-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·426 lines (349 loc) · 18.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import argparse
import os
import numpy as np
from tqdm import tqdm
import torch.nn as nn
from torchviz import make_dot, make_dot_from_trace
from mypath import Path
from dataloaders import make_data_loader
from utils.loss import SegmentationLosses
from utils.calculate_weights import calculate_weigths_labels
from utils.lr_scheduler import LR_Scheduler
from utils.saver import Saver
from utils.summaries import TensorboardSummary
from utils.metrics import Evaluator
from utils.copy_state_dict import copy_state_dict
from utils.eval_utils import AverageMeter
from modeling.baseline_model import *
from modeling.ADD import *
from modeling.operations import normalized_shannon_entropy
from modeling.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d
from modeling.sync_batchnorm.replicate import patch_replication_callback
from apex import amp
from ptflops import get_model_complexity_info
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
torch.backends.cudnn.benchmark = True
class trainNew(object):
def __init__(self, args):
self.args = args
""" Define Saver """
self.saver = Saver(args)
self.saver.save_experiment_config()
""" Define Tensorboard Summary """
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
self.use_amp = self.args.use_amp
self.opt_level = self.args.opt_level
if self.args.dist:
torch.distributed.init_process_group(backend="nccl", init_method='env://')
local_rank = self.args.local_rank
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
dist.barrier()
""" Define Dataloader """
kwargs = {'num_workers': args.workers, 'pin_memory': True, 'drop_last': True}
self.train_loader, self.val_loader, _, self.nclass = make_data_loader(args, **kwargs)
""" Define Criterion """
""" whether to use class balanced weights """
if args.use_balanced_weights:
classes_weights_path = os.path.join(Path.db_root_dir(args.dataset), args.dataset + '_classes_weights.npy')
if os.path.isfile(classes_weights_path):
weight = np.load(classes_weights_path)
else:
weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass)
weight = torch.from_numpy(weight.astype(np.float32))
else:
weight = None
self.criterion = nn.CrossEntropyLoss(weight=weight, ignore_index=255).cuda()
# self.criterion = DataParallelCriterion(self.criterion, device_ids=self.args.gpu_ids).cuda()
if args.network == 'searched-dense':
cell_path = os.path.join(args.saved_arch_path, 'autodeeplab', 'genotype.npy')
cell_arch = np.load(cell_path)
if self.args.C == 2:
C_index = [5]
#4_15_80e_40a_03-lr_5e-4wd_6e-4alr_1e-3awd 513x513 batch 4
network_arch = [1, 2, 2, 2, 3, 2, 2, 1, 1, 1, 1, 2]
low_level_layer = 0
elif self.args.C == 3:
C_index = [3, 7]
network_arch = [1, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3]
low_level_layer = 0
elif self.args.C == 4:
C_index = [2, 5, 8]
network_arch = [1, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2]
low_level_layer = 0
model = ADD(network_arch,
C_index,
cell_arch,
self.nclass,
args,
low_level_layer)
elif args.network.startswith('autodeeplab'):
network_arch = [0, 0, 0, 1, 2, 1, 2, 2, 3, 3, 2, 1]
cell_path = os.path.join(args.saved_arch_path, 'autodeeplab', 'genotype.npy')
cell_arch = np.load(cell_path)
low_level_layer = 2
if self.args.C == 2:
C_index = [5]
elif self.args.C == 3:
C_index = [3, 7]
elif self.args.C == 4:
C_index = [2, 5, 8]
if args.network == 'autodeeplab-dense':
model = ADD(network_arch,
C_index,
cell_arch,
self.nclass,
args,
low_level_layer)
elif args.network == 'autodeeplab-baseline':
model = Baselin_Model(network_arch,
C_index,
cell_arch,
self.nclass,
args,
low_level_layer)
""" Define Optimizer """
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=args.nesterov)
self.model, self.optimizer = model, optimizer
""" Define Evaluator """
self.evaluator = []
for num in range(self.args.C):
self.evaluator.append(Evaluator(self.nclass))
""" Define lr scheduler """
self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr,
args.epochs, len(self.train_loader))
if args.cuda:
self.model = self.model.cuda()
""" mixed precision """
if self.use_amp and args.cuda:
keep_batchnorm_fp32 = True if (self.opt_level == 'O2' or self.opt_level == 'O3') else None
""" fix for current pytorch version with opt_level 'O1' """
if self.opt_level == 'O1' and torch.__version__ < '1.3':
for module in self.model.modules():
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm) or isinstance(module, SynchronizedBatchNorm2d):
""" Hack to fix BN fprop without affine transformation """
if module.weight is None:
module.weight = torch.nn.Parameter(
torch.ones(module.running_var.shape, dtype=module.running_var.dtype,
device=module.running_var.device), requires_grad=False)
