-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfwp_wavemaker.py
850 lines (648 loc) · 24.9 KB
/
fwp_wavemaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
# -*- coding: utf-8 -*-
""" This module works as a function generator
It includes:
Defined functions for several waveforms incorporating a switcher to make choosing easier.
A class for evaluating the multiple waveforms
A class for calculating fourier partial sums and evaluating it.
"""
import numpy as np
from scipy.signal import sawtooth, square
def create_sine(time, freq, *args):
""" Creates sine wave
Parameters
----------
time : array
time vector in which to evaluate the funcion
freq : int or float
expected frequency of sine wave
args : dummy
used to give compatibility with other functions
Returns
-------
Evaluated sine wave of given frequency
"""
wave =np.sin(2 * np.pi * time * freq)
return wave
def create_ramps(time, freq, type_of_ramp=1):
""" Creates ascending and descending sawtooth wave,
or a tringle wave, depending on the value of type_of_ramp,
using the function 'sawtooth' from scypy signal module.
Used by create_sawtooth_up, create_sawtooth_down and
create_triangular.
Parameters
----------
time : array
time vector in which to evaluate the funcion
freq : int or float
expected frequency of created wave
type_of_ramp : {0, 1, 2}
0 returns a sawtooth waveform with positive slope
1 returns a sawtooth waveform with negative slope
0 returns a triangle waveform
Returns
-------
Evaluated sawtooth or triangle wave of given frequency
"""
wave = sawtooth(2 * np.pi * time * freq, type_of_ramp)
return wave
def create_sawtooth_up(time, freq, *args):
""" Creates sawtooth waveform with positive slope
Parameters
----------
time : array
time vector in which to evaluate the funcion
freq : int or float
expected frequency of sawtooth wave
args : dummy
used to give compatibility with other functions
Returns
-------
Evaluated sawtooth waveform with positive slope and given frequency
"""
wave = create_ramps(time ,freq, 1)
return wave
def create_sawtooth_down(time, freq, *args):
""" Creates sawtooth waveform with negative slope
Parameters
----------
time : array
time vector in which to evaluate the funcion
freq : int or float
expected frequency of sawtooth wave
args : dummy
used to give compatibility with other functions
Returns
-------
Evaluated sawtooth waveform with negative slope and given frequency
"""
wave = create_ramps(time, freq, 0)
return wave
def create_triangular(time, freq, *args):
""" Creates a triangular wave with symmetric ramps
Parameters
----------
time : array
time vector in which to evaluate the funcion
freq : int or float
expected frequency of triangular wave
args : dummy
used to give compatibility with other functions
Returns
-------
Evaluated triangular waveform with given frequency
"""
wave = create_ramps(time, freq, .5)
return wave
def create_square(time, freq, dutycycle = .5, *args):
""" Creates a square wave. Uses square function from
scypy signal module
Parameters
----------
time : array
time vector in which to evaluate the funcion
freq : int or float
expected frequency of square wave
dutycycle=.5 : scalar or numpy array
Duty cycle. Default is 0.5 (50% duty cycle). If
an array, causes wave shape to change over time,
and must be the same length as time.
args : dummy
used to give compatibility with other functions
Returns
-------
Evaluated square waveform with given frequency
"""
#dutycycle not implemented due to bug
wave = square(2 * np.pi * time * freq)
return wave
def create_custom(time, freq, *args):
""" Creates a wave from given custom function.
Useful to get compatibility between the custom function provided and other
modules like PyAudioWave.
Parameters
----------
time : array
time vector in which to evaluate the funcion
freq : int or float
expected frequency of custom wave
args : (*params, custom_func)
*params should contain the parameters that will be passed to the custom
function provided
Returns
-------
Evaluated square waveform with given frequency
"""
#last argument is the function, the rest are parameters
*params, custom_func = args
wave = custom_func(time, freq, *params)
return wave
def create_sum(time, freq, amp, *args):
""" Creates an arbitraty sum of sine waves.
