forked from felixchenfy/3D-Scanner-by-Baxter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib_cloud_registration.py
383 lines (316 loc) · 14.5 KB
/
lib_cloud_registration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import copy
from open3d import *
import time
import os
PYTHON_FILE_PATH = os.path.join(os.path.dirname(__file__))+"/"
# -------------- Basic operations on cloud ----------------
def my_sleep(t):
if 1:
time.sleep(t)
def clearCloud(cloud):
cloud.points=Vector3dVector(np.ndarray((0,0)))
cloud.colors=Vector3dVector(np.ndarray((0,0)))
def copyOpen3dCloud(src, dst):
dst.points = copy.deepcopy(src.points)
dst.colors = copy.deepcopy(src.colors)
def getCloudContents(cloud):
return np.asarray(cloud.points), np.asarray(cloud.colors)
def formNewCloud(np_points, np_colors):
cloud = PointCloud()
cloud.points = Vector3dVector(np_points)
cloud.colors = Vector3dVector(np_colors)
return cloud
def mergeClouds(cloud1, cloud2, radius_downsample=None, T=None):
if T is not None:
cloud1_transed = copy.deepcopy(cloud1)
cloud1_transed.transform(T)
else:
cloud1_transed = copy.deepcopy(cloud1)
cloud1_points,cloud1_colors = getCloudContents(cloud1_transed)
cloud2_points,cloud2_colors = getCloudContents(cloud2)
out_points = np.vstack((cloud1_points, cloud2_points))
out_colors = np.vstack((cloud1_colors, cloud2_colors))
result = formNewCloud(out_points, out_colors)
if radius_downsample is not None:
result = voxel_down_sample(result, radius_downsample)
return result
def resizeCloudXYZ(cloud, scale=1.0):
cloud_points, cloud_colors = getCloudContents(cloud)
cloud_points = cloud_points * scale
new_cloud = formNewCloud(cloud_points, cloud_colors)
return new_cloud
def moveCloudToCenter(cloud):
cloud_points, cloud_colors = getCloudContents(cloud)
cloud_points = cloud_points-np.mean(cloud_points,axis=0)
new_cloud = formNewCloud(cloud_points, cloud_colors)
return new_cloud
# -------------- Display ----------------
def getCloudSize(cloud):
return np.asarray(cloud.points).shape[0]
def drawTwoClouds(c1, c2, T_applied_to_c1=None):
c1_tmp = copy.deepcopy(c1)
if T_applied_to_c1 is not None:
c1_tmp.transform(T_applied_to_c1)
draw_geometries([c1_tmp, c2])
color_map = {'r':[1.0, 0.0, 0.0],'g':[0.0, 1.0, 0.0], 'b':[0.0, 0.0, 1.0]}
def getColor(color):
color_map[color]
def createXYZAxis(coord_axis_length=1.0, num_points_in_axis=10):
xyz_offset=[0,0,0]
xyz_color=['r','g','b']
NUM_AXIS=3
data_xyz=np.zeros((num_points_in_axis*NUM_AXIS,NUM_AXIS))
data_rgb=np.zeros((num_points_in_axis*NUM_AXIS,NUM_AXIS))
cnt_row=0
for axis in range(3):
color = color_map[xyz_color[axis]]
offset = xyz_offset[axis]
for cnt_points in range(1, 1+num_points_in_axis):
data_xyz[cnt_row, axis]=offset+coord_axis_length*cnt_points/num_points_in_axis
data_rgb[cnt_row,:]=color
cnt_row+=1
cloud_XYZaxis = formNewCloud(data_xyz, data_rgb)
return cloud_XYZaxis
def drawCloudWithCoord(cloud, coord_axis_length=0.1, num_points_in_axis=150):
cloud_XYZaxis = createXYZAxis(coord_axis_length, num_points_in_axis)
cloud_with_axis = mergeClouds(cloud, cloud_XYZaxis)
draw_geometries([cloud_with_axis])
# -------------- Filters ----------------
def filtCloudByRange(cloud, xmin=None, xmax=None,
ymin=None, ymax=None, zmin=None, zmax=None):
none2maxnum = lambda val: +99999.9 if val is None else val
none2minnum = lambda val: -99999.9 if val is None else val
xmax=none2maxnum(xmax)
ymax=none2maxnum(ymax)
zmax=none2maxnum(zmax)
