-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKinectHelper.cpp
405 lines (309 loc) · 13.6 KB
/
KinectHelper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#include "KinectHelper.h"
#include "Corners.h"
#include <fstream>
#include <boost/numeric/bindings/lapack/lapack.hpp>
#include <boost/regex.hpp>
// bool KinectHelper::bCalibrated = false;
const double KinectHelper::fov = DEG2RAD(62.7);
CvPoint KinectHelper::VanishingPoint = cv::Point(-1, -1);
freenect_device* KinectHelper::dev = NULL;
CvArr* KinectHelper::depthData = NULL;
std::list<double> KinectHelper::avg_values;
std::vector<CvPoint> KinectHelper::pointsUsedForCalibration;
CvRect KinectHelper::straight_rect;
BNU::vector<double> KinectHelper::projectiveTransformationVector;
double KinectHelper::frame_offset = -320;
double KinectHelper::view_angle = DEG2RAD(0.0);
double KinectHelper::add_depth_cm = 0.0, KinectHelper::add_depth_px = 0.0;
double KinectHelper::view_plane_distance_cm = 0.0;
double KinectHelper::v_px_per_cm = 0.0, KinectHelper::h_px_per_cm = 0.0;
double KinectHelper::distance_coefficient = 8.0;
double KinectHelper::scale = 0.15;
int KinectHelper::absolute_x = 0, KinectHelper::absolute_y = 0;
bool KinectHelper::bAandVCalibrated = false;
bool KinectHelper::bVPCalibrated = false;
using boost::numeric::ublas::matrix;
CvPoint SubPoints(const CvPoint& a, const CvPoint& b);
double KinectHelper::GetTilt()
{
freenect_update_tilt_state(dev);
freenect_raw_tilt_state* state = freenect_get_tilt_state(dev);
return freenect_get_tilt_degs(state);
}
double KinectHelper::GetKinectHeight()
{
return 37.0;
}
double KinectHelper::GetDirectDistanceInCM(double distanceValue)
{
assert(dev != NULL);
assert(depthData != NULL);
double ret = ((tan(distanceValue / 1024 + 0.5) * 33.825 + 5.7)); // Distanz direkt von Kinect zum Objekt
return ret;
}
double KinectHelper::GetDistanceOverGround(double distanceValue)
{
assert(dev != NULL);
assert(depthData != NULL);
double dist_cm = GetDirectDistanceInCM(distanceValue);
double height_cm = GetKinectHeight();
double ret = sqrt(pow(dist_cm, 2) - pow(height_cm, 2)); // Pythagoras
return ret;
}
/*
void KinectHelper::CalibrateAnglesAndViewport()
{
if(bAandVCalibrated) return;
double pitch_rad = DEG2RAD(GetTilt());
view_plane_distance_cm = sin(pitch_rad) * KinectHelper::GetKinectHeight();
add_depth_cm = view_plane_distance_cm * (1/tan(pitch_rad) - tan(fov/2));
view_plane_distance_cm = KinectHelper::GetDirectDistanceInCM(cvGet2D(depthData, 320, 240).val[0]);
v_px_per_cm = abs(240 / (view_plane_distance_cm * tan(fov/2)));
h_px_per_cm = abs(320 / (view_plane_distance_cm * tan(fov/2)));
std::cout << "|--> Vertical px/cm: " << v_px_per_cm << "; Horizontal px/cm: " << h_px_per_cm << std::endl;
add_depth_px = add_depth_cm * v_px_per_cm;
std::cout << "|--> Viewplane distance: " << view_plane_distance_cm << std::endl;
std::cout << "|--> Additional vertical pixels: " << add_depth_px << std::endl;
bAandVCalibrated = true;
}
*
* **/
void KinectHelper::CalibrateAnglesAndViewport()
{
if(bAandVCalibrated) return;
double pitch_rad = DEG2RAD(-GetTilt());
