-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanemoi.sage
793 lines (683 loc) · 27.1 KB
/
anemoi.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
from sage.all import *
import hashlib
import itertools
from constants import *
COST_ALPHA = {
3 : 2, 5 : 3, 7 : 4, 9 : 4,
11 : 5, 13 : 5, 15 : 5, 17 : 5,
19 : 6, 21 : 6, 23 : 6, 25 : 6,
27 : 6, 29 : 7, 31 : 7, 33 : 6,
35 : 7, 37 : 7, 39 : 7, 41 : 7,
43 : 7, 45 : 7, 47 : 8, 49 : 7,
51 : 7, 53 : 8, 55 : 8, 57 : 8,
59 : 8, 61 : 8, 63 : 8, 65 : 7,
67 : 8, 69 : 8, 71 : 9, 73 : 8,
75 : 8, 77 : 8, 79 : 9, 81 : 8,
83 : 8, 85 : 8, 87 : 9, 89 : 9,
91 : 9, 93 : 9, 95 : 9, 97 : 8,
99 : 8, 101 : 9, 103 : 9, 105 : 9,
107 : 9, 109 : 9, 111 : 9, 113 : 9,
115 : 9, 117 : 9, 119 : 9, 121 : 9,
123 : 9, 125 : 9, 127 : 10,
}
ALPHA_BY_COST = {
c : [x for x in range(3, 128, 2) if COST_ALPHA[x] == c]
for c in range(2, 11)
}
PI_0 = 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
PI_1 = 8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196
def get_prime(N):
"""Returns the highest prime number that is strictly smaller than
2**N.
"""
result = (1 << N) - 1
while not is_prime(result):
result -= 2
return result
def get_n_rounds(s, l, alpha):
"""Returns the number of rounds needed in Anemoi (based on the
complexity of algebraic attacks).
"""
r = 0
complexity = 0
kappa = {3:1, 5:2, 7:4, 9:7, 11:9}
assert alpha in kappa
while complexity < 2**s:
r += 1
complexity = binomial(
4*l*r + kappa[alpha],
2*l*r
)**2
r += 2 # considering the second model
r += min(5,l+1) # security margin
return max(8, r)
# Linear layer generation
def is_mds(m):
# Uses the Laplace expansion of the determinant to calculate the (m+1)x(m+1) minors in terms of the mxm minors.
# Taken from https://github.com/mir-protocol/hash-constants/blob/master/mds_search.sage.
# 1-minors are just the elements themselves
if any(any(r == 0 for r in row) for row in m):
return False
N = m.nrows()
assert m.is_square() and N >= 2
det_cache = m
# Calculate all the nxn minors of m:
for n in range(2, N+1):
new_det_cache = dict()
for rows in itertools.combinations(range(N), n):
for cols in itertools.combinations(range(N), n):
i, *rs = rows
# Laplace expansion along row i
det = 0
for j in range(n):
# pick out c = column j; the remaining columns are in cs
c = cols[j]
cs = cols[:j] + cols[j+1:]
# Look up the determinant from the previous iteration
# and multiply by -1 if j is odd
cofactor = det_cache[(*rs, *cs)]
if j % 2 == 1:
cofactor = -cofactor
# update the determinant with the j-th term
det += m[i, c] * cofactor
if det == 0:
return False
new_det_cache[(*rows, *cols)] = det
det_cache = new_det_cache
return True
def M_2(x_input, b):
"""Fast matrix-vector multiplication algorithm for Anemoi MDS layer with \\ell = 1,2."""
x = x_input[:]
x[0] += b*x[1]
x[1] += b*x[0]
return x
def M_3(x_input, b):
"""Fast matrix-vector multiplication algorithm for Anemoi MDS layer with \\ell = 3.
From Figure 6 of [DL18](https://tosc.iacr.org/index.php/ToSC/article/view/888)."""
x = x_input[:]
t = x[0] + b*x[2]
x[2] += x[1]
x[2] += b*x[0]
x[0] = t + x[2]
x[1] += t
return x
def M_4(x_input, b):
"""Fast matrix-vector multiplication algorithm for Anemoi MDS layer with \\ell = 4.