xmin=none2minnum(xmin)
ymin=none2minnum(ymin)
zmin=none2minnum(zmin)
criteria = lambda x,y,z: \
x>=xmin and x<=xmax and y>=ymin and y<=ymax and z>=zmin and z<=zmax
return filtCloud(cloud, criteria)
def filtCloud(cloud, criteria):
points, colors = getCloudContents(cloud)
num_pts=points.shape[0]
valid_indices=np.zeros(num_pts, np.int)
cnt_valid=0
for i in range(num_pts):
x,y,z=points[i][0],points[i][1],points[i][2]
if criteria(x,y,z):
valid_indices[cnt_valid]=i
cnt_valid+=1
return formNewCloud(
points[valid_indices[:cnt_valid],:],
colors[valid_indices[:cnt_valid],:]
)
# -------------- MAIN! REGISTRATION (Mainly copied from Open3D website) ----------------
def computeFeaturesForGlobalRegistration(pcd, voxel_size):
# http://www.open3d.org/docs/tutorial/Advanced/global_registration.html#global-registration
# print(":: Downsample with a voxel size %.3f." % voxel_size)
pcd_down = voxel_down_sample(pcd, voxel_size)
radius_normal = voxel_size * 2
# print(":: Estimate normal with search radius %.3f." % radius_normal)
estimate_normals(pcd_down, KDTreeSearchParamHybrid(
radius = radius_normal, max_nn = 30))
radius_feature = voxel_size * 5
# print(":: Compute FPFH feature with search radius %.3f." % radius_feature)
pcd_fpfh = compute_fpfh_feature(pcd_down,
KDTreeSearchParamHybrid(radius = radius_feature, max_nn = 100))
return pcd_down, pcd_fpfh
def execute_global_registration(
source_down, target_down, source_fpfh, target_fpfh, voxel_size):
# http://www.open3d.org/docs/tutorial/Advanced/global_registration.html#global-registration
distance_threshold = voxel_size * 1.5
# print(":: RANSAC registration on downsampled point clouds.")
# print(" Since the downsampling voxel size is %.3f," % voxel_size)
# print(" we use a liberal distance threshold %.3f." % distance_threshold)
result = registration_ransac_based_on_feature_matching(
source_down, target_down, source_fpfh, target_fpfh,
distance_threshold,
TransformationEstimationPointToPoint(False), 4,
[CorrespondenceCheckerBasedOnEdgeLength(0.9),
CorrespondenceCheckerBasedOnDistance(distance_threshold)],
RANSACConvergenceCriteria(4000000, 500))
return result.transformation
def execute_fast_global_registration(source_down, target_down,
source_fpfh, target_fpfh, voxel_size):
# http://www.open3d.org/docs/tutorial/Advanced/fast_global_registration.html
distance_threshold = voxel_size * 0.5
print(":: Apply fast global registration with distance threshold %.3f" \
% distance_threshold)
result = registration_fast_based_on_feature_matching(
source_down, target_down, source_fpfh, target_fpfh,
FastGlobalRegistrationOption(
maximum_correspondence_distance = distance_threshold))
return result.transformation
def registerClouds_Global(src, dst, voxel_size=0.01, FAST_REGI=True):
# http://www.open3d.org/docs/tutorial/Advanced/fast_global_registration.html
src_down, src_fpfh = computeFeaturesForGlobalRegistration(src, voxel_size)
dst_down, dst_fpfh = computeFeaturesForGlobalRegistration(dst, voxel_size)
if FAST_REGI:
T = execute_fast_global_registration(src_down, dst_down, src_fpfh, dst_fpfh, voxel_size)
else:
T = execute_global_registration(src_down, dst_down, src_fpfh, dst_fpfh, voxel_size)
return T, src_down, dst_down
def registerClouds_Local(src, target, voxel_size=0.01, current_T=None,
ICP = True, COLORED_ICP = False, ICP_OPTION="Point2Point",
DRAW_INIT_POSE = False, DRAW_ICP = False, DRAW_COLORED_ICP = False):
# -- Use colored ICP to register src onto dst, and return the combined cloud
# This function is mainly copied from here.
# http://www.open3d.org/docs/tutorial/Advanced/colored_pointcloud_registration.html
# -- Params
ICP_distance_threshold = voxel_size*4
voxel_radiuses = [voxel_size*2.0, voxel_size, voxel_size/2.0]
max_iters = [50, 25, 10]
if current_T is None:
current_T = np.identity(4)
if DRAW_INIT_POSE:
tmp = mergeClouds(src, target, voxel_size)
drawCloudWithCoord(tmp, coord_axis_length=0.1, num_points_in_axis=50)
# -- Point to plane ICP
if ICP:
print("Running ICP ...")
src_down = voxel_down_sample(src, voxel_size)
target_down = voxel_down_sample(target, voxel_size)
estimate_normals(src_down, KDTreeSearchParamHybrid(
radius=voxel_size * 2, max_nn=30))
estimate_normals(target_down, KDTreeSearchParamHybrid(
radius=voxel_size * 2, max_nn=30))
if ICP_OPTION == "PointToPlane": # or "PointToPoint"
result_trans = registration_icp(src_down, target_down, ICP_distance_threshold,
current_T,
TransformationEstimationPointToPlane())
else:
result_trans = registration_icp(src_down, target_down, ICP_distance_threshold,
current_T,
TransformationEstimationPointToPoint())
current_T = result_trans.transformation
if DRAW_ICP:
print("-- Draw ICP result:")
print(result_trans)
my_sleep(1)
drawTwoClouds(
src, target, result_trans.transformation)
# -- Colored pointcloud registration
if COLORED_ICP:
print "Running colored-ICP ...",
for ith_loop in range(len(voxel_radiuses)):
# Set param in this loop
max_iter = max_iters[ith_loop]
radius = voxel_radiuses[ith_loop]
print " radius {:.4f}...".format(radius),
# Downsample
src_down = voxel_down_sample(src, radius)
target_down = voxel_down_sample(target, radius)
# Estimate normal
estimate_normals(src_down, KDTreeSearchParamHybrid(
radius=radius * 2, max_nn=30))
estimate_normals(target_down, KDTreeSearchParamHybrid(
radius=radius * 2, max_nn=30))
# Applying colored point cloud registration
result_trans = registration_colored_icp(src_down, target_down,
radius, current_T,
ICPConvergenceCriteria(relative_fitness=1e-5,
relative_rmse=1e-5, max_iteration=max_iter))
current_T = result_trans.transformation
print "Complete!"
