-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
141 lines (119 loc) · 6.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from keras.models import Model
from keras.layers import Conv3D, Input, MaxPool3D, Dropout, concatenate, UpSampling3D, Add
from keras.layers import Conv2D, MaxPool2D, BatchNormalization, Activation, UpSampling2D, Concatenate
def unet(input_size):
inputs = Input(input_size)
# -------------- downsample --------------
conv1 = Conv2D(16, 3, padding='same', kernel_initializer='he_normal')(inputs)
batc1 = BatchNormalization(axis=-1)(conv1)
acti1 = Activation('relu')(batc1)
conv2 = Conv2D(16, 3, padding='same', kernel_initializer='he_normal')(acti1)
batc2 = BatchNormalization(axis=-1)(conv2)
acti2 = Activation('relu')(batc2)
maxp1 = MaxPool2D(2)(acti2)
conv3 = Conv2D(16, 3, padding='same', kernel_initializer='he_normal')(maxp1)
batc3 = BatchNormalization(axis=-1)(conv3)
acti3 = Activation('relu')(batc3)
conv4 = Conv2D(32, 3, padding='same', kernel_initializer='he_normal')(acti3)
batc4 = BatchNormalization(axis=-1)(conv4)
acti4 = Activation('relu')(batc4)
maxp2 = MaxPool2D(2)(acti4)
conv5 = Conv2D(32, 3, padding='same', kernel_initializer='he_normal')(maxp2)
batc5 = BatchNormalization(axis=-1)(conv5)
acti5 = Activation('relu')(batc5)
conv6 = Conv2D(64, 3, padding='same', kernel_initializer='he_normal')(acti5)
batc6 = BatchNormalization(axis=-1)(conv6)
acti6 = Activation('relu')(batc6)
maxp3 = MaxPool2D(2)(acti6)
conv7 = Conv2D(64, 3, padding='same', kernel_initializer='he_normal')(maxp3)
batc7 = BatchNormalization(axis=-1)(conv7)
acti7 = Activation('relu')(batc7)
conv8 = Conv2D(128, 3, padding='same', kernel_initializer='he_normal')(acti7)
batc8 = BatchNormalization(axis=-1)(conv8)
acti8 = Activation('relu')(batc8)
# ----------------- upsample -----------------
upsa1 = UpSampling2D(2)(acti8)
merg1 = Concatenate(axis=-1)([conv6, upsa1])
conv9 = Conv2D(64, 3, padding='same', kernel_initializer='he_normal')(merg1)
batc9 = BatchNormalization(axis=-1)(conv9)
acti9 = Activation('relu')(batc9)
conv10 = Conv2D(64, 3, padding='same', kernel_initializer='he_normal')(acti9)
batc10 = BatchNormalization(axis=-1)(conv10)
acti10 = Activation('relu')(batc10)
upsa2 = UpSampling2D(2)(acti10)
merg2 = Concatenate(axis=-1)([conv4, upsa2])
conv11 = Conv2D(32, 3, padding='same', kernel_initializer='he_normal')(merg2)
batc11 = BatchNormalization(axis=-1)(conv11)
acti11 = Activation('relu')(batc11)
conv12 = Conv2D(32, 3, padding='same', kernel_initializer='he_normal')(acti11)
batc12 = BatchNormalization(axis=-1)(conv12)
acti12 = Activation('relu')(batc12)
upsa3 = UpSampling2D(2)(acti12)
merg3 = Concatenate(axis=-1)([conv2, upsa3])
conv13 = Conv2D(64, 3, padding='same', kernel_initializer='he_normal')(merg3)
batc13 = BatchNormalization(axis=-1)(conv13)
acti13 = Activation('relu')(batc13)
conv14 = Conv2D(128, 3, padding='same', kernel_initializer='he_normal')(acti13)
convol = Conv2D(256, 1, activation='sigmoid')(conv14)
model = Model(inputs=inputs, outputs=convol)
return model
def unet3d(input_size):
inputs = Input(input_size)
# -------------- downsample --------------
conv1 = Conv3D(16, 3, padding='same', kernel_initializer='he_normal')(inputs)
batc1 = BatchNormalization(axis=-1)(conv1)
acti1 = Activation('relu')(batc1)
conv2 = Conv3D(16, 3, padding='same', kernel_initializer='he_normal')(acti1)
batc2 = BatchNormalization(axis=-1)(conv2)
acti2 = Activation('relu')(batc2)
maxp1 = MaxPool3D(2)(acti2)
conv3 = Conv3D(32, 3, padding='same', kernel_initializer='he_normal')(maxp1)
batc3 = BatchNormalization(axis=-1)(conv3)
acti3 = Activation('relu')(batc3)
conv4 = Conv3D(32, 3, padding='same', kernel_initializer='he_normal')(acti3)
batc4 = BatchNormalization(axis=-1)(conv4)
acti4 = Activation('relu')(batc4)
maxp2 = MaxPool3D(2)(acti4)
conv5 = Conv3D(64, 3, padding='same', kernel_initializer='he_normal')(maxp2)
batc5 = BatchNormalization(axis=-1)(conv5)
acti5 = Activation('relu')(batc5)
conv6 = Conv3D(64, 3, padding='same', kernel_initializer='he_normal')(acti5)
batc6 = BatchNormalization(axis=-1)(conv6)
acti6 = Activation('relu')(batc6)
maxp3 = MaxPool3D(2)(acti6)
conv7 = Conv3D(128, 3, padding='same', kernel_initializer='he_normal')(maxp3)
batc7 = BatchNormalization(axis=-1)(conv7)
acti7 = Activation('relu')(batc7)
conv8 = Conv3D(128, 3, padding='same', kernel_initializer='he_normal')(acti7)
batc8 = BatchNormalization(axis=-1)(conv8)
acti8 = Activation('relu')(batc8)
# -------------- upsample --------------
upsa1 = UpSampling3D(2)(acti8)
merg1 = Concatenate(axis=-1)([conv6, upsa1])
conv9 = Conv3D(64, 3, padding='same', kernel_initializer='he_normal')(merg1)
batc9 = BatchNormalization(axis=-1)(conv9)
acti9 = Activation('relu')(batc9)
conv10 = Conv3D(64, 3, padding='same', kernel_initializer='he_normal')(acti9)
batc10 = BatchNormalization(axis=-1)(conv10)
acti10 = Activation('relu')(batc10)
upsa2 = UpSampling3D(2)(acti10)
merg2 = Concatenate(axis=-1)([conv4, upsa2])
conv11 = Conv3D(32, 3, padding='same', kernel_initializer='he_normal')(merg2)
batc11 = BatchNormalization(axis=-1)(conv11)
acti11 = Activation('relu')(batc11)
conv12 = Conv3D(32, 3, padding='same', kernel_initializer='he_normal')(acti11)
batc12 = BatchNormalization(axis=-1)(conv12)
acti12 = Activation('relu')(batc12)
upsa3 = UpSampling3D(2)(acti12)
merg3 = Concatenate(axis=-1)([conv2, upsa3])
conv13 = Conv3D(16, 3, padding='same', kernel_initializer='he_normal')(merg3)
batc13 = BatchNormalization(axis=-1)(conv13)
acti13 = Activation('relu')(batc13)
conv14 = Conv3D(16, 3, padding='same', kernel_initializer='he_normal')(acti13)
convol = Conv3D(1, 1, activation='sigmoid')(conv14)
model = Model(inputs=inputs, outputs=convol)
return model
if __name__ == '__main__':
# model = unet(input_size=(128, 128, 128))
model = unet3d(input_size=(128,128,128,1))
model.summary()