It uses the frequencies in freq and either uniform
amplitude if amp is None, or the given amplitudes if
amp is array-like. Output comes out normalized.
Parameters
----------
time : array
time vector in which to evaluate the funcion
freq : array-like
expected frequency of sine wave
amp : None or array-like
if None, amplitude of all summed waves is equal. If
array-like, it should be same length as freq.
args : dummy
used to give compatibility with other functions
Returns
-------
Evaluated square waveform with given frequency
"""
if len(amp)==0:
#If am wasn't given, it is an empty tuple
amp = np.ones(len(freq))
if len(freq) != len(amp):
raise ValueError('Amplitud and frequency arrays should e the same leght!')
#to be able to handle time vectors and scalars
if hasattr(time, '__len__'):
time= np.array(time)
wave = np.zeros(time.shape)
else:
wave = 0
for f, a in zip(freq, amp):
wave += create_sine(time, f) * a
#Normalize it:
wave /= sum(amp)
return wave
def given_waveform(input_waveform):
""" Switcher to easily choose waveform.
If the given waveform is not in the list, it raises a ValueError and a list
containing the accepted inputs.
Parameters
----------
input_waveform : string
name of desired function to generate
Returns
-------
Chosen waveform function
"""
switcher = {
'sine': create_sine,
'sawtoothup': create_sawtooth_up,
'sawtoothdown': create_sawtooth_down ,
'ramp': create_sawtooth_up, #redirects to sawtoothup
'sawtooth': create_sawtooth_up, #redirects to sawtoothup
'triangular': create_triangular,
'square': create_square,
'custom': create_custom,
'sum': create_sum
}
func = switcher.get(input_waveform, wrong_input_build(list(switcher.keys())))
return func
def wrong_input_build(input_list):
def wrong_input(*args):
msg = 'Given waveform is invalid. Choose from following list:{}'.format(input_list)
raise ValueError(msg)
return wrong_input
#%% Clase que genera ondas
class Wave:
'''A class for generating and evaluating different waveforms.
Attributes
----------
waveform : str {'sine', 'sawtoothup', 'sawtoothdown', 'ramp', 'triangular', 'square', 'custom'} optional
waveform type. If 'custom', function should acept inputs
(time, frequency, *args). Default = 'sine'
frequency : float (optional)
wave frequency
amplitude : float (optional)
wave amplitud
Methods
----------
evaluate(time)
returns evaluated function type
evaluate_sr(sr, duration, nsamples)
returns evaluated function type
'''
def __init__(self, waveform='sine', frequency=400, amplitude=1, *args):
''' See class atributes.
If wave is 'custom', the custom function should be passed to *args.
'''
self._frequency = frequency
self.amplitude = amplitude
self.waveform = waveform
self.extra_args = args
def __str__(self):
return '{} Wave instance.'.format(self.waveform)
@property
def frequency(self):
'''Frequency getter: returns frequency of wave.
If frequency is an iterable, as it be in a sum or a
custom function, returns first value. Used to have
backwards compatibility wen sum and custom were added.'''
if isinstance(self._frequency, (list, tuple, np.ndarray)):
return self._frequency[0]
else:
return self._frequency
@frequency.setter
def frequency(self, value):
'''Frequency setter: sets value as self._frequency.'''
self._frequency = value
@property
def waveform(self):
'''Waveform getter'''
return self._waveform_type
@waveform.setter
def waveform(self, value):
'''Wavefor setter'''
self._waveform_func = given_waveform(value)
self._waveform_type = value
def evaluate(self, time, *args):
'''Takes in an array-like object to evaluate the funcion in.
Parameters
----------
time : array
time vector in which to evaluate the funcion
args : tuple (optional)
extra arguments to be passed to evaluated function
Returns
-------
Evaluated waveform
'''
if isinstance(self.amplitude, (list, tuple, np.ndarray)):
#for sums
wave = self._waveform_func(time, self._frequency, self.amplitude)
else:
wave = self._waveform_func(time, self._frequency, *args, self.extra_args) * self.amplitude
return wave
def evaluate_sr(self, sampling_rate, duration=None, nsamples=None, return_time=False, custom_args=()):
'''Evaluates the function in a time vector with the given sampling rate
for given duration or ampunt of samples.