Figure 8 of [DL18](https://tosc.iacr.org/index.php/ToSC/article/view/888)."""
x = x_input[:]
x[0] += x[1]
x[2] += x[3]
x[3] += b*x[0]
x[1] = b*(x[1] + x[2])
x[0] += x[1]
x[2] += b*x[3]
x[1] += x[2]
x[3] += x[0]
return x
def lfsr(x_input, b):
x = x_input[:]
l = len(x)
for r in range(0, l):
t = sum(b**(2**i) * x[i] for i in range(0, l))
x = x[1:] + [t]
return x
def circulant_mds_matrix(field, l, coeff_upper_limit=None):
if coeff_upper_limit == None:
coeff_upper_limit = l+1
assert(coeff_upper_limit > l)
for v in itertools.combinations_with_replacement(range(1,coeff_upper_limit), l):
mat = matrix.circulant(list(v)).change_ring(field)
if is_mds(mat):
return(mat)
# In some cases, the method won't return any valid matrix,
# hence the need to increase the limit further.
return circulant_mds_matrix(field, l, coeff_upper_limit+1)
def get_mds(field, l):
if l == 1:
return identity_matrix(field, 1)
if l <= 4: # low addition case
a = field.multiplicative_generator()
b = field.one()
t = 0
while True:
# we construct the matrix
mat = []
b = b*a
t += 1
for i in range(0, l):
x_i = [field.one() * (j == i) for j in range(0, l)]
if l == 2:
mat.append(M_2(x_i, b))
elif l == 3:
mat.append(M_3(x_i, b))
elif l == 4:
mat.append(M_4(x_i, b))
mat = Matrix(field, l, l, mat).transpose()
if is_mds(mat):
return mat
else: # circulant matrix case
return circulant_mds_matrix(field, l)
# AnemoiPermutation class
class AnemoiPermutation:
def __init__(self,
q=None,
alpha=None,
mat=None,
n_rounds=None,
n_cols=1,
security_level=128,
QUAD=None):
if q == None:
raise Exception("The characteristic of the field must be specified!")
self.q = q
self.prime_field = is_prime(q) # if true then we work over a
# prime field with
# characteristic just under
# 2**N, otherwise the
# characteristic is 2**self
self.n_cols = n_cols # the number of parallel S-boxes in each round
self.security_level = security_level
# initializing the other variables in the state:
# - q is the characteristic of the field
# - g is a generator of the multiplicative subgroup
# - alpha is the main exponent (in the center of the Flystel)
# - beta is the coefficient in the quadratic subfunction
# - gamma is the constant in the second quadratic subfunction
# - QUAD is the secondary (quadratic) exponent
# - from_field is a function mapping field elements to integers
# - to_field is a function mapping integers to field elements
self.F = GF(self.q)
if self.prime_field:
if alpha != None:
if gcd(alpha, self.q-1) != 1:
raise Exception("alpha should be co-prime with the characteristic!")
else:
self.alpha = alpha
else:
self.alpha = 3
while gcd(self.alpha, self.q-1) != 1:
self.alpha += 1
if QUAD is None:
self.QUAD = 2
else:
self.QUAD = QUAD
self.to_field = lambda x : self.F(x)
self.from_field = lambda x : Integer(x)
else:
self.alpha = 3
if QUAD is None:
self.QUAD = 3
else:
self.QUAD = QUAD
self.to_field = lambda x : self.F.fetch_int(x)
self.from_field = lambda x : x.integer_representation()
self.g = self.F.multiplicative_generator()
self.beta = self.g
self.delta = self.g**(-1)
self.alpha_inv = inverse_mod(self.alpha, self.q-1)
# total number of rounds
if n_rounds != None:
self.n_rounds = n_rounds
else:
self.n_rounds = get_n_rounds(self.security_level,
self.n_cols,
self.alpha)
# Choosing constants: self.C and self.D are built from the
# digits of pi using an open butterfly
self.C = []
self.D = []
pi_F_0 = self.to_field(PI_0 % self.q)
pi_F_1 = self.to_field(PI_1 % self.q)
for r in range(0, self.n_rounds):
pi_0_r = pi_F_0**r
self.C.append([])
self.D.append([])
for i in range(0, self.n_cols):
pi_1_i = pi_F_1**i
pow_alpha = (pi_0_r + pi_1_i)**self.alpha
self.C[r].append(self.g * (pi_0_r)**2 + pow_alpha)
self.D[r].append(self.g * (pi_1_i)**2 + pow_alpha + self.delta)
self.mat = get_mds(self.F, self.n_cols)
self.inv_mat = self.mat.inverse()
def __str__(self):
result = "Anemoi instance over F_{:d} ({}), n_rounds={:d}, n_cols={:d}, s={:d}".format(
self.q,
"odd prime field" if self.prime_field else "characteristic 2",
self.n_rounds,