if module.bias is None:
module.bias = torch.nn.Parameter(
torch.zeros(module.running_var.shape, dtype=module.running_var.dtype,
device=module.running_var.device), requires_grad=False)
# print(keep_batchnorm_fp32)
self.model, self.optimizer = amp.initialize(
self.model, self.optimizer, opt_level=self.opt_level,
keep_batchnorm_fp32=keep_batchnorm_fp32, loss_scale="dynamic")
if args.cuda and len(self.args.gpu_ids) >1:
if self.opt_level == 'O2' or self.opt_level == 'O3':
print('currently cannot run with nn.DataParallel and optimization level', self.opt_level)
if self.args.dist:
self.model = DistributedDataParallel(self.model,
device_ids=[self.args.local_rank],
output_device=self.args.local_rank).cuda()
else:
self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids)
# patch_replication_callback(self.model)
print('training on multiple-GPUs')
""" Resuming checkpoint """
self.best_pred = 0.0
if args.resume is not None:
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
""" if the weights are wrapped in module object we have to clean it """
if args.clean_module:
self.model.load_state_dict(checkpoint['state_dict'])
state_dict = checkpoint['state_dict']
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove 'module.' of dataparallel
new_state_dict[name] = v
copy_state_dict(self.model.state_dict(), new_state_dict)
else:
if (torch.cuda.device_count() > 1):
copy_state_dict(self.model.module.state_dict(), checkpoint['state_dict'])
else:
copy_state_dict(self.model.state_dict(), checkpoint['state_dict'])
if not args.ft:
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.best_pred = checkpoint['best_pred']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
""" Clear start epoch if fine-tuning """
if args.ft:
args.start_epoch = 0
def training(self, epoch):
train_loss = 0.0
self.model.train()
tbar = tqdm(self.train_loader)
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if self.args.cuda:
image, target = image.cuda(), target.cuda()
self.scheduler(self.optimizer, i, epoch, self.best_pred)
self.optimizer.zero_grad()
outputs = self.model(image)
# loss = self.model(image, True, target)
loss = []
for classifier_i in range(self.args.C):
loss.append(self.criterion(outputs[classifier_i], target))
# loss = self.model.calculate_loss(image, target)
loss = sum(loss)/(self.args.C)
if self.use_amp:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
self.optimizer.step()
train_loss += loss.item()
if i % 50 == 0:
tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))
self.writer.add_scalar('train/total_loss_epoch', train_loss, epoch)
print('[Epoch: %d' % (epoch))
print('Loss: %.3f' % train_loss)
def validation(self, epoch):
self.model.eval()
for e in self.evaluator:
e.reset()
confidence_meter = []
for _ in range(self.args.C):
confidence_meter.append(AverageMeter())
tbar = tqdm(self.val_loader, desc='\r')
test_loss = 0.0
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if self.args.cuda:
image, target = image.cuda(), target.cuda()
with torch.no_grad():
outputs = self.model(image)
loss = []
for classifier_i in range(self.args.C):
loss.append(self.criterion(outputs[classifier_i], target))
loss = sum(loss)/(self.args.C)
test_loss += loss.item()
tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
target_show = target
prediction = []
""" Add batch sample into evaluator """
for classifier_i in range(self.args.C):
pred = torch.argmax(outputs[classifier_i], axis=1)
prediction.append(pred)
self.evaluator[classifier_i].add_batch(target, prediction[classifier_i])
confidence = normalized_shannon_entropy(outputs[classifier_i])
confidence_meter[classifier_i].update(confidence)
if epoch//100 == i:
global_step = epoch
self.summary.visualize_image(self.writer, self.args.dataset, image, target_show, outputs[-1], global_step)
mIoU = []
mean_confidence = []
for classifier_i, e in enumerate(self.evaluator):
mIoU.append(e.Mean_Intersection_over_Union())
self.writer.add_scalar('val/classifier_' + str(classifier_i) + '/mIoU', mIoU[classifier_i], epoch)
mean_confidence.append(confidence_meter[classifier_i].average())
self.writer.add_scalar('val/classifier_' + str(classifier_i) + '/confidence', mean_confidence[classifier_i], epoch)
print('Validation:')
print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.test_batch_size + image.data.shape[0]))
if self.args.C == 2:
print("classifier_1_mIoU:{}, classifier_2_mIoU: {}".format(mIoU[0], mIoU[1]))
print("classifier_1_confidence:{}, classifier_2_confidence: {}".format(mean_confidence[0], mean_confidence[1]))
elif self.args.C == 3:
print("classifier_1_mIoU:{}, classifier_2_mIoU:{}, classifier_3_mIoU:{}".format(mIoU[0], mIoU[1], mIoU[2]))
