-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
35 lines (26 loc) · 943 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from flask import Flask,request,render_template
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from src.pipeline.predict_pipeline import CustomData,PredictPipeline
application=Flask(__name__)
app=application
## Route for a home page
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predictdata',methods=['GET','POST'])
def predict_datapoint():
if request.method=='GET':
return render_template('home.html')
else:
data=CustomData(
user_id=request.form.get('user_id'),
product_id=request.form.get('product_id')
)
pred_df=data.get_data_as_data_frame()
predict_pipeline=PredictPipeline()
results=predict_pipeline.predict(pred_df)
return render_template('home.html',results=results[0][0])
if __name__=="__main__":
app.run(host="0.0.0.0", port = 80)