-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
33 lines (29 loc) · 1.24 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
library(shiny)
library(rgdal)
library(raster)
library(RStoolbox)
shinyServer(function(input, output) {
setwd("~/RScripts/Remote sensing/project")
lsat <- brick("raster/cropped.tif")
output$dataPlot <- renderPlot({
if(input$select == 1) {
# Unsupervised classification
classification <- RStoolbox::unsuperClass(lsat, nClasses=input$categories, nSamples=input$samples)
plot(classification$map)
details.text <- paste("Unsupervised classification with", input$categories, "categories and", input$samples, "samples.")
details.text2 <- ""
}
else {
# Supervised classification
file.name <- paste0("classes", input$categories)
training.data <- readOGR("vector", file.name)
classification <- superClass(lsat, trainData = training.data, responseCol = "class", trainPartition = 0.7, nSamples=input$samples)
accuracy <- classification$validation$performance$overall["Accuracy"]
plot(classification$map)
details.text <- paste("Supervised classification with", input$categories," categories and", input$samples, "samples.")
details.text2 <- paste("Accuracy of ", accuracy)
}
output$details <- renderText(details.text)
output$details2 <- renderText(details.text2)
})
})