-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtokyo_ibl.py
462 lines (373 loc) · 13.1 KB
/
tokyo_ibl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# Copyright © 2019-2023 HK-SHAO
# GPL-3.0 Licensed: https://github.com/HK-SHAO/RayTracingPBR
import taichi as ti
from taichi.math import *
ti.init(arch=ti.gpu, default_ip=ti.i32, default_fp=ti.f32)
image_resolution = (192*15, 108*15)
image_buffer = ti.Vector.field(4, float, image_resolution)
image_pixels = ti.Vector.field(3, float, image_resolution)
SCREEN_PIXEL_SIZE = 1.0 / vec2(image_resolution)
PIXEL_RADIUS = 0.5 * min(SCREEN_PIXEL_SIZE.x, SCREEN_PIXEL_SIZE.y)
MIN_DIS = 0.005
MAX_DIS = 2000.0
VISIBILITY = 0.000001
SAMPLE_PER_PIXEL = 1
MAX_RAYMARCH = 512
MAX_RAYTRACE = 512
SHAPE_SPHERE = 1
SHAPE_BOX = 2
SHAPE_CYLINDER = 3
ENV_IOR = 1.000277
aspect_ratio = image_resolution[0] / image_resolution[1]
light_quality = 128.0
camera_exposure = 1.0
camera_vfov = 30
camera_aperture = 0.01
camera_focus = 4
camera_gamma = 2.2
@ti.data_oriented
class Image:
def __init__(self, path: str):
img = ti.tools.imread(path).astype('float32')
self.img = vec3.field(shape=img.shape[:2])
self.img.from_numpy(img / 255)
@ti.kernel
def process(self, exposure: float, gamma: float):
for i, j in self.img:
color = self.img[i, j] * exposure
color = pow(color, vec3(gamma))
self.img[i, j] = color
@ti.func
def texture(self, uv: vec2) -> vec3:
x = int(uv.x * self.img.shape[0])
y = int(uv.y * self.img.shape[1])
return self.img[x, y]
hdr_map = Image('assets/Tokyo_BigSight_3k.hdr')
hdr_map.process(exposure=1.8, gamma=camera_gamma)
@ti.dataclass
class Ray:
origin: vec3
direction: vec3
color: vec3
@ti.dataclass
class Material:
albedo: vec3
emission: vec3
roughness: float
metallic: float
transmission: float
ior: float
@ti.dataclass
class Transform:
position: vec3
rotation: vec3
scale: vec3
matrix: mat3
@ti.dataclass
class SDFObject:
type: int
distance: float
transform: Transform
material: Material
@ti.dataclass
class Camera:
lookfrom: vec3
lookat: vec3
vup: vec3
vfov: float
aspect: float
aperture: float
focus: float
OBJECTS_LIST = sorted([
SDFObject(type=SHAPE_SPHERE,
transform=Transform(vec3(0, -100.501, 0), vec3(0), vec3(100)),
material=Material(vec3(1, 1, 1)*0.6, vec3(1), 1, 1, 0, 1.635)),
SDFObject(type=SHAPE_SPHERE,
transform=Transform(vec3(0, 0, 0), vec3(0), vec3(0.5)),
material=Material(vec3(1, 1, 1), vec3(0.1, 1, 0.1)*10, 1, 0, 0, 1)),
SDFObject(type=SHAPE_SPHERE,
transform=Transform(vec3(1, -0.2, 0), vec3(0), vec3(0.3)),
material=Material(vec3(0.2, 0.2, 1), vec3(1), 0.2, 1, 0, 1.100)),
SDFObject(type=SHAPE_SPHERE,
transform=Transform(vec3(0.0, -0.2, 2), vec3(0), vec3(0.3)),
material=Material(vec3(1, 1, 1)*0.9, vec3(1), 0, 0, 1, 1.5)),
SDFObject(type=SHAPE_CYLINDER,
transform=Transform(vec3(-1.0, -0.2, 0), vec3(0), vec3(0.3)),
material=Material(vec3(1.0, 0.2, 0.2), vec3(1), 0, 0, 0, 1.460)),
SDFObject(type=SHAPE_BOX,