double to_lower_border_rad = DEG2RAD(90) - pitch_rad - (fov/2);
std::cout << "FOV: " << fov << "; Pitch: " << pitch_rad << std::endl;
double dist_at_lower_border = KinectHelper::GetKinectHeight() / cos(to_lower_border_rad); // in cm
double v_cm = (dist_at_lower_border * sin(fov/2));
v_px_per_cm = 240.0 / v_cm;
h_px_per_cm = v_px_per_cm * (640.0 / 480.0);
view_plane_distance_cm = sin(pitch_rad) * KinectHelper::GetKinectHeight();
std::cout << "Vertical Pixels per cm: " << v_px_per_cm << std::endl;
std::cout << "Horizontal Pixels per cm: " << h_px_per_cm << std::endl;
std::cout << "Viewplane is: " << view_plane_distance_cm << std::endl;
bAandVCalibrated = true;
}
void KinectHelper::CalibrateVanishingPoint()
{
if(bVPCalibrated) return;
std::map<CornerPosition, CvPoint> calibration_corners;
if(pointsUsedForCalibration.size() == 4 /*&& VanishingPoint.x != 320*/) // Vierpunktkalibrierung
{
calibration_corners.clear();
for(std::vector<CvPoint>::iterator it = pointsUsedForCalibration.begin(); it != pointsUsedForCalibration.end(); it++)
{
CvPoint& pnt = (*it);
if(pnt.x > 320) // rechts von der Mitte;
{
if(calibration_corners.count(TopRight) == 0) calibration_corners[TopRight] = pnt;
else if(calibration_corners.count(BottomRight) == 0) calibration_corners[BottomRight] = pnt;
}
else if(pnt.x < 320) // links von der Mitte;
{
if(calibration_corners.count(TopLeft) == 0) calibration_corners[TopLeft] = pnt;
else if(calibration_corners.count(BottomLeft) == 0) calibration_corners[BottomLeft] = pnt;
}
}
double delta_x = calibration_corners[BottomRight].x - calibration_corners[TopRight].x;
double delta_y = calibration_corners[BottomRight].y - calibration_corners[TopRight].y;
double delta_v_x = calibration_corners[TopRight].x - 320;
double fact_x = delta_v_x / delta_x;
double delta_v_y = delta_y * fact_x;
double vanishing_x = 320, vanishing_y = calibration_corners[TopRight].y - delta_v_y;
KinectHelper::VanishingPoint.x = vanishing_x; KinectHelper::VanishingPoint.y = vanishing_y;
// std::cout << "H-Dist 1: " << h_dist1 << "; H-Dist 2: " << h_dist2 << std::endl;
std::cout << "|--> VANISHING POINT: " << KinectHelper::VanishingPoint << std::endl;
bVPCalibrated = true;
}
}
bool pointSort(CvPoint a, CvPoint b)
{
return(a.x + (a.y * 1000) < b.x + (b.y * 1000));
}
double KinectHelper::In_cm(double px, Orientation o)
{
switch(o)
{
case Horizontal: return (px / h_px_per_cm);
case Vertical: return (px / v_px_per_cm);
default: throw "Blubb";
}
}
double KinectHelper::In_px(double cm, Orientation o)
{
switch(o)
{
case Horizontal: return (cm * h_px_per_cm);
case Vertical: return (cm * h_px_per_cm);
default: throw "Blubb";
}
}
void KinectHelper::SetupProjectionVector()
{
std::vector<CvPoint> straightRect;
if(pointsUsedForCalibration.size() == 4)
{
std::vector<CvPoint> points = std::vector<CvPoint>(pointsUsedForCalibration);
sort(points.begin(), points.end(), pointSort);
double height = In_px(70, Vertical);
double width = In_px(70, Horizontal);
CvPoint center_of_calibration = cv::Point( (points[0].x + points[1].x + points[2].x + points[3].x) / 4, (points[0].y + points[1].y + points[2].y + points[3].y) / 4);
