902724850126199\n","### iteration step: 0 rmse: 2.9027189174135413\n","### iteration step: 0 rmse: 2.9027338155263345\n","### iteration step: 0 rmse: 2.902731941192192\n","### iteration step: 0 rmse: 2.902730978799536\n","### iteration step: 0 rmse: 2.902722263065276\n","### iteration step: 0 rmse: 2.902714252985733\n","### iteration step: 0 rmse: 2.9027263025567547\n","### iteration step: 0 rmse: 2.9027288619797287\n","### iteration step: 0 rmse: 2.902721003412517\n","### iteration step: 0 rmse: 2.9027134209813226\n","### iteration step: 0 rmse: 2.9026954834736913\n","### iteration step: 0 rmse: 2.9026874651728907\n","### iteration step: 0 rmse: 2.9026775196714163\n","### iteration step: 0 rmse: 2.902663463797258\n","### iteration step: 0 rmse: 2.9026925447679264\n","### iteration step: 0 rmse: 2.9026928739186886\n","### iteration step: 0 rmse: 2.9026830554714707\n","### iteration step: 0 rmse: 2.9026783827415112\n","### iteration step: 0 rmse: 2.9027207329467415\n","### iteration step: 0 rmse: 2.90274206352596\n","### iteration step: 0 rmse: 2.9027334242205067\n","### iteration step: 0 rmse: 2.9027235328642735\n","### iteration step: 0 rmse: 2.902711700420508\n","### iteration step: 0 rmse: 2.902703636625145\n","### iteration step: 0 rmse: 2.902694341582641\n","### iteration step: 0 rmse: 2.9026800048266987\n","### iteration step: 0 rmse: 2.9026693239420753\n","### iteration step: 0 rmse: 2.902676173592349\n","### iteration step: 0 rmse: 2.902682872903429\n","### iteration step: 0 rmse: 2.9026715101006157\n","### iteration step: 0 rmse: 2.9026571975275526\n","### iteration step: 0 rmse: 2.9026490793419204\n","### iteration step: 0 rmse: 2.902644023070283\n","### iteration step: 0 rmse: 2.902635247332642\n","### iteration step: 0 rmse: 2.902640385357078\n","### iteration step: 0 rmse: 2.9026166132369893\n","### iteration step: 0 rmse: 2.9026344051460193\n","### iteration step: 0 rmse: 2.9026256737847547\n","### iteration step: 0 rmse: 2.9026211269411304\n","### iteration step: 0 rmse: 2.902629726788373\n","### iteration step: 0 rmse: 2.9026293996949892\n","### iteration step: 0 rmse: 2.9026237135740094\n","### iteration step: 0 rmse: 2.902634240888819\n","### iteration step: 0 rmse: 2.902612339128067\n","### iteration step: 0 rmse: 2.9026065314161946\n","### iteration step: 0 rmse: 2.9026102096268485\n","### iteration step: 0 rmse: 2.9026018025082148\n","### iteration step: 0 rmse: 2.902594535749674\n","### iteration step: 0 rmse: 2.902573327892011\n","### iteration step: 0 rmse: 2.902579552667974\n","### iteration step: 0 rmse: 2.90256334056835\n","### iteration step: 0 rmse: 2.902546436051991\n","### iteration step: 0 rmse: 2.902533036584343\n","### iteration step: 0 rmse: 2.9025329232474077\n","### iteration step: 0 rmse: 2.9025129618329815\n","### iteration step: 0 rmse: 2.902502970393427\n","### iteration step: 0 rmse: 2.902494768473478\n","### iteration step: 0 rmse: 2.902515291221562\n","### iteration step: 0 rmse: 2.9025010631269823\n","### iteration step: 0 rmse: 2.9025135712267667\n","### iteration step: 0 rmse: 2.902498883049844\n","### iteration step: 0 rmse: 2.9024904295436578\n","### iteration step: 0 rmse: 2.9024860452177776\n","### iteration step: 0 rmse: 2.9024803039583413\n","### iteration step: 0 rmse: 2.9024576514527616\n","### iteration step: 0 rmse: 2.9024486915031655\n","### iteration step: 0 rmse: 2.902451350879537\n","### iteration step: 0 rmse: 2.9024429627154302\n","### iteration step: 0 rmse: 2.9024346911411296\n","### iteration step: 0 rmse: 2.9024264307930157\n","### iteration step: 0 rmse: 2.9024191149221807\n","### iteration step: 0 rmse: 2.9024389395125407\n","### iteration step: 0 rmse: 2.9024555698466505\n","### iteration step: 0 rmse: 2.902442712085167\n","### iteration step: 0 rmse: 2.9024443165098526\n","### iteration step: 0 rmse: 2.902447414572045\n","### iteration step: 0 rmse: 2.902456689579145\n","### iteration step: 0 rmse: 2.902467454985491\n","### iteration step: 0 rmse: 2.902450717172453\n","### iteration step: 0 rmse: 2.902443980546215\n","### iteration step: 0 rmse: 2.902436007513654\n","### iteration step: 0 rmse: 2.902430791721962\n","### iteration step: 0 rmse: 2.9024179854955783\n","### iteration step: 0 rmse: 2.9024059627027947\n","### iteration step: 0 rmse: 2.90239060200603\n","### iteration step: 0 rmse: 2.9023823254248806\n","### iteration step: 0 rmse: 2.9024005229620875\n","### iteration step: 0 rmse: 2.9024043861254776\n","### iteration step: 0 rmse: 2.902400232153203\n","### iteration step: 0 rmse: 2.902382615713925\n","### iteration step: 0 rmse: 2.902369427288674\n","### iteration step: 0 rmse: 2.9023609683434577\n","### iteration step: 0 rmse: 2.9023648118506427\n","### iteration step: 0 rmse: 2.9023619751336867\n"]},{"output_type":"error","ename":"KeyboardInterrupt","evalue":"","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mratings_matrix\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrating_movies\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpivot_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'rating'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'userId'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolumns\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'title'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m P, Q = matrix_factorization(ratings_matrix.values, K = 50, steps = 100, learning_rate = 0.01,\n\u001b[0m\u001b[1;32m 12\u001b[0m r_lambda = 0.01)\n\u001b[1;32m 13\u001b[0m \u001b[0mpred_matrix\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mP\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mQ\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m\u001b[0m in \u001b[0;36mmatrix_factorization\u001b[0;34m(R, K, steps, learning_rate, r_lambda)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0mQ\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQ\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mlearning_rate\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0meij\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mP\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mr_lambda\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mQ\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mrmse\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_rmse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mR\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mP\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mQ\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_zeros\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mstep\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'### iteration