-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
70 lines (59 loc) · 3.03 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import math
import torch
import torch.nn as nn
from net_components import PointConv, DownSampling, UpSampling_Padzero, BitEstimator
class AE(nn.Module):
def __init__(self, n_layer,ratio):
super(AE, self).__init__()
self.enc_emb = PointConv(in_channel=3, out_channel=256, kernel_size=8, n_layers=2)
self.enc_dense_ls, self.enc_ds_ls = nn.ModuleList(),nn.ModuleList()
for i in range(n_layer):
self.enc_dense_ls.append(PointConv(in_channel=256, out_channel=256, kernel_size=8, n_layers=4))
self.enc_ds_ls.append(DownSampling(ratio=ratio))
self.enc_comp = PointConv(in_channel=256, out_channel=256, kernel_size=8, n_layers=2)
self.dec_decomp = PointConv(in_channel=256, out_channel=256, kernel_size=8, n_layers=2)
self.dec_dense_ls, self.dec_us_ls = nn.ModuleList(),nn.ModuleList()
for i in range(n_layer):
self.dec_us_ls.append(UpSampling_Padzero())
self.dec_dense_ls.append(PointConv(in_channel=256, out_channel=256, kernel_size=8, n_layers=4))
self.dec_emb = PointConv(in_channel=256, out_channel=3, kernel_size=8, n_layers=2)
self.be = BitEstimator(channel=256)
self.n_layer = n_layer
def forward(self, batch_x):
#Encoder
xyz, feature = batch_x[:, :, :3], batch_x[:, :, 3:]
xyz, feature = xyz.transpose(1, 2), feature.transpose(1, 2)
feature = self.enc_emb(xyz, feature)
xyz_ls = [xyz]
for i in range(self.n_layer):
feature = self.enc_dense_ls[i](xyz, feature)
xyz, feature = self.enc_ds_ls[i](xyz, feature)
xyz_ls.append(xyz)
feature = self.enc_comp(xyz, feature)
#Quantize
if self.training:
quantizated_feature = feature + torch.nn.init.uniform_(torch.zeros(feature.size()), -0.5, 0.5).cuda()
else:
quantizated_feature = torch.round(feature)
feature = quantizated_feature
#Decder
feature = self.dec_decomp(xyz, feature)
for i in range(self.n_layer):
xyz, feature = self.dec_us_ls[i](xyz, feature, xyz_ls[-2-i])
feature = self.dec_dense_ls[i](xyz, feature)
feature = self.dec_emb(xyz, feature)
#Get output
quantizated_feature = quantizated_feature.transpose(1, 2).reshape(-1, 256)
prob = self.be(quantizated_feature + 0.5) - self.be(quantizated_feature - 0.5)
total_bits = torch.sum(torch.clamp(-1.0 * torch.log(prob + 1e-10) / math.log(2.0), 0, 50))
xyz, feature = xyz.transpose(1, 2), feature.transpose(1, 2)
new_batch_x = torch.cat((xyz, feature), dim=-1)
return new_batch_x, quantizated_feature, total_bits
def get_pmf(self, device='cuda'):
self.d = 256
L = 99
pmf = torch.zeros(1, self.d, L*2).to(device)
for l in range(-L, L):
z = torch.ones((1, self.d)).to(device) * l
pmf[0, :, l+L] = (self.be(z + 0.5) - self.be(z - 0.5))[0, :]
return pmf