-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathrun_demo_server.py
executable file
·228 lines (175 loc) · 6.28 KB
/
run_demo_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python3
import os
import time
import datetime
import cv2
import numpy as np
import uuid
import json
import functools
import logging
import collections
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@functools.lru_cache(maxsize=1)
def get_host_info():
ret = {}
with open('/proc/cpuinfo') as f:
ret['cpuinfo'] = f.read()
with open('/proc/meminfo') as f:
ret['meminfo'] = f.read()
with open('/proc/loadavg') as f:
ret['loadavg'] = f.read()
return ret
@functools.lru_cache(maxsize=100)
def get_predictor(checkpoint_path):
logger.info('loading model')
import tensorflow as tf
import model
from icdar import restore_rectangle
import lanms
from eval import resize_image, sort_poly, detect
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
f_score, f_geometry = model.model(input_images, is_training=False)
variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)
saver = tf.train.Saver(variable_averages.variables_to_restore())
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
ckpt_state = tf.train.get_checkpoint_state(checkpoint_path)
model_path = os.path.join(checkpoint_path, os.path.basename(ckpt_state.model_checkpoint_path))
logger.info('Restore from {}'.format(model_path))
saver.restore(sess, model_path)
def predictor(img):
"""
:return: {
'text_lines': [
{
'score': ,
'x0': ,
'y0': ,
'x1': ,
...
'y3': ,
}
],
'rtparams': { # runtime parameters
'image_size': ,
'working_size': ,
},
'timing': {
'net': ,
'restore': ,
'nms': ,
'cpuinfo': ,
'meminfo': ,
'uptime': ,
}
}
"""
start_time = time.time()
rtparams = collections.OrderedDict()
rtparams['start_time'] = datetime.datetime.now().isoformat()
rtparams['image_size'] = '{}x{}'.format(img.shape[1], img.shape[0])
timer = collections.OrderedDict([
('net', 0),
('restore', 0),
('nms', 0)
])
im_resized, (ratio_h, ratio_w) = resize_image(img)
rtparams['working_size'] = '{}x{}'.format(
im_resized.shape[1], im_resized.shape[0])
start = time.time()
score, geometry = sess.run(
[f_score, f_geometry],
feed_dict={input_images: [im_resized[:,:,::-1]]})
timer['net'] = time.time() - start
boxes, timer = detect(score_map=score, geo_map=geometry, timer=timer)
logger.info('net {:.0f}ms, restore {:.0f}ms, nms {:.0f}ms'.format(
timer['net']*1000, timer['restore']*1000, timer['nms']*1000))
if boxes is not None:
scores = boxes[:,8].reshape(-1)
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
duration = time.time() - start_time
timer['overall'] = duration
logger.info('[timing] {}'.format(duration))
text_lines = []
if boxes is not None:
text_lines = []
for box, score in zip(boxes, scores):
box = sort_poly(box.astype(np.int32))
if np.linalg.norm(box[0] - box[1]) < 5 or np.linalg.norm(box[3]-box[0]) < 5:
continue
tl = collections.OrderedDict(zip(
['x0', 'y0', 'x1', 'y1', 'x2', 'y2', 'x3', 'y3'],
map(float, box.flatten())))
tl['score'] = float(score)
text_lines.append(tl)
ret = {
'text_lines': text_lines,
'rtparams': rtparams,
'timing': timer,
}
ret.update(get_host_info())
return ret
return predictor
### the webserver
from flask import Flask, request, render_template
import argparse
class Config:
SAVE_DIR = 'static/results'
config = Config()
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html', session_id='dummy_session_id')
def draw_illu(illu, rst):
for t in rst['text_lines']:
d = np.array([t['x0'], t['y0'], t['x1'], t['y1'], t['x2'],
t['y2'], t['x3'], t['y3']], dtype='int32')
d = d.reshape(-1, 2)
cv2.polylines(illu, [d], isClosed=True, color=(255, 255, 0))
return illu
def save_result(img, rst):
session_id = str(uuid.uuid1())
dirpath = os.path.join(config.SAVE_DIR, session_id)
os.makedirs(dirpath)
# save input image
output_path = os.path.join(dirpath, 'input.png')
cv2.imwrite(output_path, img)
# save illustration
output_path = os.path.join(dirpath, 'output.png')
cv2.imwrite(output_path, draw_illu(img.copy(), rst))
# save json data
output_path = os.path.join(dirpath, 'result.json')
with open(output_path, 'w') as f:
json.dump(rst, f)
rst['session_id'] = session_id
return rst
checkpoint_path = './east_icdar2015_resnet_v1_50_rbox'
@app.route('/', methods=['POST'])
def index_post():
global predictor
import io
bio = io.BytesIO()
request.files['image'].save(bio)
img = cv2.imdecode(np.frombuffer(bio.getvalue(), dtype='uint8'), 1)
rst = get_predictor(checkpoint_path)(img)
save_result(img, rst)
return render_template('index.html', session_id=rst['session_id'])
def main():
global checkpoint_path
parser = argparse.ArgumentParser()
parser.add_argument('--port', default=8769, type=int)
parser.add_argument('--checkpoint-path', default=checkpoint_path)
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
checkpoint_path = args.checkpoint_path
if not os.path.exists(args.checkpoint_path):
raise RuntimeError(
'Checkpoint `{}` not found'.format(args.checkpoint_path))
app.debug = args.debug
app.run('0.0.0.0', args.port)
if __name__ == '__main__':
main()