transform=Transform(vec3(0, 0, 5), vec3(0), vec3(2, 1, 0.2)),
material=Material(vec3(1, 1, 0.2)*0.9, vec3(1), 0, 1, 0, 0.470)),
SDFObject(type=SHAPE_BOX,
transform=Transform(vec3(0, 0, -2), vec3(0), vec3(2, 1, 0.2)),
material=Material(vec3(1, 1, 1)*0.9, vec3(1), 0, 1, 0, 2.950))
], key=lambda o: o.type)
SHAPE_SPLIT = [0, 0, 0, 0]
for o in OBJECTS_LIST: SHAPE_SPLIT[o.type] += 1
for i in range(1, len(SHAPE_SPLIT)): SHAPE_SPLIT[i] += SHAPE_SPLIT[i - 1]
objects = SDFObject.field()
ti.root.dense(ti.i, len(OBJECTS_LIST)).place(objects)
for i in range(objects.shape[0]): objects[i] = OBJECTS_LIST[i]
@ti.func
def random_in_unit_disk() -> vec2:
x = ti.random()
a = ti.random() * 2 * pi
return sqrt(x) * vec2(sin(a), cos(a))
@ti.func
def get_ray(c: Camera, uv: vec2, color: vec3) -> Ray:
theta = radians(c.vfov)
half_height = tan(theta * 0.5)
half_width = c.aspect * half_height
z = normalize(c.lookfrom - c.lookat)
x = normalize(cross(c.vup, z))
y = cross(z, x)
lens_radius = c.aperture * 0.5
rud = lens_radius * random_in_unit_disk()
offset = x * rud.x + y * rud.y
hwfx = half_width * c.focus * x
hhfy = half_height * c.focus * y
lower_left_corner = c.lookfrom - hwfx - hhfy - c.focus * z
horizontal = 2.0 * hwfx
vertical = 2.0 * hhfy
ro = c.lookfrom + offset
po = lower_left_corner + uv.x * horizontal + uv.y * vertical
rd = normalize(po - ro)
return Ray(ro, rd, color)
@ti.func
def at(r: Ray, t: float) -> vec3:
return r.origin + t * r.direction
@ti.func
def angle(a: vec3) -> mat3:
s, c = sin(a), cos(a)
return mat3(vec3( c.z, s.z, 0),
vec3(-s.z, c.z, 0),
vec3( 0, 0, 1)) @ \
mat3(vec3( c.y, 0, -s.y),
vec3( 0, 1, 0),
vec3( s.y, 0, c.y)) @ \
mat3(vec3( 1, 0, 0),
vec3( 0, c.x, s.x),
vec3( 0, -s.x, c.x))
@ti.func
def sd_sphere(p: vec3, r: vec3) -> float:
return length(p) - r.x
@ti.func
def sd_box(p: vec3, b: vec3) -> float:
q = abs(p) - b
return length(max(q, 0)) + min(max(q.x, max(q.y, q.z)), 0) - 0.03
@ti.func
def sd_cylinder(p: vec3, rh: vec3) -> float:
d = abs(vec2(length(p.xz), p.y)) - rh.xy
return min(max(d.x, d.y), 0) + length(max(d, 0))
@ti.func
def transform(t: Transform, p: vec3) -> vec3:
p -= t.position # Cannot squeeze the Euclidean space of distance field
p = t.matrix @ p # Otherwise the correct ray marching is not possible
return p
@ti.func
def signed_distance(obj: SDFObject, pos: vec3) -> float:
scale = obj.transform.scale
p = transform(obj.transform, pos)
if obj.type == SHAPE_SPHERE: obj.distance = sd_sphere(p, scale)
elif obj.type == SHAPE_BOX: obj.distance = sd_box(p, scale)
elif obj.type == SHAPE_CYLINDER: obj.distance = sd_cylinder(p, scale)
else: obj.distance = MAX_DIS
return obj.distance
@ti.func
def get_object_pos_scale(i: int, p: vec3) -> tuple[vec3, vec3]:
obj = objects[i]
pos = transform(obj.transform, p)
return pos, obj.transform.scale
@ti.func
def nearest_object(p: vec3) -> tuple[int, float]:
index = 0; min_dis = MAX_DIS
for i in ti.static(range(SHAPE_SPLIT[0], SHAPE_SPLIT[1])):
pos, scale = get_object_pos_scale(i, p)
dis = abs(sd_sphere(pos, scale))
if dis < min_dis: min_dis = dis; index = i
for i in ti.static(range(SHAPE_SPLIT[1], SHAPE_SPLIT[2])):
pos, scale = get_object_pos_scale(i, p)
dis = abs(sd_box(pos, scale))
if dis < min_dis: min_dis = dis; index = i
for i in ti.static(range(SHAPE_SPLIT[2], SHAPE_SPLIT[3])):
pos, scale = get_object_pos_scale(i, p)
dis = abs(sd_cylinder(pos, scale))
if dis < min_dis: min_dis = dis; index = i
return index, min_dis
@ti.func
def calc_normal(obj: SDFObject, p: vec3) -> vec3:
e = vec2(1, -1) * 0.5773 * 0.005
return normalize(e.xyy * signed_distance(obj, p + e.xyy) + \
e.yyx * signed_distance(obj, p + e.yyx) + \
e.yxy * signed_distance(obj, p + e.yxy) + \
e.xxx * signed_distance(obj, p + e.xxx) )
@ti.func
def raycast(ray: Ray) -> tuple[SDFObject, vec3, bool]:
t = MIN_DIS; w, s, d, cerr = 1.6, 0.0, 0.0, 1e32
index = 0; position = vec3(0); hit = False
for _ in range(MAX_RAYMARCH):
position = at(ray, t)
index, distance = nearest_object(position)
ld = d; d = distance
if ld + d < s:
s -= w * s; t += s; w = 0.5 + 0.5 * w
continue
err = d / t
if err < cerr: cerr = err
s = w * d; t += s
hit = err < PIXEL_RADIUS
if t > MAX_DIS or hit: break
return objects[index], position, hit
@ti.func
def sample_spherical_map(v: vec3) -> vec2:
uv = vec2(atan2(v.z, v.x), asin(v.y))
uv *= vec2(0.5 / pi, 1 / pi)
uv += 0.5
return uv
@ti.func
def sky_color(ray: Ray) -> vec3:
uv = sample_spherical_map(ray.direction)
return hdr_map.texture(uv)
@ti.func
def fresnel_schlick(NoI: float, F0: float, roughness: float) -> float:
return mix(mix(pow(abs(1.0 + NoI), 5.0), 1.0, F0), F0, roughness)
@ti.func
def hemispheric_sampling(normal: vec3) -> vec3:
z = 2.0 * ti.random() - 1.0
a = ti.random() * 2.0 * pi
xy = sqrt(1.0 - z*z) * vec2(sin(a), cos(a))
return normalize(normal + vec3(xy, z))
@ti.func
def roughness_sampling(hemispheric_sample: vec3, normal: vec3, roughness: float) -> vec3:
alpha = roughness * roughness
return normalize(mix(normal, hemispheric_sample, alpha))
@ti.func
def ray_surface_interaction(ray: Ray, object: SDFObject, position: vec3) -> Ray:
albedo = object.material.albedo
roughness = object.material.roughness
metallic = object.material.metallic
transmission = object.material.transmission
ior = object.material.ior
normal = calc_normal(object, position)
outer = dot(ray.direction, normal) < 0
normal *= 1 if outer else -1
hemispheric_sample = hemispheric_sampling(normal)
roughness_sample = roughness_sampling(hemispheric_sample, normal, roughness)
N = roughness_sample
I = ray.direction
NoI = dot(N, I)
eta = ENV_IOR / ior if outer else ior / ENV_IOR
k = 1.0 - eta * eta * (1.0 - NoI * NoI)
F0 = 2.0 * (eta - 1.0) / (eta + 1.0); F0 *= F0
F = fresnel_schlick(NoI, F0, roughness)
if ti.random() < F + metallic or k < 0.0:
ray.direction = I - 2.0 * NoI * N
ray.color *= float(dot(ray.direction, normal) > 0.0)
elif ti.random() < transmission:
