diff --git a/docs/notebooks/longrangecnot/LongRangeCNOTgates-old.ipynb b/docs/notebooks/longrangecnot/LongRangeCNOTgates-old.ipynb new file mode 100644 index 0000000..412f2a5 --- /dev/null +++ b/docs/notebooks/longrangecnot/LongRangeCNOTgates-old.ipynb @@ -0,0 +1,2124 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ba4719fa", + "metadata": { + "heading_collapsed": true, + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Efficient Long-Range Entanglement using Dynamic Circuits\n", + "*Elisa Bäumer, Vinay Tripathi, Derek S. Wang, Patrick Rall, Edward H. Chen, Swarnadeep Majumder, Alireza Seif, Zlatko K. Minev*\\\n", + "**IBM Quantum**\n", + "\n", + "**Reference:** https://arxiv.org/abs/2308.13065\n", + "\n", + "**Abstract:** Quantum simulation traditionally relies on unitary dynamics, inherently imposing efficiency constraints on\n", + "the generation of intricate entangled states. In principle, these limitations can be superseded by non-unitary, dynamic circuits. These circuits exploit measurements alongside conditional feed-forward operations, providing a promising approach for long-range entangling gates, higher effective connectivity of near-term hardware, and more efficient state preparations. Here, we explore the utility of shallow dynamic circuits for creating longrange entanglement on large-scale quantum devices. Specifically, we study two tasks: CNOT gate teleportation between up to 101 qubits by feeding forward 99 mid-circuit measurement outcomes, and the preparation of Greenberger–Horne–Zeilinger (GHZ) states with genuine entanglement. In the former, we observe that dynamic circuits can outperform their unitary counterparts. In the latter, by tallying instructions of compiled quantum circuits, we provide an error budget detailing the obstacles that must be addressed to unlock the full potential of dynamic circuits. Looking forward, we expect dynamic circuits to be useful for generating long-range entanglement in the near term on large-scale quantum devices.\n", + "\n", + "## This Notebook\n", + "\n", + "This notebook demonstrates how to use Qiskit to demonstrate CNOT gate teleportation between up to 101 qubits by feeding forward 99 mid-circuit measurement outcomes and determing how effective this technique is. This notebook was created by *Drew Vandeth*, IBM Quantum and the authors." + ] + }, + { + "cell_type": "markdown", + "id": "6f0c85a6-8b59-4543-8e9f-788eaeef886a", + "metadata": { + "hidden": true + }, + "source": [ + "## Imports\n", + "\n", + "All imports needed for this notebook are include here:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9d02f8a1-3069-4507-91ed-73b7f6610f39", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "import os\n", + "from typing import Any, List, Dict, Union, Optional, Callable, Tuple\n", + "\n", + "import random\n", + "from IPython.display import clear_output, display\n", + "\n", + "import numpy as np\n", + "from numpy import pi\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import pickle\n", + "\n", + "# Importing standard Qiskit libraries\n", + "from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile\n", + "from qiskit.visualization import *\n", + "\n", + "from qiskit_ibm_runtime import QiskitRuntimeService\n", + "\n", + "from qiskit.circuit import Gate\n", + "from qiskit.circuit.library import XGate\n", + "\n", + "from qiskit.providers.backend import BackendV2 as Backend\n", + "from qiskit.transpiler import CouplingMap, InstructionDurations\n", + "from qiskit.transpiler.passmanager import PassManager\n", + "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", + "from qiskit_ibm_provider.transpiler.passes.scheduling import DynamicCircuitInstructionDurations\n", + "from qiskit_ibm_provider.transpiler.passes.scheduling import ALAPScheduleAnalysis\n", + "from qiskit_ibm_provider.transpiler.passes.scheduling import PadDynamicalDecoupling\n", + " \n", + "from qiskit.circuit.classical import expr\n", + "\n", + "from qiskit.quantum_info import Pauli, PauliList\n", + "from qiskit.result import marginal_counts\n", + "from qiskit.visualization.timeline import draw\n", + "\n", + "%matplotlib inline\n", + "\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "22aae92a-2df7-4725-9eba-f41a783c2974", + "metadata": { + "hidden": true + }, + "source": [ + "## Initialization for Account\n", + "\n", + "In order to run this notebook you will need an account on the [IBM Quantum Platform](https://quantum-computing.ibm.com/). More details on how to initialize your account can be found at [qiskit Runtime](https://www.ibm.com/quantum/qiskit-runtime)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e5f25ed-a6f8-4bc4-b1f6-814278bc3a8e", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "from qiskit_ibm_provider import IBMProvider\n", + "\n", + "# Save your credentials on disk.\n", + "# IBMProvider.save_account(token='')\n", + "\n", + "provider = IBMProvider(instance='ibm-q-internal/deployed/default')" + ] + }, + { + "cell_type": "markdown", + "id": "c75dbecb-c273-4955-991e-557f9b5a41df", + "metadata": { + "hidden": true + }, + "source": [ + "## The Experiments\n", + "\n", + "In this notebook we will run a teleportation circuit in three different setups, where we always assume we have a line of n qubits (for varying n with n-2 empty ancillas in the middle and a CNOT that we’d like to apply between the two ends):\n", + "\n", + "- Unitary-based implementation swapping the qubits to the middle\n", + "- Measurement-based implementation with post-processing\n", + "- Measurement-based implementation with dynamic circuits\n", + "\n", + "For each implementation we measure the average gate fidelity to allow us to compare between the different implementations. We quickly outline here how average gate fidelity is defined and calculated. " + ] + }, + { + "cell_type": "markdown", + "id": "ac7b8359-dbf1-465a-bea1-ca7015dc3003", + "metadata": { + "hidden": true + }, + "source": [ + "### Calculating the Average Fidelity: Theory\n", + "\n", + "The *fidelity* [ref] of two states $\\rho$ and $\\sigma$ is defined by\n", + "\n", + "$$\\mathcal{F}(\\rho,\\sigma) = \\mathrm{Tr}\\left(\\sqrt{\\sqrt{\\rho}\\sigma\\sqrt{\\rho}} \\right)^2$$\n", + "\n", + "If one of $\\rho$ or $\\sigma$ is a pure state then this reduces to $\\mathcal{F}(\\rho,\\sigma)=\\mathrm{Tr}(\\rho\\sigma)$. \n", + "*Gate fidelity* [ref] is a tool for comparing how well the implemented quantum channel $\\xi$ approximates the desired unitary channel $\\mathcal{U}(\\rho) = U\\rho{U^\\dagger}$. Gate fidelity is a function defined on pure states as follows:\n", + "\n", + "$$\n", + "\\mathcal{F}_{\\xi,\\mathcal{U}}(|\\phi\\rangle) := \\mathcal{F}\\bigl(\\xi(|\\phi\\rangle\\langle\\phi|), \\mathcal{U}(|\\phi\\rangle\\langle\\phi|)\\bigl)\n", + "= \\langle\\phi|(\\mathcal{U}^\\dagger\\circ\\xi)(|\\phi\\rangle\\langle\\phi|)|\\phi\\rangle\n", + ":= \\mathcal{F}_{\\mathcal{U}^\\dagger\\circ\\xi}(|\\phi\\rangle).\n", + "$$\n", + "\n", + "Here $\\mathcal{F}_{\\mathcal{U}^\\dagger\\circ\\xi}$ can be thought of as measuring how noisy the channel $\\mathcal{U}^\\dagger\\circ\\xi$ is. We can now define the average gate fidelity of a channel $\\mathcal{U}^\\dagger\\circ\\xi$ by averaging the gate fidelity [ref] via the induced haar measure (the Fubini-Stufy meaure):\n", + "\n", + "$$\\mathcal{F}_{avg}(\\mathcal{U},\\xi):=\\mathcal{F}_{avg}(\\mathcal{U}^\\dagger\\circ\\xi) := \\int\\langle\\phi|(\\mathcal{U}^\\dagger\\circ\\xi)(|\\phi\\rangle\\langle\\phi|)|\\phi\\rangle d\\phi$$\n", + "\n", + "To calculate the average gate fideilty of the channel $\\mathcal{U}^\\dagger\\circ\\xi$ we use a result of Horodecki et al. [ref] which relates the average gate fidelity to the entanglement fedilty of a channel. The entanglement fidelity of the channel $\\mathcal{U}^\\dagger\\circ\\xi$ is defined as\n", + "\n", + "$$\n", + "\\mathcal{F}_{ent}(\\mathcal{U}^\\dagger\\circ\\xi) := \\mathcal{F}_{ent}(\\rho_{\\mathcal{U}^\\dagger\\circ\\xi}) :=\\langle\\psi_+|\\rho_{\\mathcal{U}^\\dagger\\circ\\xi}|\\psi_+\\rangle = \\mathrm{Tr}(\\mathcal{U}^\\dagger\\circ\\xi)/d^2.\n", + "$$\n", + "\n", + "where $\\rho_{\\mathcal{U}^\\dagger\\circ\\xi}$ is the density operator obtained from the channel $\\mathcal{U}^\\dagger\\circ\\xi$ via the Choi-Jamoiłkawski isomorphism\n", + "\n", + "$$\n", + "\\rho_{\\mathcal{U}^\\dagger\\circ\\xi} = \\bigl(I\\otimes(\\mathcal{U}^\\dagger\\circ\\xi)\\bigr)(|\\psi_+\\rangle\\langle\\psi_+|)\n", + "$$\n", + "\n", + "and where $|\\psi_+\\rangle$ is the maximally entangle state\n", + "\n", + "$$\n", + "|\\psi_+\\rangle = \\frac{1}{\\sqrt{d}}\\sum_{i=0}^{d-1}|i\\rangle \\otimes |i\\rangle.\n", + "$$\n", + "In our specific situation, where $\\mathcal{U}$ is a unitary channel, the entanglement fedility of $\\mathcal{U}^\\dagger\\circ\\xi$ can be written in terms of the *process fidelity* of the two Choi states $\\rho_\\mathcal{U}$ and $\\rho_{\\xi}$ as follows:\n", + "$$\n", + "\\mathcal{F}_{ent}(\\mathcal{U}^\\dagger\\circ\\xi) = \\mathcal{F}_{proc}(\\rho_\\mathcal{U}, \\rho_{\\xi}) := \\mathcal{F}(\\rho_\\mathcal{U}, \\rho_{\\xi})\n", + "$$\n", + "and so we see via Proposition 1 of Horodecki et al. [ref] that \n", + "$$\n", + "\\mathcal{F}_{avg}(\\mathcal{U},\\xi) = \\mathcal{F}_{avg}(\\mathcal{U}^\\dagger\\circ\\xi) = \\frac{d\\mathcal{F}_{ent}(\\mathcal{U}^\\dagger\\circ\\xi) + 1}{d+1} = \\frac{d\\mathcal{F}(\\rho_\\mathcal{U}, \\rho_{\\xi}) +1}{d+1}\n", + "$$\n", + "Calculating the process fidelity between two states can now be achieved via Monte Carlo state certification. \n", + "\n", + "As per [ref] a direct implementation of the quantum Monte Carlo state certification would\n", + "prepare a maximally entangled state $|\\psi_+\\rangle$, apply $\\xi$ to half of\n", + "the system, and then measure random Pauli operators on all\n", + "qubits. A more practical approach consists of preparing the\n", + "complex conjugate of random product of eigenstates of local\n", + "Pauli operators (corresponding to the resulting state after half\n", + "of the entangled state is measured destructively), applying the\n", + "transformation $\\xi$ to the system, and finally measuring a random Pauli operator on each qubit. This can be seen from the following equality:\n", + "\n", + "$$\n", + "\\mathrm{Tr}\\bigl[(P_i\\otimes P_j\\otimes P_k\\otimes P_l)(I\\otimes\\xi)(|\\psi_+\\rangle\\langle\\psi_+|)\\bigr]\n", + "= \\frac{1}{d}\\mathrm{Tr}\\bigl[(P_k\\otimes P_l)\\cdot \\xi(P_i^*\\otimes P_j^*)\\bigl]\n", + "$$\n", + "\n", + "The following three experiments use the modified and simplified version of Monte Carlo state certification combined with the relations derived above to calculate the average gate fedility of the channel $\\xi$. For more details see [ref] and associated references." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "28f3fa83-e6da-4a76-ab86-09142557bc1b", + "metadata": {}, + "source": [ + "## Experimental Setup\n", + "\n", + "The experiments in this notebook use a predefined 1-D line of qubits with a coupling map that ensures that no shortcuts can be taken." + ] + }, + { + "attachments": { + "b9ee6c9b-35d7-4e8c-a647-645f67052425.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAIHCAYAAABDviL+AAAKq2lDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLSHSCb0J0gkgJYQWiiAdbIQkQCghBIKCDZHFFVhRRETAhq5SFFwLIGtFFNui2PuCLArKuliwofIucAjuvvPeO2/OmTNfJvPPzP+f+98zFwCKIlcsToUVAUgTZUlCfT0Z0TGxDPwggAAVIMAG6HJ5mWJWSEggQGXa/l3e30GjUblpMZHr3///r6LEF2TyAIBCUI7nZ/LSUD6K6gueWJIFALIL9esvzRJPcCfKNAnaIMr3JjhxiocnOH6SMWAyJjyUjTINAAKZy5UkAkBmoH5GNi8RzUP2QNlKxBeKUBaj7JaWls5H+RDKJmgM6iNP5GfGf5cn8W8542U5udxEGU/tZVIIXsJMcSo35/88jv8taanS6RpGqJKTJH6hqFVGz+xeSnqAjEXx84KnWcifjJ/kJKlfxDTzMtmx08znegXI1qbOC5zmBKEPR5YnixM+zYJM77BplqSHymolSNisaeZKZupKUyJk/iQBR5Y/Nyk8apqzhZHzpjkzJSxgJoYt80ukobL+BSJfz5m6PrK9p2V+t18hR7Y2KyncT7Z37kz/AhFrJmdmtKw3vsDLeyYmQhYvzvKU1RKnhsjiBam+Mn9mdphsbRb6QM6sDZGdYTLXP2SaARukg1RUJYABAtFfXgBkCZZlTWyEnS7OkQgTk7IYLPSGCRgcEc9yNsPGysYOgIn7OvU4vKVP3kOIfnnGt1YXANec8fHxEzO+gOsAHDkJAOnBjM94AAD5ywBc3MqTSrKnfJN3CQtIQAHQgBrQBvrABFig7wQH4AI8gDfwB8EgHMSAxYAHkkAa2vlSsAKsAYWgGGwEW0AV2An2gDpwEBwGreAEOAsugCvgOrgNHoJeMABeghHwHoxBEISHKBAVUoN0IEPIHLKBmJAb5A0FQqFQDBQHJUIiSAqtgNZCxVAZVAXthuqhX6Dj0FnoEtQD3Yf6oCHoDfQZRmAyTIO1YCN4DsyEWXAAHA4vghPhDDgXLoA3wJVwLXwAboHPwlfg23Av/BIeRQAih9ARXcQCYSJsJBiJRRIQCbIKKUIqkFqkCWlHupCbSC8yjHzC4DBUDANjgXHB+GEiMDxMBmYVpgRThanDtGA6MTcxfZgRzDcsBauJNcc6YznYaGwidim2EFuB3Yc9hj2PvY0dwL7H4XB0nDHOEeeHi8El45bjSnDbcc24M7geXD9uFI/Hq+HN8a74YDwXn4UvxG/DH8Cfxt/AD+A/EuQIOgQbgg8hliAi5BMqCA2EU4QbhOeEMaIi0ZDoTAwm8ok5xFLiXmI78RpxgDhGUiIZk1xJ4aRk0hpSJamJdJ70iPRWTk5OT85Jbr6cUC5PrlLukNxFuT65T2RlshmZTV5IlpI3kPeTz5Dvk99SKBQjigcllpJF2UCpp5yjPKF8lKfKW8pz5Pnyq+Wr5Vvkb8i/UiAqGCqwFBYr5CpUKBxRuKYwrEhUNFJkK3IVVylWKx5XvKs4qkRVslYKVkpTKlFqULqkNKiMVzZS9lbmKxco71E+p9xPRaj6VDaVR11L3Us9Tx2g4WjGNA4tmVZMO0jrpo2oKKvYqUSqLFOpVjmp0ktH6EZ0Dj2VXko/TL9D/zxLaxZrlmDW+llNs27M+qCqoeqhKlAtUm1Wva36WY2h5q2WorZJrVXtsTpG3Ux9vvpS9R3q59WHNWgaLho8jSKNwxoPNGFNM81QzeWaezSvao5qaWv5aom1tmmd0xrWpmt7aCdrl2uf0h7Soeq46Qh1ynVO67xgqDBYjFRGJaOTMaKrqeunK9XdrdutO6ZnrBehl6/XrPdYn6TP1E/QL9fv0B8x0DEIMlhh0GjwwJBoyDRMMtxq2GX4wcjYKMponVGr0aCxqjHHONe40fiRCcXE3STDpNbklinOlGmaYrrd9LoZbGZvlmRWbXbNHDZ3MBeabzfvmY2d7TRbNLt29l0LsgXLItui0aLPkm4ZaJlv2Wr5ao7BnNg5m+Z0zflmZW+VarXX6qG1srW/db51u/UbGzMbnk21zS1biq2P7WrbNtvXduZ2ArsddvfsqfZB9uvsO+y/Ojg6SByaHIYcDRzjHGsc7zJpzBBmCfOiE9bJ02m10wmnT84OzlnOh53/crFwSXFpcBmcazxXMHfv3H5XPVeu627XXjeGW5zbLrded113rnut+1MPfQ++xz6P5yxTVjLrAOuVp5WnxPOY5we2M3sl+4wX4uXrVeTV7a3sHeFd5f3ER88n0afRZ8TX3ne57xk/rF+A3ya/uxwtDo9Tzxnxd/Rf6d8ZQA4IC6gKeBpoFigJbA+Cg/yDNgc9mmc4TzSvNRgEc4I3Bz8OMQ7JCPl1Pm5+yPzq+c9CrUNXhHaFUcOWhDWEvQ/3DC8NfxhhEiGN6IhUiFwYWR/5IcorqiyqN3pO9MroKzHqMcKYtlh8bGTsvtjRBd4LtiwYWGi/sHDhnUXGi5YturRYfXHq4pNLFJZwlxyJw8ZFxTXEfeEGc2u5o/Gc+Jr4ER6bt5X3ku/BL+cPCVwFZYLnCa4JZQmDia6JmxOHktyTKpKGhWxhlfB1sl/yzuQPKcEp+1PGU6NSm9MIaXFpx0XKohRRZ7p2+rL0HrG5uFDcm+GcsSVjRBIg2ZcJZS7KbMuioYPRVamJ9AdpX7ZbdnX2x6WRS48sU1omWnY1xyxnfc7zXJ/cn5djlvOWd6zQXbFmRd9K1srdq6BV8as6VuuvLlg9kOebV7eGtCZlzW/5Vvll+e/WRq1tL9AqyCvo/8H3h8ZC+UJJ4d11Lut2/oj5Ufhj93rb9dvWfyviF10utiquKP5Swiu5/JP1T5U/jW9I2NBd6lC6YyNuo2jjnU3um+rKlMpyy/o3B21uKWeUF5W/27Jky6UKu4qdW0lbpVt7KwMr27YZbNu47UtVUtXtas/q5hrNmvU1H7bzt9/Y4bGjaafWzuKdn3cJd93b7bu7pdaotmIPbk/2nmd7I/d2/cz8uX6f+r7ifV/3i/b31oXWddY71tc3aDaUNsKN0sahAwsPXD/odbCtyaJpdzO9ufgQOCQ99OKXuF/uHA443HGEeaTpqOHRmmPUY0UtUEtOy0hrUmtvW0xbz3H/4x3tLu3HfrX8df8J3RPVJ1VOlp4inSo4NX469/ToGfGZ4bOJZ/s7lnQ8PBd97lbn/M7u8wHnL17wuXCui9V1+qLrxROXnC8dv8y83HrF4UrLVfurx36z/+1Yt0N3yzXHa23Xna6398ztOXXD/cbZm143L9zi3Lpye97tnjsRd+7dXXi39x7/3uD91PuvH2Q/GHuY9wj7qOix4uOKJ5pPan83/b2516H3ZJ9X39WnYU8f9vP6X/6R+ceXgYJnlGcVz3We1w/aDJ4Y8hm6/mLBi4GX4pdjw4V/Kv1Z88rk1dG/PP66OhI9MvBa8nr8Tclbtbf739m96xgNGX3yPu392Ieij2of6z4xP3V9jvr8fGzpF/yXyq+mX9u/BXx7NJ42Pi7mSriTowCCKpyQAMCb/QBQYgCgojMEacHUPD0p0NQ3wCSB/8RTM/ekOADQhJqJsYh9BoBDqBrloblROzEShXsA2NZWptOz7+ScPiE49Itll9cE3d+8KA/8Q6Zm+O/6/qcFE1ntwD/tvwDerQhu+FcH2AAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAACWKADAAQAAAABAAACBwAAAAA2F/i4AABAAElEQVR4AeydB4AlVZX+T73YcaZnpif25MgMw5BFJYiKYMAsGDBgXMWArK7rillxRd1V0b+K6yqYBRWMGMAIkoQhDDA55xw6vlD1/323XnW/7n493dNhZlbrzrx+9apu+O6555x77rmhvNkLFgV22OCZeSkzxQpyfNrDjxW5X1X6ZPlOcr9AJP+wuY3Mw0QJI2V3wwjobhiJd8wxQjcwBkEb3x2QwzPPqy7hzOhnCWM/zTIShFQbWqkdhc21tTDS/hEdE2AUMwT5kUDQf57iRaMdfcp3GKGjCUsajKIjvJjgWnzo2prLox08lU9D+mpnyYsw0u6m9q02LyF5UT3EC7p/tEN3me7CKHkRtip48niUadGR0E1ejheZ7ii1dSjTrp2dzBxHMu2XMFok0/Cik5fjT6YDZNo7TmW6qw+kvxP9jH7wOJPpEKPkJZJp6Ubx4vHST0fygn6UrnQ6R/aEMB5LmQbOMAbvsAaWOgr18/mHHQ0sM5/+dyKf0dxUJ9dKH7Gb5yvNClyn9LyONBJgJTwKQQ2izjb/mLMNLL2Y70Y+9RROwxUP8dkFvmWuP7PUiUAnjcN4FPCpCCnaYgv9/Qr61bR56UUhxkQtDzEEigfpZ3dQhxUW8NNLL+EP2I+aESMGR1EU94FjHRjH0pazkMVxFiRQwuAIigd4vg1Ia6EqbZyaRxoZCDJuSD/iAX5TWxfA4G+DRk1gmAodx4TYZVgX9/J8M3TcQhtP4vmUEr6jZMQ4oymJXbUGihyEzaAhGLxkA9SRLLVBxz2w6zo+e7g/M6T1UZWXUKYDZFos5iHTXhJaJUeBUTINn4IxyC+HX9vBF8m0FOFRCuJFJ9PIrGx+ZNpLjQcefKfgN4MNmc7zHHmxFDIvo/qoyXQkL8KxEmwYpOkTwDqOvqEWzRfKtBW3M5ZaieEFndMn8wesR1umC3uRl/VgBBsybZJtGajC4e8HP/KUW8e9UWCcA0DJtAbKRyPQuOpjClvBuJ3LJjB2yXRAe3rSSch0gEx7icng5yNZdw0/0hhdw1EIOPOr+G6GF2fzEwzqA4Xdx4hBXqywFpz7kCVoLJ101GUarPlHwATM9ALoqH66XKZ3Q8PHoSftnlqAvND3aPB3tIKTaQac9NOy8bxOmVY/HaBz1E8L4zKuw+eWYBDq2vpogRz+cvo2sESQ/Goagoo3XG7emDMsMWohsjkdpRw2XFCgw2hHiTSjRPY/YsG+35q1YYxlloBUmk8dm1p8JAL5wuBB7iG+JoDvEkuMORUdDHNVT+WejBfaJ0+H0bYFnbwCfbIUjD81y22FCU/hKcw2YoYgDO96hyQYH7ZE9WJLjn22pcacbMnaefym401J0cFcuYPI6UYrHFxuhX1/x875JgpHSnshzzvIZ6SCFAhM7Psh49eeY4mxT7dkw0nI31zsQuiaVGdXxGjYjz293vyDj5u/7z5o+UM66CaElY5vRIVAGDGsiq0osFWWGP1c2vpsvheDcTaPxkFmFF2xYH4HAtqK8XJgGRjvsuDgr8A/j+c1JYwjxYu0Dxhdpx9ssXTDy61q7FmWGb3IUjUzMbTGWCKB4VXssGL7Tsu3rLaOfY9abu8fLd/8V2yDE5EzjBvXsY0kxiztjJGfaIUPX2+ZsWdYuv4ES1bPAGM97ZkwH5kutm+zQvMqy+172PJ7fwtvPkL1MBCcPI+8TBsybemJ8OLLLNFwmiXqFyAvdL5lMu1Lpg8h0/uW8rmZeu0AIzLtDBjJ3kiEnjK9BHvlIifTKSfTk+kTqhFp5Cl3yIptGzplurDvW8h0LXXAYD2KMp2oOxeM51uqYQlj3zk4WiYi8vBqsQjGfYjVeiseeBy9c68V9t8ED2DgpBpL8jISNFSeXTJtRWR61POwSc7GZpFMMyjJNloimQJjHplmQNKyFozLGD/dxVj01+A/ejJtMuSRaa/hFfQvTwLrIvOcTDcgs+h2ZDpApn1k2t//qPnIdNByJ+0sox9ZPgoybfknKKsdfG/gQz+NTCdq6KfT9NOMooJ8m/ntW8G4Cll5mM9t9IkYOkdLphlcBnn66cwUS495CXrnVHhxAXqnCd1X65jMp58utm22AjKd37sUfryZMdbOoyDTI8XjYb4VDCwpeDrdAobSmFdbYspLGZidRUUbUBx6RkfgjBIpmwTmk4QFhcKI00dQi9tpvO3X4PWYS8dG5zzsHo6SkhMW/1Hzxr+TAcXzEdDTEDxGjw6jcCqeQnjtCWORzgOFXNz6Cwt2fRH4CIEeD7shKJrIcMGAC5ZbevIHLTP5OZYafaIzWLowyggVAH245ivAkMnvuc9yW35ihT3fRkjUsWlEGdWHy2EJwijDZb+zA5NN77DUxGfi+EN50f5BSBiuVW6I0XMYGZ+370Lv3GnFLd+34NCvQmN1pIws57XaiBd+riWnvMGSE85HCU8DVgJk5bzYRUe1td+6yYo7/wzGb5q142FNzRBxh4VyvTKRcYUCSdc/12qmXmY1489BecjwlHQIo0JER1ETXkTx5pvXWOv2O6x1y5dhlSIsM6aEUXUZzqD8aFNkOjPuNVaFTGeR6URmdEWZFtZQXvKWP/iYtW29zTq2fYI8GPmOpEyrysVllpjwLifTKQZMh5dpBieFFpRxKNP+ruvAh0y7MNyGoORFhjwDHm8l8vxBy0qmR2EcJzPoO7W16BzKNBP/4bWHvOQOINP3WruT6e+MvEzLk5JOWabpCuzUCyxVPwfM6COHUcSJeFEopXfA2LbTcrvvtNym71mx+TbSy1gdOXmx/HoGwgstPfVyS49/WqdMd+9fRMOIpj7G4CYr7GRQgkwH7WthaemBkcSIUTDqYks2vYpJEQZ1VeUyLRpGdBRKeBGZ9g+tssKOO8zf+iV4BezyXjuMqsdwBuUX9tPe2NdZqol+euyZyLT6aZVTrhvDa492lkFYPPAYEwG3mb/9kwDH8+q8v+pjhhOjQOCq0pe/zDIT323ZKRdbpkEyrQGvytLHge26Vj/NbFhu74PWvvXnltv5ZfrMk4iqeMMt02Q5wqGHgVXWaNM+asnpr8EShonxYGhUFoaIIOXIQmJ5uPQCpsKKO35v/uoPYxfA/G7KUJ4ixRmOALOIg4LHLDHr/1m66cWMeMZTbrk3qifGUtlY8x7M5Of2WGHLreavfS+wpvMRA0b1GypGynaKuAVG8iw79xOWnXQR13UYoeWGUl8YMVoZGRUZobdv+L7lN1yNHMkjKObqmWawWIUR46qw3az6BEvPez9K7hx3L6Ctw3IqlRXRMUkH7KGIV1t+7dcRVIxV5xEcZmUnjPJmjLnU0nPfja46FQrQVv1iVDvLACPq/oessPqLeFh/AMZTqdowewTB6IOxZtK7rH7uWyxTNw/2pOR+5UVsh7ygfNt33WUHVl5rhRY8RempJYzDJS/KJzSuqqd/3GpnvhrjbyrwaOc+MUZli46S6WZr2367tay6Gg8XhuCIyDTyF6yy1Owv0uki05nGI5LpAO9lfsstzNS8C8LiJRoRmW5GjpNWPe8aZPoCR4cjkunWzda24buW24huTA33wEkyLQ/lZoyVJVY9/98t0/hU7mH89ysvsAjzNk6mMRDa1l5v+e1fIukIGFnCmFuKMfBKdOOVeNYoQ8Fh1EVfegeeRC9KT8ug7lj9BQbLeNxGAqPWSsrjMulKZgTfQhc2tyTT0o0KfWOU7pZMFxmA5ld9mhmd5bQ1U/DDamRJPqFF4RH66GssPeNVzsN7RDJdOIT6/53l13yIfKhPEk/SsDpD1E9LptdbzZz/tqqpL2IcwpKTgfTTshWYlfA7dlnb5lvgx7fDnwxktKZh2PpptePIh+SYxvEf7SqGERqjXG/mf7EE503OnRwU1WmKoVQ5BX33/LgH1B0DgvVNyVELLKg5kem4P5Efc9TqKCsyZSndgL8oV5YvXqHk/O9YetolNARuUDeqFKYo9IFPGMCoDiKJN8my4Nz9XRJpPr08fZTPYL5hfBaTGiPImoVfZKR7UThCkDerWxl9YYQpUTYe00oppuos0cQU/418TwEMz4YjyAAs7DarPckyCxFQFLEb9UjJdZKhJ77OByEOphUT1UzjMPXgF5kWOXAzbdHEs0gJDRGoeCaPh7LxdZY54Wra6yTkFf4aKEbwiec0QEiQ1m+DD5t/B0bRcfgwaoq6dur7rWH+uy1dO7NMgUT0OgwdXaeStHTdbLxfiy3HFLHPyNxz6weHqa2de/5hlNznrW72GxHPCVS/P5kuazsn01nw4dKvXYT7/g/wDunFQ8Mq02tZGvJNJ9Oqv0baIS/2RccIY0mmGcAknEwvNH/3jTzUWqMozlC/JdOsR0tXW82iL1jVpAvD+h+hTGuqOI1MB94UvNM3YgOKF4epnWmPoLATD/SpVrsImR73lEHLdGq0ZDqLAfNjDMrhlWmt/UuNfyPjuv9AdeNtdDINDTp1Y3/ygiqsnY4+WMI0Vwseo9vBiAEzbHRE7xQessTUqy0zD09qzQx4UfKidooYqj+MSYwypmPrT2RK83GzjvXoHa01Gqa21npOGVezr7PMrNcj03IwHKFM44lWP214Ef29v0cnoFuHVaaprm2y2hO+YTXTXub63LCf1v2+6KhnCiWZTte7ZRZe5kTL7/4m95m6jpK6eMf/ny4DS2uuYCwPz5WMK9P8rRrNjQQHWCsJSWlUnKybZUEVHc6eH0GF2mGiBMxfhLHmfI31zS8DG78loA7jQIoAn8NIB8vIPCFvQ2o6GL/hDBkyH0gmh4kjOskbthEF8hXcos+CHjCLaHKkGKmXx9ohZ6z6DVbY+30UyVTyHipGjSxo1/RojKtrWZ9xBvAw/sTUnUqOn4cNJTqSLkE+iVEn0P+wgPHgL4bHyNJ0hgzAUediXH2IdpofKhDhGyjGKB50TODh9DAQ/IObUHaraKI6ajdEZQfvaVqwauIV1rDgKktWTS4ZBWp/8cEAgsMY8keqpgkDbZ517L0Tlm6lmtBgqAaMvAXIdPWMT2BcvSE03NjZOFiZTmEIJqpmoey+AzamPoYlSIYfsdTcr+K5einY6Dw6ZXogdCzxhFbGItPJ+vnw4DTz9/zvMMq0ythutQu/bFmm0Z03f5AyjfsQ0TsBXhmFJ+YHtMlwyXQHfN7IoO7TrHM5HZkudbiRHPTbViU6SqaZZkqy3tZvb2ePEGuehmNQ4mR6F/k+A934Qdppbql/KZXbLz4iRHUpyXSCtvYPbmC6cA1tPjwyLc9VYuI78Oq/u+RgkKE/OJlO1LAWuGYua57+TF2Vz/DItPrp5PRPWWbm5XjHMNwGLdMeZJuNo2Emg5JvgY/1rMMSJNOPWs28r7Fk4sVhvQcj0xqAMuOU1rKVxDSmsL8JLw6jwT8sdT18JqGBJaXG7jAb8zIUXchYXcZV7wy0ds/xOt+9QtRp8EAL7YKAkeTuG2CEIRLGeTQwAKf8u6Wx2p1L03kzKoGgbN2u/CgELwVJ48kQ9PN0RFrgOVQDxnW6j1h21metapo6CwA4RdwbiB5FdKSL7R1cWows1pUJY7F5H4sUWTypHZKDNg6EQ6Pxxy09/zrWZzwdeDCxC70xRvgclFKsbl96IGWXbkCRzECRrMSA2UoRzLEPGqMMQIzmpI9H49PhtGAvT0E3FK6ZhbVvOhZRlnhuqvAG7v4NSwaJqa0slVN0z7zSL9JqV2Wq5lRrWPhB54HSAnYtEu8ZRKKen+5xSnTHEE+hkBNsGmjf+TV0OruAhhLk0WCTSnrcK6x+/pW45xnloogrYYyKEc6KQQ80UOArhffA98diZOGBGSaZTjZ9gJH45VIYsA382AOIfpbzYo/HIWSHMZLpmfQ51H//jwE8RAOmJNPVs5FpdRaO20SL3sSKcCpK76dKyl0MQSfTLOYuNGsB9z2wojq2wRr8Kgm+859gWhCPxsTzaWfkxyHojSLC6KAQq1fQA2fANNAcMxjY4YFhAwGWNVErSlivLHrfkEwziGPhehUe86SmBd3gvQuf2rcS0SridRiR6Wo24WSnsh70l+RPGUOSaQ3q9ptXdzqb8D6ACptJU0WDkRBanxiB7p51VrxUL2QmWUu/h0wXd16PTMvTNlgaij7qp1djB70S79qVzqDuMq54TLHdcXQC6iY/DoEil2Q6Ic+7z/Qda36H3k/Tl2rgOfWDVjvrtdS5Gn7qkmkVq0/PoFvC7p5Fzx3GUKZT6gM7EjTRT4aud3oWPoK/xZVhmyfYVj6FXTtMqZQzVnnZqneGP3nktw15SdFSyVLy8nguT4gq4iZZf2T1FyBQLdyGid0HRhGzDPgjo4BCM5PZef9CHFcopD46XTWSMLJWzn264yr7pcYjDw/jIDX5BVjxs0p5UtaAcUV1UL2EsRVj6GksftW0YHfGKivZ0Uz4WqAhS1qMpVqVdAs3aR6EPFk92TKM7r1Ec9hWKmvQGHebWxQ5/lzki4IlZBVKT/OIjUbWrIEwWIWxYgCjOu6kppCmvJwoG8iTyIPF6DqLFSx0fg3etTPJGxCHCYIlHuyvf1Knk9QOmwmXUbHlSgVGtVvUhgP9Jp2Uub/Baqa8wjKj5F2DjyoYV4It+1ptnIN99WEte4VABWgHNUU1a+Gy415PnnjwHA0Hi5Hk8Eu1NqmwW0cy3RdGiYLatwC+IngrBicvgIevq+HvVD3GOTs7h4RRMp1lukcynWYg1odMS1ZEw3bkRTR0R4dBK3FutxDJNPpBesKy00p5DlZeoD16K1n/DGT6QuiJkeH4UQzXPYgHtQ5XelFY3e/uUcJfkhfJNB7LqiamTryDYUUGKy9KB6+k4JkMvOPE2f3pXbiTYWjZCkbJ9mFlGp5OMYWUaUKm/fVgVFcxWDoK43I20VzmPOahhzLEJ30tXePktwfv6VmiRNN22l14FdUFXVAJ6YjUxFeTfgU3hG+w8qIMN1hi8iucLnMeQPGTcuXLlQ0+8WJ5SEIWR0fo2Z0hSeRk2sO+Og+d+1owDl2mDZlOIdMJ+oTyftrhkEAIXw/ByEhdgU+6XPrI0VuVKMm0+ukU/G115xFxqDKNBzQ7h400L0Cm8XKXybQwSkaEoTyIyqJxB20s+VEctb2rRkmmE8h0ddOL8K4y8HQKQKmO/5ByDJl7xGzc5W63oOvQ+sJOjR/FTlo4hujw8b17zKbRL9XxkVOgWyh1vJ6OI5jyWgsefy0eBI1cthBN3NhXId1ygUfZm6PzjHLsLprxMXdURMhY3dOreDWKOonH2vnBjOdk5I0m7js4ZQdD4GpOTnwTeuRq0rHuqbApZL6+U5Y9cSXDIXRiHSstPef9znNXPrIoi+xqvRYebgPbeTijtmAzreb3dLyq2qnfK1AnGQdpdn3lxr6V0RrejZSmGDg3Rgqv3yA6iaNpJM4wCzhzJt10CUbqWJevE7IeeYjBHwLXDLzP8+j37qGda2D88WTRZ7ORJjXhmezQvJCjEh6jMnRGOh9mwBhpOA83v0ehHlMU7DgJ5LXsb+El5T6K9z0LtumqpejVoz5kyB1owPrAFPnmt19PJBJx5hPbIHkGM1dI1SsbNw0F3cCUrHkGC9sv4Dqir767B+Foodgasq9VEQrclJHQK0iR4LnTOp26qS+3jp3for0mQEO8B+5gSLV175r1ykcYXTuvoMN9E8bak2hn7vWG53KTzIg0j8GD8yF9NTzolFyF+M7glzGNp62q6XV26LHLOcrjyGXa1YNppwCZTs38RNihlXkLetZpM/AbYYUx0DAP1m3wIsMXncbWW5NEBgzT1smJb7HC+g/h5VhMRGS6EhF6FuZ+i87QWzKdW2XZeawBdBsDujwa5clEqn082keyU9CNB2Cth7GbTkAE1Kn0CiRQm0imk2PfyGz4/yLTC8K2HrC8SIei5NTWnE8nQ0jrNp33qmQYROWqNjICtqEXC1RrCRg3wParYf/5OA0rc5UMfs8tc8hteTprGNegKmgAfy9kFC/2F0QVybTkmSUinLWWmfI8rrtkWjFk6C1tC29PI9sGbuq+PjKonyCLc9BBBdr9Hoo+Rc5xFxTDhyUzlp7yfHbFfYWK0Ag+FQtQXkci0/Ig6jyrmgsx1p5BvcMS9KWaCscq2lTknkh7NlI0cNyzg9B0g+SZZzP5quVZJz1LMi1dm2q6lHb+NjoIpV/cSUywDpQfnUxPggjL2TX/1lI/LdqGZQnjgRIOnXc6lfujIhyAWXrAbBLCsohq/m0f2KnLAo3/BbTUT8tbmZpyOSc+sJSgig0Yxa08FI+R0UCCiIZH2+9YZtWzr2EANp/kEE75k14Yd0PizRBuGixQAx2dI4T7Oe4thRfVH9agxx8HoxYVjRKrOIyeMybToxdaZtIV1rbuIxiYp/GQSh/ngS1CIGSYoHOu3FEMbnFwd6KKT+StWkbD/PCNKTt7SQovVmC79wf2tutzth9lkpHsKa/yIOOILcwJRkJFpgvFhV712XxL64hFu5fDjV5BO1uMXX+ClRh9MoqIoxjcItvuadVRyDBYAd/+4PUpu/CstK3cWLSnfCZni2E6ldYTnisMc1p5Jlh86suA0Fb5apjDpXAx+vkjHOSc20bdECSYQCd164wwMVd5kJW+F3xvOithb3oBc8vQrDrr2R33F+zKHxVsJlxY7AWSRMKYZtH72NPd0iTLNrGh5kSyVq36C8pQONgJ2r4OG+Y8vGxz+E1hmooT/LIgRbwcjN9+bcqefnrKjcZl+H39Zzm75i++nQLnq5PrHhAAMCY4Nysx5ilsp/4dTf1sijiVaBLS/gJ8gtIOJPltLGxvuBgBmkqiXsTollEVuJbCez+CJ88H6+duytkX7/JtAR2bNsb0CvBjAs+B1/Bspo/+gDSjSLT2cACKhBpi8KmB0ATUr2rs5ay7wgAKNUC3osSLLVRlOgrjY2/O2PgxnrW0BZalrZetKtoV1xdsOnTs1dYOM4ve61n0Pup8y3MGkFd3FnlT7gDlxXV+THVYEQNLHjvX6VZWlMJJs9m99EfffXXKnrQkaT/8bd6+Qzs3Rgq4W834IV5MVoFvofOsBjpEt/ocHoiRKhG9Zwb6TcPl8aRStjZJ6Dy4oCBlrDzCIGw5bjUwQvrpazI2b2rCDrYy5ULSBnqxPz9csJd/r2BL+K3d8K4ZosTCyFZwl7eTaXqW6gU87cW4UYoe36W6dGyDD6fgyVkIULR9gUYtw6hEkuk96PmLT/XszRdnrLbGcwO9x9YU7dqf5O0A/Ck5764bBRh50aJ31kAWtV4sOw3dcxL3ByYvkUyzxYp1TedjpM4WGtL3lmkNOlbBtlecnbC3vCjstVII+s//krd33lq00+DF3vJSwlg1EZV4tuXb/gwNL6QIIjuMPD9sEC8Ij2T6EdriOU72ooYSGaWvH4F233tNyp53TtrWbS3alV/J2S5oViXdSFF3Ij9N4znTHbz3PVawS28o2GK1Ke0u3lV+MvgT6Az/ABhrMPhlZQwIoyogmUYA2n6D7nqzW0oQ7phnfRIYczTHKqLc9s606/cewOJ7+pfydgpFHIQ/J4317OuvQHYWpuzX9+Ttsh/Ck8qStI4nSzKd5KiMImeSBXmsnU6Z7l9eyAa9Q2WdTLO5i/V1CfqCcI0ddCHCbvT1lLFmN70pYyfMSNrv7s3bJeiYJ3FvNfT98kuT9oLz0q7PzkDHb/06Zx++3beTo3Z3Ml1N/0rfVYXAsU5wcDK9y4lJBplOuH46lBdh3ER3+Iy5nn3wdRkbNzphP/xdzq74Mf0zxdVjNN/+5rQtms1ZgbTpoZbAPvuDnN23OrA62NV3My1hP51mc0OH2r+zffunoVr5WAUMLFqH05oT9QthCNecvbBkad+H9wR2zfOSduGT03bzHXlbsdW3916asU+9Km0XfTpnp0zwrK2nbiA7jdR0YKXVnY8dV7Cqkz6J8sOcdqNqlddHEN1Kj9tXfY3dfgcYCE1Xhp33o5QS1iTxH6X837wrbactSNohOrQpjQAnOEbXZaW2EEYaS4fHWRXGX8M5HFh/BZHVipLgw2BUhq7TbbWOxz5uKX86RgYjSqfkuqfTL322kuT805J0uGY30Jm95OyUvfjpGXtktW/X0rGdRV8goe4dWKPDNJwGkSmmcrPTXwopetOiVzoq72nLa9tWa3vo7SiipzpjLcTYPbbwaaQ4A8GbiOJ4eGXRbvt70d7xwrS946UZu3NFh23cHVg9fWrvqaTQANGOvcIW2mP2Wy094TzkoHen1L1UfjmMGXbcPGH5pZwh1XAGGQDCadDudIzSVqHEljLSef/TE/Y0jKtRdLpTxnnOO6TOuXdbc1P5sc7HG30mxzfcwBqv77jDDSt5RKNyOr+FkQMaCzs47PCx33Cei4wzGsMxV2csdyF+lCw00Nk2MeR9gI7h9vuKNhFDaztujkaUcy/jSikFEV7UmrbM6LM5C+YODjH/OJ28pvi6GyDdS+z6peMp8htvMW/d7W6KpwK8zsiQ0FaigG9mQPLUk1P2XRTvLff4NgmFp1FlxUDlJNMyLlNMneHPsuyJH4cpSdSfTLtGkSAW2cL+VQv2ttEcM0Iaqs3Kgn7KKJFKmkwHq8HSD/9csHlTEvaul2XhQXBAywx6p7WnvCgxbe3yzj6J6ZnzePHA27ipGpPp4YLaWVvtdRbPYx/GD8JuMOkvV7feCVWbNdDqsgvSNqrOs+tuRhfOSdjLLsjYinW+XXVrwc4GY3tPjMoKKCk8bXK2eFMusfT0FwO7L8KXlS2MkunWLazJfguDurPhGZ1p1tu4kizII3nGZLO3vDBje/f7dtOfCvY0LNOXPCNtyzf49p2lgc1FJUv2uwcAot9S8HoOfZ+adQUenrOhDX2GmPxwwWFEpjkgNP/Q08iDAbzW2NEubtBMWXtIf/tVaVtMx9qKvp42MYkHA8MGwiylbX95JYY1bq2v3tJhjfWevfzCjH12W2BX/axoZ9Ix54RB+aErpDOKB77N+qnvOUNhwDLNbrrCzr84mZbucoMosItuHdCtYbTZA1dkbEIDcgV5p02ixSGLNt2N4tmNV7FrnsjN7YFNl3uLeqlL6AyCqP4Fo8hrOBu9cxcy/QlnuB+RTG/4iQUb7qCf1kAh5OEUxe1qxcM3z7NPvhFPHvTgFBGbNoEH+QBd6LnZpnNPS9kT64r2cw3k4YHXPy9j37u/nQEcEkF8KEiWeM/pu7z6i5gNrrXMiR/modpLjMvzPoOwUB6HdudWfsUSB9ANtTNcnZVMGOUtfR3G/TuwF9g34QYhU8bxgDnB1rxnp0/zbMyohN2BYbhhR2BXviJrb8UB8c0Pddg5k9DpKsLR0cc5MINdpMyUtOBR1QJ/h69PcMf8AQYWNWYhqOc8TCJUd4KKh6VbjNH32aembCkW/L98Ds7DyJ0yOs/II4UQoOQgImsYK47UtGbKq1lggaY91MHxuoYBMZcTYnleOKU5Ow9DjY4G5q8UOsB4MvywZVeAAumw0+Yn7KIz2FVEZOkNjZb6DBIodoF5WdbTtG2iImgbL1QGfabRA6dEIKEI1MwUZuOz8QJiITkl2Z0pVbxGifOh0Zd+nrfH0S4b1gTWgWJ5Mh7BCfLpdkiwu6frLJ+0bldKchGDQiwLt3tE7XW4ioUYLUWPbjsZGvyVUx9ej+2IZkAx9RQc5aQOLUvzXvTf/GEkYTj0LntGyqqrUSJUgAFQH0Wi9FnP5HG6ug7I9zTa1xy8prf6qhNPXVCb8roR88mckbbHbjqPUVS4u1EFdg8aWbYqe5rpNc9O29+XF2wcAlqvarqheO80YQ5SxozU2D0qR5RjVr06xJCBgWDEG8sx52h24LJIOTSwqGwPBaTSZWDJEN1/0Le/r0AxoITvXQlvPu7b0yZyhljFZiOlOgzaNqWdk+uvISc4WF5VFdofRuHAG60TuhOJ2QxEp5ewqTCh6gppsl0GG8mbesFT0vbzP+dtI4OouSi03zJyXEzTqcPtnkrpQ4wJpj0SNWDc+WPKhPCi40CMQEbjHl4NvV1B8paoYqqwgkzLuBLGVjqQb/8mb2u2BPaj3/t25cuYDsGT9ddHIDCMwN+KQXmGMs1OYZWlox/krXR8XzFJeFNY9GYAJ9NLWbP3MkblmhbuLS9K4JpEHRXtu+dAYJ9b6tu/IZbPp4NzzyonIyXtBC3VRp4327UZrqhShhWZI8Snv05e4EV2NgbN91pi+hXQn7QVMMpQWAXLvhh9mMUovfZ/8vajWxnMPcm3NR9J2ZmLEnbd39lM4wbXXUWEV+BAppPiddgvEO9HB2f2x4sOo2SaPJC1BDLtPCNak0O95QWfyOPdewP78B0dduaChD0fL0uB+M5DzuBkJsb0Hffn7aN42WwbU5tzknbBWSjQ32Ggc0uOHdcuJZlWOc5JoPV8A5XpNDwhXSWdpTdDUF+dYyWMbWCcB83WbArs3d/osA++JGWzwKQOBVVts8D/wONFu+Z3BfvYxSmbpAG92rtbkLwAFp3r1c7HlfNpsqYOTu8MQDdK3hJkikwbut+tkS5jD9SLm0pb+oRv77wlb3f8K/VR4L6MJxk0b/1Kh92N+jeM0xOnFuwlT0vbNNhl7XaMHeKorjLs1XclmL0p7Pktt5htQu8E7vgGMBwuOJnmTRv0nUlkWjuqHY+W0qjFs5Tz5/sK9gVo9dMPVPGYSkCWBuyIhzcEdvoHAQo5nr04YW+kTyyrYlfJpFHeiex0drf+kft4fPvUAF3JjuVVaGDxXiWPU52hSjcsoj3s5nRNI/bGeJTuZhSdFjbV0Lnt3+tbLUx21iSzP6CcJ6KXXP9WngtE8ejgkzphtp1dTdptpZHWANbWhFNseXYP7KKFGi2TrqFhIg7uwqq2kjKWTL3xmzQnhsEzT0GRc2sU+FFFhw/KkxG4l2YnRQsncruFecIoKT5MUkEQHG2Tbb/PMhl2d+DlCFjl2pf+SSOD26mO1htsQA88/6nyZvkwWdHmYpBrhxvi161Y1c+drM1rBTLsREngZk5Dv0ALT93Dw2GE/oFcr2y5xmuWzrIAmO3ses9cJZBSyOpbzgDbx64MvYH1TJh//IZ2e4DRxVmwSQd1puTuQe3Mv5R7jRLCzQnbSdGxv3ZWLkobpFiPgUcDUqazvFqGYaAUXSU6YuvbffuZ1vqXlI3G0fW+H+Xtxn+RYoFQ4gX9qRAk1FronZRxQPMmKS8JL2pNVXeKV0zsOqEEr3RQk2ez9aE/xOXZFV8lq/3oH5yd3ciikssvTlstikTK7rzf5e1rvynaBORJfU/P4AwDRtVZpo+yxM/QqXlaDD4gjLQAIwkvv58p5CnkAUM5tCqle2FpfjLDbydM96webM88M2kvPj9l+w8FtuiWnH2PqdYmkvf2aigrynAYG9jK/6hlxP/C1x9GQVCvqN4sx6Cpeg4yrbcviKIK3TE6JqPqX/lj0ZrQLTbb7LUY1Fu2F+1T3DsLu1PeXj3qFcjTwwIPJNOsH0o5fJIXyjqsTINBMJxMPwoN34xMZ1mXDZAK6VSbOQD4xi9z9qm3Zm3rtVkbXZewR1cV7No7CvbURrLCmhZP9AzuRH8wZrUeLZJpDTIOOxokF+hvvhbLt5mHAZpFXjJ43YTReYfKClJWi9DR9zE1/Tbczh97bdomMjC+GENF01vb8EhPQhehEcpShZdOXrhMwkeSLsm06DhgeSHXgjDS3Nkq9A5t7zpW8pKnRSR+xfU8BMNFp3PQqe7zJ49xetFUriHaLvqYJvqbLRA6j+U1GovglGr4j85YutQXLdAVbv0ZWTmZRl4GjBE6JqiXap9Gd6k9I4zjqfT6nYFdeh1A+V93mViAmJRZD7at6PHLhJ9OT4MpT1h4Ln5UXfTLBe67pTLonSQynUKmNZvTL0ZlgAL0xMvINCvwnbw4vlHGKJAF6L8/LQ/sG38FIPKQpbNr0eCRtNLlzcBrI+mT0Tf3wIvPwJvVDM/cvhGHBGkRn1IIMWq9mPoyNY5zHKivrsT4nclUkJwMFMQOcq+eN6ro9TclJ4OM5TnYCjegT9btKNrz8JymNWeoUMKoTRdvODVhr3lOitmnlHXgsvrczXnWCnpl9gRpoGOC2S9PAxGnM0r5hLkdl39hE5FY1onAqkXDoF+7Ybed6uFK9fAhpJ+CYiiMVr5y8v8hKWxYt62k3RolLv+WhLupFMpAKHSd4OM7JVLKuDx+dK1HCKS+Ag33neIBroyKMpxRdPfNo6kTMQL3IoxgFbZ9YMP2D+vQVb1uydwPKX4fjNoCRBq4pJTocBhVN+KpfvC30o3lOi+h0M8KQUxfTXQtOP3cpUk7D0X3g98W7dvLkjYD3l7WxfFdqaGVHOc+ZR0qCqceCR/Xjo5dUXtdKa1GZaqTBE/phFe/+0Ip8OC4b3XCWnEzP3Wxx9RwlX3mkZzdq3qKXXrS0uFQnjxUHLfrSGUJbF/U4JELxIkwCaOunZ9dBVHH8qCf0O65p3l23pMy9uO/FO3xJ1i3xKKNglxblPU4f1t1WQmjyxtczTwXVvGJo0WPcvS4PKh+jieIR/06wJchL5/69Wxt5biFItY2e3b3E56tZhrm76t8++gb0vaCC7J25R9z8uBLd/YysgLKSZHvTsragyJ0GFXuQOioDFVpyQp8MpV8ZKhqDYOeREE86LJDD06fnmY3q2c3/TGwVaxA/RhrIV54QbV97G4NhFRPcuS7PMjZIYzrRTe1NdchXylWeUn6XRb0SHKmgYssN/GI6O94vkchUTLSTMCo1yL8Fy3wbPo05OX3JMilbBXJ97q0UeTybxKqPJXh5rMpx7WfE57yiN2vHR+L3sSXvoJHJnKNGPSqmchdBexNsNEFT0oz3ZGwOxHgqeOZZp+StktONbvuXt9m0B+09MCp2iZkcIBptxbsOFgq14Hujqnnr05eBCODJtVrHBg5PxyMSt8VFLWWTnfpFrOf3BnYZc9K2VWv5BBkDAKxycObE8Z2GTxwOLh7YiQxE4TWTt4ccxfS0vGi0Hcvp6vE6CqSaYhTkula8snziTCqqidMZs0nUfMYiJpP2s3ztfCwhgZyweRZ+7HF8TPFy+IizkNOXhk8k74dRk7B462kC/Ub37o+EpkWj7i+CQxKq5fYq36qJj9nNmFo7ZBIYUhIx/D8AR7p2Wzwr8VALPDMd+593x7jkZqlM7j2Ur60r2ghvePoWCqnM2KPC4pyOMQc4hHpflc30rsQYpRjds40s3WaxlFQOqIqyAjVgPQeDMVfvTdjU8Yn7MN44+qVhZKrjgquSbnh5JPfahzHi3y7DBWpQtBj95wLN3jRGwHg61Co3RM5XZrQNY3MdClLV6bSgU3FVkOW/c2BPbKStkwUbcm8pL3wrKS9eiXT69St20BU6SKMh8NFtOMhwO2SNCx4jZRlGUIYtY347cygxabi9lcXcoA55tatGavj+wWpvGEQ24JM0tp3pGzqrpy9gQbj6KLQsOSZq3tESRRPkDhgwfiJeAwOwp9IvEblhyUQpBch2YlS1Co4hmqeXrwZufld46ugskCSJNbwXgyyUc10LvtT9mqmQKsloAQ1ZshIuigFYVQ5LLINMgctGIX3JDgAPjJyHqwwbRS927erH4JDnfzGE1GY+yl/Tx8FhSkFO4eFvgiL/fVwz0N3sT7nO3l7K9rCDRYcyG6l8EMYKSe/1wq1tEw1JwX7+6G1sCnBYTCq9TiVOcCiKE6Hp/1d0BELVG5wV1aFtNxSB7zqtsB+vdnsI/+WtmeyCPX9Y9pt2wbfqnDP9F4qoszw3rFlnCNV0B8cXeBj2mrhumtHHvcVJJjEC3gJcTADjOw+9Ir7EEQsqUhTlNKKx3bhoXzP+Rmrz6GAN3fYZ5+PUxWP3OJRTCHNzVsLyrBTBqMyXVtxH94L2Jnno5A8XpDq8d42N03eo5woWfhN3VQ9H0OVegWMBKtoZ/feLw3DO+lfag8waiju4dW95et0AijVfbDFPdOTdu5TUnb1pJztYNohjRh0rXsspVVuBRaksqU7D8aER+LD0VG4XNLOC/NZ/e/V5i2TR16k6HqMQp3ogLENmkygzVY/zCj4eznXVPfOTdniE+iEx3dYK6TRtH+JdOSlEJajPiMPvxfHz0VeDoKxJNOV5DJMGGbkeIHR8ah6Mm/BYwlGzqPrc0RK3eRt3MO04NvYuNK6NWl//1W7vQXvy+HlBZnOU6d0swX1eCYk0wHdnusERLCyEJFOt8plegIHq3oMH51MK1J5RPEPsow+nDgjYefOydofWVP5P98q2AQ65I//W9YuOcm3nXfnbSzWmVgilDddKJAXXtugwGu7aKuANksg050RD0tHcpMehDdY9okuYCjsZFo6S3n3qJ+io0IfuDWwDX8Lsbzw2SztmJW0cds77E0YMSk6cOcUUPLOoMzgeQ79LTiZxkPmeJFyXBE9yulMx4Uyo08JEm0WwMdJTpl3soYnPUwcpk0iPovoQeua4YF9bKDKt9vJ9CUFjBZ/d9bmpIro8IIxVrG6toy1bvPsde0dGA3Il1hb5SD70jtFyvEozxMd1daHlekSRh/dWJLpBG3hcQCsc61FNKRcedV3whfZg2zYwsB6BVPco9C9oo5m73aAvwb8WUYel6IPGvRM1XNt4f6AkTVztJNo4WS6iA7uTzc6XgwzCrS9l6nMhA5ghiblMp0g3iE8cWsK8gaLJpSNzLjZCPDdj6v61ndn7OlnpO1z32u3L/zZt9PRYe086wwUI4+V3u3JmQ0hdscQyrAzVoULPSxlhHcp4BU8Pjg1qA/vh+a0xjjajVmkb1YKh5F76kf2cf/BjYH9dA2gWeh23yezdtZJMijk5Qu5JUyFHaFlCNrxCTn6AaYIxzx4s+fPR7pYJHjS9eHrB2Dmepjr7wjWD3K32LNzX2cUy1ELuPXlZXcGdCT8ahStNVBl1ZqOdPruGdQAMpn1kWElEleKx+1uIYqHlneNqLSOst1iVfwB07vGcV4NxYjyKo+tewrCIowqR/kPFiOM7/Lpr264OnGTyoYrMImeYv2QgxDBIZfKQRGEUUFlVaqTe9jjj+KpXkdGf9euJC2y4EDXerfi4YPKUYiESxj7S+MS8EdphU84IYwLfafVgNcX77HXV9h8jFav1Nayi3sH5a/8hgtjOY9EeUeldv8dykeIUezhZKgbXbrHDzFG7dUfT5Wnja5FRwVh7JuGiuG8wyRLlPZMi44KES3dj4p/FC/CWE6LipHLbkYYe8p0dL8sao9L5+zCoAnpebh6RXkNVKaj+FGB0W9hrER/PVcAA0pGtBLdZPAlWavobAvWkSQ1TyyYUXSXpucfPRxOmY6w9ywn/B0IJ1VypyWAV7ZtqLsrx+8CL4zKW/Q4HO3L81H8SjLdG2MgNwX/O/lOP7nX+ZucXBxhj6aYOotSfgojq3d6YQwLdX8P9yyMJoyiW188Fcbq/TdKV1mm6UkYIjXbOm+xnV77PlvzsVG2Zx87CK/usCWs9dT6u+9dnmYGImXX/rDDPvHLos1k04jsFDbzlViTMlBKQW6vdTz+Mfij2bKnfRmoDIK0XiTq73uD447SShl3WMcyjlzhfaqjTr6OtVJTeSS9UOIVvtYju6dN9uy776+2ux4s2Au/kLMTwfKqsxM2nc0DH/tJwThL1H73H1nWkOLA+UCHPRUI4bKjEGOxdb0dXPZ++k0O6E1NKJVREdhxcRMPFiOh/ErWHq3CDbAYwJ5tLilm7Fn+MeJ3QkIF4V/+doWS/up2r+tp2VXEHIoZXZc97vdS6dRQEqABBul+Qv/YwnhduIaCUYWWCo6y7eNbm+tUpVSD1hpxPXCgpRwHS8eBp3MDGDCKRWQYDByiYqq9oo6jBHlAX0rbf7poV79bWkMS6QAnzypDRfcbhopxgHQULsmJPkoCe6jkgQXFHDhP9c6zfzo6TGDs9EgqCcUeGcYB0qIbQJWghhq4TLvNa+Dr8g50y7DCjwiXyoquK0Tr85bS9UN/ta9sDrLXoF12gpKwESts9z7zrvRgsBiPIB0TFqqReFKGvtM9laBUvKf2GgBP9UorovSTTqAIiumCiqJaDp+uFUpN0RknvFv2V0+OIsaykh02fveNLYqsGKWKRLeO6LsHHRltFDpS1oh3/N7XJmxcXZFjTJhG/a8q+z278n71SGAX4jXvwAv37DNT9hI2pWl2/ra7C/aJ3/u2CD51m1m0hq9jJ2cYPgjdJ7MT+achQzvl1Q9Ap3yJ076VNZnLOKZnk6Wqpzkek6HUTF93+hw2WDw37Xb21zPweDJuygc/m7Wb/8DJAgzuLmaDwynzmZCmzbW54cZfsD9ZPKrmFMn4yNhW3n4r70tO4FIdCLZ+oI/0YwwsaqRFfvuYJ5h8MctbMnZjx01WH2yzscE+1h40uNr5bpljD/aJGP+wKLFiu7kUBpSoR45l5brh68CVco+M+viJOd+tsYaKUQqvhyD0LFkypmLU8R42lCLJkugmvkeKsYyGKs+5UYSznxAlE97oulcSYaGXcRZOeaShYCSteLOvjhE8nR0tUctL7QWv84Ywqjcsjz1UjGpn4SzPs7PA7rcVRcX1ETVMFdGxLA+XqPx3f9flBYiOkpfDNGB59PLrPos5RjKtNhemAWE8ijKtNi1v1wif7lUMeoDgD1mmlXlUGJcDkelyfVOWVDl1D8IY8WJ5xD4r1T15568eaR1G8WKFoKzLoytKv8UdA5muAP3wtyI6lsfqt2LlkbkuJwxpSzKtfbQ+OyGz+7fZ9F//P9vHWsVfz3iz+WNGud2PB9i08on/7bCxHGNTw0BZBqv05nrOC5qsAUFUCvf8lo2cu3w/3s2FHFvxxujJgL+9qtnMKmy0/MHVHHD8FJdOqLUBbe8hpgGX+bY849ueQywxYmGY1gFuY23YDXf7tnlHh51+AlOAjFC++bPAbn7EtzOZrdUieRewtDQdnD+4is1a69jteDoV6bbSrRTx+PryZi9YzGQ3u7V4U3xy8desmcMJ7zr0IRsX3OOmBgsYCiwhZH4Z4vfV2VWsk0gLdXhJI4d3cF3OIBUTDOAmXKB1OcWNxJX7UR3bYIKwkJdzd5NHcgY/ae3hwuizgloYnTGocgYTShhltHhs80pCR6ecBpNXzzSSJhbY6FR9J6g9nx/hb3UUCQxxdrmEdT7C9H1FL7I+J2BBFUb/kIPWnCVwKet09OEK0lY68ZiBiJtzGSr/iI56+W9iDAjV/sMQxD86xVzKaMj8AyYNRJLTwcjWoGHBOFwyHdGKzkyDG2EcUZkuyWdU7JF8j6hMby7x4pEAKo9bqlenTE8hv8HqsPJ8S9c6xdznoznKoQYn0xNp6/FDzakrvfjbR6Z91uwNl27kjQAjIdMeax/z3jQ+nLGlNc1sH0zg9rnC+7r9ONdgjQ1FG8+U9RNUxc2zSTRKaqVutGez8F4VNQ3LPHHAWsjcE9eYv+tGLKIF1F196xG2O3wdFHZwIsVTrH7xtUyR48ViLjLB8iGdxfYIZ5u5blur7rVxjXvzWUs5ju5NGPeXlifUMwW8eDRRolZxOqeKo3XW2sFH32OFQ7yTWMdcSI6O84AmksJEWbY9aMXtv2FrxkLmQUdzMF4DtODEZvbg7UucbA+k3sU167COhOgyMA7cyZG3v4PBaM2odQdFFPLSq01qTjPj9RJuasEtJjhCJojKVufomIhG2ke9W+4vYYQegw5gYWOA1T+TQ+XeyXUniwwuR2F0C0/wMO7+CTsP1vFb83XcH3QQRozUhhe5LbXdFnQOKk9hlICiNHf/EKmQYoKthoLRtQ04x70c23IuZMQ4GoqSV346w4rt+rbzR/ARbeyM38HSUTSEbzh7KNH4VvoKlLxb7A6PDjJoMt4puualvI3kFvAN1eAvtXNmFhj/PZRxKeGh0FF1g27B/r+wr+P2krwMlobKLJJpDqGUTKtDczID9kEFsEimMQ6CvbexlfSBEsYhyjR6xxv1LGT6HW4UPShoUSJ40dNutOIhZJppmI71YByqTJM5C6+9MS9G95yKDA6HvNAWHTvAKJlmE8OQZFq8GMqcx8vHrWZ2SV4G284iJm2t0/XbVjMGQ6YjnaFHgwrCqAHOGLa7vQ3xmwBkfh9Jf9erXLU1S2wOMe22/1ayGgaZ1iaBLJsvGt9n7cmxdgIvVp5RuI1dmJw1OZqdjPwby4G3kzBqpkJyneV1Ggvaex7fIc+QmxpUE6ATivsexO79KmNZ+Een7w9SrD0WyOf3/sQ6dr3AamZc6srVsRfVGE06NFTqxzWV6Mp/nWcmW+tEyB4uhw+L1v0wdMl0OwfCFvb9EjJiA7gNUFGc4/dbPSFgIWiGU2y3f9Jyo0+hobRvkBYgaNffPqzkV2bO5RcKOpps1sOKAYKIgtp+1LzObO1KOt6H+U0n5NJXTDSAmyhO974o8l7yKjrfM/gdtYK45EiCMBJfJ7Hte4jjrJeCdXVJGauOgw3UWS/pHdcExstQdnP4DUYHbxAYlVCGwI47MPHvgnxSnGDusu2PEKgwkL64hn2zMOmiV7IjkdGfO0xuEMaBkxSlo47bbuYlUhiqbIigYUofvo44CKPouMJs7gV8LsGWxjh3xsFgMILFGan4zrdhRK+m400yQnO8KCYYTBAOPsF6s8UvYU/+k6k3mJ3hdqTtTFZuhEa7dMA7G3/Bvv8/gXEeD6DrYDWdw0f6FKPxk1/B9P95IT6X35FiLJOX5rXING2z+1EwwjtDlmnaRacdnoxMj4UnhyLToGEIz3wEHdpKPpz2zFwCN0XHwQbxIoOHxumh3qmbzW/ycyQcBB2VUAtTtv0emb4T8qFvnLEPnw4qCINkehWH650ZynQNPepQZFr4NIDYehMy/UvwzaAM4RsKRtERvpl3ITL9MvqbGrKL6n6EFZe8lAaetu0eZBq9M2wyTX4nItPTnxLS1RmGR9rOJHUyTZ3bdyHTGFdb/gLGOTwQLw5W79DOGoCktsOLL0emn2I/4Pfcwjc4omOC82Kp31bTb6cJJ1GSQnR6Q/ir6y+Tbs4ALB5aboX1XwLfXPLPd0UYzBW2hJdeZG0b/ptXfs3lVVDwJINPGVk5HTXRR+gyqMojlOhEW+d2/83aN/wX64FPBGNHeaTj+hoOUFBFIHYw1fx1X0BIZ9KpMa0nJkF42QzPdc7O4fAGNrZzr4+gDpegQwiD1jXI/Cc5XOXbGBqncFcNx6hosEFZa69x4RFeOPivllr0X+7dhO6dTK6jPwyu8jJLcTWy8A88bIUV/wa0e9kDTIcm5hqyW3g6pyv/wJIrPMsu/DAn785EpjCMFAbqPXAYkRA6i8LuO3Hdvokd3RCAAwWd4htgVcNCe/5V4pM46wBm5Zyr9Lwr8cA0IrdtYcQBY8QIl5IDa2Hbr7DZ6CCrTwAzo0opgcFidO1M3QMwbnovzcHCxxmvJV8pZNGRZwPN2yli8OAtKG74jvmb/pV2Jl+lZ4v8gPMJKdP112FE2fmzOcviMl7k7PGm9+eTn+6h3QaKUe2swMnhAd6C5lVf4tiTz+BZlLwon9JzxTnS4DBSRzyK3vLLeeH0DZZuPBd8tM2RdBqdGJEXXPQtyz+Bi/57JYzDJdP3cxjSv1rayTQDPbWzk4EBNnQprpPp/Q9Zfvl7qDeDprpZ5KNO/EiJ1zP+TLwQ37XUioRVnfBBWBEZH4RM63wgGVeFnX+19uWvhwXhzSxzIUPGqAouYSD2GQ765cT2ue9Epjlg9YhlGqZB53gMFHJbf2G51a9GphdyT3JOXzBYOjpeLMn0xqssxeFM6RmvQX/obQ1HINNOHKR3dNQK02Prv22FTejvOuquc2WGRaanmq15Jf4BDiR2L6fGDEGmXdv1ZIsKv2VIODLhMZdMF1Z/0QJ0bdgHDpdM77PaFRfanem7LVunWSX1q444FRBVuOXkBZKpD2xdb7lVn+cd2feia2eGvFghycBv0Q7wi8/hMxNhIAAAQABJREFU4M0r/9PqF32C95aeCA3RFYOQac2O5A88ai0rP0X3zGCMQ9ER7oHDOcYxkZwoiDD1WNybIYS8TXJbhyFquhZWx7W60Vb0RN88LUXQFAetZn7zShjrOjrxGxip0Fk4ISpPM8hrzblrvVTrchTyRzAOPsjb6E8jM3biOaXMpePunpqghJHbOlEXQFbc/yCbJ/8TA/Ah7L65XRhLdRkkQpKBMX0KrvXvW2p5lVXPe7d7h6B4y53LoIwPi5GHelUHdc3v+JO1rfgwjEXiVEMJI8+HhFGJhfFkRqifxRRIWWY2LznVrg8ZRs5AOBxG0tPGeuFvwFqzwtZf8145lFyAV0jtH7nVh4JROGSkJBdzet5VnGFE9ae/kuzpNGQEO08RUSpqfCKrbGHk9TsBLwrPb/yR+euvJBPyU0O4gQNxFG+woWSMB94CO7D8KhsNptqm50EXXskCLzpFW7GdKRAMIUT2mGCUFZC5g2v+11p5jYandnE0HAq4UqUkLwneZZA/aAce/w+rP+ETlh1/LveqwjKcwlNcB7SUSF+iUeknSthjuiF/cAUG4Bd57/p3wDicMk17JjFUmx/DEESm51/Nm4Ek01rwCn5HKGHpA6NuM6CjQkxzPIBMX8MA5zH4e1aJjjyK6sLl4EJJpnfxrjvWA9bMv9LJtLYMhtNI5Org9YWRyQ8n02xl3/FHa13xIcQMuurcQacbSTckjErMB94J4CHejmfVs96ETE+F1ejUI69gpcFTxItOpjH0GYx0bPmVta/CSPUYMDnPrAyDIWIsl+m1V/ImCgag05lC0qvFdGaAG5SJfj1pyC3VTVXUAIbOO+Bcso4NP8DAuirUEZLnYZRp89FlKzEEoV1qynMplvOdHC8CwsHribGET1DRgTLGfF4bk1/7DZZzfTbUta6dFWGIwck0fUF+J97Fa4GKLPK6JWekHzbrLoxhPw3Z8VzlVn2B88a+RTuQj/IejgDdvNR4jlK4yw498VGrW/Af7t2tOlLCtbXKOBwd9cz100Xex3qftaz4JPvwtO5qcgljT/oPB+iRySM5pnH8R5V1CDmwNjw4b5o0kbMs2bbput8Dtj+5xL6ePdOmcAdRIJQaSwIL08uT4TElqHegFffcjefqGqbefo5xdeLwNZorVyjpfPU+rPb1rNP+IyfrNrKEASFNj3IYXDSHD4wKEUYpOBg/YCtqYecdVlh5NYbaStKp0cJahQmG4y8nKqemsBzrbl6C/gRlTAAjB5hmaoET2bSiYYQRxhMdhREa+2x37dj8M5QchoumBd17xoRxOBmLshNgPPBjXia/F9crGHldkl5zEI7WVFYJo1PMOm9KGOWhKuDNWG/5Dd+1wtoriMeoz3UgJUXMnaEHlCbtZQlenr3324yIGLlmJ4IPjHqtkTBF9HOGAr91z/GiDL128zEK8ut4UfimD0NDPFcuyHhT3YYalIdG03RKQZbZva/TaTZw/gt0xPubwLgLMRKtsxPjWh1ZJC+FZutgivrAys/jubouNK6G6rnqVi1hhBd5aWtAWbldP+Y3r+uoQmbAGA42SrSIaBnJizoK2jvI76Nuf7NmlFx+/21gXER9hkkRd2KlrZ1Mr2H92Z+R6fEofF5nNACZFq8G7TtZP3o7Mv0BPOerkTcmR0ZEppuQlb9a4cBK6DAeeWkAo17dQcfvQmWZdtM2vA+xffOt1rbqvbQFfKN1rw7jcPBiREi8J7x2p7j/ZhYE87ok5EUYu2Ra8SKMlEtbC7v0jgeWYss61Op3rWPtO3hGp60Bkwy0YZEXld0l0/6eG3V0ksOo17QlUkzliveiEMm0ynZ6BzljiYiMgo41X7PC5o+GMu2SDK9Mh/XGu7P7emxTFpCjGz3xYgpDXhghoQsRxpLh5/Q3B20W9y1l0PlfvKfzK2BkwORkupRmyF+qcNGqUhNt+6EVdumoVptd38huO3iKR5r2uyP7XFvKeq9JGJ1QPMRc6l/0Mnj10wVkOr/y4+j/31M3DOlhlxfx+DgMzZUMyv4KHcYzDmKdmNM7lfpAgS/xIjLt8/7h9u2/ZzBytds16FHfUO+o/v93Qg8Di0VxNFCXgQVdqOxeRlv/0zbKJnF8cx7PhaYApXxd4B1JesljkWMeihtvMH8t7mlNqCY1AzzchotKFIFhm0Sts4b9HV/DvbmDe+roUPxOaVQjDBp5gxEmCzgBXa7Q4t77rbj2y+Zv+BD3R5MHHrthZX6y6wzCyEti8zssv40yeRFdwDsBxcjyWsgD5BSbMDK68dnFUWR9S37XXda++lrLb/1v8E+jPvK4DaeS6wTIhTBOwdBcZgU6eD8nTwAQaTdnCPISVRnOwiuDRS5v/9Aq4t6BArka1/d3YBC559Umw6XkHAT+KM+SJhPGQ7ezCPNH6HumCoVboyRNRzo6IrDwKYek0NluBSNrCrb9EkOfjkKbLFIYBQ4f6Vy+fA1LCHnR0cebxGjr+9a++25YTnRUWTJuODRP8qKOjH8ydAptmy134DFr3nSTHVzxOn5vh1/nEF/tHGlvLoclhG3jucPMqjCyvoWhtJKc1WFp6kOdsl7sGsk0Xhnei1do3cj7ZR+y1vXftJbV7wI3CtMpuZGQaVUUesno4IA4yXSxeZfDKHkRf+kl3d1leg9G/gYGdPfhKfgSuufDxGfghQdRvDEyQe2JF5V3ruW2S6bRN50yzUnsTl5Cw1SdgXZmFZhWze2601pX/afltn2R9NOpzsjKtIe8+K2PWH47Mp3HcHEs1SXTCa2PdfLC2xM6tjPlu5r6/B5v+dV0vN+FziMp05ILgjAe/A2OmJ/ivBJGgaTdWPAf6sYQY+Bkehvr7JejE39uHSvfxgaLe5HphcSXzlF+4vHhCqFMA4JsJ2Hwf8/8PfciKxpYhuU5eXF6hzgqu8AbQPBCF/cvs/ymH1px9evpSHeDcTbPR0JePKtCbrcXUnZp4wSbXVeLgYUcA0XHNtxhZ9pSvKOTU5wez2BOQQMlH5kuItP59f9LP/jukHxaRzmi8oI8cqJ/bttXMeChidbXVpRpjpugny4ycO/Yfb+1rrnO2jd+lPgYuG7H8kj1gRQxgoFjGhY58RNbKeyF0e85eYmNzWScVVyFMK45tNvOXHafLRn3PGupmY9uptK0pub4AwwXa1nKGoW/hB2eG+GKEfUZ6SDPD6MsvUInv5l5bnYj1T+FnWczUBIoa4KO/g/aNjBtcA+CeR/R6aw7O4qSsI8oTAkh3r3CKkjSzBTy0+kDTmcnRBMyHCqWAAH1tWbt4J/oNBgdZ+hsXUch4RzuDrdCZaVM1FGwI0WlJUZfbB7rGrzsZDBqFIuRyim/fusqRjy3oEx43VEWo0UGjoTlaGCUYCrkHnFQE6PYBVm7mJnsSfAd9NXUJp2F37IMY+zWUK9l8VpJ64yYAgkhhX+l3WS00LF2PI7dV2vphpfxDvH5kEnygjeIdTvFjm1WaH7Ucvt/4fqURIYRrt47cxQxig/93GqwzYMfn8F2anYlMUIHCBjx/NFZFNj5VDjwB/gQw0bbtl3ncjRlmkMP81uQ5zOZ5USmqzBM9CoOERv8kmmf05zduT3pJkRsAhjFi0dJpvFEB7nHKa7DkqPOQ1xPZUpuZqdM++rQWlbgcbnTybaXmRsakEdLXuQp5x17Qe4hNSsrDJ7PyRonhTLt5JZjpF2HthLD4MfwbGtJpiOv1dHQO8KIQd/xqFQkTsyXM25eiP5rRKYlS6wvwkj1W54A403O/vKyMv5o5qMpL5reQ6atCi/W6JewFHgeGMeAA53JgCBApgNkOjjAhgAFTaG79/iMnLyMZtp+aWub/XjBfLtg4kTeGVvgQH4N4Xx7/8asfSs53xZnG1gMIplm4Ek/7bc8SB94J7DpG1PzACqjZeQwihRhCPvpoLAdvbwNeTmLSZkns1JBMo2jhKCBZxGZLh5k1ufQ39GZU2EIGX9HS6ZDpMP9dwAGVtLWNDdjYG2wkxrmW/Ohv5nXvoGKAwWhsNEvckqGbQNu9IFEcPMoCGc5Jdy0G4pBxzgUWJ8Fz7gBEXHUv7IkAay4QeX10ojiqAgnRXUGQDiMEIzFmc7YUj8Q9QXwn7m3hM8AYxX4RMOjwfidALkQRmjo5sn3Qsf1YZ+qphQNJSNMx7IoIYzndnJEFeD5UQkCIaOOuYW6RZAJgWXKxuky0bD+HB4z5XuIaVnXiYiOxwIjHiwUQ1BA8WL8R8tDHInhRS85E3YYCzaIeyzkRQIhOsorWdxAW2OwRGRy7SyMc5EbvLxSwk5ejq1MO/sugiBWPS5kWjSEx1i/6EtuD5YMe6ime1792bxCdT2i3A5gCHxM9A4YxXi8qzAoCgs/y2RanZhb2yLZPyYyrcaUvEAfdmsGOleuHKOTl6aws5XXzWGMGIG6HJUgoQhl2gpbwLcnlJcSHUNenAlGybTaWUbByGLs28BK2PvXF+xbO//AEQ7bjZUVLNUB/ugXwwNtLK3ZVKYbRxYjJXcPZf10EPXTwkdQ0zq1dEz7aQdlWP/IROoniKlRENkm1ghfYxmd5SGl4jwDfGXqrLDhp+YvfzPbrc8g7lFuNKF3iouOQA2oxXpYA527PhweWVzqKGCwYxKgiRM6BA9F7GWFUZoD5aLgejdh1OdYYpRBAiZ5z5KnciXFwm9HQ7VrREdoeUyCpJFP7jFLzvkaI6ETICtGdYSR9WMBUwmFv5/LKFJrH44BLzoFqzZkNIm31EtPC/GJrs6gUh3EixiJxwQfxbp2BCNazUvPgVZMXzoNJ0ildo7iKPqxCD1k2uslL9DxWMu0MLWzOH/GOy0781L48otq9pCGGPhaslB4+D0YXn+CxhgJRz1I74jPAMV75bzUqVyXZNrx4vEg08JI/+Iw4rnS7EKE0fGi5EV6B93pfvPzqAfxWijTlp5KWzJD4nR3pBuPB5kW4ykw7X/CNWYLOMOStmfi0N3V2qf8uu9boGUTOgX9WOieMpl2i+qRn5COgiMais7Hsp92pBrWPwMwsErlOWXM4l0OYnM7U9RwMLzHPK/mzcX7clAe26AGkpFAkO44LoOUBR+F4xKjFJ7wHa8YcXmL11i4bdqBxDo6N13teJFOjQXw7rlY8ZjSV3TUSFYdA1/HZZC8SLEd7xiPU5mmk3W8pkFTuoFXkMCTruNFL2qwp0N3nU4UjY+lbhQvHs8yLeEQRg3c9CEclzIjjMe7TIMRY4pTccHKmkFHS+5pgb6bHeGGBlPHlL7/F/ppEW7oYeAGlqxL1rloAXQoCKUezOc7MhiGjifOIabAwCggntO6K63TcGqEtRxFFAdb0kOlMrBs4lgxBYZOAfFhyIuhIQUval2d7rmerKQrh15QnENMgX4oAK85vkMvYrBGutHz8ba6wZSSH1Prqh/8/1iPj8DAUsVpvMg1qmu1k/v9j0WUuDb/VyigjqvEk/Ci82TF/Ph/pfH+gXCW6cWI/zr15D9QNeOq/B+hQMiP4YwS186e4jsOR50CDPnjEFMgpkBMgZgCMQViCsQUiCkwnBSIDazhpGacV0yBmAIxBWIKxBSIKRBTAArEBlbMBjEFYgrEFIgpEFMgpkBMgWGmQGxgDTNB4+xiCsQUiCkQUyCmQEyBmAKxgRXzQEyBmAIxBWIKxBSIKRBTYJgpEBtYw0zQOLuYAjEFYgrEFIgpEFMgpsDgDCy37dP9gYLRd0zMmAJHmwLivYj/yq+PNo64vJgCZfznWDLiy5gyMQWOAQW6sV8Zbx4DKP/MRR7BOVjRORrhGRvh+VdquNLvf2YqxnU/BhSI+JAxgjtzSGOFiEePAZy4yH9iCojvxI8RL+pn2fU/MWXiqh8DCkRnsAUlHRm9eig6o+0YQPpnLfIIDCwpDP7zZt1Ap2ir8Zz3QFnoOg4xBY4GBcKziaUr9Ob48D1lIS/y4hLuxbx4NFohLiOkgLgt5DkNNrv0otepH2X4i0/jEFPg6FAg1Is+fMlbLUp8GOrGLn//0UESlzIAAwvl4PE67txuK6z5unW07eAFp3toKRRKindw1c22oHWDeVUzuadXQ8QhpsDIUcB1Zpn5ltv0Yws2/cT8lg28IgdFkkxaoma6c2Z56RP4TjgWHTkkcc7/9BSQvquaZcW9f7Fi+yYLmtfwKj1eXCzrPzvWvOpJ5uV3877WJkx/GWBxiCkwUhSI+CtpxXVfN9u/3Vrye63DvaO1yhJ1cy3RsprXBs+in8ZJMlIw4ny7UWAABhbKQoqk/a9muw5YIj2Pl+yiPNSBFVos2Hs7xtdDvAPzENYyI7jUBOLr7ehxE3ajdPxjaBTwePO6pS3f8aBjrao9P7RM1SJLZSZbIpHmFYR5K7Q+armOJ6w9v85xXzp7GmXq3ZnwZRxiCgwbBdCJHi+4L+ziVZibLHVwh6U6TrNkdiZGlV6y6/M6uJ1W2H0X9tbDBmvybDGnDjJQjV5GP2xY4oxiCkQUgC/xlib3/9pGFZtsQtVYXp2dsGKxxXL7f2tt7Q9YW0ebpTPTLZUazwA07qcjyo3Udz8GFu7toAODCqt3yU8sM2qm+VVNGFm14MHpWMzxeKcVWzeaf3ClFXb92nwa18ueyHNeLunejK5Gj0NMgcFTwPPSVizso9/aaGMn/YuNHn+21dbPsWz1VEtnx7DcBWPf9zG+9uNh3WQth9bYgd13277tX+XZVEumGlEmucEDiFPGFHAUYNDooTLhNR9DPzvmuVYz/n2WHb3A0rUzLJWdYIlUGl4LMLxardC21XIt66x93yPWsuN6K3Zsw8Y6BZ2KxRUPQGOeGgoFnP9C089R/6pvfQo2ftHn7VnVc21MpoqVPJ4V8jnr6Nhlbc0b7OCB5bZzx69s/97fWgajX46SuJ+GBCMUKhhYUYNRIl4D87czKnuGWeOLLYmxlVDDanrQPa42r2amJWtnWdB4rqUmXoCR9ULLb/wMjgO8XimN5tSxleXpUsZ/YgoMkAJMTxfwkNY1vNAmzfqyjR53umWrNPpi0iX6uCUuSTxaEzC6JhLnTBs36QI7OPm5tn39t+zQvp9a0nVssZE1QKrH0XpRQMZVBq/VfgaYSRu78GtWO+F8y9ROxzMlPRlOAgZ8KyTSoy2babCqhhOtbuLTrW7yRXZo863WvPVa1CreLLfgWJ7VWDc6gsV/joAC4kW6bhnqcoB0BvFewrL18yyTGI1+zMOWHkZ/jdWkZlhd/UxrnHiOTZzyLNu5/U+2Ye21VlA3nVLcuJ/uJOMwXvQwsBD2XtMpukfDFWkJTRU6xVBSCrjCFdwX95N1czC2plmSBu5YdQ1rEh41S08mgkZscYgpcIQUKBlXjVPebdPm/YtV1891nqpCIR+yocuuq4MKYESxqj7pzDhrbHqO1Y6eZ5tXzbBdWz5vqTTeA4uNrCNshTi6KAAv+vltlqlbbOMWXG01jU929wIfflIv5diwixelFCNeZIGq1Yx7Eh3fbEvz2b/q7fiv5sPD8vKHOjQmckyBgVMgyZKIg8wsNbLudBEKjzXRMrhKXtHAL+C5kvEug0tfMv6DkE3pp2vRozPrptuoUXNtxeOftJaW5ZZOTyJa3E+HBBu+v/IPdgUMKOcxrDSqku4oN65cKnezdJ8bReZ0sZhTjedYdtGnWQBPh1bYywMpkjjEFDgCCpSMqwlT32czF77Hqlmk6Rc6UALwaCcflnVoLuuQH/Vc8XwWHFdj9M8g/YRp/4Gr/CF4lXUwcYgpcCQUwBAK0GOZuiU2/sRPMy14LvylJRLyHsBznfxYnmm5btSarDY8CQ3WMONVNvaEG9CTj5f6v548XJ5HfB1ToCcFpNtgHX+9TVjyMcs2XgxvbiJSma+kD34M9SbdNHwr/m2ceJ4tOvlaq61bhPG1r2Tw9ywv/j0UCnQZWHQ8QXGFVc24kjVU82nBZvKV8Jes4EpGV8+SnXXGiIxRXWr0yZZd8CF204wmC0Z48Xule1Ir/t0HBdyaq/wGGzvh9TZt/hVM/U10SiG0/gfaIREPfpRRlmFtzLR5b7WxE9/EguP1KJJ0HyXHt2MK9KQAfOQXmWKut3ELP2xVY06hcyutoQpHoz0TVPgd8qI8C+K9UVNfYGPmfAV9uwwejQ3+CgSLb/VBAQ9+8QvLbNqCr9hpUy9ExVURU4vVB6oXiSm+xUorwtcNY0+1BYs+ggeriqWF8qYOPJ8+IMa3yygQGlgyrljnkpzwdqua+iJoXEMDaCqlZH+J5lw6w7gscXSp+ymeJ1zblBoIJZQac4ZlZv4H9tUTJI47tYhe8ffhKIBR5LdiFE23pnlvZ01VE8aVpgRLrAp7saa9xGtd+YjrdD9Z9gnZUbto8patmWJT570NY20O/WUL/Bh7VbuoF1/1SQH0lp9/3Bpmf8Bqxp6JcaXBokKo5yJ+C3+FT6K/uqfnoV5UErwPdGpeImujp73Eaia9i7HoUu5noyTxd0yBPingwScdHUttYtNVNmn6i+EjNlQ4fuzet/bsp52+FB+WfTyY0m3GgB/HjT/LZs37gOXzj8Gi3fPqE0z8YEAUgOSoAY2s0mNYLvUCthOP53crt0tzulIKms5tDayjwhStGpNjiGw3Sdo7n3NTC7PoxFK405NjX85U4e5SngPCFUf6p6UABlZxlY2f+hqrG70IY0vGlbqqUEHIPd7cBjsyO6PrKBRhtxbu78PxGn0KYkEiKL2OcagddQL5Xkaeq0kc5hmlj79jCvSiADowKOyx6nGXWi2Lg51R7piO09hgHw0qm3EeHED3RbwW5aHnMqz2YssfIk6Jhd1FwHrWZHac1Tc9n8Xwk9C3UpxkFoeYAn1SQAPPnGWzU23K1OczAB1Lv0vH6waeZYqQS5aodgaxayt68SB6UZ9DfPTbLRuEKWVkia8nMF04dtxLuL8XXo0Hn50EHOJFQp6lIL/MkmNeYamxp4cWsXMhKmeNuAIOJzM7rcmz8cz2FcvaUkpDDZXBy72E54316IroufKAIRLs7EpNvoQyNE8cW8dDbK9/8OQ6HDTPsQrTbdzkC2E/jPySFQWrWSsdVRvKY+Zkz5omsDumrE/KwqMzuH/q/NJngWd11eX8KsZMk++zWOw+h2zLPLT/4FSNqzdYCjAdk9tkdVMu4UzlyehCmK9kKalv23jIbPJYsxOmelYN/0W6UVH0fBuG15Lpni1EN+b53RmI4GNkVY85DePtEuyrZSGvd0aIL2IKdKeAPEv53GM2rvFSN61XhH+igWe3mOjEmlr6bW5KdaawlaahF0+c59liPov4TJvkWQ260dlW4kX4uqp6ik1uupRzBDeSMp627kbTIfxgiMaR+jRCAmH32M6p84RkWCmof8tt8m36K1J251v43OvbhZ8v2JljzDqIVk1j3oOS+cllKXvuOWn72Z0Fe+ONeZuPsvHJwjmxMLSSdbM4SfY0jCx5xmQdq4w4xBToQQF4JShus4YJlzI1OKGkAWAZeElsOarO7G2vTNuTTkvZtp2+ferLOdu5N/SsvuCpCXvpczKcDsIZRCUWvvGmnP3lgcDGYPjLw0WG7oiH0eOeY3t3fB/+nhoyaQ8Y8c+YAvIoBX4Lu/5O4vy/2fCgjH/oAi/Krm+Gn656ftJe+VwGjdz7xs05+/xtvp3IBEAOO6yDuB+4JGnnPyllt/21YPffWrQp8G9khIkXE6laq2YNTOtOMpSydHpXhcQhpkA5BeRpKnKcglnDuFMYILKEp8AAUYoxClwG+cDSYzw7/6KkPXArfAhLnTTXsze8OuMMfvElL7yw2mrPfntH3m7+VdFGSzfKEZZMWf3ouVZfvxAd2ub4Pe6nI+IO/hutQUOlF3O0wgJaqKzBlCeynqz3bN9W35qxjcZybTSiQpaGumef2dufnLDTF6csk/KsgfNHW8r1gxpdaw7wYiVGPQWmWEFLauoxDjEFKlFAbvA9Vo+xn0hi7Mv4d6P90GB/31vSNmdWwtZvLGJscSwIPZ06PXm1Jo8P3d1f+XbOPnN9zr7xg5yt2RRYLWtAncFF56X8lG/dmFO5hys8npap1AjxPVGAgWBQWGmZ0ee4A0Slx2T/aFpwPTvk3/nCpF367LStWl80jsVyndZurCc9X8c0zDt4fjYDgRt/lrf3/7BgU9WRletGKVf+Z+rns4B+CbzJnLczsGLyxxToTgEZ977fxrTg6VY/al5Jn3WP0/kLHq1C50kvanapqspzBv+Pbsnb9Tfk7LEn2LABv26iT5fBFnqxpCOLxJ2AkXUu6Vahd4kUhyFTAAOLeRdOuvaqp5GZxmZdWkCDqnR9wnY+VLT12xB/Peae1hZ00HhjGJFd8eK0LV9btAdX4PLO8qDcFS6FQQsmWN/lVc/AO6FRmjKJQ0yBnhTQWwblNUApcHBtIoEPW8wW9kNWhTJ46LGifeTzHfbAo3rheGQ48c0P8d4hrPumiZ499dSEbdkR2JZd8C8Ohi6OxsAiX+WvckJehEfjEFOgBwUw3zGwMJ6qZmAAjYHfxDBMp8BMDXjoN28L7Lrv5OwLPyq4tanix1FJz/ZgXL3oZM8uOjttT6AXRzMQeMczkraZ+701H0fa8DYCLzURJpZ3v3eMHrDin/+UFNDgsBmDaKJVs+lHoUun9SaIxgLiRxlaazf6dtNP8/bgo7796X5mo6YmbA9e/7/cG1gNfBxmpPzhdd6KUV0zgyMvGbHGBlZvwg7iDj0a7sBEPUYQ7idH7e4djvQKnmzLRMuneIyzyh6hkT79vKSNGeXZVd9nITIN6tbE9Gx5MvCSGZSIFmhRRLlbcxCA4yT/2BSQYkhl6uBJWJMfYifxldzb37rVtz88GtgoeVIVSl8600WGVNOkpL0Ir8ILLkzbJ9+TtdMXenaQRcbydCkoP40G05yyfVgNFUaP//4zUwA+ke5LpNGNyS4r3RlYdFw/uNO3j/yyaE0sl4j0npZMrIffFs5I2LjRni2ZH3q53nt5xt73kqStOIDB380xEFiS6R7p3yAgYRxiClSkgAygg6xNHeWOU+hXeaEXnR6F1/btZ6ZpqW8dTFS99FlJmzQxYX++q8Bi+bArjrprxU+yKzFFPy0/SOzdr9gQR3zTvfkm7KnUW0Xk7p6PG7xxy/VneBIO4M1+zryEXfTUtP3m7oI9cZ2PAea5uVxrRmmUGrh7LtEvl0v0I/6OKTAgCsgun876lskY9OGUHx0bKcWxo3F2PfiYb7/7c94+eV3OPve1DhSRZ899OsyKklH82K4fEJnjSD0pUEFdaapvKjb6mXhLI14UfylqFparZ0CqXYU33Za3l3+o3ZavYe3q2Sl72hwMfnZwRQZ/V1FKWVn3dsWJr/65KRDyx0C5xBn9EEzTgGPg1T0HAnvymUn66MD+dn/RspHDpCdRK/B7zyjx74FTIOHxGofAP8ROFo2goi6rLAMILgNLisQpExTEMrzZb39hyqZPSNh0dij84q6sTW707KQ5SfsCC94fJKt0yWugni1gi3xQ4KbLnoziEFOgDwqooyrkWuC5cP1VeTQdE7KP40LEhxpxdbCgvR1jX7sFf3+Pbx+4Pm8bmLr50M99W70O78KkhFWhSMIF7uoANRL0WWPAIppYkZSTNr7uSQH4RDN2fr7Z7fgr5xexjnYF7kYX6pWr8moV6Lh2sbL9EN9VGc927PbtVw/4dgebLH6Lx0BrBmewb2M//OqMfddTYqDl25z+9TzNIMQhpkAlCsjzPgrj6BBnVYVr9Q6nvqQf24imb/HaATainXFiwubNTti9fy/aLtZOy4PVueOfIhWvyHFNhUKz88iiZSsBie8dIQVSek8Wb2hmKdYWJm05k6VckygzFEYK5aDFwgW2Bk6byXEN3H6QxXI6oD2Dhey5hlTnxeiMhnK6Q2l1xVyun9tN/hvCh3HDOcrEf3pSQNOBMqo4T611PcrhTCLAXKUg3qqlD1rMtnd5CDRlPYWjGjQi27jL7F2vStq4hoRdf1PePndp0ubOYifNIwV3tMNonZsrpiRz32+39pYNrvNExXCzi1ujsuLvmAKOF2G/QtsmTv/fx7R1IzykBaahnkv/f/bOA8Cuovr/5/Vt2fTedtOTDSEJvUrvIEhTaVJFBBUUFRRELDTBhhIC8kNAUVGQLk16kZYC6X3T+2az7dX7/3znvrf7NiRhQzbBv7xJ3r5328yZM6fNOWfmcm0Y4rJ714Az4jviWd27f8AWQIvLV3vWo2vQTtonaLxu1449MGyr1no2jUUX3ZgMSPFJzIrik03LkKMsI3SbOxeUWoHyNocBGVgd2N9qlTU1LmclNJb6lgrirLgkYIPZOiTABEB7U67f6NmX8F51ILXiP++lnQEF+eUV1R9ii4a1yN7FzuvlvCp5dxR+fjIMYGBhyqamWmbjLHyJ41rpG+W5JZmJ9dmHJZxdsbXYX+OF78fs5ckpu/B+rCuWHrvXDM4we/eRgNtU77K72MZhUMBt4yDdFWDJghdfbZnat8nDGk79PFcoBQxsFgNa5dfF6momW6bfseQcdPKVGjlWUj1HfS5ku48JkTgcdPu7XMzy4+qlGfvt/Ulbt96zQ/cP2U/6BE3KbmN9xh57gVwDaFjCRMpMQkSzwLqaSQgZEpddrZsFpHDys44