CvPoint p1 = cv::Point(-(width/2), -(height/2));
CvPoint p2 = cv::Point((width/2), -(height/2));
CvPoint p3 = cv::Point(-(width/2), (height/2));
CvPoint p4 = cv::Point((width/2), (height/2));
straightRect.push_back(center_of_calibration + p1);
straightRect.push_back(center_of_calibration + p2);
straightRect.push_back(center_of_calibration + p3);
straightRect.push_back(center_of_calibration + p4);
BNU::vector<double> outVect = BNU::vector<double>(8);
BNU::vector<double> inVect = BNU::vector<double>(8);
BNU::matrix<double, BNU::column_major> inMatrix = BNU::matrix<double>(8,8);
for(int m = 0; m < 4; m++)
{
int n = m * 2;
inMatrix(n, 0) = points[m].x;
inMatrix(n, 1) = points[m].y;
inMatrix(n, 2) = 1;
inMatrix(n, 3) = 0;
inMatrix(n, 4) = 0;
inMatrix(n, 5) = 0;
inMatrix(n, 6) = -straightRect[m].x * points[m].x;
inMatrix(n, 7) = -straightRect[m].x * points[m].y;
inMatrix(n+1, 0) = 0;
inMatrix(n+1, 1) = 0;
inMatrix(n+1, 2) = 0;
inMatrix(n+1, 3) = points[m].x;
inMatrix(n+1, 4) = points[m].y;
inMatrix(n+1, 5) = 1;
inMatrix(n+1, 6) = -straightRect[m].y * points[m].x;
inMatrix(n+1, 7) = -straightRect[m].y * points[m].y;
inVect(n) = straightRect[m].x;
inVect(n+1) = straightRect[m].y;
}
boost::numeric::bindings::lapack::gesv(inMatrix, inVect);
projectiveTransformationVector = inVect;
}
}
void KinectHelper::DrawCalibrationData(CvArr* img)
{
// if(!bCalibrated) return;
cvCircle(img, VanishingPoint, 100, CV_RGB(255, 255, 255));
for(std::vector<CvPoint>::iterator it = pointsUsedForCalibration.begin(); it != pointsUsedForCalibration.end(); it++)
{
if(pointsUsedForCalibration.size() >= 4) DrawProjectedPoint(img, *it);
cvCircle(img, *it, 5, CV_RGB(0,255,255), 2);
}
if(pointsUsedForCalibration.size() != 4) return;
cvLine(img, pointsUsedForCalibration[0], pointsUsedForCalibration[1], CV_RGB(0, 255, 255));
cvLine(img, pointsUsedForCalibration[1], pointsUsedForCalibration[3], CV_RGB(0, 255, 255));
cvLine(img, pointsUsedForCalibration[3], pointsUsedForCalibration[2], CV_RGB(0, 255, 255));
cvLine(img, pointsUsedForCalibration[2], pointsUsedForCalibration[0], CV_RGB(0, 255, 255));
}
void KinectHelper::DrawProjectedPoint(CvArr* img, CvPoint point)
{
CvPoint prj = ProjectPoint(point);
cvCross(img, point, 3, CV_RGB(128,128,255), 2);
cvCross(img, prj, 3, CV_RGB(128,255,128), 2);
cvLine(img, point, prj, CV_RGB(128,128,0));
}
void KinectHelper::ProjectImage(CvArr* src, CvArr* dst)
{
if(pointsUsedForCalibration.size() != 4) return;
cv::Mat m_src = cv::Mat((IplImage*)src);
cv::Mat m_dst = cv::Mat((IplImage*)dst);
for(int row = 0; row < m_src.rows; row++)
{
uchar* s_row = m_src.ptr(row);
for(int col=0; col < m_src.cols * 3; col++)
{
CvPoint pnt = cv::Point(col, row);
CvPoint prj_pnt = ProjectPoint(pnt);
if(prj_pnt.x < 0 | prj_pnt.x >= m_dst.cols) continue;
if(prj_pnt.y < 0 | prj_pnt.y >= m_dst.rows) continue;
uchar* d_row = m_dst.ptr(prj_pnt.y);
(&d_row[prj_pnt.x])[2] = (&s_row[col])[2];
(&d_row[prj_pnt.x])[1] = (&s_row[col])[1];
(&d_row[prj_pnt.x])[0] = (&s_row[col])[0];
}
}
}
CvPoint KinectHelper::ProjectPoint(CvPoint point)
{
CvPoint ret;