step: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\" rmse: \"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrmse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m\u001b[0m in \u001b[0;36mget_rmse\u001b[0;34m(R, P, Q, non_zeros)\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0merror\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# 두 개의 분해된 행렬 P와 Q.T의 내적으로 예측 R 행렬 생성\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mfull_pred_matrix\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mP\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mQ\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;31m# 실제 R 행렬에서 널이 아닌 값의 위치 인덱스 추출해 실제 R 행렬과 예측 행렬의 RMSE 추출\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mKeyboardInterrupt\u001b[0m: "]}]},{"cell_type":"markdown","source":["- 시간이 너무 오래 걸려서 포기했어요..\n"],"metadata":{"id":"rFBNtYL7LeRe"}},{"cell_type":"code","source":["ratings_pred_matrix = pd.DataFrame(data = pred_matrix, index = ratings_matrix.index,\n"," columns = ratings_matrix.columns)\n","ratings_pred_matrix.head(3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":180},"id":"KDdacpouHPu6","executionInfo":{"status":"error","timestamp":1736662962848,"user_tz":-540,"elapsed":409,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"c06be56b-14e1-476a-8464-94136b08907e"},"execution_count":31,"outputs":[{"output_type":"error","ename":"NameError","evalue":"name 'pred_matrix' is not defined","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m ratings_pred_matrix = pd.DataFrame(data = pred_matrix, index = ratings_matrix.index,\n\u001b[0m\u001b[1;32m 2\u001b[0m columns = ratings_matrix.columns)\n\u001b[1;32m 3\u001b[0m \u001b[0mratings_pred_matrix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhead\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mNameError\u001b[0m: name 'pred_matrix' is not defined"]}]},{"cell_type":"markdown","source":["- 예측 사용자-아이템 평점 행렬 정보를 이용해 개인화된 영화 추천"],"metadata":{"id":"EO_gf8MZVTGj"}},{"cell_type":"code","source":["def get_unseen_movies(ratings_matrix, userId):\n"," # userId로 입력받은 사용자의 모든 영화 정보를 추출해 Series로 반환함\n"," # 반환된 user_rating은 영화명(title)을 인덱스로 가지는 Series 객체임\n"," user_rating = ratings_matrix.loc[userId, :]\n","\n"," # user_rating이 0보다 크면 기존에 관람한 영화임. 대상 인덱스를 추출해 list 객체로 만듬\n"," already_seen = user_rating[user_rating > 0].index.tolist()\n","\n"," # 모든 영화명을 list 객체로 만듬\n"," movies_list = ratings_matrix.columns.tolist()\n","\n"," # list comprehension으로 already_seen에 해당하는 영화는 movies_list에서 제외함\n"," unseen_list = [movie for movie in movies_list if movie not in already_seen]\n","\n"," return unseen_list\n","\n","def recomm_movie_by_userid(pred_df, userId, unseen_list, top_n = 10):\n"," # 예측 평점 DataFrame에서 사용자 id 인덱스와 unseen_list로 들어온 영화명 칼럼을 추출해\n"," # 가장 예측 평점이 높은 순으로 정렬함\n"," recomm_movies = pred_df.loc[userId, unseen_list].sort_values(ascending = False)[:top_n]\n"," return recomm_movies\n"],"metadata":{"id":"UhAqnyHeVdjL","executionInfo":{"status":"ok","timestamp":1736662957091,"user_tz":-540,"elapsed":932,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"execution_count":30,"outputs":[]},{"cell_type":"code","source":["# 사용자가 관람하지 않은 영화명 추출\n","unseen_list = get_unseen_movies(ratings_matrix, 9)\n","\n","# 잠재 요인 협업 필터링으로 영화 추천\n","recomm_movies = recomm_movie_by_userid(ratings_pred_matrix, 9, unseen_list, top_n = 10)\n","\n","# 평점 데이터를 DataFrame으로 생성\n","recomm_movies = pd.DataFrame(data=recomm_movies.values, index = recomm_movies.index,\n"," columns = ['pred_score'])\n","recomm_movies"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":394},"id":"Hl5YnubAVpg8","executionInfo":{"status":"ok","timestamp":1736662953475,"user_tz":-540,"elapsed":1352,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"4f614b49-e1ca-4434-8669-a1bfa17fbedf"},"execution_count":29,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" pred_score\n","title \n","Shrek (2001) 0.866202\n","Spider-Man (2002) 0.857854\n","Last Samurai, The (2003) 0.817473\n","Indiana Jones and the Temple of Doom (1984) 0.816626\n","Matrix Reloaded, The (2003) 0.800990\n","Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philosopher's Stone) (2001) 0.765159\n","Gladiator (2000) 0.740956\n","Matrix, The (1999) 0.732693\n","Pirates of the Caribbean: The Curse of the Black Pearl (2003) 0.689591\n","Lord of the Rings: The Return of the King, The (2003) 0.676711"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
pred_score
title
Shrek (2001)0.866202
Spider-Man (2002)0.857854
Last Samurai, The (2003)0.817473
Indiana Jones and the Temple of Doom (1984)0.816626
Matrix Reloaded, The (2003)0.800990
Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philosopher's Stone) (2001)0.765159
Gladiator (2000)0.740956
Matrix, The (1999)0.732693
Pirates of the Caribbean: The Curse of the Black Pearl (2003)0.689591
Lord of the Rings: The Return of the King, The (2003)0.676711
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"recomm_movies","summary":"{\n \"name\": \"recomm_movies\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Pirates of the Caribbean: The Curse of the Black Pearl (2003)\",\n \"Spider-Man (2002)\",\n \"Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philosopher's Stone) (2001)\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"pred_score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.06614432811511851,\n \"min\": 0.6767108283499336,\n \"max\": 0.8662018746933645,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.6895905595608812,\n 0.8578535950426878,\n 0.7651586070058114\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":29}]},{"cell_type":"markdown","source":["- 앞 절의 아이템 기반 협업 필터링 결과와는 추천 영화가 많이 다름"],"metadata":{"id":"vWkEsroJWEmj"}}]} \ No newline at end of file diff --git "a/Week16_\341\204\213\341\205\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.ipynb" "b/Week16_\341\204\213\341\205\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.ipynb" new