-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodule.py
53 lines (48 loc) · 3.08 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
def mnistNetwork(in_img, num_cluster, name='mnistNetwork', reuse=False):
with tf.variable_scope(name, reuse=reuse):
# conv1
conv1 = tf.layers.conv2d(in_img, 64, [3,3], [1,1], padding='valid', activation=None, kernel_initializer=tf.keras.initializers.he_normal())
conv1 = tf.layers.batch_normalization(conv1, axis=-1, epsilon=1e-5, training=True, trainable=False)
conv1 = tf.nn.relu(conv1)
# conv2
conv2 = tf.layers.conv2d(conv1, 64, [3,3], [1,1], padding='valid', activation=None, kernel_initializer=tf.keras.initializers.he_normal())
conv2 = tf.layers.batch_normalization(conv2, axis=-1, epsilon=1e-5, training=True, trainable=False)
conv2 = tf.nn.relu(conv2)
# conv3
conv3 = tf.layers.conv2d(conv2, 64, [3,3], [1,1], padding='valid', activation=None, kernel_initializer=tf.keras.initializers.he_normal())
conv3 = tf.layers.batch_normalization(conv3, axis=-1, epsilon=1e-5, training=True, trainable=False)
conv3 = tf.nn.relu(conv3)
conv3 = tf.layers.max_pooling2d(conv3, [2,2], [2,2])
conv3 = tf.layers.batch_normalization(conv3, axis=-1, epsilon=1e-5, training=True, trainable=False)
# conv4
conv4 = tf.layers.conv2d(conv3, 128, [3,3], [1,1], padding='valid', activation=None, kernel_initializer=tf.keras.initializers.he_normal())
conv4 = tf.layers.batch_normalization(conv4, axis=-1, epsilon=1e-5, training=True, trainable=False)
conv4 = tf.nn.relu(conv4)
# conv5
conv5 = tf.layers.conv2d(conv4, 128, [3,3], [1,1], padding='valid', activation=None, kernel_initializer=tf.keras.initializers.he_normal())
conv5 = tf.layers.batch_normalization(conv5, axis=-1, epsilon=1e-5, training=True, trainable=False)
conv5 = tf.nn.relu(conv5)
# conv6
conv6 = tf.layers.conv2d(conv5, 128, [3,3], [1,1], padding='valid', activation=None, kernel_initializer=tf.keras.initializers.he_normal())
conv6 = tf.layers.batch_normalization(conv6, axis=-1, epsilon=1e-5, training=True, trainable=False)
conv6 = tf.nn.relu(conv6)
conv6 = tf.layers.max_pooling2d(conv6, [2,2], [2,2])
conv6 = tf.layers.batch_normalization(conv6, axis=-1, epsilon=1e-5, training=True, trainable=False)
# conv7
conv7 = tf.layers.conv2d(conv6, 10, [1,1], [1,1], padding='valid', activation=None, kernel_initializer=tf.keras.initializers.he_normal())
conv7 = tf.layers.batch_normalization(conv7, axis=-1, epsilon=1e-5, training=True, trainable=False)
conv7 = tf.nn.relu(conv7)
conv7 = tf.layers.average_pooling2d(conv7, [2,2], [2,2])
conv7 = tf.layers.batch_normalization(conv7, axis=-1, epsilon=1e-5, training=True, trainable=False)
conv7_flat = tf.layers.flatten(conv7)
# dense8
fc8 = tf.layers.dense(conv7_flat, 10, kernel_initializer=tf.initializers.identity())
fc8 = tf.layers.batch_normalization(fc8, axis=-1, epsilon=1e-5, training=True, trainable=False)
fc8 = tf.nn.relu(fc8)
# dense9
fc9 = tf.layers.dense(fc8, num_cluster, kernel_initializer=tf.initializers.identity())
fc9 = tf.layers.batch_normalization(fc9, axis=-1, epsilon=1e-5, training=True, trainable=False)
fc9 = tf.nn.relu(fc9)
out = tf.nn.softmax(fc9)
return out