self.n_cols,
self.security_level
)
result += "\nalpha={}, beta={}, \\delta={}\nM_x=\n{}\n".format(
self.alpha,
self.beta,
self.delta,
self.mat
)
result += "C={}\nD={}".format(
[[self.from_field(x) for x in self.C[r]] for r in range(0, self.n_rounds)],
[[self.from_field(x) for x in self.D[r]] for r in range(0, self.n_rounds)],
)
return result
# !SECTION! Sub-components
def evaluate_sbox(self, _x, _y):
"""Applies an open Flystel to the full state. """
x, y = _x, _y
x -= self.beta*y**self.QUAD
y -= x**self.alpha_inv
x += self.beta*y**self.QUAD + self.delta
return x, y
def linear_layer(self, _x, _y):
x, y = _x[:], _y[:]
x = self.mat*vector(x)
y = self.mat*vector(y[1:] + [y[0]])
# Pseudo-Hadamard transform on each (x,y) pair
y += x
x += y
return list(x), list(y)
def inv_linear_layer(self, _x, _y):
x, y = vector(_x[:]), vector(_y[:])
# Undo Pseudo-Hadamard transform on each (x,y) pair
x -= y
y -= x
# Multiply with inverse matrix
x = self.inv_mat*vector(x)
y = self.inv_mat*vector(y)
x, y = list(x), list(y)
y = y[1:] + [y[0]]
return x, y
# !SECTION! Evaluation
def eval_with_intermediate_values(self, _x, _y):
"""Returns a list of vectors x_i and y_i such that [x_i, y_i] is the
internal state of Anemoi at the end of round i.
The output is of length self.n_rounds+2 since it also returns
the input values, and since there is a last degenerate round
consisting only in a linear layer.
"""
x, y = _x[:], _y[:]
result = [[x[:], y[:]]]
for r in range(0, self.n_rounds):
for i in range(0, self.n_cols):
x[i] += self.C[r][i]
y[i] += self.D[r][i]
x, y = self.linear_layer(x, y)
for i in range(0, self.n_cols):
x[i], y[i] = self.evaluate_sbox(x[i], y[i])
result.append([x[:], y[:]])
# final call to the linear layer
x, y = self.linear_layer(x, y)
result.append([x[:], y[:]])
return result
def input_size(self):
return 2*self.n_cols
def __call__(self, _x):
if len(_x) != self.input_size():
raise Exception("wrong input size!")
else:
x, y = _x[:self.n_cols], _x[self.n_cols:]
u, v = self.eval_with_intermediate_values(x, y)[-1]
return u + v # concatenation, not a sum
# !SECTION! Writing full system of equations
def get_polynomial_variables(self):
"""Returns polynomial variables from the appropriate multivariate
polynomial ring to work with this Anemoi instance.
"""
x_vars = []
y_vars = []
all_vars = []
for r in range(0, self.n_rounds+1):
x_vars.append(["X{:02d}{:02d}".format(r, i) for i in range(0, self.n_cols)])
y_vars.append(["Y{:02d}{:02d}".format(r, i) for i in range(0, self.n_cols)])
all_vars += x_vars[-1]
all_vars += y_vars[-1]
pol_ring = PolynomialRing(self.F, (self.n_rounds+1)*2*self.n_cols, all_vars)
pol_gens = pol_ring.gens()
result = {"X" : [], "Y" : []}
for r in range(0, self.n_rounds+1):
result["X"].append([])
result["Y"].append([])
for i in range(0, self.n_cols):
result["X"][r].append(pol_gens[self.n_cols*2*r + i])
result["Y"][r].append(pol_gens[self.n_cols*2*r + i + self.n_cols])
return result
def verification_polynomials(self, pol_vars):
"""Returns the list of all the equations that all the intermediate
values must satisfy. It implicitely relies on the open Flystel
function."""
equations = []
for r in range(0, self.n_rounds):
# the outputs of the open flystel are the state variables x, y at round r+1
u = pol_vars["X"][r+1]
v = pol_vars["Y"][r+1]
# the inputs of the open flystel are the state variables
# x, y at round r after undergoing the constant addition
# and the linear layer
x, y = pol_vars["X"][r], pol_vars["Y"][r]
x = [x[i] + self.C[r][i] for i in range(0, self.n_cols)]
y = [y[i] + self.D[r][i] for i in range(0, self.n_cols)]
x, y = self.linear_layer(x, y)
for i in range(0, self.n_cols):
equations.append(
(y[i]-v[i])**self.alpha + self.beta*y[i]**self.QUAD - x[i]
)
equations.append(
(y[i]-v[i])**self.alpha + self.beta*v[i]**self.QUAD + self.delta - u[i]
)
return equations
def print_verification_polynomials(self):
"""Simply prints the equations modeling a full call to this
AnemoiPermutation instance in a user (and computer) readable
format.
