-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsepsis_lr.py
214 lines (119 loc) · 4.1 KB
/
sepsis_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
# In[2]:
dataset = pd.read_csv("C:/Users/hcyen/SCA/sepsis.csv")
# In[3]:
dataset['SepsisLabel'].value_counts()
# In[4]:
plt.pie(dataset['SepsisLabel'].value_counts(), labels=['0','1'], autopct='%1.1f%%', shadow=True)
plt.show()
sns.countplot(dataset['SepsisLabel'], label="Count")
plt.show()
# In[5]:
from sklearn.utils import resample
df_majority = dataset[dataset.SepsisLabel==0]
df_minority = dataset[dataset.SepsisLabel==1]
# In[6]:
df_minority_upsampled = resample(df_minority,
replace=True, # sample with replacement
n_samples=37945, # to match majority class
random_state=123) # reproducible results
# In[7]:
df_upsampled = pd.concat([df_majority, df_minority_upsampled])
# In[8]:
df_upsampled.SepsisLabel.value_counts()
# In[9]:
plt.pie(df_upsampled['SepsisLabel'].value_counts(), labels=['1','0'], autopct='%1.1f%%', shadow=True)
plt.show()
sns.countplot(df_upsampled['SepsisLabel'], label="Count")
plt.show()
# In[10]:
X = df_upsampled[df_upsampled.columns[0:40]].values
# In[11]:
Y = df_upsampled[df_upsampled.columns[40:]].values
# In[12]:
print("sca dimensions : {}".format(df_upsampled.shape))
# In[13]:
print("sca dimensions : {}".format(X.shape))
# In[14]:
print("sca dimensions : {}".format(Y.shape))
# In[15]:
a = df_upsampled.isnull().sum()
# In[16]:
b = df_upsampled.isna().sum()
# In[17]:
labelencoder_Y = preprocessing.LabelEncoder()
Y = labelencoder_Y.fit_transform(Y)
# In[18]:
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.20, random_state=0)
print("Training data dimensions :{}".format(X_train.shape))
print("Testing data dimensions :{}".format(X_test.shape))
# In[23]:
from sklearn.metrics import accuracy_score, log_loss
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC, LinearSVC, NuSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
classifiers = [
#KNeighborsClassifier(3),
#SVC(kernel="rbf", C=0.025, probability=True),
#NuSVC(probability=True),
#DecisionTreeClassifier(),
#RandomForestClassifier(),
MLPClassifier(
activation='tanh',
solver='lbfgs',
early_stopping=False,
hidden_layer_sizes=(40,10,10,10,10, 2),
random_state=1,
batch_size='auto',
max_iter=13000,
learning_rate_init=1e-5,
tol=1e-4,
),
AdaBoostClassifier(),
GradientBoostingClassifier(),
GaussianNB(),
LinearDiscriminantAnalysis(),
QuadraticDiscriminantAnalysis()]
# Logging for Visual Comparison
log_cols=["Classifier", "Accuracy", "Log Loss"]
log = pd.DataFrame(columns=log_cols)
for clf in classifiers:
clf.fit(X_train, Y_train)
name = clf.__class__.__name__
print("="*30)
print(name)
print('****Results****')
train_predictions = clf.predict(X_test)
acc = accuracy_score(Y_test, train_predictions)
print("Accuracy: {:.4%}".format(acc))
train_predictions = clf.predict_proba(X_test)
ll = log_loss(Y_test, train_predictions)
print("Log Loss: {}".format(ll))
log_entry = pd.DataFrame([[name, acc*100, ll]], columns=log_cols)
log = log.append(log_entry)
print("="*30)
# In[24]:
sns.set_color_codes("muted")
sns.barplot(x='Accuracy', y='Classifier', data=log, color="b")
plt.xlabel('Accuracy %')
plt.title('Classifier Accuracy')
plt.show()
sns.set_color_codes("muted")
sns.barplot(x='Log Loss', y='Classifier', data=log, color="g")
plt.xlabel('Log Loss')
plt.title('Classifier Log Loss')
plt.show()
# In[ ]: