-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
78 lines (63 loc) · 2.45 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from dotenv import load_dotenv
import os
import streamlit as st
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationEntityMemory
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE
from langchain.llms import OpenAI
load_dotenv()
st.set_page_config(page_title='Serenity', layout='wide'),
st.title("Serenity Bot")
#Initialize a session state
if "generated" not in st.session_state:
st.session_state["generated"] = [] #output
if "past" not in st.session_state:
st.session_state["past"] = [] #past
if "input" not in st.session_state:
st.session_state["input"] = ""
if "stored_session" not in st.session_state:
st.session_state["stored_session"] = []
#Define a Function to get user input
def get_text():
"""
Get the user input text.
Returns:
(str): The text entered by the user
"""
input_text = st.text_input("You: ", st.session_state["input"], key="input",
placeholder="Your AI assistant here! Ask me anything ...",
label_visibility='hidden')
return input_text
# Retrieve the API keys from the environment variables
api = st.sidebar.text_input("Open AI API-Key", type="password")
MODEL = st.selectbox(label='Model', options= ['gpt-3.5-turbo','text-davinci-003','text-davinci-002','code-davinci-002'])
K = st.number_input(' (#)Summary of prompts to consider',min_value=3,max_value=1000)
if api:
#Create OpenAI Instance
llm = OpenAI(
temperature=0.75,
openai_api_key=api,
model_name=MODEL ,
)
# Create a ConversationEntityMemory object if not already created
if 'entity_memory' not in st.session_state:
st.session_state.entity_memory = ConversationEntityMemory(llm=llm,k=K)
#Create Conversation Chain
Conversation = ConversationChain(
llm = llm,
prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE,
memory = st.session_state.entity_memory
)
else:
st.error("No API Found")
# Get User Input
user_input = get_text()
# Generate the output using the ConversationChain object
if user_input:
output = Conversation.run (input=user_input)
st.session_state.past.append(user_input)
st.session_state.generated.append(output)
with st.expander("Conversation"):
for i in range(len(st.session_state['generated'])-1,-1,-1):
st.info(st.session_state["past"][i])
st.success(st.session_state["generated"][i],icon="🧞")