-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcorrelations_workflow.py
488 lines (308 loc) · 16.2 KB
/
correlations_workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
import sys
def create_unique_file_dict(output_folder_path):
filesDict = {}
for root, dirs, files in os.walk(output_folder_path):
# loops through every file in the directory
for filename in files:
# checks if the file is a nifti (.nii.gz)
if 'nii.gz' in filename:
# 'filename' is only the filename, not the full path of the
# current file being looked at
category = root.split('/')[len(output_folder_path.split('/'))+1]
# this is the subject ID
subjectID = root.split('/')[len(output_folder_path.split('/'))]
fullpath = root + '/' + filename
scrubbing = ''
aux = ''
# this is hard-coded because the usual regression
# configuration includes scrubbing on/off, and the threshold
# used for scrubbing is 0.2
# in the future make this more dynamic by having it detect
# '_threshold' and then parsing the number at the end
#if '/_threshold_0.2' in fullpath:
if 'scrubbing' in fullpath:
scrubbing = '0.2'
else:
scrubbing = 'none'
if '_roi_HarvardOxford-cort-maxprob-thr50-2mm' in fullpath:
aux = '_roi_HarvardOxford-cort-maxprob-thr50-2mm'
elif '_roi_HarvardOxford-sub-maxprob-thr50-2mm' in fullpath:
aux = '_roi_HarvardOxford-sub-maxprob-thr50-2mm'
elif '_roi_rois_2mm' in fullpath:
aux = '_roi_rois_2mm'
elif '_mask_aMPFC' in fullpath:
aux = '_mask_aMPFC'
elif '_mask_dMPFC' in fullpath:
aux = '_mask_dMPFC'
elif '_mask_LTC' in fullpath:
aux = '_mask_LTC'
elif '_mask_PCC' in fullpath:
aux = '_mask_PCC'
elif '_mask_TPJ' in fullpath:
aux = '_mask_TPJ'
elif 'centrality_binarize' in fullpath:
aux = 'centrality_binarize'
elif 'centrality_weighted' in fullpath:
aux = 'centrality_weighted'
elif 'temp_reg_map_z_0000' in fullpath:
aux = 'temp_reg_map_z_0000'
elif 'temp_reg_map_z_0001' in fullpath:
aux = 'temp_reg_map_z_0001'
elif 'temp_reg_map_z_0002' in fullpath:
aux = 'temp_reg_map_z_0002'
elif 'temp_reg_map_z_0003' in fullpath:
aux = 'temp_reg_map_z_0003'
elif 'temp_reg_map_z_0004' in fullpath:
aux = 'temp_reg_map_z_0004'
elif 'temp_reg_map_z_0005' in fullpath:
aux = 'temp_reg_map_z_0005'
elif 'temp_reg_map_z_0006' in fullpath:
aux = 'temp_reg_map_z_0006'
elif 'temp_reg_map_z_0007' in fullpath:
aux = 'temp_reg_map_z_0007'
else:
aux = 'none'
if 'scan_rest_1' in fullpath:
scan = 'scan_rest_1'
elif 'scan_rest_2' in fullpath:
scan = 'scan_rest_2'
elif 'scan_rest_3' in fullpath:
scan = 'scan_rest_3'
else:
scan = 'none'
# load these settings into the tuple so that the file can be
# identified without relying on its full path (as it would be
# impossible to match files from two regression tests just based
# on their filepaths)
file_Tuple = (category, subjectID, scrubbing, aux, scan, filename)
filesDict[file_Tuple] = fullpath
return filesDict
def match_filepaths(old_files_dict, new_files_dict):
# file path matching
matched_path_list = []
missing_in_old = []
missing_in_new = []
for key in new_files_dict:
# use this second half only
# for reducing amount of correlations
if (old_files_dict.get(key) != None): # and (output_to_correlate in new_files_dict[key]):
matched_path_info = []
matched_path_info.append(key)
matched_path_info.append(old_files_dict[key])
matched_path_info.append(new_files_dict[key])
# each key is a tuple identifying the file, and each entry (the
# matchedPathList) is a list containing two items: the two full
# filepaths of the two files, one from each regression test, which
# are correctly matched by their matching ID tuples
# matched_path_info is now populated as a list, the first entry
# being the ID key (tuple), and the next two being the filepaths
matched_path_list.append(matched_path_info)
else:
missing_in_old.append(new_files_dict[key])
# find out what is in the last version's outputs that isn't in the new
# version's outputs
for key in old_files_dict:
if new_files_dict.get(key) != None:
missing_in_new.append(old_files_dict[key])
return matched_path_list, missing_in_old, missing_in_new
# loop through matched_path_info and send each entry into calculate_correlation
# now that you have the matched paths and selected your output, it gets sent
# as a list of lists here, as an iterfield for this mapnode:
# all of the correlations fan out with multiproc and get done for that one
# output really fast
def calculate_correlation(matched_path_list_entry):
import os
import nibabel as nb
import numpy as np
import scipy.stats.mstats
import scipy.stats
import math
# concordance correlation coefficient
def concordance(x, y, rho):
"""
Calculates Lin's concordance correlation coefficient.