User must specify either duration or nsamples, but not both.
Parameters
----------
sampling_rate : int
time vector in which to evaluate the funcion
duration : float (optional)
duration of signal. Default = None
nsamples : int (optional)
amount of samples tu return. Default = None
return_time : bool (optional)
decides if time vector is returned or not
custom_args : tuple (optional)
extra arguments to be passed to evaluated function
Returns
-------
Evaluated waveform or tuple containing time and evaluated waveform
'''
if sampling_rate < 1:
raise ValueError('Sampling rate must be postive integer.')
if duration is None:
if nsamples is None:
raise ValueError('Must specify either duration or nsamples.')
else:
if nsamples < 1:
raise ValueError('nsamples must be positive integer.')
time = np.linspace(0, nsamples / sampling_rate, nsamples)
else:
if nsamples is not None:
raise ValueError("Can't specify both duration and nsamples. One must be None (dafault).")
else:
if not duration > 0:
raise ValueError('duration must be positive.')
time = np.linspace(0, duration, int(sampling_rate * duration))
if return_time:
return time, self.evaluate(time, *custom_args)
else:
return self.evaluate(time, *custom_args)
#%% Waves for many channels
class MultichannelWave:
'''A class for generating and evaluating different waveforms. Supports many
waves in a single instance, hence 'multichannel'.
Attributes (read only)
----------
waveform : str {'sine', 'sawtoothup', 'sawtoothdown', 'ramp', 'triangular', 'square', 'custom'}
frequency : float
wave frequency
amplitude : float
wave amplitud
nchannels : int
number current channels
Methods
----------
add_channel(waveform, frequency, amplitude)
return nothing, adds Wave instance to self.waves
evaluate(time)
returns evaluated function type
evaluate_sr(sr, duration, nsamples)
returns evaluated function type
'''
def __init__(self):
self.waves = []
def __str__(self):
return 'MultichannelWave instance with {} channels containing the following waveforms: {}'.format(self.nchannels, self.waveform)
def add_channel(self, *args, **kwargs):
''' Adds a channel to the MultichannelWave instance by calling
insantiating Wave with the given parameters. See Wave.
'''
self.waves.append(Wave(*args, **kwargs))
@property
def frequency(self):
return [w.frequency for w in self.waves]
@frequency.setter
def frequency(self, value):
raise AttributeError('Frequency should be set for each wave individually. Use self.waves.frequency.')
@property
def amplitude(self):
return [w.amplitude for w in self.waves]
@amplitude.setter
def amplitude(self, value):
raise AttributeError('Amplitude should be set for each wave individually. Use self.waves.amplitude.')
@property
def waveform(self):
return [w.waveform for w in self.waves]
@waveform.setter
def waveform(self, value):
raise AttributeError('Waveform should be set for each wave individually. Use self.waves.waveform.')
@property
def nchannels(self):
return len(self.waves)
@nchannels.setter
def nchannels(self, value):
raise AttributeError('nchannels can not be set.')
def evaluate(self, *args, **kwargs):
'''Takes in an array-like object to evaluate the funcion in.
The returned array has a channel in each column.
Parameters
----------
time : array
time vector in which to evaluate the funcion
args : tuple (optional)
extra arguments to be passed to evaluated function
Returns
-------
Array of evaluated waveform
'''
signal = [w.evaluate(*args, **kwargs) for w in self.waves]
return np.array(signal).T
def evaluate_sr(self, *args, **kwargs):
'''Evaluates the functions in a time vector with the given sampling rate
for given duration or ampunt of samples.
User must specify either duration or nsamples, but not both. The
returned array has a channel in each column.