if DRAW_COLORED_ICP:
print("-- Draw Colored ICP result:")
print(result_trans)
my_sleep(1)
drawTwoClouds(
src, target, result_trans.transformation)
print "Local registration completes.\n",
return current_T
class CloudRegister(object):
def __init__(self, voxel_size_regi=0.005, global_regi_ratio=2.0, voxel_size_output=0.005,
USE_GLOBAL_REGI=True, USE_ICP=True, USE_COLORED_ICP=False):
# copy params
self.voxel_size_regi=voxel_size_regi # for registration
self.global_regi_ratio=global_regi_ratio
self.voxel_size_output=voxel_size_output # for downsampling the res_cloud and output
self.USE_GLOBAL_REGI = USE_GLOBAL_REGI
self.USE_ICP = USE_ICP
self.USE_COLORED_ICP = USE_COLORED_ICP
# init vars
self.res_cloud = open3d.PointCloud()
self.new_cloud = open3d.PointCloud()
self.prev_res_cloud = open3d.PointCloud()
self.cnt_cloud=0
def addCloud(self, new_cloud):
self.new_cloud = copy.deepcopy(new_cloud)
self.prev_res_cloud = copy.deepcopy(self.res_cloud)
self.cnt_cloud+=1
if self.cnt_cloud==1:
self.res_cloud=copy.deepcopy(self.new_cloud)
else:
# compute transformation matrix to rotate new_cloud to the res_cloud frame
T=np.identity(4)
# Global regi
if self.USE_GLOBAL_REGI:
T, src_down, dst_down = registerClouds_Global(
self.new_cloud, self.res_cloud, self.voxel_size_regi * self.global_regi_ratio,
FAST_REGI=True)
# Local regi
if self.USE_ICP or self.USE_COLORED_ICP:
T = registerClouds_Local(self.new_cloud, self.res_cloud, self.voxel_size_regi,
T, ICP=self.USE_ICP, COLORED_ICP=self.USE_COLORED_ICP)
# Merge
self.res_cloud = mergeClouds(
self.new_cloud, self.res_cloud, self.voxel_size_output, T)
# self.res_cloud,
return self.res_cloud
def drawRegisterInput(self):
tmp = mergeClouds(self.new_cloud, self.prev_res_cloud, self.voxel_size_output)
drawCloudWithCoord(tmp)
def drawRegisterOutput(self):
drawCloudWithCoord(self.res_cloud)
def getResult(self):
return self.res_cloud
# ====================================================================
# ============================ TESTS =================================
# ====================================================================
def test_registration():
# -- Settings
filename_=PYTHON_FILE_PATH+"../data/testing_log/03-07/volt_colorICP2/segmented_"
cloud_register = CloudRegister(
voxel_size_regi=0.01, global_regi_ratio=2.0,
voxel_size_output=0.002,
USE_GLOBAL_REGI=False, USE_ICP=True, USE_COLORED_ICP=False)
# -- Loop
FILE_INDEX_BEGIN=1
FILE_INDEX_END=9
cnt = 0
for file_index in range(FILE_INDEX_BEGIN, FILE_INDEX_END+1):
print "==================== {}th file ======================".format(file_index)
cnt+=1
# Read point cloud
filename = filename_+"{:02d}".format(file_index)+".pcd"
new_cloud = read_point_cloud(filename)
# Process cloud
cloud_register.addCloud(new_cloud)
# Print and plot
print(cloud_register.res_cloud)
# my_sleep(0.3)
# cloud_register.drawRegisterInput()
# cloud_register.drawRegisterOutput()
cloud_register.drawRegisterOutput()
if __name__ == "__main__":
test_registration()
if 0:
filename="/home/feiyu/baxterws/src/winter_prj/scan3d_by_baxter/data/data/segmented_06.pcd"
cloud_disp = read_point_cloud(filename)
drawCloudWithCoord(cloud_disp)
if 0:
res_cloud = open3d.PointCloud()
for i in range(1, 1+10):
print i
cloud_disp = read_point_cloud(PYTHON_FILE_PATH+"../data/data/driller_1/segmented_"+"{:02d}".format(i)+".pcd")
# cloud_disp = read_point_cloud(PYTHON_FILE_PATH+"../data/data/driller_color_board/segmented_"+"{:02d}".format(i)+".pcd")
# cloud_disp = read_point_cloud(PYTHON_FILE_PATH+"../data/data/driller_floor/segmented_"+"{:02d}".format(i)+".pcd")
# drawCloudWithCoord(cloud_disp)
res_cloud = mergeClouds(res_cloud, cloud_disp)
drawCloudWithCoord(res_cloud)