-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest7a.m
184 lines (153 loc) · 4.72 KB
/
test7a.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
% MSFLA with cognitive behavior for 3 stage ring oscillator , Minimization
% of Average Power with optimum layout and Temperature
clc
clear all
close all
%% SFLA Parameters
nVars = 3;
minVars = [0.2 0.2 1];
%minVars = [0.2 0.2 1] % for T3b.sp
maxVars = [2 2 50];
%maxVars=[2 2 50]
Smax = 0.45 * (maxVars - minVars);
%nVars = 3;
%minVars = -5.12 * ones(1, nVars);
%maxVars = 5.12 * ones(1, nVars);
%Smax = 0.45 * (maxVars - minVars);
CostFcn = @test6b;
%CostFcn = @(x) sum(x.^2);
m = 5;
n = 5;
s = m * n;
%q = 4; 5
q = 4;
%Ns = 2;3
Ns =2;
Nt = 1;
nIter = 10;
nFcnEval = inf;
VTR = 0; %1e-4; % Value-to-Reach
%% Initialization
empty_sol.X = zeros(1, nVars);
empty_sol.Cost = inf;
empty_sol.Pbest = empty_sol;
pop = repmat(empty_sol, s, 1);
bestCost = inf;
for ii = 1:s
pop(ii).X = create_random_solution(minVars, maxVars);
pop(ii).Cost = CostFcn(pop(ii).X);
pop(ii).Pbest.X = pop(ii).X;
pop(ii).Pbest.Cost = pop(ii).Cost;
if pop(ii).Cost < bestCost
bestCost = pop(ii).Cost;
end
end
complexes = reshape(1:s, m, n);
Pi = 2*(n+1-(1:n))/(n*(n+1));
%% Main Loop
iIter = 0;
iFcnEval = s;
bestCosts = [];
while iIter < nIter & iFcnEval < nFcnEval & bestCost > VTR
% Sort population
[~, idx] = sort([pop.Cost]);
pop = pop(idx);
bestCost = pop(1).Cost;
disp(bestCost)
bestCosts = [bestCosts bestCost];
Px = pop(1);
% Complex evolution: FLA
for k = 1:m
Ak = pop(complexes(k,:));
for t = 1:Nt
% Select q members from Ak
subc = sort(randsample_w(Pi, q));
B = Ak(subc);
for j = 1:Ns
% Sort B and determine Pb, Pw
[~,idx] = sort([B.Cost]);
B = B(idx);
Pb = B(1);
Pw = B(q);
% Evolve Pw towards Pb
r = evolve_towards_pxpb(Pw, Pb, Smax);
if ~is_within(r, minVars, maxVars);
Fr = inf;
else
Fr = CostFcn(r);
iFcnEval = iFcnEval + 1;
end
if Fr < B(q).Cost
B(q).X = r;
B(q).Cost = Fr;
else
% Evolve Pw towards Px (The best position that have had
% by now - based on the memort content)
c = evolve_towards_pxpb(Pw, Px, Smax);
if ~is_within(c, minVars, maxVars)
Fc = inf;
else
Fc = CostFcn(c);
iFcnEval = iFcnEval + 1;
end
if Fc < B(q).Cost
B(q).X = c;
B(q).Cost = Fc;
else
% Create random soluion
z = create_random_solution(minVars, maxVars);
Fz = CostFcn(z);
iFcnEval = iFcnEval + 1;
B(q).X = z;
B(q).Cost = Fz;
end
end
if B(q).Cost < B(q).Pbest.Cost
B(q).Pbest.X = B(q).X;
B(q).Pbest.Cost = B(q).Cost;
end
if B(q).Cost < Px.Cost
Px = B(q);
end
end % Ns
end % Nt
% Replace and sort
Ak(subc) = B;
[~, idx] = sort([Ak.Cost]);
Ak = Ak(idx);
end % k
% Replace memeplex into population
pop(complexes(k,:)) = Ak;
end % main loop
%plot(bestCosts)
%disp(iFcnEval)
B=zeros(25,1);
B(1)=pop(25,1).Cost+B(1);
B(2)=pop(24,1).Cost+B(2);
B(3)=pop(23,1).Cost+B(3);
B(4)=pop(22,1).Cost+B(4);
B(5)=pop(21,1).Cost+B(5);
B(6)=pop(20,1).Cost+B(6);
B(7)=pop(19,1).Cost+B(7);
B(8)=pop(18,1).Cost+B(8);
B(9)=pop(17,1).Cost+B(9);
B(10)=pop(16,1).Cost+B(10);
B(11)=pop(15,1).Cost+B(11);
B(12)=pop(14,1).Cost+B(12);
B(13)=pop(13,1).Cost+B(13);
B(14)=pop(12,1).Cost+B(14);
B(15)=pop(11,1).Cost+B(15);
B(16)=pop(10,1).Cost+B(16);
B(17)=pop(9,1).Cost+B(17);
B(18)=pop(8,1).Cost+B(18);
B(19)=pop(7,1).Cost+B(19);
B(20)=pop(6,1).Cost+B(20);
B(21)=pop(5,1).Cost+B(21);
B(22)=pop(4,1).Cost+B(22);
B(23)=pop(3,1).Cost+B(23);
B(24)=pop(2,1).Cost+B(24);
B(25)=pop(1,1).Cost+B(25);
figure;
plot(B,'--g','LineWidth',2);
xlabel('Iteration');
ylabel('Best Fitness = Best Dynamic Average Power with Modified SFLA with Cognitive Behavior');