ret.x = (projectiveTransformationVector[0] * point.x + projectiveTransformationVector[1] * point.y + projectiveTransformationVector[2]) / (projectiveTransformationVector[6] * point.x + projectiveTransformationVector[7] * point.y + 1);
ret.y = (projectiveTransformationVector[3] * point.x + projectiveTransformationVector[4] * point.y + projectiveTransformationVector[5]) / (projectiveTransformationVector[6] * point.x + projectiveTransformationVector[7] * point.y + 1);
/*
double middle_x = 320;
double middle_y = 240;
CvPoint upper_y = cv::Point(middle_x, (pointsUsedForCalibration[0].y + pointsUsedForCalibration[1].y) / 2);
CvPoint lower_y = cv::Point(middle_x, (pointsUsedForCalibration[2].y + pointsUsedForCalibration[3].y) / 2);
CvPoint left_x = cv::Point((pointsUsedForCalibration[0].x + pointsUsedForCalibration[2].x) / 2, middle_y);
CvPoint right_x = cv::Point((pointsUsedForCalibration[1].x + pointsUsedForCalibration[3].x) / 2, middle_y);
double r_x = abs((right_x.x - left_x.x) / 4);
double r_y = abs((lower_y.y - upper_y.y) / 4);
Raster(ret, r_x, r_y); */
return ret;
}
CvPoint KinectHelper::GetAbsoluteX(CvPoint point)
{
CvPoint delta = point - VanishingPoint;
double m = (double)delta.x / (double)delta.y;
double frame_x = ((480 + add_depth_px) - VanishingPoint.y) * m;
// CvPoint ret = cv::Point(320 + frame_x, 480 + add_depth_px);
CvPoint ret = ProjectPoint(point);
return ret;
}
CvPoint KinectHelper::GetAbsoluteCoordinates(double yOnImage_in_cm, double xOnImage_in_cm)
{
CvPoint absKinect = cv::Point(absolute_x, absolute_y);
CvPoint ToLeftBorder = GetLeftFrameEdgeVector();
CvPoint ToFrame = GetOnImageVector(xOnImage_in_cm);
CvPoint ToPos = GetToPosVector(yOnImage_in_cm);
CvPoint ret = (absKinect + ToLeftBorder + ToFrame + ToPos);
return ret;
}
CvPoint KinectHelper::GetToPosVector(double Distance)
{
return cv::Point(cos(view_angle) * Distance, -sin(view_angle) * Distance);
}
CvPoint KinectHelper::GetOnImageVector(double XOnImage)
{
return cv::Point(sin(view_angle) * XOnImage, cos(view_angle) * XOnImage);
}
CvPoint KinectHelper::GetLeftFrameEdgeVector()
{
return cv::Point(-sin(view_angle) * In_cm(320, Horizontal), -cos(view_angle) * In_cm(320, Horizontal));
}
void KinectHelper::Raster(CvPoint& point, double GridX, double GridY)
{
// std::cout << "Raster; Before: " << point;
double _x = (point.x / GridX);
double _y = (point.y / GridY);
point.x = round(_x) * GridX;
point.y = round(_y) * GridY;
// std::cout << "; After: " << point << std::endl;
}
bool operator>(CvScalar a, double max)
{
double sum = 0.0;
for(int elm = 0; elm < sizeof(a.val); elm++)
{
sum += pow(a.val[elm], 2);
}
double length = sqrt(sum);
return (length > max);
}
bool leftOf(const std::pair<int, cvb::CvBlob*>& point, const std::pair<int, cvb::CvBlob*>& of)
{
return point.second->centroid.x < of.second->centroid.x;
}
bool rightOf(const std::pair<int, cvb::CvBlob*>& point, const std::pair<int, cvb::CvBlob*>& of)
{
return point.second->centroid.x > of.second->centroid.x;
}
bool smallestIndex(const std::pair<int, cvb::CvBlob*>& a, const std::pair<int, cvb::CvBlob*>& b)
{
return a.first < b.first;
}