Parameters
----------
sampling_rate : int
time vector in which to evaluate the funcion
duration : float (optional)
duration of signal. Default = None
nsamples : int (optional)
amount of samples tu return. Default = None
return_time : bool (optional)
decides if time vector is returned or not
custom_args : tuple (optional)
extra arguments to be passed to evaluated function
Returns
-------
Array of evaluated waveforms or tuple containing time and
array of evaluated waveforms
'''
# Tries to get return_time from kwargs. If it wasn't passed, set default false
return_time = kwargs.get('return_time', False)
if return_time:
time, signal = self.waves[0].evaluate_sr(*args, **kwargs)
if len(self.waves) > 1:
signal = [signal]
kwargs['return_time'] = False
signal.extend([w.evaluate_sr(*args, **kwargs) for w in self.waves[1:]])
return time, np.array(signal).T
else:
return time, signal
else:
signal = [w.evaluate_sr(*args, **kwargs) for w in self.waves]
return np.array(signal).T
'''Example:
mw = MultichannelWave()
waves = ('sine', 'sine', 'square')
frequencies = (2, 3, 4)
amplitudes = (1, .7, .8)
for w, f, a in zip(waves, frequencies, amplitudes):
mw.add_channel(w, f, a)
time = np.linspace(0, 1, 400)
signal = mw.evaluate(time)
plt.plot(time, signal)
'''
#%% Fourier series class for wave generator
def fourier_switcher(input_waveform):
""" Switcher to easily choose waveform.
If the given waveform is not in the list, it raises a ValueError and a list
containing the accepted inputs.
Parameters
----------
input_waveform : string
name of desired function to generate
Returns
-------
Chosen waveform function
"""
switcher = {
'square': square_series,
'triangular': triangular_series,
'sawtooth': sawtooth_series,
'custom': custom_series}
func = switcher.get(input_waveform, wrong_input_build(list(switcher.keys())))
return func
def square_series(order, freq, *args):
""" Creates parameters for a square series
If the given waveform is not in the list, it raises a ValueError and a list
containing the accepted inputs.
Parameters
----------
order : int
order up to which to calculate fourier partial sum
frequency : float
fundamental frequency of generated fourier wave
Returns
-------
amps, freqs
amplitude and frequency vectors used in calculation of partial sum
"""
amps = [1/n for n in range(1, 2*order+1, 2)]
freqs = np.arange(1, 2*order+1, 2) * freq
return amps, freqs
def sawtooth_series(order, freq, *args):
""" Creates parameters for a sawtooth series
If the given waveform is not in the list, it raises a ValueError and a list
containing the accepted inputs.
Parameters
----------
order : int
order up to which to calculate fourier partial sum
frequency : float
fundamental frequency of generated fourier wave
Returns
-------
amps, freqs
amplitude and frequency vectors used in calculation of partial sum
"""
amps = [1/n for n in range(1, order+1)]
freqs = np.arange(1, order+1) * freq
return amps, freqs
def triangular_series(order, freq, *args):
""" Creates parameters for a triangluar series
If the given waveform is not in the list, it raises a ValueError and a list
containing the accepted inputs.
Parameters
----------
order : int
order up to which to calculate fourier partial sum
frequency : float
fundamental frequency of generated fourier wave
Returns
-------
amps, freqs
amplitude and frequency vectors used in calculation of partial sum
"""
amps = [(-1)**((n-1)*.5)/n**2 for n in range(1, 2*order+1, 2)]
freqs = np.arange(1, 2*order+1, 2) * freq
return amps, freqs
def custom_series(order, freq, amp, *args):
""" Creates parameters for a custom fourier series
If the given waveform is not in the list, it raises a ValueError and a list
containing the accepted inputs.
Parameters
----------
order : dummy
is redefined inside implementatoin. Kept for compatibility.
frequency : float
fundamental frequency of generated fourier wave
amp: tuple
tuple containing amplitude vectors of cosine and sine terms for the
custom fourier series
Returns
-------
amps, freqs
amplitude tple (passed directly from input) and frequency vector used
in calculation of partial sum
"""
order = len(amp[0])
amps = amp
freqs = np.arange(1, order+1) * freq
return amps, freqs
class Fourier:
'''Generates an object with a single method: evaluate(time).
