-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_loader.py
291 lines (251 loc) · 11.3 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import gzip
import json
import math
import random
import shelve
import torch
import subprocess as sp
from math import ceil
from torch.utils.data import DataLoader, Sampler, Dataset
from torch.nn.utils.rnn import pad_sequence
from env import END_OF_TEXT_TOKEN
from gpt2_training.train_utils import (InputFeatures, InputFeatures_train,
RedditExample)
class BucketSampler(Sampler):
"""
this sampler will sort data by sequence length
"""
def __init__(self, lens, bucket_size, batch_size,
droplast=False, shuffle=True):
self._lens = lens
self._batch_size = batch_size
self._bucket_size = bucket_size
self._droplast = droplast
self._shuf = shuffle
def __iter__(self):
ids = list(range(len(self._lens)))
if self._shuf:
random.shuffle(ids)
buckets = [sorted(ids[i:i+self._bucket_size],
key=lambda i: self._lens[i], reverse=True)
for i in range(0, len(ids), self._bucket_size)]
batches = [bucket[i:i+self._batch_size]
for bucket in buckets
for i in range(0, len(bucket), self._batch_size)]
if self._droplast:
batches = [batch for batch in batches
if len(batch) == self._batch_size]
if self._shuf:
random.shuffle(batches)
return iter(batches)
def __len__(self):
bucket_sizes = ([self._bucket_size]
* (len(self._lens) // self._bucket_size)
+ [len(self._lens) % self._bucket_size])
if self._droplast:
return sum(s//self._batch_size for s in bucket_sizes)
else:
return sum(math.ceil(s/self._batch_size) for s in bucket_sizes)
class GPT2FeatureDataset(Dataset):
""" pytorch dataset for GPT2 training """
def __init__(self, features, max_len=None):
self.features = features
self.max_len = max_len # this max_len do truncate
def __getitem__(self, i):
feat_dict = self.features[i]
if self.max_len is not None and feat_dict['input_len'] > self.max_len:
# tuncate on the left side (context)
feat_dict['input_ids'] = feat_dict['input_ids'][-self.max_len:]
feat_dict['position_ids'] = feat_dict['position_ids'][
-self.max_len:]
feat_dict['token_type_ids'] = feat_dict['token_type_ids'][
-self.max_len:]
feat_dict['lm_labels'] = feat_dict['lm_labels'][-self.max_len:]
try:
for s in ['context_len', 'response_len']:
if s in feat_dict.keys():
print("db file missing "+s)
del feat_dict[s]
except Exception:
import pdb
pdb.set_trace()
feat = InputFeatures_train(**feat_dict)
return feat
def __len__(self):
return len(self.features)
@staticmethod
def collate(features):
input_ids = pad_sequence([torch.tensor(f.input_ids, dtype=torch.long)
for f in features],
batch_first=True, padding_value=0)
position_ids = pad_sequence([torch.tensor(f.position_ids,
dtype=torch.long)
for f in features],
batch_first=True, padding_value=0)
token_type_ids = pad_sequence([torch.tensor(f.token_type_ids,
dtype=torch.long)
for f in features],
batch_first=True, padding_value=0)
labels = pad_sequence([torch.tensor(f.lm_labels, dtype=torch.long)
for f in features],
batch_first=True, padding_value=-1)
return (input_ids, position_ids, token_type_ids, labels)
class BucketingDataLoader(object):
""" this loads shelve db chunks and then convert to mini-batch loader"""
def __init__(self, db_name, batch_size, max_seq_len,
bucket=100, shuffle=True):
self.db = shelve.open(f'{db_name}/db', 'r')
self.batch_size = batch_size
self.max_len = max_seq_len
self.bucket_size = bucket * batch_size
self.shuffle = shuffle
def _get_keys(self):
keys = list(self.db.keys())
return keys
def __iter__(self):
keys = self._get_keys()
if self.shuffle:
random.shuffle(keys)
for key in keys:
chunk = json.loads(gzip.decompress(self.db[key]).decode('utf-8'))
# discard long examples
trunc_chunk = []
lens = []
for feat in chunk:
if feat['input_len'] > self.max_len:
continue
trunc_chunk.append(feat)
lens.append(feat['input_len'])
dataset = GPT2FeatureDataset(trunc_chunk, self.max_len)
sampler = BucketSampler(lens, self.bucket_size, self.batch_size,
droplast=True, shuffle=self.shuffle)
loader = DataLoader(dataset, batch_sampler=sampler,
num_workers=0, # can test multi-worker
collate_fn=GPT2FeatureDataset.collate)
yield from loader
def __len__(self):
