forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrepeat_aug.py
101 lines (83 loc) · 3.75 KB
/
repeat_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import math
from typing import Iterator, Optional, Sized
import torch
from mmengine.dist import get_dist_info, is_main_process, sync_random_seed
from torch.utils.data import Sampler
from mmpretrain.registry import DATA_SAMPLERS
@DATA_SAMPLERS.register_module()
class RepeatAugSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset for
distributed, with repeated augmentation. It ensures that different each
augmented version of a sample will be visible to a different process (GPU).
Heavily based on torch.utils.data.DistributedSampler.
This sampler was taken from
https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py
Used in
Copyright (c) 2015-present, Facebook, Inc.
Args:
dataset (Sized): The dataset.
shuffle (bool): Whether shuffle the dataset or not. Defaults to True.
num_repeats (int): The repeat times of every sample. Defaults to 3.
seed (int, optional): Random seed used to shuffle the sampler if
:attr:`shuffle=True`. This number should be identical across all
processes in the distributed group. Defaults to None.
"""
def __init__(self,
dataset: Sized,
shuffle: bool = True,
num_repeats: int = 3,
seed: Optional[int] = None):
rank, world_size = get_dist_info()
self.rank = rank
self.world_size = world_size
self.dataset = dataset
self.shuffle = shuffle
if not self.shuffle and is_main_process():
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
logger.warning('The RepeatAugSampler always picks a '
'fixed part of data if `shuffle=False`.')
if seed is None:
seed = sync_random_seed()
self.seed = seed
self.epoch = 0
self.num_repeats = num_repeats
# The number of repeated samples in the rank
self.num_samples = math.ceil(
len(self.dataset) * num_repeats / world_size)
# The total number of repeated samples in all ranks.
self.total_size = self.num_samples * world_size
# The number of selected samples in the rank
self.num_selected_samples = math.ceil(len(self.dataset) / world_size)
def __iter__(self) -> Iterator[int]:
"""Iterate the indices."""
# deterministically shuffle based on epoch and seed
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = list(range(len(self.dataset)))
# produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....]
indices = [x for x in indices for _ in range(self.num_repeats)]
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
indices += indices[:padding_size]
assert len(indices) == self.total_size
# subsample per rank
indices = indices[self.rank:self.total_size:self.world_size]
assert len(indices) == self.num_samples
# return up to num selected samples
return iter(indices[:self.num_selected_samples])
def __len__(self) -> int:
"""The number of samples in this rank."""
return self.num_selected_samples
def set_epoch(self, epoch: int) -> None:
"""Sets the epoch for this sampler.
When :attr:`shuffle=True`, this ensures all replicas use a different
random ordering for each epoch. Otherwise, the next iteration of this
sampler will yield the same ordering.
Args:
epoch (int): Epoch number.
"""
self.epoch = epoch