Skip to content

Latest commit

 

History

History
149 lines (129 loc) · 6.27 KB

Readme.md

File metadata and controls

149 lines (129 loc) · 6.27 KB

Turbo Voxels

ITK implementation of turbovoxel segmentation and other useful segmentation/smoothing tools.

Compiling

Compilation of this project is handled using cmake. To build first create a directory to build the project.

$ mkdir cmake-build
$ cd cmake-build

Generate the required makefiles using cmake. Before you run cmake make sure that you have ITK installed and ITK_DIR is set to appropriate path in the CMakeLists.txt

$ cmake ..

Finally, to compile simply run the make utility.

$ make -j

If successful, the build process should generate an executable called turbo which when run with different options can be used for various tasks explained in the usage section below.

Related Papers

If you use the codes in this repository please consider citing the following associated paper.

Syed, T. A., Wang, Y., Dileep, D., Sirajuddin, M., & Siddiqi, K. (2023, June). Ultrastructure Analysis of Cardiomyocytes and Their Nuclei. In International Conference on Functional Imaging and Modeling of the Heart (pp. 14-24). Cham: Springer Nature Switzerland.

Usage

turbo -module -input <input_file_path> -output <output_file_name>

Options

 -input
	 path to input file
 -output
	 path to output file (default <inputFileName>_smooth.ext)
 -h, --help
	 display this help
 -mcs         ::(mean Curvature Smoothing)
 -mmcs        ::(min-max Curvature Smoothing)
 -bmmcs       ::(binary min-max Curvature Smoothing)
 -slic        ::(SLIC superpixels)
 -otsu        ::(Otsu Thresholding)
 -bradley     ::(Bradley Adaptive Thresholding)
 -regionprops ::(Region props of objects in image)
 -chanvese    ::(chan-Vese segmentation)

Mean/min-max Curvature Smoothing:

	 -iterations N : (default = 1) number of iterations to run
	 -dt t         : (default = 0.125) time step for smoothing
	 -rescale      : (optional,false) weather to rescale output to [0,1]
	                 rescale changes extension of output to tif
	                 if float is not supported by output file
	 -radius R     : (unsigned) stencil radius for min-max flow (~noise size)
	 -thresh th    : (double) threshold value of binary image
             -clamp        : clamp output value to range of input(default) or values supplied via -lthresh/-uthresh.

Chan-Vese Segmentation:

	 -iterations N : (default = 1) number of iterations to run
	 -smooth N     : (default off) smooth input using min-max
	                 curvature smoothing, default N = 10
	 -dt t         : (default = 0.125) time step for smoothing
	 -radius R     : (default = 2) stencil radius for min-max flow choose proportional to noise size
	 -lthresh lt   : (default = non +ve min) lower thresh for init mask
	 -uthresh ut   : (default = max) upper thresh for init mask
	 -background   : flip initial mask
	 -lambda l     : (default = 0.5) weight of internal term.
	                  Weight of external term is fixed at 1
	 -debug        : saves initial mask and final levelset image

Slic SuperPixel:

	 -iterations N : (default = 10) number of iterations to run
	 -weight w     : (default = 1) Proximity weight for superpixels
	 -writelabels N: (optional, 0)Write output image labelled by superpixel id
	                  0(off), 1(labelId), 2(Hot), 3(Cool), 4(Autumn), (>5)Jet
	 -seedcount N  : (optional, 100) approx. number of superpixels

Otsu Thresholding:

	 -iterations N : (optional, 0) number of iterations of pre-process smoothing
	 -radius w     : (optional, 2) stencil radius for smoothing
	 -dt t         : (optional, 0.125) time step for pre-smoothing
	 -dark         : (optional,false) flip polarity of output

Bradley Adaptive Thresholding:

	 -sensitivity s : (optional, 0.5) foreground sensitivity
	 -window w      : (optional, max_image_dim/8) size of window for estimating local threshold
	 -dark         : (optional,false) flip polarity of output
	 -writeThreshold: (optional, false) write the threshold image used for thresholding

Region props:

	 -size s : (optional, 100) size(pixels) of smallest object to consider
	 -dark   : (optional, false) flip image intensity

Turbo Voxels:

	 -seedcount      : (optional, 150) Number of turbovoxels to seed.Can be overriden if -size is specified
	 -smoothing      : (optional, 10) smoothing iteration for speed computation
	 -propagation    : (optional, 1) weight of the constant prop. term in level set evoluiton
	 -curvature      : (optional, 0.3) weight of the curvature term in level set evoluiton
	 -advection      : (optional, 5) weight of the doublet (advection) term in level set evoluiton
	 -iterations    : (optional, 1000) Maximum number of iteration to run for. Will stop early if rms difference between updates is below -rmsthreshold
	 -rmsthreshold  : (optional, 1) Stopping threshold for RMS difference between updates. 
	 -dt             : (optional, _) Value of timestep for evolution. Should not be set manually unless you know what you are doing
	 -observe        : (optional[debug], false) Runs debug Evolution observer writing intermediate images and log
	 -rgb            : (optional[debug], false) Saves pseudo-color rgb images inside evolution observer 

Examples:

SLIC superpixel example:

$./turbo -slic -input lizard.jpg -writelabels 5 -seedcount 250

slic

Chan-Vese segmentation example:

$ ./turbo -chanvese -lthresh 1 -uthresh 1000 -smooth -input dapi3d.tif

Perform mean curvature smoothing:

$./turbo -mcs -dt 0.05 -iterations 200 -input EM2D.tif 

Turbovoxel example:

$./turbo -turbovoxels -input wga3d.tif -seedcount 500 -iterations 500 -rmsthreshold 0.1 -edgescale 25 -curvature 0.3 -advection 0.2

wga wga turbovoxels

$./turbo -turbovoxels -input lizard.jpg -seedcount 500 -gradientseeding -iterations 500 -edgescale 12.5 -curvature 0.3 -advection 0.2

turbovoxels turbovoxels