print("classifier_1_confidence:{}, classifier_2_confidence:{}, classifier_3_confidence:{}".format(mean_confidence[0], mean_confidence[1], mean_confidence[2]))
elif self.args.C ==4:
print("classifier_1_mIoU:{}, classifier_2_mIoU:{}, classifier_3_mIoU:{}, classifier_4_mIoU:{}".format(mIoU[0], mIoU[1], mIoU[2], mIoU[3]))
print("classifier_1_confidence:{}, classifier_2_confidence:{}, classifier_3_confidence:{}, classifier_4_confidence:{}".format(mean_confidence[0], mean_confidence[1], mean_confidence[2], mean_confidence[3]))
print('Loss: %.3f' % test_loss)
new_pred = sum(mIoU)/self.args.C
if new_pred > self.best_pred:
is_best = True
self.best_pred = new_pred
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
def mac(self):
self.model.eval()
with torch.no_grad():
flops, params = get_model_complexity_info(self.model, (3, 1025, 2049), as_strings=True, print_per_layer_stat=False)
print('{:<30} {:<8}'.format('Computational complexity: ', flops))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
def main():
parser = argparse.ArgumentParser(description="Dynamic DeepLab Training")
""" model setting """
parser.add_argument('--network', type=str, default='searched-dense', \
choices=['searched-dense', 'autodeeplab-baseline', 'autodeeplab-dense', 'autodeeplab'])
parser.add_argument('--F', type=int, default=20)
parser.add_argument('--B', type=int, default=5)
parser.add_argument('--C', type=int, default=3, help='num of classifiers')
""" dataset config"""
parser.add_argument('--dataset', type=str, default='cityscapes', choices=['pascal', 'coco', 'cityscapes'], help='dataset name (default: pascal)')
parser.add_argument('--workers', type=int, default=4, metavar='N', help='dataloader threads')
parser.add_argument('--dist', action='store_true', default=False)
parser.add_argument("--local_rank", type=int)
""" training config """
parser.add_argument('--use-amp', type=bool, default=True)
parser.add_argument('--opt-level', type=str, default='O0', choices=['O0', 'O1', 'O2', 'O3'], help='opt level for half percision training (default: O0)')
parser.add_argument('--sync-bn', type=bool, default=None, help='whether to use sync bn (default: auto)')
parser.add_argument('--epochs', type=int, default=2400, metavar='N')
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--batch-size', type=int, default=4, metavar='N')
parser.add_argument('--test-batch-size', type=int, default=1, metavar='N')
parser.add_argument('--use-balanced-weights', action='store_true', default=False)
""" optimizer params """
parser.add_argument('--lr', type=float, default=0.05, metavar='LR')
parser.add_argument('--min_lr', type=float, default=0)
parser.add_argument('--lr-scheduler', type=str, default='poly', choices=['poly', 'step', 'cos'])
parser.add_argument('--momentum', type=float, default=0.9, metavar='M')
parser.add_argument('--clean-module', type=int, default=0)
parser.add_argument('--weight-decay', type=float, default=4e-5, metavar='M', help='w-decay (default: 4e-5)')
parser.add_argument('--nesterov', action='store_true', default=False, help='whether use nesterov (default: False)')
""" cuda, seed and logging """
parser.add_argument('--no-cuda', action='store_true', default=False)
parser.add_argument('--gpu-ids', type=str, default='0,1', help='use which gpu to train, must be a comma-separated list of integers only (default=0)')
parser.add_argument('--seed', type=int, default=1, metavar='S')
""" checking point """
parser.add_argument('--resume', type=str, default=None, help='put the path to resuming file if needed')
parser.add_argument('--saved-arch-path', type=str, default='searched_arch/')
parser.add_argument('--checkname', type=str, default='c3_autodeeplab-dense')
""" finetuning pre-trained models """
parser.add_argument('--ft', action='store_true', default=False, help='finetuning on a different dataset')
""" evaluation option """
parser.add_argument('--eval-interval', type=int, default=100, help='evaluuation interval (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
if args.cuda and len(args.gpu_ids) > 1 and args.network != 'autodeeplab-baseline':
args.sync_bn = True
else:
args.sync_bn = False
if args.test_batch_size is None:
args.test_batch_size = 1
if args.checkname is None:
args.checkname = 'deeplab-'+str(args.network)
print(args)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
new_trainer = trainNew(args)
# new_trainer.mac()
print('Starting Epoch:', new_trainer.args.start_epoch)
print('Total Epoches:', new_trainer.args.epochs)
for epoch in range(new_trainer.args.start_epoch, new_trainer.args.epochs):
torch.cuda.empty_cache()
new_trainer.training(epoch)
if epoch % args.eval_interval == (args.eval_interval - 1) \
or epoch > new_trainer.args.epochs - 5:
new_trainer.validation(epoch)
new_trainer.writer.close()
if __name__ == "__main__":
main()