raise NotImplementedError()
def __del__(self):
self.db.close()
class DistributedBucketingDataLoader(BucketingDataLoader):
""" distributed version """
def __init__(self, rank, num_replica, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rank = rank
self.num_replica = num_replica
def _get_keys(self):
keys = list(self.db.keys())[self.rank::self.num_replica]
return keys
def convert_examples_to_features_dynamic(examples, tokenizer,
max_seq_length=512):
"""
do not pad
"""
def featurize(example):
conv_id = example.conv_id
context_id = tokenizer.encode(example.context)
end_of_text_id = tokenizer.encoder[END_OF_TEXT_TOKEN]
# response is provided in example
response_id = tokenizer.encode(example.response)
input_ids_len = len(context_id) + len(response_id) + 2
if input_ids_len > max_seq_length:
if len(context_id) > input_ids_len - max_seq_length:
# cut context from beginning if length of context + response is too long
# and len of context is long enough to cut
context_id = context_id[input_ids_len - max_seq_length:]
else:
# cut response from end if length of context + response is too long
# and len of response is long enough to cut
# if no response is available, discard the data
if max_seq_length-len(context_id)-2 < 0:
return None
response_id = response_id[:max_seq_length-len(context_id)-2]
input_ids = context_id + [end_of_text_id] + response_id + [end_of_text_id]
# label simplely is next token in sequences. MASK all context_id tokens except for the last one
lm_labels = [-1] * len(context_id) + response_id + [end_of_text_id] + [-1]
position_ids = list(range(len(input_ids)))
token_type_id = [0] * len(input_ids)
return InputFeatures(conv_id, input_ids, position_ids, token_type_id,
lm_labels, len(context_id), len(response_id))
# discard None feature
features = [f for f in [featurize(ex) for ex in examples] if f is not None]
return features
class DynamicBatchingLoader(object):
""" this loader takes raw text file, used for validate perplexity """
def __init__(self, corpus_file, tokenizer, normalize_data,
batch_size, max_seq_length):
self.corpus = corpus_file
self.toker = tokenizer
self.norm = normalize_data
self.bs = batch_size
self.max_seq_length = max_seq_length
self.num_examples = self.get_len(corpus_file)
def __iter__(self, epoch=1):
if epoch > 0:
for epoch in range(epoch):
yield from self._iter_epoch()
else:
while True:
yield from self._iter_epoch()
def __len__(self):
return ceil(self.num_examples/self.bs)
def _iter_epoch(self):
try:
with open(self.corpus, 'r', encoding="utf-8") as corpus:
i = 0
while True:
examples = []
cur_bs = 0
while True:
line = next(corpus).encode('utf-8').decode('utf-8')
contents = line.split('\t')
src, tgt_all = contents[0], contents[1:]
for tgt in tgt_all:
if self.norm:
src_line = ' '.join(src.strip().split())
tgt_line = ' '.join(tgt.strip().split())
else:
src_line = src.strip()
tgt_line = tgt.strip()
examples.append(
RedditExample(i, src_line, tgt_line),
)
i += 1
cur_bs += 1
if cur_bs >= self.bs:
break
features = convert_examples_to_features_dynamic(
examples, self.toker, self.max_seq_length)
batch = self._batch_feature(features)
yield batch
except StopIteration:
pass
def _batch_feature(self, features):
input_ids = pad_sequence([torch.tensor(f.choices_features['input_ids'],
dtype=torch.long)
for f in features],
batch_first=True, padding_value=0)
position_ids = pad_sequence(
[torch.tensor(f.choices_features['position_ids'], dtype=torch.long)
for f in features],
batch_first=True, padding_value=0)
token_type_ids = pad_sequence(
[torch.tensor(f.choices_features['token_type_ids'],
dtype=torch.long)
for f in features],
batch_first=True, padding_value=0)
labels = pad_sequence([torch.tensor(f.lm_labels, dtype=torch.long)
for f in features],
batch_first=True, padding_value=-1)
context_len = torch.tensor([f.context_len for f in features],
dtype=torch.long)
response_len = torch.tensor([f.response_len for f in features],
dtype=torch.long)
return (input_ids, position_ids, token_type_ids, labels,
context_len, response_len)
def get_len(self, corpus):
n_line = int(sp.check_output(f"wc -l {corpus}".split(),
universal_newlines=True).split()[0])
return n_line