-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_submission_fig2-3and5to17.py
171 lines (137 loc) · 6.46 KB
/
create_submission_fig2-3and5to17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import sys
from os import listdir
from os.path import isfile, join
import subprocess
import numpy as np
from random import shuffle
try:
arg = sys.argv
submit = int(arg[1])
print(submit)
verbosity = 0
except:
arg = ''
submit = False
verbosity = 1
run_locally = False
mypath = './' #PATH OF SAVED RESULTS (to check if results already exist)
num_jobs = 500 #max number of jobs on HPC system
run_time_hrs = 8 #hours of HPC jobs
run_time_min = 0 #min of HPC jobs
num_cpus = 128 #Number of cpu per cores, default 128
samples = 500 #Number of independent models generated
verbosity = 0
anyconfigurations = []
fix_metrics = False
overwrite = False
aggregation='majority' #'alternative'
for model in ['random_lineargaussian_highdegree']: # random_linearmixed_highdegree or also random_nonlineargaussian_highdegree
#pc_alpha= [0.00001,0.00005,0.0001,0.0005,0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.3, 0.4, 0.5,0.6, 0.8, 0.9, 0.95, 0.98, 0.99]
#Indicative values for the parameters T,N and Tau_max for other figures
#highdim = [2,3,5,10,20,30,40];
#sample_size=[100,200,500,1000]
#auto=[0., 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 0.95, 0.98, 0.99, 0.999];
#tau_max=[5, 10, 15, 20, 25, 30, 35, 40]
for N in [5]: #[2,3,5,10,20,30,40]
if N == 2:
n_links = 1
else:
if 'fixeddensity' in model:
n_links = max(N, int(0.2*N*(N-1.)/2.))
elif 'highdegree' in model:
n_links = int(1.5*N)
else:
n_links = N
for min_coeff in [0.1]:
for coeff in [0.5]:
for auto in [0.95]: #[0., 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 0.95, 0.98, 0.99, 0.999]
for max_true_lag in [5]:
for contemp_fraction in [0.3]:
for frac_unobserved in [0.]: #0.3 for LPCMCI experiments
for T in [200]: #[100,200,500,1000]
for ci_test in ['par_corr']:
method_list = [
'standard_pcmci+',
'bootstrap_pcmci+',
#'pcalg', #for fig 15/16
#'bootstrap_pcalg' #for fig 15/16
#'lpcmci' #for fig17/18
#'bootstrap_lpcmci' #for fig17/18
]
for method in method_list:
# below pc_alpha values for Fig3., only [0.001,0.005,0.01,0.02,0.05] is needed for fig 4.
for pc_alpha in [0.00001,0.00005,0.0001,0.0005,0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 0.95, 0.98, 0.99, 0.999]:
for tau_max in [5]: # [5, 10, 15, 20, 25, 30, 35, 40] for SM experiments
if "bootstrap_" not in method:
pc_alpha = np.format_float_positional(float(pc_alpha),trim='-')
para_setup = (model, N, n_links, min_coeff, coeff, auto, contemp_fraction, frac_unobserved, max_true_lag, T, ci_test, method, pc_alpha, tau_max,
0)
name = '%s-'*len(para_setup) % para_setup
name = name[:-1]
anyconfigurations += [name]
else:
for n_bs in [25,50,100,200]: #number of bootstrap realizations [25,50,100,200]
pc_alpha = np.format_float_positional(float(pc_alpha),trim='-')
if aggregation!="alternative":
para_setup = (model, N, n_links, min_coeff, coeff, auto, contemp_fraction, frac_unobserved, max_true_lag, T, ci_test, method, pc_alpha, tau_max,
n_bs)
else:
para_setup = (model, N, n_links, min_coeff, coeff, auto, contemp_fraction, frac_unobserved, max_true_lag, T, ci_test, method, pc_alpha, tau_max,
n_bs,aggregation)
name = '%s-'*len(para_setup) % para_setup
name = name[:-1]
anyconfigurations += [name]
current_results_files = [f for f in listdir(mypath) if isfile(join(mypath, f))]
already_there = []
configurations = []
for conf in anyconfigurations:
if conf not in configurations:
conf = conf.replace("'","")
if (overwrite == False) and (conf + '.dat' in current_results_files):
already_there.append(conf)
pass
else:
configurations.append(conf)
## CHeck whether configuration already exists!!!
# print configurations
# print already_there
for conf in configurations:
print(conf)
num_configs = len(configurations)
print("number of todo configs ", num_configs)
print("number of existing configs ", len(already_there))
chunk_length = min(num_jobs, num_configs)
print("num_jobs %s" % num_jobs)
print("chunk_length %s" % chunk_length)
print("cpus %s" % num_cpus)
print("runtime %02.d:%02.d:00" % (run_time_hrs, run_time_min))
print("Shuffle configs to create equal computation time chunks ")
shuffle(configurations)
if num_configs == 0:
raise ValueError("No configs to do...")
def split(a, n):
k, m = len(a) // n, len(a) % n
return [a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)]
for config_chunk in split(configurations, chunk_length):
config_chunk = [con for con in config_chunk if con != None]
config_string = str(config_chunk)[1:-1].replace(',', '').replace('"', '')
#
job_list = [(conf, i) for i in range(samples) for conf in config_chunk]
num_tasks = len(config_chunk)*samples
# print num_tasks
num_jobs = min(num_cpus-1, num_tasks)
print(max([len(chunk) for chunk in split(job_list, num_jobs)]))
use_script = 'compute_fig2-3and5to17.py'
if submit == False:
submit_string = ["python", "compute_fig2-3and5to17.py", str(num_cpus), str(samples), str(verbosity)] + config_chunk
if run_locally:
print("Run locally")
process = subprocess.Popen(submit_string) #,
output = process.communicate()
if submit:
submit_string = ['sbatch', '--ntasks', str(num_cpus), '--time', '%02.d:%02.d:00' % (run_time_hrs, run_time_min), 'sbatch_fig2-3and5to17.sh', use_script + " %d %d %d %s" %(num_cpus, samples, verbosity, config_string)] # + config_chunk
print(submit_string[-1])
process = subprocess.Popen(submit_string) #,
output = process.communicate()
else:
print("Not submitted.")