file mode 100644 index 0000000..173b386 --- /dev/null +++ "b/Week16_\341\204\213\341\205\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyMKuHMW/+aMi4gBu3KjvcJu"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["#**Week16_예습과제_우정연**"],"metadata":{"id":"lwkE7mnYcVdY"}},{"cell_type":"markdown","source":["##**9.4 잠재 요인 협업 필터링**"],"metadata":{"id":"etIbojzBcY77"}},{"cell_type":"markdown","source":["- SGD(Stochastic Gradient Descent: 확률적 경사 하강법)을 이용해 행렬 분해를 수행하는 예제\n"," - 분해하려는 원본 행렬 R을 P와 Q로 분해한 뒤에 다시 P와 Q.T의 내적으로 예측 행렬을 만드는 예제"],"metadata":{"id":"irGqmJ7Ncfa-"}},{"cell_type":"code","execution_count":1,"metadata":{"id":"l4XSdBp7cSn1","executionInfo":{"status":"ok","timestamp":1736080475992,"user_tz":-540,"elapsed":369,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"outputs":[],"source":["import numpy as np\n","\n","# 원본 행렬 R 생성, 분해 행렬 P와 Q 초기화, 잠재 요인 차원 K는 3으로 설정\n","R = np.array([[4, np.NaN, np.NaN, 2, np.NaN],\n"," [np.NaN, 5, np.NaN, 3, 1],\n"," [np.NaN, np.NaN, 3, 4, 4],\n"," [5, 2, 1, 2, np.NaN]])\n","\n","num_users, num_items = R.shape\n","K = 3\n","\n","# P와 Q 행렬의 크기를 지정하고 정규 분포를 가진 임의의 값으로 입력\n","np.random.seed(1)\n","P = np.random.normal(scale = 1./K, size = (num_users, K))\n","Q = np.random.normal(scale = 1./K, size = (num_items, K))\n"]},{"cell_type":"markdown","source":["- 실제 R 행렬과 예측 행렬의 오차를 구하는 `get_rmse()` 함수\n"," - `get_rmse()` 함수: 실제 R 행렬의 널이 아닌 행렬 값의 위치 인덱스를 추출해 이 인덱스에 있는 실제 R 행렬 값과 분해된 P, Q를 이용해 다시 조합된 예측 행렬 값의 RMSE 값을 반환"],"metadata":{"id":"3ljxS6GedY0i"}},{"cell_type":"code","source":["from sklearn.metrics import mean_squared_error\n","\n","def get_rmse(R, P, Q, non_zeros):\n"," error = 0\n"," # 두 개의 분해된 행렬 P와 Q.T의 내적으로 예측 R 행렬 생성\n"," full_pred_matrix = np.dot(P, Q.T)\n","\n"," # 실제 R 행렬에서 널이 아닌 값의 위치 인덱스 추출해 실제 R 행렬과 예측 행렬의 RMSE 추출\n"," x_non_zero_ind = [non_zero[0] for non_zero in non_zeros]\n"," y_non_zero_ind = [non_zero[1] for non_zero in non_zeros]\n"," R_non_zeros = R[x_non_zero_ind, y_non_zero_ind]\n"," full_pred_matrix_non_zeros = full_pred_matrix[x_non_zero_ind, y_non_zero_ind]\n"," mse = mean_squared_error(R_non_zeros, full_pred_matrix_non_zeros)\n"," rmse = np.sqrt(mse)\n","\n"," return rmse"],"metadata":{"id":"S4CDSSm1d5Yr","executionInfo":{"status":"ok","timestamp":1736080814017,"user_tz":-540,"elapsed":323,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"execution_count":2,"outputs":[]},{"cell_type":"markdown","source":["- SGD 기반으로 행렬 분석 수행\n"," - R에서 널 값을 제외한 데이터의 행렬 인덱스 추출\n"," - steps는 SGD를 반복해서 업데이트할 횟수, learning_rate은 SGD의 학습률, r_lambda는 L2 Regularization 계수\n"," - steps = 1000 동안 반복하면서 새로운 p,q값으로 업데이트\n"," - get_rmse() 함수를 통해 50회 반복시마다 오류 값을 출력"],"metadata":{"id":"j87zwMHXevVG"}},{"cell_type":"code","source":["# R > 0 인 행 위치, 열 위치, 값을 non_zeros 리스트에 저장\n","non_zeros = [ (i, j, R[i, j]) for i in range(num_users) for j in range(num_items) if R[i, j] > 0 ]\n","\n","steps = 1000\n","learning_rate = 0.01\n","r_lambda = 0.01\n","\n","# SGD 기법으로 P와 Q 매트릭스를 계속 업데이트\n","for step in range(steps):\n"," for i, j, r in non_zeros:\n"," # 실제 값과 예측 값의 차이인 오류 값 구함\n"," eji = r - np.dot(P[i, :], Q[j, :].T)\n"," # Regularization을 반영한 SGD 업데이트 공식 적용\n"," P[i, :] = P[i, :] + learning_rate * (eji * Q[j, :] - r_lambda * P[i, :])\n"," Q[j, :] = Q[j, :] + learning_rate * (eji * P[i, :] - r_lambda * Q[j, :])\n","\n"," rmse = get_rmse(R, P, Q, non_zeros)\n"," if (step % 50) == 0:\n"," print('### iteration step: ', step, 'rmse: ', rmse)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"0XQTC1WMfKeE","executionInfo":{"status":"ok","timestamp":1736081218967,"user_tz":-540,"elapsed":8352,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"58a6a071-9ef1-44ff-bbca-651418a63a62"},"execution_count":3,"outputs":[{"output_type":"stream","name":"stdout","text":["### iteration step: 0 rmse: 3.261355059488935\n","### iteration step: 0 rmse: 3.26040057174686\n","### iteration step: 0 rmse: 3.253984404542389\n","### iteration step: 0 rmse: 3.2521583839863624\n","### iteration step: 0 rmse: 3.252335303789125\n","### iteration step: 0 rmse: 3.251072196430487\n","### iteration step: 0 rmse: 3.2492449982564864\n","### iteration step: 0 rmse: 3.247416477570409\n","### iteration step: 0 rmse: 3.241926055455223\n","### iteration step: 0 rmse: 3.2400454107613084\n","### iteration step: 0 rmse: 3.240166740749792\n","### iteration step: 0 rmse: 3.2388050277987723\n","### iteration step: 50 rmse: 0.5003190892212748\n","### iteration step: 50 rmse: 0.5001616291326989\n","### iteration step: 50 rmse: 0.49899601202578087\n","### iteration step: 50 rmse: 0.4988483450145831\n","### iteration step: 50 rmse: 0.49895189256631756\n","### iteration step: 50 rmse: 0.49833236830090993\n","### iteration step: 50 rmse: 0.4984148489378701\n","### iteration step: 50 rmse: 0.49792599580240876\n","### iteration step: 50 rmse: 0.4900605568692785\n","### iteration step: 50 rmse: 0.4890370238665435\n","### iteration step: 50 rmse: 0.48869176023997846\n","### iteration step: 50 rmse: 0.4876723101369648\n","### iteration step: 100 rmse: 0.15911521988578564\n","### iteration step: 100 rmse: 0.1588091617801093\n","### iteration step: 100 rmse: 0.1587409221708901\n","### iteration step: 100 rmse: 0.1582856952842508\n","### iteration step: 100 rmse: 0.1583080948216876\n","### iteration step: 100 rmse: 0.15828832993767403\n","### iteration step: 100 rmse: 0.15787486893092847\n","### iteration step: 100 rmse: 0.15792073606567072\n","### iteration step: 100 rmse: 0.15725245215457084\n","### iteration step: 100 rmse: 0.15710664164665206\n","### iteration step: 100 rmse: 0.15690252144190003\n","### iteration step: 100 rmse: 0.1564340384819247\n","### iteration step: 150 rmse: 0.07546004875264435\n","### iteration step: 150 rmse: 0.07544589133447106\n","### iteration step: 150 rmse: 0.07543234329653023\n","### iteration step: 150 rmse: 0.07514800672233914\n","### iteration step: 150 rmse: 0.07518867696418177\n","### iteration step: 150 rmse: 0.0752288950993841\n","### iteration step: 150 rmse: 0.07489318864469259\n","### iteration step: 150 rmse: 0.07493400425933257\n","### iteration step: 150 rmse: 0.07462695506527872\n","### iteration step: 150 rmse: 0.07464332131959663\n","### iteration step: 150 rmse: 0.0746444164156341\n","### iteration step: 150 rmse: 