B5FQgPMIStW/xitVVJLv3RHT5yqkW78ABYwJ2yuER6wKtib4OR0aOHRGyPz+VtL++nrY9d03ZF4+J2jEHetaJe+5jNeHM5YS5yzVRFXJ5jgcTG2dbmrdoBEJjOCcDrlAKGGiNAbf6mcU5ifg7VrdxDvtg7dr6huxRAO9GCrnXf0DQrr40Yu+849nfHk/bIPZh26UqZO9PSdv0OR7yU96qliqcY4RtGpoaV1ld7RsYWCOQuwU93YKhT/4LA4tkTvg6tX6SRfp8HkZnui/LSH85H+4YtBVz0vaNW9PWPRN3ym0Rs7Fx7LdRhNGlkuppdsMDSbcMeTzGVZMMK/8SA8U7j+rwSGz8DysJd6NSzOpCKWBgcxhwYZketmHNvyzRdDEvamYXRykdiAk7yd4k5DJvgWeNEJjChVqh1UhYRpHnB/+Vsckz4lbFRqParfiDORmMLFzh7JnX7AqH1hNNa6j/WcieWaBi34VSwMBmMaAQYRkG1rsWR37FOlY5OpQyKsZ7OmOhZ395EiLkuAY664BnKszqn7nLCFuzMPuqCUnbe1jKLQL6EJqdTei6D55X37hSg0qdaLSmdUwm0GUh7e9QUGqbHYnCSX9yqG0XatZNYSf344gUSSL6etrhRz+RkyKhv7BVTV3HlG1Yy8pAPK0yph74a5K9Awlf40/Je8o9Kl0t72z9xvm2oXYKG5XujmgkD6hQthsDehcEM7Uqy6x72FI1vIew++dANiPiY51reKNYMfhwTcYGMuNfhEzpQ7iwGx+MZVd06ztL/OT2chSajqkEqcF7vPBepVaw61mkNyd5uFAKGNgiBhQijOIKn2prVzxv/YYM4k5HTe6JOdWeTZ5NyBrZokRh5WBpVZaUWxdmZfOWevbBfAwuHtE5hRFFhn7hJLS+dvmL7Ig8A4VW8BjkMFP43hIGeBNFtLfVLXvYSrruzm7uvVw+aRgCW0YeyxToTaUUJdakSSrE1pP5aTlKLIGX6yGWwsc51w2ZWI68bCZFzgXDEatfPdka1z7CNhAYbwXjakuDUDgPBvSGi0h0lK1d/TBG1nHWk/cH6i0rmxblDS5ARr5HHLpXzGPvLBwerCCcOktb2WS3rcl7TA6QEHo63rjMli99mLey9KExHiiUdsEAogEriXfheImlllz+pGU67sLMDe2EO9z5sCUMUFRGeLAvoZpu/CTtpcUrwLHGq2tWgPhjzhn5v7mSWvOmZdbcx0vjFX5E6hRKAQNbwwD7fQSDQ2z1kvutS8+DrLTjSLcvizYcVR6gEtrzi2hPOS2iO12TYaUC2bbQaE6hbZhJvQ9A3xhu2ldENxVKAQNbwoCbfPa0xjUPWMOa46283+edXFO4uYhVqhWd/AdFRblpgGSjPvIcDOjYct3lXekQmgsEw4QFa2zjsicsHV+I+C3IRh9Thb9bxoD28IsRxpuOIfQk+aYjMczRxs4Ln6M+/+kSJpvsWGPFyEXRoiaceguGxF1rkSfPmJ7N2JpVb2C8PYhBNpZ7CgbWlsdh265g71IwfAKRsZZeeZs1wfS+IYSEyM25GBjZYXI1JvlsxnDOM7p0MyXI9vzk0iQX3IzvfDhVFbxXPmIKf7eKAVzVwVApM6pZtmTuBEJ6q9wMS4JEdCcazP80Ky4q1e/ctRyNuvwFZmhJ6lk6byL18t7NEHuyKf5dKAUMfBwGMLKC5KTUzL3ZmtYrV0qzTcgHTaVwnz6iudzvnAIT/eXO6bqTirrI+nlS26126eNWv/xWjKuxXCxMPD9uGArXRXNxEtzH2fIlN9nKJY9zrDC29HTrfCknBxFvOVoU7nQu/5gjh9IQuVc1a9+3+XNu4hU8I7mnoKcdYtrpj29gucrYLDQ4zJoW/Bpv1mwEASavrKrm4g9I8+HmfrgRJHlTxtXGadY0+0ZWDy6mLnyTrera3MOFcwUM+BjwX/g8iHDeHbZkzl2E9NZidEFDjr7aQIeuGvwM3B/iOT2/ZO4fbM2y2wkN6kXPBSFSoLW2YgAZSNg6GV9ua2b+zOI105x8cz6r1hpr6xXK0xAM4enitWPLnrb1c67gWKHBAi1uHXGFq/kYkOwKhqqsesZ5Nm3ZC8gyeZtk9LdVLkqM6l62EmWysGH9hzZr2k8tHl+D7b9t9eTDVfi9eQzkGVggnTd2e2kyNF0+QM7tmP3WmGxWwXFB5/XR7I4gcGr9Oxaffo1lNryC94oM+EJ+weaxXzi7FQwkmVHtaisW/diqZ/6G5cPVeBJ4IwDJnU5AbIUWdV33hbg/3lht1bN+Z8sX/sjVt+lsbysAFC4VMJDFgLxY3S2+4Q1bPe0H1riOBTvEXZw3Kyf7NqvgsnKRWoJh9htM19uG6n/YmumXcncvaFTil3sKpYCBNmNAK1lFN/1s8dTrLcGCoEB4AMd5XiwnGzet0J9w+pPOCHXwjuHVb9n0qT+wWlbKhnldXmHl4KY42/5j+RfzCszuVifkjCtd0gyOAZXxpJccqbi4r35wH/dL2EhMZBqXsKXWG5ZcdCte71XYa/25tzBDE6YK5ZNgIOWMopWLbyD3YJH1rjiXF0GPIU+gC8Ig4wwttyAjW7WMKqf4oNdEfB3bMUy15QvutZo1f8ozrgoK7ZOMxGf+GXkOIv3YVmGSrZr6detU+W0r6b6fRUr6gRrkYJYemw0mclscPUKLGVYLNq6fiefqcatd/CNodBQfkmRaTWQ/8xguIKBNGNA+bDL4WWFdt8jS9ejlDhhYSnnIqm2FDZ3x3izqRItBvPl6/VjGGuurybl63RbOvYVX6NTw1ov+nC/o6Tahfxtv2sTA0tPNo+IPWrArYb7pZrVPW6aMgYj1xnAqZSxxdqfjGFJrnGGV3jjP0quetvS6h7g+Cs+VEvAKg7aN41G4vRUGRIt4sqJjbePaF6127Z+ta58rrFO3faykrMKivPg0Eu2I8GAxLEInmVhnCVbDNNQtYCuGt2ztMgx9PAV6vrAyphViCwefBAPIswByLZ1M2uoPz7birqdYac+jLVY+hJc297dwrBvzTT8dQm/GSMZXWpJNbRtrPrT6Zfeyael0UlOhRXkbXA5g/kT2kwBUeOaziQEZ9BhUQVb9aKPwVoX3DtYvtFTxYCYEuiYDP87WIavZYHkJ3qo5tnLFU7ZujVYMVuG50mS1oKdbobAdDzZjYOXXLu8VgxQnJ2vyLy3e6SBrjA4lJaEr5hWhGjZt9OILLdM0he2tFiF8ML5i2uuKpM1CWDAfkYXf24MB8gxCke4YS71t9eLbbM0SY6+W8RhYI3kDfG/c3UUkccZRaMswsGZYQ/37CA0yE4rGQ6cpfitPoVAKGGgHDCDXnDegaDfysV5nheHf8WJVYGCNsVCsAs+CXtzMgozkWjYonW3JhpdYMYiai1UVVgu2A/oLVWQx4GxzRZRyDhF962SIEPTV9ppV2JBYV6Rf0G2uHG9aYA0NU60Ogz8a6WtF0K+S5gthwSw+d9DXxxhYapWBI8nTYvuZV76XZXiNiW1g63a5xEPlFugwGunBdwpXpVudVdhIdAeN1We6Wl8QpC2K0QQRWrLD/rwtIGGZmnchRVbBspAiWDrcgpwP8343945NCZBmAfSZRl+h8+2KASaebJgciPQi7FJmmZI9LF7Uh82UP2RJYS0tBZlo9kU27oVcZKFFcJ2v+zTxLJQCBnYYBmRkkQNdykrDdQuspH66NSmthzdihDpUYXqVWUkaXc4CNq+w4fcOG4X8ittgYJF/JcEQ7WGRYZdZVKsLsy5FeQkCkWJLLXzIMqseYCMi3h9XECL5+C38blcMyFzCsE/MtNKKP1qI3bW9FAa9Jm4QYyBcYukN06xhxW/Mi27+dRLtCk6hss82BghNW9McC1Z+38KVXySaze7XjhZBi1ZkMRFIvD+fe6biTu3/2cZVofc7GAMiPJW0hQZfZja4zErR05hTEo3o6RJLzr/fMux1ZezUXph3OmTt8D9tMLByMChcyCrDIO97cOE/BtSNnKrwk9xzQ5x7ovBdwED7Y0B0p/8Y/toQVytqtAgDj6q2A/HcIo32b7VQYwEDm8WAnAayqkil8LSjo2gR6lSCuz8RhS6d1VWQjsJUoexoDDAJVcQpUIp6TjEdlbyU7kY2uheOqf0CLe7oUcjVvw0Glr/M0xlXenmWdoCVgeX5yq0wZDmUFr53OAZEbI72cH+7ZGEECMd6n5YTJjscgEIDBQzkY0D0twktyu4XjTaX/N/NJws/ChhoZwzk9LIWUuTraV9G+o0VaLGdkb7F6rbBwMrVwQC67fWzJlX+79wthe8CBnYKBkSDuY9+tfzeKc0XGilgwGEAumuWg/qtk+5PAT8FDHw6GMinRwdBgR4/jYGQP7tQChj4/xQDhZnY/6cDVwC7gIECBgoY+J/HQMHA+p8f4kIHCxgoYKCAgQIGChgoYGBnY6BgYO1sjBfaK2CggIECBgoYKGCggIH/eQwUDKz/+SEudLCAgQIGChgoYKCAgQIGdjYGCgbWzsZ4ob0CBgoYKGCggIECBgoY+J/HQMHA+p8f4v/lDhZWxvwvj26hbwUMFDBQwMD/zxjYxm0aWLXl9h/Krd7KHmvnx0IpYGCnY0B0l6O97D5tzcc7HZhCg59ZDOTJQUeO/AlAj59ZfBQ6/qljYFM9XaDGT2VItsHAYpchdicOBMPOxmreaDTIjsWclzAp+BM+lTH87DXqiA3nq3bLhh5ztBhwtFhwyn72COLT67FvREkuIgObaVEkKbkoWpRULEjHT2+EPmstQ2uiO73GKaeRZWy1ko0FTb2zqGIbDCzERKYJ42o979ji9fDNgqMDF3jDvIPYFzc7C/iPtpNVurwSIOA2WgM0t5ty3i7LH31op54JhUK8IJYPr3gJ6jUvwJfhk0qneet52jIZdtz9tIsMab1WQUoiV/S6Bd5z5XZL/1RnQxIgQlsSsqvlUwdcUmSc93g9hN4y0Fw+TXoESIc/4VB0yZejRR+P/g70zYB+Sj9y/KJv4ZCSg9G9Duu/gBYd7oRD0aMvZXwY/xt4Wq/EEcpS0GE97yLUi57dQGNs8S5CT3IyVz5NWgSGZloUHjl24OTT4qcMn4DKwZijRaEuK3d8fvkvgvG/mad5ByZKJUt/ucHugFM14Q+7w6mQ+2mVnNz5b+TpHE4EGx83zsIhxeENnsm9PcQ/u9W/bTCwqJD3bFl8iaWm/8wSdTPMGj9AqDTxasIBZuX78sb4GrPikdmGt9rejrkIIgIWwzhp4PVfc+l/EwQGOLTmjPlQBIN+CAYNCtgQek557BhQtlRrJBKxKJ/ajRtt0dxZH7ktUNbZhg7oZ8UlxdbUFLf0p2BoBfQOKxRZOrUeY2++6UXsAkNKRLZgKNyTTy+O5cXkBeBC8k4tIvSgBaKjLDHvTounNppX9zp23waA62iBsn0Y5068WHeUzxxunHe2UAZG3vvlmDC1ElJb0YImH3xgHAS8wOmINF8J7yxkSsAJRtpOVgOqJk3ZtgWjky3D+ebF7qZXbiR3FmAt7TjhBozi6dRcxtjnaXcD4FuoCPkHHoMlHECLTui1PL5TfqnNopHmrXrSEjVvmG14E1QtBrfIm6JdzMqQifHlZuEBgJND8E6BrKURx9MgLI2MTs33wcixhPRHqBefnll+EU/nLrZUsWN/iV8kd2g5tYYP+ANVsvOdPe1ocQA809UHwxmtOxvGHL/AC5vhad8uHAwexdMy/D8Nns7hJGje7BvMVn9oyeSHloB3A6K/8n3g9bWOXh2MPjZ37l/nVdNL0BvB4xzAiPs2C1A4mzoEL4cq4GneMev0NLjc2QXehWGBDd2Snu2jSqybld0W6go++3AMjG3QgW0wsKgZY8qSb1sw1d8infazQI/jHEa8ZL1lmhZBTwtxamF4hbCSI0O4XwJZUO3o4jOnl1pn6cQii5QNs2jnMyxcPICX2Us5BCyTrLNU02JLbHzdkhvftWC0PwjqlmWCHFHuODjlpYphWM1cVI0dsNaqxu9hF1x4ifXr1886dCjFiMnY+vU1Nm/hfPvrE0+Z1a61gUOGWUlxiSWSeGmcR2HHwefX7KSYJeKTwQt6odMhVlx2gsViPfEs8xJbFEkysc6aGuZaXc3fLI4cjhZVYXTx8u+dpnxFqox30/vmAW4m0QvdOtqCHb8B3SGg08zO4hg0DR8ipKdbQOQXG5NFXL5XK3tqR3yJOfGgecCo19gHO56CrBiK/ujCASGkFAIlscK8emCsfcFXIJGxQCJBsjOEifhFMGK0NH5ogZLuFuxyLMZAJTB2zPI0s9/4UsvUv2eZjW87pRGIVO50nrb0WnBVzTtrR1gIng4WScmKpwEFr2WmqRr4XgeX7wI7CgTB5yu2Hc/TDKaPx+QChDCGSyQGDJ0t0PNLRKxLgSODCFwPjmdzHVpswoCNDeMxFIjjl50Bo8/TlpjsGyvlh4LL44FTBhWGKzztwdNe4xxo8e8WkE0QGw2M8NnO4mkpXA8Z3TTJOQsi5cdZqPSLyOhuHCNbMknLxFdbumGGJTc8KZB5n/uu4B787axJcjNPvwfuaLrjqfD0EH7n8XQcnm6YCh5f9Hk6Ck8L2J3C0+KIXIG/pXfRh9blAPB4goWwXORd9ZoWosP5OD0N7JGB2XHeeXraZEAzAQmUjrJA57OY48HTEfiF4qGnPdkSTJg9ZE8gCnwh4NxpBrXP015yHsNWa8EOe1u47BJg7IPcKYGHxNMb4Jf5XH6a8V6H3BwOQcrQkr0DTW6mSGttucis9OqpCKLe4wcWK2amI+JHoKh4hLS8ZA0MstLS9Ysw7p+29Oq7QMxQPmp4Byo2TRtwr2QSk6yoy4lW2vtnVlQ+1MJFeFliXdFnftcy6RS6d52lGldYfOM8q1v2D2ta9w8MsFFwC3XsQCaIhMPWhDUyd8aHduZZ59nxxx1vFQMrrEePHtalcxcrKoo4T259XYOtWbvGLvnqJTZjxnS7+7577d03XrXhVWOcJ2uHhg0RIBk8Vp5XbT37fce69DwYL1o/DKgeFkHpBkMBJ6BTySYMsFUWb7jEatdPsZVLfmfxxmkWjkAb8nJsgcC4sJ1FQoOx1Mw2uI4JzvXw3d4YB30Qtj2gxTKEGjDiEpcgyTgjazn6+S1LL7+G4e3E4zDrzoAxMQUlBQ0O/aUFO41jkoMRGOvuGFS2oQe9eoSRPPgl07DEMmteBsZbmL3JQOjMDWLUHVHE/KJ18ITCDZYdYJFBV1qofCSGCx7JWDfGGZ4WjApTyzgQT9dVW2rVU5ZZfTc4xECQJ9vhcUfAqDqBUYIMng51PtHCvW9gzjYYHGLoRzVz1OySW1Io3sRaN9ZpeDq1/CFLr/8ntFC1w3na0SIzcC+Ngdr9fAv1OMaCpRWgpidKoRNjKTwLRozp+BpkI8q3doZllt9ntvFV5CeeLccrO1KxgSd5JQ0DtQ/j3O1z8Es/xhkYI+XAiNKFJLyUjOnVwPh1y6yfbJllv7NAfC7Kd+fwtJdchAiusdLKn1isKwqtpDeyu4c/OfZjr26CnG5ahfz+psXXvGVNS69F7HehH/3VgSwu+WrXIn5B90nuiKdRpOEBv7Zg510Z5xxPo9+c3BG9oniRjY6nV79o6RW3gmNkjjxaO4yn1WGfp/ULYPwv9FlgCHIvWmHSPyoeoYhMwudpr36hpeFpW32Pz9NBeHqH6+k0eJyE0XeyRXrdiPGCgSpajDGOGNIORnjay/J0pnYucvEhs5pHocWdwNMy9NM+T4d7XGiRHkdjXA1ENopf4GlSesSyGbzo4ul049cwsqZbctm9OLregO81kRc/08/mcVCvOBo0fJSoqfn0OmYUb+062rpEo5bEVVDkLbH5kS/a7mXn29400Og8KjyipyCwgIvBiRhpAuWWXPsuhvKvmQFPBTkojnZ3l9IwUwmPsGQQz1CnQT+w0h4HWqSkL7AQupIHQbFS1yvBKDAJK8mDwPlk4xJrWPWa1cy7wdLJBoT2jlFsCgfOX7bMdhk2zK68/Du29x57Wa9eCq8FLJXC6GvOtyLbKRR0eVmRcAiDLGGLqhfZ0888ZVd+72obWNkfT1IMdy+uXgmd9izgMYXCLe98svUb/FUr7zLGohjQZIX5xoCIxo2z0ChEKm9MIcQGa0CxrVj8T1tZ/WMIsMoJbZ9R2wtGNSy6grhTUy3Y/WImXWfCnBgFkY6MJcTsxrkFRsGnjxKMM8w2MrUziYD9CQPh9wgTMYEYgPubqZ2f21UEo5iP7/Q0C/b9oYX7nYTCRYA4T4Zy1gRfaxj9BGhm7hIoNVMttXCieTV/B0ZmvnKNt2sBNs3CFWILLEJR3GDR3kfiTKkAVfCR4sCCTwOt7ojGHA5RwhzKQEite8cS8LTXMI1+9eO+9jYEBSPuAXg6EIlapPJqi3RnBl6MUcBYNsPoZE8ejI6nUR4Yq8nVrwLjz5ilA5vCxO0Oo9oFj6klZvKcVnwDQ38PZ6A6RIFDf6zVF+4Vx4geBSM5qxkpthXPmLf4+8BWCdlg0DoY24tf1KaK8DjZrNOpFhp4ITp+DKiVd0+rbHM8w21qNjvOMDAGI5OTjSi2ZQ+btww8wtP+TeKZ9oJRFOXztJecakW9LrHSAWdYpHyE42mA2AK/iK99nk5irNYvut+aVt7JcOwgnpbC1WQoM81Cfa+1cN8TmZQMBoRS8LglGJED8E5GRrXj6TvN2/BIVu60P790hHcnbVxtfx853A7rNcAaUmkLMkxAYFeX/tr+ECi3MXgA0RoOLo21/6EL8HR67duWXvQrs4ZZwEjIa4fxC4Z+pMTClVdZqPv+8HRf4Mjjacc8kAVwtvALOEZPp1a/YmnH09BguCMwSja2Fy2qTYpsCQz9UNlYi1V80yJdd3MTOl1qkd0tPO14Rgv9yEdPw9OJZf+yRDU8HRgMaX+Up0Odu3W/TpX5YAetMRO3C3r3tmI8QBmYIWx1tj443CaGxlhfBiGVU/LN/UQ4OyGN5Rwut3D5MNJhxhNmhdDqnuccg+cUm1rZ3uILYi+5yiKlg6x71a3Woc/RRIg602EMK8Hhawm/Q3kw+tcy7t6iTqMsWr6bxTd8SPhwAeNdznNSMu1TZFzNnDbNTjj2OLvxJzfYgfsfaKWlpYTW4s5QynmkZDAJnQoDyuBKJHxG7NG9h40ds6vtvtt4e/qFF/AUNVpxcTE8357CLoJxNcW697vcBo/6PsbVOIynGB4ziFgKV254x5z5OMFjCJ6l9GLFfXhmLF6u4bZhzZ+4STNjhEy7GTASxHJvf4BR8HMcQ5dhXI1wbSsc6LezKYzALdgRLAEUWLB0AJ6Q8VBED1d9RjgAAEAASURBVPPWA2OQ8Ei7FhlXjIk310JDJli08isYLgM5FnhbgVHjyCdAzkGobBDert1gckIiEsgh8Ut70SKAuNkZngqM99iIOyzW/2RmjuBBcIMnH9gsUvL4pZmn8XiExNPwS6ZhFQ7tfwNj73aEkaqccbUSL8swUpputWivI1GeTHzSwOdoPosPwbcpjOBK4Zpwx1HgcjwzyynMMhe1O087GJMfmMmzNgIvarf9aYOQpWAULnNj1gwfp3QOfhHQ8rYGO+1iXjFjXfM8zxFnl0B2z7V6SA9+woIBmJxigd5XWGT49zCuxtE0bTTDuCm/cJyjA+gkAE+HOo+1jLyV6+4DBsYAXm9FI58QMv+xFp4urbzRyodeinE13LXhiafFu/ny2z0kHMrY8Xk6XDqQNJDduNLNEuv/jMxpT54Wfnye9rwFeKLvxBEETxcP9MFqC08zsQp1gKeB0UtiSGx4dAfwdMSK0ktsRfE4O63PnjYovApDivEDenzU9kL4cJuEt7kneRKZnL52tJiVO+jpIHgPlKOn65djZL20A3gaWiRfLVA60iIjb8FzdQQ83Qly24Sngbml5PjFw2PdhRQLQoll4yyzgQlDgomN09PitXbiFxlXiakW7naylYz8McG5/WgDI1pycas8zXV0kzzrkc5joI/dLLX+GfgMXt+Ep/MMLIDG9R2Pdrfze3bHwBLry8CqxcCqsonR8dYPQwn12oIP94tjDaKzFNR5LOkiXL0ddyF2jheh/h14tBPnxTzbW2Q5biTHqtK673KTlXTdy7cyJcSchS7YNoVPbWbh07cT2MzzUL6xDlUYWVOQdcuBEZevY27d/8mL3LILli1zxtWPr7nOqkaOsngi4bxWysfyjaqPwph/Xt6qMOGQoUOGWtXw4fbEc8+QU5RBRyq5XEJgOwsz8RSCuEe/K6xyxBVWVNoftMgg0KoohKBjyo/CKDzmvGgZiDBEflZZRxgII6uGMFLAumef3U743ONiUIi/4haLDroA/SaFi1LSGAlGjaX7uJuzf7LnHPxiVoRypIOjRS/Q0zLr7ufR9jJgsm15syw09B6L9j8F5iLHRnh0l7YCY45fskIvqJC2lK8Eci1GVrvBKGUBb4TTGFe/QcgdDp6ASwKkGQYBu2nhXO56VtCEirM8XbceQ4ucmSAzynbhaQmaWoyrIRhXN1q4657ALEWwLTzNvSBdobpgWRW5jhLIKzmlkGY78ItCRenF2BsnWWTENSjQET4O3UQki6uP0KJwmrvGT+GcmW+ow1AXcvLWE6bJ6Dp1twuM4heMqz7fwTC4HBncFzSKp+GD3Fi2BUbkYAie9jCyvHX/x7Pkq7ZbYRIBT5cNus06DDoPJYpeyPL0luWOj0Nf7vg8HcToj6JfPORNYt0D7cjTWZ715lhk2B8s2u9kxgwawunQGofA1Kpkx1l4Fk1Av8ojCwpGhsCr/Sf1tJfcEU8nrCi0wVZU3Wmnlw+0QalHLBkgOoLudQZW9CjfwGLsmX5kIc2HUXoa7Y5BHSzfBUfIaowsIk7txdMyylMb8PQOt+ioGyyMp9d5T6V720SLwOomJkR2FH6HpzM17zF5AM724mnxHQt8wt1OtZIRP4AvMfSbnQtZXDXjLn+wc9eEQvF0xPF0sHgYXsHHOUe9eZOSPAMLBs3MtODQX9g5pQErziyE/0uzBtYomxgetwUDK69xIU9AicCU14FbNb2BgUuu4TSu6+0SJKqX/oQarRueq5Ju+0DLIpScws2DY2s/HYw8AyMorBgpqbSGNRJ2EIXA344iAyqBMTVowEA8Vz+3URhXTU1Nrka3JUMb65YwkZcLc8YGDRpkA/r0tT/cdYf17N3HnW9jNZu/jcHPpNZax67H2yA8V0XkMmU0q8iN3eaf+shZJ/DAocKypeWDud7Tatbch9HVl98al+0oGIBeCsOl97csNvhrGEkocwdjzmhpS90MpvoEjQTCKI0Ow+AfPGK1MIFWTknxbFeBntNTLVRxG5HwL0KYHDsB8slgVNgzCJNn6ta5VboW6NAOMMLs3jSLDr3DhQV99pPCFYxtLDm6cDxNUnzZENJ7JiFAgVMhs3bgaQulMK4wpMnDcUJrO3g6pFwjPA6pNYyzCb7tLeBKi3wQoOER10FHIxAdMlwoDjf+z4/96+6V3MEQLKs0L9LPvLUTqKM3j24vLTLOGZSPDMDh33UTXGdc5cbuY4HL3qD7ZSBgCAbLh5AfyoRp/f0ctxdPz7Divt+x8iFfhXSIGmwnT0fhadmQSoAPaCXk9uJROko8XflLi/Q/nX5LJ8oo+AT8wnNB5bBCL86AaZpOPXhHtpdfZOzD0yXD/2jLex5tp6erbVD6OQws8lFzBlb4yM0YWHlEkKMLeDqgPFZSGjIb3vWNou02+EVDtAWY8lw548oZS9LTXGtrcfeKXzzzeXoAOatMPk2Tpu0t6HqvET4ciXElnh7GuENIanNbYRS/gHlFIoglE9a8E7pp4WmfcnAje4SLwn2utqLeR3A/2HFKMosQfXEqLFmT1zfBEgXWIj4xPooB+wU7GiEULh9lscorUJZzs3Xmrn+Cb2DMJD60jhVXW2n3/ag/a1zRORXBJlhaYPDb0HGE87qmb/9u/6/CiiXMmDtWfhf8krTqrGP/uU/yV6HBRXNn2Xev+I7tMnoXFxJUPTJG5HmS0ZT75Ne/uWt6JgV8clgddcSRdvUPrrMZH0y2ohgu/09c6LeMomCD9R96SdZzlTOuwB04JJLkPqSFtSoaa11rdZ6TGTEps7zeA061Tt2/wmpD8nScMd3q8W04oJE0qzhK9iDkplluF45bYIwAl+hNH415fsm/1gynAOf5ICGn6MBzUb77c1zDoFDBJy0uF2e2WwkT7n8qSMH76QSxT1eiNXmABSNrBJp5RqCITz7CL1yQQgwWs0q38mJ0sDwy+mzSwW2BN8vToT4/tIh4WnVlhYHg2JRv8/lavwW3YNW3X3yeDpVXAeO3AG8Op7fTgIHfPPguWvE9ch80YVKf1TpGSB6uBKtgzhWNew6HRRLk6prjbPKMqCOCoRYd+D1Xtz/jzT35Cb6RhR59DVV+kwhFFfXLuBIwCNUsHBprwbhpyY13i9zkOTcGRAZ6Hs6qwx/gaZtCVdvD0wAhWgni4YZ2gkX9fc9VFmFqW/DpIzypCMPuPLgTHnMfd13PiZZZHRXuh1e205lUPxsYt2Os4TWttgyX7m9llV9xvJjP04JF+NOnmW8dpD6cH7kmGMXTyIYyZESoZE/qrwVGKvikRTIrOd0CXc7FuKLfypFrA0+rOcGXw2Gz/gFGx9Ml/RmXS4CtgTt9ZfxJQXR0Ar0E+vyInTXE06In8UzrfrtMDS7lin6Kl0UD+s6Shn8Zela0KTTw8uw4S/dvRxFPsz1EaOB38UYTYcrT0zl+Ea6EszwQXYM5PLbApzt8ng4RvgsNuJrw/4c8uD38oqboY3outsnl8PRIhiVrXOkKtCgc6ZPjFz2hIvg/ck3AZnlaua3h3lc5WyoHIy3xFKHBQNEIQghHWyLcgfsb6YQQDStSgTxhttqzNUUeK8ykVN1TLk3nnfVci3MiErBRZQAgo18cnP2Eu+xm4R4XY9n9BR6t4IIwuylqOb21AhHJ6xLtdKSV9jyI52EG57Yl5MZzQsqKOrO1cbN+TBJKxRvQshBC7p/NAsYVKc8qogEbwMTJHzYhRh2JWBlJ8vUrjrNE7VS6jUJ3fd8aQJtco54IYZhZJKefdc75tteeCl36BpU8V/odiYTdPlhqPAOCtNeViq5p49GiGH3iWjrtNRtmQWZOyWTCykrL7Jgjj7a/PfKw1TfUU1expT2NT1uL+iqDlBAvDNqn4jrrQHxb+VQOGVyRYKhn2GvqOQCmDsUBKweXbqzBIylitgo80g0rJxImY0zFGY9SakXdWIV4stWue5R6Cc0pFp2jIf/Wj/mbhVECI7OAVKTvY2RVQostxlWYWxYwzjX1GreAG+tuwJJkrGPAM30juzg0+NeGMM6loJRhz8KIQCZ/I9T3y5accyHwjeECsyEnlLmpTUUwAp8SQhXu6XMyntruoNaHUWQdoqrJ2G/WxA9IfVCHQAsc4HCS+CXJNTpT1dFvXjj2+RQYCc8E+1xKMvSPQPZYbqZj2wQjjzgcsoCjeBfH00FyhTxCMR705BQA+HpXMCYEh1lVecCNK6TnivipFvKcB64Hgt9ODKW7lL0e6bK7pXpcxIrhv20XTyMUCI0eTUI7q9zktYSnBaOMuiRonkSUwREgsmVX8S1wia+XQaPLpa+gU6ezigI2jusuHOIM/pirM7nyKJZ9z6CPnXl4W/glW7cmmWzFEKCvSmhXc0IETiiJO6sDRws36ATngWE0MIjedChaDfJjyhoOkIlVOCRztCiBGkDOBpG36TWPwlx0Rsu9twlGGnA8DUKSky3Q/8d4nQjtOX7xYUDc2SqqXlkniNh+BdldAU9rnJdwvobx9TvFtwgDdhgm3hYxyoBR3hg0ntmAN1BtSbF9Yp5ehPeKRSDkKObztMZ6OXDMyfLtGODrCBzClXC4irGe6fjdbDTwd9JcRt0BRtUTLq20kr5n2cY5XwXw7eBpKVnyb0J9voB6EU/7SleoaM3TARvMWJZkZUuM6838Dn0O7wgvMd7CsZ7VJrQhZG269zcss/h6LItdAV46kI/PVXy3oYinWYhgJeMwro50sDaH0Td5fKP4Bl3sDC3gEI4nr+Oc9DREMboTVblnHIAOjGDXPSzd7TyU6D+h1wFc/WR6Wjwd6MR2G90PpI8yBnye1lhuwBFcvREY+G8gbjR41E/hSbQ6STKJbgq/sWZ2FYxyChSxYvcgS688HEU1B+KgE9vEL9TtGJgE+uR8Vgp+zSLYJg4AgUQzgnElKK4WvfG7NzqwT5ZfZGxtBP6ZtYLYrA+0qGv5PB0kty3W5xh4+hHox7ehyIxjhsYsMtz9ChJF8bqQqOXi4U6zQsQI4ViPgF1WFbKNq4L21mIsYTqfZISkK765R9AqegZsDQ2/NDtjqxjcUvDqZRlAs4xIz2MttQJ3OKEAY68l9RP4215ig0HKIivpcSW5U2JQET89pkjgqtPHjgpany4Bm7PMs3krMARhgAZuk91y0YFB68Z4LF1t9u9pGclCH4AsjBHqLOlxrDWtfQKjDCHSxAC2sQjdjkA6kftRs84+f/znrWePni402GJcRa2urtYWLVrojCdt09C7d1/XQpicrYaGBps1e6Y1Yjz16tWHa31c0rtuUB3K4RqNR+yk4463W27+mY2q6s3y0OVtRqKDUeiKstqPr24kHIYQ8GmEiAv1ca4WgVvZJ2DHDfdHZm61Z7MWeFaCsKtFAJJjb0ftG2CVo9nshWzXylCq367wrRUXnbvtYaUdj7aN654m7YdlweB/mwZaMic8FDh3wSgXgwJ0dhapnPvJ0OzpQwK215CQNSAs3p7v2VtLPOsHjO8zgT1rFIq2MmT1GDfPzsjYQoRKZ/G4ECBOgtbDrE5LVY+DgLHG5Fn1JY1uaFuhPjQuViazlVwOIP0XLpTjOI3PBbsiPAaEbC3C5BV4Yg5KtgtkVc2j3zkgaH27BmxljWd/mUoeBLZZCfyUEYdLkLCXXAQBmpCBJQMY3tQEiattKupqIEpSf3oVOGQWqTwQZ0j7hot4oga0fnufoA2Eb5etISl2VsbWMcYdgFFFgnA4PP+FcQGbt8qzmSs9J3z8TmIcoHjD8HR6xUR4mg5k90/zn27j36Ih8HQ1gu57bjGCr3R9GNfTfgmK/ppD4VsU1vwVGXt+FhMWmioCxkOggeG9tPoWXcBnBYLo8ekZK6VfMtBUl4zpcPfjSYT+F2TEoDUx1ttShPAYHis2sQ33PI4+o3RTII+BliCeC79UdTM7/4AQsiZg05Zk7InZnnUGBk1CGrl1PuN25eeCVoPx8PgMz7qIFgWDg1GKl/yXLseYt/xmGB2aSqzaFgh5htujo33lAM2IdmRIOxi59AHK4vD+ATtsJB4kCOO9hRn7NzzdCfgOrQzYmH6+F05djUNqC9Z6NnkxEzx+y94ST4fwBmY6HIEQeBngWeTANd3f5sL4eNrkOTbOih1Po2+Q375XH0MPnj54aMC+MThkjfDt+/D0B0vBFTy9Ajo4gLG+aECQxTfwOLDPQL7LE+NkjzqFfCzSBHkRdJ6iMryNzhZsI4CqwjncA2wZ0PEoeFqGtIxJvw0WfNs0Di+EF6r6w9MY1C+Lp9eadQdGyaSLuDa8dwiD27OH4ek68C4YncGPgtLiLxlF6SXXk0tLhfJaOkJoK5Dcp4Up6RUW6EW+EHTjG1cMZH4R80MTVWNxPCxhTKFRj+MPaPLSvTAMe4Vs2XrPbnk/Y6jzLC3SUfEL9Yd6Hc8WDvfA070/OU+nyGvqcRW26gDGAYaF1sUvKxnLqu7gEX4pRQFPh1+enevJDnS6ZBp4PA+52b0sYG/AOKsQz3pOXfL5BU9baQVG1gkM8WWM/2BgnKerbS/U5/Z6g6cjPdleBdskNzkGHY7e9h6IrYN+kQNhMvzyBrquC2iezZiOh0XP/VzIyZxJnH8BeuyDfeEmplmelrwNwdPJZbchM8Yyf5VQR8mHO42FQbnbaSNBwlhRcQJE9D0ibL++IGivTQrbvTcmbS8MmXX0/PazI3bg+LCtWJuxHkiW45ak7cq7E7ZByNEACjtwQqhsALHofRAErF7ofyEVIyXd7Ms1s5U/ggOP2frXLVy33Io6DgPXgMyeGY7BuKrUqR+cGLYvHYsnCovzn/9O2pcnJO2A7gEnjH9yQcRGDwvZKmDsDoxVrybtp39NY4FmEQOMMiiLWCkVIZE3U8IyzQHfcu1mh3cr8OkSXgHWcNSufMbG7BazgQMGUh+GKZyrbxlQq1attFtvu8neefcd69qlq7311pv22KNP2vjxu1tjY4M9+OADNvHuiVY1qsqWLF1sv7jllzZu13FuDy3VobBiUVGR7crKQpV0+efxxIxl6NpoHWi2xGtlUiv/bh3ZKC9W0pNaBJ8bHmc07QdTnn0aO1BzTmMnApt4f9Jen5yxERUB+zI43mVUmP26MnbbxIQtwLCR8eobL35/Q2wE2QkBtZHVPdaTXBASl9u2EakGgcq0Yd/KiazAQaEpNJi1LMRoC1FY1x8asgtOiFgdzNgZz9BptRm74s6EPTHHs9tODNnZx0ZtdU3GejLOp6zL2IW/jtsKjCx5NCWgAQai78zmmoeQsoJHlVm/xRAmbbQE3TYgDfOA8WZg3AtEIR5UJ//krYAfbeLJYTvxoIitBY7e3eCJRWm78I6ETQWOxy6J2AFjfX7p3TVoByH5zv9DknxHug++qcofF/abC3Q+lW0RFlqg703wYUcutn2sM6ykC6y7g1Vk0Es2N0zjKnQauLjrzIjtOyZkazDy+vUI2v7vpey8/0sarTi3+Hzk4sRTw3bo7hF7GH455e6kjUOZCAKBqLpCGDDBMpRRkH3x+l/kt+Ma4IatFh4GX97616iHfc3If3BbMeAVDKLVNXHr39Xshq9EebNByDbgfendDWPguaSd/5eU7QeQ3/5y1Cp6B23Z6gxe1oB9MC9tt6E0dsvOKN2YsCAkjLxIFkFHZXtZYMC3aVfQOyRvFUI3GBgB3mqMs1ipBVAWucfkDaiDFo8YHLCfAmMXvH9x8HU+9Njvr3H72UsZG0XtWu/w6JciNm5EyB54JmkrpqatezO/qHnohjBUgG0UvFUcskdQoJzx2oZxViKxt+IhnjsNZ6zP06DWeSxWYmd9jcnvlV+iUYoM0TOhsevuSdjdb6Vt4iVRGw9si1ZqVAPWv3vQlsLb5/4mYfUIdxmNadE2NB6A1r2NtNNbPD0YGNHYH1vAMzztsYBIPB3rylYHSmqXvgFGGXDrwOOlh4XszOPgaYyBTuDwJAyYaybG7dV5nl1+dMjOQq5rwhRBCJxOlb96MGHPYcTIq+o4gvpC7KcU63qYNa7+O/rlemcstJWn5WXx2EDZWyWe3oP+8raPPJ7GnrO7TwnbCQdG4Bd0IXg6ej48PcHn6Qmnhuz0w6O2EsNFMumwvdN2NvwuO1cTAF8+sioOng52OtltPxDoezOyo3ybxtqrxTGxbgI8jXHleBrkabBzRT+B1cOl8s0LY9Z/ctguvC/lIjgTvhCyLxwSdXpaMmmPUUk77c6k7crkRU5sVxgULRJJs2pPK5nF09rGxRca2Xu2+OU3nln/qgXq69H1wwCNzjNC8obKGz0I4+rXl8acndDQ6Nl58M0dj8Ttqn9lbDyoeOD0sB25L6sjmYTc+re4XfdcxnaFh+Tsd0XCEZ4OoqcDMYSR3trR+Ttc0g25m/xbN/tX8Mibtvop6AODF5vEESI3i6drQedBQwL286+y+pxj0ehZ0NyN9zfZba95dj7G3w++gmccmwh1bF9B7vzigbjd9krGxiCTFEURHOLpMCtxU6u4EdrEWoESIuzKXTYUwoIDfbtWdztej6AIVsxKmXJvi+UPpS/1ADMIXjlsr7D9Z2rKDrsmYT/9Usi+fkrMDhgZtF+9jJDBzadFMjICNPsLle1mSRRoeNBZ0DQPu1m1WuGm5iJE6Zhv99P/HZ/ObDy1e9Z7RU84rfDfghqEyJFBO/mIiL3+fsp2Hx22ImgCeWfLsTi/tF/QRg8N2Z+fSNhdz2fssqNCdsJhEftwbsaefJc1KOhHKV5tABkpGcAmpWMsjss5MuRc2sgSl0DIwbTpt2DEDxsh/j973jv21SP7Wne2WNA+VzKMcqWpqcGGDxtul379W1zvZrf98habOHGC3XHHnTZz5nS7/fbfYmQ9ZMOGDbM//flemzDh93bzTSTys7VDWlMoirZxGDxoiI1BQdewHL186Hmcc6MKeGorhzt3e/aP8MgHRpGyblp5v5WxNDdMPlL+lg96shRinjU3bU/+W9tFmF37raideHTYHno5bj9EyHWHMZ9/OWljmPrIBe4Ljk3awq1cRt4dq4Nx8hxikT5HQkNUloeLFlzmPSuBhnGfZgPT5LJrCZOxoV8IgJzC9kPSClvJe/HKpJT99LGU7TsgYLdeUmQXHxW2J15LWEfG8rm3kvath1N20e5B+/YXY3bKniH71j9Stht0CxVSn/LFSmDSXdnI7lZyEo9ltsFy6mYYt45HwZha/iwfhLH6Ke+vg9GnIylQD1fb468k7Px/pu0GZjvfPD1mF30uY5dirC5elrHbZ8btmifT9sQVUTsGgTKOvryFt9C5mwWiYMT9HeiwOytwp7D316kIvkoayMej4MyV7LhrnFWwjBPz72UrAHgEnnbujSxtJBiXbuCpkZn2n54GV8Dx4Blh+/zBUTt7ctr+8CZvFYDcrj8iaEMG+p5AeYJVdbZ2N3w5ng7C06nkBosOOhueLne87ljE/wMwWdgcYNlKZEkSB0hMW2aB5Fh/pitiynYpjtbsivBavSFjz/wtZT95I2OvfCOKgojYP15DDiGuOjLLfeKVpJ09MWm7VwYMb72NwcMqd70rHGvj2SA8rVmkx5YukaHncskXei0w5uDL+xYo8LQ2hE3UvEW/Bjr5lfNq6M4G8NgFPM5bmrFfPZSyexZ4Nu27MfvK0VH743+a7EMM14fOjtqQ/kG79Hdxe+y1jI0FTibxeYWa+C+5mwbeYGfk26BzgDufp/Nub/6p57L8UrfAkivuhhbHO5naPOHiFkU5FMqfhOye+Aw8DT7+fGWRXXhs2O7mOMW0+8k3knbmA0k7eGDQ/nBJzJYuz9h7eI/GIp7jDgwqgcYDrLbWXC7U81CXz9dmfgnDL2vfs/TSH7EdA/txOZ72DTrRlHhaKaWvIbt//XjK9qgI2k8ujtk58PRfvha3Y3+m15+ZHf2TuA1Cid3znSKM/qD9+t207SddpIGE/1RvBJnRsOKX5I2dAE/viqGR4xfdR2M5AtsUj8CYXPoMERafpx2NSAfymNIiHE/zzGMvJ+wCePrmQ0J22Wkxu2D/tF3+z5SdcEDE3sZtff59STukb8BuAf7rTgjbWf+XsrHAnHAgwtPI3CBbnaSaZvs8XVIB6PkwNgPW8kNIomhj2MS8e+BpPFMkpPvM6F9rvplDhsqasAgXzUnZobuFbK9ncG7Az8djHL74bspOxyi85fOaiMbs6/tmbOI7TJ6hEadhnJ5WwvvuwNVkkSxP+xEEB0VzU/6PbPv6crPDBDy9BLyvd3zn6FiopyBurCvjpXF+B+/f/+Exn/rDIjsJuK56Km6n7h2yI/aJ2GPIzYPGRawjjhIB1azWVInqgoYD2gYnuicrC4fC0+f7F4SnbFuth1onuabLOGYybIqewAgMsxm0S+0QUXOLSJ1b3OTyX68lsQ0ythigH/1ukZ3I+N72fNx6dQranOq03ftMytYjg+68LGbH7hO2n78Ux8GSa5x6iERI7mrTYy/VJAOL/KtQP5Ij+/jAuqb4SRHcITpbMy9jTRLYko3ApMRSGTAzF+AV6oIyOyFke44M2er1GZuM8dIPoSyZ6aAXA2BQBYoryOO6HcF1G9KEUZX7MA8w3d26OKxwivyrOvYZilYyUyH04W7S7AplgVCdg3K68a64PYd7/qmfh1yNErRqX9am+jAPontvsmdThmbstGPNhvQL2uJX09YLI1CKVzOWUBFGYNEgZmozQAzTKTc2vjBoDVf+EZUzcEG2jrAFL1r/fl+3zp06O2MoZ2DJMOrXt7+dQ26Wcq2Kia92Zhf3Fcvx1jCy1dXVdvznP89qwcFWVha1vffax+66625buXIFBtdwFJi8df4A9u7V23r1GGeL1ldbR+08m3JAAlDLAOdD5/+mEZnoKMJMzQdWNKQCA6sMvgH/1Cv8yCh96e2MPYeCVax58XqUCF4iIVvK7vlXUrYQHA4i3LDLKB/HXNqkcIbZYBFJnUHQ5jWucmPsBN1W4VM1InFCO3EaJlSlmRQEyfNQMjDqam/G8ufPpq2Guis5cRca5GfIJ0dnKIRrEX5LpcF4ZD4hrRT3ONtUgDajhwPq1SabBv16cV4VQlxPu26r/a0Xv8euX6AuSD89zYowiGB793gJbX71H6IZCiQxaX4G97dy8XiWMfj6Q2nnZr4cIV3RJ2izFqdtCeHtljAm9YgoeDWD9tNK185GQsN4MbwpMrBaOuKaaP3H76ibODYs5lYUGsuwc0XjLC+GvMtfZGaLcwi/vce4svCCi7q+njHfb6DZ2cdE7Y3JKRuGgVCieDpdakahfgFjUDxdVEnOxvXw9E3ggvHSpCnvzlzbLd804gAE33WzEHKVzGPwu6txitCk9IJZyz076a6UjeS3LfTczBvHu9WD914YV5phdseL/hhG6mo8Htc/mrIOPIuzOFeV+6G6A7Th0ZYLH8l95zxELb1xDbf6Ay7gaRdCrn3MrO+1Tjm6caFvgrEb1Tw/3bN7pyRthGBc4LnQUT9wVc1wXbp3EEMgbG8w+TzzwJAdTPrC5RizI6nWoS/bnugmgNwNBPFKNFQDGjtFO/IRPrYOoxOEKAyrnWPBQRXQl2Sqr5VURQUw3oVxetOrGRsOac/Cw1JHqNKhGrk3AcNeE2VbY7bP3gFSKAL2+/d5Ui4DyQUugSw3XkFWZjpxDU+LDreNp5mZw2theFp5NLkQpuovAx+/x9iTwVoC6K8wA5A3UCxgwDONCd8+TCgv3j/kJlCaT36Agu7strfwwVOHAmwXE5LiRXY4GSLGbzNP01fJKolDFpk087RC9uCtCJRc+HfRNYU0hMkL2KwannYw4uGQl2oNNLjkPc/uW+vZj5FBQ+EbH9HybQuXVCJPoHTghg9wruF5jLFzueTbVuWOsAQcSgKDPgIhoivsJO9K9pJ/kP3riw7rgVNkNnrxtYWefZtJXiPNPIAM78K4XvkMOvBwzw7Cg/27F9NMcFhMlUtP0GrtogqU+53gb+O28bTX4PIdA7FBbkLiIwiSBE7x9HT0x5MYosdXBe02DGh5K9/8ALwwflOwGa78bZP9cU7GplWhTyWKHaG25gGwjswQTw+kLbyOCgnnJk3C0xYLQLAIxJJ1rCLHyznwF84myefpcnTgv2d59n+T0nYm3qpv7ht29sOUWXjhkDmPE8n52etpG4bwQSpbE64/NxeiCy0t+4PibCle3aXX7oTdS5uDpQhMGNSpspbbBa8IiVXurjEn46lDCWhKkn3+naRd8eUi++4ZAVzlQbsPa/RpBnUPhB+84hfHAISeUBqOiN1ZtcGHAd9yyV2HQJMYgaUkXLI3lGamKsK/kpgnLfBsAYS/fwV0SOf9q/An1+YQxtJgXXFG1PbZJW174H3BXrFq8kr6Sh/kbuYp7enkNhxNzXL1O6t8M/jwL2b/6nmsd9ED2QRWXl5uRcURcqnidK2lb74CI6TGdO0//3nPvnPl5fbcsy9i6ERsxYoV1rEDm3RyuzxHsoDlXdKmpPl1yAjs0KGEdxR2sg0rlcPgt80TrvUt/qE+1aPnmZhYiH2h3KsyWhEGYwq+lMOyENxcQ1i1G3lCf3086ZI530WZrEcxjx3h92mzLXJSE5lQWEoMaFyyhgPyY8ZZ93KfmwVBNOAgAC0GNJbiziz5ipykNBg2e4u8oRcv16aoZr/7V8oGI4w7wcQVfF7H/XzBUVH31MvkYSlR0VXDcyIa4UJ7Y7lpm7SZ2tXdDqG6aQvFgcJ9zojg9rAgobSA6LoxHl5RDvwk3N7X4sVYSdjl5y+lXWJpESxw5SkROwil0R0X+S0Pxm3yarNxnXIeA9UHjCJahR+lADluG4xZXItmEdyBYOcsjMJcS9EkaW/gWMMcYr9dCAsfH7XJCJFb3/Pvu/w4Zno0+WVm5FOuBeEqratwfVZagcbJeB+pjz4M5LbgUXimfr1P0GLswwO9+F4bwe8uWRQY96P7r6ObLzw2aEfsF3HeyZfneXbW7gEWi0CLeKalOPoQslHu4CG/xJuFXAL1FNXFxE60qM1AE8vd2SzTZK/7pz7yV+iGJpzOSRDucLSIR0tK2wfRDXkHYNgHEnhzpdlPzwvbeCaYE/7JgCFzRvYLWWfcaqMr2RKF8Tuua4j80ISdfmfKxnXGg9iMT8FIJUHCmE7ZCjTRI0Bsreiy4xd+gAMjn9LnaXfBPalfveHp4RgAb9L9+7+OF5rQ+S8eilsMpToZT1VYN5FKceLBEZu1MG2/eDNtYwnHxmELV3Sd4vDIbyVsN+PwY/kFZAFjQAqEQQmK53hGSlJGR67IWJX98CIG4OsXxXj/Kobrs0mrqkT+vJK2A3YL2/knRnnDhAyulE3AaBzKkObLbrXj3gGpwac95eHRWBbWXEub+Vb/gCmQDXkGIugATonlciCKDsTTMjCnwKfXwNNLCU3fCGzii5WEU79wUNQeupEQMbgUPb76IXhiFYSq0aeZp4UDjZfOOvx9HIyCRh/akvJ1PA3CHEPqfF7hMIPhF4XWyvC23PoiMABbT+S4dKYMAi0e6A7LSgZ0oE+qxoGhatRp8TRyxyOPypW24lH3qaN4fQPFwx1N65Vbgl1Q6pLyTMfh4fsuYfM9R4RtLekdE15MMnEO2H/I+1uAGNm9Nwarhk4PfKRQEzAqiqANfr2m1cAuHKuF3OcjD/knVF+uo9IvhIED2lOSBWQ6r6dVSuCVU9FxV58VtRHMQGfjsfrVy2kbBcohPzu4c8BeZPJ380maIIfsmTc1mMCQq8DVAkSSi0GIlO1d6E62R/lU5W5s+aNLzX0GUcpBOBRD+gwU2SSE8w//ELdH/p2wY3DzfZuEciELvLUurv78U6pxK5/c/Xw73LQCwq9HTNYRQqnq2lKTa5bznejj+4s8m/A35YR5TghrhluDx+BdLOXOEFsLk+p5wQJzNqObY51yf/Rjyx93m57GMHIzGz2WV2TcKIdq9uxZdsmlF9hNN/7Cxo/bnTs4T/Z4Wl6UbD8VcpKAl7dr0yJPiEIVbpVPG2FrVYeQsxk86h5dWo4D6Vy8kYceyOz7nZS9itJVkrvCbx1LW/AlD4I+zahSBdmSw4V/uGWctcan7s4+uQUY1Z5Cj28xW/wjBuB4PGkPQXPPzEdwwABBHn8d4/Ah8pz22SVst6NIHkchu9Abz7Uq+YMkfLjSVlgFoEruuZYjhTya4A2imPYMcCjf4e4nyb/ZAD+gkLUl2v3Ppuy6ezGs5qTtnKMjdthAFojI8M1V21x1rv62wpW7z4dHtOzGOm+QdIc8lKsxroowAH/31ajjgd9jSBu5Tl/Fk7Efxt+jhN9smla+ZoFC6Qn/OYhyLfj1cwQOff7JwbCFb1dBrhZVmPvdXKNrIwrpzwRnJw5D2J1J6GpVxn7zZMqGYEjPYzXzfYQ3f3wPYaMLG+3vzyds7LCwXbZHVu5InLniA6weaNLiF9prhkE/Nv9xfRFs7uHso3lfeqqIdt5cS4rC54J24eej9u6MtP0Gj4D22i3DgFHC801/BsbzmwjPJO1z4yN2QlXAloJ70Ylfcg3wXE4BbAGmLcHqD68g+mjBvrI315jdeFrIjifU8S9C6HfC08Pg6U58lH51SgXJz3j035nOAZOonK5sVZuqd6Dm4NWJj/voFp8uhH6md62q1IG6LC/AW7T7t/MjNgZr8GFyaCcthvwwCK5gMqKcvF/9JW6385Hxcgu5OtXoNUHSUnKw5M7oWCV3fivfDsaWW3NP5p7WWMmQnwIcz5G3JiNVPL0RmIehe370QMLem4G3F+OhDA+mDMTJ6Bfpv5a6dKAPnW0NeEvDW4VV0FA0IXRFlbTU7k5xGIRf46vStlr5p0dFLDw4wAIlnzOVV6uFQjnS0yIlf0zd03lwoQNVtas+92Mr3833qT6MDfooXZZfdOjO0Obv/pm0G/7UhAMB3DG+ddIvyMbdmGMIJBXHCgicj6CKa46inPxWW9mKXeX6s7WPaqY41GWf88+4v7IFNLFbjqH/C/L8fv9w3OXU3UROrezlYvD34iqz7xF9uOTkmL3wdsK+gRd4727YzLlhydXn+i96l7c9IPO8lvgkbqBWGM/eDUAy8GWQulAH+QWLGLS9EX4Kwd35RNzuejRtp92KZgHI4/YmERqDJsZo4m/CkMcqZXYWJiEzWjwAAR/BGgxynlyerX3Ig4hCDlECyzGSGEPEdgO8O1CKiPlk80dejnXAU4PgErOm1Fm8a3FgViLkgy8RZ/523A6+IcFqPLz5S9P2+ELgY1B9AwuggSfDTDyTXIv7kQRjF8YA25I2+r2VDyiEd0CEjbV169ezIpANzJyP08efiCBGUt6cObPt+1ddaeecdb5d/NWvs0oKryH39ezZ0+bOn+s8VnqHdlNTo7tWVqYwnowtn8z0XVNTa7W8f6pzMauFmmHcOnwOdrEVeFdkNsmLr/3X3WTHly+1oNWfp5PP9nnySGRc/ZQkSI2nFKtWDq7GME04t6hnDRgESkp1LtJcNaqEvqYSuGH12+2M3wbYHG6BjxF1e8/AcF4cF7oTRqoI+PiScTUJEr37jIgdjSF/P0Lusj8g2LhfML6D4n3wYq7h7biJxMQf/Z2QDKTdlE/8VOQEADgwcE1MmIrbNs4+HoFRHgfay9BPV3wQHV3KuGIxmz12UcR2GRyym/8Ut1seYwbEI/XQYz1tPrHAszsIFd7/QhKvoVbDEZIF1dlhdj/cqj9euGzA73Ci8dsKDTZfEw51n8uHWskMTTBmAeSXlMUavOo4Wu3ui6POcL5qQpP9mfCwHj3l4LBL2t4Xz9Yb98esD96M3YeF7A9fCdu7jH8JVqx4WsrD8bTyr4rZyd/x9MfwM3BFxNN86xMjLzOifA34LkznmU+6TzFtLMKIPmAQhsH5rL4lfnT+bSQ9g7dOMdGXR94GngzyJATzs+SWBJA1ffEMreValN+uLsGIlyzChqhqK9euYNiq3MnCpz7Fitm6hjBcGPklW9PJM+AspY1JeAcuZlXt95mRz5ifsoN+gYzLLkGP0od1zNCfx/g3jP63kNCaqPTFgbEeBSwYI1xCBFmYMYqyOi+KF+rj4Gp1XbKRhNooNBJJrgNGtkrJg7FEMKIsfnpC0Bnyz76ZtC/+NmkDgT/ItRBys5aQ4XlHhph0Zux6DP+xGIdphGKunxHuI3sTGDc65RMllMG+1dsAp2AscrmTQcL/IQwEfCTUIL0AHLQ1A5zdQx7goXuG7c9PJuxrhK9506gd0QcPHB6hV99L2rXk4n3n6qTNwct2AIuq+pcSdMNbozogAVdvkFB6FBw7nDgY26BjRJMab/oloz6c2Oj3nXqFgyK+0xjKJI3Yk/B0VWXQbrqvyW6Fp4eyZVEprrdpCzK2Pzliu57RZItXpAkXZuwpQl/DGWDXT9dX6malXgSejiKDo+TEIo23AY/AiPcrymqIMPzi6IZ+OwHtvrN/4G9FKZ7GSB3Sj1A14bgPFwInXvzhvYI2H1pUbp703hI866qIv9mCbCRvzeOl0IGi8QhVjVRb5I4ykPiAR4v2RAEz63BebZ6l767oC2t/Enrk6ZmeXXdpyl5nFrpnFYvkWK1cjS5ZgqjSqleldsThEYMuEsjuZrmouiS/sQF4Lw3yG4tMercNOtqXj8ADTweK+lFHTTZULRh9KGEddD/5gOiYpz7w7NKLks6ruz8TzhHw2KukU3ybFeBXnR2DJlN2zC+SNhRB2Eq/uNoEI5VgU8m2AouKi69kK6zFrHToq2bcbdl7QTgr2HoQAyc8m8Y3f8phWhbt2Wx0VBiT75yjimxBQ8rOIKG4tAOJYCvBUFHIFlMPUVz6H7YkL5es2zgTH9x+9AasaT8Pl2CW11ZLq61/QeQWAy5eTjmqaSUhqy4QiJ9ErhCRZmK7DWR/q66E0CDeHuSEXXhwEEPHs6XA2A3Py1GslvgZDAL4NuGRlO2Pq09ElisyXgRjumkuS3UP4DQaj5iyDIatFi5rYYBW29iI8TZ//mxbu26t9e3dl5kM2pYSIQw4b94cwoLfsoEDK+yggw6xlatWOINKSeuVFZX2pz/db186/Qwby8rB+x94wA45+GC3VYPqcG5Q6te3VhguWfGBlff/OsYN9TtLfqsQ+n2QhYwxF+q4nzXWzSGvqxZvMEnJuJ5Vr/KtTjsiaGecHLVqVo2+xCqjI8kjUTh1KnHpfiznH8lsaFBF0MrLgjZmBKsuYxlbDsPK2KJqioyXlDXVzWdZNkdR3LjaX02LKPJpanPgCn8aENy2Jk+Z9jlJ76lKuBtBzCV0mN19JsmjeE1fmpS0Z5hxfxODcC2M+QAryP76tYiddiiuepJR3yNM8w0UxxLodBax/5YCoMCUqZ/n2iFeqsaAUWP1MbToYIR25ebnMa9+Aau3RojCwaE/FI2cf+zsiB21V8QefCFhM2DKbx0Tsg+rCVXiqr/85Ii9wVT4IZJ0TzuAVW6As5zJQHdpCVeAVYKK/IcM42TlwgE3OVpkMD4ORtUBPRpvUbDMbF5pI57uzTnNpIiU0c1ewPHLC4tsNOP5G5J06+DPS47A07HAs7++jDJh1WNpjHeSYqxU9iW5lvGdsZQ6o7wCiurJtHA8HW9abvE68fTu1A/cbeJpjQV1aa7Khpi29hmLwXcl2u0a2ikCSK1+O4rJ200XRa0zntOf/y1pg/qGbdwws3sRfEcRRvjw6qi9TMLs4x9k7PIvR5hgBezv0+ggST3zJKBFMwjfeuRFogEYux4FPkSHjJ9TKVsZa/VFsVl9s4GlqY/KgysCj4SHo8CYgF/Oxrj60bkYgPz+NZ6rM8biMWD857+esQ+XBVlME7Krjo/ZX/twjdWtcwgt3DGPvhOHh1wZSurXWPOiakvOBr8aM5CdL5i4bbNFsLnNaFXfbigj8Qvyim0aJF9jEGScqn6IcXUZK4NnLPLsd2+ZnXdQxO1v9nc8uxJx/QcSthkVxQDM2IplIUsRal0jFOUXbrW6hT7pEVox7e/TnJydf+MmvwWjZDxKTZOZ8o1zrVe3vThW+J4cPmhyPpcnnhW2kw4PMZ7kgILqbx8ZYQsTeHo+xgBvXth3fMy+djR78p0UsGFDIlbNFjzTUmHDXnAGTEbCB3iWgQN5Q9zmTxmEgsZbvLO1IvmpWaLC8SIJeFr70JGJ6kdguJQC9ke/ErFD8JDe/3wawzpkXz02ZLPg7ZeWYQSqTYbxzmtCtve4MGH/JNsGhawrOUayYRgQ6kau8SJz2zgLmtqXYxpD7jCj93/rtq0VzVjZm8sSH0AvS6HFfjYwoIEKQdHqo2vIfclIOOJzrGJmwixv77srOc3lsw5DJpFcfhcTVOVi/vm1tNujDzuVIhgxB+NryUeDljqM9et0cidbt27bXOFRyUBHUCzG8WpeBfUrEOVDVKvbgPV9cHXn2WHbH/zc/gjJ8GNDtj+G8oJlaZuHw2YwE75dKrXvIqlG4G0oIfbT9mGSwrVqdLi87qpLuiqD3PHi6OnyE1t0i+PZzQGXPedoEVyL/zsciFycA8msI5+rJxX7PP02E6bHCKP36xmyWx5K2LCDw1Y1OGzTkYcz8QJfdXDIrmV15lzyZv/4asq+QaSuHhKbjq4hI8jJVyCkjQwsUk1TuLuwrTCwUGK8ly5dOzO7r08LoAE0WxJi6bNvCms9bplI3H53ZsBeZ1Zx719T9vYrETuYTPr7zmGvCIyYOewx9dpjcTsXPtT4Oxce9XvxBRgh0zkJIc++hgYY4RxRtDS3mV8ALGKMQ8mRNRZrnGXRDrxjC0EnvkrQsf7s5XLqMRF2EY85T0t/BPDVCD6tMrrvOViFJr/BkvPeLEf/7Z8SNoW+95OxmKMb0RaMmKxfZMnGV/CURC0+6cosLBrWjyskCSIsh0bm26MvLLBLLl5lFQMG4C1DyCOM5aVauHCBLapejGeqzH78k+ts7Zo1eBE62O2/nWAjR1bZXx/8h13/kx85Y2zw4KH2jcu+5UKESpAXUQkHqkdesDkzzEaWPG5N6/8DfsVkbSnMMEgMCqfqbSMro1KJM3l/YGfwqEHyR2LooKBLCi9htnPe6RFyvQK2ilynl99P2Em7Bu0QDALJI9HqkQfBLHuSEPiXpH0wF8NWRhGJp/gXrJYXaEseeAvvscTSh/nRRhilbFDSAebYad475fU7iVg2OREwQIq6eyI4RmDgaa+cgT2ZSZ4TdRsnTp6dJoEzYQM4pxn5SGLnt5wXYqsJcjYWEr5m9Z4WFIWgZXn9tIAhU/Mu7Qyw9JzfWFpuvTbRIrcJRmY/jtGVrOre7UdSJj3XMt+RKCglr2+sy9gehDv2ZBm8Nnd8+vWkXYSX9wLk/hfIdzmc1bddmIz8DS/Wwws9G4OQdvQoWsTgyeAZ8ja8iQ7l5eDTf8ZJeLStMIq3eGeX0J5mUhPhTQWiYnmd5sAv56Lwh3TEy4gA/tL4jJ21p7YzCdjDTyXsITxrKxlLGdZvL8CLRNKbEnhf/0fSLqikPg2lCAB4MvB0xvF0pyxP04Bria+tFu5zPI2iiK60YONs0hX60D32heKSPNGHMYZ9SQrURPhbB2Vc/o3sjl4geSbhl8YVUTtj35CdNE60F7eHnk5YBfkSuyKcnZddHUapZZAXGdqwpneJOV7lw95WGN19i6logwXoayCGIEGRKzyvfbqOrUDmMHkIoqFuPUH7xRGOwT1QWg2ML3n2zhBWPo4P2TFVeEOQnY8+GbdTWATUgYRZeYmELcvgOW/8ECMJQb/hKaT1O9vALwhAKWgms5aYbAFehqskbWbE8AyTW8bqkIFRK2rC48Nk6F72OCgtYSsG4oLR3yeYaBGCPTLMu/zi9iJRiDO64KnSckaNb3PRMYuMGqdgIQ0gpngfRvGj2wAjsGH4eaxCDDVOsmjyMIYFekHRSfQcCN3t3heDqy5ko7ux/cuX5W0J2vTZKat5O2kv/ytoXzqJVXknI/6xURIbG+3pfyTsC3Em/XgVnGjBI+nhGUo0TbZ0h9EWqL6dDQ/h6W2ROzJ+1D/exxdMYwSiFsXT0i9dmWSM6YEO2xCwI4Z4duQwbCTG+t+swOw0K2Vl2LT7HRiyU/fE6H8uaVOfZssTQtnaMNoV8Km8IS+xmOECj4yFzbsJ+sTwbCtPS+5oj7SSHsQrP8Tzh2cVWlyAkV2q5HLnjve7HCWEGYEP7nmOCQiGdCluzTseTtjFJ0Xt1e/FWFkasAeB8zVIW5v3oqZ4UDAi3+O0Uf8K1kKlJaZezQVRaT49cLjZ4qgZPoOnE69gOy7yXz/DPEoGXA/geQvj7mDmAt/7EluTZG+f8BjGKLmAX9kzaN85jTw7xlg5WLvhNa9CH/3z5ZRd+UjaxnX1I1IymFW3Jd7nNVNdLVE3LwtNW2EkItSwEOpbi6G2iiBLb5G3I/le0OK7M9nqha2Ifnpe1I2xvJF3PAqPkddbiV0h1oiCz+vYJkawap/D3z+ctOdneNYLuSnvm/qWrmVRTZLZQojV8INGjPU8GDTc7QIrGf1Ta2B10OP1N1uXzFTUZRmEhrdIvAwgejjMAImvlVCXQqCEILYICbv6nULBhTnmoU0KLecGS96CVky8ya2bO5SCEZE5gmxduVb8FIVX2iMdv2+3B/ezIQizGJ41be5XhyDELrHuMME6BPcahEpXGDNH+y1NpWzt7AlWM5eNGYu0vBIrxheBLbds9hd9ldWBMC/lvUYfTJli99xzv512yukwGBIkW5RjlWTJZopvR688pghzcVEHl+guQ2fDhhr2xGqyLl06k69V0rzVg4xU5WPVs7/ItddfaxMn3G4jq4ZZHMXkZkYfywCCEVj0brtwBUJjqo3e8xnr2vMg5zUQJKpC+WkiboUyZJyIZCUk1uHt1LkOjLvyCxQG03YdurcGAlOOhEI0chEnGpfbtHe+bg31k1DoCJX0om2AEdxos0Ul/BLjje32JB630Qw5q22AUaPOUDuvT29gccmQnFOuyzLGVXaFQsI9MAxz5NVIlcsJH/so4pvZdBoDMP7eiTyAEM4gWDMoYMYvexPfWyrCExWG+vPNmJdUWWzcBCYpfdx5wSgDAXnvXqfQCxhVxDM1MOiCDYQCwdUJA0mE7cxqJGY+b601Fz5saZFagDG1+hVLvn843DwGrl1E/Ty8LTCyWat7vUv3i6149PU8WkZ4IcOCsagd4lXbNRuuJaGTxGCtash6TMTTojUtLsjBncaYFe8HsM78BQctkPIgB7pX+EUTiWC2pTie1qjqQX3nFU4JHkVwJV+Ebt2Wgf50PonRFyMfhwiZxfFSasC12vmjMIBwEYbo33kp89r4uJ/qmnslR7aPm8AomBw5iBYRTzkY09JYNJdizCMYU4K/CVdGEBxq+7+PwqjO0X8n6encthQRl4ORNl2RjMz95pe6TfVhPAPiHQ2Zjh2MHGpcM/CPHnHk5erY9I/q00cwSnbDA27cN71vC8eOgNRx9VO4zI25f7/rNj+Fq2ZyAm7pF71QRDQpo0FwJ9mHSnlGzjbxH+ev6lTdORhFizpua1HnMXaaDR7Vp09LEc2pGw5GbldL0ofac0olSKhftJmCLsM4GlzxL/m/XX10Klev45dWN2Tv29IX9zp+yQ7iJrSop5jOu08Az8ZVZbfYvYlOtit7NCShkQWgZCROhbHkiWnT4DdW4zFC/CkS19xT7ksufsgy08/BaJfcwUCQp3mT8VJbmy9UFh5JXvc0Cw2+2aJDLuY2BUk5TSOzGEscknYO3mmR7b8XIFuoXonl2pWgHzaEIkGr0dmlnOuEjlmNDl/Nc3reQQr9JebcbukFP0TuVtEB9HTumm7ZYuEmpwOhw/BwYJxixbv82WJM4kUrORgno0cqMZQOG0IOJXC8Uo2BykXNYTR6SiuSXFc+mxYOpJnIrMLuaYQ+FHaXjeIxOa7/4Ie8C/VuhmysBQYNZ4oFIgIYVEVVj1uy99H27IbvW1fvZWsK8LJm3KX5BCvaFYJRczYGAABAAElEQVSEdxGdY2Jad3ykhtVJ90c/csVhIXvAQ9tcVGGu0ty3XwkkzT5Uy+1Psavt+qL9bBcs+wY8Hho0IUJFCNAgaROzVsYVndEqpsaaqbby/XPdnlPyINAb99y2/JGHRJuGDqocZBN/dwderEq8LX4+lrxP+ji8uUpVPwxJwpg2EdW1MEaUVgLJMMvfR0vXS9jW+rkXnrXjjjvWhlfx2gUGN6NQ0DYVH2+Z1HLr3OMkGzrmJxh3nRhaqBzAZA9C3w4/GmPdDTiOqJTXluQ2HUv/yuWs6yI41yceDIK3pQsftAXTv4J7eFcu6I5txSPP6H9qqoX7/8Riwy4XFHzEBBjxWRi1CkuyTS0o+VDLvZM6x0fXsjaDEemyMmD0C7AgfOKz8VpV/wCC2B4YqSs9xUJD77bowDPBIYBRhD/BoPbrs998WQdgLBWuOL8aYUeqhlVy3AHFnJXRepob6Aiz6fi0H5m3Bu9fuLeqpWwrHmkV5jde3h4d/YgV4WlrxMCfhfF2Wmqx3dJ4nRVzPa3l7g6LtCA0b1Mz+Tfr4W0t9Dfbdsv3JnVwi2gxVxyMNCWac4qZa0KZk0N59+Xub+mQYM2Ht+WOrf/Kr1TwbqZwi8Y9V9w8kKaaYeSaEynckH9f7n6fvlXB9sCoZ1VHHiAtDYh9WrXtYNT1bLMO1i086lej8c3e/InxuHUY3ThnYXAyReOsZoE9y15bwWMOd6pAD21r0XO5/uWPeet6pOtypRW/ZB8RLebTa+5e/1sw5sr2wKg6sojKVifjKswuaxGvlive/2PvPADsqMr2/87cspttaZu26b2RhIDSkSoCAnZAVEQQPkVUPttnQUFQsX1+FgQrYkWKBbEAKioqIDVAEkp6JXXTs+XeO/P/PWfu7N7dbMJutoQ/zEnu3rkzZ86885y3nfc0+2j5j+0HrLs1ByEhnuls3y5s4FL847Honf7oHTlXLolgWioB3aO5pz5AFG8xv/Ey9queKVTeKH3l2Tk/YlHU2cgpS48Aluyv7MYyHBelMdCgqKQgVfR+C7TJtqjNJ9qkPwdwXc5NAI0+4+TyWx6z3JNvQ0fyEvtppx12hZ0shjrTKmd/MxoWxRhL0Yjv7sZ9rUVHK040GBoxy06fS6fL/mh1hBg7Nail1/WthoDPmmpNa++2hgVnQh9OKm8nlnCcLOZpXvsbt/rzQ2XHW0Vhso0M1lhdQPee1rhxBpN7AKBFUfAwx886x2H0RwdKWOQ23OZycL6ES12+rvzhTeKKd1JIWJOWR8gaMClaEYN52X48hpdyNMZPrAAo3dnWueIqlRQw3mXn2j/S4iQ8zHYOrjXeFZKKeeWgVDMw/b5777F7/nyPveud7yIqlHYOk5yk0ohWXLy6mvRR5TSrX6aYXLcgx7qvH7MP17Em1u2//hVn1DVKd6b6vPYLR1qyqeFWz8rKWzaeZkPr2KbD4QhmAo0EhC4JL+GnulafvUKiMZ5RjuiaBo2naMLv3rHENqz+JUCP5J0Qc9fSjXN25RtHNDWNXSF+yn53x7Mb++G8arQshWgQXXBjS2pDI3TSMGuTImeLXIy3ytc/Trk/53gqeaiwNvzZ5rZ9/3DNfdYGWnOLFQYfSThcESMtq+GbljBRIlDqkuiVmIgOQa3tNYbwW3S3ca74rXrPbXqQXeO/CwazyCRZUc79SC6CmLPsmlttHitUfyW1wV616xfUd6Ub8K0FUUPGw0SIqr46eEbMBC2XekOmVbgepC99C0AUivSNfnIYJ0ej6NSHutbHkS2AXdIv0ejOctz+O8rV9b8iJKZRBBUrWadER0nag0auOY3nSNENEOtkI6YtJj7+XVJYpw91bymNRXB0/95ojK/p+h6PjmlUJqVepFHPVyrB0ZGjP3qsrhfhbsWRc05+3Rn9IMU0lp6LrnT+b4xj8Q4n5+LF4u8iHfrVwmL6IZZQnpgEnXOpl+WFh8r+ZRh1uNY/yJb644lRN9smHJxhEBgjIT3D6kF2EB+9YewguF8KuRMZKmz4C2PE7kbRH+x+F1+g619a64zu4PzzrJheNR5sWHKHRrzWm5RTOrGooEVHbI/loAwtUerSnTV8lEeRIkX11Q1cWHunGyPmdcNOUyS81p9hKHda8/rXWfnYc6k7re0YoI+j6JT2X1VSdUb2g1ugEVjb2B6XJyKSIlg2qGEtPtSvUduMvFIXC3IesYxCv9m5Vth8o6VWTrGzJ1xCeGKg3dJwk03NX00k63gGJeLWdZT0gDYJphLH+aOhSp5wLyXRU1jmKoB13OmTfh9dpXJW9uRznWtDpk6otoFwx9o/2Y5VnybMK8bayzt28hXkJE2ZMcs+cNVVNm7ceDv5xJOhh2gTjlLsNO2tqPbXdU82m2Vz5932y1t+aTfdyFY6DIJvKG4Svbdy9n1eKCjaNNlWPvclxjHUWc2gQ6CP2SMOIGmJKJXi5e4qPRHnkXOFkc4xOHL1kh/azm13MbZrLmV1B0fYWoY/v95yS2hhlF1DV9ZE6lpDl6nfmMB233vUcXxdTpRaaDtpoVEeHgySMgIYWh3aOGunv2Ug07U0s/5s+WU/NG/qhyGZveqgkbbWXosRjbHSa83ESf47Ad02z/JLWQTPm1S8vLe3bb17r0fItELUqU0/pm/yGBs9YpTNKvyKNR+RcwyHsOwXLuMvfed7o7nl8bFMjwHL9i7sXino+oWiTKNFAUTO3z5SC23FPNJhzNoxFk2Ous32cW93LgXgFaykBPjqhTZc34NG5MKjr4atSPbRJ9cd6qJ7A7qUg9Ucw4thiefSUcl70EiIQV31KT5OR3Z0U3fP8dACchisLdZVq97Zo+T29ElYVNc+GKY1nGAf9+5RWBdOSG+IvmAjjyix/nsrog2dSLnTO7KBchV6KaGHgoBJIoU/2iOZO+wNZWfxXHpReNxg+JPBPS3oxI5CKyUiGOxwLvIb/m7BiqtpSTMkozt6UYUjw9I7hTWftjw7KKRHMRxDIVMai9I5e+q/iKI96VNZ0IgDSN8FjsvvqY5rXNndtdPiH6203rTsc7goo9kY/njqWXioZ6hjfnJX9ad9Uj07e7XDmlbczCTKH0Fja6CGLsIZJbeheOmeGTzxOttC18f5ts4ObV5CP260cGP7stv+VisYCPE2oZYVU//Fquj/BtzIh2ubtzu/AACA/IqDWHftFFrhlQzO3Gn/yE61exkfM5DKkLe81wQgEY1528G2J5sXXgao/TFqKCMpzW4mjZdqaGhg8GONfePL/2vHHnOsc7ByOF+KPr1QEob6aN0sbQJ98603s8XOJTbtoNlErmBSMV03k7Z4yefWWfWAI23izCtZmI5NZwntuvpzUYQXekAU8VDkKte0yVYt/qGtoV88ncFJ1QysnkiKTDbTDceu51m6ClOV45FRytb7d4ZGl0+yTcuCgZHNi/6P4Vbf7n4Lrc274QTk5pk/5rOWmXAxclYb0ejYbx88GJfhaFTEjkjntgWWe+Zqhlv9C0WH8eiuois+owZpmJfL2k+mH2tnDtzpVs3WyAjmB9oTmXNtO/uDai6SlN+eCayh0bUgJRvb/skKyvf3kkyjmPux+vyAUzBK/ZyzGjU6OqKrlNKIRjnRmuEWbr0H/+xJaNS4n+7LSumTVCde1dE0r4/lNLLs6kj0dYJG0aJBZSwFY1v+gJisIPoA//QYjdAgZc+XV/Nq+sYZUayGgIuCvrDeiegQjTipTSuhkWiBpsM7/d1TOIpGtDM4eANey7Yn01C5OHRFOWiDdUc/3PvxLtR1uGsh+1n+kVeW0yonsidppJ4zNKAGnEGgASdJMyedznmhehYZMrjQI9x2PIwd/AvnVCmduLejd+7wnHBEF5aNg8YziZpX2nyrs/9JT7AjsH8sELBvNIS3o5F27Kb7rfDMR+FHnHI34WdvLlCHhOzlpGSDcrwdDHn6JtsrvQZ6wCQezLaXu9qcdjiyrAIyllt3F0PCLuWynH7l6om6Fj1MqmJl/Irp17oJfo4P1R/dqbqCBpGBDdSiyU0rb2Y/+fdR7Qw90RTdYmrn/cD86dm2eclleMW77cox59PJeDqEqDAYZ5+JN5cDIRA34lg9h5JjphWdndzVE5UWP1zPQKj6IZhTj2FxmWPpF6qyV7DU7gAqA5VSwl6qjdLK0GBPDC7LFOxY+wfb8tzHIudKzOYUUfyM/f/WQPZKxkzVs1zDZR+53K696ho76YSTGEfVj6UZmp2zta/S5aCVEblat369/fLWX9rHPna5i4rl6ajuCedKz1b3XRojvn3r32zRUzkbN+1/3CbNPt1oWiOrPWZtfgOn9mqTs9iwazmRqx/ZupVfoLy2jLWvd+zUNRkzWkLBhhvo92Z8waT30xicGdHmBmWU1mv7Eql3LfkAJ7hB7UuuoyFKpMlFKXvIAXSPpCzeO1h5JYP9Gywz/kJ01Djwhd/34Kc9edHTMhHky296wPKLvkSDRM7VBM71II2udbXTvIYF5g0ah8JiUVsXEm+yn2SPtp/6dFjKEHeoVIoyLcdWMr3oCUbsI9NaDqBXZBrdMQWZHoFMlxP9jqdWtq/eNr9V1+gETTnccDd651EG4i1D78jBeiGd1aagF/iBjijsYAAL7z7lONZ/wdFCuSIw3LcPXtQlNd7Ux9C4mQF4vzVb/B/Kgl7nGPQ0jThFQ0ebTTqeHdFp8OjZnaGxaHDdshGrHjBb8SCvhQyJbff1frrc6aTC+ATbGdU8AxrBkc17XYoHWu2rLNGoxIx3W77UbDU0+i2dSdG1bv+FPledi8wmHMKgJWisGBmd20Om2z+Me2UDZSvrH2O2IHRugB9TA8mITuixpGcgs+kNZhOPAkvkpYxB7Wy1tJVntHWvhLl7oeLT+S2nAH1V2Ph3ZlJ/OnKu3IbyyF9U4cW8+/vF+2uMVFBp+Wffx6t/iU6D03FaWeFMuqQNPR09g0Yn6w1qvarmNXdaYcnlZKqDNN67x3AEP/SYlqfavfDDVj75SssOPc45/6F8mDY0tseQy9Ai/V1oYMklnKvm5R+D5llcoNyS1C6CpSsqTJGsJ6yy9l1WVfcmJna9ktkbgCPP16VYKShvNCtAg6UD9vHLrfsz4cFPQd8AihnD9Z5krOjp1B4VhZAyw6p85IescuSZ7FSOMS52X0RkRm1y/Y1th/b6asRA7KB/eOeaL1AMG/Y650qg6F16JgmnLOtfNbB098oVK+3qK6+0U05+jc2YPsN1+7nxWEBJQJIHir7ok4KWLcwmfOzxR92Yqxt/cIOLXMm5UpdhzyaQoQWdzzO3LFtjw8de5mYWVlRPgCLNSIlTfASNOgWtzY2bbCtjhdatutm2bb6tZyNX8WPjb7Xy88+h5F5JuPlCSw85hoGJo7gqAEWR6NMn4sVorCA96g2rmY33byus/hGtXRRxZirZJNy9kUQjU+X7v4keqvMsNfgI7DuOC/UbrSIe111Eo+NHlHBh11LGPqDkVn+7qORoNTsaHdI9QmgND5vHUtQ/nTTRzqwbbrvZ8kUzPtPhDvty9XX2c7qDJquV2FLjUmIkkaCxE9uftsL6u13I38JByLSw7x2Z1uJ89FWYP/wjKOQz3HhQTxGVPfROK43OUGx9gjEff7Bg3VeR6bEoThndGHMOeyxh4POrwaaeoYafoyftFKJF09EhGBOxo3tO/FwUsKtGzB0zi4Itj9DFcRuO6k0RL8rx7S0ac0/yjCHmjWLow9AToi52EeNoFJX6iLhYN0IjU/SDzQ9YsOanONG/J9KLA+QMWvRWZO6hJDp4Hms6paoOZzk0ItRDjyFwhhOj5B7XSmOp/i6wZljzxn9a46rrkR2WWlGXlsO4N2ikHpsXEmk7y/xR55vvZBr5hMDYvrTHUeNRA5YOCDbcSw/tZ3H6cXYzs7mnl+RFgQbWUPOHXGi5urOtiQ3DU1pkWHzldGPMi1FdO6xwHiKZJtK79vPkA3cnY3IqHJh890SiThTFk+McLDR/xCcthZOV6j/LOTF6QoRjTCPyopP8aSvTX4YNZ3JeMt+zdponUS6NXNfYYaHaUR+z7IiT8buIrIp2x1b64w74hgY3NhT7yNp4+fpHrGnNb2ggf5/sCjCIvjgvh6QOHKzogkLsYfN8wMhZqvb9lh54CMEodqFmkTNfi0shsG7jTxbzK7Bwo7o48pvuIup2P5ECmEqEyMvu0Uor0ua+qAnAKTSxxASbNFfUnm3lA2ezTtYkftfBaChmUsCGkDmWD2hmc8iGLU9Z48ZfsaO5NppVP6mYKq5gl73H/iCGzAxM07j27Zn5T9isQw6z17/2DDvooFnMNJxoI4YPt8rKChwnVqHftt1Wr15li1mQ9FGcq+uv+6aja+bsuSyLoPFRbSutx4iERg8MFbXKoUyqB5xqA4ecSJfhdKug/zxbPpgGGa0dMMo3bWePxZW2iw2It7Ho65aNP4CMoThXrEvWrTFXnXgbOVmKHuSXEIU5G4f/aBqu0xgONA5eY889HFPN5NMqxMHu5W4dkqD+3xi1W+Dfia6lwsVOPKgbWdQlxQzNMFyHMr6I7uvDoHEK3V5j6DrE4KMgQqKsIV2qwe5lFmx7GoP2N7oQ/gQbY8ycke5pJUeAwDlYDUUHq67oYGnWUbN9bueJ9g2mZB9aUWc5yTSy6saRIdPBrsVMaFwIjX/imDW5JNNOefS2TMNvTY8Tup+Eo/pmSzMTKVU1CRzrgCiWadb+QaYLyHSeGcCFzbcz9XoxKksyrXruPXlR41M4sVCQhZVHUten4VjPdE6MV84uEIpqIa9aRT9oXE1UcjFdWazbU48TLeiEY6/KC+8uo6FINDJt/YkcDD4eXsQRRKb9ssHwGtflDDQz64xFEcMdLEq75SHWFiLK6w3nFUf0Mo2CUFGUSKYzg85lbdyjLItMp5Fpn/G/TqaZOVRgQcjCruXWTNSqafO/LVd/K/RNBOdqaOwLmV4DN21A57w7CjRUs9eek2me30amlyLTzyAv9yLTd/WqTINeMckGwm/NjxNsZIP4wZegd1gaoGoyNMpOV0I7eZiAEzStp6GJ84edDjfRtbr7P30k03KM4DdotPKp5tcSsGFIil8pmR6BY6IGFP+1PmHjWreJc4BMBzTcrXEpkTmisM5O96JMO2dKjQwmulUfQ3fha9A7rN1WNRFejGRa9jxk9w7XcEdeNKOxsOlb8DDdmFkc/b3I9N4dLFWhKk/KgrEwimZ72UPAaiTH/fnBCfowwzw7rDexuCTbNXis3upaj+5hvQVIkbfiLxk2BmkXmhc4vZEuO5zvuqJRhbkIRweMNyo0PeA27PRpmXnqPtgLIHGxPfWt6FR5WRlb3OywVUsXOf182KGjbfjQyXQb1uDcFLi2mRXUn7CF8+k2IE2byVgUHLMmnKu+SWptlxHNohVbWGXZslEMVp+C81TL+QpYi1YP4zHyLJbX1MgCm1RtVsYMxyt0zN8XVIoBNZtkOXUHr5WhRDLjwJNWpXhA9ck2DWFuGWNIwNkbCK+OhzCclhcM7fcQ/RJUjTWQMlEqJ2ScGYWoQIsMigZI5zdyHfpYGNKtqZVmXIHjxd5x9Dt2sDR127NrnvmXfXPbMptZfqQ1qqvQjZPQNhLPQSeGBRt94GSaSQ05IghA6pUdQT0PB0ccVVIUvV4HbA9GNDoHte9kGopEFE7/dnBaTB0PwhDMhEbq0m3ySl0W6KzJraWeH5WYkAfHSq3w3nYKHEL6o9Y2NDJZxA14z4xGaKdAoxysioiOwhboW4W8zI/u0uBcRVtcwzg61at/XRepZHoJz9zm9LeXZrFQxtJqm5FQkx3YeDgoLHAjTyTTXp/LNM6BsJRMU+1WJpmGPifT0H4AZHqPOnF2GibD6ZcIW/YV0IiTnKIXSTynle1zG6LrRFONdfJcN3+f22lF3HD6pSbLjoRGZJohRM5TcLL0PLz4H+qc6wxCd4PH+8hOu8p1Ms0iz2rIS++kqWdhpYkpEBVqdfaCfB38HuD2snP4A1PsQ6b37WBRLCXwHyaTVWXlt5C1NmjqcB7DZYMAiEqUwCqPkOkrY8bTWpOUiWgkigHDh5pFw7KKnOCDk+AziJ3B8EgFp0S3NF7fphRjv9gEwvI1Z9mufgfZ+i3LaVjAcFRQdeUA9oAbYv3qf8+KzKwoj1csx6uvkwa/S0LdrEKEMggxElrkksm/nl/LOiXVQNjP6ZnIsXKi0bdkOj6T0miMFEeIkTAUiPbY8TB0MnBMFXZ13GfOXykERXnRKa2UKOXm5AV62WWN5ht0ikYaL31gzPbqYCED1yzdbt+sPMVmMrOykfEOipR6wq5yLK1wFOHm36AMiWj0mZITaHFqlWlCfkW9szG66NH9xeD8SO8cOJl21kwyIz5zW59IVur5SDvX8hGNtNCdEpbeORDyEsm0GqGEB6ATmTbRST17craq+UheSE5eDgSNyAINYa/uImjCaSGS4ewI+tpT1yFdYeGaH0YOwwHhxdgGCiPJNJE3J9PobyfTA6Eb/dNHMq2q2jOJRnCU5ZfTxxAAQlVkUyuJepaT4Gyg+FUeTN/bFwiAjshOO3lxvoRoFO2xvMiXOIAy7Rol8F/tW1ibeypRvxWO/xyN6i0hAhw+fwfOKnlcr8O+cZT0vUBC4JyHBghEfjyPVpoN48NvpzCoUFXqAWH8mPT4+YwpkAPglodAMF2SwtB1gOirllnxyaVfhYC5WrvWMkbnUBs06QIbxCBDIaikzaIDHIbGLQ8gv//Ee5/M2X1XnLuxh/9Ea1dpjA4Lo7JXYcpwBlrqmUimq2e6LHv4uV0qLnaaJIRpFBtOfimNB54XY3kRWSgTRQxw8ltpFC8qj5TzgUooOs32ZDFCG38uC/6xsbi6lFyCNrobckt/zroz1/MKow4Qra0yLSdFkVQ30NXRyDVx4QGW6chBlpwiySmcZhdhGxPR5uiDRtfo1PcBSk7nychS5zQ0XVSjRKYjeemrSHlHGIAd8hDmljJ59lTIm4WaxolxTikOP11IBYZ2NC+/Ar0+t6MC+uCceK2IkZNpybMivqU2UHkOpEzHz4cmOcxasuRFbKejxhEyY7LTkg/Rr+8Da6dd6IruVH/g4XSAnAMvqmFcTHKoWDezmZ02rIHItMZ7voCd7oSDFZcev3z8+8X4rUqSwut756SzaGjhtDx7foV5HAQpESUXxkXJuMga5x3DuSsH6I+6/vToFy+OkdMsQ/tiTnISXqw0yrBRv45ExrC5Ctc5jJrq3snRiwHbRO/0TC28iHmxqAYlK6F2FwgwS0UHy/1+0fCiauJFjKNjlP9P5MU5Ui9i+0KDUyoxJDAS2Wl+6NjpSehWA78TqQsOVidKS7J0EgEJgQyvIgk6LmoYHSYpQaBPERDTdfTpUyKSh72cEWij9/Qj1o36bnPx5YxS8u59jkCpXtTDu86LsvBJ6nME5FDFzbaSh3dwquRqcpgg0AsIlDJdzJel53rhkUmRCQKlCLRht5gHlaH0uPSG5DhBoC8QiBkz/u76MxMHq+uYJXckCCQIJAgkCCQIJAgkCOwTgcTB2ic8ycUEgQSBBIEEgQSBBIEEga4jkDhYXccsuSNBIEEgQSBBIEEgQSBBYJ8IJA7WPuFJLiYIJAgkCCQIJAgkCCQIdB2BxMHqOmbJHQkCCQIJAgkCCQIJAgkC+0QgcbD2CU9yMUEgQSBBIEEgQSBBIEGg6wgk62B1HbMeuKO41kso/7ZkrY2uL7PRA7QkRby8ESjyn1tAT0hoIcWYJ1/eyCRv30cIwG5uIrxb2VG8Jx6UbtQ6WMlaWH1UC8lj2iAAH7pFovUtnlSKj/W7c0s3JA6WA64v/hQrRCvAasn9lLYd8qk7Vs7WuYC9ytzK7lIonau8vqA6ecZLFYGikoAXvRR7mMGD2pjcbYeUYosfty/lS/Xdk/d6USGAunM2zPEiexGKuOJK7p4vXuSTpASBvkQA/Se9GOLoR3qxaKfdTtVaxb1zq9AnDlZfVZq8YflN7BoeNq5mayttrquHs0UOzpZLboNnbbzqLkTnkr8JAj2OQNG5Ep81rocXN7EzTrSPWijDlmEPyvxOt4NT1IrrcQKSAhMEigjAg2pkErAKm7ewT/Fy9iVko2KnLDmfqXbndT3Ri0XIkq/eQ0B2WrxY2GlBw5qinS7aY+x0tF+vnCsapZ2w096EqTOKd/cezUnJGC21whSlyg6iWvje9qDbb9fpEfbl9Gpebda0WTXLDykdVWJSNQnvdA+BGhymeQ0N9tNJE+3Mujrbnddm3p6lYcmrn1tu39qdtWkN99ruXTxHwVN8fa//YeiYrHm5LSgb+NZtsJ3wYvdqIrm7YwSwZk434uCXj2K/5MfMdmxye2S7YEH1MPPKZtMQWAMvwpyOF8WoSUoQ6GkE2tppGehw23+wyzxHDr72m686xbzmjfChAiYvbKeTCFZP19Ee5SmcSEXk5rmIlVd1lqWqDzFv1HvRK+wmTkWFzfUW7nrOguDfFu54kN4ZdhhPDeY+KZJEmewBaXKiRxDw0miM/gdZzZhzrDIzCIXBps/sFp/fvcKatj9mzQ3/ci6+nzmI50nDyOlPUoJATyCAMTN0Y4j1ap5Pw7PWvH5HmD/kVPPLRxDRIloQNBHtX2vBzgVkexhDt5Xo6jT4VNGDpAHaE7WQlBEjULTTzdhpWNPPvp6gx1zzRl+KPY7t9Gbs9LMWbMNO73wI+z2ajAMpYO92OnGwYnx741stswJRKW+N+SM/ZalhrzG/33D0w+Co0nzFIuVjEdHKbaNxdiE9iEutsOaXFmz5OfYOZeKjTFyrTQopSQkC+4OAeKeUf8R3u6xs8mdtQtlEq8HRD9xYF/FiYAHdgwWc/lzDh233uj/brrWfp3EA36Zqi7y4PzQk9yQICAFFQmXM4Mf8U2b9XmGpCd+31KBDUXU0KjMD0Y0Mk1BXNV2HYb4R9UcDtOl9Vqh/xAqrv0c0a55ZeiZlyLDJ0SrlbX4mKUGgKwg4O03U1Ks3f/SV2OmTcfJlp2l04lx5sZ0uYKfzDO1pvgg7vdjya24223oL7DwdOx1H+tvyYuJgdaUiupQXwHNPmDfgHEtPuNRS/WeiOPpTAkqD7r8wyKMbpGxIUiYoFr+s1vyKiSibgy2/8bVWWPolWnc4aGkUT9isjC578idBoGsIKPpU5LX4RiKnfuUEy/goESIFQV78RYLFPL/CMhXVlqkcZ+UDZljl8JNt65Lv0IP9C1ptc8iEoklSgkCXEYAHNXlCui942vwx11hm1JtpdI7CSPWDRaUX+cS8qPLJr4iWkcevnmKpIcdafvWtFqy+CqM2IyrPKC/RjWCQpK4hIHsKP8pOD3qbZca/x/yaGbBcDeex0xoTDa+Gbez0IOz0EHTnJDqZDrX8hjOssOzz2Gmiq2miWe3sdOJgda1GOpm76FwN/6BlJ11GZYxzDlU8kDjSBbJkJQ5TSEUyPsYZuOwQy456o+UrRlnumc+a7SKEnhm+R+V1kpgk28sWAc18QcQL20Cgg67mAmMM4m6/Ul4kb1hQfg0+rrR+g4+0dL+RtmXRcKJZX6OxljhZL1uW6taLE7mSc2WrLTX5RpyrN+BYVaIbFRloKOrDdnrRGTquy3Ax0j1VNcn8yR+wHOO1Cksuo6zxnFdErAP+7hatyc0vfQTQjfknzB/xEctMfC/BjdGRg19o5NXFh0KgHT86Ow0/oi+97FDLjn5z0U5fadawGCdrSBs7raZtknoUAVXafCrtA5ad8mEqbSzGinEGbvB6XFmu5to9teSavGa859SgIyw7He+4cmpkJBXKTFKCQGcRwLkKcs+ZDSbkPfC12KAdKAYZoziJD/fBi25qFxEFHLEMymfQ1P+2ypH/TUPgCe5LeDFGMfnuDAJFPguftdSk6ywz+i1EoIhaFWevynnqmBdVtnRjZKrEiyhVy4w5m3Kuh6efLT68Iz4uXkq+EgT2QAD9FTtXky+HFXGuFDl1dhpecw3Ojngq5kW+aRhoSEV68FGWmf4FJmmMhZ+386TWuFXiYO0BfHdOAGewjVlYr8Mjfp/rx3UKwRmxjiprL89ylUs4nQpMDZxrmUmfoqVHuFIzFzo0iHspJzn9MkZACiA036c1NpXW2YCjEf6V4NEq/J1jJSkU1sdi/EG6fJgNnPReKxvwFn4zw9CNpXkZQ5y8ehcQgO8KNDzHXGuZka+Dp/itaFbRcep0QdKN7r4sEbDXU97nXIO2DV93urAk48sTAUVS680beI5lJvwXXX5DXSNy707VXlAq2mkN90kPeqVlJmOnfSKxmO7YTicO1l6w27/TacZXrbD0eCqtYgL+kMLaGCcKy1KnleiUSr7LS4MIpde4XtZyTQ5Z1A+cqj2aQfIfIEpOV6HHVOUkJQi8EALwSQC/lI++1qz2CHLv6Zxr7GYVPOeL1dqlFNfKuaZvl4pOVqZivPVHKZmt5CNm7eBmd0PyJ0GgiIDrpt7IrKzXE7k6hyAqkSuNb4GnxD39inqxgu9MzG+cF1/qnNObxW+dc2u1ycmiezEz5q1m1YrOMlY1cfiLgCdfe0dAHIfeCldhpxlz5XqYIjute1rsNPzWaotbS5NPFfOp86McBxft9JBXmV/3QSZlMHmjaKcpJkk9goCmDjPF06/7sKUGzHED2eVZacqn1hyaxxg428EJ1W+5ZwcxHk4mTyaq5RrHVuXZnP4U5bKSmaiVx8raaWY2BBuOYwYNhi2laaOaPZOkBIEOENByC0SYMtXHWsWIV2OpEHNn0Fq8d8eHmzeaPQaTHs84d5dF/EpxaYzclt1c2xba7BrPBmv8cfExmqBRNnCWVY74mO1c/WVafwdzEQWVpASBDhGQDhNjrUU3nktUfxgqja4VLJWcJXpY7NF1XGdYi3TjwP6ejWL1EI0r3gFbzd/CASMsinbMRg3zbABtzAInPJwsv2yEpUaeZ4Vn/gATo1TjjB3Skpx82SOgYTay0yM/zsSzg2BNWeFIvzk7rcD8TngOXrR+ns0aIF6Lrsv5L+DXP7KW65Vcw07nXVbxuOx0uaWHv9qCjXfAsyjXVEVpfwGlJKkbCGDUADsz5GS3DIOmFyv8rUpbzuEHD/fs8GlpS2HjnlwW2I8fDmwA+Vfzueww346ZGTXdHlsc2Jf/E9hsZiqr8lwEDEWSqp5qPmNpghWfpuLmciFxsLpRWS/xW7We1TIrH3w+TtZUrBiMpKZXMemQiYN2zvlpOziftr88kLfV9fj2GC5d28Sio8dM8ez901I2H1598NnQMvLN3I2MDWT6cr9hJ9rOVV/mZMS3cdnJd4JAWwTgjxBvvd+xjFV5JY66fhfousbOYayy8NyX3pC2iXWe7aR35S9PFuwP8Nsw7OCskZ59+NSUDaLRGbPwrx8o2MNrQhtAezbQMg7wZLr2cCv0O5ICMWoeirOlOdCWkuRXgoD0lex0asiJzIjuH427goek3lZgp//7KN8Om+o7/nx8SWSn8fmtjDbqRti4vNrshgvStnxDaDc8ENhYDSMssdOa6eoPPNGCNYzJSh2cOFg9wnIaOEzEwKs5ybyKkci3Q9xSVMxWDNkZ0z376Pll1shxQG2cfmzGKiqa7FO/Ktj7jk/ZFRdkbTtes247jWv9q7j2x8Dm0iBrcn4UFwiz+yz1EGTitYgoPFEkPVJ9L61C4AtmuvgsHFo2YBY+Przp+LHkLZWFEOnIkb4ddbBvU0ak7TM/iRx2tzgxxu0ijN5cGgR/fjBnd8/P21AVE3Mc5WWZ4ZodcIrldi2m5VbJxcThL0E4OYwR0Birwioah+dh0Jj+rogB/KeukwVEqG54Xcre+uqsLVkd2Ljh8OPclG39XpP9ntEQl56esovOyNjSNYHlcMbEyn9fULCNy80G4ZjJ6XKRA8r1B52AUfs/Cp7MySgqwUGSEgRaEXB2eivjUU+ja7AO3hED4QfBj5twrt54kGcfeUfWduFIKbp66jEeDYAm+9Y/AqtFvU2jEXDN2zM2vNa3H/yOiT/k4X9J0qztDOXPtmA9oS81JEquJof7jYAiBkvNq5pN1ysD5mRsQF4KQN0tu3eiSG5ttkmfabQpH2u0DZtDO/EQVEyZZ5s5/g7XpvxPo039QpOLFJwwh2ubMGKltUNZWreIqYkUDAd0dXDofr9bcuP/VwjAF2HQwKKNky1bPRFebKsC3Ltgf9J0/V356Sa7+/7Q5s5I2yS6XmTEnqQr+4OnpWzwQN/qt4duDJYzZDEIFKeweoq1YDJVdIXD96io+GrynSDQDgHxY7N51TNRYPT9ycFCOebQZxMJNj21KLBP39Bkh76/0T71o0YbPsi3Ew6Cn+pDq8UfW/58YLOubLRD+Bx8dZPdvzi0SRSTdz6UmJGuGcr1qw/iWEs9lCrNdqQkP1/mCGBXC9jpSuw0SyG57sGindZ4021MAPz2L7HFn260SZ9qtHqGSJx0aNq2YM4Xk+9T52QsS+Nzyucb7VqCIyOIoqpZGblpglZHdH1X4eSnsdVhYxLBEizdTygEBN4rq6OVRgyxqEQEdyUV8p+Vod2xNLRPHUdX4JyUldP6+stDio/TIlse2sOMQfjEMSk78dCU7dgd2r3zqLZaz5pVe8VEfIvyhxDIqqXeFnOWcVhJShDYAwEZnV1ElabhBA3d46o7gQ3K7wrtggvTdhDR1Ufn52wB3S5p+O2UiURcT0jbnX/L2yHTfKtgHMLOEj6UAhF/p4gapFgA0rUlNOarVct0/Mzk7MsQAXgFfvHQjVpM1EtlccgJ46urmVQJH17/AGMAx4T2tQtSdvIrM7Z6Q2B3P8YNOFfV8F4l41XvuixrQwf49rt/5e3//lGw0ejPFnYT4zH2xWOdNqldzJt7ZkkO96zkT4IAXKjgPr3IRK/oHoyi7tEkNE2k+NeK0H6DPf7Mq3w7Gjtdhu3+2yPcQLDj029K2eEzUvafBXm775KsrYJPP/frPNuJESchX9wIFV96ZcPgSRYHz21MIlg9wnZubArAMjsmXla/tNwaKuA1owlBnpS2k1Aiu+me+e2CwKZwvgx9cPps315/YtqOm5uxnYx/+Q3jEKbR66JWXmvCwWKwO32QMAYhMRm6JCUIdIQALXnXqk+zYXOrKWrNCesEDaEdfliGSJXZQwsD243dW0yY/KKzMraVltu7f5K38ixjXzBajW6QQevt8qY8Yug+u8tHvTEJL5agkxy2Q8AZHe176XRWq1JzM1RRaSfP8e0tdBPOnJCyp1cU7B6cfUX3pScrGeOiMVgD+HzovKy972jf5qP+WqP75IX9vDS8mKQEgX0hIDstdkFv+WK+dq3CGpyss8Z69qaTMnbCoRnbTrDjj0+jAEkjB+Psow/rBvvoRbMzGcrzxbdlbBF6ExYuSehG8aKL1jYlDlYJMt04jITcuccclvo+qkMNVl/L7IQPfrfZLr+ugenvnn3lrVl7jsgAjTT7+1OBve/6ZruCEPmgAZ594S0Ze2ZjaP3a9LyIOShILrhCX0lKENgbAowDCMUn8o5KmTHOz+kMEYHvfL/J5i00u/D1GZs6wuwDx/p2CK20uxlILBbLoDkUEh8Ik4qtWxO/xYrFrnCOWi8lRwkCHSHg9FbbC42w2QRs0W8fCuxtX2m0G+9sYuhExq59jXoEQrvlvoJdcWOTHXZFk034ZKM9vzGwM47GCsKbBe4tBsIoFH50vN62/ORXgkBbBCI9pa7Bdr6Vi0DpnAavX0qX9UdvaHQR1M/TLajUn1mDmxkn/bEfNNuh5zbZ7/6Rs8MPStu5MzxbQVDELS/iisdOixcdvzNuui0Bya/9QoCaUdd/2LyFNfAIA5QYtRxYT6SnZhtK4V+rCIlfUbCFSws2Y4JvdSiXEUyRL6O375EloX359oItXxfYYE1bIL/raWwhiGhCbjvnGCTjET9PjFoLMslBKQJIuUf4s7CVDZvhl9JLxWMpEp8IwSN3Bfbb+/Ju0Ob00cxyJZKaZeTmyUcQSfhSmTs/e3LKrj0vbYsZn9BmTSz4PND+W9jCsL226uCZyamXKwLoRtmcxk38Uf8MP0jqUtF6gBOYE/QI3Sz3LQjt4u8zOYPLr5zKBc7toBv7u0+FVlXBSaJa21jmph982yZRnlv2QXu2ukvi+I64vs1dyY+XIwKy09JX2OnQbc3U6v6IHycMZ3ka7O6/V5l94xN5W7SyYLMn4dArG3a8sSm0JVpqiVOr17OCO2VpdiGBrig5/sNOU745O82yDS9HnHv+nWlO0ecaai8iBN1zexrl6P7zbCGDNa99R8YOmZq2H/6+2erOSdkRs9N2/5N5W8tY9evenrbp41J20x9yNplpyTM5vvt+FoXhf2sLTceMwtq9kvNriuFHajxJCQLtEZCzQzdykF9rud0rWBUPC9Yuia8KaIWzLkzZq5gtuHpdwZYxDnDNXQX7z5OBVdEtswPefM/ZGdvIOkR/fajg1iaKxhmoMZGyHAYzt3sRCquW0uH/JCUI7IGALA8fNT6ZbRoGR8KbdM8wKKsxR7cf7YBv/leZbYLHfnFvzs49nmgBef/NTEFjhuFldFffQEP0e7/L2RHTUzZjYsq++1suoBsZdmVuu0zdwKSfcBe8yKGzhHvQkZxIEBACstODsKOLcLI2sSYb4/aINMlOP844q69emMEWp+G3Zpt4XsrmTk/bffNoFMBX81cEdtaJnn2ViNYDswt2/hlZW7isYD9exFqB8LFbUgkPH/cKP2A5J56H18vZiaV2yFV6dJK6g4CUCIPmGv9ifu05dL+ORs4jD6mM7sAGWmJzJ/r2CpTElNEpNyX5i7fnbWm92RAqbzZjD15J18yEkSl7cnHerr49R9chLTOuSUUpebje+fV/sXDjTTDJKM5Q8UlKENgDATlAZawmvMDSVYdZ9aC5tph21JsLq21y7h7LeUyU8FECDLoa/e7XWS5baT9Dofx1PuvrETV4YFnoZmrdwUDjU2Z5jlc/dmfBpjLr0DlYYnXGAjbteM52LP84ZY2DgsTB2qMakhNFBNSsp6nPSJX0kOM5rMKoBayS7dkynPiRRPHnErE6DN1YS7f1XQ/m7fLfF2wCUfxGxgkejN48fGbKRg317f6n8vYFrg1VkdKNakzg7If5bZZf8SOcMkX3k3WwQCdJe0NAdrrpUUvVss2SGp/FHQXS8GOORufBRVs8aVTKFq0K7JpbIlv8GxasHA+vHsragAdPStkmWO0bv8nZuvVMxiDqFTU+YT/4Mr/uLjYW+CWNTya9TZg6I7bheyMpOd8ZBDya/Q1U3NQbLDPu7dzBjAX+ao2NtfQa1lN5R43xbBcNsCeolCn08pWhd1Zg1LYTejyWLprNHC8k0j0Zj1hL9kcVw1/N0mqut+b5V1i4+SYuzuEiBSUpQaAjBBiDFTQvYKHR82zMnM/bPWWj7OaG++20hg/bbm8GrSz2zrId9q3h19nVm4fYkakcM1tpfcGr4lfxnbpq1jG2QIOJB2Czomnx8cMKtm35zVa/4BIWKz6UG2DcJCUIdIiA84TgkdWWmfsnAgjwixqfrrXPWlh0PRuG6yS6Z/66gWMGDc9iyIRWF5Fu1Grux9CeXLaDXsJtZjPRm5Fe1MOkGzMsQfiw5R4/juNpKjY6r68kJQi0RwA7HWKn09N/YNkx58JBBDLII723HH7bCf8dS3xkCzZ7Pvw4DX6Lh0YsQB9Wowunc+6h50MWGfWcc6U5QK4U1qoMmzZY81P/Y+GWO1Cek9GzSeoZBEJqpmy6Fdb+gFVi2Tuwerp5hUba9oy1olLGMN14A12zMlwHM3NL8SeFFbUSrE9FramnjadrONi6FnvETofQSstvfsCCLT9i/Y6D0StSUElKENgLAoS9/cxB1rTlJ9a48XQz9n8rNUvuLnhvN+tcTceZZ2ERtzWTAgItfMe5WviWU63OFZEHL11uzTueZRX3HxBin04G+D5JCQJ7RYChDD5df/ldll97B9uTzOB3NMBUxk3bgqmrbwnGjDHD7BIQzZ4WL45zutHseXRjDX7aEPK2zqwmgwbUsOZbfs1v4UN1LypSJu2ZpASBvSCAvvLKpllhzQ+sMOQYtrOcCANGdnp8kd/Wwm/agUV2WpZWvKg0B8dfDc16GgVziLAqbi99SVanKDWzOr/pfgu23YzfH9lp2DZJPYOAFAnaYfejKJLfU2nMJWaDN4/aUSVIMZSjA7IoEe0zGFeMvF85WhVcS5dcczTJoKFxAsbSFNbcQlmMlncmjxuSlCCwVwTgD43Zg192r/qZ2a7VWC55SzTLSpK2bRInxQqk5JI7bMNlygQ/h/mdtmP17wmnP0Q4HH6P1mlof2vyO0GgFQHNNvWnMLzh51agoehp8+dikl7UUIgq+Vx8xw6UjFasG/sVfSfpzYgno78e/TGFTf+i3B9TPoYy6aqOYU2+94qA7HQ5Y/YedHY6LBCWKtrpUn7LFG1xqW50vAmPalFS2eyWxqhreJZZsGsZdpquQSMcq8Xf4NbEwdprRezHBUWWMiyTv/qTVN4fAVqVKSumZUKjCmmplJLi42ullakphFqvI2TQfG75jRZuvY2yR1JWEr0qgS453BsC8IkPv+S24OzTnRc24WQx/qqNQ1RUEuK/jpLOu2vOuZKqCGzH2j/ZzpX/Q9mzuZhECzrCLTnXHgHpQaxSwOSIJV+1wvancM7pF3QKTw2BSDe20X/FIsR/0pmt1xxHuvsL25505VlIGNZFr6Jr7Z+e/E4QaIMAutGTnV75CcZL3c0l+MYtA7BvO60yWng1LrBopwO6BnPLfmDhdqKpaRysom5MHKwYqB77Rpl40y2/+EOWe/5PEdBSLk5DdEYBkIe8kXO1yZqX3YjDdi2VppBj0h3TY9X0cijIhcPpkll6vQUbbieK1Sr4nX598aL4l+jAzufvsq3PfoTxMXQNushVZ/i5009KMr6UEVDDMEWfy07GSz37RZys+XQ3KwJKrMrpxk68vMvnu6h+YdtT1vwsenHXPMql7zBpeHYCwCRLhID0luz0RMsv+njkZLntBrpop3HMtKhowCbjuaXft2DtV4t2unV8dOJg9TjPKRyu1lp/yz/zHsutvJl44janFPhT8rTIkWrreKFsCJ9rxfZg11JrXvR1C1Z8isjVHO5LIlcl4CWHnURA3ShYICKha+AtHZc4RfE6IDJc8cddj/Mw8F28CP9uX3GL1S98L2voVbY4XJ0kIcmWIAACcqRoIGYmEI3/o+WevsLyG//lTrsdKnTdJfFe+48uRLyoru/8hvu4/5MsLvhnyhtHdhm0+H7lTVKCwAshIDuNg1/IYKcvxU7fip3eEdlpN+s1vr+9biyel51mbGGwY7HlnvtfK6y8Cl4kCKL1RUoSnkCSehYBKRK6Ttw2IsOssPgSBr3Ns3Td62jAMYNG2+nI4LUYOykGPGFCjYzWQgetZwujf+AN30a48c5ipcm5io1ez1KblPbSRiBaBBQe8xQtaJ8C8xmY6TGFXn9bEryoFl5Q2G27Nz1mO9fcYY0brmOMDDMQ3cAtdQ2W5G+5MTlIENgXAvCMc7ImW7jjccsteK8VRryLHpVT2SB3oluKhh0xYS3xlvRd9O0xhkvrFRW2P8vyQkyBf/5GjCFrPGQYd+Wi+gkv7gv15FpHCIgXsavOTqetsOhC1gZ9f9FOz0XPMWa1xU4X76cR6ta5cnb6ecttkJ2+BSfrT9Gg9nbOle5KHKwidj37pcrDCClilTrYwvXXW67+Tsv3P8V8nCw3w7Afa2RozyIqLcztJGK1HIdqAVOOH2RuMv24GiiXmcv1pFuwZ+vm5Vha5DC1vjnGiwUfm1f+xFaVz7FhVWMtyDKXELYN8s3YrrXMFHzaGusfY2mhe6yQW8GYq4O5DE+7sQWJQWvFMjnqGgLSjei0NOMBC81WYC21YP3v0IvHmj9gjnlVk9hlYHA0poo1irQCvBYpDbbOYxY1A9obGCSfpts7TZ7Eueoa9Enudgi0t9Pfiuz0gFfDi7LT05jhXwev0TiVnW7ewfqBywmYLIAXmdW/83foxJE4V3u308k6WO0g75Wfih4EhA4LizFifKtxJptXmlp6D1E8LFCmUHg8UK40W3KcINAVBGqIBsxraLCfTppoZ9bV2e58ngCBxzRkz65++n77Vv0Sm0HPIUuxOQdLPYVuEUf5UCGbRacmRaH0ZN21rsCe5O0UAjAe61hpWycLlkV8R8+NVF+ctB6WG1khfelPQDfG463aK9D4juQ7QWA/EXB2Gue/sASma5ZPFU0GLC1Odlr86TGjPzWCb364RmdpptbjJILVikXvHck4adaMdigd9lFWez+a5RzWUYGFSJlkKli/oZrxVj/i/DNRrWpqc5ISBHoFgajl5pUzE3DmF1mvjSVF1OUihcJsLK/fcBa0fdDCdV+M+DaJovZKLSSF4iSJt5zTNNS8CdcwfHUA3v4mx4tyrvzyIUT46y1c8kny1UT5E+ASBHoDAWen6RoksmrDP8miuIexePjz8BxDd6QbM8xWxVYHK37Iri1ywsS/+7bTiYPVGxXVUZla+6WZZUerpllm1OuoFxSLxhq4msMtZsG85jW/5nstimQKJey74jp6RHIuQaBzCMB34i+2LbG6ky2TqWaxR3Vpix+1PEi55bRR9AqyaeG2xMHqHKxJrv1AINKBYX6DpWuPsNSA2ejGRniR6FaRFwtbnrDcM/V0DY7dj/KTWxIEuoAAdtr5/NUzLDMGO50vtdPowsI2a17NgPgCjQBf/LhvO504WF3AvntZ5QJLZzBgs5Cn4jRwnRNKzhPGa3aDiwmZuxiku5L8SRDoJQTEjCgHHP2A/dtCOViOH+FTzVhVa67Inr1EQFJsgkALAvLtxYvSi9KPLY1P8WIgI9eSNTlIEOhVBBwvMqRHzlWrnZb95qPolhtf3TnXqXO5evV1Xo6FF7WFq0lVHL/dYANhIQOXpASBvkKAdYVkvRwvig95bnzcVyQkz0kQEALiO8d77gd/Yl3I+SQlCPQpAjEvxt88vIU/xY8xb+6bKOKwSTowCCRK48Dgnjw1QSBB4MWNQKwb9R0fv7gpTqh7KSLQfd5LHKyXIl8k75QgkCCQIJAgkCCQIHBAEUgcrAMKf/LwBIEEgQSBBIEEgQSBlyICiYP1UqzV5J0SBBIEEgQSBBIEEgQOKAKJg3VA4U8eniCQIJAgkCCQIJAg8FJEIHGwXoq1mrxTgkCCQIJAgkCCQILAAUUgcbAOKPzJwxMEEgQSBBIEEgQSBF6KCCTrYB2AWg3dRoRaZj+eBqo1Nfi4pTXicweAsOSRLz8EtA2E+NEtciveEx/yO2LGlx8eyRsfOATY1SIU78W8qF0uEl48cPXxsn5yzHuxnZZx1rnidyeXD0kcrD5jIowXdeP5afNTGQ757baDcCdZrVirFyugGK+o3WeEJQ96WSIgRQG/pcrYGqcfrMeq7lpID4PmpVALbMKrHHK5kpQg0NsIOLuVyrIXYZZ2J3zZslUOvOhnne7sbRqS8hMEhIDjRT+DHmT/YGMbO6cXOXS7jsOLBk/uY4NnMrSkTjpYUrNiem0lLSdAHyWpYLV2Uc6upaHjA5WKQuloE52xaRCNpfQdIBq1LYnqpWk92xnN55sd5B1mkKeK9KE/0B5c7BbvcOWrz5Mw4+McvbiuYxzb17NwPRBJ9JTWtXjxxUxjjKOwiuUFLN0mofp9IHDUM8EtZBuSHc9GEqy9MZVQJl7ZQPhzQyTuL7CZaXRTb/1V3cZ1/SKUaffapfSJ3lJejOtZsnMg6lkEih4+bXR3KY2luvFA0Khn0tykesNdK6yAdQvZBzNOXrbGgl0rI/Idp8ZX+vpbmLWva9Eg+kt1Y/Q+utL3KaYx1jniR6X2NIreA5VEUymOMS+KxlJePEA0qoHp7PQGK2x9Cl7cBnxFWtijNdrWTls3sfFzmjCg1AAAQABJREFUJ2TamzB1ht5sL0kvr8oiS7AVm7Aq4qX43bkc2eKBYDacH/E+egDVZ6lYYTIEYT119Hyr7RINxVfwUsOgsZYTeh+9QPwSHPZ6imlUxdAlEyzCsPFQtjVy9FFvVjWYw0G8AxiqhvucRuECWNrpMlgNjrsivipyR6vPNR4c2STYEa563gf7cLXnkipSOIrG3dC3BDpRxiWs1mJDUpPIVkFe0aZ67kManaWArmAntC1r5UWRAOkRjuUYjLH4Mmoh6ULJS/CrJ1MNDtO8hgb76aSJdmZdne3O53muZ2k+1zy70L655Vmb0bzTGoDUkSIRrobO9GSgkyIUc4q+AyEvPDfczOPXteIIJZAeiXFKOmcwnwMh07G8EHEO1kEjugeIXOtXNBZF3lKjYVs1mnRCGPYljjGNkumV0Njw4pXpAH2TomIbF5vtAiaxnMiXqimbZF4BOfFjoyYM+1CmW2zgTnBc5miLbW6rTEObP4qK732Z5uXbpZjZwAU7bYXVUT3HrCa9Iyx9ZMXHDh4Q+xLTSMUGm5Dn9VEdx9UY05gaAX3YwQMm09AZEujw0eH55yI7TTvUmbt+fFcNxYSjIE3OlkAVo8YvwWG7JEvecVIlqNsqWMr1neiIs80feLmlKmH2rADwIWCnBbtXWbD9CfTLH9gj9mkIm8hHUiGqejk5GvFSCs/wzArzB50DnYdyOB4aUWq8d5jbDo3LLNj2uAVbbiMvHmlqKvkRhE6G+br3FlisEI1RQHFkxpk38HRL1XwU+z+OiJZwoiKbN1u4cxE0Pmy29Zecoyb98Xyog16nEc6WAgnw+KQ8yg7GZl1qXvVMbOsoeAhaoCFo2shrLLJwy7/Ntv+e+sdZlYFzhgM+cRzIV6+konAGMrZrzCpfhQyeZ17VNGgcAStSl2wIGzRiiHc+g5/9D5T03yFtJDSiVJxRkyDoXXsjScAkShLKtRjZTVZW81qrGHSJZaumWKq8FhrTiFOj5RvWWNP2BbZ78585fgx8cbScAd63oPY81WjfftNxpt5q6ZoplkWmPRRGmN+BvKyAF+chL380L/csGE4COgxIn8k0DkGB5/ooskFvIagrmR5H+02OCijntuFjL7dw26Nm9beRF97tU5mmrgM80kAyja6phRdr5pjfb0wk01jfsLkeGpeA4X/Mtt0C1eDnj+XTlzJNJChYji2Yi7y8H3k5CBrrwAqZRreHzRuJDj2HvCDTO9DffSbTkhdn8am7TdCyFniOt9SgY6FxBjJdh1yUYYQxdI1rUU0LwfE+ZJpPCpmWo9DrzmqrTDudI0e/5gxs4CWIwmT8qCHISxoacVobV2MDF4Djn82a5kGfdDe8+wLGlwzdTy12egllNZgNONe8AYdZqmJiGzsdNiDT259EXtDdueXgeIBkOtUfXnyLpfrDk7LTmRrXYAqIFIWy01sfxcYgLwXkKzUNHNU9LPvS2wk7TaPYAnDMgN2g05yd9ivQz5lqHNaCs9MBdjrc+hC651YIwn6/gEx3EMGCsTxeqoAn7DdYasj5lql7HY4VyiNVhfPLR5WKrQoDlHQAg8nRat5i+Q33WX7NjwmCPEVeHK2Wlm9vGDYAIVplmQHYeWgcfirKA+9cNKakzBBgyQghjpDKClHCYeMGy627h9tugslocaZQNr1mNPTO4JRfhoKban7dOy019DjH9F4a4ZOSw0nVBt0hDBQSMbKiw1pYe6eFG6AxpB5SRAfVldPjSeBIyZEKOMaVJ+CPnI8/clhkyFTPvmhURfOf3cWtQFQmvws+XEwjCcNWfxPXR4M1eIdc73EHhgc7BYLzESw06/8WGonnIZyzOA2GjkacK0cjzo1oBMMwj1O9bQE0/hzjhiD40/nEhq2neVE0Mm5ECiFcYRVDLrD+o96CgzWJR1bDhsIRXtVjCW/IaATgWECh7Nr8sG1f9VNr3nE373MQGZR41x7EMYpgNRYjWCOKEawUnLnTPpe9yr6RGWtzMWbNij6LRmQ6RKYdjjgJ+Q3/wL78GMMBj6QmkEHKDrnvQRoprJhimR5o3nDkZfhrMLaRTGMxqOaIX0OFLYW3+LGRLvd1d1somc6js9QC7hWZlrz4fOAjRU/LZyLTyMsQZLoM55R6RgHxaZVpFwV2DusqK6y9A5kGx5CWb5/INPJS+Wrk5e04Lq9EpgdENLpuDipar9Mi0+hvJ9O34iTcRNWO4z2IAPeqTMNHwdM4z+dYCpn2+9Ogw9g6/S2j2kam0d3CcdtTVlj1cwu33w59M/hIx4sfxbg9mSKZVv2ZraHBST2PRPdUEVxQoxj74jkauYxMxzZQjn9h80PIy09wBv9GPvSOSz0r08VCeW3JyxZwaDZv6AWw/pk4LaMdjc4GFu10LNPC0JDpAjIdrL0JmX4OGsdTnDAUQ/RGEo1rsdODzB9xgaWHn0JsA5mW7kam+eOqTw6MkxfJdMMGyz//JwLDyEteAZHelmloUACkfDb1/E5LD6EBn8XuurpmfKrC0cAjO23YP/kS6rbOI9MBMu2FvEdqABn2tIHtHCxKUYgzt4iWxFGWnfhhy9QeHgmbsJdiU2xUTOUSjK2Hxx8cgcKu5da8/Ec4MV+FwNnkkjLWpweTHMDcPLzMt1l2wmUY3JnQiOISXaJRz4tpdP0JEY3qGpERLmx/2nJLv02kkgrMHEx+AdOTCVykjPNPYSgut/S4C/FBJoITzObwE33CpIhjTKMUhhIGLl//MHr8a7Qs/w6NU8nakzSqnjEUYupwoXmjPmfp0W910SB3vk09xzS21rMHtmKy/Ia/W7D0iwjqGuqaaJa6F3tM2YlGCSdKzt9l3rirLF2HAkFQnVDuQaN4MeZHcNT13BbLyVld/lneVYYNp6wDIYDo/UyisYxgwHrLlA23QZM+YVXDcVTTGApwcI6A48mY/yMancA6oS1YvvF527riFj6f4D2nI0o96wjW+HQR7m7GwRpLF+HIEgdrh32+8nr7OtGAudRbU7GaRXeLPDsacxjfZZZbcSNODPzoZFoy1nLDfmLX/rZIpm3wO/DjLjO/RgaUcy34dSzTrs6R6WD7Qissvc5s8097Uabhq/yTyPSHijI9HqxeQKaLBsTJtIzvkv+lQ+Cf0DiFd+tpeZFMYwTCp80f/QV6J8/FmCGXkvU95EUs2irTZHBOTGHDveAomV5PXQ/h9J5Go33Ndf635IU6laFPNZo/7koa72eCBcbM8VpRLzrdLf6K5CWiM5bpeifTwbIroS1ydqIGKHl7JIlG2cDnifCOwv/4uKWHHh/pDumXNvpbD2xLo4ezEiDTuZU3W7jqCni4lxxBZwOfIap2AvLyIXz2V0IjDr5Sm7rWCdFYUtfY6WDXUiss/6GF677e6zLt1b7TMhPehxONflNj9AVlGloZj1ygkZxHpsP6n0cy3aM2ULjwHGGDnfZHfASZfhd2ehyn9iHTDkd4UYlGXn7zfyzvZPpBaJwI9m1lOjWwdshVLrMUpqs0WhUD32Dl0zFogw7jkhgboVW0yqWYoYrf7hzXZKwh1id0mh54CKUNo9vwZ9QrAt6TylgV1DwPp/ZyK5sC89dMi4p3LZkOaBSALhWFl/dJVdThcB6CLqKsbb/mFevIEd9bzL7fX3oemKnSxl4L5jCWug4kmA6j4nOcMxBjqHvA32HMdSpYFe0RRg120yrf9ZcijdRDy/vsN4ERfU5RLKFH97uWGXc+tqy2hEZo0XPa0Kjn6R1EPx8cWr8Gx69qNi1KohtNS6BRXTgRHyj3/ifxIkZBUQpmFaWmft3SI18ftcBbcNwXjUUHgJZmasBBFvabSVj3H9SJnDUpoZ6iMWtBbr1lK2fY0IO+hHN1IpDRtSEF53DaF43CEciyA6zfwDmWykyzhs0/gwuINLhIje7tbgqtjLLWNW2yNw4ZY1OrKi3HuDU1NHwaFfdlXmP/YazaCJ5acIoj5kc9V3Ud4eSXDwVHeNGGEr5H2fkjuN4T9MXvV3Su6j5s6SkfxQ9Wg0Ik6PkRTm34sUUGRCMf3tHvN5KuEWQ6B99s+w3A0pXk6jl+Rne+JZ+SaZyrsV+yzKRLed7oEnkp0thGXnQPSbygd3AyPR6ZORiZ3lyMcEjv9LRMLzd/0vctPfYdyDRdaZ2SF9HP4F4n03S7V87CYZ2PTK/gtdVYiPiAg24kKlSGiwizZSssPe3/kOnXUb6i35T/gvIiGkhFmfaIIAZb/wZpjfAjDpHjkyLmLuP+/BGNcgDXOb2Wnob+HnpCdK4LNPrqVRlAw51xjCE2kH47yoB/ekRmRCPv2/yE2WC696deib09NCq/xU6TZ6/6O6pLv4yxRMh0GKL3t/yiF2Saus49QZT3o5ad8hF6TKdErx/Lg6se6iuWGSfT0C1+dfwmOz3K/AGH4j8zHGnbb8GzN2T6KUuN+4plJ70XmR4VPb9U78T06TumscUGYpuqJuA4SqY3INP/hD+JzpXIS6uD5Zh/HQrgRJyrz1i6P553oK6pksriV8epCJQuQpzCk4oqheEg+s6lkHvIgRGNOQAZ9l6cq4/gsI9ENmlhqZ/NvbxA2FsqBaiA8hnoaAya6BLZcQfA9FTlSYmgiMdcw/AM+usVaiyAY1xRjs6OaIwxFJ0wGYzmlw+nPqYxBoHKa0Cg1LXgFElH93f2nMpXC2EBivgGIldn8xOnwy0TUUpDR+WVXheNIUIwBmU0FQfmEeoGw+EcGAlJdxLKSILo74ycK7qK3JphOtcVHJ2w+hjsiRaWjWe89O8oBwPcE8oOB1BRvAzj1IbOvNYqBh9OlUl56d1LceoIh/i6sus9s1befxqRr3G2e9MPMXQS0h5IGIuy3JO2rvYCe2PdCTbVf4LOM7raKDpysE7DwarCwQpQCTpbmtrRmKkqyvQAnCwp5B6U6Ty8PewynKsPwfMlMt2i1ErpKj2OaUT+wdHXOLIaDG8TmO6grnus4RTJtD/mC7TEL8ZPwGB2SqahteUdJC84Mci0Vz2dqCBGvAEnRl0LPSXToWSaBtOoNztnqcsy7eQlpHHHuJPKKTgwDyHT9dR1OTRKx3YnSaZxJhl24pyrYa/mN/XXJZnm+bFM0wUfyfQdnMMp6hGZpp6RaaNBnMG5UoAhlF7cL5kucw3Q0B+Dk3Uj791zMs04HHy219KxcQW6bRo0YgPb2On2shzXWywveiUkXjIteQlwojX2t8dkmvpApr3hH8S5uhz2QVd0yk7H9In+okzT/a7u46CRd9zxR+RFjbvu2hfhUZRpGkzZCRfhvBEckL/TFfsiOrCBfj/JNHZ6+2rGDBJVdI2SiMaig4XBVfgNBVU27WpL49lGgOhF9elCEoEIkpdm0Hn1JCLjjQw8vr8HFAkCGmyn6/JIaPwkhh2Dqanlanl3iUboE40Ijk9o2scDLThglsNgim50R5FAo8aF1b6NVu4HncKPcBSNXUnCPKJRY1A8BtoF9WCYJ6KjyE63aOR+xlx5oz5jmbEXRO8cO1ddIdFhDlYoPLU0wgxxkM1EA9UfLfL3O+lm1TXGYsJXo1auW5AVhnXGqgsFu/yikYhN1XgmxdG9WP8TypGy6049QyO3+1691U7/KhNLXlVUxKKtiy/v5EXRgzTjtibDllXWuOVWfivy2x1FEsl0OUsurJv+RXsTs1+mNP3Cch4DiCm31cGq3IuDpXcppqK8SKa9amjcDR/uehAAuukcyChq0kn1cThXH3cD2bst0zRovErqevuqKALjdVemJS+MwxlCN8dkBoqrO8sZi/2VaRxBKWSMeLDlX8h0AyzTAzKdX0i3ILp77DvbOldxHXbmu0Ve4A/G8lgWmd50O7xOlKmLbN32cZFMh8Ezlp6ITNedVRS/bso09Rx6A3H4b4K+7vaURDJt/nZ48UuWrj22KNPSE118+aJMq+GUwgaGhX5EYIiq+kMpq5syLWeKMUzpadfQ4JlVtIGibz9oRO97acaTOZnGsdxFI9nH2eqObnQ9D1tp6Jxg2anIdL+x3bfTGuMomd62FJnGuXQzm7uhvx2Nqxm3dqFlJxONlkwLV+dL8PqdTkXM1bhjspUhM8Hmfxb1A7oNHCMt4boGn7XMyHcTbqQv1z0sgjlFjgrkvx/5+/GtmbSO5fjWb10r/bjrIhTnR2HIDAJvKbpmHB5dZILSF1X0qrCc8i52XQixIlaxmXY0MuykJcX0V5TQ7y5Co8pIMTYqM+Ziyl6hklru6/qBHkqZ3kan5NzYhxJFXMbzK4WV6OATkxjTr2uV8bX4or6pi9TAgxmAfgnK+FlupHWw3wmg1EdcfggDS8/Fa6+mfFpoTrG2FlpepDU+Ixqz3BrTqHeJkghk7AatUI1T8IaCY55Wuepqf5MzuutpoTGYXYpYg4pdqzUGheI563gOOhxbFZ8lPqgiu+hvTQ5EfjKwewTl9T+Pul5DIW0ytWbvzBHvF/CelcMvxrk6DvJipVlCI4dl0JIpeYxgzvI7/og3XeKCol8aKD1gzNmWqaDlrKnCRfEs5uraF3wSMgPQG/VBM7ogI5mO6sVRCXCSk0pOpcUWxdJ1HGOr7xZZcvLSjEyj3MeezwWilS650orHXf3i4cidP+bdOMBTShRxVI5oUp1WQ0eax8Q06qqOxYeq71gnSUGGzCb1qybjbFxMeSuo5+7IS/Hd/C2WkuOiwbklMi06lGI6hJXo0l3iQdEmmdG35MfRr4uUkWIYhV93MRGinpBpeAWeSY06Gx7CGdqLTKs+2yfhKhpbMHTUQ6kaTpLpYRf1kEyvYQbe29w4SskiRPIRGFHSkeiTbnQ48bsUw1Ic3X3SCRjKNBOwrOatYIrO6KZMS3d5w97NxIXjnTxGlLTS6OQFGlXfMY2SadlBpxv5Vj27pAuqB3RsahT0MTs7Gp8TZyjm68qXZBob4I+6mLbNwfC3nILWAkST6lH8JrmJaYzpln2J69rdVbSBHuP0UmMucLYr0jklhbYW38kjRfZXoCMk03IusTd6DnfHchJjFevpmG6db7GPMQlFGhWpS425hPKWUV6kxzpJULtsFOwe2OB8Ez87rIhjVC+iKaZP36I5TsLR6UbOq3pbkop0dvoV2Gn0Tu4ZMkR6J+1aT/kNeJynYCRPcGAofBhSgoRvBb5RfT0UKT/8MmGwZ/2JGO8mmvbEOs6Dn6tkPRBiBg/wbDRBDHU5eDBYir7XdN1Vllv2CRzPQ8ikt1Pmzibl567mx2B8nKtBr4BxJZxRSaLxcRrBtp18wp2vabWeZQQCP7fQQFy5mZP6wWfMQM8GQL+WVdEpbc2QGjiXxsWlzK64Hlz2l0ZKa3oMY/FZF7Z14fBiLajq5m3kTyMPVYUhBTM0PIJbJJBP7eRYNEKzPjOgX7cyWkYEctJzMxCDDWcyQPZh8oxw5/jThRRhZs3zzR//PVoWdInGIdFiKXqSIJy3iT+Mep4yLKKjDBqf3M65reTQy1R4NhunXwOjyQGNxfEbI85g1vVv4ROYRrOqdK1LCRrVZRCup8eW6cYa0K4ZlG24mQJ57mNr3cNtxhDP9Xj3g66neWzTRs5XezZNwZWWx4tGIpaMd/JHnkPXx0/5DYZOCPRCXUl0KTNFP1U2zWpGnoVOL4fktk6qyM1x6s/Phzapn2cToIWhT9G5TRHdsi+HIyv9CbDomt4xpD4yFSOtBod/08KLMOhzuaCLXaWRexhH4tUw1XjICSqcYlT/UTkqUadyyO4uaHy2v9lYqkt0PAsvNm3jQFn5mgK+kiVdiyaJSKanWqHucxasuAIN1A15QaZt6HswvIyzcF1FIixKPM4y0PgsdZoDs8qhno1DbnO6QHI8Wc/BjtBqkJeR4Fgq0/6gQy0Y8h6zjd9ByISjEgV2OulB5JdMj/2ccwDbOy4xjfO2kBX9M2a4ZzUIkHooF8r/3EUOPZLfNsizWeCcQ+g1SUQAy4EJ1p9GvieQaZy3LtFH9thJkUxP+CEyXcepPeVFauVx6Z/m0KYi0zLC4gZh+Dz6ccOG0LJgOAW9nXckK4Mc/nJ6ZM6y/MY7+E3UUjMLu8yLkmmEwTYj02fzngiD+y1gShLPfdTJtGczhzjWs8elh6TXlTX+INszwFH2SeVIR6RxYPJbb+Y3EaL9kmmeUYDxy2ahWs/AH2AcpXAs1gdXHWZNvMaCNfxC/80aGGEltn1sPefi7NB3UE0RR9FIOdK1KZyiwnOX8IyDKU1pf2R6LeNyzzRfM1f55waL6xkk0ShbuBWZXkB9GnZuJjKt803QtlB0KytfY6jraoZxubou4pjSUJQRVzMw/zPQuP8yLTvtDyMqpPFd8JCSaHB2WvIq3VKkQ6sRTcGfkIO6DbqfEt2CBRs5E73jSOOnClAjNjX4lVbABwg3fr97Mt0IjROupYeNMXLixSKGIsvVJazeQmOVZ9OpazWKG/Bn5xftziToa3W0uROZVi9EetgJzCw8BZleyEvDm+6NWFgyNfC/iOaMc4KlB8oDXolyO2eOZ2cembEqwNgMOL+4r2B3PBPaiWPNrjo7Y7X96XAAAIGwCwfib09yfV5og8o4D8A+Ux3Tg4+w/CryaKXy5oWRrtfbdDJ5LDSn8lODjyEUx0DbPBwjGiljEWB86njfjjs4ZWUot1VU0vf+nLfnqczdXD9uimdnH5O2AQC1Cfp/dX/B/vYcQ/ClkIUiTqBfzsD8wUfRCLqe30wJblrUScqibK5+stMtBLN07dFYBpSIC/37jl/WQO6X3+jbIVMYuEeep1cG9pW7ClZB3T4J/Zcd5tuZh0f0L14b2Of+VLAyoNKOJc7JEo7Ujc86McH2OyGcFkHz2q7RKMZlIHVYNoJymLYtx4B1mdS6iJOcq0Xg/LW3pGwkjP/l3+atkSxPbjX7GBiffEjKsmR6YEHBPvHnwGZj8NDZJAl7ga7nqRb0J6LDOCJGU+MbtW1hxc/p8JtyXE9JahxNiFcjoLNVLPXBR9/FxDqt1sRzf3RJxmH7odvzNgqa5lHvFx/j2xuOyNgzqwO7/u9E1SI2Eeu4JCxTAxnAW3kqzPE0OK7oUNcXs+/5JRp5FibdylmHS+OmIiXXmlW8IOdqOA7079+asbU4fN+jPmtooAwgYHgHMjMUbHcjK3/4V8EeQJak7CIZgkLqpYKlMlJldLtquQRaQ1LipRi0Pq2DI9FIHYfB8zRGmI3nZBrQHJNG+XVIoMeGTTa77aK0PfV0wb77z9AGg+u75/p21lFpK4emDTSsvvGnvNXjQFTw3o5G5EXT6TOS6dWUp4hoI2sAxSB3QNIep3i+V8bDSd6goyxdPrhFpp2gc14KeRGvf/Ehnp1+WMZ+/++83fZkaOMwGuLYh3FgvnCGb9PHpeyPDxfsr/ND6x/jiFHzKDM/+EiU8XcgnKnfkuku0OjgYiC1lH2KclK8cyQvEBZJpWsrPQKNnz3Ft7mT03bTXXl7ZEVo44eaXX56yibX+Q6zMur+IWTmynsCm1WJalAJMuB0/WcGHs0Qij/BizRqNXOvC8kFbLIzMIhEFWl4+nSdOJ4pyrQo1fDU5+Cfb5ydsmEY3a/fkbed0FxFfT4Ehm+f69m5yNK9jxfsZw8GNkb0CSdu9GC8EMOb638Myv9X0MjaXpDdmRShRDE8xy3vUXkKapGlGPhZKjPCWe2TZurux5ewVhxe8jW/Llg5930TPTR9bISh6q6ZZy9YWbBf/BNj6/SCCCWCzkSWXNWJWMDlyMtSJ9Px88nwgsn5ZF41zss7LKPB2OhblayylRS52IUqG1Vr9qW3p20lgYWr/lCwidiQfIXZje9O2/gRnjWR529PFOxmcKylzh11anym+1mAw58vU6uaTLKB1EmXaESmmfKHvBxjacbIRc6+qGulcSO6+siJZu+4MG0PLgjsB/8ObCA4jsZh/fL5GRtU49l2nP7v/qVgDy8PbSjyXlAr38k0jc/ao9zwLk96p/nprsk0lDiZhhx/8NHOpoZ56f/ITj9DkV99XcpmT6A+qbsUcrWGoMKNf83bfWvMXjfZs2+8K7LTq9CZn/1d3tKoFm1w4pxpOarYaR8foLDh+9AsO71YAHQuQZcTC+QllEwPOpJ6qYJXmiBR9gu7Qknff2faxg6LeM7Z6lXob2h8Alk5fAz68m0ZK0D/D+/N2/INOF6y0aoClRHb6YHHQN49nKzFwZIHlyFECJNGqov+dzCXkRhGS+Ftp2Zs9FDfnllWsBNQdMM5/vXXmm0S3699VcbmL8nblh1R5OqEqRgUXOiVDxZc5TVTjiJEGnPgV59hAeMhUhO+iRGBMyGmVOnz8HbJUe3Yp7DmN+bV/5pW5ITobShXNCqKduRos/NOy7gWxtoNgb3++KxV4Uy9/js5e/1Yz669GMmlqCcW5e2oOWmbOCZly25osm04DXHLXAh5lO1VoFBrTmLg9w9gfqnxiIZ2hLX+FLIKYRIeLCzjngIzmdSKVLQAwNVS3ATTnzULJ++UrG3eEiKEoZ1/GtLH2iWX3pS39xzt22cuyIJhaEtxrl53XNZqqnJ29o15g9ziAhIRHZ6mrnPOq7sUTxmFgmBEhpcH7S2JRjzrsGkzU8S/Ql/2qxAEDFoJ/ipd4dDHYOwrT0vZ5WeX4a2H9pN7C/YHWj7vP8G3/z63zFatL9gOBPS/3lgGkzXZFXcW7GBaQ41UpXtnrffETK5w87dZBu0GIhNzkWDYtqjw90ai41D2Zwx2Lrdg0YedEnHrzTgco7tEo0Lfj6LcvosgXnB6Foc5sHfiYG3GSf3+uzJ26tFpq63xbdzogn3r3wXL6NHc4wRAxUjZ0YXiIQBh4+MMoP8FDsh4TsNI1Nc+k+6lZVvY+qSFSy6xfoqk6n1FY1QJ7nY5Bs9Sl1delLHjkZenlxTsY7flbQbRqi+g5KZNSNnDT+XtkBlpmz4pZR/4cpNtgBdlUFSS6iXFOKJ+g860XSwMmJ1xZ7G+VNf7olEIkXjhwvq/s87NJ93gUIe9A6DkXli7sDuwd7y9ysZCQzbbz9bfnrNt8OlNb8hYNYr3GRTLacd7Nmp0mR35eRQlOEavyXPUkqgYx+cMMMDCzMKJwTF8YU9QNEqueNOVvyQ0/kcqdRr38fKl7ybhxgGdi/x+GMwmYJeWbkrb5vuoa5wERa2OnuPbO9+QtjqiBasaQvv+I9Rhud6xiIMIZtFKzeSyQa+l2X5u67NL6ouT7RL3u25qBHfxtyB1PH1AY6N3dt6CnkFCSRtR3Xce7tv735a2gaiZe+b7tvJRGh7Q9qZT07aRRt6zq4kOEcVsyBR4JQyb3jNmSD0HebEVlDXqcrzyV3ONet4nfVzWOyLT1riR1tpnKOMknKzhnAdbzTBz95NHCggjds2bUvY+HKzdFP3Fe32bv5NrVMF/4wRejLyvw3g8sjFnGzKhbXD0FZ+hcrTG3YCjzdZ932zqD8ESmZZ37upR+faWRCN6joUZbSHY04BXi94B5+qasuX9qa7RKT98a9rOP9m3tdvM3nUb/AZLnIouZ+MBW7A8tHLq9qQj0FMLzT7+F65ni/eLjgwMIgx2Xk34/zbqfWInaQQEzUCsfwQv9BJoPJLfvK/eO5YZ0ajfOH5fPy9rp/L685YRcflFsz0Gjfe9J2sHTTL766NEq3GyLqdduA6P8ccPUTb17jxsyUsZdqHmHHhmntmcu+BVvDXpb1dXfO01CSPqeu09Zqs/yRAHCIi7k9w9RRykg7F7d16QsTljcPzSoV2LTG+c7dktl2LDB4f24EJsytS0fWFkyt7+zSZjAwdLw4KBnCzpt34jsIMnc3KYpcZ/G9UhL5H3KJXNPeiM8NGG8YVVvzJvO+POKicAH+dFGvmlE/WsU49M22ACMvPw+LPALt28C1Y6hAbJ1e/KWv9Kzx57Lm+vIaAjZ/D0r+ds7kAcH0hwBVGmZu0VysfBh2cxPvcNRfQiGvYgLT4hWlgCSYvCFpZ+1/yQmX/4JJHupmjoy4GfAhpnHJuxHeiTJTTSIxpDm0+g6fKjPbv0zVkbOpDIM/n/trBg87CNI7hHtRgl0UFQhbFxAT6VZJkmQyP1NQY9CVM6oSk4wIV5Bfm/++uc3Y2y3QDD3Pq10I5/RdpOwCPeiLNw72N5+9DPcrb0CSJbn5UjFtjP/1Gwqehc1wrSU1VxWvW2kuny2x/GkYNBNLOuM8zlKrbAOmV/oIzpbuCl43uKVWta3m0jL3/tTc32MyIBxgvffx0h5PFwjZejO9Csrta3r9/SZB99a86+eXtobzkpY8OovHV0O8j7VA2JGTTtWs9wUQ4ZTw2kUzOjWIUcdJBEBIWw3lJh8S4ctFlEqAHH3RfRqJbiapyCj17XZLfNg1PIvugb/exgDJttz9sxM1F8MNlJX22y1f8I7csfKthFry+z8x8q2K3gOqWa4sVgPMqDcenjoowaFy51tr0DqtqeUlREzssSyzf9mxmYzDBShM3dzMuTFK2sp4UxZxSt2VcTAVrlYntWix9sRIZOf2XKNm4N7LAvodgWhvbHr5m98YSM/S8ttUZoFwQBGNKpjBNMFEscx2ywFGuouWjjPjEkr3iE5RikVQtNaykDw6hF6EpoVDj20W0406/w7VSiVE/h8Es3z+C21WA8faJv9z6Ud8Jx3CGEailNsHFbMamiOUO5XvUMC5avd3hGNPJeL+QEijOEI0seSKLKiNZ5GFwXYi6+n8ZbLcGoXvbqlM2cnLJnlxesAUehmvPig/vn0bolIvQNWuBffENg7z03a3Mmenb7/aH10+sjdC4SyIrlZdUH2Y4NOKlEyTzGMrhZay+Eo94UUIItj/M+/bEVE12Z4p0o/T/2zgPAr6rK/+dXJ5n0kF5IJSFAQghSFBGxYRexd7Gsi2tZd9VduyJ2lMW/vYBl1RUbSlOqgCBFIAkQ0nshfSZlyq+89/98z3tv5pdJMiXJpOC7yW9+7/fKveedfs89994CMENsumDZgf1s4A1XY1D72slPVuzhoYHlGzPW/ydZ27EusFE4+1uJZJ2AQpkrB1ThYGcXVUYdIQwzLTaY/Z7gmjDe1lDc3v6+uO946hwzG16+hbrv51FoEytyNROgQPrszNqgX+VsE8btAqK+jwwA7h28H85/38as5a/iGm1eALyPENLIAqNDICWh9yzsNDsFfaNQZv1j1OovsD+gas5znxydqTK20gO/B0aEoSOMKKH+G+jt/ihnGxkvvwRn+h2D0CvLgfE7OQswJGNxsDQJ72XQ95U4BdrUwcFIYOwLP512ITqxAYM8nza6g0O9H0xV5P1OngxPw7/lX8KXnPN6o/fU32qOyOTinDV+J2vNOKY/24R+59Wk84aszVmf/8vY7nsrdgVV5DF+bfA5JmN8DVmPFXw58PHt4yIS8PgaR/suMYz5TWazeb/CBpT1T3iM5/wd+dZ/bgtwBoY/hAO9ELztCGyu8IxZqvtB1lowdONWwZvAtpUe59ht0LoErQPRWrgSHHyPpJ3jXgydV9IW1rxL3c1jek58OwzY+vF+dY8TBft+BJ+qTd4xvm3kHejBuzM2ZDsw9Mc2wFbj7yjYrmtDG/tXoqbj4MnT8vaJtVX7d5R2VvKcwCh+msAnOJ62FkMz2uw2jPDyGPhj2CuB8V54cRHPgiNHoOCkICM5PJnR1+VtE7Jz6pOBPTQM7t3aYkP/Md2+0vA8+9p3cbCembObL+1j//78vL3r6rKdSge5lXeV3smQM23YMGteTqT/VPCIAe3STgs54jvWrVrze7ehGV/ugPNxcV8AGWjGVnz3upJd+gdwhzPoChr9+Fmc/GF0nP77h632898E9ql3Bfa+19XZe86q2s8fDmxqf1hbr6um3E4ThSLsqEWxXcMnuEga3OubB2WktBh6ZRu67wzgHMY7U6nTGdg4PAGTs4k0mM9fU7Lf0q4bDxkZ5Pz0E3O2BZ/n67/Dl3hVwXOxtnLL6D3akg3EwZLezR9Pe9uwQyjKTI4sfRr0N4gfUL0Kyf6csPxnCIE/izDyTMLgt9xXtlvXIG/9Q/vwT8oGfWzLSRl7GgAsWhnY3+GbOdAFelO4yEto1W2fqrnuNvQWGka9BCnt5O3iNvf8EjZhLKxZuHsFwQKiQ0UUeo0CkkHbiiz9jcjLFQwXnDUzb1PHZ+1nN1I3/29fHto98yr26mcXbPrfCONPz9l98ys+xHnaQG6phZH8nEyRKeJiXmbrRWP83XGwJGgMQbDUQ3YIESKmvkY5YhKuSB8t3AzfMjypyMuZOFT16Oprfi9hg7AYi+Eoj1cQOv32k1WbjJAqNDmAHlsLhI1tDjWhqJlNYbmJPLQePDaDWuFHrYDn/RUxEbeEZZTxToQIx0cRRIVGk8rRb7aSXIc/XCyHgZA3IdFLiAp61cjcIBzSZThdnnTF79UI7+ng+jzyYu5chnLhVoV9Q3oJCuMy9oqC3EIbpagdGeTOijM6PQxtrNkEexAFVO8pGZJxHEinA9sHLizYWiKV9y6s2oVn563CqxOwsnf+v5Itgt7feQ9phWK7fbXHy2kLDs34oDMDg2t/TSp2XHQGY1Ibw568l94vr/d0R4Mv2pO8yFGehBi95oKCPUwPR7kPUxgm0tPq9fyUiOBx0LUeZaN8HUVQ11OdbFZbAcZsntwXYCQKHuFEeCQSGEVV2+7scKBWyFvQHlpN6wAIB1BKRHc5Phj2CB/mA/2lOeidtN54q8vhwP45G0LvUbivMrw/CBi1xV8ZB7qM4zB+eC2AqlC1AnwdIW4ho3QNp2CAbhfaKoC/Qh3P4VxpKEFA1hbBTIepzFCHLg0lMjkMuCTXQnuwgrW75kMPQBk6IL4mHmkrXNDYTz0wapuTll9xxbHRdsc+DwSGbpPuUVK7SngXMKpyXawpgmMRMD6IjoPAI4lSZshbCBlaraxELpCbLMPBqk9w1nR140o4qVmO9SijYBly/QDnO7RR09yeh3oWRqqH4cIdkOEWLosGHZ4HxirwtRIlypO2MXYQJ/ivovMKRk2hE2oihXC7V6EdbX3WT8b2IWC8jSbgB3+hvW5uP+FCCG9oy5h6ng1xzrT90b4KIFfuinitCIzjBwMPzVbuD6wfUaCsjAxVlf8WeCTL+WAPWlMpQ7hWpK3qnTyIUXDrSCWdFuFKMA6O328pz87lnM7XFP3E4SszxFvFsPUFpgHwo2AsXUs6BzDPGIWjjfyU/lS1IVyTnLfTW3Bwv7Zvo1Nm5Zu4kQr3q6hq2vZDntc+uvW8XwB8Su3YB4whzkH52kheBvXL2pBBrNO3YiEh3kvstDNfZvaMsr301AC9k7E+igBSbfSmOpadZnV1llQIN18BL4BD7efaTQcro5ffDX3r0TsKoLg+iPKoqqB4PCiW3nsRAZo3EeTYQRT1W9eW7af3hzYO3Ml5+esqZIahwkXIvYYQZ04gleIe+Ja8NpFbnQKvmxnrhk/g9kF6KG6rI9bafwt/4KWM77HzNiZjvQL1JVxGMi0cyF8ZjLz2h7bvuyBvX3t7zpatq9pXfle2VZsy9vU/ErHaWrGLZkjHRjVL2joWOdTuS/luDesN28oy+whq1iMItFJTlNg1APmfNinrQxvKJVhLD0JUEVDH8W73k+D3/16ft5HHZe2LP28xaOoX2+RPSBEjaTgFRKv4mKdXolr2V9QIL6N/MoI0nsEohDgdUetCOB46MMwAVydOIeeB4T+94GpgVLb/bh7TkNwwFN80xvIlrGuJXCnCuuebAiPw+dYwGtJy2IRFobAzGHWZ+/R+ejeMdwZL27FjMgBYxuOhn0TUajLh2a04M8voBck7veOxwF5+XmhfeGedXfyiwE4GzrU4jI+C18kovchRpW5B7Cu945yKobxdwbjnm+jOPUsMn05KgWooR/D6c8ScuDwXWXorQx1nzcrbd/De12/jNmi/W04I9C9CukpMO/FzFmOiqJdwvztiB25UARbirB5V10/nxJr2dW6fJaK1XxLPEymKit4t46MB83BQP//SvB0/Omv/8vVWO+cktiQB14sJ504Dnn4iFfpLcKvsm2oxrjRErXaAVxEdd6YdJzq3r0JtYja9j/iZW7JJQ/HtcqAeha4/em3B8fXpn1XsU2+k/8L5teieU3BYjseRXocP+fqZWXvxeUThiHA8uIKlRaGzszV1+RvzjJysjGCUDHQLj4KKTwZEOH8QqYMWIuEY8j6uz0+3efXzbWR2o72+9btWVARgFEMC4EsK0P0HjjMowqS3KJ0utCi3ZO9CO95J4krm+OjGvW/azxneUtbc4aTTICBifvQH9CoqYtWxfEC74HO54tgLJGQJr+ga8CtA0E50xyInuODrVcFP2Qm1N3gV+/3j7VOHZlOrZHAGnQbRz+hcdOwwYNtlP5VW4TCiX7TKRkkwUU3yqF+LHqv5m8CIMfM9KWsudXkIDTSTTELpyxQI8OTdOYzxKJr69n2cUqK2qzXg1aolYmsN8Tv7Qwa3VdyyZ+Eh6WCiom0VJTTa88Y9f/k9yfuJmBDMgdoHjOI1YNIVdUxUWIHB9V8CmyFDrg957eTd/EY9JQbwtAdVFDvG0cVO/iZwJO+HbtU7dix6D8kG1TqMPOZ45LT2dxYOmwWz2Gx8Da/ugSNucnnhW7RKmGKPezo2XPubBiSoIub+5IX22+SFW8X+4XH11qdhq71gx+123/FNNuG5z7ACY19zVzJZBXuo27wILJSYJ/jrpJAuGB35XQCZ3CdvnaWOpHdCwUqhWv8ovWMnyqgvzuh89N452JpL31FnP13VItPuOJTeUTQtz70KMmgWtng1al1/ZadzEYxsat3mRyQ9Bu7YZ9G78R7SxdL7GomI7LRfcPhkcUTCFvyFIg7ovEVVO+/0vH354ow9j5GbsYjZRPDVD/iFElkB7zpHYNU0yxXZL3V+8K2oSlGLVhBC8qq64XFRJQ1Uqo7t58gheS8Rl19gMN75kjp7fEWL3fIEDoAUC/WcRVRmJUMK1ywL7QR+J8bCq9KLiQPlLYI0vY3/9oO4sX1+caO/Ai6THAuYM5oOr0q8Go8KbAFGEeaSHzMDq2/ZfvkvRfuP19TZN+e22JtI2JXT8N1rS/ZREo2/8/IcOWVFW72x1b5Gb8ijWBJWkOX7AWq4VD0Mh40LgrvTopeJ7nN5cRg5145Gf3ozr76TobaXfbNkM1ESV723zj71uqJdt7pkvwSPdd9vZWw/ZzsJl44bVrCNxB7vWkSUCAeMVJm4UKkUiEymGvN2dUkwdmhQp9tK8h7cJzsmo+HvBaPoHtXPpf98VdG0vNFPafc/lORMD2fSeO5YRmCDJiUEjnA0nJ6TgtlJVXFnkzMqXAFGQeTF2+FX24nkQodv3Zfg2mGMhFN3iSWVYKrZT29/ccFWbQjseno7bx2bBUby2yZlbTEz4eTw1aJBHTQJKWDWFEFOkSKgHb2Jh4kTOKOr+/krGEEWVeh1AmU6xkXtbMZJfcOsrD2XPIN7H6kwqYIJcswc64s8vIxemQBZvZ3o7iQmD3ywzjZB40/+sGwEj3yoO5EZQejowHAqGVM/BKNyHDLK5dhvEVQCjm8Jr7rcyFwFBA7Fsj9MJOHX5RH2leOJoK0hH4+oag6kBS3Uy+0FZkZF7XIeRSJZrTJcU8WBLTJM6LhVE20HAlwGk6LNerskst8Z/1H9WE8Nz4QNfGqoJNDRdInDJJQHRNEU4c8RFRCMCc+qsioyI/WQA37nb4dRVyiq3zfdpf6AF+4xjAirSkiPw70jASf88ldiBJsKdyEyoX4Z/Suio8BIcyE99AJRBN1b3UmkiHcq0ENuQ59XzB9F2YRHLctBEnN0Q3Kxs2+9qJ4Fj2IuDA4V7PGAYHRc0ayGXCX6eeATjMEuaEuTxaHAyP8KKQAqOaIFXmqrUpRNawSGO6OPK/Lots7/CldyHDEUmgwhPCZFzXBZpx1swciQgnBXgP9cDcf3VpB3DbOKxuKHfRaNiij/LETINHztiN7nnXueVIWCT8+HKEB/Nr5FMHLZI3sxPqoYYMEreZEaLqOPctC5IEPJveWNDA2KH4XH+BmvTYzi8gJPOi+KOGqgO4WK3EsGCYpWOmH1rM7zJX6TdxCfqkpe6OVm6tnGq98Aa12wxLKPzLUpa2625vOfsIYhQ+32RwM68DhYCYw8G9lp4OK9ImWgl09u4Nw+i65zn8OizjW+hNupCBh/nPrE3l/6v5I9TvBg6e3kh32CEbA31dmbx2TIVYwiVsMgH3EFhlZ5JarcKd5Af6n2qEj+FbXmZXEy2/0I3aH29lekQ6lUoEIbH7WQwnU9CfQc9sXsr8JGf/yqkt20mrDT3aFd8/3Qnn8WI3ewx3rEy5eVUB0U2SUFfoWqPYt4VAQRfQt0fSQ8bOwckASd05grRQ/LeJ7MMMZIdMxPH6dBQnn3zgrshc/E8DJFccOjIWE98k2eliPClfPIRxMhyiLDRpqm3FZ4CQ0LhqWNhMPOkfSAG4Z/OC+vsvOi63is/cYzTLiEOhqRIXqTSGGOZxuB8ZyJRGFAzv+SG2S3kZD23Kq9blrezqF3NgZYdjeF5D4B0ELyxIZX7eJXmM3CKNtfmGVGZEtbh0hSVHdYQsH1mwp84ESKL9Gg+wFSRPO941iszfq/EGWxEdCaeB6lwrNyYXbCCy85MeM5TjcAw91/IcL2qsBmTM7ZGOAGTLsJXF7NxIH3fSJHNCtjN/8DAgFidQ/0gEeGtKy6GkpfJE3pwYr9gNZ22hlLHjs7ghv/w5YnAQ3OlXZACMXI4znfF+YejFK46QN1PuPyOMbIL35pweYhEA1Ej6YTIbQccK1k3Bn6byYCdwPScBLPCYXO37xzoCE0bjUtDke7jqMu6CyhyRARyijEL9SxgW+UeE6Uiqp2Qb7Tif4oZ24i4eTHPlpnw6HdkP5Z++hrCnbFH8r2O3BoG3A/4QmF8R9v5EEiSjM0RJMUwYGlC8CBInOZIju5q7cV8hJdwMhNvBc8oWFq0aYVY9Fvor+3WlAUYARRSh2fylD0dz6UcxjlmP4nswm/fU3ZZo43+/wlRfL/Ajvv0lbniTMxuko0bSvAEeBcVcCB9LHoJnlR6VJeRAf1Qlkt3KrLkekGHJMhzkdD3FK0QGNycY5/tjUPQKnhhfaF5gEEbJBhQPDlJOxYikOA4zJkZs4GjiTPiaR8iUK7NuEtpUBKiwUVuHwRX3oJAdBVEYZgOmYe+iKjmrauRPnkWarIo3PyGCyhXI5VPcNaJeDZzdBwli6h8pKdXFTVD+dPk4q3rydXE/vvvOcgcDFgSKB1EecGITNP5yyES9rxe/b3h2f1ws0PR/cXz+BR0SB+P74KWu5A9k7wxnhswqlqYvhcQ3FyphoYxpYvf5xmOIPnjfSKPWQgMLwIRhhVqz+z6bbVPYuzcRvxHfv9kvxqaQHBqMhXcRa3tlXsZJEu9nkYVFnEqaoDp7vQ0U04BQNn0EFBhtbcX/EdqUaeyfA+vLOZ6IL0/x5QVHBOy0uB7xQ+Y7goZuhGEU9U0AfN80DSWN6RZ11C+KIBOVFFbEzCOoKvAJyNmwNG7zGK4E62avi55Knyexe5WJ53vQdwgoMT5XW0tR5efFrEQD2BscSzLQsAZiq8gn1J3p5qxZpF5NoLX32QH+X+bocX1fkYfkbeGhhKanwcvOF0jWaijfhxM7SWo9UOKjxfWsEL7QDGc2kH4d6vtxg11/6XhluX8X6rAWZGxM9JzVSrhcML6EfxooIk9fBehfSR0vrt1q8RGWVKcDhgoJUbz7NBg3N2K+ymZW5moRvlLzqUEKHNTvd7EX0TbJrbaXRwZ7rRG9WLAki/E6DZBreltcOEcuIGID5DVeUmmhsBvHqE83KmNoBL5UqfSYf+x38ObMJ5WSvjbD8KvYeA/8gJxNZKN6LTzO30NPgGReAeE5XEJNLbdCyRncYW4XtY/2cAH5mbvpRQJMB6VG1oJGEQ7fEmZrCr6MxpqmbkC0S1YE/GSrXC/g3QfhP2bwAwa+02PR+BAB3wpXwTbqJYOFg0wtL7QdMKz9DXbRo2WoYz/2oe/shb6+y1zD5YQrLhq59TtIUrq3b7YpLoAGReC/kmz877zLI/zMNpEGEFUVtRq8qt2YKuexznCEdp10p2KwHLCIAiCPsuSSWRwfJ8HKaNBs1rPfdFhNH6Uat44Y+ckrM3XlC0l5Eb1vpmswsZenng8Yrdgw2duZxZZi/N2NX/Wmc3z2H8+ZyiNaKT7nisaqNgSE8eBwANwVSb14EYOK/v89BbMLNraqG6FsYELkGt8/H7qStIgmDY9BjvupmewyR/P60zswDF8MpnFuzc2Xn73R0lG/3BrJ09q2B/upuhODpaw2G8EQjIv1+et3e/ss5zxi69iega0Q8Z7baCMxQ0rYT6q7zuYAcKz7v5uqMWxuSJGljpyQetwNX3PKcD3VU4XEl+aC+Yth+3Xnxlq43BqZJCO5fI31vA6f+Sy3bzgsDOGEO4FEVyw3sKtg1n63yOf0RU0HC+6jA0zQ6naKV8OeBCcVplB7pkMWRmJf89BDTGWwKmYEc4A4QlbIEvmF0T7FpgueBcOLwvjBsw/T5jKxnaff2XWmwkSlgzT97KOPmzsc1XMlPm7ytD+9Tzswy/Zm3WlCxOWM6ueXve1iIAP2dZkV2QJ48k06+jKfLrdi2E7QdB783AuAgYqVAGS/T00hGfnBfTyaLKivN+rTsXW58hMmpSZuTYoi/vf4LkzK+02kBu05DBJa+Ohs6v/FXZtmDrf/GZOhvLFOAHHy/bd4gGF8nXWQCP3vwP8iIQUrWfgVZVthwqgYNM/TnwPFOz1SNUdNRhdABr/gjmGpzyvK8pFaJEmpYzKjORajGs3HZiIbAfrhluNxz3AR8eQtXbt95RtJ0kP591Wat9/AU5+9eXFWwFeU9rcQLfyky4dZDk5AUsyKtX92aoSF5P02pma/yn08imnxfhxo1aR9zVgKpD5wUQtmYtVuoevNEPo9VO5f0iXpQDMhtcajhVOaD9kY0r31W0B1n+5aKrKnbecShrRWCoAt/Yrvpg0R5eGNiLv8/NKPAIFTGMjRj2x36LZn+J2eTnchEai46dFq7L4kuml90HXHzPfANe3gSngTfALefQFxgBL+7U5UkZ+zTTt69hAsP7f8rEH5J2P8rvuejELeio1z03Z/eQL/aixUQsgREVJFIDDu1sup11UL5AAvQVKPXn04YLU6cQ+sPynJo3MsXud8x+eyYh3negFHH+hUchgf/PwanTmoWb6WRexESVi6HnF68q25XLq/ZFEsY/8CroOzfwGczTcWJ+j6y8lVlcg4ARMY9gRO/YGnC48HJyMV5Lt/1McIO8OKI7A5Pn5A3tWgQNPg1Bvw4N3sU5AJIxhic18eNc6KxUg3XkiH2E3MVzT4lSAJagXtagHz//8qx9gE7U5T8v2+VMdHD8taGINiQTWlZg3fcZi/8ezPpOGGQa57oJo4x0w995P2gw45fQ4JUOm78Z1Y8H3FOBEVG1dTj5VzDyMFopJ3SQNHqz+I10SOGFP95csVNI75g2O2tX3Vi19zNrvR4b2SR+QyZZzI1ZqV+m9/I4ML6PZ/EyFNbsEo/cIj5h1MXWwCOzbsNoPCuis2QJXEzvbzYNGJUdIJn+/jsLpCJk7G+fX2AfyF8CDAQNGL8uDq7YilVVu+zOik3BGRSnJEU2UBN4Quy0EcQIdq9CDOjo7tdO815tBRoIEAILYeu9BAHXYusRVJ5V6sQuaDkDX+Ljb6mzraTv3M+yMK9/btHW4UgvIXq1dDsBHej/YWbpnTimYm9jhvhi4Lz6gcDm4AQSZI8KdYWy0/gCGSYBhTsJuviVWljie/2LB7yg+yXTCn70Od7fUT5Jtp7jOFizCRhfODVr/wU934gMrAG2C5hMtZhlQe7Ejrz9pIydz5ChZkGOxRl863MLdva0qt36UGB3ryANCV7wJS9wz+RLubPP0h9M+4LLS2N503YAAEAASURBVKvpTD7GxpbPcXBK4Gr2IBKxHwls4siSPZ1hthGEkhetJKv/lrLNZ0hmAhWeNQyC4sn98saSPYhHfAbyvUf0ivfWxrUBiiDY8QcYZaZVHjwDLMXv3d2vAvsalpdgeAGc9UT0vKZunoIT8sM7qiS5lm3GJCIg1Pd3ktq/fUPFxnP8x0Us/kdO0QtQLufPKVgDQx6/vLlqVz3MFHDeL5mdJyENlDTXPJe8l7KVn7y8PY+oOzCq4fwpYBgHq/mj7snDBeSEZ2wqvZ9vXlf2hcrOOhlBQ+BuvKdsX2E9GnwBfw/luQn+vz5Ytlf9hCn9GBW9X3tRA3jGjQudj8O1P7Dyqg93G0ahO6NwiCcI3IwQ/AtRAFawjdcTEz7XbcGe4DA9ifYP88wiG1K2u3Cujse5+cIdAYn4JXvmLNbHGp61a24p2WdZS+WkPZgf50Xh4YZHgIvkyqWftOrC1d1RH/6aDmNuBPf3J8r/d2B7MxEmYEYZS48oB2wpxn4B0ZaNOAQTR1W9l3Pr8tC247yMI6p2CjhUxHLuwqpNAM5+fUiQzBHZoHK43IUsLONgUT8LdkGu9+AcPentd/dPhj0rQ7YOad7+sA0adyGIxYiAQMHYgr5chhxo9HAVcMxmTZwRQwL72yo6JEQTHl9SjXtrRD8YV1QPScme6pQIPhXlGFSZ7dK87RbLcqH8yEtAgZvk6IYu/goOy9GTRHsGjQvwAs5ve0LtyZl6eBsznmhT8xbuuD+0ZmC1xqr9haT26cOA9QSc1VEsTokj+K3ryzYJnsWmOB7Fv+4EokTLu66lLZzMB/B0qaJHpYC8sHJ2lmn8ucFs+eGdBYwEMO6CFx+ELJ73x3DRrfdho4msGFHTTcCxFDyr8yG7pWvzibhZA0uGDElkWjDSaUIBB2UMxlYeevKrPQLPGTc/EyQ+avnmf2cYKFLGIrRwvGEDwVya3YLda9otGEN7iAk0VgjtJtaUmj6CWbd0/rQm1l0PluzK6yo2Gdwh2hEevQHou2NehLp136HCD/UMRhne3HTe/QYrlN6JPzM0wqMAhB7L1kRtKQdwbB9m4w0MbN7Cik1levjHcQIGF6t2NjCOA2/X31myK1h76MQinSae9ai0HFIclXLD/QxXA/lSHOqFvHhPSg4jkZ0I7e6yYvW1HNcBG3gCRo30PLacQ+pbDYvfO5ZlbHZl7ZHlFdc7m4BlOMk7f76rZJffXrY5gKDp9G0FfHoYrNJIxOsujsfjcL6Jl8Zi96TkxwEXIwLbH7DimBeDOsl0rHfw3eYuAc2cWQUe7/4H60cRSLAN6G9syBd+xqjICwr2nFnCeWC/xdH6FBH1WX0EgKJK1EOHJGjdBK2vBzbe/5HzqL72RXRvF6WA06jXZemWwvBzOOR5/YZEmhv0EDKjaBATGO2vOCZrdrK/KTJhiuCLmPzPEvG/7hdle4RTpwMfPk1UHI90zDS6setGHCvs9AORne0CqrbLmDrkUXb6cbelWrxb1eottT7dLUtD++2tZXsetvhZBBuWoHx+8peKLYJUjcjRl37eam/DwX4enfd5iyr2FRLgp9BBiCJsVCJYZaflA7QstXDTnwhafqmt/W4dAKMh0wEyHTR/iFHhSdRLBJfT44DxWvydU8aX7YwZrBlHTvl9jzHjG5kwfJxhRNFPJMe7gk5+kGilRlNOxt48QrBpA+dQ77Fc48w1onPKq+nwzLbM5BNnIeUbGIZ+hvWZeTlBg/EQJBIAAT1/G39QGn3orbUwRqlkbXlr1Okv/ehWvnEQTscWChl6h6joBqjPC7SuuMpKS/8d73EOv5Gqnhb1yltZt2j0B9mH8GPI1GCvV63JmD2BF+zJYry0cXwCTKUxVRFl/k6+CTe6hVCCO577bHocOgX780eh0R3WuvCrLAfxdTzv0+K6ewik4t2+QuzlVlBPDcOrvJksimQ3r7yK9Wi0uq53GzCqM3AIYj3ojLhQOgFKzxzOF7eJOb3oQALast7Kj/0X3HgL9JjADbx4jwr1yCK1zLXsyf/ra4g408Z1aFhAtNO3ehwr6ApNQ/Eqv0hofbSBP4JFeG2JVqJvhwCDhqNe3bGAPT7fDXJ5GV9Phvt7XHgGRzU36xai9c+CF8UvggxYoi+HaR3KTutfnYxTr9OPAa/WRxLLeRFwDN1MOy56J4DnRmDccjezz57HSQy8CNDjAtcQBcsydDdmzo9ZbBSl4gnAUV3Cn4q+N2E0diJKU2BXRbnmwQObIW493o18GvXitfDkKGRHP1UyXGtc80fb+ChbBfWR4yLx72GR1i2vIV+X/cBmfhWZximMYRR4CYzC51zRFesxG+MlB3Gh5B15NhSO1lCaAM+2LYTqUEqmS6zn+GPWVcPgHpBMR7QwZDoz5kOWZ8+yDEuPeOQNago+wak/cgQfB6b+RAMmAZfkViR20uka+keR/+ngkdn7PCLnCpkuN7ILzZcxhP/Du0im2/lIVXerJDI95RtWmPROKhfzi7HaYRQcMvoLgWMcdB6Cbfbf5A05DiU84Fg7YEgnRY6L5IVIJU5q5dGPklZzJy+BkT9QmW6da7mTfolMv4I62t8skRfhUykfKzDE05EXjVDIGLtMC8HyJ+DVE4ExGRZRRS7TdLzL83l3zSqrHcptb6brI+mNgA78qbcxtf6Z0LmdFgmM+l6HM7MFmZ4JjLIvOudyjWGZST5qpLNrmxOtC4xC3mmV+S/gAWQ64pzam7pxTEPqxOCgFmf9EFt4EqSIYORKm7wwOm1zpWeQ6VNjGLXO4UaF++jsu1CX6eihc2ql1nlk7e/ZAvYt8MRsUEsFPYXTZZqo0iB2XDnly/iDY8BjVE8tjMLZfDoijLXalX0X2lt3/5s1Z6Z4a3Xhavt+32/bx/JTbA6dYeI5wAHsbqdxpJf9yMKVHwHGOZzW+/ewJHZ6zIetcOJHkWkMresv+IqqnJYSAC3RgG4ZRa9NvoSg0I4CW6S/ecSw2VPQO5KXaOiN86q73GClhV+0cMM3Y5nW+/ewxDKdm3olMn2x15vItFCxQHZY8qAPMjwFmejPsfOmZFolQRsHY6G1ZL7Ke0mmw+Y1Vnr0w8j0vdCASUSTp5/EFVYAZon74rQfW93EN9FeOwNoKE4Ny0DIa1PURy+dFA2DSeVEyi05y7eUBeMKVUKizY9cyE3CnB6sebjm9i4PFSmoPILBuIl1UZ8Pj0IRMR1F09x9mQCq1lCLoj+RIgNmbtFdUnqCX4KbDA0Kxgy5TOVNf7XSvOejeaSI0UQHXNTSJqq5nrQP6tJaAMAoAevDJcEgZSenRT3wWkwIj7pP5/cs3IXzUmZhxmDR23gJMb/C3wdSaEBDHn3ZLX72D01rikR7q3G+pghG4U3RyARGh497pCuF9nY4dYeAx09f/D9stfAJiCAlcgACKhgwjr7s/3GvsiKKhNABdQkp7TCqRSk7JbYneBS8Otd+V8SnUSRQQFNvdTc7BX0S4f4FN0+m3gMQUIeR9bBKc23wxM/bsOkf4gx1x4ZXl5MiOgseyY6K4BWNBX9SxLcuTyBWOWsVjO76h95jJQ3vuUGLH04e6O43Cb+S6fz0q6044Q2w+l6M5XCIroInkV8lcgomyY9kSeclM45XlxeGbRvm4Ru9ApIP4Uk9rc8BFHVCkOncrJt9m66OOwskNQom4XBvA4tcdbwWy3Rl4+1WffQC5PtgZFpvzSezHZn+E7kusyBWu95J4NNdgkO8FhmESCdJBUpelGNXq5P8OaJP5dW/QqYvPkiZFgHxSvqyp+rs72F4xwEEOkyMVlP2KdPAJf9KtJZj1S7voqfmSBElXvINZPozBynTUrzw87A3W/Hkz3cu04CdDAkJCsm1nIZ2fRO/lBCrCB5LMpQe+xj5878H0bz7gXRIVKUMb5nO5/gvWmHaB2OWFgTteEzgASSHUVcEm2CUbtfxHrpRMCqPqXm1leb+C5GQ1cCMR3HA8hLJdO7En7IY9ushnHRsO3z88JqH4D3fh3d/RWmhvb2lCwdLTErOcdD4CCtUvJQKRlAL5w60xDJdOPVWRsTOQ76xN7Gdlv6DYpEvwUGiW4RXDcHqIznfS15imS4/eauVH1V+2MHKNA1md1vxtGuRaZxppQPEMEofComSiQQOybRo69e4LIwLZn30DpHMRw5WaeX/WmXxu4ivyE63sJ7YsOGflZT50EwzeVg4Bln2Q3PiIaR62NFNw3p5VVpb/Don1WhbEdEYfw8J3bauwCtuuAkIR3J5byXf9kxXB1IYVBuUdgD0HF5g2B4wCi6FKeU81cIo+GQg5APoWuJ4uXPF+HvAmG5p2TcRAvZ58qgLNx1wkcCvoWrW/SJE6omCbtgY7wYGwaf2ZSg6ljY4ay8IjziAwc4FVl3+NermIl4ytdTe1YNjGtZMm9b7CPlP9KEZHyL2+topKPAcZzU1J/Cp5T2u6WYcg+rWe1m884v8kICq7OMlowtd/OU5Je023WFhn5n0JmfEVam+CEb91a8EDv0WXvVbuE0+gjm6U0NPJENvuNHCtZcC7yQ9EV/TPT0tVMy89/Kuh1hwdI7VDZgIzamvg1GTfm3jN5rQsWDSd/LhEBD566GDsjWs/rXtevLb2I7xekIXdUfPi8t0P/h6Feg8nSjWaKpDIdfAKLwl8OhYRTj0VjmRyJJfcxjp5NCLLC//IZHUW8Ej4daDlOkMiAhZ5jnDiuYa4qqNnjtANTAlMCbn9Z3AG8FIh8lleg3ycqVlmCgQRV30RgdSQIaivuXl0JeFWyXTicNfg0fVLDhEqQRGxyu/1bL4Ude8CI959A4dz+oyhi3Z9sodBb8zuamH3y7T9yLTk5FpnEDpCOmOGhjVvmCsLYIxwV/Ha20yveIy6hkVP9ahgtrKOj3mOa011XQnnmgi06pLnwhj+qtftXDonOSk9hynKJzUu+E1Vp683oK1nz80Mp1hiLVpHnmLs6PhI+nuGhwm8AhvOlZJYNa3rFsbrC4vpK3QGZYjHW7+PjDiAB6UvMhOI9Mtik7vX6ZZW5b5Pnl7YbjFZlduZK1AJhzRct4a7aHCS+w21udgJUDnS59Aw4hDZfkPyFe4M5bpA5UXGsFRUc5oWG6G5JJpOmHxiFhCS+FKMpG04njlnHCXXNO3F/ExgZqwaZVVll2BZ7sFuhPObns6vq/bX9TsMk3+VjgIXwJnzSelYVyh9b7kVvAJHsGnj2BPjnU+A4wK1FQbHwXGr/D+yJ+cf56KHCw9rmm4rYyfsjR6btAs7DCxL2cw7mtjJx13UZyx6A0QCSqt+TUTH/4byiL0vspEF892elmIHkyC2q14nP0jGH1Rzz2FoNMqkovA6DMZFXKEsYKN36QDMw2Y1SM4mAKMWgBn5+9ZWuJ4nIOT4TeMUgdl160WhEcYK6DXU1kCYzVch4uPgB5o1KWtUdEaZ7fxd+xLeDKz2HlvRXd6DKNYS4/KWOAALkYRt6wG5oGclao5mILRUS5W470M/Z5CEGsi8Kk9fcTu3S3x/RqO2fJ3C5Z8HJ5GONuGerpbT8f71FshisXQcmnncutDZCNfjwPT1nvuAYx6LyklHKKdG26ybUv+A5xOpUGpH8F/oIVn1WFgSDhgQ0lt35Btk+kewKfmBaOMtvJxFHVRlFL5Se7xHyh8ei6Sadt9M1EzZnSSi6W9SyO903MYJdOBjMUyjNmmbyMvJwD7oZBpaLsDeclNBI8nHaRMAyNOb4XIkO34C3gcA4wo94Mqoo9k+jo6JTNYIoD3Vo/yAGVaeVLKya0uwXEhNcFnvB0KmQ77MnRyn2lXj1y/CRFfHaBM+xDrlnuAEZkOGR2R0TxgoyvkC4foalb6DnavRHfPijolbbTpAT+6vMjABnTqbrBgxYfA4fSDhC+BUTL9D0SRvfkk094p2dMG8ha2AXy8MOjEwUIuyugwjWiUV/+Cjuen4cVTePJgeVEyjVO16y+w32DvxLcFGmqcVb1Nl0V4xL6ErIheXv5d8q6+h0yjGw+RTIc7fku+MZ0SZNpp32N54Q2A0W0gDmB5yeXI9O3gER8g5pvYwdKrQiSSjMOdf4Z42rj3REYOcbLUaJui3x+TgYikEM1Ag1jrmt8QGboEZXQyzK86DkVh6YPsGJZ8ATFEiXIDTiQAg0HvEYxEM/JE10pbrXXl1Szv/2kQcirAHawiTt5PgkoC+baf4mRNcAdGm322G1/d1xUeIxgDZmpVlv0/GOs7xKExaAc1fJnAp285MPSEtt2EkzWZ5MfJnIJubQpqf/Dp2YTWOAU8oyHgymKG8mQsPDesxD2dPa86uirwi5JhMZbhjkcY/piKrzCBh1RvwkudtRHDKMeRyFB1699xAD9DBwJjkR9EHaJ1Z89zucsCLzL9v9L0D1bJ3mR9+k+zvKJE3nTcfqdtRPfIUGTY1mnHhptty0LG7uVoyJlpe88uAenkBsk0hnfnTUR+yQeUvPjsHuGwKxiT62BKMl1tsvLa3xB1uQScoogPoUwbMm2Nv+HdB1sGvaP8th7LtJwrZLq64sdk+n4OXuwFmd7+E48SZXFg1GPtqUxruEgzgStLrySi8QNgRDceSplmckm4/c+MZSDTAyZBo1qZFpvsj+cTWqMX4D05V5XFX0SmbwXG42MY9/dsJ+y3xyXJNDhjNl1AorbVn4BMU7fDJH5U6ayNGEaXaSINOFeVxZ9GpolS5uAXdww6e94b6OKP5AX90PwPOvLMukamtetDe+dOj++vjQSH3CKZxsBWnrwJB/CjnMDhOGgHUG2rCEZ14nHcWJXTZboPkd8aGwgXdOJgvdhuYwXX0eQvlEmZKBMECVe8jzrlXCV08IYO4g8wItNhw6+JQA51O+1L8NTA2DUewbOcK2Z6l1f8kE4dzv6hlmlWjg23/QSZnoK/cwLt9Vym5Uto1mBpCekxm3+EncZZc5mO+KTGwdIJEMM4drjjOpYq2OI5Oj60IOZo8z5hJHmWiYLWeTG97iEsFrRsMDkulRUktWdpzJ8T4aIGD4Jq8aPyGHGytpOTVKoQLcSJ0caZGt31tmLYEhi92XYYtU6IlmFoXfotQsuXxUQ7WK+941upPZzVbVfTGWf7AWYrZNiKBwR1AqOu6SNck/3QMJde7tfI/EMRMxvh0CliwQo95MDwFWz9He0NcRg9euAwJu+T0JrfjkfBJzzzQaF5wvjiS2NFTA/Nc8P8xqSCA/xWHVIkKM7SBozGXfQ02EkdWrsQuIMYV53QWT+d/sI98ClESzJ65ckbLVj8SRTxWnibIa0a5o9rOMAvwcjivPRWyrvvs5bGRYzmjmEBQraiwfGM0jpVtXBY04TLCw40MPqMQZzIxtXX2NbF/4WOZCaT1mDz3s+hwKPalUyPxYH5E3m823BWx9MzR0G7E5e0kdA5BtRhFJ0xFJJphtErK6+yqma5eYdJz9W+VM37HdAhdcnJ2k50TFOYobNvN9FNmdZQUchsxApD/aaZRa6Ie0GmbTgyfRXRNtYmq09kWniK8dHGi7yPozaWace1ZPoRDO7XLNzy496TaRbpCbf9kXSEIT7M5dGDWplugxFCtcGod2BiAB2PNpne+VfwiNE55DKNA1Naa8G2u6kfmZaTJcPWXZnG0ddQf3XJJ5DpJ+FtBQEORYdJjCuEwDfqlDTdS17SEpzVMegd5Ec5wHGejvO+s38sAy4vkW6UvFh5G5kiv6Yz8mFuRYf5+4kfHeFq6CBLLNNszxbs3u522te+i+20O1jIThTBuokhQvQ7LeZtuz1UfIXdxszOUURRm5HpkNnoUYdJIMXvc5DQRY9Tl5ysbb9kVQ9sdv3EaFSsmzItOx2wFI5kOlj3lV6QaeBzezscG/hjdK/2bp1E504d8G7ItOOatdDY97W8+CvI9NXI9GmgsMTz7XSucbASrEbEC5tIettyFwqPvQrrBmOvYgZTGFXHini4oeV+IlbqPZafvAVP7utWVXheQwjeDtdrGkxaObhvOVnMjNqBoG2dz1ANhq4OJpIic8PFljXA6IZOSJTBAsYQgSyt+yOhPBDScA0wzgIMMf6hZCy9GZ6L2tVwYQOOYAM5HCERH4dRggiccnAUGXA8CkYIg0MQKNSoYZjlGIrdD8JYJ8ZEU72Hqogw0AVaZhS2J9oW7NhExA0Dr8U3HXbBxnVgjCIqegYY6fUEOxe5wQ1WfJFTm8DjeGBs5Xo7Yx08pDGMcrJQquEWcLJrO21h3Fi+wRe/kyNDL8fprF4jjqmGsUISXwOWUagorLzmUp6HX/M4uB2Y/9DACO+hkKvkRTRtvs7KLbtY+BZhJcIhJZFBMWcTHMphca+2xYeymrbci2N1JZsrfwHUHe88e2idq+QNobWcrKaHUCZ3I6st4BB5iWVa22Mk8sIBeOJ+yQvRhvKTN7PG5OVEUb9LHciLk5jrh5TWghPaIdO283r48VHQQISwjtwRLXYlvDkv7kumN1h17bUWkPtgDb+PYOxtmZYj2LgSkHGS2Y9R+X3usO5PphlyqiDTVZfph5BpdUakiA9lieVFMLBwrnrm1Z2bwR207SDTrnekg7wgL5LpHU9EMr0SXkSXO7/0ikzLgUGmtfj0Vsl0A7/7owb7Ayvy0lGmxRfAEbL+nDYxryz7NtGMyziHU6ZoUy/JtDtZLF8UbCHHC5nOINMetRSthdPYvkheEpnWLLfKlr8hL0QoN6C/MxOBET16SDtMTjT+IIOSl6YHkel7kGn2KtV+uujDIvp7A3lFLwwbbXb5DzhYwxzGPJHyh4LZdtumf9jwpZdZafMPY5mW/estmR6DTP8RO70AJ4YoepudlkwLj7IvfNrsNDaQIE2FWZeVpbLTf0ReZgLfobbTkpfITmc04iSZbljJGVauwt+plWmHkWiw2xw5826nV7JU0i9worGBTURkPcVob5mOZhHS1F5F4WWUrAWLIcJJDKuez3jqHCIdDNcoGgNCtGp5yDBWdQfj9dv/xvFtVINTkacH4EwlwvViUa+CVejDYCU8fwaLJz4bmTvVIx2+cjlNu7HFaQlYdLC67U56PfcD+wSYk7DtIVdyHd9VRASP1Y18byB6cL5lhp7ri6RlmcnHmJIgBAzegVljWkMqbLgdBfc4CvsEYKznMgTttSL6YFD1qa7ku4mRwwvY6PccwuMziHSw6bLCtAiGLxa7aynw4fQ1QufqKmCcwUcKRDDqXXujCMbYGFQX0t5ApvI+j3ydswiPz2AYG14TDCRwawX4YNcTCMsDCPXNnNvJq+GgepGA9iKMyIu2SAirC7C1E6zv4OdZ36FPs2L/E4h0H+cKxFdobybCy6SFJpRiieH4kKXrs7mJwCYF1xtKjmqT4jINjatLYMtTSNp+tieiZvpNRjljrFymcayQ6VAyrShD8x08zTCJy7ToLHr0YnGZxpEO4a/imUx/fzYJvafSAyZSrfwsijaiDZpXkqM3j6jXncg09D6cMi08VoieGJ++z0GmnwkvzgRGnOR8PZ0pyQsyzaK7IbOzwu3gUOtx5ZBpJegeNpleAYwtpDNegG58BnqH/DENeSHTynNTmoQif2EDQ2KatKCVwnMnASPydthk+gnaw3kZ8HwC6WeTrjDNZVqdOpcnl+mFOFf3IdO3APduYJwuNqD0vkz7xJAAGJHRzCBoPfhMYJyKvCDTOFtapFgTpLQ4csBEH9t9E3DhQOYm8H2YZJoOqAXItNJIBj/bBiAv8/qfbFcUt9vb7Vtsrjbchyzr2C3jeyvX2cfX3GYzi6Ntt/L2iFpCbD69WGplug69jUxnleetSHWbTO9E76x0Ox1s+ysy/Q/4YiJ4HAx4ezsuhxZa7ILLNDbaNgLXc91OZweeQnRwHDZQdjqS6WD3MhyxWKYrC4BxGh+u70em9+9g+RtgeBW6xWPDqkKGTShcDkUTnD+3e9TtSAoI1SrBWeFSd664fjiK97hpU4KnvbxCfbc3rEOP4Gf6cYDzp8RfRTraEpLb7+21I/UWFZqXwQ/X8QGBAiFuEOiBSR+YKTuC74igkYDGN/XqF407jCiEoJHPWlqLAGyD0YEUjMOBEVp7T1kKRIxwOEoMo2bCBeRmZREGbIeCag4CbOrrDmE7MuEY/giXGMLD4ei3vT5AwI8hUTS0LW1vjkbT267HB3oVdonNOIzI2GGFMZZpTe3XnmjsBSjWTMjrEOqHlGIGPGovvyMq09DZ94jjqx19EcBHhUzvAJYtkBC9I90okVABfb4dk8mIgcO2GcrJDbqpN0ssLx6NPAZkWvsUatHfhMgJahLGzOIYMtR1pGRakfFEph20WjjbYBwPfOqoHCGZlg20HSwztcnmbzT7xolmF0+72JorJZdvd7CWL7WPb9hqM/v0sd2+zEOC6F7+dvtCGzV2et96R5FMZOaI2mlkOlzPJ7LTCWZE8siXEB9iB7thp+PQQFJFx2+UgdeIFas/gyH5D2E8aEZrUKnQ41UYv7qJKfWrPoHDNQegZPUOY3FHCQ5XzzAzhfbF7QnHJ0dCTfLhnTwP4XDCGPe0FBoPZ8TwEQ7fA4QEPn1D2MNaaNM9cCBSj4FpvFHZB4zunOJU7cdj7z2wYxg1RF3dZLlpv6KnOxZUNQCL/4cXB9ObZNunhf/CeyAAhx1G4YUpu1ImeQwCjl47BkVXUVzflMTJP+wwysBLrvuAo+M5phfZgRMjGIGzjdYxzIL7cJRambaptCi8dYRSMCWfIyTTvs3YKkZ3L2Pi0HNQfTgJnsgLaESnfWkQkl+Nqf+ujA9np86FQnokkWmMQqd4PIIyreEhdSw9ogKYDqdoK7qrcNzGi4dbN0Yy7R3QWKbb4Yqgi/iQY038EP2PhEw7qhgm7PcMAqUf8OBeJrMCh+Z64JLdkdwLRpl88Hk4gyBq19sDSF9iATsNbTtKtMPldBbtj5BMi+cUKGIJB8EYffhqOxJs+kDnbtjpLhws6lAjRDUyhMFyQxkiZPPYZMVlOSoZVuMKmKruS+xoUym1fdhLQhA1LKTsqxwRwGoAof2EyY96GCWM+8Kj3qHmlY7IIQnN5OfkWB8rO+RUUAqsHmFRXh68yCKYVfI11ImM3uFIABwrWsfP0YrHWOHuk84C/EjTWnTrBoyO4yP0R9FK+k4a7s8Pf7rzZdQhBXYxIOsAVjR8oKiwUhLa3udwwis6doZH4flIl2NBXo52GDXStAU+q8dOPw0HH6eqlQ7o7qvgxVre4z0O26hDR77qhkwf7uBHRxBd7x06eemGgwUEHt4jv0SrsoZErxJvFGB836aACJfbkaNBWI8GGPaiWocTKYwdENKjn+5PeTJ7CVYkdB87WKGSe1nFel8uTY8aOKQ3H+20PtrhEzGOchjJEQkZhnFedO4DXulMDSu5UyU1ezS8w9EAg+jZWUlh7Aw7+78mvCklglwhbcYdMqKjFco9j+doxOnRCFNH7B48jN1zsFw5YLYUytXHp9Ty2wdR9fvoMmkd0ZT+fmphIGL7Gn70YWwiWPBm6MdPrfdN3+Zox0DMi9KLMS9GejLRiwevqI92DKTwHQ0YgM+c5cSPOtAn5b0jSRl5R2lJMZBiIMVAioEUAykGnnIYcI/rKfdWx8oLpQ7WsUKpFM4UAykGUgykGEgxkGLgmMFA6mAdM6RKAU0xkGIgxUCKgRQDKQaOFQykDtaxQqkUzhQDKQZSDKQYSDGQYuCYwUDqYB0zpEoBTTGQYiDFQIqBFAMpBo4VDKQO1rFCqRTOFAMpBlIMpBhIMZBi4JjBQOpgHTOkSgFNMZBiIMVAioEUAykGjhUMdHMdrHg9Dd8GgHU1fLXVeH0N3xoiXWvjWCH4UwdO8WGyurL6CSywl/DnU+cl0zc5JjAQ86JWyPatugS0VsxO9GI6Vf6YIOMxDyR85rZZfCjeS/jvmH+xY/YFuudgaeV2VibO5Pv4p20ldxExz3nf+Fc4SBXJMcsJxxLg0hvwXKbAvoRaUE+L3+JcZXIFq+aKrluS9R6PpddKYT0GMSBeZGPsTB5elP7zhZg56VvlsMOFac+meC9SjtKSYqB3MCDbW8a/z8F67DPKFnYW1HFO276kdrl3cN51rd1wsFAWWTbRre62ypYHoBcEqzRFNWfZ7LnPMAualkvHYOSkSNKSYqA3MaD9L/NWbXjMwtatfLTBLu3JttUNsaDlSa6zD5cXXUhLioFewgB7/EnvhU0rrLzxbrMW9oIL4n3M8mxVgsNv6E3pzyii1UtwpNWmGFDENMsG95VdVpWdLmuTzBVm/dhEew+7rGh/mhl0uBimcwdLvTAPeUOQpr9bZf5NKBFAkw6R7RKdcJJ9g+4sG0uyJxdhBb4P947nwJGWpzgG5EHBrgEMyOalwZI3m7bANH1iB8vk5PPJGIpG+8B5ZFVOf+pogYS0HEoMuJ6D+bLjLHzyM1ZZ+xk216WBJGCA6swQSLCMnKuhsCDKUoGEto2XOU5LioFDgQG30zLG6MemO606/09m+PrhdE6dcDFOl5RkXGSjVRL+jX6lf3sJA/t3sEQA9b6CpThRT7PskAvpiM22bL+pli0OhEAZHONWoldrLdjxmAXb7qEndzNUJXqQP55vOVnKQ5BWSUuKgQPFAM6RHCsNR5fnOW9lh7zY8kPOsOyAEy3bZwQh8Rx2q4rvtdmCnQutsv1BePIO7l9IFOEUjCDKx3txKS8eKBXS5xIMwEPSjeXVfO8gQnCBZYZeYtmBJ1um7/GwqoZlQvqaOyzcvcyChkfMthPdKj3I/VPgx/6xbkzqS79TDBwEBhRCrcKH4XLs9Jn0PS+y7KBZZqfBj4XNXLsSvhsZ6z/ayeHsB4pwDUGXjo95Ed2all7BQGby9JP2xq6IVl5m1vdEy416g+VHXWDZvqNdsXi+lSe4QBs9KUdKoQRCk+Wt91l13W8sbPx1ZNgc5KRL1yvwp5U+pTEAg7kC2cV3g+VGvM2KY15puYEnkuqiUJXCpwoVgATnRXgtbCUdq4TOWWTldddaZfNPOEeHIIfj77231Ml6SrNMr72cGAxeE7NVHzUb9FrLjnmt5Y47C0M1wPkxxPGKVSO8hpMlvQjPhQxbV5+82cINvyTKtYD7p8a82GvAphX/M2DA7fRi7PQsy45+g+VGPp8O5yirz+btoewAu6K82N7e9A5rzkyHa6sMNm227+c/aR9r2GIz115lu3dcC0vPBFPi7dRO9wbL7B3BwmiFpUcsN+xtlp/8b5YfdArol2IhGkUicaQ0akCRRpGxKw7D+L3MAhROefUZVl39YXTRSXzUhIZpUsNWg7X0sEsMRM5VWNnESN9YK075qhVHPheF0Bc+5JrPGEQpBOKtuLh1w8iR6J4feobl4N3ypnOstOzLRLdWwop0EnDAUl5MEJZ+dw8DMkDoQOe5BZaZ8FXLjX89fDkSVtQ1zWAVT+Lc66eKqzvpxr6WrZ9s2Snvseqwc6y6/DsM31yNvpzN/ThgaUkxcCAYkHNVmmuZ4e+y3KRL6HRia53pyFHVMHRVgQ/pOtlfMaWi+M1mBdInxjydEQCcsjVPt2D1f3FJdjq28dyZlkOHgRoHCyIoIiDnavS/W3Hq+9EN49EpGurTR0Vag48rDz8R/XGtUnHlkq0bYcXJ77Jy3XArL7mEWydxf0q8Gmylh11iQLyIAqlsxjidaH2mf87yihTIwDk/qoKYCdtCBkmlPBs7X4q2Fke/CEM43FoWfYYhm8fRNyO5LsPWkYmT59PvFAMdMSDjJL5aZNmpV1tu7IX4W/WxbtS9CS/xnRwmVWDseJJnM5YbfKplTvyUVZYxPLPhG6mTleAo/e4ZBhLnasxHLD/lvUStxsZ60TkNfuNbetF1Y3QuaiBOlcD5UqSrMPndViYwEix9J04WqRR73d8zsNK798YAGFcRQXCuyo8xEeHdOFcfiJyratLDktboqDn8wZo/0T2hPOdsHyuMu8gKU74J4TFqng3f1fM1VaWH/9wYUNST/L8Mznqf6Z/FuTobPiJS5QnC3edFv59ZXfmhZ3o9GSJhnlfoUdV/bhSnb98TDNBBRI9lpnzHcuNehTojiio95zqxK73Wzq8hycbZvuMYIXy/2Yh/Rd8y1ChjmZYUA93FgPiFXNTMSEaXpvxb5FztZac740mu4UiFeiZbTxrWqy07+bvw82NAUBNv6S486X2dYiBysNygNZCweR5OEURT5KpKeNE92k6f3/uinpExJB+hMI7E+LGfIr94Pr9T4u2NrPTM3hiAfzwiuoFI6MejyJVHrdQT60xx7F1TdD/P8bycrOKUj3GTptccSF37qj8995THgCe0o7/GfNLyYy+CpTBwrt96yotgyg1bK0ZxnOUmX2LW/zlEabdzPtWNT3k+OhQvKD4Rvwy4gPSdf42dq73tdHc4M6P12uDjDIGV/LhXW2bMf1M3k4hSXjwUlGqrI45g5XGoVoLot3gCcaixWwggM5SHWn3pwNVxpz5FPiKgruU46MPvQvyt317cySpDq0E4Wa8lEjE9jj5wc1pSDHSGAQ0nV9eQA/hWK456buwMRQ6R2KuWD8WLWU7qqr51Tbzo322spqe4g2HDwojzqffN1L8CJqadtKQY6BQDMJGG+OqmRkaowNCenP244yndJ92ob32kKzuW5B7xpxfpVfRrbsB0kuTfzPEqTqe8GGMn/eoUA8yWDlcxRP1mZlBPgxfb7bT0XmKnpRf31xfVhGpdk850PoafM/B1buxrUJ4TXU/u92E9k5YeYUDLsxNyXMXUzossP/zcqHNPFSKAFMZC1hRtbeSXCCPKcPvUQWb1fC/j2u6dXOvL+ZbQRg1kBSLWfqlySh6y8rey/SZAvPdbdcn70EJzqJh1jNKSYmCfGJDka2mPRiuMfTV2hynt8BBpm+5ANRMYnbsZ5tIt3Ko/Y5ggOIoRmy2w1eodXOvDhRLTMvie1Q9e9LtUL4tCUl9x7KusefO343bE1KosLSkG9oEBRauaH7bsCVdapn4SLMSwSuxcif3mbeVPKzznXj7f9RmbzmRVFX4ZizlE9+CTjcE3G0R1rht1XY+hb4ONGLbGW7n5eE5q2DEtKQb2gQGPpC5jWbU3WHbYM1Fbkd5yPoMZ5zPR2qT/FOUQc8FrYT3nYn7VfQpa7RTPZkPLDuVbxYMhDF0PmGKZsR+wcNl/pHY6wswh+YubhCMUbmN5jLMZGhyNfYtMkqIAjzBq+KUXZ+2FZxesVAlZfT9j23eFdtVNZfvlY6G976yMveWCotUVM9aCovnxn8v2h/mhjYmdLBnLTL6v5YbMtqq0TVsOjcidlhQDHTEA0wWNCPuFzHynhyY24VOgg79ht9n5UzN21QeL1gd+06ytgGt/eaBqn/pz1d42M2MXv6hoxw3KWAUW/vN9FfvC7VWbTmohrNtWcgNPYM2iV7JeFusS5QZHbbRdTQ9SDCQYkKFidiCGKjdkDnqsH6kOzVHHEX6SLfvDBwo2YVTWdWMB3Th/ZdUu+33F8vCfIlfzcfp/+28FGzY4Yz/6S9lufDy00XQGKlq8GV0ofZsZcraFDb+h0QlJw+l3ioF9YEA8swPH6OkMDY5GT9LbpIPZB904d5vZFRfl7PzT89ZC57KYD23Vjrxtuw49Cc9l4Dk5V6X1VXvzZ4p2dn3BPvjdkq/LnKFzIJufyfeHz0+3itvppAdbozj3AVF6qmsMZLWGVaYwwRfKa9+oFKMGQawhtDnTcjZqWMYWoDyWrK7aig1V24x2mYZt+tdXFm0Avbb7FlRs4uisffT1RRsoBYKC8ZA4POGKRItBDn4T3bcnoXQaDu+aLP+kd0gLBKtx9p+BVVP3C0aCh9QpW98U2gmjMnby1Jyt2xzYQvhx+frANm5HGTSH9rJn5GzCmKw9vAgDB4u97zVFe/30jC3eGfOyUOpRLBx+1R+s4YSYPC0pBvaBAempCtsuDXodK7Jr5ql4MeMd/iosJ/145kk5q+LlP7oM3biuaqs2arkGnCsenb/D7KPnZu2l5xbsGbPyNhFHbBsBsFwHlstoen1xEvzIxZQf90GI9JTzhYYDi1Mtw9AyzBh/opQd2x7a06ZnbeRxGXs8ttNLNoRWQmf66DNfGhjIEtXfgP1evhEnLEar+NWZWrqRmYU2kIhqdWNqp2P8HOwXyVcQrjCWoTxC4C7gKBKsmiOe+JYiiDc/WLGLr8GJYghw5drQJg7I2AhC4d/8XcnuWBbakoWhNVHNm55fsFMxgg+sDO04lIzXQygzUxzOhIVpzLr/BZ7yGM7L+05LioGOGNCwMoqg/zT8cBws/ZCHpcJhPxTEEyiQl/+sbE9nmPrvq0MbSPLBbHju29dW7I4fw1fzAvvGJ8ze/9o6Ow4+3VmmB+dV6A/ahJkz2X7TvGoGHjkXn1cbaUkx0IYBFFiAg1XPIo1MZU8i+7rcDC9OYWh6M6kTX762bNejE1t3w1uNZqfQGW1hpG8Otuqt6MMH6HxOwvFP8rNcr3obTKZn+5xs/UQL8uMYalwrxo9sZxsM6UGKATDgHU/1FKc4v9QGQhTF13Z1FXjyT/eW7T2/rdqk/oGtWJuzb2CjMzCe8xz35Qdm7Y4bq3bp1oqdCX/SB0i0q+vaTN0wol3oxm1EVPPckNppcHBwBQeLsDdDJdmiBmVFraj4EC/DLX0xas+albNl9ML6E536xc1l+59bq+5Q/ZbhwBM5twRCnjk958PC96zDucIxa68JA8fGp5nicW4knVnaLybNpd//9BiQo8MH3tC6VZlswYdkxC+uIAhd94HXJhEJmP/fdTaBiOk98yr25d+VbQeGbQmfz52ftWf/Z9FmE3W966GK/QJnazaR1rL8NBUqyrABr7bXiRhUbaYlxcA+MCCjpqAVekv6S1sxiT3FMeLHATjvQ/l8kkjp90ZkbT1R1ct/W7KHloS2aFtov3970aNVX8cB+9Z7WY9NHc699B78WIRBcyRohYu4AUWalhQDe2EArgtwh+CTTJGeZcxI4kWxpeHs15MH/bw5eVt+RsHqC6Fd+WcGp26BX6N4ie8WVnqyau/4Up0NWZe3D/2i1WYydB2lT1ATnVm30zhZCtaihfUnLQeJAbDIAqFKoMvhFdUQzhFPHHH9tsA2NwR2/Z1lW7YqsPdeVGdvOC1rj+FQnwqt7yUUecUb8zbnxJz9gXs2kfhep85fokykjRRCUMjdz4kt0pJiYP8Y0N6C7V2riJdy5F1tI0qwkXD43CcqdsNdZXsuyuTDryiQgxDaSPL+CvCrWE28N7Cf2VgcMjlX7RwXM6V2HkhLioFOMRD3/DUJqJ2BXIUpGtUKk63dGtjaJwP7xY0lG050/zNvqbMF6MV3np21s2fm7CfXl23NJiZcMMatCL8RTW2bTehtw49sa6IlbbjYKTTpxX92DDTDJ0X6m3t66m6niWCt2xpip0P74+1lW8Vw9UdenbGJs7NW2YHjJKbD0gekUmiI+i0vyNhrT0GfwpNKv/Ai1ajjZJmGKOwfXUv/HjAGkG6Ixsw+zZDJKERNEa7lxE6DGJ/7XcUWQFtbHNr551Tt+kvzNmMsF3ZX7Y6NZl99bc7efWHRbri7bO/9dcXmEPXSxJq2AqFCvGNfEV4E9HBE29X0IMXAXhgIKswc9KhTJP1SIjNwoH57f2BXP9hqK4mSKr79OFHTSUSyDKd+Azz68T/z0B9b7bMvztl/vrHOLpyTtY/dULUzGbZp9V4ZvKjWSFZOS4qBTjGgaCfsp63BfBuciBXdee+LP7SMdNLXfKtk60gwtvsZqv5Wxi4k32oaGRDvJTdVc4Ua+bz5mTmrxwCeOpX8wbEZa4b11H+IOqBUqtwr5ddonCctKQb2h4GMho+x01q7KvbSpcuk1qbAqP/1f2Vbgh60BaFd+AKzqz9VtNHoxsouHCwGpxSVKo7M2S9/VbJXfczsxU/L2TXzqsz6Z5dCVST+FlP60g8cp3YaJBx8yWqKQVjdBu02UVukRRJc16FILjo1a2+ezBk6/SczPKMZXZpRaEwL/crLcK5eUWe/v6Nsr7mMHhiEX4auwORFhkx/FWovs7N8K/kMcr7TafFCQlr2woCkHGUAqwUtG2AgGEk/KPqrvJdnYaRePxN+Uod/UsYnWFTEi4ysfOB5WbtoCnfi9K/F6JVJx9Jsw5gRVU1UHwZN9Ysto4tqNy0pBjpiAIaTvmqFocqEpZxhcLo41YyxmjGcSNXTsnYCo3t2PAuzM9wimzShv3KwyMliNtd7X1Kwl52bZ8gmY+eeWrAXnpTdc9IFtQWtW2D4rdRPyDU1ah2JkP52DMCLGZRcZSt2Gn6psdNyjuqxza9jVOm1stN0RE/AThcJnWiyWeKM6ZEAvhwxOmMFrm0hpUKJgdRMoRL4O6zsRO3C764boyt+Of1zwBjIk/ACJVZbsHuZL34nFSK7lgG/zRDipSiI48kxePkzKvZM8rA0XPgXclvOmJmx95FILAoNhPY3f5VeG2D89eGq/fjewEZDaF/zBcJVS1uifeByE7hDPndaUgzsAwMyMDjpwc4FOP3n45Cr11YljI3jjsN0+oycvfL8gp03u2KjjtOsmaz9jpD4lOEZe8V5BXvjBRl73XkVe/ZpeXew7lkU2HhyE7yH5koEi8kWPMGuBTC4TGWqRPZBhfSUYwA9hb4Kmx5n68otli0Mwv8RL7KWEH3JUfCcZlG/4pzQNjBU+DyGq++ZX7Zb1oR29+Ulm4ZO3EAn9OXMZP3Gh/rYL28p2dfvrNqsIe3R1AxKNty9HAduJfyoHNiUH1Pm2wcGpBczTPopL7OgaWW0yKhOwYtZ2LSZDueFzyrYqKEZe9Uz0X+zmWmNH7ZkQdVmDskynM29qL4yw9mveXWdLWPJm2/+tWIn9SfCRT3eCWXoMWzdDD8+5nyPU7APQNJTPcVAbsjwMZ8NIZzVnWz5YWfzPJ4sfzXVfSsdtw0bAhvclx4aimE1+VY/Iq/gZ/OiZRrquHH9JlbIxihqSEdh8bUsBPkgSmYgzpnzBUnFQeMCq6z8OKkGkzmZEq6nRPrnuV9OD+sNlVlodNSL4BeyNzXbAk0i8/PIisBIN7bRDPk1s7Dtn+6q2Kdurlodwa4t5LokfLoGPv3hdSX746LQxsG7rkSERPJdgtJWa13+rcjP99wXcXtaUgx0xAB8kRuAwbmThR0vYubpRFdwxFhdt928lvWVdwc2kshVXyII9z1atc/9tmK5FnL/+M0otztiBdg3hyK857HA1jSwO470YtyUuL26/k9m2/nkx+pXfCX9SjFQiwE4RoGQ8mKWUphtOd/43rd0tjz8tHYHtho7PQQfTJFU5WBdel3Whj+62c7ocxN5qAqzMghV12gPDX6Jff7uQbZpbcXXr5SNdo7MFa3a+KiFqz7tsxVTOy28HHyBPEqCG2/B9rusuusidArTNNnItBxkbBQE+9vy0K55CG1BREq5Lv0h4GnQaz1Efdv3Oc9/1xiJ1mAtjlmKZjKeq4S8kPB6dcvf1ExckhuT3+l3ioEEAzBJth+9tNvZcmuuFUePxrmCdWCZIr20Eukq7/4pDrqGbsR3DL2cflzEWn94NLAf3I2BgmeNHtpx8OkkRl2IiqsKL8rAqm6fh9G8FYM2k3NtTBnfkX6lGEgwID2FDuMrQH9lB8+G72AuolhkwdhJOO6X3RLYZdfBc2hRgzenjcT5wrlynmOYRTsMrKGT+u4fVryDqkkXcvYzWDXNZq3uXMKU+Lvg+fFUkPJigvn0e18YgM+yY7HTdxKBfxkrehCsqFbcTk+ELf+yJLRfPYhSxA/TuoA2NGcXYIdDrYWFAlQAJNcva7f8omzXDWIEisi+NmHxrFQ6nmF5O3wOL3Iu+uMH+wIkPdcDDIBZDFZ+uIU7b7PKptvZnQTCETEQ4rXi8DAcq7HjoghVdhh6BEIp5Kj9js7gPMGrKFIVk0XX9dHzGQhXaVhEL+3TTIA4lRvRQmlJMbBfDEjiNUQ90sprf8UGzWdFy4eQ2Ak3+QyYs8ghkC1SeFwqoAW9o+/jcaamMG1eUdQcTpdmD0Z8yEV10zx6tc1K637NwyTQeAV6Mi0pBvaDAekr9Fa4/jMWjHiuRw7CijbIjYadZw2Vb4Wmg42UoqXcLHUGVHSOn64nTyO5XZMs3LkSt/K8hhsD9K3tvBmjOIcHCH2lJcXA/jDgdnokMydutOqml0QRVfhIdlZ2eixO1mTy/xTwx4+yu2EznzsR14e6dCdrEJ0AjXPHq45EjMoKAtVtCyzY8PnUTu8P/wd4HlJQUCSZwgyrrvu+VbY9gLJQFjF6gI/yV5rwwZRkvJvvZNo7p/38Lpxmnd/Fp+067nImV+fJxJVVV0PpEVSmJ/RJS4qBTjCA4bHcSIaVr8EZ+j03wmA+OyIKibfAZy3wooyZnCsV8akW2tNeheQWO18mfOo85wnKZeq71oKGX1E/kTG1k5YUA51iINZZ4Qirrr4afbbe9Zp7Tzwnp4nJ1NYU68bEuaqtUjVIf3o+qi5wQtGrYPuDOG4/IAo7g3Npx7MWZ+nxfjAgPoFfgnXfIxL/MJ1GwqXiJ26X/pP9lZ0Wv3lAVBc6FHVA5fn7JfUCZKeb1zl/Z0L0oj8ork3LocBA5GAJqXKqSg1WXnI5Y7GP4WRBPC89QTb3erSgSMiRulb+1ILNKBE3aKJ6WlIMdIUB8Zv48ST453NW2vAXtAG/fR21rnlxjzvEi5oSgzYpPXmLlVZc6vWmSqQrGqTX2zGA3pL+2vJjq6z4qes1OUiJk9V+X1dH4kUNDSrX5XGrLr0cpiQT2Tuz8HdaUgx0iQHpRexyaZNVln6dIeYn3EFyL6tHwQvtIkBd8HFY2g5fX0US10/4TSAkzQPskgo9uSF2sHhEO7n7UOGdVlp0mVUb5uFkkVwQRw8ihbKH+YrbiRRHdJ1VH1AgYXmrlZb/EK/4U9Q5i/tS56onREnvpYulBfXCwda6+MM4WTdwLEMXRVb3z4vCHPzojhWHfn+V52+01kUf4TyzEn2hPnXj0pJioLsYgPfypDis/bSVl3+PiRJbXM+55+68ti+9qLoTXuQbPaqRASUSV9GvtuN26mTIR3o3LSkGuosBRbHyOPw7brSK7PSORyMnvUs7nTQgXmRokciVZg2Kn8N1dDzF357YmtyXfh8KDOSGDBv+2agiBQ0xPPJim+YxRDOXcORIdnxnT6Jcn8jZcj0ipYH3m3jMDL/IEfNhRZRFsHOxlZd+k7yrL7EorJwrGTN/kO+0pBjoDgbEi/CYZs6ws2516zX4TIPYh2scPEWylUdXPcgNa4m3Yv5CcfhKxIoKEPUKUCClNb+20lKcq4AMY09SlrMfP9sdUNJ7Ugw4BuCxLIat4f8YUsEp6gsv+jY36EYNQSd8mHyLFzUbQ06+jlkepLr5LgsWf5a8q/vRrZN5RkODKS86etM/3cSA+EWdTexy08PYaRys4qho+68cOg5bXIRV18N7Lww22+zKTVbJsMUOT+Vtmz1UvMhuY0HxUTsfs+ZlV1q44WtcSOx0N0FIb+s2BmocLD2TEI/sTXpp1c0/RS/swGb1x4FiY1I+GZwtjdsqTK5ZglktCFnexn2rSEz+AzNJP03C/N94Zjr1ybmSM5YqEZCQlh5hQDwD/7gz1Z8kzJ/xWcpvDFoex4ucvgwOmI59yEbRVvKqwmq0qG15091Ev75klY3/wzOTonp8iZCUF3tEhvTmGgzIyRpDwimO0ubbojQ+HP6M8kt9u7G+8KP0Ih9n3934UFswggwJKlKw6r+jZBlGCqLIVcqLNchND7uNAWcu7LDs9EYLN/2MmdcsupZn2iA2ugjzbcBmv5Ddx2eX/4CDxSbO6FLWFbWHShPstrV32PAl/2GlneRx5afRahoE6Tbqe3hjZvL0k9AO+yqaC8+l6jq+tls48GWWGXS29Rs0Df+KDVBxrgKWYGjeuYrUrbmWbfwdOmMbCgaCZbSmgyIFaUk8JywmAABAAElEQVQxcCgwoJFsPkEj/LiKzQdOR7c8h6nKJxNhJaqA02XVVp9UEezCmG37K1EGJmtoYdssG2a6ky9HPy0pBg4FBuTMM+uvshgDNdBsyGstM3A2a0FORP8xDE2EP2S9tXD3YgsbiVY1/gmdyNo2OZwzXyZbBi0tKQYOBQZkp9Ft1bXwHfpx0CtswKAzbF6/mXZF31329sI11myD6Y+y7hWzBb+37CH7+JrHbGa/6axmQ0c1tdOHggj7raMTB0vP4PIytltlCkx9XcXq+5TtoX8QRagpU6dC08EzbfP2shUKjOv67KzUmNWgKD08JBhQry12tMJmC/M4VS3zGW7htOyV9Ay2zfqeapkKC7Zp5eM2x2o/fQjuSEuKgQPDALyovBftJcjmgmGVFbDhxQw/ndsYrbEB0xmpFt/ikPkwYhopODBcp091jgHxWBwQwWHqz+H8DU/YN4h1XDztYmZXs0oAd9TBp99bsco+vmGzzazL2W6fUth5zenVg8MAkt9ZCX1F901bt9r0pz3NLvvc51iLKGctLfTeKFoPZvCQwXbDjTfaRz78QTtl9unWpPyEtKQYOOQYkNnCQMlQsaJx/qTr2b6NCBWrvrv20OUi25nsXm3V+S/BpqV5BYecBGmFNRhQJ5IIQInJQJO/YYWxLyZqtY1znBcvKm8Vq1Ze8AWGFO+DHxkWTHIFOUpLioFDhwEYTh5UZRNO/bnoxo+ZzWJShS1BZf6MawwlenqEWhR/YqNZOystvY+BLhwsYgZoiabWZiuylPb0aVNtQL/+vomkFhitsvBLkd24H3xQykMdOXnRaUkx0JsYYCsn+Vn1Yy03+BSOGYqWJSO5OKMF87QoKTpES/DpLxd6E5i07n9mDODsixezxeMsN3A6xxiuJOFd0a2qnH9ULBHXiBf/mZGVvnvvYkA6kBAqOauZ/lMwxqRGlIjy794O68k+Jyk70oepTuxdWrTX3qWDJVLkSJwLWCK2taUVk1WwSryacYCDNYChmHI5jlr5DJr2ytOjFAO9ggH5TQzNhIS+gwo8GTtYYUhEISi7W9Ur7aaVphjYFwaICIRV8SMTfhLuS4YPfZhaHc/UqO0Ldem5Q4UB8ZeceTx+Ofr+LX5Mee9QYfhA6unSwUpiADJimknozpZmE8qooTSyhLKi4wNpPn0mxcCBYgD+I1rgU+RjXtRx6McHWmf6XIqBA8FAxIuED+DJWGMqkpU4W6lzdSBITZ/pMQZwspz/xI/iw5gXe1xP+sChwoC0QI9K2g/rEbrSm1MMpBhIMZBiIMXAEcKAnKy0HCkM9NjBOlKApu2mGEgxkGIgxUCKgRQDKQaOFQykDtaxQqkUzhQDKQZSDKQYSDGQYuCYwUDqYB0zpEoBTTGQYiDFQIqBFAMpBo4VDKQO1rFCqRTOFAMpBlIMpBhIMZBi4JjBQOpgHTOkSgFNMZBiIMVAioEUAykGjhUM9MzB2msKYRhtIn+svG0K51MMA2LIhClrj59ir5m+zjGCgYQXjxFwUzCfehhIWfCoommX62CJXtFET5wp/eNEtJ5o4ly1nTiqXiwF5qmLgYQfO76h82W62G1HtKS/ex0DHXRgm9LUgUo6VT7CQ/q3dzGQ8Jn4sXdbSmvvHga6dLBEsgqbQmZZmbhQKFh934KVK1rgUY4WexUWM5bnvBdf3Kx7DffOXYI2/iSwRFaX8+K4o4HrOsKYCINg0/5mR0OpxaGOExgF35HHoUOgLSHYGsf31fLtSaB8no3JcwXvAAjqI18EBUFiBybBo6BPPkceQodPAB61MAowwRd/O8rA3x5yfQTxKFJmxIvoQO335nBy0hca5ZxWdPdtShzBRxDQjngUDgXO0SHTEWL2BaOATD7RXUf2r2A8GmVacMVbNUkv5oCxqgEqJ/KRRdlercd0bpNrYHQwEzofDTDvixf1IoKt+3a6SweryhY5wwYNt4bGHXbtn66z5qbdtns3ex5RchBy5MjR9si8efplraV4yxy/ejj/gAzf84uX940s2dLe9FEpck0fKTvu800vjwQBJZQoWxmGENj0kUC4ZauFkVNHDEbgcxjZbkF4DLTVgmCUkYhhzMqZ1jske1vx87AW9hwsjLLq5r9ZsP1RC1s2AgvwQNtMnxGAtYPrY/13ZIQPK3BRY+JF0ZV9Ec3YGJ1tfXzrCufBhNZSfgiqtrQ47CWRFxqulRfHo+QkgVHyIvi6r1AO3atoh4g8JFSkXLzIVjQuMyJtBF8GfGoXifBIyQvtZuqKFu6Yb6VV15g1rQdOYJWeyfdHZAbgW+1AfEYcIRzSrDt40jvVCH/Oi/Cj8yiOoXB5pGXaYUQexGuisWB0pxQ5auNFydSRkhfhsV2mwxCZNnSj4G3jRfGk9KTeQTJzuAu4yaH3yg1WXXsjamcXe5GvMxsyGnhqdXWs4w83eN5eondkP5ATl2fRWiWS6aPHTovXIr0T+RLS17Uw8rMbekdcs/+CAqvCK/2Lm2ztmiV28dtvju+t57svn63+ewR0nTIVlmtphsc474gDiYejiMGlPMqPoyxgpPwkOo/HWZhFuVEywS42/92CvD6BgkFp50/mJEYkVtaHA0S0MLoBoaw8Rtu0mD8BYdAGnP34iJAo4So7oVfW8hvFnJ8S3ScCH5YixgePVXBVXQIN68DTJHCIcGZETzEaG9dWN3AInJmRXOeaw14rvL0JrBxU6FaF54InLVj5fuDilDcpWDbyM/BN4jOg1EIUSf64CHbBeTiKK1hEqrKednH8ZFhzwOZ4FM+x6W+wjetLwHMLeEZocvDpYZUXwQEyyiv4A9/lx0JLHNMMm8MSdcmEu4ENGKvzo02zczOAn01jDyOMMvpymiql+YAUWi4/EVwNR74jmQ6DncC4Gd2ETAcZyxVO4VouciAOB53FdZKXQJs44/htvtwCiYW3PYq/rcCiTXbjc+FADibxkRNxeGU6rApXS12ms/nJgDAGOJBpdZyCBvoAG/BnNnFeMs01OTaHzUGIZbqCTIerkYXBfMbBb8iNdGbY6jBadR1ggc/sBK4PjXF4uGQaeSZiFUimIXK2MBJ+hMbgUfvyhmGTy4v0ZuAyfQK4lkwDuwsaX71d3J7RSBWd07TUgiU4WE20PvFMs6HIr3f0BAQMKT0uBzaD7XFHsbeBi+t3Ow1vIdOGTMtOW3YYH+ydCjJtAXyAnbYQnOeBW/r0sNlpCatkOrbTsKblTuCDnc4Ao2RiDzuNvkQvCaWdybS4Z98FBg/L61FcGy0/6HVWGHqmzZlzkhX7TWTD7v6cz0C3klWaN1hL4yJr3faIWcNfCHo8gh08lTrlxesjCHqjRAgJS/NQDPWWHfoWyw95mmUHnmjZvuOAod5bDirNFjSthX4Lrbr9IXTKtegWCFk8LSaerE1vFNULg2gDzhK4KU6xzNB/s+yQOfDUNHTcaFd6AAGedwPjKgt2PEFU5gGzxl9xGuegcDzfEtTeKsConplAhW5Wf7rlB38EPXcqME7Fro7gMkqEKGZQ2mHh7hVWaXwcGO9l4/breHYCrzeE5xHYXiuC8f+zdx5wdlXV/l+3z0zKpPfeC2mEFnoElK4gYEFUsPMszwaCT0EFHoqAtKcUiXSRFpCOSBXppJPeM6kzmV7uvefe//e3zzkzNyFlJpmE9/983obJvfe0vfba67fW2muvvQ+C78EHDwe1w7EW6foVXhY/ERrhaao7xoFIB0ok31Rhudpl6BCcg62vmdW+BH2j6YbQQdhXskjjHY2VAHSlRTqdSj8fbtHS8RbtMBS8lHIexEJjrmGTeXUo462zLV/5Ev3+LrdO4DzPcCOifUkjRiuDsYpgULt83mJdD7FY53EWLRnkMC0icnppMZj2ahaBlw/Ay3N07/7FdJb6YvFS69TzAuvYbaoVl461VHF/HKliJ2VepsGa6tdZA3iprXjX6rf+zbKZWovtN0yDa2E6hTHt9l3kcYpFO40mgorRjSOrlFwax8ZhegGyKEz/lf5FWSdwIPYTpqWL4yUHW1HXi6yo2yRLdRxp8aKeFg0wnW2qsgyYbgTTDeVvWBpMRyJDaAOOzv7ANMYsn5mHrZ8OXr5q0S5gugNOYKobcJFx9cxrLEfvLEcO54CZ1/j+MvSNwTDLAZPe2Zd4wdHPVuJErbRU59OtuNs0K+pygCXAdDzZGV7hePFi5WzjJmuqWWINYLqx4p/YxPfA0/7ENM5pBJvW5Qvw8WAwjXPSAXmMrkdOL+OcZA7nRva4GLuXeBN9/z6fkzkWHN9nfKR/pBuFFwa8kR4XQONU8BLaaR/T+Uw9uhE7Xb2Qfn7X8lUPoavwEpOTgn7GDuyToufKToeYxjZ3+x40CtN8L8JOC9OKpKdroRE7XSVMv4W/9TeO94aPDEx2gunIsNHjtqNcAotRzc7CsTrDUv3PtmTPoyyWwtskAsQETdBM3UZESNY5QuUYwEzlLGsse9IyG3/PpWPo4AT3qAPDe4Jb9/pD7iUv9s3OsRgdFu/7GUt0PwynqlMLjdDk6hV5zoOAxmytZSveskzZ4+ZtuR3GAQJ3rr0dQVWK40LumuUWEPD5ITSehgKZAk+KAh6KJwGNfPO/y9mqgDamv9Y9hJA9jFAKBBr16tr2LKJRjkstn9UW6/cfluhzkjO4bmpGeQYq4iP97r4qEsTXXEOZZTa9ZNl196PwXkFc4OM+UciiEUWa3QDQMAz9zrdY7xOcElb/+3/b0gh1HMAhxHB4G1+w3PoZKBPu1+jcgcBvi9rTbkV8VAS1wxEEhM4lcIXBwCHwuyzg4zZ9DY3gwsNByG54hsDgLZDMiDJGpGOfGA21GSxmZuFYnWmJ/udYvMeR2Cgiva5vOe/YEvY1KHeYbrRs5QcE5J4kwHod16C4cWbbH9PU65ScIgVzcKy+bt0GfMY6gelYQiNtEQcfHab56n5LFvPmMTipKX/TKtbOtJrNd0DeRC6QDOwrTKPP8h9apNePCUyeymBkMgMlMB3yUf2sKUI1yX3nS7rcsprSLsNoVD2yzzGd95gmj9ZZp37ftY79TsI5kC5Wv0kW1dciLqTR52MGh7Vu40tWs/Y+S9e9TqTmAK7fFwMn8UeYLgPTfcA0+rv38QyWhkJTAaYL8ILbzy8wXbvcYdormwFPN8NHIkn7ENO5zGxLdpxunQecax17T7cEg2K/nyWLkCsaXb+Lnz6mGzG+NeufsZp1N3FtaRDN2heOoAgA09jpSJez4OPZ2MIjsYHdrAS63iNKeT3RoK/Wf8saIgwEoC+VL7Nbi66xS2prbWLZg1a78UZYvq8xjfXNzrVoz29gAz9tse6HYho7FuAl4CMUhr5ELlNDMOtNRGSm5cvvpJ9DOy1ct2eRLMpOY1/zC7HTP4XGUxgYC9MEmEJMCy/uu7odG83vfNMW0lReQ3cL04/tFNOxrj16Xr4tyThXCFZqwCXWYdRPLdVjGpXhZebVOAmSFJe+F/zpMITGOwy2ZPdDwM9ERr8vcCnKSNML7arsEG7Vl5triaHXWWrEdwmi4OW6MGkBjaLX0Rwe46ZYkhmZkYzcD+X7IDzlu3iQQoACth7aHoXnqNMIF1u0hijjTdD5NRe18hWII56KCvjnvus4hi1W4kYgUaILuTwjycoHuQ3noN3oUxtFo0ZnW/DQe1ty1LWWGkxEg8ifX41oCfq5mYeil4InH0mUEumaSBRpKiN1lF/1UwgYDoW7x13VDv+IRhRxZoFZ52MIRF2Jj3Q6h+To6/G7oFFgxXmIEf2IdJyCs0XUpuF1+lx8VLvasYiP6VlEkr9myTG/sETv4+h+OUqh3O0AL676KE5YX4t3O5jI4WQirIzw0tApJ6td8SJFTIQPTMcH/NxSYFqDETp7Wxq3wQu0i73IcYyIdRxMW+oA8PKML7btjmlN71Fhbp71HvEH6zvqu9ahK0pVONLxECtEUrfBNKciYLqk8yicsUMtGh1odeVgOqLpxPbGNMbMawCLdRYdcQuYvsBiRIQcpgtpFK3NmIFAnYt1ILJOpJDoQt6jfzU631eYzjDjUDzIeoy51kqHMPPgHH1koJDGbfhIE0QimC5CjxZ1OYip2Yylq56G/e2NacmUMD3XIqXHW2LMFQz+GXiCVZ8+CAn1Ttjn7pPDYDpa1MNFPyKdpjCwWwWm/w3hfTnXzoN4MJ1rmmUden/beo79L+vU+xM47p0gUfQFNKqPxcdmOvnKICFZ0teKwUuywxRrqnrXvPQGZHTfYNqyzN70/wUZJz9B1+G4uKn8HG5XztbjEJxI2snk7LOWjXSVRkQLbLX3Ep+xFztNtv7dDrJ0ajyRmKdpAlhh0ZDfFumL9iiKQMKr/DxmA2+wxIj/YDBSiOmd9DWHNWCJgekos2b56ABovAf6ekGUaNN97VFUkTBdT7dlsdM3W2LI+W7mxjlThXhpxrP6m/s4F4l3wP4xQwGmcx5TiJUEQ5x90TUtZTsHC2OBIi4acpV1GP4diyEseUKgfqNCxutz+7/ggYrYwJx459Ho7zGWqcDJ0vyvGtIujFG9CAOKODHyDksN/iIjra7QqBGCGL8zGjnlCtdoRWSiI8xhhJYYg6d8O7cR5mu3IsGizbFGi42h0/qdCskYM5f8GlayPf9CunXeB26UMHmsdAKt6oWA3csz2lHZqT/IaYgWD7Wisb+1RK+jqRe6XV+1kkaELEr4VDTmMhhw58W3J42KCi0m7H2Gxcf8Eqf4QNd3Tqk1s2sXfHTKD7bh9Ec74xzUbzWre41mqq/byclS5ErOVZ8fWnL0jy3eaQS2VcpeIAuJ3BWN0EFkIcZ90Y7jmQaZxfPWQ2OH4Bl87HURH2ejPK621PBvg8s+e4TpmKIgxWPNq3iO5kk54fy0M6b7jplhPYd+wRl7Tb2EHPR5yS9FhvTXrH985uTAdIzodUmX8YyhRlvtZqLT5BS1XxGm0TEx6gHT8X6n0G8MHNuMaaZIGJjkNf2/9b52x3QeTCdKRljP8b+1jr2OpHekK5GxZkYGvNuGjyGXkFm6NVHSByeLAXImak2kU7SrkyW8ZIgUdD0H1ftLBsZE50WfsOr6VbQU9m/4PaAxwHSs4xCm4dE7dVvINXqTfmGQ7DAXXLc3HziAOTDdqf9PrMfYHzKtOhzyMjxxB/ZlB7KodAphughMJzsdYI2aZgfTkX2A6ejQaywx7BuIIpG8AjtNiMTWo+NPzJfjYD2Fg8WUKy2Ik3P5XuJke9E6Wz8cqpymEovGWr6CdA/lrLYrpqkxPx/H5S9kunwBFwAns4BGv4vC/i381Bl4iFzoHjkxeXKW8+V3wNf2xjRpJ6w8j4/9A8HQk3g+zr9oFDmuFNIVfg/PicacGxxESyfBcfyQivuRxW1tYIuDpZE44cbUwEtxrr5N47pRGQS4kWBzjeHTd/wpgXPeXpTR3XAqH2yZLffwDPJ02qUAUKYQ4sNutJQ6Dccl7xL2UCQtXNlFTdAnGmUEETB5yRYlkrXlTj63ZcwuHrKLU+KTlPGHFht9qyX6ngzjVZ+UnM61pnBdSGMMRxDDlvNK/EiWEkD32jmAV0q0jacsNfZ3luhxRItT0BYa1RQUTzSJIwiNXkO95WtfpPmAfW9pFNC9SvIIpqKIL3cgc7KoOltLo7vOd6gjOBURchJy1cuYLlxFX7eDAxMaix5fsRTOVZSogY8X9XMr+9rRCFDlrJIHFekwHAfmnzwHY94eys5NxeAADvwFztW3eCQ43AtMx8G0gWlPeIkQSWyPAh81Ldhn5C3Wc8jn2Q6G0Dz4VI5na4u7FoxFwXRJKbkn5JzUbJmBUWsvTEu/LLfYqP9hCuFE+gvalPTaahq5XteqXSRAR8kpy2cZdFWRw9FOmNYKy1iyg/UY/3sr6XEoPIQ+tE+baNQd0BgD00XwMcOK8UzNy9DcDoMSyXO2wqwT0R2HafFA9oVKW8tHdx1tgveK/kbIZc1VLwLTa8E0OnJvnSzZQKb6O/T+OhHAHxH9G4Du3QMbCN8V7Up0GEREazj5bf/gOTgMbhGMHLW9KAGmI4MuI4r6DR/TWu1dYKcVzlgPv09kcdfk7NMFDlYVDtYp9mKsu/Xlniz0KI/VkkMsv+VWniHdvZf0uab5djo2/I84V5+jb3Bc3GCk7XY6wr1R7HQ+0g8n6y7w0p6YXsfMyE04V5/ym72nmGZwF+00FnjTbkWnCzDtO1h4u/nMWqZ9TmVaEGNBZMIt0Xed5st/iAN97qg0HxcIEC6BJs5II5fratnyuxGEvWSMM2gYi76MKvDanUccdFozbXxR9fodFvc7PB6eczQi8MyzRkVjEzOrVY/idOwtjYh2Zg6LXYgKDfo8JKBUgtGZaAppCz9DGvXZTGd40NGIQma+WomfXu0mIjDv0XlyVjHKe1REBQ6gN58I4PWkQHyKrgoUMVxrplF80o/tyg5pRCEr2hbBwfAq5tD+zQBK08J7ClQ5gNAUrUf4f0vomyk0t2zbUddM0Y7o08mQRv/CoCFEFN0oD7nOb36S58ODvVF2ule5a0UjLaWROMmQLY5LM4k75GFIY8FVfIVXDEyiKGSSFFisdBvt38vRGpi27BpC2KdbkTCd4nnNitivfVuOFlAUsK2Zx/oSYDpGrkze68piznv2GtNaLegRLehGtKDPyK9blAGFcwyaK6abIEt/25ewn5vPORpz2JmkFXceaplGghuVj5Is3z6YjoDp+MCzIYO+1yCykMZmIranMqA/PO9oRBbBdAQ+5mo2QiRTw3uNaTDjLbDuo/9gHfue4PPQ4S+seCc8hFxdEfLSUa8fYDrOtF0Cp7+h/H1sYwV8xUjuFaY1qPUYMP030+IHQaMGEa52V63+cT+bf237peVccI8wzcDJUn0tt/kxSMO47c20MJjWist48TimBRmQkEqiBR/+M31atqW24BgnwnP69H8J03mmCgeiarpb/SZFVffSgRGmM6vZeuEMptx+BKaZNtsBpuGEle3KwYp2M7hmWYdpVg6TtJ/HTucr7sVk9ePuPbUvajq1k+sZ7X+RJUmNkf1qca44r0uCP/ej4B93nH98HuoivskWaMpQeGkkHaVqZjvYaTnS5G8PAdMDPktFsjk+plXlNn8F9Olr87nwuA7IBsrJ6jCExUEbwPRsaO7CFeh01xxGZBFWIaSU/MpF/giaUxTXWOr29Edb9al+CUuUC3RlVsfDg65SGckSKyKcHut0NHU1UEeMvbMIyfGnz9b+uXwKMYCpvUT/M33BKhD+ZhpFX0gjtOi48tN0LMufi94200iSPM+IJrvjV52JF49gOWdDLAkMcGs/pXT1pyWeJdMY5Z7s2i7Gux7hrOMmTWjmo/An+vhL6B/OZbjcPck1SCcDGhlJxfqdw29GgC7Zbk9p5D62CYh2/QK5QtOpn4pcZ/oVikax2fFQ/Ao6VN0pGjUoFh9jfFe/u+JozLAgYjzY/CIXreAhasWe0CgK+NNWET3Pw9c4jGdRYUEppCWkT6fD46JP9DueFtznjIbyFHp9CRoXcsNe0Khk4dxy2kvemkLYLqws2v0i3qh+0bI9VnRcq5RbrtY9HNSF/B/vdQwB33NpBH3taITO1spheJ2e7uSkHNk+BxiSx1CAF9WoPhQHtsEtv+Mc1zYXaYmu6OG3KwGmI2A6QeJ0tMPh8GDPMC38C9NypuIsXug68LN89gCfGSoNK4RHfIUEh5mACveh4w7T0KjSfAtf9Aw9q9vAM92n6pDeaYvOCa91EQdhWosXwLTa7kDQXKHfz+KXcL19UUvE4xiNaG5ViOmSgS4xOa/VX3uDadqWZ+uSou7nEXk5xn9WAaYdDfwjrBTiJaRVx0K8N8sqNGqKNlU6zjr2F6aX89y9wIvk0ltIGs25Lp/Pn0YPKfD7T7gQHdvTKFbv7Jz6NsbKPukK6QwfVch+iIPWfjq8QGNuBQntXyR6N861v0WwfBpFy/b2T62QXXF6nU/YGRQudgyNugT5om5fQN7BtEM+dbWWtvC6ENPYgBgLz4TpQjutSkNMO1lsISSgx/+AKlfcpxqEjXJ5v7JZJehbOWy+1O4hjXRikhW//c7A1+r2Eb0jfSLdJ71TWNTH0jfSOzqvtriCLKqdEZzJWH+cIXwAGMmpPelnybD6Gb3V8eiPYFr1Sjc73UIzZJN1LCyiUVWLRkInzfqp2U7jO8X6yk5v4UI1gC1kuvbsd3meROI4Sr3D0K9yVxh98CMatTxsLXqviJr4qnssHtQqRVebNpuNDhrAbeov9ase7f8glMty1jyji8z6P7OxbD+rra+yxqYma2pK86fPnf2F5xuhv9iieJzx/hfjB53GwyHAr8R9bIS+MhhSzDG+uqrZYN7qOPYh9HUWXykSnQ+htZTbE/w5HgCCaLIrcsUqlfIH8bj7wOEqX9AkbK3506amKN9843ymL8kXYtWl6wkxhKJ/5/OoLXSOaGyESapfwiZwzm8gssj3PswazK3hVs53hGbx0m8njye5O1dbDcOfRkbIOWgzjXCGlSX59BKS2q8iT24CFdCjAY2qa46ayxfRJT7qUxsCy1GYUwftDE7YyN9mQ0Z3JKwZBI5SRkJEsrxylrCm1/BYGqAoT2v4566hY4LnWKTW4qOuhKWDOETlMEH0Sd5krMQjVpq7ftVZSHSAXQCN3eAh7LQlVN0benWfz0S+aRROAnpuAyNek5zTYI+b2kKjAM9eUVY8yZIj/xN5CSOKPo3imQA6h/q7U536mS52NDbB7vn17Ngloinq4+bi+oEIDFEchmusfvwTn8ii2x+GFrWFRqI4xvL3aLevEv3/KpW3YFr8EE31dPD8+rz1LdLgyqdCH7OheyMXDetk9j7NFM1d4LXjoy6kPyJsO5HPsUfehhk+puvahumGpkam84oJTM61boMusu4DTuW5yE9ICHRI7mrpnhr+Oih4QhF9wst6aOxIk4o4vpnvXGqJgJeORACUSHW1NJiu3fI3yzH1UQONvs4J9crO9Y6vn5oYALL9S3q+RYddxgqtI6CRygMaxQ/pxDn052b6cwC0eI5JnAiKDMYCxHoTPOzIteK7K47f8F2YrsHo1j5Hg3vwAIDV6n6GMdLIEVYwZpYSvfpvHAOcfeGlkI/UtQ4e6VAJ/Sh8iwwZ4XIe4S7lnGgXvlpu1fAravEioi+b2SIhQ7K2TrYV02IC/8trT4z+FSpooJMhDjRjWkZtTk3eirBgwoTgQU2OFjVnHnJYgr4pPOdfwY3as49cndyG+7ijM8+G4bm2YFpMkLNfxZTewdZ91PeIMPrRB78Ony/C9Foe2wloyf6pSdLTlah+0SreqdTwWzxOSh4dM4liKGKJLNWsu5XvfblA/Sw6qbtVf1wr3aXFAd1ZjTf4PEgWKESFz8ckNNWA6cXI44BU3o9geS1ThFyIo1plr2dPsVeyXa1f3LOM6NOfMJ3oQnvIpd04gwv7QZdsYFtpZADSxIrBASykUZ6iDKzji09jChrLeOQKmi1/QXpRRfI4F7o30ZxBPEK2JsrJjvS5rnFsBHvRVBfYxbMqmIZzdpo0klbxL+BzoZ0efjnO/jSHlzwVqLtW0nfr+Osg74myDHjJt+jGSTlXorEBYntjY+bQhfIr1M/NNHKPFlflqpnFqX8J2eyNI0ajIpEM+1wdTAPwOKXB4IpufIPrbv9izE45KmHVdSgtKi6vztutMzP2+iJ+c80wZh7uPDdpTRBy0Z/TLjSfFGN4riRQ03AJkum0n0QnrHO/PsN1IvjjYzdFI926ukarhpduSTShuDz7b4nrEqr3yF2eeWHCpo6NWU0DIVnqXoWF+NldaTttaNR+cE7C0SaPWfTK+5zxdMbueDNnIzpGLIOmiSjpvSuJnWUQo2TEZC++iA9tKGwBESkqYnXMAQg/So/9tyJRjAZNXUGd//pJ0gb0jlot3pVonLUsZ5fdnzF8BZvxpbgdMYGRKN8bEMAZz2bstregD2HLspGib9S6uRU0npLy492gEaC2mkZJOU9naXO00zSXVM18DA8ntAkP62Fnf/yEORenrFNJxBrTbO7I6dfneHbpg1nrjEA9872EjR3KQcrK9Z5ddHfGKumTEhSOJyAJAITstf9TvuEl6DuKPkKju1a523bzj99OS6/AA/4MEZLB3ArNQZECkyKeuzVvD34nYeNHxOyqB9L2KnLYDX5WQNrzP0rY0H680onfb8zN2hfvztoB0KdFMrKNIiXacSCJxuTGVb0CjcOhkZNtoVFRlqY32XKDBRaaSncP9p8g56qB04v5e4n+LkGULkUOy8CRDJj2d5x5fsKmjY/Z8+9k7cKHsjaM6gPS/IfQL0p6z3aCj01IR9FQ6OPBbaKRDqXCGCtclCPnpt0CRSwjX4ai6IsN+eCSIttcmbMf0ZcJ5G49cvq7k2P22U+QMiB6qfMvz2Ts+ldyNlKyyDG1163ywZiTDW2dihLWH0xr6XJhf3HlTosMd119o1UhPx1ZuRZjRU4uC9OcJgWC0LgB/T5tbMS+e17S5i/x7NZHIA4jV4xivgq8jB8VczqmBsN864MZW7gqbyk5goEs6pkdSaKuQBZKSzvagL49aQ0PaE0RHTynprrGaqNdXXRWBi2fhUlOXqADGmdtzttFJ8TsG59O2szX0/bTp3N2ADR43B6HHXPp2NeQg+5dI3bDoxm76z0wjUz4mJbBIOldKwu3/oUbugeYFpNbU3yZyLNJaLLzkWzFMBLaAIHCzJzSWWHmBWi88/Nx+8Thcbv3yYw9/TbTLNB18JiIffOMhHXqELE0eC/C0X7k+Yzd8mzOhqELMjRCeUTx4n5Ex4602nVvoEAP56FtxTSVpZc5zEWZLiuUEefQcXpuZd4eRoePQb9cCaZfX0zKsBxWunwx7XjggriNGx6z6/+Wtkfm5m0oY5DmCAg0SldE0Bn56n8xZTjU50Nb8KKc1MZX2SvsfEuQMJ53mBYHfR42croOOv/y44SloOva+7K2an3eetNl11+QtK6lEfQ2to5bpHv+9YFnNzzmWReu5TZEJhYkvR/OCs0a7MQwHeWvtX2NsMmRgB8R9npUZMhNuzmEIjacXoJTMoLDH1yask1bPfvU3VyLGggxJXWf3uDZV65IWk9A8d/3N1lvsOQQIbDHWZxG5C5bzIUaoCWGtIE+LpWbpGlfGhxntWAc/Pk5dn47pXfeIVh77qSI/eLLSXv7Q89+hv4bSHVvoY/+cHrMPo2fIfejKZO36x+mr2flbZjwIjbJ05adZo9G7fDhvykBQfUVlQhoRYGWLJUV4/iQNxxDlkVjkkjBO+ibGeeBk6lxbDTNoM4OsKESv+dHf0zby2vM/nhuzE44JOFUwMaKnP3wzrRtok26LrSBbg83+sitfBRbtTomkhgBc0k6lHIKOt1FJ2oR5r5RDK7ZQ//MMJKMuMaXVeStkfaO6W/2mwtSjBTzdgtOl/IeUghY80iOx2lElSjuZbXJ4+yw8Xm74tdXW2nnzpZmPqxwxPoR7kBcFASSLmg3/89N9pubamxipyE8kB4QmRT3Qd1D+0URqpw99lrWuqEwtsKUd8rzdu60iKVQHA+9nLF6rjtmctwmAtRqHDH8CL+legg0ajl6pGgaw3X2Oxl5IQdbo0ggEqWWZ1SXWXCFRbxBGN3ers2hYGuk2AXhGtQnah+u8uzlWZ517xSxtfBwwSazK06L2rmfStpTr6XtjQU5+9bpCTv/pIQ9trDJrSDV9jXOWVV72ZxNsclI/8+TD3KWmMvR3RRdo/fzNawjPex7TGkxTaaVl4EilpLbCnAPxNns0z1qL72bsQWrclYKH5eW5WwDDs21X0jY4ZPi9sRrGZNgffGEpF1+jtnJf8zYgTyeJrp+IpzD8+WoovSG/Yj9bY4uANku6IRGbebmsYdMdvZRgOiHsLWEh+rJfoTFRa7QMY//IGmH4KD88ZG0/XtJ3vrjtLy1AQWNAzhldNz+/FTaunLrGdOTdjXHf/Z3zybjTDQ5o8lIjQT3SBe2wKi+h9Ujd0MvKzXd9JmTpp0TGdCY3cTeJ/M/44Cu9vp9wAiI2xXpU57jWxjVPl2jdtU9aduwxY90NHL8wR+lHF9lHIYhszVcLwdXPrQTRvcJjckuGIyjWVX4iiUmXodjNgBQtTggOyeSM3Rods2jll/xmtt0t/Ba0aio0OR+GPwLk+DW7NbHs5YA3+y2YUNLzU46Im5lm3L2zLtZuwA5/MZpSXtiVqM1EUST8cC94h8f02WxE+3ISUn71eVXWudOnS2TgXa1YWcFWXGYBm833HyjXXVb2sZ0GgoLW+RY8liNDpw+OWI/+ErSVqzO2YPPZA3VY5WwYOTAiA2Edx/M82wtA6nzcBK+8pmEfenXTTaqZ6RZ9+iZJeiLldVT7dLPH28/+O73oS2OAqehu6BRpCQYiVXXVNtll19qM98dbgP1CiaHF/9GjWZn4ftedmrMvndW0l7CWb7znzmbjEElaOYiWx9sydvVZ8XtoPEwjdK7a9ZkqJ2cFPBHGy7yaldG/V8E02fC2xZeFFy27VcRKUyzgXJ6zrfYXuEobCJRRRkhaBOV4mMZRvf+r5DsfHTCZr6QsX/g4HXBqC4laDa4F3xEJz0LpleC1544gUvXMliRY0Mb/CKngRVxrCqsXcdgjLyfeK+jwDQCs8uO5m5o1BYaXtVc1iUdi7N/CESFmPZvF6bn8Kgnf5i0qaN9TL+zLG89Ahrmw6/Hv5mwcQyU78I5/BeO1zCcq0wzfTQSHSFdoW1tsjX3W3zcvWB6XOtpZLFPduOrpLDhYNHOFkz7PGQMasXomJvAS3ccqRvuBdPYFg1AO8HLPvDxTXT6YnTmIHB1CryORjyr476unBeu3VQmsyTFXY+0qq1vWmri9WC6f+sxDa+zax623CowzYa2hUWDuipwfORAs5svTFkDOFUAxJpgIjQ6/SSBEKsAeWM2ZmceG7FX5iXtobkcp21O5mT7i3hIMXZFq94n/Jr7YbZkykkUHzsrTrdS56IbMCZc1GEU9yHUboDNc/mqneW/dlTEfnluwpauzttv/5GzMqYhygjYfO2QqH0Zu/c+g+W/g6UvwcMfnxu3V7ak7V1spN5Q49NIg7Q1Spx+6vZJs1H/wQkeLjzssnBehpT9tWzORXwfS1vRqSGNop9BRs9eSUiO2BMvNtoWLv36iQzY+8fsZfDyU3h2Nnbvtfcy9tainF34maRd8fmEnXBdxiZDn7ikEoGP0U5MMeNTyeGM59moTQnoseLBnBYnfIY6mukjGYA352Xt7eUQUMxoaHbOJuCd1NHW76HYinj4jXRoEmFaBo9HcH0L9iAchRYhz6lTl9G2ctW9CGsJI8rO1tio6Annd1KkIJWjJYW4tQIuswosxk7JLjEvuMc5cjgCjXi8//wga4tQFA24u0/iqHTDsZq9PGfVf8/YL59E2mHYbDpu+TrP7ngtZwcDBnLmXFFdbhdmdmbWJpoR9jyxCFN+Trh2QmBw2O04LBejbhE7wE53bXWjyEAoVcdwDFdFTc7+9i82lwQMzy7M2ftreADnxF9FjP7NsWue9OyUw+LWo0vEViOQE+ExlLui/nAr1aJjEAZGQexbo9eEICXBFTv7kKKjI5s2Y11fJe/jKwxCA2Uc0Kipy+5gaX15zv7yumfDOhOVRBmvEVjwMwegRBav8ey8G+ng51DCj0bt1GNYBjwgawtRynJoshgGvRsuyko4zTxKuFzYOUKDdwdQtYERlNMIGAWtDmKPEJ5BfdyrEdosJ+RRO3JKnAhk2uasy1sXumkDxzXbN2pQzP6J8P+M0aXB2zEzonYyzsLPXiQUjkg7R0YOG/s/RToAUupxdGk0qMhEK2h0O/pqWA1ZaqevjH0aFf5+hxj3bRi0EdBy9X1NthWnPg3/Nlfj1FDNEhzsP72Yta9Pj9vAXtxAs7ftPfoTmdM+WtGOo81bc7XjqXOIo1ii3dKIM4rMOEUSGYI9G4wMhzLCYIMqZxMtuAmjpUjlpQ82aTGpm17vDI/kw/309iZ7toxn0K99MbrnHJewgcjjfAZbcrBEg0b4EfKcOrLSbM2aJ3gBfAd/0MR8YmQ3mFZ+U5b5lvLyDThAo9AbfWkzXIBMUaqitIRzT0tYFdGpB57LOsOmyKWmuJaD8a9clrZ3UMyfHRmxTx/P/nvCif8I/wGuyUSKib6oDtXVsSN7twV172pgl0eOk4wSs3jLa1bPpY2fQcH3cG0WhWpeE7waAEbOPyVpc4hE3/qKZ0O6R+yZlXmbwIh7M0butLFROxt98/zbGZtCtM2lVai/mztcK814Xskg+niI6zOHF6nf7aRCR7YtvvNi0Y1MMb5licHfwX5AUDAgkaxvRX8cPiJiJx+bsJffztrr83I4eUT3UaX11KHIlaKXb6IruRxHMmebGMUrCqIov6/DxdQEU2fIusQc2fcx3RpZ5F6HaRgmTIM5OUL5ANOKaMxi9H/pcVGbNjFudz6ZtnkMiDqhhyqIbK6iit+eFrODmZn4I+dWMiD1sDVb4K2cwJb+DhwsGXWHaYRBK+AjrcU0D5Ouon3J7TCtPnsVuZsBpgf3j9rNRNcU7RfGGnl8JfU9iuP6LLMNj7+Wt4d+E3fBiIdfJnqFrPpd7eNFOjeBDcuv+R0YkSEnshxtjW4E0wrd8yaNCLo/grwUiocwPQ8ab8cBLCH/5DIiUymNRgI85zWVKOdCr/Hp19eif7wL56mrXbEmY7+AiRHkxH8e96iTR+BcKaLnPQJfYHhhZfzacdG9CE2/jYTGh/D9cfoCpRzgWvfAYivdHLPiuyJWSrDmfmh0KY2o5JJVRFFvjFn39zN2Hroy+UrEuqHnn6j1LE0wRH3jyJBQRhCA8eNo01rI/SsnVHdrCtcRTLLheob4cT800klB+3LM95fe32Dz2DfxksVHI7s5++qnEvYafoXh2B/6ZQaem3N2xgx+E0UtTabta2ek7AsHZO2pBXkb4hx/hYPY3xC966Ywm8oUwWIqK1bqRkBhZSLZjWLArPIcjjs4bsccGLfOgPLEf2XsyoezNh7eTxqJcqODL/8yI3MiICe9kbHv35O1/tyj4gRMoI8Xo0i72fJ5i3hfITu+p2Ecw+eoNMFOSouD5VlFBR3XgXC6EtzcCM+PaujRUnSKtpx7fNIuOJWq0ID3PZ+2G5/z7BUY89gClB/nTz8yar27Rez2mTAIWvk3KGI8INVqh0RPtPtsfgpFNLAgRym8eptPBMi1Ea8p3/AvbjmL52h6EOlWP3KxZk40VdSTMNbPzklZd4xVLRG2Pz2etgfeyNmljHwPm8BU3JdS9u3TcRqg7fK/gF7yJljs4Q8gXKUIml5RpPfaZfB8BALNfYkCVbSzIiEnPqx33zlFp406GVm6cKMEllLCY1L4M/2JANzw9aT17xWz7zINePNjaaYM8laO4j2MCNa153m2+qS8TT8objXk72gkqekcxwP+gUJoZPdijhuvLnHJrAWJ/q6yHf2jjswh7Eyr6t3ICrM6LaboKv2p4IGcqMMOYPqP+k4/ImHf/jRGf4VnVzLN2gGFzGDI1hM1MJwCY2isqKt4OQp9oeiLFJEjFO3oNiuVblO4WA+X0g+mfnZEnjumvha/NQqCXLWTf90znZPMI3r2jtgBTF2qqu8wwulFX2uq8oq/ZWwFInzWLUgdUwn/eTL3ifWOce7pLf9QT4SXqGtQ4t4nps0tHY3cG/RXy8XBM5qfpefy0PRWntEfTAOOoBJFTqrh7TE4JUMxFnKWrjy/yDrS78+A26vBRR1VKcJ1JDx7HWN8LBFfUiTtyTV5myg4NFcsGtnmo7ibrVn5Adc0Er3K8rL33WM6F4+7a8vLy6wLq2NjYFovlBdD1AW10HDsxIj1JJrqgfXLGJXLqfn7ixl7GGdZI/RpTG9d88mETSTqIT01Azkd3Bk5aSbQN2oxMN2lQ08crBUu/ypHo7OEJHblYGlAJzqasKCrV81ihvYC2orwKZQBHeKj8qounoZCRq8MJgr04EVFVo8h+BODuQf/RWQNZ/Qv9L/SKm5+KmN/GePLbTP7mr/ARwyvW3pOnzk5DAdN1LPTIlmUlZdsYOS1rUIUI6pXl0lGBHl8eztqMv3MZZOp/wSmCBWZ/Mvj6G+iB8ph69czaj9luqYrvFvH4OCm+5kKmc/UFwMXRVn9Dmc1eCrAdJbX/wjPbcI0GEOGlEMKI3lmAaaRPUWjZUM+gzP6nTMiNneZZ9c9krFV/87ZUeC9JwmzX0a3K7q+YHnWLrkzbYsZKyo65GyUGiuDKZ3hMA1P2oRpdCO6Sm2Np4QXGM93YVppL0f2idiY4aR6cOarn064we/bpE7cAo2KTv/xqZz1AC8nHRGxA2nLHKa+NDMxKDRV6kSH6RTPx1GXEyhdLNuyOz5Ch6NHClXyQQ6z9nB0BPKvZLGKRwkPQ4jqaqrrmq8XWeeivB39RtQyj7B7O3tRNtYySChlyg7Hrrv3vnkvN1o3kgKjCsVChl/ERxod6rXsCxzWSbV8d0WE6l50lj7zb/p44V6dcU+QTzMn55o+DLlTt7nHc3kO/eJ9mLdB3eAzj5BpSz/rWQ/6XhGlbWnkQUXSvchV5kk+m2vg+66KrpOciEaYlnuNW329o7tyDCSKVi3g2X2oL2U3f46ZMfTk9TjVhmh1IXq5BUfWleE4hNDIe95tEPammgCJdJRPCpgWD6P85ZeJG3IGMDqapHVX+P8qOjSQ+OMyRoyzFnp27d1N9tJbGTvzuKSdNZVN6DivCgTa6+5pstfez9onD0/Y1w6P2lraLsPbXFQ5nZcR/qHE/4N5KINd/SnC5VYbiRHQt/3oWHaX2TY3pfX2/Kz96rYmW4zR/RrTGtMG0XDkQ5GDlRjec46NO6b8gtHFBIDdPI0ZEOnTQQeETJcx058Tj518htfo0/UVPNSlBUWM14hwznLPXoVHl/5Po9XjnHyfqYXVXPe10TgBg6LkNeVszlLPTV8ehkI0lBwD/YLHwXBHj4ZGQUeH9e+KxuZzVCYaNZpxxX+GjJKS+LaiY+YyGn+OKNuvbmu07p2j9t0z6GDw/OCrWaYRPDv/1CTHyLkh+rIael+Gr50gp8WwiUQaHJC3W/4108Y9rm0Qxr3q8/Cn2Ik/bn3os3FDyN3BkD38Ytquv7fJDhgas+8TWl5ApEN8dmxR3e4ZwSP1gObiE+avDtPBsF5d1Iq/kChdXfBddW9Ftg/tEXE5YJuZrv4zRv9eRt7TD0y4iNUSwPmJ/twIP0WnanPV63P7wslCGv26dkKfo8PdoJv8JzlG0DFSmEFnCI8LsT0HDoi6/ltF/117b6O99GaGKFXSzgbT86vNesm5Inr1KDkxw7j2tifS1gG5cY60z76gAcIxq804J/qi/LmcQ33u5k/XKgoWlc4R84KirxXQOJZ+7oLRX7IiZ3+4s8mWrvTsbKJFo5geVBIx62Ns9bqcrSCqmqCZhx7AdCvGlcduWzgQRbcpEu3o2w1djm7aFHXyh8Mm+yJLW/BcKHb6eepwdu0GHm/hQP/yTwGmz0zaUnT3xZ+I2XjO/56coS3wVHqrBsdaSlNGMWSj++b6SHonOKpGuIao0p3/iVZUuVPfwrR+q7h/eRRBfRs7jP7h86W3svb7PzfhSEXtfPLFxPNl9PHsRZ498lzG/vTXtHMcPn8idHBajkvwOP+Z+sFzHInuhGppxV947TZ6x79TmB7uMB1zmP7bCwyKib5MYoDynZPpVPjWgVkIDeQeIGJ9x8wmG01k+MJT4raWflFQx7XVUQgnxEfVoxLW22oauUXPc/e1PEILuIaC6UGkyWwB03czU/MwOYlHMcA88+iYvQmmR+A3zia6dtqhMeuLXnz+DYijbRIbHumKPn2SkB7O+cdbyb/mtugh9I/77T9BjulSbO1hA6PWt0fUVqCjr5GdJmL5teNhx5SedkfyOct+lQ2Gu7BwBtKyyvXr098yqb74o71JnegT/Ol3T6a4SQOCj/7xgXwOaMWfruvHffgFCFyTdec3z+PZ6fD5+T7mdelnkb79GGNynC0r0gnqtj6OlnxP7te1/E7zCiXr3Z9P0RTSp0/97kYdOaAU47doawuNPEP0iU61NaCxiY3GM2wU2lRyoPUpKrPrqx63k3ovsw+WRewepgNN/lxYxHr+1A3hX3jK/9RJ6QxpihwunTYuy/GiRRKooil5x37RzAIBH/uPv2WtWiMDjOl8QrifOCxhAwiHlyL88vBnvp6x6+7HyZqTsXW/j9khhHR/87xHIqIEiCIqGFEo6bsLzo5C8B4I1sZrTgr9qz7yryJYnoeSg5mJBMMVvQxSo0hTeIxETQjUoxX0OJPkejiG1kU/FJHYTEhenuUWPMtyBPD0A6POw/8H4XrNtSagXQrIL/qiVSS85FYrZNyOuxyTo+U0SvOF4Q0FnwXXKeRLRCTvtJN/iZSbctKWEL04UdNrKF+FGycO9+yLhB8VRj7hIE2ZmJ1zCyMzElCvvTBu3/hs0r5Nhuyf+D2pi+9gwEjAmYGkKvqPh4o25wzuij7RoeuCa1CeiiwFVlEnnQLuxvHnFzLqng8fRSOO1vEHx2wyfDRG6W8sz9vXr2tCmRBZQCgu+XLUTXd5JNAm+5PgqW4JutvPZ9JvaRhpPPExOMmvHRbHa65Th6ppTNlJTsKHum+c0rTGfEa4l/4Sho2Ed9M860OUyNbSLNjbjVGG017IBN/coofFyAWzNUHReUb/WYaR1OOuCnnoPsPrdvQpPopG/2HKQ1EdYWngVBHPLMFBeeKVrF35G2icHrHjD2dqRjTCWom8RmOu69Qo/gRDsa+wqO2ORuRDlfhJt63go38x4qwk9SqewfR/Ek8dre5oZVShyEWSUeHDhOmvvzZn730+b8ceyjQgmDaM2ctEB/5KPtuJRAlvezRtVzzHdDpGJJxOd3TST8or8dAZis46TIPTnGRfXtJOijAtPDtMJ0sY8AjTdJxLsnDugtUzbaGomgetMzBoM54i0Trh2diRimYwdV7LqHwN07FLiGbRrnv/K2KHTCYKQlIxj3btFGv1TbKYpq8T1BXWq89CQ+ouLfgnB+896StoZVbRqnmxtFv4EzTLfaA8uqIqtzJN+cXb6D1G3yMGg+njo3b0kIh95RT4z3MmMtI9BRx1QiaOOzAGzXlbRN6YVqL5AzzRiIDSV+ozXzBohBPiAqI+8hX5QBYFF6lDyYra5YqOwYBaKlAEdz0D4POvg0aOHz4la5OI+k3Fxs5Et1xDqkQ/Ll+4jCmO/lk7dFLMRtLX65AByYnEVcVzkTG+tAXTIiLElDCtiLYE3/WQr3dEv2Y+5i7K2s8vg0YWNXzyiJz1Eo5plxzYtz/EgX0ASsrNpqKPJiIHho53kwR8dVPgqkqGQJjWQ1VvWDeHdl4CGmmXVJSHLAqPKvx0UTzp7yKms14jJ/Hnv/ds0lERO+awnJuR0MBZzv5Q8D0NGdSA4CX0aP8wAuie5D9LMpSjnzQxomf79IlO9yu4ckcfnFdbpPNZfagtYcJAg7sT1igXLAGm72O68qbf5+yDLxHBOhgZ6dTNHp34STv78GpLz7zHSmKbsZdJ3i9K3iXRoaimEtUlrvBFDlxUUTzqy63lkwYG/eUu2ek/egh6MYrwKKckv5U/GMO9OuPklEdmNmhhB/2Ko5+pIppFhDeJYxjRqEMiCvPT5Pjm0QHJ7upcbt6miEYeEJVO4/m5sm3O7vqHHqb2MUulNrHLPRW5WzStl42U0t/4Nt4i+3LFf1mi6kl7YAOb7eJYK0elmkH8QNKKSBXWS1AcV+T/bCZarce2mCtkSSknbAWhzo5HtHSfd9Llmtb7YVy/eifAJXTc74+P2VrCx7+e6dnRWKpiOkXz0FpBo1HtBEZJ1s+zS0hU07kVJEYbeyTwL0UMUQi2yqqrV9u0SZ+20i6lVsL6yyTTi7u4TQAAQABJREFUXdLFavbOihsFcMHgIaOYI3iFPtsMfwc6PaRO0xLyIRj9nzGaeOvDnN1G5xw4nFApkTeNaLvDjLkotJ+fE7cO5Jzc87JngxDEMArfXK8A1riFB65CWsf5U5GBI+ezUlfugFIdYhTOjKxFOrNpZ+Nq11blKYAE2hexKnh1+NCIfQpH6mGmD54hAjOaiJXavgVwSIkojD+oQ94WY1i0Skr0a+WeNByXBQW6G/HUeAejlZwPFmTZQpp0lb4Xfuo2jukaN+UETaUj6PdVkIaDwfJuVSAat8Crz06KMHqM2nWEZhfQj0rK175cEvx+YG4VSve1xTl77UqtUsnZ7a9i9DDKGon6BYeXNuca1vFqA45o93RJo4CnzmouIY3NBxyNEaaO3NSgmlW/Gm/pQHefWpWEP1qavxLZ0kpMOwYWoJj7Ac5y8kiMaY0mHOcjJlCx4svwexjLU95fDPEYwRQKUBFXRwc5h/mGNTiOYgEbpFKvy/T8CI0F9AV8dDSW9HY6JNdYRp7UMPdMgYv8SJvNIGQ98/Tjh0LwQVk7cxQOKcZigXQNZYP4Cb/U95JtoXI2y47H0hUiz/0rI8b7sXINq+mvgWC0K7qVjfF0vJnGQn66hvn30v+6zLRaaxNL65GXGPlDKjLog8jRmEfuWjnK7WAMrY1mGmZkFAeAnEo51tD5wAUJO5XpmptZRHAR+Wx9+kZsA8e7irXuSYoWcG+mEkyvskMmnBVgOoEsK8E3vM5d/JF/pDO8XMqGDhltm158j1VV7NWVYpdmjEgOY9MLWpQEK+N1+ISozZjt2egh5OGB2yoU8rc+EbVRQ6N2xxOeFcFLrRxUKeSIKFBEI8MLWTeVr6Kug60zUyRh3f4dH/1Xz1BfSmxLs6U2/oDP2rOLVlsn9Fck7uctOleVAdp8kponj47btw6L2K04puOImJPi5RLclxJdG0C/HkNuUQlY0tTNiAExG4uefIHVjhPpb+dsQ3W+cQN4ZGPGDv+B3kEBOMUZ9mlIY+FvvoNpTSPnWKwSKe3LTPcanFtSPWS9hXcawlonW7omZ1MY8J7F9NXr65mRANNq33vYlqtPjtoApr/++LRnR0yN2Gh4WlGVd6s3NVBwqkUMAdPZ+jLLw+cosh9R0p7cECeL7gJ+6zMsopUiGoVptnkQ1hzm8pPdfboixSPmgunlRF36C9NHo3PAaT+mAjdKMS5FBpA7LbJS3szAsaQwkAu6Wmv50Vdknfiry0QHWzPkhRec3gjbc/iYhpc7pdER2EIjuipHmzPk3yY7DHHNEZ/kCK8A05tIalc00CYw7QqmNZBT3qzYIL103AQwjN25i5Wib3PtSRhi2abmgizm0LlZaIx0GYFCQxcjZC7q1kxj89UFX8QpNYM2Kvdqy3yaugk5gacU/BAX2Z8NpuXsHz4uZjeB6aNHRoLV4Dkbl2pCBmnDsMNt3Vt11nlcwnphL8tXM0BBTuVT+cCmfXmiEU0LqBDmlnyGz0CeXG27+Mf1AX3WMBvBxo6mptA+jIYcw1BEeFTvT8atHtux6QPPepFjVUrfls0iLxlcS6U0EQnsy1R2Elu97j3lc1JneL+qVz3anqgRGrVNQ/FxAe27oC085WhEoOrf5h4pjkPpP3wf140sjuP1eyyRwe8psujA6bZgFoNQcmAOwsa9C1420q/HT4vZefB2xvwci75iHGPKnUHTeETNHzCJXAaRYNrxAT66CFY+u8yytUvdcmTnUdMOOZX18EfLY886gTn8wzw7gO/L1nr2D+ZSy7Fj/56dteMY/b59ddRGEr7VtMOfSficCqBchRCvaQOPBOtI3SyWsna2x5+YSaJ7MQqGRjruhRz46Kd4orJ27XqSsOcSfFkNTxA0hFfnxH/iTnYohvXEwyP2pU/l2K4hbu8tzNory5kbp9NGj464/CGF8l9cxyioE0CiXc3F0QhrpaTYw4MX81l29WOc5mZf8pov3eEXpCAf7MWRZ1fmfNMmcl+6cwxVLPrVgQjxCYeQx4ZQafpo0qi4Pf8mnY1Ce/Ydz449KGF//n6RrcLDPwiF+C/4etcslnwzgtbqLhU9K1e3DMYCgrqlbOj7CM8ubIh/3Q7/lfTiduv9bLkacsyYz4+yikU0iofq5044LJ85Viv0FB1EGSP897Air5hbWY9goweyIoltHOQcXn5Hk72Dwp7aFfrUjUHJ0zG5moUOGPmt7+KgoX2U37SbfnZMUtQF5yySGMgz6AfvkzBOL1iFj1jtBDTdzvYaV38rZQuvKHLTGJ2hecbTEHdIxP76UtYuPjdl717m5wMqJ+t28vB6Y+AIhFKFOprGsFtzrmYO9Qzgbej/Ym+xVa2kkWcwiszXsJgBpuWqP8SDP4yD2i6ABGwUiAzX34gM/eBzKZt1XZGLIGj16pOE7I0pr99+iUgReVoDyUGQw/D+ZUW2iMT3n+DIaJpWbMrLYW+spJ5ZPLo/b2v/h3kYUqcUuGS3Bbzla5ZAIM6uwzQrqnBclFPTC0XwGE7yaf/O2tnHJ+0tcgyUQyQj9+jbnp0wmaTx6Qk3lX/ouKi9ey0rrLjvOei/lrwdTelIqYuPwnSyYRbbLfSwmcJ0UWsxrUbmbV3ZJuuVmmuNdTgwkkVYpABYN4ykthKYdqBnX2A66+BJbBExlPwbIlaKAJ0zPWankng/gWiGcDViMAMXppCUE6GkWT1DmNOoWM9WHWVlg+yhh8ELIPKjKLvior+4pqGxgbZ5VkwbPTDtXh0GTwle2Thsx8XPe3YUtP3mG0X2lZM9tzr5RVZAPY8D9fwNEIM8GEr50wdG7I5Lim0GU0s3vujZFIwvj6Wr+Y95qRxYFr35msU+psNI1K5I1DnJMrmYUV5a31Q9C5hVklPeFzEhwkE7++HE3Q02lBN4449TDETIcWFF1GNMxcnL6gCvzmL18qQxnmkgremtm8nBKmfsNRAd6XKwnEBmWVODrCPz+Yr3iBQL03TWbguNcpheC+/6gxcw3ee4ZkxH6Z8UfXUHmL6SvKGFVxY5508R4Mc1zYYsPqGc3rNTNveSFDRGrAPO910vNGq3K58eeUHwQTuw6/mR+EDzNr0KvtGTbdE76Cyp+zSY7tDjEPdwPVoLuJZtJgfx5YxdwKzC/N+l3JYMyrf753ueTZOjhTiffmzcNjCweuItdDkD/kKdKFmXM5xtqHT9FOGlxd6GF3AQ2oBpKZw6MK12Ii9RvUMQ+tRHfenHx1mocAZT/dpe5U2mC4egu5dip59n4DmnwrMLT+9og35xoS1bkLcBwxioIJ7fu43kfJxHP47Ag7QQqho+fPgM33uQ3Mx0k/bPC52kXfY3TNDIcX0D0wbv0nc/YISCbkQWneGiGg0cnoW+g7DHK5ejDodT1SoGUQslj5yn32/+Qsw+B76ffJ2oKwnvypVWO92f/mHlrKGzbfaNJEWdjTzJ0VTdumgXRafRiy4BbA0dKg994s9x/EdyjD4jFn5v3UUMSnDe6Ph4SdoqSdeZBT6nUeVwnKz73vTsmIPZWukrKfvmqdjmYTG74W+s9K8A6rCr0dlB517RR0voHHAdGWKRYWMm8xor3kHY/xLrOO4SKvddWo1EKxsBG3w+6zDml0mALpdD8F7O3maEqaW0OYTyy0fGUNIRN/r5OytRlhExKuYRrskSLjz1xg3/tLpZJ7IR2jjbvAbvs62lyxAb3m2lxUbcaqlhX6ZitcZfGr8Of0P5VqcTQetKQlYZkbW/IeiraHgJ9A2lD6YzEn6ZKbe5m/zNH0Nv05HhAMBeWSvvsfTCr6MMhmHgkIDWFjUUXulFuPnMh5aY9BTO9ScxGHQiik6O6jxoPG9sBAPGfijwTSuhbiOaFUeG8Pft04yKprNksJhzWno+833PFkJrT+Q7pFUOVnrRNZZbfbkDgIu4caxVBRqljy0FMHMfWtFBb7FXyYEoJp9GPWYFfX0BxkCjIJX5K8l/+XfOhiBgUhhDe6JIiMLNwnG99f28HcQgTNNGPglBBSTBNrAM1qt4lGgW4WywE1zgnrnLf/QIiV5iOBLb3ZJT74Ong5pBqpwLBjh26hh4FewZ9g7Owh8wxlNw6D+oQWkgA9OIsspGPYHD8I+VhOuh3zkFkkgSGXONayzz/nlgbCMGarkz7G2iUYYzyoKLLidZ0SS2UNCKU42IeAh4tDoYctakKIqE7U1g78tzPbtzXt5GokC+eXSU7RsUiXE4tlKU43ryOG59laRj2E5Qn2eneA3jbGt67yAeOc6NKIPH75J9zSfVTCJz2jU6PuAXVjTmYhHMH1jkX/FGYfrPHRS1MTjLWwl9Pwlun1yJMgErJ5EY3YWpWBmXsLy3NGd/R1l35Zim0ITp9IZ/WHr2ySR4jrMta9uO6VjXoaxOXGF9xt5ufYadB6ThIUIuGrXqsxuDi+nQqERsRRD+QX+ux4FVztUx0HgAkTeVxSty9jz0a6VpcwHTUcJJG5bfbRs+/KatqRxq3tYVzadb+6XngHHWObnAohOfAdPHISsINDSqqnp8gBE4y2dL7+A8r1ifs5swDEkwXQqfIMFNnfdGNqcjD7NWkMtKpKEE+nWOB/GX493HV1t+3RV0ClunNG71D+v07or62WEaGckvsL6HvMc2A5MQRYCMQdbTm+DjhMERO3ZKlHzZCM58zh5h/7/O4KyCppyCE3MwidnKvPiAfKxXMMBx0aabJYtyXrLVtuGDH1ljxdPId8UeYnoYuqePpabeDaYHboNp/D47Fd14DAntcmreJuflBvrzQPj2PnrzJ/B3Kn2tcy+RXP7MIuSQDsiJRjHSbVexGryci6JCQDLL9gjTuUgnK+7+Wes35Rqe6WNa0qh61eGfmBhlejJqDQyY/o0