The first lines contains a comma separated list of all the
variables, and the second contains the field size. The
following ones contain the equations. This format is intended
for use with Magma.
"""
p_vars = self.get_polynomial_variables()
eqs = self.verification_polynomials(p_vars)
variables_string = ""
for r in range(0, self.n_rounds+1):
variables_string += str(p_vars["X"][r])[1:-1] + "," + str(p_vars["Y"][r])[1:-1] + ","
print(variables_string[:-1].replace(" ", ""))
print(self.q)
for f in eqs:
print(f)
# !SECTION! Modes of operation
def jive(P, b, _x):
"""Returns an output b times smaller than _x using the Jive mode of
operation and the permutation P.
"""
if b < 2:
raise Exception("b must be at least equal to 2")
if P.input_size() % b != 0:
raise Exception("b must divide the input size!")
c = P.input_size()/b # length of the compressed output
# Output size check: we allow the output size to be 3 bits shorter than
# the theoretical target, as commonly used finite fields usually have a
# characteristic size slightly under 2**256.
if c * P.F.cardinality().nbits() < 2 * P.security_level - 3:
raise Exception(f"digest size is too small for the targeted security level!")
x = _x[:]
u = P(x)
compressed = []
for i in range(0, c):
compressed.append(sum(x[i+c*j] + u[i+c*j]
for j in range(0, b)))
return compressed
def sponge_hash(P, r, h, _x):
"""Uses Hirose's variant of the sponge construction to hash the
message x using the permutation P with rate r, outputting a digest
of size h.
"""
x = _x[:]
if P.input_size() <= r:
raise Exception("rate must be strictly smaller than state size!")
# Digest size and capacity check: we allow the digest size to be 3 bits
# shorter than the theoretical target, as commonly used finite fields
# usually have a characteristic size slightly under 2**256.
if h * P.F.cardinality().nbits() < 2 * P.security_level - 3:
raise Exception(f"digest size is too small for the targeted security level!")
capacity = P.input_size() - r
if capacity * P.F.cardinality().nbits() < 2 * P.security_level - 3:
raise Exception(f"capacity is too small for the targeted security level!")
# message padding (and domain separator computation)
if len(x) % r == 0 and len(x) != 0:
sigma = 1
else:
sigma = 0
x += [1]
# if x is still not long enough, append 0s
if len(x) % r != 0:
x += (r - (len(x) % r))*[0]
padded_x = [[x[pos+i] for i in range(0, r)]
for pos in range(0, len(x), r)]
# absorption phase
internal_state = [0] * P.input_size()
for pos in range(0, len(padded_x)):
for i in range(0, r):
internal_state[i] += padded_x[pos][i]
internal_state = P(internal_state)
if pos == len(padded_x)-1:
# adding sigma if it is the last block
internal_state[-1] += sigma
# squeezing
digest = []
pos = 0
while len(digest) < h:
digest.append(internal_state[pos])
pos += 1
if pos == r:
pos = 0
internal_state = P(internal_state)
return digest
# !SECTION! Tests
def check_polynomial_verification(n_tests=10, q=2**63, alpha=3, n_rounds=3, n_cols=1):
"""Let `A` be an AnemoiPermutation instance with the parameters input to this function.
It cerifies that the internal state values generated by
A.eval_with_intermediate_state() are indeed roots of the equations
generated by A.verification_polynomials(). This is repeated on
n_tests random inputs.