0.07455141311978046\n","### iteration step: 200 rmse: 0.04361016579439073\n","### iteration step: 200 rmse: 0.04370913068953006\n","### iteration step: 200 rmse: 0.04369072102767977\n","### iteration step: 200 rmse: 0.043475549832271414\n","### iteration step: 200 rmse: 0.0435313092537358\n","### iteration step: 200 rmse: 0.04359240037575283\n","### iteration step: 200 rmse: 0.04329647906053838\n","### iteration step: 200 rmse: 0.04332057192123618\n","### iteration step: 200 rmse: 0.04310448294502512\n","### iteration step: 200 rmse: 0.04313550286658552\n","### iteration step: 200 rmse: 0.04313786864806258\n","### iteration step: 200 rmse: 0.04325226798579314\n","### iteration step: 250 rmse: 0.029395183185609734\n","### iteration step: 250 rmse: 0.02954402948437167\n","### iteration step: 250 rmse: 0.02950187436758184\n","### iteration step: 250 rmse: 0.029329609713572593\n","### iteration step: 250 rmse: 0.02940211807327667\n","### iteration step: 250 rmse: 0.02946720568417511\n","### iteration step: 250 rmse: 0.029189294191791375\n","### iteration step: 250 rmse: 0.029198757426747605\n","### iteration step: 250 rmse: 0.028995742260002243\n","### iteration step: 250 rmse: 0.02904415445054541\n","### iteration step: 250 rmse: 0.029049587101179365\n","### iteration step: 250 rmse: 0.029248328780878973\n","### iteration step: 300 rmse: 0.022678715233749362\n","### iteration step: 300 rmse: 0.022844873864300484\n","### iteration step: 300 rmse: 0.022773566650325074\n","### iteration step: 300 rmse: 0.02263234507322516\n","### iteration step: 300 rmse: 0.02272006255153119\n","### iteration step: 300 rmse: 0.022778917442558434\n","### iteration step: 300 rmse: 0.022516243062381223\n","### iteration step: 300 rmse: 0.022515508246519694\n","### iteration step: 300 rmse: 0.02229491665298542\n","### iteration step: 300 rmse: 0.022367287171783136\n","### iteration step: 300 rmse: 0.022392303480653113\n","### iteration step: 300 rmse: 0.022621116143829466\n","### iteration step: 350 rmse: 0.019516973680183715\n","### iteration step: 350 rmse: 0.019681605297160464\n","### iteration step: 350 rmse: 0.019585635379668415\n","### iteration step: 350 rmse: 0.01946716545524988\n","### iteration step: 350 rmse: 0.01956568678979253\n","### iteration step: 350 rmse: 0.019614020075870497\n","### iteration step: 350 rmse: 0.019368393329296258\n","### iteration step: 350 rmse: 0.019361014872334943\n","### iteration step: 350 rmse: 0.019116038405167533\n","### iteration step: 350 rmse: 0.01920981547997513\n","### iteration step: 350 rmse: 0.019255623979392192\n","### iteration step: 350 rmse: 0.019493636196525135\n","### iteration step: 400 rmse: 0.01803666559195465\n","### iteration step: 400 rmse: 0.01819133106334419\n","### iteration step: 400 rmse: 0.018078504374883574\n","### iteration step: 400 rmse: 0.01797554592952707\n","### iteration step: 400 rmse: 0.018080509676855847\n","### iteration step: 400 rmse: 0.018118882879536648\n","### iteration step: 400 rmse: 0.017889686482489363\n","### iteration step: 400 rmse: 0.017878066671070433\n","### iteration step: 400 rmse: 0.01761224433968553\n","### iteration step: 400 rmse: 0.01772096734904666\n","### iteration step: 400 rmse: 0.01778179645659777\n","### iteration step: 400 rmse: 0.018022719092132704\n","### iteration step: 450 rmse: 0.017334045429542092\n","### iteration step: 450 rmse: 0.01747683493759156\n","### iteration step: 450 rmse: 0.01735361907510825\n","### iteration step: 450 rmse: 0.017260553985290646\n","### iteration step: 450 rmse: 0.01736909385010645\n","### iteration step: 450 rmse: 0.017399933857257726\n","### iteration step: 450 rmse: 0.01718431757863743\n","### iteration step: 450 rmse: 0.01716990649625117\n","### iteration step: 450 rmse: 0.01688861579579296\n","### iteration step: 450 rmse: 0.017006638154083088\n","### iteration step: 450 rmse: 0.01707679250866153\n","### iteration step: 450 rmse: 0.01731968595344266\n","### iteration step: 500 rmse: 0.016991609248052833\n","### iteration step: 500 rmse: 0.01712340891578616\n","### iteration step: 500 rmse: 0.01699398405641037\n","### iteration step: 500 rmse: 0.01690707049203008\n","### iteration step: 500 rmse: 0.01701760577221745\n","### iteration step: 500 rmse: 0.017043277556700362\n","### iteration step: 500 rmse: 0.01683803145900356\n","### iteration step: 500 rmse: 0.016821674312725313\n","### iteration step: 500 rmse: 0.016529281264429145\n","### iteration step: 500 rmse: 0.0166528887951985\n","### iteration step: 500 rmse: 0.016728541275490984\n","### iteration step: 500 rmse: 0.016973657887570753\n","### iteration step: 550 rmse: 0.016818969716266233\n","### iteration step: 550 rmse: 0.016941445597444732\n","### iteration step: 550 rmse: 0.0168082592988841\n","### iteration step: 550 rmse: 0.016725234339747562\n","### iteration step: 550 rmse: 0.01683693849143515\n","### iteration step: 550 rmse: 0.016859187050621206\n","### iteration step: 550 rmse: 0.016661644526141564\n","### iteration step: 550 rmse: 0.01664385102006508\n","### iteration step: 550 rmse: 0.016343446075494233\n","### iteration step: 550 rmse: 0.01647044082182643\n","### iteration step: 550 rmse: 0.01654932331426952\n","### iteration step: 550 rmse: 0.016796804595895633\n","### iteration step: 600 rmse: 0.016727439717439115\n","### iteration step: 600 rmse: 0.016842259158977232\n","### iteration step: 600 rmse: 0.016706687924467476\n","### iteration step: 600 rmse: 0.016626255644609397\n","### iteration step: 600 rmse: 0.016738696939262717\n","### iteration step: 600 rmse: 0.016758682415985614\n","### iteration step: 600 rmse: 0.0165668572000528\n","### iteration step: 600 rmse: 0.016547954461110684\n","### iteration step: 600 rmse: 0.016241668760761063\n","### iteration step: 600 rmse: 0.016370800056137867\n","### iteration step: 600 rmse: 0.016451627209257007\n","### iteration step: 600 rmse: 0.01670132290188466\n","### iteration step: 650 rmse: 0.016674291334806343\n","### iteration step: 650 rmse: 0.016782895588885082\n","### iteration step: 650 rmse: 0.016645698091647773\n","### iteration step: 650 rmse: 0.01656714079916223\n","### iteration step: 650 rmse: 0.016680091021598568\n","### iteration step: 650 rmse: 0.016698554271430792\n","### iteration step: 650 rmse: 0.016511017732427972\n","### iteration