-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenv.py
111 lines (85 loc) · 3.28 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gym
import numpy as np
import sys
import math
from six import StringIO
from game import Game2048
from gym import spaces
from gym.utils import seeding
class InvalidMove(Exception):
pass
class Game2048Env(gym.Env):
metadata = {"render.modes": ["human", "ansi"]}
def __init__(self, size_board, seed=None):
self.__size_board = size_board
self.__game = Game2048(size_board, seed)
# Numbers of possible movements
self.action_space = spaces.Discrete(4)
# Numbers of observations
self.observation_space = spaces.Box(
0, 2 ** 16, (size_board * size_board,), dtype=np.int
)
# Reward range
self.reward_range = (0., np.inf)
# Initialise seed
self.np_random, seed = seeding.np_random(seed)
# Legends
self.__actions_legends = {0: "UP", 1: "DOWN", 2: "RIGHT", 3: "LEFT"}
# Old max
self.__old_max = 0
# Debug
self.__last_action = None
self.__last_scores_move = None
print("Environment initialised...")
def __reward_calculation(self, merged):
reward = 0
max_board = self.__game.get_board().max()
if max_board > self.__old_max:
self.__old_max = max_board
reward += math.log(self.__old_max, 2) * 0.1
reward += merged
return reward
def reset(self):
"""Reset the game"""
self.__game.reset()
# print("Game reset...")
valid_movements = np.ones(4)
return (self.__game.get_board(), valid_movements)
def step(self, action):
# print("The enviroment will take a action:", self.__actions_legends[action])
done = False
reward = 0
try:
self.__last_action = self.__actions_legends[action]
self.__game.make_move(action)
returned_move_scores, returned_merged, valid_movements = (
self.__game.confirm_move()
)
reward = self.__reward_calculation(returned_merged)
if len(np.nonzero(valid_movements)[0]) == 0:
done = True
self.__last_scores_move = returned_move_scores
info = dict()
info["valid_movements"] = valid_movements
info["total_score"] = self.__game.get_total_score()
info["last_action"] = self.__actions_legends[action]
info["scores_move"] = returned_move_scores
return self.__game.get_board(), reward, done, info
except InvalidMove as e:
print("Invalid move")
done = False
reward = 0
def render(self, mode="human"):
outfile = StringIO() if mode == "ansi" else sys.stdout
info_render = "Score: {}\n".format(self.__game.get_total_score())
info_render += "Highest: {}\n".format(self.__game.get_board().max())
npa = np.array(self.__game.get_board())
grid = npa.reshape((self.__size_board, self.__size_board))
info_render += "{}\n".format(grid)
info_render += "Last action: {}\n".format(self.__last_action)
info_render += "Last scores move: {}".format(self.__last_scores_move)
info_render += "\n"
outfile.write(info_render)
return outfile
def get_actions_legends(self):
return self.__actions_legends