-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
114 lines (93 loc) · 3.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import torch
import argparse
import sys
import matplotlib.pyplot as plt
from numba import jit
@jit(nopython=True)
def to_power_two_matrix(matrix):
"""Transform matrix to a power 2 matrix. Maximum value: 65566"""
power_matrix = np.zeros(
shape=(1, matrix.shape[0], matrix.shape[1], 16), dtype=np.float32
)
for i in range(matrix.shape[0]):
for j in range(matrix.shape[1]):
if matrix[i][j] == 0:
power_matrix[0][i][j][0] = 1.0
else:
power = int(np.log(matrix[i][j]) / np.log(2))
power_matrix[0][i][j][power] = 1.0
return power_matrix
def selection_action(
eps_threshold, valid_movements, dqn_net, state, size_board, device
):
sample = np.random.rand(1)
if sample > eps_threshold:
with torch.no_grad():
output = dqn_net(torch.from_numpy(state).float().to(device), 1, size_board)
output_np = output.cpu().detach().numpy()
ordered = np.flip(np.argsort(output_np), axis=1)[0]
for x in ordered:
if valid_movements[x] != 0:
return x
else:
return np.random.choice(np.nonzero(valid_movements)[0])
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=10)
parser.add_argument("--capacity", type=int, default=100000)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--size_board", type=int, default=4)
parser.add_argument("--num_episodes", type=int, default=1000)
parser.add_argument("--learning_rate", type=float, default=0.00025)
parser.add_argument("--ep_update_target", type=int, default=10)
parser.add_argument("--decay_rate", type=float, default=0.00005)
parser.add_argument("--interval_mean", type=int, default=5)
args = parser.parse_args()
return args
def get_mean_interval(array, interval_mean):
interval_mean_list = []
for x in range(interval_mean):
interval_mean_list.append(0)
for i in range(len(array)):
if i + interval_mean == len(array):
break
else:
interval_mean_list.append(np.mean(array[i: interval_mean + i]))
return interval_mean_list
def plot_info(
total_steps_per_episode,
total_rewards_per_episode,
total_loss_per_episode,
total_score_per_episode,
interval_mean,
episodes,
):
interval_steps = get_mean_interval(total_steps_per_episode, interval_mean)
plt.plot(range(episodes), total_steps_per_episode)
plt.plot(range(episodes), interval_steps)
plt.ylabel("Episode durations")
plt.xlabel("Episodes")
plt.savefig("episodes_durations.png", bbox_inches="tight")
plt.close()
interval_rewards = get_mean_interval(total_rewards_per_episode, interval_mean)
plt.plot(range(episodes), total_rewards_per_episode)
plt.plot(range(episodes), interval_rewards)
plt.ylabel("Reward")
plt.xlabel("Episodes")
plt.savefig("episodes_rewards.png", bbox_inches="tight")
plt.close()
interval_score = get_mean_interval(total_score_per_episode, interval_mean)
plt.plot(range(episodes), total_score_per_episode)
plt.plot(range(episodes), interval_score)
plt.ylabel("Score")
plt.xlabel("Episodes")
plt.savefig("episodes_scores.png", bbox_inches="tight")
plt.close()
interval_loss = get_mean_interval(total_loss_per_episode, interval_mean)
plt.plot(range(episodes), total_loss_per_episode)
plt.plot(range(episodes), interval_loss)
plt.ylabel("Loss")
plt.xlabel("Episodes")
plt.savefig("episodes_losses.png", bbox_inches="tight")
plt.close()