-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
41 lines (36 loc) · 1.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from BaseDT.data import ImageData, TextData
from BaseDT.dataset import DataSet
from BaseDT.io import *
import matplotlib.pyplot as plt
from BaseDT.plot import imshow_det_bboxes
import numpy as np
# import mmcv
# #
# mmcv.imshow_bboxes()
if __name__ == "__main__":
# img = cv2.imread("D:\PythonProject\OpenDataLab-Edu\dataset\cat2.jpg")
# img = r"D:\PythonProject\OpenDataLab-Edu\dataset\cat2.jpg"
# data = ImageData(img, backbone = "MobileNet")
# # print(data.value.shape)
# # data.show()
# data = ImageData(img, size=(256, 256), crop_size=(224, 224), normalize=False)
# data = ImageData(img, crop_size=(224,224), size=(256, 256), normalize=False)
# data.show()
#imshow_det_bboxes(img, [[56,56,256,256,1],[16,16,156,156,1]],[0,1], ["cat","dog"], 0.5)
# print(data.value.shape)
# print(data.raw_value.shape)
# tensor_value = data.to_tensor()
#print(tensor_value)
# texts = {'city': 'Dubai', 'temperature': 33}
# # texts = ['<><\b>', 'This is the second second document.', 'And the third one.', 'Is this the first document?', ]
# data = TextData(texts, vectorize = True)
# print(data.value)
# mic = MicroPhone()
# plt.plot(mic.record_audio())
# plt.show()
ds = DataSet(r"C:\Users\76572\Desktop\my_dataset", "det")
ds.make_dataset(r"C:\Users\76572\Desktop\Rabbits_voc", src_format="voc")
# ds.move_files(r"C:\Users\76572\Desktop\Rabbits_voc\train", r"C:\Users\76572\Desktop\Rabbits_voc\annotations", '.xml')
# ds.check()
# ds.convert_data_to_coco_format(r"C:\Users\76572\Desktop\AILab\xedu\dataset\det\cats_and_dogs")
# ds.rename_files_in_coco(r"D:\PythonProject\OpenMMLab-Edu-main\dataset\det\Rabbits\annotations\valid.json", r"D:\PythonProject\OpenMMLab-Edu-main\dataset\det\Rabbits\images\val_set")