forked from bcaitech1/p3-mrc-gaama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrieval_bm25.py
279 lines (232 loc) · 11 KB
/
retrieval_bm25.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import faiss
from sklearn.feature_extraction.text import TfidfVectorizer
from tqdm.auto import tqdm
import pandas as pd
import pickle
import json
import os
import numpy as np
from datasets import (
Dataset,
load_from_disk,
concatenate_datasets,
)
from konlpy.tag import Mecab
from rank_bm25 import BM25Okapi
from utils_qa import BM25
import time
from contextlib import contextmanager
@contextmanager
def timer(name):
t0 = time.time()
yield
print(f'[{name}] done in {time.time() - t0:.3f} s')
class SparseRetrieval:
def __init__(self, tokenize_fn, data_path="/opt/ml/input/data", context_path="wikipedia_documents.json"):
self.data_path = data_path
with open(os.path.join(data_path, context_path), "r") as f:
wiki = json.load(f)
self.contexts = list(dict.fromkeys([v['text'] for v in wiki.values()])) # set 은 매번 순서가 바뀌므로
print(f"Lengths of unique contexts : {len(self.contexts)}")
self.ids = list(range(len(self.contexts)))
# Transform by vectorizer
self.tfidfv = BM25(
tokenizer=tokenize_fn,
ngram_range=(1, 2),
max_features=50000,
)
# should run get_sparse_embedding() or build_faiss() first.
self.p_embedding = None
self.indexer = None
def get_sparse_embedding(self):
# Pickle save.
pickle_name = f"sparse_embedding.bin"
tfidfv_name = f"bm25.bin"
emd_path = os.path.join(self.data_path, pickle_name)
tfidfv_path = os.path.join(self.data_path, tfidfv_name)
if os.path.isfile(emd_path) and os.path.isfile(tfidfv_path):
with open(emd_path, "rb") as file:
self.p_embedding = pickle.load(file)
with open(tfidfv_path, "rb") as file:
self.tfidfv = pickle.load(file)
print("Embedding pickle load.")
else:
print("Build passage embedding")
self.p_embedding = self.tfidfv.fit_transform(self.contexts)
print(self.p_embedding.shape)
with open(emd_path, "wb") as file:
pickle.dump(self.p_embedding, file)
with open(tfidfv_path, "wb") as file:
pickle.dump(self.tfidfv, file)
print("Embedding pickle saved.")
def build_faiss(self):
# FAISS build
num_clusters = 16
niter = 5
# 1. Clustering
p_emb = self.p_embedding.toarray().astype(np.float32)
emb_dim = p_emb.shape[-1]
index_flat = faiss.IndexFlatL2(emb_dim)
clus = faiss.Clustering(emb_dim, num_clusters)
clus.verbose = True
clus.niter = niter
clus.train(p_emb, index_flat)
centroids = faiss.vector_float_to_array(clus.centroids)
centroids = centroids.reshape(num_clusters, emb_dim)
quantizer = faiss.IndexFlatL2(emb_dim)
quantizer.add(centroids)
# 2. SQ8 + IVF indexer (IndexIVFScalarQuantizer)
self.indexer = faiss.IndexIVFScalarQuantizer(quantizer, quantizer.d, quantizer.ntotal, faiss.METRIC_L2)
self.indexer.train(p_emb)
self.indexer.add(p_emb)
def retrieve(self, query_or_dataset, topk=1):
assert self.p_embedding is not None, "You must build faiss by self.get_sparse_embedding() before you run self.retrieve()."
if isinstance(query_or_dataset, str):
doc_scores, doc_indices = self.get_relevant_doc(query_or_dataset, k=topk)
print("[Search query]\n", query_or_dataset, "\n")
for i in range(topk):
print("Top-%d passage with score %.4f" % (i + 1, doc_scores[i]))
print(self.contexts[doc_indices[i]])
return doc_scores, [self.contexts[doc_indices[i]] for i in range(topk)]
elif isinstance(query_or_dataset, Dataset):
# make retrieved result as dataframe
total = []
with timer("query exhaustive search"):
doc_scores, doc_indices = self.get_relevant_doc_bulk(query_or_dataset['question'], k=1)
for idx, example in enumerate(tqdm(query_or_dataset, desc="Sparse retrieval: ")):
# relev_doc_ids = [el for i, el in enumerate(self.ids) if i in doc_indices[idx]]
tmp = {
"question": example["question"],
"id": example['id'],
"context_id": doc_indices[idx][0], # retrieved id
"context": self.contexts[doc_indices[idx][0]] # retrieved doument
}
if 'context' in example.keys() and 'answers' in example.keys():
tmp["original_context"] = example['context'] # original document
tmp["answers"] = example['answers'] # original answer
total.append(tmp)
cqas = pd.DataFrame(total)
return cqas
def get_relevant_doc(self, query, k=1):
"""
참고: vocab 에 없는 이상한 단어로 query 하는 경우 assertion 발생 (예) 뙣뙇?