"""
A = AnemoiPermutation(q=q, alpha=alpha, n_rounds=n_rounds, n_cols=n_cols)
# formal polynomial variables and equations
p_vars = A.get_polynomial_variables()
eqs = A.verification_polynomials(p_vars)
A.print_verification_polynomials()
# for n_tests random inputs, we check that the equations are
# coherent with the actual intermediate values
print("\n ======== Verification:")
print(A)
print("{} equations in {} variables.".format(
len(eqs),
(A.n_rounds+1) * 2 * A.n_cols,
))
for t in range(0, n_tests):
# generate random input
x = [A.to_field(randint(0, A.q - 1))
for i in range(0, A.n_cols)]
y = [A.to_field(randint(0, A.q - 1))
for i in range(0, A.n_cols)]
# generate intermediate values, formal polynomial variables,
# and equations
iv = A.eval_with_intermediate_values(x, y)
p_vars = A.get_polynomial_variables()
eqs = A.verification_polynomials(p_vars)
# obtain variable assignment from the actual evaluation
assignment = {}
for r in range(0, A.n_rounds+1):
for i in range(0, A.n_cols):
assignment[p_vars["X"][r][i]] = iv[r][0][i]
assignment[p_vars["Y"][r][i]] = iv[r][1][i]
# printing the value of the equations for the actual
# intermediate states
print("\n--- ", t, "(all values except the input should be 0)")
print("input: ", x, y)
for r in range(0, A.n_rounds):
polynomial_values = [eqs[r*2*A.n_cols + i].subs(assignment)
for i in range(0, 2*A.n_cols)]
print("round {:3d}: {}\n {}".format(
r,
polynomial_values[0::2],
polynomial_values[1::2]
))
def test_jive(n_tests=10,
q=2**63, alpha=3,
n_rounds=None,
n_cols=1,
b=2,
security_level=32):
"""Let `A` be and AnemoiPermutation instance with the parameters input
to this function.
This function evaluates Jive_b on random inputs using `A` as its
permutation.
"""
A = AnemoiPermutation(q=q, alpha=alpha, n_rounds=n_rounds, n_cols=n_cols, security_level=security_level)
print(A)
for t in range(0, n_tests):
# generate random input
x = [A.to_field(randint(0, A.q - 1))
for i in range(0, A.n_cols)]
y = [A.to_field(randint(0, A.q - 1))
for i in range(0, A.n_cols)]
print("x = {}\ny = {}\nAnemoiJive_{}(x,y) = {}".format(
x,
y,
b,
jive(A, b, x + y)
))
def test_sponge(n_tests=10,
q=2**63,
alpha=3,
n_rounds=None,
n_cols=1,
b=2,
security_level=32):
"""Let `A` be an AnemoiPermutation instance with the parameters input
to this function.
This function evaluates sponge on random inputs using `A` as its
permutation, and a rate of A.input_size()-1 (so, a capacity of 1),
and generates a 2 word output.
"""
A = AnemoiPermutation(q=q, alpha=alpha, n_rounds=n_rounds, n_cols=n_cols, security_level=security_level)
print(A)
for t in range(0, n_tests):
# generate random input of length t
x = [A.to_field(randint(0, A.q - 1))
for i in range(0, t)]
print("x = {}\nAnemoiSponge(x) = {}".format(
x,
sponge_hash(A, 2, 2, x)
))
def generate_test_vectors_jive(P, b, n):
"""
Outputs `n` deterministic test vectors for the provided AnemoiPermutation
`P` with compression factor `b`.
"""
assert n >= 4, "The number of test vectors should be greater than 4."
m = hashlib.sha512(str(P).encode())
m.update("Jive test vectors".encode())
m.update(f"B={b}".encode())
seed = Integer(m.digest().hex(), 16)
inputs = []
outputs = []
inputs.append([P.F(0) for _ in range(P.input_size())])
inputs.append([P.F(1) for _ in range(P.input_size())])
inputs.append([P.F(0) for _ in range(P.n_cols)] + [P.F(1) for _ in range(P.n_cols)])
inputs.append([P.F(1) for _ in range(P.n_cols)] + [P.F(0) for _ in range(P.n_cols)])
for i in range(n - 4):
input = []
for _ in range(P.input_size()):
input.append(P.to_field(seed))
m.update(str(seed).encode())
seed = Integer(m.digest().hex(), 16)
inputs.append(input)
for input in inputs:
outputs.append(jive(P, b, input))
print(
"Test vectors for Anemoi instance over F_{:d}, n_rounds={:d}, n_cols={:d}, s={:d}".format(
P.q,
P.n_rounds,
P.n_cols,
P.security_level)
)
return (inputs, outputs)
def generate_test_vectors_sponge(P, r, h, n):
"""
Outputs `n` deterministic test vectors for the provided AnemoiPermutation
`P` with rate `r` and digest size `h`.