Usage: concordence(x, y) where x, y are equal-length arrays
Returns: concordance correlation coefficient
Note: strict than pearson
"""
map(float, x)
map(float, y)
xvar = np.var(x)
yvar = np.var(y)
#rho = scipy.stats.pearsonr(x, y)[0]
#p = np.corrcoef(x,y) # numpy version of pearson correlation coefficient
ccc = 2. * rho * math.sqrt(xvar) * math.sqrt(yvar) / (xvar + yvar + (np.mean(x) - np.mean(y))**2)
return ccc
# the only things that should be held constant while calculating the
# coefficients are the category and aux fields
# elements in key: (category, subjectID, scrubbing, aux, scan, filename)
# calculate each individual correlation and then take the category,
# aux and correlation and append the correlation to a list stored
# within a dictionary with the category + aux as the key
# then go through each key's entry and average them all together
correlation_info = []
id_tuple = matched_path_list_entry[0]
old_path = matched_path_list_entry[1]
new_path = matched_path_list_entry[2]
## nibabel to pull the data from the re-assembled file paths
if os.path.exists(old_path) and os.path.exists(new_path):
data_1 = nb.load(old_path).get_data()
data_2 = nb.load(new_path).get_data()
## set up and run the Pearson correlation and concordance correlation
if data_1.flatten().shape == data_2.flatten().shape:
corrTuple = (id_tuple[0], id_tuple[3])
pearson = scipy.stats.pearsonr(data_1.flatten(), data_2.flatten())[0]
concor = concordance(data_1.flatten(), data_2.flatten(), pearson)
correlation_info = [corrTuple, pearson, concor]
else:
print "%s PATHS NOT FOUND!\n\n" % id_tuple
return correlation_info
# send a list that has every 'correlation_info' list in it via a JoinNode
def aggregate_correlations(correlation_info_list):
import os
import pickle
pCorrList = []
cCorrList = []
pearson_dict = {}
concor_dict = {}
for corr_info in correlation_info_list:
if len(corr_info) > 0:
corrTuple = corr_info[0]
pearson = corr_info[1]
concor = corr_info[2]
if pearson_dict.get(corrTuple) == None:
#pCorrList.append(pearson)
pearson_dict[corrTuple] = [pearson] #pCorrList
#cCorrList.append(concor)
concor_dict[corrTuple] = [concor] #cCorrList
else:
pearson_dict[corrTuple].append(pearson)
concor_dict[corrTuple].append(concor)
pearson_pickle = os.path.join(os.getcwd(), 'pearson_dict.p')
with open(pearson_pickle, 'wb') as handle:
pickle.dump(pearson_dict, handle)
concor_pickle = os.path.join(os.getcwd(), 'concor_dict.p')
with open(concor_pickle, 'wb') as handle:
pickle.dump(concor_dict, handle)
return pearson_dict, concor_dict, pearson_pickle, concor_pickle
def organize_correlations(pearson_dict, concor_dict):
regCorrMap = {}
scaNativeCorrMap = {}
scaMniCorrMap = {}
outputCorrMap = {}
mniCorrMap = {}
corr_map_dicts_list = []
for key in concor_dict:
#if ('mni' in key[0] or 'mean' in key[0] or 'csf' in key[0] or 'gm' in key[0] or 'wm' in key[0]) and 'xfm' not in key[0]:
if 'mni' in key[0]:
if key[1] == 'none':
regCorrMap[key[0]] = concor_dict[key]
else:
newKey = key[0] + ': ' + key[1]
regCorrMap[newKey] = concor_dict[key]
elif 'sca' in key[0] and 'standard' not in key[0]:
if key[1] == 'none':
scaNativeCorrMap[key[0]] = concor_dict[key]
else:
newKey = key[0] + ': ' + key[1]
scaNativeCorrMap[newKey] = concor_dict[key]
elif 'sca' in key[0] and 'standard' in key[0]:
if key[1] == 'none':
scaMniCorrMap[key[0]] = concor_dict[key]
else:
newKey = key[0] + ': ' + key[1]
scaMniCorrMap[newKey] = concor_dict[key]
elif (('standard' in key[0]) or ('centrality' in key[0]) or ('vmhc' in key[0])) and 'functional' not in key[0]:
if key[1] == 'none':
mniCorrMap[key[0]] = concor_dict[key]
else:
newKey = key[0] + ': ' + key[1]
mniCorrMap[newKey] = concor_dict[key]
elif 'preprocessed' not in key[0] and 'correct' not in key[0] and 'seg' not in key[0] and 'functional' not in key[0] and 'anatomical' not in key[0] and 'centrality' not in key[0] and 'vmhc' not in key[0]:
if key[1] == 'none':
outputCorrMap[key[0]] = concor_dict[key]
else:
newKey = key[0] + ': ' + key[1]
outputCorrMap[newKey] = concor_dict[key]
if len(regCorrMap.values()) > 0:
corr_map_dicts_list.append((regCorrMap,'concordance_registration'))
if len(scaNativeCorrMap.values()) > 0:
corr_map_dicts_list.append((scaNativeCorrMap,'concordance_native_SCA'))