step: 650 rmse: 0.016491228766905293\n","### iteration step: 650 rmse: 0.01618054419796173\n","### iteration step: 650 rmse: 0.01631111150707529\n","### iteration step: 650 rmse: 0.01639316772050061\n","### iteration step: 650 rmse: 0.01664473691247669\n","### iteration step: 700 rmse: 0.0166383624426085\n","### iteration step: 700 rmse: 0.016741936743323586\n","### iteration step: 700 rmse: 0.016603524189001625\n","### iteration step: 700 rmse: 0.016526454393300468\n","### iteration step: 700 rmse: 0.016639792083379498\n","### iteration step: 700 rmse: 0.016657201345297346\n","### iteration step: 700 rmse: 0.016472928381641428\n","### iteration step: 700 rmse: 0.01645241257047358\n","### iteration step: 700 rmse: 0.016138379086448083\n","### iteration step: 700 rmse: 0.016269993747904915\n","### iteration step: 700 rmse: 0.01635288508504558\n","### iteration step: 700 rmse: 0.016605910068210026\n","### iteration step: 750 rmse: 0.01660906046895522\n","### iteration step: 750 rmse: 0.016708562969098305\n","### iteration step: 750 rmse: 0.016569153528341783\n","### iteration step: 750 rmse: 0.016493367054249922\n","### iteration step: 750 rmse: 0.016607027966870924\n","### iteration step: 750 rmse: 0.01662368102752549\n","### iteration step: 750 rmse: 0.016441927271724666\n","### iteration step: 750 rmse: 0.0164208024653437\n","### iteration step: 750 rmse: 0.016104179990850755\n","### iteration step: 750 rmse: 0.016236628551952913\n","### iteration step: 750 rmse: 0.016320141009292095\n","### iteration step: 750 rmse: 0.016574200475705\n","### iteration step: 800 rmse: 0.016581161561119846\n","### iteration step: 800 rmse: 0.016677363428436936\n","### iteration step: 800 rmse: 0.016537069269613652\n","### iteration step: 800 rmse: 0.0164624613777787\n","### iteration step: 800 rmse: 0.016576412350487568\n","### iteration step: 800 rmse: 0.01659250180024954\n","### iteration step: 800 rmse: 0.01641271740942833\n","### iteration step: 800 rmse: 0.016391072859801518\n","### iteration step: 800 rmse: 0.01607242307736876\n","### iteration step: 800 rmse: 0.016205589842521878\n","### iteration step: 800 rmse: 0.016289609430091494\n","### iteration step: 800 rmse: 0.01654431582921597\n","### iteration step: 850 rmse: 0.01655222898431553\n","### iteration step: 850 rmse: 0.01664575121547569\n","### iteration step: 850 rmse: 0.016504627328190514\n","### iteration step: 850 rmse: 0.016431145801748863\n","### iteration step: 850 rmse: 0.016545370571042432\n","### iteration step: 850 rmse: 0.016561024020105147\n","### iteration step: 850 rmse: 0.016382795627019747\n","### iteration step: 850 rmse: 0.016360700076085824\n","### iteration step: 850 rmse: 0.016040446344395578\n","### iteration step: 850 rmse: 0.016174269580681345\n","### iteration step: 850 rmse: 0.016258737354641353\n","### iteration step: 850 rmse: 0.01651375177473524\n","### iteration step: 900 rmse: 0.016521280433777957\n","### iteration step: 900 rmse: 0.016612624200841405\n","### iteration step: 900 rmse: 0.016470695682261876\n","### iteration step: 900 rmse: 0.016398314989165292\n","### iteration step: 900 rmse: 0.016512806333073466\n","### iteration step: 900 rmse: 0.01652811087350182\n","### iteration step: 900 rmse: 0.016351122754892394\n","### iteration step: 900 rmse: 0.016328629783842166\n","### iteration step: 900 rmse: 0.016007096878603234\n","### iteration step: 900 rmse: 0.016141544071514122\n","### iteration step: 900 rmse: 0.016226430843994055\n","### iteration step: 900 rmse: 0.01648146573819501\n","### iteration step: 950 rmse: 0.016488081335748316\n","### iteration step: 950 rmse: 0.016577652134974717\n","### iteration step: 950 rmse: 0.01643492933498176\n","### iteration step: 950 rmse: 0.0163636366204062\n","### iteration step: 950 rmse: 0.01647839195954869\n","### iteration step: 950 rmse: 0.01649340903060659\n","### iteration step: 950 rmse: 0.016317416842511007\n","### iteration step: 950 rmse: 0.016294568571753248\n","### iteration step: 950 rmse: 0.015972009545965248\n","### iteration step: 950 rmse: 0.0161070634587959\n","### iteration step: 950 rmse: 0.016192355609214733\n","### iteration step: 950 rmse: 0.016447171683479155\n"]}]},{"cell_type":"markdown","source":["- 분해된 P와 Q 함수를 P * Q.T로 예측 행렬을 만들어서 출력"],"metadata":{"id":"3e5SjXPmgVXS"}},{"cell_type":"code","source":["pred_matrix = np.dot(P, Q.T)\n","print('예측 행렬:\\n', np.round(pred_matrix, 3))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"yMsVpaeQgcKc","executionInfo":{"status":"ok","timestamp":1736081295748,"user_tz":-540,"elapsed":314,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"0b5774d9-ba9a-48bf-f588-a0f2b4057ddd"},"execution_count":4,"outputs":[{"output_type":"stream","name":"stdout","text":["예측 행렬:\n"," [[3.991 0.897 1.306 2.002 1.663]\n"," [6.696 4.978 0.979 2.981 1.003]\n"," [6.677 0.391 2.987 3.977 3.986]\n"," [4.968 2.005 1.006 2.017 1.14 ]]\n"]}]},{"cell_type":"markdown","source":["##**9.8 파이썬 추천 시스템 패키지 - Surprise**"],"metadata":{"id":"4V1-lwidhJ2v"}},{"cell_type":"markdown","source":["###**[Surprise 패키지 소개]**"],"metadata":{"id":"Mu-EJSfGhOnS"}},{"cell_type":"code","source":["pip install scikit-surprise"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"KR_dEjj7hI0I","executionInfo":{"status":"ok","timestamp":1736081587740,"user_tz":-540,"elapsed":80838,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"c625fb85-7f5f-4b07-ccee-55d26880f942"},"execution_count":6,"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting scikit-surprise\n"," Downloading scikit_surprise-1.1.4.tar.gz (154 kB)\n","\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/154.4 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.4/154.4 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n"," Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n"," Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n","Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-surprise) (1.4.2)\n","Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.10/dist-packages (from scikit-surprise) (1.26.4)\n","Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-surprise) (1.13.1)\n","Building wheels for collected packages: scikit-surprise\n"," Building wheel for scikit-surprise (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"," Created