Attributes
----------
waveform : str {'sawtooth', 'triangular', 'square', 'custom'}
waveform type.
wave : Wave object
Wave instance containgng a sum object that implements the fourier
series up to given order.
custom : bool
desides wether user has requested custom series or not
Methods
----------
evaluate(time)
returns evaluated fourier partial sum
'''
def __init__(self, waveform='square', frequency=400, order=5, *args):
"""Initializes class instance.
Parameters
----------
waveform : str {'sawtooth', 'triangular', 'square', 'custom'} (Optional)
waveform type. Default: 'square'
frequency : float (Optional)
fundamental frequency of the constructed wave in Hz. Default: 400
order : int (optional)
order of the constructed fourier series, i.e. the series will
be calculated up to the nth non zero term, with n=order.
args : tuple (optional)
if waveform is 'custom', a tuple of length 2, each element
containing the amplitudes of the cosine and sine terms,
respectively. Order will be ignored and will be assumed to be
equal to len(amplitudes[0]).
Returns
-------
Evaluated fourier partial sum
"""
self.waveform = waveform
self._order = order #doesn't call setup_props because there's no frequency defined yet
self.setup_props(frequency)
self.extra_args = args
self.custom = waveform=='custom'
def setup_props(self, freq):
'''Sets up frequencyes, amplitudes and wave attributes for given freq.'''
self.amplitudes, self._frequencies = self._waveform_maker(self.order, freq)
self.wave = Wave('sum', self._frequencies, self.amplitudes)
@property
def frequency(self):
'''Frequency getter: returns fundamental frequency of wave.'''
return self._frequencies[0]
@frequency.setter
def frequency(self, value):
'''Frequency setter: calculates the frequency vector for given
fundamental frequency and order. Redefine Wave accordingly.'''
self.setup_props(value)
@property
def order(self):
'''Order getter: returns order of the last nonzero term in partial sum.'''
return self._order
@order.setter
def order(self, value):
'''Order setter: Calculates new appropiate frequency and amplitude
vectors for given order value. Redefine Wave accordingly.'''
self._order = value
self.setup_props(self.frequency)
@property
def waveform(self):
'''Waveform getter: returns waveform string.'''
return self._waveform
@waveform.setter
def waveform(self, value):
'''Wavefrorm setter: sets the appropiate waveform_maker and refreshes
the amplitude vector.'''
self._waveform = value
self._waveform_maker = fourier_switcher(value)
self.setup_props(self.frequency)
def evaluate(self, time):
"""Takes in an array-like object to evaluate the funcion in.
Parameters
----------
time : array
time vector in which to evaluate the funcion
Returns
-------
Evaluated waveform
"""
if self.custom:
#missing support for custom phases
#cosine series:
self.wave.amplitude = self.amplitudes[0]
wave = self.wave.evaluate(time + np.pi *.5) * .5
#sine series:
self.wave.amplitude = self.amplitudes[1]
wave += self.wave.evaluate(time) * .5
return wave
else:
return self.wave.evaluate(time)
def evaluate_sr(self, *args, **kwargs):
"""Evaluates the function in a time vector with the given sampling rate
for given duration or ampunt of samples.
User must specify either duration or nsamples, but not both.
Parameters
----------
sampling_rate : int
time vector in which to evaluate the funcion
duration : float (optional)
duration of signal. Default = None
nsamples : int (optional)
amount of samples tu return. Default = None
return_time : bool (optional)
decides if time vector is returned or not
custom_args : tuple (optional)
extra arguments to be passed to evaluated function
Returns
-------
Evaluated waveform or tuple containing time and evaluated waveform
"""
if self.custom:
raise ValueError('No support for custom waves with this method.')
else:
return self.wave.evaluate_sr(*args, **kwargs)