if len(scaMniCorrMap.values()) > 0:
corr_map_dicts_list.append((scaMniCorrMap,'concordance_MNI_SCA'))
if len(mniCorrMap.values()) > 0:
corr_map_dicts_list.append((mniCorrMap,'concordance_MNI_outputs'))
if len(outputCorrMap.values()) > 0:
corr_map_dicts_list.append((outputCorrMap,'concordance_native_outputs'))
return corr_map_dicts_list
def create_boxplots(corr_map_dicts_list_entry, pipeline_names, current_dir):
def box_plot(dataDict1, pipelines, name, current_dir):
from matplotlib import pyplot
allData = []
labels = dataDict1.keys()
labels.sort()
for label in labels:
currentData = []
currentData.append(dataDict1[label])
allData.append(currentData)
pyplot.boxplot(allData)
pyplot.xticks(range(1,(len(dataDict1)+1)),labels,rotation=85)
pyplot.margins(0.5,1.0)
pyplot.xlabel('Derivatives')
pyplot.title('Correlations between %s and %s\n ( %s )'%(pipelines[0], pipelines[1], name))
#pyplot.show()
pyplot.savefig('%s.pdf'%(current_dir + '/' + name + '_' + pipelines[0] + '_and_' + pipelines[1]), format='pdf', dpi='200', bbox_inches='tight')
pyplot.close()
correlation_dict = corr_map_dicts_list_entry[0]
correlation_name = corr_map_dicts_list_entry[1]
box_plot(correlation_dict, pipeline_names, correlation_name, current_dir)
def correlations_workflow(old_files_dict, new_files_dict, pipeline_names, num_cores, match_filepaths, calculate_correlation):
import nipype.interfaces.io as nio
import nipype.pipeline.engine as pe
import nipype.interfaces.utility as util
currentDir = os.getcwd()
workflow = pe.Workflow(name='correlations_workflow')
workflow.base_dir = currentDir + '/correlations'
match_filepaths = pe.Node(util.Function(input_names=['old_files_dict', 'new_files_dict', 'output_to_correlate'],
output_names=['matched_path_list', 'missing_in_old', 'missing_in_new'],
function=match_filepaths),
name='match_filepaths')
match_filepaths.inputs.old_files_dict = old_files_dict
match_filepaths.inputs.new_files_dict = new_files_dict
calc_correlation = pe.MapNode(util.Function(input_names=['matched_path_list_entry'],
output_names=['correlation_info_list'],
function=calculate_correlation),
name='calc_correlation',
iterfield=['matched_path_list_entry'])
aggregate_corrs = pe.Node(util.Function(input_names=['correlation_info_list'],
output_names=['pearson_dict', 'concor_dict', 'pearson_pickle', 'concor_pickle'],
function=aggregate_correlations),
name='aggregate_corrs')
organize_corrs = pe.Node(util.Function(input_names=['pearson_dict', 'concor_dict'],
output_names=['corr_map_dicts_list'],
function=organize_correlations),
name='organize_corrs')
boxplots = pe.MapNode(util.Function(input_names=['corr_map_dicts_list_entry', 'pipeline_names', 'current_dir'],
output_names=[],
function=create_boxplots),
name='create_boxplots',
iterfield=['corr_map_dicts_list_entry'])
boxplots.inputs.pipeline_names = pipeline_names
boxplots.inputs.current_dir = currentDir
datasink = pe.Node(nio.DataSink(), name='sinker')
datasink.inputs.base_directory = currentDir + '/file_output'
workflow.connect(match_filepaths, 'matched_path_list', calc_correlation, 'matched_path_list_entry')
workflow.connect(calc_correlation, 'correlation_info_list', aggregate_corrs, 'correlation_info_list')
workflow.connect(aggregate_corrs, 'pearson_pickle', datasink, 'output.@pearson_pickle')
workflow.connect(aggregate_corrs, 'concor_pickle', datasink, 'output.@concor_pickle')
workflow.connect(aggregate_corrs, 'pearson_dict', organize_corrs, 'pearson_dict')
workflow.connect(aggregate_corrs, 'concor_dict', organize_corrs, 'concor_dict')
workflow.connect(organize_corrs, 'corr_map_dicts_list', boxplots, 'corr_map_dicts_list_entry')
workflow.run(plugin='MultiProc', plugin_args={'n_procs': int(num_cores)})
def main_proc(old_outputs_path, new_outputs_path, num_cores):
pipeline_names = [old_outputs_path.split('/')[len(old_outputs_path.split('/'))-1],new_outputs_path.split('/')[len(new_outputs_path.split('/'))-1]]
old_files = create_unique_file_dict(old_outputs_path)
new_files = create_unique_file_dict(new_outputs_path)
correlations_workflow(old_files, new_files, pipeline_names, num_cores, match_filepaths, calculate_correlation)
main_proc(sys.argv[1], sys.argv[2], sys.argv[3])