wheel for scikit-surprise: filename=scikit_surprise-1.1.4-cp310-cp310-linux_x86_64.whl size=2357279 sha256=20c86d0cd1e9477a52ad50850d0e6d2594ea0637e4df88a29ac567a8f1598dbb\n"," Stored in directory: /root/.cache/pip/wheels/4b/3f/df/6acbf0a40397d9bf3ff97f582cc22fb9ce66adde75bc71fd54\n","Successfully built scikit-surprise\n","Installing collected packages: scikit-surprise\n","Successfully installed scikit-surprise-1.1.4\n"]}]},{"cell_type":"code","source":["from surprise import SVD\n","from surprise import Dataset\n","from surprise import accuracy\n","from surprise.model_selection import train_test_split\n","\n","data = Dataset.load_builtin('ml-100k')\n","# 수행 시마다 동일하게 데이터를 분할하기 위해 random_state 값 부여\n","trainset, testset = train_test_split(data, test_size = .25, random_state = 0)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"t7GVxHrJh0qZ","executionInfo":{"status":"ok","timestamp":1736082327942,"user_tz":-540,"elapsed":5118,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"9d97fe05-f3ce-4d9b-e152-5fc0a11942d5"},"execution_count":7,"outputs":[{"output_type":"stream","name":"stdout","text":["Dataset ml-100k could not be found. Do you want to download it? [Y/n] Y\n","Trying to download dataset from https://files.grouplens.org/datasets/movielens/ml-100k.zip...\n","Done! Dataset ml-100k has been saved to /root/.surprise_data/ml-100k\n"]}]},{"cell_type":"markdown","source":["- SVD로 잠재 요인 협업 필터링 수행\n","- 학습된 추천 알고리즘을 기반으로 테스트 데이터 세트에 대해 추천 수행 - test()와 predict(): Surprise에서 추천을 예측하는 메서드\n"," - test(): 사용자-아이템 평점 데이터 세트 전체에 대해 추천을 예측하는 메서드, 입력된 데이터 세트에 대해 추천 데이터 세트를 만들어 줌\n"," - predict(): 개별 사용자와 영화에 대한 추천 평점을 반환해 줌"],"metadata":{"id":"LZVSXycKqNl1"}},{"cell_type":"code","source":["algo = SVD()\n","algo.fit(trainset)\n","\n","predictions = algo.test(testset)\n","print('prediction type: ', type(predictions), ' size: ', len(predictions))\n","print('prediction 결과의 최초 5개 추출')\n","predictions[:5]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"EbfhieJZqNAa","executionInfo":{"status":"ok","timestamp":1736083912276,"user_tz":-540,"elapsed":1809,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"76f9f38b-67bc-4eb9-e9b0-93bb348b50e0"},"execution_count":9,"outputs":[{"output_type":"stream","name":"stdout","text":["prediction type: size: 25000\n","prediction 결과의 최초 5개 추출\n"]},{"output_type":"execute_result","data":{"text/plain":["[Prediction(uid='120', iid='282', r_ui=4.0, est=3.386932093447826, details={'was_impossible': False}),\n"," Prediction(uid='882', iid='291', r_ui=4.0, est=3.8147246721394614, details={'was_impossible': False}),\n"," Prediction(uid='535', iid='507', r_ui=5.0, est=3.9161230361701462, details={'was_impossible': False}),\n"," Prediction(uid='697', iid='244', r_ui=5.0, est=3.7186230640100977, details={'was_impossible': False}),\n"," Prediction(uid='751', iid='385', r_ui=4.0, est=3.3514339985975967, details={'was_impossible': False})]"]},"metadata":{},"execution_count":9}]},{"cell_type":"markdown","source":["- Prediction 객체에서 uid, iid, est 속성을 추출한 예제"],"metadata":{"id":"lOfdBNKit-K8"}},{"cell_type":"code","source":["[ (pred.uid, pred.iid, pred.est) for pred in predictions[:3] ]\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"HCQPxkGvrNqD","executionInfo":{"status":"ok","timestamp":1736084851807,"user_tz":-540,"elapsed":368,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"6db835c7-e9c9-4119-d9c4-c180af5ffca2"},"execution_count":10,"outputs":[{"output_type":"execute_result","data":{"text/plain":["[('120', '282', 3.386932093447826),\n"," ('882', '291', 3.8147246721394614),\n"," ('535', '507', 3.9161230361701462)]"]},"metadata":{},"execution_count":10}]},{"cell_type":"markdown","source":["- Surprise 패키지의 다른 추천 예측 메서드인 predict()를 이용해 추천 예측\n"],"metadata":{"id":"fAi4wgmRuJ8_"}},{"cell_type":"code","source":["# 사용자 아이디, 아이템 아이디는 문자열로 입력해야 함\n","uid = str(196)\n","iid = str(302)\n","pred = algo.predict(uid, iid)\n","print(pred)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Ye7NodtDusG0","executionInfo":{"status":"ok","timestamp":1736085032932,"user_tz":-540,"elapsed":339,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"ad8d701b-6ad4-49e1-f3d2-efbc0259d46a"},"execution_count":11,"outputs":[{"output_type":"stream","name":"stdout","text":["user: 196 item: 302 r_ui = None est = 4.17 {'was_impossible': False}\n"]}]},{"cell_type":"markdown","source":["- Surprise의 accuracy 모듈의 rmse()를 이용해 RMSE 평가 결과를 확인"],"metadata":{"id":"VlILRDoQu5nZ"}},{"cell_type":"code","source":["accuracy.rmse(predictions)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"PF10RhvHvygr","executionInfo":{"status":"ok","timestamp":1736085295478,"user_tz":-540,"elapsed":388,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"16ba2e11-02a8-41ba-f6f6-ec1a08288612"},"execution_count":12,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE: 0.9482\n"]},{"output_type":"execute_result","data":{"text/plain":["0.9481869292906402"]},"metadata":{},"execution_count":12}]},{"cell_type":"markdown","source":["###**[Surprise 주요 모듈 소개]**\n","OS 파일 데이터를 Surprise 데이터 세트로 로딩"],"metadata":{"id":"y2bGlb_Hv2xT"}},{"cell_type":"code","source":["import pandas as pd\n","\n","from google.colab import drive\n","drive.mount('/content/drive')\n","\n","ratings = pd.read_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/ratings.csv')\n","# ratings_noh.csv 파일로 업로드 시 인덱스와 헤더를 모두 제거한 새로운 파일 생성\n","ratings.to_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/ratings_noh.csv', index = False, header = False)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"jl3okyqgy_fb","executionInfo":{"status":"ok","timestamp":1736086745150,"user_tz":-540,"elapsed":20449,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"802df31e-93d4-4a7a-e38c-621f23b99a9d"},"execution_count":14,"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]}]},{"cell_type":"markdown","source":["- ratings_noh.csv 파일은 ratings.csv 파일에서 헤더가 삭제된 파일\n","- ratings_noh.csv를 Dataset 모듈의 load_from_file()을 이용해 Dataset로 로드"],"metadata":{"id":"Jp2ZZm0c1c7N"}},{"cell_type":"code","source":["from surprise import Reader\n","\n","reader = Reader(line_format = 'user item rating timestamp', sep=',', rating_scale = (0.5, 5))\n","data = Dataset.load_from_file('drive/My Drive/Colab Notebooks/data/ml-latest-small/ratings_noh.csv', reader = reader)\n"],"metadata":{"id":"JLGCdsjl1cFT","executionInfo":{"status":"ok","timestamp":1736087400651,"user_tz":-540,"elapsed":701,"user":{"displayName":"우정연","userId":"02785637225882896926"}}},"execution_count":16,"outputs":[]},{"cell_type":"markdown","source":["- SVD 행렬 분해 기법을 이용한 추천 예측\n"," - 잠재 요인 크기 K 값을 나타내는 파라미터인 n_factors를 50으로 설정해 데이터를 학습한 뒤 테스트 데이터 세트를 적용해 예측 평점 구하기\n"," - 예측 평점과 실제 평점 데이터를 RMSE로 평가"],"metadata":{"id":"CP4ZFbnG5_GF"}},{"cell_type":"code","source":["trainset, testset = train_test_split(data, test_size = .25, random_state = 0)\n","\n","# 수행 시마다 동일한 결과를 도출하기 위해 random_state 설정\n","algo = SVD(n_factors = 50, random_state = 0)\n","\n","# 학습 데이터 세트로 학습하고 나서 테스트 데이터 세트로 평점 예측 후 RMSE 평가\n","algo.fit(trainset)\n","predictions = algo.test(testset)\n","accuracy.rmse(predictions)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"OZgs_QCW6C4k","executionInfo":{"status":"ok","timestamp":1736088076157,"user_tz":-540,"elapsed":3024,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"6df21012-9329-45b4-8b46-20eaf1f9e875"},"execution_count":17,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE: 0.8682\n"]},{"output_type":"execute_result","data":{"text/plain":["0.8681952927143516"]},"metadata":{},"execution_count":17}]},{"cell_type":"markdown","source":["- 판다스 DataFrame에서 Surprise 데이터 세트로 로딩"],"metadata":{"id":"a78PT_cg6dxr"}},{"cell_type":"code","source":["import pandas as pd\n","from surprise import Reader, Dataset\n","\n","ratings = pd.read_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/ratings.csv')\n","reader = Reader(rating_scale = (0.5, 5.0))\n","\n","# ratings DataFrame에서 칼럼은 사용자 아이디, 아이템 아이디, 평점 순서를 지켜야 함\n","data = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']], reader)\n","trainset, testset = train_test_split(data, test_size = .25, random_state = 0)\n","\n","algo = SVD(n_factors = 50, random_state = 0)\n","algo.fit(trainset)\n","predictions = algo.test(testset)\n","accuracy.rmse(predictions)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"pe3CebYI7mqe","executionInfo":{"status":"ok","timestamp":1736088549978,"user_tz":-540,"elapsed":2340,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"58869a32-e718-41de-e8d3-29ebab35d4ed"},"execution_count":18,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE: 0.8682\n"]},{"output_type":"execute_result","data":{"text/plain":["0.8681952927143516"]},"metadata":{},"execution_count":18}]},{"cell_type":"markdown","source":["###**[교차 검증과 하이퍼 파라미터 튜닝]**"],"metadata":{"id":"Qs0ae5Gm_Bs8"}},{"cell_type":"code","source":["from surprise.model_selection import cross_validate\n","\n","# 판다스 DataFrame에서 Surprise 데이터 세트로 데이터 로딩\n","ratings = pd.read_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/ratings.csv')\n","reader = Reader(rating_scale = (0.5, 5.0))\n","data = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']], reader)\n","\n","algo = SVD(random_state = 0)\n","cross_validate(algo, data, measures = ['RMSE', 'MSE'], cv = 5, verbose = True)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"iD_1pXpr8RBU","executionInfo":{"status":"ok","timestamp":1736089429107,"user_tz":-540,"elapsed":12536,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"e08ffe55-0ef6-4c72-c09c-76956900d87b"},"execution_count":19,"outputs":[{"output_type":"stream","name":"stdout","text":["Evaluating RMSE, MSE of algorithm SVD on 5 split(s).\n","\n"," Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std \n","RMSE (testset) 0.8703 0.8748 0.8732 0.8734 0.8720 0.8727 0.0015 \n","MSE (testset) 0.7574 0.7653 0.7625 0.7628 0.7603 0.7617 0.0026 \n","Fit time 1.65 2.59 2.00 1.68 1.67 1.92 0.36 \n","Test time 0.23 0.55 0.13 0.12 0.12 0.23 0.16 \n"]},{"output_type":"execute_result","data":{"text/plain":["{'test_rmse': array([0.87030739, 0.87482049, 0.87321225, 0.87341209, 0.87196986]),\n"," 'test_mse': array([0.75743495, 0.7653109 , 0.76249963, 0.76284869, 0.76033143]),\n"," 'fit_time': (1.647949457168579,\n"," 2.5882577896118164,\n"," 1.9982025623321533,\n"," 1.6811463832855225,\n"," 1.673377513885498),\n"," 'test_time': (0.23110675811767578,\n"," 0.5467901229858398,\n"," 0.13285279273986816,\n"," 0.12348580360412598,\n"," 0.12383365631103516)}"]},"metadata":{},"execution_count":19}]},{"cell_type":"code","source":["from surprise.model_selection import GridSearchCV\n","\n","# 최적화할 파라미터를 딕셔너리 형태로 지정\n","param_grid = {'n_epochs': [20, 40, 60], 'n_factors': [50, 100, 200]}\n","\n","# CV를 3개 폴드 세트로 지정, 성능 평가는 rmse, mse로 수행하도록 GridSearchCV 구성\n","gs = GridSearchCV(SVD, param_grid, measures = ['rmse', 'mae'], cv = 3)\n","gs.fit(data)\n","\n","# 최고 RMSE Evaluation 점수와 그때의 하이퍼 파라미터\n","print(gs.best_score['rmse'])\n","print(gs.best_params['rmse'])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"FqKfgdg1A5hV","executionInfo":{"status":"ok","timestamp":1736090040994,"user_tz":-540,"elapsed":129644,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"c8a73c09-8c5d-4e31-b304-851c1306f839"},"execution_count":20,"outputs":[{"output_type":"stream","name":"stdout","text":["0.8774511791810724\n","{'n_epochs': 20, 'n_factors': 50}\n"]}]},{"cell_type":"markdown","source":["###**[Surprise를 이용한 개인화 영화 추천 시스템 구축]**"],"metadata":{"id":"S9Rv_hUYBeO7"}},{"cell_type":"code","source":["# 다음 코드는 train_test_split()으로 분리되지 않는 데이터 세트에 fit()을 호출해 오류 발생\n","data = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']])\n","algo = SVD(n_factors = 50, random_state = 0)\n","algo.fit(data)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":198},"id":"xHYlxgmhBj7g","executionInfo":{"status":"error","timestamp":1736090312408,"user_tz":-540,"elapsed":3,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"5865214b-f1ec-49cf-ce37-f84ab28159ad"},"execution_count":22,"outputs":[{"output_type":"error","ename":"TypeError","evalue":"Dataset.load_from_df() missing 1 required positional argument: 'reader'","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# 다음 코드는 train_test_split()으로 분리되지 않는 데이터 세트에 fit()을 호출해 오류 