ray.direction = eta * I - (sqrt(k) + eta * NoI) * N
else:
ray.direction = hemispheric_sample
ray.color *= albedo
ray.origin = position
return ray
@ti.func
def brightness(rgb: vec3) -> float:
return dot(rgb, vec3(0.299, 0.587, 0.114))
@ti.func
def raytrace(ray: Ray) -> Ray:
for i in range(MAX_RAYTRACE):
inv_pdf = exp(float(i) / light_quality)
roulette_prob = 1.0 - (1.0 / inv_pdf)
if ti.random() < roulette_prob:
ray.color *= roulette_prob
break
object, position, hit = raycast(ray)
if not hit:
ray.color *= sky_color(ray)
break
ray = ray_surface_interaction(ray, object, position)
intensity = brightness(ray.color)
ray.color *= object.material.emission
visible = brightness(ray.color)
if intensity < visible or visible < VISIBILITY: break
return ray
ACESInputMat = mat3(
0.59719, 0.35458, 0.04823,
0.07600, 0.90834, 0.01566,
0.02840, 0.13383, 0.83777
)
ACESOutputMat = mat3(
+1.60475, -0.53108, -0.07367,
-0.10208, +1.10813, -0.00605,
-0.00327, -0.07276, +1.07602
)
@ti.func
def RRTAndODTFit(v: vec3) -> vec3:
a = v * (v + 0.0245786) - 0.000090537
b = v * (0.983729 * v + 0.4329510) + 0.238081
return a / b
@ti.func
def ACESFitted(color: vec3) -> vec3:
color = ACESInputMat @ color
color = RRTAndODTFit(color)
color = ACESOutputMat @ color
return color
@ti.func
def update_transform(i: int):
transform = objects[i].transform
matrix = angle(radians(transform.rotation))
objects[i].transform.matrix = matrix
@ti.func
def update_all_transform():
for i in objects: update_transform(i)
@ti.kernel
def init_scene():
update_all_transform()
@ti.kernel
def sample(
camera_position: vec3,
camera_lookat: vec3,
camera_up: vec3):
camera = Camera()
camera.lookfrom = camera_position
camera.lookat = camera_lookat
camera.vup = camera_up
camera.aspect = aspect_ratio
camera.vfov = camera_vfov
camera.aperture = camera_aperture
camera.focus = camera_focus
for i, j in image_pixels:
coord = vec2(i, j) + vec2(ti.random(), ti.random())
uv = coord * SCREEN_PIXEL_SIZE
ray = raytrace(get_ray(camera, uv, vec3(1)))
image_buffer[i, j] += vec4(ray.color, 1.0)
@ti.kernel
def refresh():
image_buffer.fill(vec4(0))
@ti.kernel
def render():
for i, j in image_pixels:
buffer = image_buffer[i, j]
color = buffer.rgb / buffer.a
color *= camera_exposure
color = ACESFitted(color)
color = pow(color, vec3(1.0 / camera_gamma))
image_pixels[i, j] = clamp(color, 0, 1)
window = ti.ui.Window("Taichi Renderer", image_resolution)
canvas = window.get_canvas()
camera = ti.ui.Camera()
camera.position(0, -0.2, 4)
init_scene(); frame = 0
while window.running:
camera.track_user_inputs(window, movement_speed=0.03, hold_key=ti.ui.LMB)
moving = any([window.is_pressed(key) for key in ('w', 'a', 's', 'd', 'q', 'e', 'LMB', ' ')])
if moving: refresh()
for i in range(SAMPLE_PER_PIXEL):
sample(
camera.curr_position,
camera.curr_lookat,
camera.curr_up)
print('frame:', frame, 'sample:', i + 1)
frame += 1
render()
canvas.set_image(image_pixels)
window.show()