"""
assert n >= 4, "The number of test vectors should be greater than 4."
m = hashlib.sha512(str(P).encode())
m.update("Sponge test vectors".encode())
m.update(f"R={r}".encode())
m.update(f"H={h}".encode())
seed = Integer(m.digest().hex(), 16)
inputs = []
outputs = []
inputs.append([P.F(0) for _ in range(P.input_size())])
inputs.append([P.F(1) for _ in range(P.input_size())])
inputs.append([P.F(0) for _ in range(P.n_cols)] + [P.F(1) for _ in range(P.n_cols)])
inputs.append([P.F(1) for _ in range(P.n_cols)] + [P.F(0) for _ in range(P.n_cols)])
for i in range(n - 4):
input = []
for _ in range(i+1):
input.append(P.to_field(seed))
m.update(str(seed).encode())
seed = Integer(m.digest().hex(), 16)
inputs.append(input)
for input in inputs:
outputs.append(sponge_hash(P, r, h, input))
print(
"Test vectors for Anemoi instance over F_{:d}, n_rounds={:d}, n_cols={:d}, s={:d}".format(
P.q,
P.n_rounds,
P.n_cols,
P.security_level)
)
return (inputs, outputs)
def generate_test_vectors_sbox(P, n):
"""
Outputs `n` deterministic test vectors for the provided AnemoiPermutation
`P` with rate `r`, digest size `h` and.
"""
assert n >= 4, "The number of test vectors should be greater than 4."
m = hashlib.sha512(str(P).encode())
m.update("S-Box test vectors".encode())
seed = Integer(m.digest().hex(), 16)
inputs = []
outputs = []
inputs.append([P.F(0) for _ in range(P.input_size())])
inputs.append([P.F(1) for _ in range(P.input_size())])
inputs.append([P.F(0) for _ in range(P.n_cols)] + [P.F(1) for _ in range(P.n_cols)])
inputs.append([P.F(1) for _ in range(P.n_cols)] + [P.F(0) for _ in range(P.n_cols)])
for _ in range(n - 4):
input = []
for _ in range(P.input_size()):
input.append(P.to_field(seed))
m.update(str(seed).encode())
seed = Integer(m.digest().hex(), 16)
inputs.append(input)
for input in inputs:
x = [0 for i in range(P.n_cols)]
y = [0 for i in range(P.n_cols)]
for i in range(P.n_cols):
x[i], y[i] = P.evaluate_sbox(input[i], input[P.n_cols + i])
x.extend(y)
outputs.append(x)
return (inputs, outputs)
def generate_test_vectors_mds(P, n):
"""
Outputs `n` deterministic test vectors for the provided AnemoiPermutation
`P` with rate `r`, digest size `h` and.
"""
assert n >= 4, "The number of test vectors should be greater than 4."
m = hashlib.sha512(str(P).encode())
m.update("MDS test vectors".encode())
seed = Integer(m.digest().hex(), 16)
inputs = []
outputs = []
inputs.append([P.F(0) for _ in range(P.input_size())])
inputs.append([P.F(1) for _ in range(P.input_size())])
inputs.append([P.F(0) for _ in range(P.n_cols)] + [P.F(1) for _ in range(P.n_cols)])
inputs.append([P.F(1) for _ in range(P.n_cols)] + [P.F(0) for _ in range(P.n_cols)])
for _ in range(n - 4):
input = []
for _ in range(P.input_size()):
input.append(P.to_field(seed))
m.update(str(seed).encode())
seed = Integer(m.digest().hex(), 16)
inputs.append(input)
for input in inputs:
x,y = P.linear_layer(input[0:P.n_cols], input[P.n_cols:])
x.extend(y)
outputs.append(x)
return (inputs, outputs)
if __name__ == "__main__":
# These are the first circulant matrices being found by the circulant_mds_matrix()
# method above. These are precomputed for faster initiatialization of large Anemoi
# instances.
CIRCULANT_FP5_MDS_MATRIX = matrix.circulant([1, 1, 3, 4, 5])
CIRCULANT_FP6_MDS_MATRIX = matrix.circulant([1, 1, 3, 4, 5, 6])
CIRCULANT_FP7_MDS_MATRIX = matrix.circulant([1, 2, 3, 5, 5, 6, 7])
CIRCULANT_FP8_MDS_MATRIX = matrix.circulant([1, 2, 3, 5, 7, 8, 8, 9])
CIRCULANT_FP9_MDS_MATRIX = matrix.circulant([1, 3, 5, 6, 8, 9, 9, 10, 11])
CIRCULANT_FP10_MDS_MATRIX = matrix.circulant([1, 2, 5, 6, 8, 11, 11, 12, 13, 14])