-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
162 lines (126 loc) · 6.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
from glob import glob
import numpy as np
from tqdm import tqdm
import torchac
import subprocess
import torch
import time
import shutil
from utils import *
import argparse
def parse_test_args():
parser = argparse.ArgumentParser(description='Training Arguments')
parser.add_argument('--compressed_dir', type=str , default='./Compressed')
parser.add_argument('--decompressed_dir', type=str , default='./Decompressed')
parser.add_argument('--record_pth', type=str , default='./record.txt')
parser.add_argument('--cubes_dir', type=str , default='./temp_cubes')
parser.add_argument('--merge_dir', type=str , default='./PredData')
parser.add_argument('--test_pc_dir', type=str , default='/mnt/ssd/test_pc')
parser.add_argument('--model_save_dir', type=str , default='./model')
parser.add_argument('--pc_error_pth', type=str , default='./pc_error.exe')
args = parser.parse_args()
return args
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
args = parse_test_args()
printl = CPrintl(args.record_pth)
pc_name='Area_2'
pc_path = f'/mnt/ssd/lk/{pc_name}.ply'
merge_path =f'./PredData/{pc_name}_rec.ply'
model_list = os.listdir(args.model_save_dir)
for test_model in model_list:
shutil.rmtree(args.cubes_dir)
shutil.rmtree(args.compressed_dir)
shutil.rmtree(args.decompressed_dir)
model_save_path = f'./model/{test_model}.pt'
if not os.path.exists(args.cubes_dir): os.mkdir(args.cubes_dir)
if not os.path.exists(args.compressed_dir): os.mkdir(args.compressed_dir)
if not os.path.exists(args.decompressed_dir): os.mkdir(args.decompressed_dir)
if not os.path.exists(args.record_pth): os.mknod(args.record_pth)
#load pretrain model
from net import AE
ae = AE(n_layer=2,ratio=4)
ae.load_state_dict(torch.load(model_save_path))
ae = ae.cuda().eval()
cdf = pmf_to_cdf(ae.get_pmf('cuda')).cpu()
#divide into cubes
divide(pc_path,args.cubes_dir,points_num=2048)
cube_list = glob('./temp_cubes/*.ply')
with torch.no_grad():
total_encode_time = 0
total_decode_time = 0
for f in tqdm(cube_list,total=len(cube_list)):
pc = read_point_cloud(f)
pc = torch.Tensor(pc).cuda().unsqueeze(0)
fname = os.path.split(f)[-1]
comp_name = args.compressed_dir + f'{fname}.bin'
decomp_name = args.decompressed_dir + f'{fname}.bin.ply'
#compress
start_time= time.time()
xyz,feature = pc[:,:,:3].transpose(1,2),pc[:,:,3:].transpose(1,2)
feature = ae.enc_emb(xyz,feature)
xyz_ls = [xyz]
for i in range(ae.n_layer):
feature = ae.enc_dense_ls[i](xyz, feature)
xyz, feature = ae.enc_ds_ls[i](xyz, feature)
xyz_ls.append(xyz)
feature = ae.enc_comp(xyz, feature)
quantizated_feature = torch.round(feature)
quantizated_feature = quantizated_feature.transpose(1, 2).reshape(-1, 256)
quantizated_feature = quantizated_feature.to(torch.int16) + 99
byte_stream = torchac.encode_float_cdf(cdf.repeat((quantizated_feature.shape[0], 1, 1)).cpu(), quantizated_feature.cpu(), check_input_bounds=True)
with open(comp_name, 'wb') as fout:
fout.write(byte_stream)
encode_patch_time = time.time() - start_time
total_encode_time = total_encode_time + encode_patch_time
quantizated_feature = torchac.decode_float_cdf(cdf.repeat((quantizated_feature.shape[0], 1, 1)).cpu(), byte_stream)
feature = quantizated_feature.float() - 99
feature = feature.unsqueeze(0).transpose(1,2).cuda()
#decompress
start_time= time.time()
feature = ae.dec_decomp(xyz, feature)
for i in range(ae.n_layer):
xyz, feature = ae.dec_us_ls[i](xyz, feature, xyz_ls[-2-i])
feature = ae.dec_dense_ls[i](xyz, feature)
feature = ae.dec_emb(xyz, feature).transpose(1,2)
pred_pc = torch.cat((xyz.transpose(1,2), feature), dim=-1)
decode_patch_time = time.time() - start_time
total_decode_time = total_decode_time + decode_patch_time
save_point_cloud(pred_pc.squeeze(0).detach().cpu().numpy(), decomp_name, save_color=True)
#merge cubes
N= read_point_cloud(pc_path).shape[0]
files = np.array(glob('./Decompressed/*.ply', recursive=True))
pc_ls = []
for i in range(len(files)):
f = args.decompressed_dir +f'/{i}.ply.bin.ply'
pc = read_point_cloud(f)
pc_ls.append(pc)
pc = np.vstack(pc_ls)
save_point_cloud(pc[:N,:], merge_path, save_color=True)
#cal bpp
total_bits = 0
filelist = glob(args.compressed_dir+'/*.bin', recursive=True)
for f in filelist:
bits = os.stat(f).st_size * 8
total_bits = total_bits + bits
color_bpp = total_bits / N
#cal psnr
cmd = f'wine {args.pc_error_pth} -a {merge_path} -b {pc_path} -c'
output = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT)
p2p_psnr = float(str(output).split('mseF,PSNR (p2point):')[1].split('\\r')[0]) #inf
y_psnr = float(str(output).split('c[0],PSNRF :')[1].split('\\r')[0])
cb_psnr = float(str(output).split('c[1],PSNRF :')[1].split('\\r')[0])
cr_psnr = float(str(output).split('c[2],PSNRF :')[1].split('\\r')[0])
y_psnr, cb_psnr, cr_psnr = min(y_psnr, 100), min(cb_psnr, 100), min(cr_psnr, 100)
yuv_psnr = (y_psnr + cb_psnr + cr_psnr)/3
printl(f'Name: {pc_name}\
| Model: {test_model} \
| p2pointPSNR: {p2p_psnr} \
| bpp: {color_bpp} \
| YPSNR: {y_psnr} \
| CbPSNR: {cb_psnr} \
| CrPSNR: {cr_psnr}\
| YUVPSNR: {yuv_psnr}\
| Encoding time: {total_encode_time}\
| Decoding time: {total_decode_time} ')