발생\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_from_df\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mratings\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'userId'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'movieId'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rating'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0malgo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSVD\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_factors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrandom_state\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0malgo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mTypeError\u001b[0m: Dataset.load_from_df() missing 1 required positional argument: 'reader'"]}]},{"cell_type":"code","source":["from surprise.dataset import DatasetAutoFolds\n","\n","reader = Reader(line_format = 'user item rating timestamp', sep=',', rating_scale = (0.5, 5))\n","# DatasestAutoFolds 클래스를 ratings_noh.csv 파일 기반으로 생성\n","data_folds = DatasetAutoFolds(ratings_file = 'drive/My Drive/Colab Notebooks/data/ml-latest-small/ratings_noh.csv', reader = reader)\n","\n","# 전체 데이터를 학습 데이터로 생성함\n","trainset = data_folds.build_full_trainset()\n","\n","algo = SVD(n_epochs = 20, n_factors = 50, random_state = 0)\n","algo.fit(trainset)\n","\n","# 영화에 대한 상세 속성 정보 DataFrame 로딩\n","movies = pd.read_csv('drive/My Drive/Colab Notebooks/data/ml-latest-small/movies.csv')\n","\n","# userId = 9의 movieId 데이터를 추출해 movieId = 42 데이터가 있는지 확인\n","movieIds = ratings[ratings['userId']==9]['movieId']\n","if movieIds[movieIds == 42].count() == 0:\n"," print('사용자 아이디 9는 영화 아이디 42의 평점 없음')\n","print(movies[movies['movieId']==42])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"TN6sjkZpB4Ie","executionInfo":{"status":"ok","timestamp":1736090329362,"user_tz":-540,"elapsed":2432,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"52214e6a-c8f4-46af-e6f3-61e0ad65af6e"},"execution_count":24,"outputs":[{"output_type":"stream","name":"stdout","text":["사용자 아이디 9는 영화 아이디 42의 평점 없음\n"," movieId title genres\n","38 42 Dead Presidents (1995) Action|Crime|Drama\n"]}]},{"cell_type":"code","source":["uid = str(9)\n","iid = str(42)\n","\n","pred = algo.predict(uid, iid, verbose = True)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"8cXYfwFOFdNe","executionInfo":{"status":"ok","timestamp":1736090991720,"user_tz":-540,"elapsed":356,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"977c25a2-324b-43ff-8ce8-9c438d5044f2"},"execution_count":25,"outputs":[{"output_type":"stream","name":"stdout","text":["user: 9 item: 42 r_ui = None est = 3.13 {'was_impossible': False}\n"]}]},{"cell_type":"code","source":["def get_unseen_surprise(ratings, movies, userId):\n"," # 입력값으로 들어온 userId에 해당하는 사용자가 평점을 매긴 모든 영화를 리스트로 생성\n"," seen_movies = ratings[ratings['userId'] == userId]['movieId'].tolist()\n","\n"," # 모든 영화의 movieId를 리스트로 생성\n"," total_movies = movies['movieId'].tolist()\n","\n"," # 모든 영화의 movieId 중 이미 평점을 매긴 영화의 movieId를 제외한 후 리스트로 생성\n"," unseen_movies = [movie for movie in total_movies if movie not in seen_movies]\n"," print('평점 매긴 영화 수:', len(seen_movies), '추천 대상 영화 수:', len(unseen_movies),\n"," '전체 영화 수:', len(total_movies))\n","\n"," return unseen_movies\n","\n","unseen_movies = get_unseen_surprise(ratings, movies, 9)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Z6HH-tdRFliU","executionInfo":{"status":"ok","timestamp":1736091692397,"user_tz":-540,"elapsed":333,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"c462d128-835e-47c5-818e-e43176c1c460"},"execution_count":27,"outputs":[{"output_type":"stream","name":"stdout","text":["평점 매긴 영화 수: 46 추천 대상 영화 수: 9696 전체 영화 수: 9742\n"]}]},{"cell_type":"code","source":["def recomm_movie_by_surprise(algo, userId, unseen_movies, top_n = 10):\n","\n"," # 알고리즘 객체의 predict() 메서드를 평점이 없는 영화에 반복 수행한 후 결과를 list 객체로 저장\n"," predictions = [algo.predict(str(userId), str(movieId)) for movieId in unseen_movies]\n","\n"," # predictions list 객체는 surprise의 Prediction 객체를 원소로 가지고 있음\n"," # [Prediction(uid ='9', iid = '1', est = 3.69), Prediction(uid = '9', iid = '2', est = 2.98),,,]\n","\n"," # 이를 est 값으로 정렬하기 위해 아래의 sortkey_est 함수를 정의함\n"," # sortkey_est 함수는 list 객체의 sort() 함수의 키 값으로 사용되어 정렬 수행\n","\n"," def sortkey_est(pred):\n"," return pred.est\n","\n"," # sortkey_est() 반환값의 내림 차순으로 정렬 수행하고 top_n 개의 최상위 값 추출\n"," predictions.sort(key = sortkey_est, reverse = True)\n"," top_predictions = predictions[:top_n]\n","\n"," # top_n 으로 추출된 영화의 정보 추출. 영화 아이디, 추천 예상 평점, 제목 추출\n"," top_movie_ids = [int(pred.iid) for pred in top_predictions]\n"," top_movie_rating = [pred.est for pred in top_predictions]\n"," top_movie_titles = movies[movies.movieId.isin(top_movie_ids)]['title']\n","\n"," top_movie_preds = [ (id, title, rating) for id, title, rating in zip(top_movie_ids,\n"," top_movie_titles,\n"," top_movie_rating)]\n","\n","\n"," return top_movie_preds\n","\n","unseen_movies = get_unseen_surprise(ratings, movies, 9)\n","top_movie_preds = recomm_movie_by_surprise(algo, 9, unseen_movies, top_n =10)\n","\n","print('#### TOP-10 추천 영화 리스트 ####')\n","for top_movie in top_movie_preds:\n"," print(top_movie[1], ':', top_movie[2])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"pH4q6QK9IKOG","executionInfo":{"status":"ok","timestamp":1736092187225,"user_tz":-540,"elapsed":325,"user":{"displayName":"우정연","userId":"02785637225882896926"}},"outputId":"fed9b73a-8608-463b-872d-dfff3519ba31"},"execution_count":30,"outputs":[{"output_type":"stream","name":"stdout","text":["평점 매긴 영화 수: 46 추천 대상 영화 수: 9696 전체 영화 수: 9742\n","#### TOP-10 추천 영화 리스트 ####\n","Usual Suspects, The (1995) : 4.306302135700814\n","Star Wars: Episode IV - A New Hope (1977) : 4.281663842987387\n","Pulp Fiction (1994) : 4.278152632122759\n","Silence of the Lambs, The (1991) : 4.226073566460876\n","Godfather, The (1972) : 4.1918097904381995\n","Streetcar Named Desire, A (1951) : 4.154746591122657\n","Star Wars: Episode V - The Empire Strikes Back (1980) : 4.122016128534504\n","Star Wars: Episode VI - Return of the Jedi (1983) : 4.108009609093436\n","Goodfellas (1990) : 4.083464936588478\n","Glory (1989) : 4.07887165526957\n"]}]}]} \ No newline at end of file diff --git "a/Week16_\341\204\213\341\205\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.pdf" "b/Week16_\341\204\213\341\205\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.pdf" new file mode 100644 index 0000000..dd9c63c Binary files /dev/null and "b/Week16_\341\204\213\341\205\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\213\341\205\256\341\204\214\341\205\245\341\206\274\341\204\213\341\205\247\341\206\253.pdf" differ