"""
with timer("transform"):
query_vec = self.tfidfv.transform([query])
assert (
np.sum(query_vec) != 0
), "오류가 발생했습니다. 이 오류는 보통 query에 vectorizer의 vocab에 없는 단어만 존재하는 경우 발생합니다."
with timer("query ex search"):
result = query_vec * self.p_embedding.T
if not isinstance(result, np.ndarray):
result = result.toarray()
sorted_result = np.argsort(result.squeeze())[::-1]
return result.squeeze()[sorted_result].tolist()[:k], sorted_result.tolist()[:k]
def get_relevant_doc_bulk(self, queries, k=1):
query_vec = self.tfidfv.transform(queries)
assert (
np.sum(query_vec) != 0
), "오류가 발생했습니다. 이 오류는 보통 query에 vectorizer의 vocab에 없는 단어만 존재하는 경우 발생합니다."
result = query_vec * self.p_embedding.T
if not isinstance(result, np.ndarray):
result = result.toarray()
doc_scores = []
doc_indices = []
for i in range(result.shape[0]):
sorted_result = np.argsort(result[i, :])[::-1]
doc_scores.append(result[i, :][sorted_result].tolist()[:k])
doc_indices.append(sorted_result.tolist()[:k])
return doc_scores, doc_indices
def retrieve_faiss(self, query_or_dataset, topk=1):
assert self.indexer is not None, "You must build faiss by self.build_faiss() before you run self.retrieve_faiss()."
if isinstance(query_or_dataset, str):
doc_scores, doc_indices = self.get_relevant_doc_faiss(query_or_dataset, k=topk)
print("[Search query]\n", query_or_dataset, "\n")
for i in range(topk):
print("Top-%d passage with score %.4f" % (i + 1, doc_scores[i]))
print(self.contexts[doc_indices[i]])
return doc_scores, [self.contexts[doc_indices[i]] for i in range(topk)]
elif isinstance(query_or_dataset, Dataset):
queries = query_or_dataset['question']
# make retrieved result as dataframe
total = []
with timer("query faiss search"):
doc_scores, doc_indices = self.get_relevant_doc_bulk_faiss(queries, k=topk)
for idx, example in enumerate(tqdm(query_or_dataset, desc="Sparse retrieval: ")):
# relev_doc_ids = [el for i, el in enumerate(self.ids) if i in doc_indices[idx]]
tmp = {
"question": example["question"],
"id": example['id'], # original id
"context_id": doc_indices[idx][0], # retrieved id
"context": self.contexts[doc_indices[idx][0]] # retrieved doument
}
if 'context' in example.keys() and 'answers' in example.keys():
tmp["original_context"]: example['context'] # original document
tmp["answers"]: example['answers'] # original answer
total.append(tmp)
def get_relevant_doc_faiss(self, query, k=1):
"""
참고: vocab 에 없는 이상한 단어로 query 하는 경우 assertion 발생 (예) 뙣뙇?
"""
query_vec = self.tfidfv.transform([query])
assert (
np.sum(query_vec) != 0
), "오류가 발생했습니다. 이 오류는 보통 query에 vectorizer의 vocab에 없는 단어만 존재하는 경우 발생합니다."
q_emb = query_vec.toarray().astype(np.float32)
with timer("query faiss search"):
D, I = self.indexer.search(q_emb, k)
return D.tolist()[0], I.tolist()[0]
def get_relevant_doc_bulk_faiss(self, queries, k=1):
query_vecs = self.tfidfv.transform(queries)
assert (
np.sum(query_vecs) != 0
), "오류가 발생했습니다. 이 오류는 보통 query에 vectorizer의 vocab에 없는 단어만 존재하는 경우 발생합니다."
q_embs = query_vecs.toarray().astype(np.float32)
D, I = self.indexer.search(q_embs, k)
return D.tolist(), I.tolist()
if __name__ == "__main__":
# Test sparse
org_dataset = load_from_disk("/opt/ml/input/data/train_dataset")
full_ds = concatenate_datasets(
[
org_dataset["train"].flatten_indices(),
org_dataset["validation"].flatten_indices(),
]
) # train dev 를 합친 4192 개 질문에 대해 모두 테스트
print("*"*40, "query dataset", "*"*40)
print(full_ds)
### Mecab 이 가장 높은 성능을 보였기에 mecab 으로 선택 했습니다 ###
mecab = Mecab()
def tokenize(text):
# return text.split(" ")
return mecab.morphs(text)
# from transformers import AutoTokenizer
#
# tokenizer = AutoTokenizer.from_pretrained(
# "bert-base-multilingual-cased",
# use_fast=True,
# )
###############################################################
wiki_path = "wikipedia_documents.json"
retriever = SparseRetrieval(
# tokenize_fn=tokenizer.tokenize,
tokenize_fn=tokenize,
data_path="/opt/ml/input/data",
context_path=wiki_path)
# test single query
query = "대통령을 포함한 미국의 행정부 견제권을 갖는 국가 기관은?"
retriever.get_sparse_embedding()
with timer("single query by exhaustive search"):
scores, indices = retriever.retrieve(query)
# retriever.build_faiss()
# with timer("single query by faiss"):
# scores, indices = retriever.retrieve_faiss(query)
# test bulk
with timer("bulk query by exhaustive search"):
df = retriever.retrieve(full_ds)
df['correct'] = df['original_context'] == df['context']
print("correct retrieval result by exhaustive search", df['correct'].sum() / len(df))
with timer("bulk query by exhaustive search"):
df = retriever.retrieve_faiss(full_ds)
df['correct'] = df['original_context'] == df['context']
print("correct retrieval result by faiss", df['correct'].sum() / len(df))