teZlp4Z5gmrGLnXhw1DajnF5gdVkPMB3qbHFRDkqUhU8NOKfr3j6UrkEHN30Yqgx3yW7/gYZIEVac6FBk0K8sOfonrnt0n+yCzGEeTJ8HXkYPBtNEs2a+w3QlyeNacCZf6XOHxKwXn1XoyX/Cx5nQP4rBjB8IoQIik97658ybexogQ6bqwbTa3pZSgu6G/7HRt1t8yHk8HMGCPtGoLUpKwcm504Rppq6x03dhA8ur8ZWkV5DJz5PHloOgS18gOkz/y69sJkFfCEFnl9/Fpv3fgcah0LiiLdT5arCYzXjZPDg++RlL9f4EmwBn7RDyYm6svwTPpxo3scRK8ovsrdTF9qnkKXYw6VNN1KuNo08bQhACGjtD27us+r8eX2gMdGvQ5RcaSpAhs/Aqy627Gjs22XCwJpB0QHiZqYhOE2+xRJfJdD5xIbgi56ABxmiJtAMdHTm6S8TtpeJ3DBWh/JwHyqPH4tFrPljnIhJ+jfgBaO3C31m67PdsszCFcKWS1cU5zreyNBBvzTAlEys9wlIH8H66ksHQyFQPPaBEPyXGrsb5czRiQMbgcbL/oQOH8oOWIPwjyB3qGBhbscEVaIgAUK9hrTXO/zlTx/+k4/rzHGmu5quCi3fx4doCc9IfWLTvf1pi1EU8B2lmWC6zloDGDxHsrOZr9Vh+j4NGffK/zaPzDEPngmbQP4xziohohCI+Ohqr5rE59/cB53quw/o4b2QXNG1/ykW7RCPvcxzyOysa/k2eQSWu8/y+noUD77aZ171EWKbQBDknIlk7fy8FFAn6eBJDSHnszRxyNLJb/+aXrWne12g3yNVeKo6PPKDlSj15ByW4Rp6EQhm8/Dc2+m4cBEYpjm4+uIuZU5sHIJUr5Aqj2kkMBOXoaVft2ZUcJdys6kqhU7sCS/h9OvUlZpm1j1pu0bk8bCK/QUebaYQ+RSzZ8CV5wAz2BZqOwMMcaRGK+nOO6HBzkgySGIWNQl+rL+fCPy1+caNGXS4HFDZNZNRL3JAf3I1X2rT8dvNW/NQB1AmFNE1bigsHsaw71dNSE24mMq29vnwaRabY7DDNp6odDKa7Q4ew8iEDE9fpwTlVG8cpHC9lLOdKuSDZSmtc+FvLrr++ANN6sK5uXRGmmxrXWoeu023QxKtZxarX+bTQqIjUaqwvHy6heSg0aFGNHERtQlqNYAp2HRGKATj7zVUHeGmqX2ur5/zM6ra+xF54Axi8QHdri5pCW+vxUHKNH5CYy4t/HaZVkY9p6UalIawJdSOMHYcNzKsLA2I0SJWTswy/SXk5pRg7Z7ADGr2qOZad9z0u2kw3A6o9xHSuaZZ1GXGtdRv+dZ4hTPsEqP4K5O196Ra+a9HSaPACC52crgFLiwI5HUmkdxAkbMvHuNVtfInZ5vO5gxvlmbeaRj2JSgsxPeY+Sw44E/5IuDhHkabVmxmaMU2UajLqTWsCgLfNEpaIGLnLcfwnCEvBT85wnKngNQ+Zt+jLe4Fpcu7ImYlG6qz3pD9bh57HYOh9WXRV8M9KZG6ppgX5X3sG9nB44AS/F0Oj8ljD1Zd+y3QnJx2mm6x8yW1WueIiZjcmc4xW7xGmIaKon8UPuAFxOaBF76hCWPqhZBEMq/QH03qrhSK6SulZqXNSI1xXjKMzAvo1k6OYi/o0z/smM4t+a/kNNxboHT1YbVBpaZX/W8fD88Gn+pV3Gke6HmfJcVcRUSYyvR2mtdgnfOQobLKm+F1/cniBfAnKFKaCmySkYcEGaNVyrn6VpeddTMriv7BP/ag+tNOFtIQ36TOkL/jugAmNstP9fmrFo35q69m1/0jelnHLdg7Wm4mL7cSiU+wQpk2rYZwGcNoipEz0qyCcE1AH0k+OMw7T7PtWOQs7fSF1IBTYQDhLhYA7V/8Otvt5pk5Hc4L5YY5rd1I2X3dLVUWbZEKd4gy/HszvI4heuT7it4yZOtRVyD+aY05vnWPp9b8neDAZoU3zqpyAQK5vS3FTOkRGsptPt9jgAa5yCYd2RZYg9WHe1hU+pNScA8gB0a89rzQq3gaYjmjdw0svt/yb1+T8FYM0lbbAxT0jkU6njev/YF6vT2J4j3eKVjWIZ+NQDAkEW0WjHjko4ikfzmGJB+fEPNHv85gL4KGmIL2NL7DEl60gUgdyI6NUconaXng4oxNv3c3m9Z6O4dWIF/RxWPzSlB/ur3us5Ft0qIgdcvgOIVIourZ3rpwjzRRFpmwmhK9xfPBpdLe38R9AE+XF0evuI2fyCGSUvgakmvYQjUr6j6M8VESeaJTe0FTqZNGPIVaRLOqY+yVG40jnGteRF3k/N/T3Tzg+usvb9g/44N1P7Cj8GPVNQT9hEYIl1+KbkohdDIHKxS/1v3h4EFhRHpDI0W/RLZl0/Axo9Ko+pO1/pJFjuUjakv7RxW0tOOG5ujctu+F5BuSjqAwggGm3OAQWH4wSc7zhH9EnXmkgcHCfgPaC+nRO18g50+Aos3U20xzX7zWm44lB7lU2NWA6NfgsvwIaKxqleMcQIVLTRaf0ipwrFY3I/aP+v0p49gtXi0gko4apBL0mJ1E0lQhNg9UootzmwrPAdH7DdWD6U2ycO92pS9UgR6kzg8kD0S0qhZh2B/hH10gxT+7l89cNPNUiTQPzGhKPvsnTR3uHaS23H2u1a//HvfMuxS7aYaRN9fdgtH2iplqCIj2oIlYOAS9DfSlwfA7PSUBdjheYrl77GKJNfm6yN42Eh3uid+SUgbncugcs12MaUSzwFxhekaONgHeIaejXIC/USQ4N3OBaE+Alz+BYukI6A+L4X7qRr20s2qnfS39oVWtnEgmcjEojPUGhISdP5vYHGxnwSnwVrl2BmPFyrINjLZzmLMeiTA82Vs6zmrW30E9EhpQjuseY7mL52tfdFGOUvQJdLqR6EuGTryHHRDpFZDZjlp9asDCVxUgaq4Y2vFk3uutJ46kkvWXDDYHuDrCyB3w0MC1b6pWfioP12YB/LZieSk6nIv3Ci7NzfHc8458p4F3fpQ9bii5Qq8iP2vy65bYyO7JXdpoawLS3/hqHaet1rA+Glgr9b46olq/ilwahfXHyRb9kUfT7l3HAYboeO/0cqWzvNmM61rVHz8tFfIT3nnk1z5FsOckSUsgCGRKif2UEpBwkVBKkgrqd4nPnOK5zrugLey15dcutfvF/I1MKW6MxHayDa9r8IRr1Pr53mIOeQhRrEBVyjOe4HBOqFJ2Oxu2eHR4rpFuXaKfhrDzOJZfxi+GbQyYP2ePCvRFe+0GSdrTLVAZ8zKsBUjkHAqWMvv6awRnUI/6F50JjHJoWbZ/hbX7FvOU/g95h3KGu3ZuCsvO2svFbI87BVLoFzy9QJGE/hv29fS2iW+1o4aN+IPwR9jVDEXtr/gtNOYnb9oZGPROr0PQGz+nOdiKEWbUPkdMOvpMV8kr0FpZCPjbTKVlUJJVQb3blDIYhtyObQ7htb2gEWexJk697CgvKKxfYOdpXAiLIpzGURdGhIp7pmPpXf+KlPkWzi/Yii1rEkV56E0r0HZ6P9XMupO7ek+JjOlfzDzANXjqOEFB4kP58TBfSGPZpSFdIpz4dL7nX7cxNDkjTkqshHiW815jWyLS7Nda8byWdJxPF0gIWaVdf+lVv+CeqwxIeCz/D4/qMwsc6pmPWL7wMJY7ldjqn8O7Cq1v7nQ0yWRgRKW3BtAyv2BnK4vaYLnyy+CwKQkxLGXubXrLcikto/3DO7I0s8mRNfWc34LOQM9YNGt1+gXRcoHckY+FfIV3iX3hc311xeNHwIGtVax6zmjW/BD7CtByDPS2iBT3T+Dp84KW9vB7JRcPaiGnR6oqjET3GOwczK+6w/OY7wfRgTu0NHyWL/cjz/TvpSOPcC58h0sfMdnxs5lVAzo7kUMLhZh7I3ytfcqOla2ehIhiI7bUNZARU8yKh8SksskF2xIsCTDt5DDEb0KdLnM4JPkWvw7tOgBfldWWX/Dfso49dhJLje1zgIxs45mqJEnU+ECdrAOS1YNrpFx6vT9US6h1Vp/4VVlqK/0Mbs2bJ6c0u+SXXa3Sl5+1dIXREZHSN1XQ5yIaw6OCU9LP0tjK62ViXJatrY0favfFRxoYWHPUdP/HN6UU+m2UxaIXLNd9IvuxKYRpdG8hi4GCJWAkT02WVb6OMx7FbwWCfA+oEBKxVxXU2l6vTGtdbPYKVKb+fPhvI7Xsj/EHtGoVnNvO+0VUYtQnk4CFsAmlbaaQ5bsRCYmnT4qswlHMRNAn/3nYcvNLUWMPbzCJlcA4mMvLDUDoBUxvawEd4rukYrwLBWvRz2IfwK3KyVwAVDfArqpHQU7Cui5s+isSZS3MRGJ1vLY16DmskuDyDYGWWMC0a6R/cDh/2qoiPvHKo8kFWJI6ga8b4bRcfWyuLql+y4SI3acuufdjyq/6Tfia0vtf9HDSOXfFylc8RLsbJkgMj2gKjEVyxmw/aGSg5rbRNr/gzETacF4DdLngRpnPkr1S9g886HkdrkF9fW/DiFAhNc5gus/QSIrQVeik6fb3XfMQI0T/ZdBlO1lorJvqS5LVazsmSCLW2r1176GqilPXVi2zdgquskRySqKbd2oFGQi5g+i0GJSwKkd7RKrA9xLTk0St/y7zFl9LFyOdeO6k0EUzLqGWq/474dSUCA417hGnhTs5V3mqYzahYzDS1DQi6QR2yN0XPFqYfANMjA0yjz/cA05IZDAyLAh6y3Mofg5f2xXRTxXOWKBlrqc7DaHuLk9W61tNO5NHhhQhgxdLbrbbsGvAyktvbwQaKHsQmX0WUpOMBODDYVsn/HmDaOVdEALNLriPj4VH4yLRbe+BF/QOmc3UsWuokO00IV/0sEWoTpmUD8SVYZJFZeCVznYvR3zjqe20DIYRBfLThFduYTtko3uN5Sv59tCVbibA6ZUcOFpV+tAQ8l53OljNbsFh2mv4pwHSBgyVjxEoOHJjM1reIEA3HyUIhc7PPHBGlOrY3wOpcHecfGVx5m3Urca5uIBH2RlICJnAK56BdCjRKaTa8R7RtDQYDoPI6DKSZp4cdqIp2RGNAv6MRhvCOrKZFOFeVTxIyHAyN7SD8ro2iEcev+kl0QBovfjQKmRiyaJLxVdkpH0MaEVCu8Sre8J2rxpUIvxw18XH7tumBbS3Uw47wXuVfCV7xAk0ilr7R4HiraIQGDK7yhTIbniX5HkWsLEWtRHEAbQ8aeUaEnY8r7iSvZRBbnxCg1277os85MWrzjupRG/iTIoIe7W2WXf2g5ZZ/m2Nj+dM9nN/rAh3CBlPUuXJFsobgZA2jzqLd0Cj6VLloRG5FI6Pc9Aryrlb/gn6eyDlkuV2KaISeNK9UkZNVMsJXyK3GNEQQbRGmFY1uWnK95TbeAqYxaO2IF71JoqnubZysMiti6iNV3Nfvv93Kos8kKThtWlpXORfn6jd8PsOM8OB2pdFiTJHhwOTI1o2Aab0qyJXd0qh+5kqcP/W5V84Uj5wrpqsZ3XBMemdHcszhNhU5q2zEWME0XK4zzgF6R7vEO+Mb6p0d1QN9oaFwmG7CuXraKhb+GOykENF9gek/g+nB6J2R8IBo9S4xLfrECPHRx7RW02XWMA217DvIp6LH7YdpOW/as6qh/DnyvodaquNQnwe7pFHkiUjRyJsclDDOIpqKpbdZ1arL6If2xjQDYjkwVe8HmB5EvegiZwNFA18/IlMcF4kqwj/tzNWzewCYzm/6E/pLmG5PO43s1b9BJGuje/VZ1GEawlqDF0cjeMHZz7HgJ7PoCl7k/SJ2egD3t5+djmKnN1fOtJGEo04t5S0U8I9lHjhYFUSwDrd7YyOJYLGKdhteio8Bj4UX7vC2vObbaeVHa3uKAkwXOFjqFU0rMPdMwlu2HMcj0g393wOHrHMANLWc4oSJTwk2AiWhVDg0n2UUTsSlfvHVRK7u4j4JVnt1mipWQVloGWnDfMKGTKXEe2JDtJ9RJ0eDL1gBE3S5o9F3/DRnnc+UW2bTK0SufslufNzPqsH2EyxVqIKBZIm91T5vXvVqhLeXc2AcjRgCvxTSiOIQH1FmGj3mmwj3o+S8JZcwVVZOG0nqadOSvKCKXX74CjlHlChXxwZ4qd5E7bs4J8aN2ty929KoF79qZKb25QivpnFcMst+RJcwqmBPEV/4Hbp3WXPrTtLP8MQiPXGy/oLjT928SDvC619cxE39KjkMZVEg0DGUh6ORXBFtU5BdiTJfTXTNKWL4rL7ZBjCto+ajV6md0KjEX+dk3ecMm0ZrmnaNiB+ungIaA7xIuclBzTPFkauex7TgjeTuXUM/h4qYe9qliEbJIv2T2YJxfwaSeK0KexPp3XW+vAUVhXwMaPQxjSIG09nyt3GuSIAtvxe87BtMR+O9LF0/h6T0d/FFepI7he6Bj8ph8cu2fBSWFbGS0c2C6aqNL1vZh79w042x5FDkYl/oHQZztc/QZ+tYqACmtecS03F+LoyoLKSRSFCAaR3Po3y9sqcst+Ri+qKavm7PAVPAIuqJxHCytv6VfZkb2LahN/q7M9tZdHB8cvQ5GoPr6WthOuqcKBYSkURctepB27r0+8gmK2X3Baad/hOmZxARJNe3ANNuvyeH6YCX+qB/3aujnPPXCKaXMC1IpHf1z8De+KBd7YlpbCCDEm0YXb/lPtRLF0sU9wxkUZhWKexnMCY+ysmXDQTTjTj65Yv/YDVl1xY4V+2NaQx5ehODu+fBN9NmvALGrWh2felT2awbCzAt/ZhnkYpX8RbOFdFyotGWIAiCG9G+RXaaQAN7Y3mV7/l2mtcZOd0oB2+HujHQ3XKk0VdZFlhkZKfZ4km5Xe2NaVmD8kgvG51ZYKf27sMiB/wDMv4StsnWxo+1exOjrT8bkDdzRnQFmPbttPJwn8ROY1+0fckOMF3gYIm9vkKWgGkPhszmO9hPcBWH+S2hIrvLKWU2GVJukPotz15HHtOBmar51shWBw1LvokvUMt1g7mnvZWcaFRR5+Ehs0LR2/g/jK4rAxo5LnkniuBA6ToS5cb0izbAzG79wNLL/4TRVcQFw6iX/e0zGmXYGPU2rmDUf5Mi2hDmOydOIaO83EZ8UjiET/PsaZNjLy5PocZl17F0+ypu6AmNArX4qL5p7yInS7lETENuROFl6WeFN6FHCsP1Ncvd3WuU2FcmzzJor36lZTe9bOnFv4L3t3LNSDEcwtprJB62Ue1Vf/Kp9y9WET3YTKI/o2r3HjaFnFFofl/LEQv2I2NFlle7HAf1GSIF9HPlEwg+ozPHvvZSxIU08kyNHsn3yVfci+KaA1KQLdGNc6OpaG1rEIGPIiLPPmZ5NgDN1Sxiwc0jTK1+B/4vgkb46Jy/9lLE29OIHMkRBNPZqjWQIkzDX4qPaWgMnH9hWlP8Hsm56dV3W2bpt9C/9dA4iKv3FaY1uCsl0bjKKtffwh5WrIKUHhJP4GUMTMdwttzrdeBwVlOqYLq24gPbsPSPtmnZRTi4xdiP0HFRy9q7wC9e8cEyTxKCwTSbiebBtJvSdI5AqHfoa4fpCpeP6W15k2jLtWD6atrC/a5d+xbTmdq3rHbDPWAa+QuiG3Kao/AxGvcxrRcve+ktlq5bybUvWfmiX7Nq8Db6YQz3yPzsK0zzbPiYryJvU7lo0sXSIdI7cqQ00NQmpaJBq8XBdK6WaEvZ00QKfsKsw9PIopwrYUUy7MDdTp0d4Fa6mt2968vv5m+ew7RfC9suQJ82/3WyiGwK01nw0lS92CrZn7B84Tcto/2q9jWmZRtIDMpvvh2nfy30Ci++/hCm3WamRIFU8myho82Rc6xGz666y3LLvwOmMUpxokL7ENPMqSNG2DYi315dDZFL6Aow7etu+RKiUXa6Eju91nIV71tm+S2WW/Uz2kcbY8J0e0WuqCooqrUch340A7lTexGooYOxiCygb+Rd96Pt3sgQ64/OyQT+jmhQ8Ek51jkWxmWX/s7y638H37FPO8F0ZNjocTvR6BInDIe250+vIKFuAis9prupw4g2PpTw82oYj6XWXvX7JIsT8eJQxI3C9UgZs31dxCKA6bEbcnYj03FH0p+sUikagp+Ah0+RYOUbVtGMNxGuV2gSETlFlxx9voFxF+6zf6BPCiA7F0VM93U+AV5OZVkeoecgPC7nKl+7iM0GX3P5YBFNb5AntX9phFcZctEgNdb1LGicCB8ZsUtwZCxwrvLMgXv0c54l8JHUKK5F+J0S3okItRtPJYviIyBLL2A0Q9VdvkyiJ7vuE0nQFJaMhaba8nWcr7yL67icZFUnw66v9xONrGLKNy2GNX3pwtOY6h+NX00EUkYOLzuPIs7Vssv61of8l2IrNO8MxH7ES47X6GRWQtsEZtyPYppBNIaYJqrWsBIH8H0w85yjLeJGuPsX0zmPFZ+MYku6HGPFbFqYLBnioggQZB4v3E7Xr7SGqn9bfeWrRAlQjiQo71+8FGC69GRyTVgwUjQQcWP6RtMgGIt8/VKciJcZgc9BZoeAJYzNfsEL1Ti85IkSsUM1ajLV7RxLgum45BJM5zEWHpjO1C22xq2Po8pZKQim9WaP/UNjgGkZTmHa+TNfdHlFkVRfaFY0iKRj8JKvw8GpesD3A5L7G9NEfFiqn2taQl7WQEt1PcUSYDrOC7bluObYdyyL45IG043lD3Et3ay0GFf2J6aRt8wqMM2ioNJjwPRwbCA2hM7Xq5Ty7P+XryGSxPS5pt78vLX9i2lCuNCyGRhAX6fD0JGDwQXRfniVJ6qbb1xJP7Oiv/p11CXBCUXA9qGdRiPbYqaDTysqsj8dMF6vtXHJ6yXswfJmVdZO3DLYppKHV60djHHk82n2gWMwnK95FUzPh/ah8FJ+hpw/8fKjZRcOVngxhk3ePPuE5LMLaS8VBXIj4Docx3EW5GWKGQLMTioLn9i+n3SPi6BgddnPIp9d7PdJKNvQ6AZwMRwClyDHyNE1YMcMaV/awqeJRtEHb3AI3GtPqv7hKwxJFzot0ul0ol3ruQbPwK1jFR/3ZwlodM7gFngIIMXDcICovtY0bHyI3xY3Zbk/HNRCHqgz4aMMmAevsjhUolFdqVOORqJ+Mrb64aaJPg4awYvqzq6EvhpfHkMa5SfGBvAHna6fuW6/4oXqBAitk5ZjijGzGqJ8DGYdGbDXSo+DNPim/ZkUBXZ83N94IcqCJ53ziFJnlzi10py+ob6GrBiLAaJKadAIvFkQoH+/FOFFKpoOZVWuZVe4fnY06pRkUZtlabsNRRocXkKltF8IpBIRog4lyiKsZHFaQ7zoqFQ7716NxodBo3CF7gmimnzZT0WdKfvS5Aad1rQCA4bxEmx1qjMDveQgnFX4q+jHx0pjGhUOfbz2xombOCQWi48s5IoyeIdA/v8YMC05dDamAVn8sEUWIafFTtPPsWDg/nHaaacTF/s8DCEB+a4JWuDj3jW47zEt9O7YwTIcrJyduHitTUm/apWIpvrZt9OfZtpznd/HrbDTrXCweLArkvZAobjpD9UoYRKHcAacZuH3x1qcxoACfUKviqMLGh2dYW/6p/brv24l0nsWGXGDxYd8Dj1R2Vy9IjAQaJm5lzAV9gKe8UB+7m8HKyQn0BiOh5L6sJ+l8UI+7m+nJaQt/AxpRB5dP29Po3j3ccui8BJqDcliSKNkMOTjx0SjcJwpY2eSY0ipYtqKvla0ICwRVsllVz9q+UUXYvQOgpX14amP4RNHy/cEqDvAtKwvePa3dBA/P84iWRRdhbpRelF9q36WLP5vwUvAy0AW/ZeIh7L4cdIoeZxjyakvMwYeAcsYlAQ0KmfHq2ZrkHePJVo9GX62yCkX7efSgml/CtXHdLMcOhvzMWG6mROisVAWodHZQPXv/9npZjbxRVz6iIPF0RJbb29GPmcnJk+ygxngVTssC+akpyB/mTkXk4v5Bg8gwrYbO606Wlmk1ALh/rhlaKcUh8qCC/630SglLJoYMSqhnPlWVAjhW/5zBiRHkpwzyOKxgPtxFYh0QiMwflw07K7e/x9oFF6k1DQS21179vd5yZccE5Jzmepw+YwYB35Bqp9jEomV+PtfaTD1sdIfOFIfKw276h/JonipP8r/SjpFoxw9ckj+19EnWfRlLKrFVFoVzubHvm6ULLJMv2Fj4KPq2o+ztGD6fx8fQ778n50OObFnn5JFdLYWeCj9JM+iIKcXAztNPpk/0BOedi+PbXCw9ozc/7sr5ECg2WR0NVWIEuGNaZzExZJjJSXtUOsfC+/6v8//40D7c+D/sfceAHZV1f7/OrdNn8lk0uuk99AUEBAQLPQiz95Q/CvyFKxPLE/x+VARLOAD4SlFATs+RZH3EBQRkJ5ASEhPSO+TZCYzc9s5/893n3tmbiaTRibBH5yd3LnnnrLPOt+92l577X3Ei1IO8J540TmBGN9on+sM8Db7vr9xXGOMwG4RUF6Ye39dSTeq8+nSKbrW6NvtpfGBGIE+QgDd6PQf9lh5vfp06UXcJacv1XGWnd57iR2svWN0EM6Q6aKB3FArm1GUILZoBwHruMo9IeCiVl1D/jCg873EiDEz7gm3+NjBQACec7wY6kY3SdDdJubFg4F2XOduEHCBjpIO7NKNnKvtrt+lgMluqoh275sbFp0df8cIxAjECMQIxAjECMQIxAjsFYHYwdorRPEJMQIxAjECMQIxAjECMQL7h0DsYO0fXvHZMQIxAjECMQIxAjECMQJ7RSB2sPYKUXxCjECMQIxAjECMQIxAjMD+IRA7WPuHV3x2jECMQIxAjECMQIxAjMBeEYgdrL1CFJ8QIxAjECMQIxAjECMQI7B/CMQO1v7h1Udna4pn6VM+27N8u4/uFFcTI7B3BGA8x3v6E332flV8RoxA3yMQ8V/03fd3iGuMEdgjAm5VEPFfVNgu/xnt3ofveB2sfQCpb08praXhXq+Bf+sWe4nW3OjbO8W1xQjsFQGnTCI+5OwuftzrlfEJMQIHAQHxovr9+taCjo5BD8J94ipjBHaDgHOmSnY6EC9SHBvuPy/GDlYI3yH7qxeZJ1Ecnsdy/G7RMjVekheU+LzIQq/O0Ss39r8hD9kDxDd6BSAg/oLP3Dv+9AqI0mruju/0mxf/utc2vQIeNX6E/3cQQB86XpRuFC+y4KOn9+o5h0uP8RLDCP/vIBBT+rIjIN0In4nnSnY6tMbal+bNAiKw9OaVfaA1drD2AaS+OCXpFS1VM8ryLY9by7yttmXrUuvMd1K1Zw3VjdZQO8QqCxt5YXyz5X0/ViV9AXpcx24QIDKQGm6W22y5JT8x69zAa0a3cC5KhHdweTVjeZnpQrPKkeyS8xWXGIGDiIA6munxll99N597ePfgSmwbfIdz5VWPcjzoZcZBQGjqDiIlcdWvdgSk7xID0H9Pm724wgq5Fy1X6ID14L1ME+8nHMgrPTejJ3ln5j68xD12sA4yQ3k0TCZVaa3tLbZq6QrrN/LHNmXYTDtqyDirrKink1a0tvZ5tm7Tb232i8vMtplNmDzDkskKGjZ7kKmLq3/VIeBlMFhF87PzLFHks3aJJdITcLhQHOq1ZbeY3/Z3XsM1R6/iYsQQI5dq5BrxIg5YXGIE+goBFyUlKpCbS41ZC9b/gCDBVEukhmHPqngPHMpw8734+PP4sG04/5kpfMOY7gXbfUVIXE+MQIQAnc8EvJd9zmz1MgvqpxG1qgv5LTvbbAsdz/yLbgDAMjNRkNKnuejiXb5jB2sXSPpqB69yTmCc+PfC80/bUUefZO8882Ib3zzNRgwdZwP6D7bqykrzCYO3trXZ+k2rbeXqRTZ30TP28wdutB2tW23yiCMsrxefuncj9RVdcT2vTgTogaEMgtwsjFg/qxrxOatoPNxSteMtVT0CJ6sWo+bxrt2s+Z3rrbBjqeW2vWDZjfdafvuDRFZnlGBTRCuOJLw6eagPn1qGqbiVz3JLNb3f0k3HWapuoiWqm+G1fvj6Kfcicj/bYn77citsX2j5LY8SPLid0esxRBDqMWwaSoxLjMCBIlCmzzQkXWwxr+40s2POIKDf3zLJytAGF1rhxdUWtC2yYOts8zdeb16e6FbmiJKTtWsH1Bs7aequew+U3lf99YGlkmlr79xhrYWtdskFX7HXHfVGGzMSY5ZM4VTRHvxxjpPsnv4lPEvyaW1vs/mLn7X7/v4/dvvd37UJI2YSNyBDy/XYyhjhVY9xDMC+I0BkCh4LCnOscsilVj38PKvodxiOVq3jw7Aeem7SBKV8F/Fj4Bct37rIOtc/YO0rvm2+X41xqy0ZtpgX9x3/+MydEJCjn59tybrTrWLUBxl5OZqgwdBQHzprpD+OGflWLgy5WPzzO9dabtNjll15qxVb/wL/TuO03UcPdrpn/CNGoAcCii4tJKnq7IxnN86YaSl0X9EyVh3Mt8cqvminVZxpr/U7bLuuc+pOelQqEt2Yx9na+qwV1/zObMMPGAEgmuWGDNGjZSWOYJWB0Tebcq4ytq1tkw1oGm5fef8NdswRJ1pFutKyubxli905LVIaKnKglHOs/lhlusqOPuwEGz96io0ZMcH+49aP2fj+0y2hRPhg58ZzF8d/YgT2iABKAVsV+HOsdtx1VjvqX4gQDGSEJY/DpTHA6OLSRinnKhyBYXi7foqla8damu/tC75mxU7yY1LkKMTRgwi4+Ht/EHBR1NmWHvQxqxr/MaJWk3GsyDnt0ovOw6JG8aP0HYoRI+jcrQryVEeeb6mGKdax+HrLb/hvgrKHczx2svanCeJzSwgoWpXfYFY7GXZjYg/TzMIC70kB0sF0/Ccn37FleNypyGS1JQeeaIn6yVaoGWfB8k8SVVWUX3wb8TC7GgcMvII9cekjBDQs2N7Z6pyrL1z8PTvmsBOp2bNcruCGYDQME31cW9Ae0W99azQwly9YTXWtTRgz3UYPnGS/fugma6oZQj3dDddH5MbVvKIRkLAnnXNVP/Fmqx39LvQIeX/FrOM5/nA8+kRARL/1TXHJxklL143D0Zpm+a1PmZ/bRC+ukoMxPzqM4j/7iEAYuUoP+5RVT/w0k34wTD7OkTqOjhdVTcR/Pbf5rfOYAKRoV6phBnyI+dv2exz+4RyUMYxLjMC+IpAkB3Wzba45zCZP+IKdlVqKG9WGRstY2jbbquQJdkdqog0n7IG2LFVa4k3Hq+g+dKOXrrNEA3laSSZhbLqZgOtQzlXHICxhzCv6FX8fEALOQWLor5DI26c/eKUdMfVYyxeKViyiFAgr7lPhtARrOWRzOUunM3b6SRfYlz94gy1a+ZyliYzFJUZgnxFQtKDwnNWO/b7VjLwAxqrADuWwZfsh9jpXEQaUSQVDOfWTv0a+FhTI2HUpnn2mKD7x1YqAprgXV1pqwPusetzHyW0Zzu9wFnW3c7UXcGTY9Cl04mSNtOrxnyB/613w+Gr2iynjEiOwLwhIp+GQY18rJ15uXuNr+a0o6D7aaHcL8SLLKqFPlRSfGvk285qvgTdJjvfQs6WyH5o2uiT+3h0CyrtasvB5+/g7/8NeM/MEHKuCyysII1NhzpXyrqJPeT0998nJknNWkamy009+m73rjI/b/NWzLJ3qbrzy6+PtGIGdEHBDMbOsYtDFOFcIP8svyEmSUpCv3/NTrlrKj7k6Sz02XV854HVWO+bLGDVmfsVGbSfI4x+7Q4B1g/x2S2SGW9W4f7Vk9cjQMJV4MQnz6SO+07djt1JV0T63P6peTj+GLVkz2qrGfiIcsvblrMXmLIIo/t4DAhoaZGaq13yFVTYd4yJReFi7XtCDF6MTIv3ofosXmW7tMWSYGvUOswEfYQhqFkwcBkNijoxQO8DvZCJpbR3b7MQTz7bjjnqDS3IvELmSc5WgETLptGUymdInTXQqjb+sIUEalk86leraF5GS4FpFspr6DbA3v/58q6rpR4Q8HGqMzom/YwR2RQDNQA/NS9Vb9bDzLFk5kHQClAB8qAkWHaRebcUebWYCjL53aKilNEojQ9bGigzr283a1Tnjd1hUJ5EsnKrKwSdbut853IJZYPGCpBFA8fduEUDPFRdZeuh7GNqbDhsp9y9krCw+v3hwPby4kc92eI9sClfEi+LVVfBiC+foivAqbajOgqX6zbTMsPexvYCdsTlzwMV/do+A9JX0Vr/zLTnoJM5T5FPR+DLegclcnlVnQLrOzlVJH5LBYx3oRpluV9Crymn1yBFMDD3PghR1KkIGt5bVWjo5/npJCCiytHrpMjvn1PfY4AEjaZicG+pTZVqobFvrWhYXXWlbWlZay9bVLM2wAWOHgkgmLYVz1da+2ba3rnP7ygmQc5anRadNfI1d8PoLbdGKOfFQYTlA8fauCGg4hnWsMv3faxX9j3KRK9kz6YMU+qU/EwFnDPPs6FGe+x7eyExjdAIBU5vbajaKHPZTJ3k2tD9Gr2TY3E3gRfXWUlXDrGrYO1krZjm742Frh038ZzcIwDMMv3ipZqsY8hZsjgxaaJnkLNVUmU0e7Nnx8OKxIz0bO9CzOvbp2AIcq4YaszMnezYdfl2HscuVOgLhzfjBeHXF0NPw84dTraxhbNJCbOK/vSOgpWqWWwL95VUOIWCBp+R4puQtSU+iBzMNrCk61LP6OnFiWLQl559BJRvUj2grurQr8KXrCH4k0LeJxg/ihc1xvB7PIiyBdyBfcoKyuQ4bOWkCSzFMJBqVdE6RXoujSNXDT/yv/eCWL9vQQc00StJ2tO9QrqZ972u3Wb+Gwfb0s4/YTbd/wwrM6vrqZ2+0UcPG4iWXIlU0nGYP1tXU2fRJR5rdF/6Ohh0PhO742lciAk7Snc6o6H8k9qcOwS/ilHu2oMXswyck7JPvroC/AiKuAbNbPRvY6NnNd2Xt478q2i8/lrZTjklZB7232uqE3fVAzq78n6KNxNAV0UGKuOr1JZn6CayhNZk8T8IOcrzKEjtfiajGz/QSERBvkEycGngBqSqDxUAuKqrIVV212Y8+VWFDmxK2aZvyVM2G9E/YMy8U7MTLc3bNhSl7z2lpFzGorfLs0efy9m+3k3YhJ4tz9e3qw1Cm+p9hhU2/x+oNYacOxCVGoCcCMA3LLni1MyxROw49hodUmjUdnZlIMSFtVdHGnZOylW9N2I6WCnvPt3O2mqBXA32Drczt+dPnK6y+1rOv35mzH/7Dt2msQ5r3Q72bYBJRsd9RDA9Qo3g9qjj+fukIJBgeXMkKr8dMe4P17zcIRykcGoxqzGY7WAfrTfbZj33bvvLpH9qJx7wFZULScKbannnuUbvwyyfaKSecg9IoMttQIQMaq7xg2LQg6ejhE23S8MOdM7dficrldcXbr3AENOycJd9lOksrTOzqYOmht+MhVaIk8tifu/+Wty/9KGt/eSJvlawD00lHbkKTZxOaE/bIMwX7ys05e3Ft0c45KW1TBoVDNQqPu0gYDpuGHVMNJ6KflrJTXbm4xAj0hgDDJ/5GhvKORL/hUTmviDWt0GlJrE8KB/+ZBQX76m05u+6uvHONkhobxMEf2ODZcwuK9vmbsvbI7Ly95XVM+pmMA7aNjqssV8iMYf4L9Qc+U+576s7eSIr3vToRcMOD6Ku6E9wrb9Tx7B5zDiHx6XhWDE3a83/O2+LVrOBQTeSUYet6QlHPbQ3sP89K2fBBCSKvnvUTO1NFdxqF86kswdIjluaNA+jhOILVB6ym/KvcxrwNHzzG+tU3kc/S7WAVi0U7YsZxNnXSUThIY60DZ2vRsrn27vM/YdVVDSzHUGe/vXa2DWwaYQ8+8j+0dw/nCvpc8JI/QwaOQOkMtQUscNaYYRX4PqA9ruIVhoAMTLGdIZlJzNQaCfOIn5jZSg9rCuHuZ5b4tu3OrD25wLcHVwb24dMSNm9p0e583LchjPZd8oOcrWGYcMWmwE6cUbQRg5JWw7yKdY4JhRX1YSQTmf44Wc0omE72yMHqkaygU+PyKkdAvIcnBO8kqsfiUTG2wpCMD0+mYZksTv1/3UV0AF777TO+fe38lLXuCOxnD+Rt7NiEfeRnBcu2BzacYcN3FD0i/4HLF6xX4KELWbQgCcaufrfTeV4c7T6j69R441WOAIzDDFSvqpkc9CZYRBZU/LJz0e40jpWGr+97LG9LiV7159KPHpuwN782Zb/6a95OPYooPvvEZsQ+SkUbCeofAU/SKy282Evt0bnx9z4jEEWTGmrrrZIQga/uWaloe1DTMF6P00zUyrM58/5hf3/mXhyuI5ytmjh2hk2bdBhDijmXtxVd1/NbQzN1tdXOKevI0+K9OGI9r4l/vxoRkFHbQbSgnne6Ma5XcsOlBBS9WkHo+o9P+bYRJ+rtMxIsapuyOQuLNmtN4CIKaXpkY1As/ciLecNr0iyY69tDK82q6Yp1cTWVeSwZonB4GJDQPeMSI7AbBGCcRIbX37hxvZCLomThu+DF5fLeiQa89Q04WG2BXY+zP5ihmImw748+RIrFf1TauURSZexunF20qeTH5OFTV8SL1Otl9Ooc7Yl5MQQm/rsLAuI/nCetBSj9VeYZdZ2qIcLsanKeT07bEHywPz5WNDIobAtvE7jozLQtW+3bTx8skjcNT/fKavAjaRmEsaif5US6ao43XjICEc7Ki4q2yytTPpVPVKuN3KuHn3jAPvKOy21g/2GWZ4pCLp8n36XodIPLq+o2Y+VVuO2wfsLr8aJ6u2AT7yhDQN4UnNhztER+fyWKYSiyvxoD9faTk86g/fyhgr2WKIGzT/z527bA7rk0Y40M0Xz/lzkbSE9N+TGu2rLbOGZ3F5XvjLdjBHpBoCczcop2NeMXbSGSddnxCXSiZ7//OxN/GDYM4De+7KkXivaHv+dt/grfjqMz8N5JCVu9g6HFHpard83bCx3xrhgBIdCboS7tL24PrD95gU/MN/v5osBaGCL83pkpGzE4aZ+6PUcwBCcK76qV/ZYNO6Y7qUExtpw5NGoPNtUd4rK/CCg/SqWN9whmc8VdPFsdzjBNa92GFXbbH69yQ4YV/C5i8bTeVYqkeCW/S+MkWQle7yTcRR+xY0d7p3VmW60qxRSGPSvdKm8AAEAASURBVDhijpj4z6sXAY+uv99GAjr5fGUiLp0iTtUU4yaG/Y4/PGUvrvHt9/MCqydi0Mko39/bzB78TMamT0jaVbdm7b+eCKyJY0pw7ypUpCnyfp6hSKdHyg92nRVvxAh0IeDnWnHQxSc7Wzb9Wr45sDOPVbaKZz/7R9Emw5taOmQhn5tmB3bpzQX75s+yRO89O3J8wlaSn9UdPVDOIS8bK+B1xSVGYE8IiP/QV0Gh3emvXY0sF3NKssazNiKpj+Ng2frAjh7j2fmnsKwS13/6tJRd8e609SPK/7aTUva2IxO2Ap3pcgLdveHHPLyI/mWaYpn23RNh8bE9IuBexMxU97UbVrIcQwvOEomdTpmElylpM8d6Vk/O+ru9602X2rjR03DE8m7I0MdQtXfssA4+et9gR7adiFbHTsOMUkJyuDZsXmubtq+36oo6l/S+R6Lig69OBDRm51VhcDZYoWMNGOxs1JQ/vADZ/8xpWh7E7Jfku8wguZ1+gTEr3v56adqOnp6ya3+Ztd88V7SzmkklEAN2FerDq/IZpvbdewl1QLkMcYkR6ImAeI98VBm1jhfZxOEv6zkqyX09tuhtRyVsBg79A4/n7VkS2DPs11IhP/9w2r75Fjqe9CePI3KlyRjtOFfldbjKmRnmt1M/14W8qPvGJUagJwIoOdgpQG8FOaZUl6JM5Wcp7z1DkvuCp/L23Tm+TRzkWRXs9NenC/bcoqINrE9gfxUIYT/8WMtIY4tUrqtEcVQWEu8kO764kZ2VcZJ7ObgvdbtIqzQ3TbLZix5jrasN5FwNZmoxLUWRo6VX3mzcvNquuPqjdtM1fyKxvcradnTSI6u0BUvn2X/dciUOVcEeefx+zr/cBg0YYRe9+7O8i3AqESu92gTdwZ8XVy2yuWueZLbXTByssP6XSnN83SsVAYWvK+lFPWf51kWWaTw89LGix0VZbCFyegLRq00t5LvMCuz15LRosceprDV0+FSWaCD0fe7rU/aONyrKavbnxwp27Z+KNpzAmFuQlGhrMbvRCq1PkMswifpjXozgjb97IsDitIkGK2x7ltlZpzG2B7O5qfG8SByHaDEzs/79gpRVEZ36vyeLNpR9WqtNi+AOqPfs/zs/Y6cdl7Sxw5M2f1nB/visbzNZx42J2lKuKEY6s0QkCttmw/f0cmNnv2cDxL8jBKSnkhMZanqKBa02sjDoAFioh+7SqFIlo0WrAmvH7vaD11bCox/8UWkSz1qzN74+YTd/ns//5u3WR3w7gvXbdrDsiHOyPPi9bSFJgnPhzemxgxVhfyDfPg5WdVWdzZv1pK1au8wmjZ3eVZ3ypgrkYNVUN9h9v1pMXssgnCYWJEMxyAkbxOzBSy/6inOgPvexb2HAtM6Lb039h3Y5aaojy/IN85c8i7sMj5AUU6TOuMQI7IoARodIqA9v5ZhtWjP8HH6T3e4iWRgmDh9DbtX1v8pZG07V0SgQLdtQxSnrUSRf/q9Oph97Vs2wYBSEXUISciPDNsrhcoUDhbbllt/+OGsbHcWJWMO4xAj0hgC84iUGW2Hzn3m7zUcs6dIbwhNJPbUpAzz7A8OCfyNa+sLawIZooiGHW7abfeyHOTtzeoKZrJ7ddX/B/m+ub62wWi286nhRFk3R1OwWltq6D4PGzC0366I3QuJ9MQJysEhA3faw+TtWWFA3pRR56gUZ6TrxGcyojsDh8CB+vxWIrLazfuC/s3TIys1MxBhCVDVyrhS/KmTNR++6nighWg18x6UPECjwbqz+IwbafQ//zmZOfa0N6DfEJbC7xHW0QUW6ykaPGMe+okt4134t4VBX22hNjUxXoMigsduVHEsW67j26TU7s+c+Y/c/freNaZ5M7y2eEh+iFP/tFQEiBAnWYclt/gNO1rlWMeAYHC7eCe9C4ugYeOyBBayJheJokCNFJcppUQ7WPc8HtpWEq61Rxw4GnEpOQqMMH3zssXJ2sXODday9m6UgBnJlzIu9tkG8s4QAFoqhkiBHRHXDg5ZsHsX+UMnJSarBAs3CsWqFjYYzk1D6T/l+DTj0TKy2Kx/iep3IgcOwjXKudDysgb9EIHLr/8qQ9Xz4cSZ1xx3PmPX2hAD8kR5g/ro/WKBV1zM45Sxrs0uBx1TEj9rsKOlD8d0OTn90TmDN6E7NzJaNlmPv8TaXYssTDBH8kTDsFPahhzkUlz5AoEAu1aCGEXb3H261Wc//gxoxRrSOy8WiVbQaezvZxXKaouKcLCJRO9qz7qPj0bZ7UTR1ZNJ6jU6rPfjYPbZs8fNWWVHtHLSojvg7RmBXBDBKDBMWOxdY+9p7MD7bnWMUaoLw7GFErhq1UF7ZxXKyRjGCcxivyDkJ38l96Ln1l3OFFhG/SuFkNz9h2Q23Ehgb4ZRIWRXxZoxADwTgMKa4W2KMZVfdacUdy7p4UcZKzpKio2NwnsRbKvqST4Xqs2PhxWPJETyWPqh+O19LJ4kf5ey3LbHcmtvZHhfeR8fiEiOwOwT0OqUULxvf+CPz0WOhBhTHwXD7UHSWZrBOZ/Zrt3PFXngxyG+zIvrWsoud/oVbYwdrHzDd51PyvPCxecIk+/Gvr7F5DOdp5qCK83D51jpYMlI7FX5ruDD8dG+rIZPKL6CH9rfH7rUb7/66TZrAKu55xnXiEiOwNwTcau6HW+eab1n7mns5G8feZRuHikQ5LMqn6lmUOqg1hso/zrniMhm03LbnrG3pd3CuJsHYcfSqJ37x714QcLkv9byl5AnrXHYLa41uQbmFXf/ImdIwdc8iZ0qTL/T+QX3rtysaBuR6P7fJOpb9mKTi5/hNj6FnPk3PCuPfMQJCAL3lpSaav+xqy24jVyqJh78fRWwofg0jV04xsqdohTX3WLDhaoaclPeqNRyw+e5v/KdPEAgQfPfS5/WL7Yd3XGlLXpzP63AyrmdWPqtwbzfTmll6CbTs4cNPPWDfvu2zNqb/FJeftbdr4+MxAt0IEA5PTLG2RZdbx7r7w9AAbx3YrzwVp0XoGLAwX751oW2ffxWzE9VDk1LqxSp23zzeihHoRsAZtcmWX/sd61h+GzaOJCu32KN4KPKcuk/vfYvznHNV4aIFHctutcLaa6lnAvtjZ793zOK9uyIAzzFsbe3PWsfi71vQuiD8vb/6TLyIPlXMpLjuPguWfIbtqdyumxeTjQMGXrErAfGel4qAnKy6qkZ7fvk/bPWaVby4eRyvuBnm1rnqOTzYdQ/pDf2TM0xrVVZkXFL7g4/9yb75358k1y7NUGEFPTi6caXsg65r440Ygd0iAEOxrlrAa3Jym+/BJxpl6ZrROEtMB4SX5PS7eGrPqKoMHv9dwQiKJ3NbZ+NcXWnZrfcSDR/NcZy3uMQI7BcC4sehVthyJzxZT9BpHDzZGNYgY9UV3O/a4FgZL8qYEW3wmQbfufRHll3xFSKpyruSXoxLjMD+IMDwXXKAbW59xCZmN9hZLHLLeBH/UljbLbYqeZzdgeM+nJw+slfLKi7xIzrRS+GkFXe4YUF/4ac5h/wKovzlHc/YwSqDrq825Qg11gy2ZWvm2pNzHrH6mkarr+vHp4EIF4kEUXvRVtpOkHWsxUYrMikS2Assx7DY7r7/Z/aVH1/EIo+Dca7Ip2F/94V9RWlczysfAa1DlMGg6X2ZPzS/2OheW5Lk1SUJKYhdnCsYklmIXjLFoQR5XGuJfj1grQu+Yvm250rOVXcP7ZWPX/yEfYuAcqeGWaHl58zkasVB6u/4MZHG6XeTMCLlqLuKF3kNDp0EjyFBRb3yW562zsXXWm7t97n2MM6RcyVFGpcYgf1DgPmntjnR3yYV19hZgwe5dShZlx0Ha4OtSp1kd5AGMZzIaJeDJV50ulHD27yYnOUYiit+bsGyS7jx8NC5ch3Pbh6OHaz9a5N9PltOVk1FPQuMttsvf/1D27h9o1taoTMbLrZXkalwDpV0Skdnp63ftNq9BPrhJ/9s193+Nfv9vbfYxOGHueiB36PR9pmI+MQYAefNY9RQDOYxs3XTnZbd8iSzCtERLNDowacew30JRaqU5c5vnzViNBzYuelRa1t2k7Uv+wrRrjqMHD20OHIV89QBI4DTnxxG5/9Jy6+7AX6jA1AkZ4UXQSvPT1EqT6uQUuRUFXcst3zLM5Zd+RvrXHSRFVlA10uP52js6DuQ4j8vCQFx2Gb03SSc+7MGDXQzqRXTT3tFW1UYYXf4w2x4irxTHHwUKDzaQb7fKvO3Pe+GBIuLrzDbeCdZ7zj6zqfScHe3cyWivLGTpsbuv5A4SEVRgEwqY+tbVtiW1Zts4rRJNn3cUQwbjmHtrBo3I3B721bWz5pvDzz/R3IUzMaQKF+RqbYcU+vjEiPQpwh4imZ1oijmW5LFHVPVp1miehLRLIZq4NWAKcvFzuUYtVlW2KGp7wMwZqOwdMyZ398chT4lPK7sFYeAh+HipYNBVouEEgCoPZ511aaxAOQQ52gFLEcT5NYS6ZoHPz7CubBoBQnE4sPY0X/FscOhfiC4zxaS73x2ZaXdOH2apXCiiqRNVJP//FjLVjttZaUdWT/OtiWYbg3PBfkWoiELLGi/1zyZ5gqWYlAuqtONvVOve8TlICKgnCzN/BvQMNKG9BtgHZlpds/KRss+9lezTaxUppcYDWm2pkETrXnAiZZu2saMmSB2rg5im7yqq0YZuChB1UwLWFU7VzmBJM9FTC1ejqLAcOFoefWHY8hmWEKj0gnWaOCt8HGJEehzBEqRea/ySOxXp/k4V77eE7ftbvdbS414NTPMqnG6shg3foezs+KYQJ+3RVxhCQFFoFB8qaHYZqJWW/8WOlaaD1g5Bl6cYB7v1TRvOx/4cA/OlSqMHawSrAf7q0AOTKF9vqUmX2YTxr7fvEIbwUQ1Jol1rLRdZEw3N+sy6ySZ2NLNB5ucuP5XNQLwXWElymKiZaZeTvQbw6XFa8WOKqlaKywjR2bzr1kJ8jVi0bjECBw8BBimsfw8S425xZINUzForOSo3EBNwkhXW3HrPMuv/28mfil6FTPjwWuIuGZC9ujCVWZ1Z5gdea6l/HZyskK2U8c04Hf+mUt53c4L6MkRHNjzBIvYwTpUPFVKJmYBBl6ey8rGyndxq2SE+TGBv4MgpPYRReiydIeKuPg+ry4EIk9Kdgz1wRpCQUKKIuS/hNaFIWfLzWqNefHVxRovx9PCdnKbPBm3BMnumgjkdCO6kCEYJbmHpZtvSzvirxiBvkdAik/8p4ipeNLpQPax7e1n3l/EuX1PZFxjDwRKPS81noZi9NpuXgwpzUIaQrjPNayUSOncHjXEP2ME+gYB8VfIZ259NkUQlPVeihoE4k16ZrE56xu041r2gkCk7iK92KUbOSDHX/vjEiNwqBBwwRDZZpayKdeLbhKQeDHSn3snKHaw9o7RQThDpqv00ThuVGKLFiERfx8iBMRymjnjnKvIpXIKJmbGQ9QE8W0iVhPfdfFe184YnxiBlwmB6M0r4suIhGijzG5Hh3r5VuwkLjECMQIxAjECMQIxAjECMQJ9iEDsYPUhmHFVMQIxAjECMQIxAjECMQJCIHawYj6IEYgRiBGIEYgRiBGIEehjBGIHq48BjauLEYgRiBGIEYgRiBGIEYgdrJgHYgRiBGIEYgRiBGIEYgT6GIHYwepjQOPqYgRiBGIEYgRiBGIEYgTiZRpeFh7QFM/SNE99RTM/XxZa4pu+mhEIuZC/4aqiQFHajvjz1QxO/OyHFgG3DqA4MuTK8DvaPrSkxHeLERD/6Z8rTj+W8+a+Ge3YwTpkfFRqELfWS5LpBXw0x4B1sDytmq23nbq21J99a7xDRnp8o1cYAuKvkM/0MnK3aruLZbOfxW+9Em/GnPgKa/Z/9scp8aL4ESaEWhZ17Nr+Zyc+pu8Vg0C04De8x9sIeSzpRb61qrvjS+nPfVv8dj8cLN1EToE+uoGKbh6ueLqvN3SXHbQ/obEIJ0f+s9EorChu1ewOFsrmfVsOR/brVRCBXs+tIrpL57rfL8efSMGpraMihora+uWmT7woBSz6nGdQIlI0Ris//zPQGNFXTmNEn1ZLf7lKNzaB+I73a7l3EZZ4L3CL3+JoORHqPvflofafWaYjREIaPddhAjQgC3u+amu188uNoej8J5Zp4HFaTy9/dryol4u7PfwOV9N2rPiy4wgVzgZKnv/ZZFptrBLRKN0TohbyX6S7pSNf7vJPLtNO8YETLyB3n4gXeReh+bn9Am8fHCyBwbvJeBlxUNiIvljLTUr3UFsmqpHdUfAd75DSW6g575AXx/QZ6MJYFFazvP2mbhqdLDRB3xBkogrSAMgpvUNMpe5ZOcmCTQ9Yru15s9bZ4Vu65SVXjuTFu+PNsmCbGgNhL5NC9sBQirjYCkRLwBCaI1KcTEBnskmNzn45hNHBQ4WlGE40Uorb+CwN21lkSJeorZPgl+zHBsW96fzloFHygpAUNkPjyu43fYj8BEQmx/Gpg0DO2cvb2N1z9PkfMEnRltn1ln/h22bttHXnipDmdKNZ7UyObXT8+rLIip63S6ZRcsi07SLTA8Bw8Msr07zH0ePdoj7vEQ3yy2hnvqUbXTtDWmIond6BtLleEit50cFDXJy8wHPIdCgvJZmWvOiTfLllWnSgc9LTeMH4bVYoguGOudAKXineQ1gzPWzjzFROlICL6JdZpv2V0AcZKiJHEd8umRa++2eEXT0H/AdsnJ3m3oUN0Leum91cO6NvkrycWPZa79OTM3uoy04yvQr6NnfpRtdfTkimX247DS7JQdjnh81eeMQKubmWz7WALfhWjsZOj8WFAF9huQ/yvGcHSw2GYih2PG2pykpLN5xpyaoxBFwauCHBs2KnFTtXW2HHbCu0PY0yGcDbz0eVGOxQKBM4RzRibIPsHHhntHn1b8JhweFL1YbsU+Alyp0YuR2P0Tmai30eAzgYkUPmIIjxcQryOH6F9egShgQTh1mi4TjokFPqO0craF/I92OQleWRpiAIvGjykDkIKAiMRZCbDTm+JeqOA8uToGMItMpZKBLgaLGgY4kFrX+ATk6vxAg7R+sQKRP30k3ozM5iOJVb151qXtVpZpmBYKWeBUTlNkHjAmi830V0LXMEJ0rhHSJlohcnK7zc8YwFbHp1Z4HTWy2R6R8OAyNLAU5NAB8GrY84+CxzJNeoUxJp7JBtD9pfJ9M4LdkXLKjAuW+HB6smIjdHcUt4VQaucznHn+WzACOHskmPhMZD5SBEMr2V9pyDQkNe698cdkJ4KbUrxTZoxMjt+AfOIcY4g9KTU32IZdrPr4DtNllF3eGWbny7JSuGoRvpxMEDxfw2K3Qst3zrvZbfscOSlVNob8m0cDwUJZRpyz0jFWNWd7x51SeDFTLNy7wDdfhyW8BRMv1H88SCTqbB/1B1kiXTAekRnc84WfDa65HpqeYNOIPfckrp1NPpDNqf41WZ89xzeJXItItSHyqZRnfLa5ZMs+nVnQ2NFyATjaFMyxHMrSvJ9KPQjQxlDi9heChkWvICYURbgk5scGWDs4FW1YwNDO20FdrBEfvTTqdedjqNE5MaBo3S3YfSTmNDcsvgw3HQeJqTaS8lGwgpBcn0Cuh7FDqfx/aMQ6ah/5DJtCNDlPCBLwtradeMedjphHNKZae3oG/mQys0ZonwV+D0O/u4e5nejYMFkxDJ8HOzLFV1uNWOvtYy/aaxPRxHa3CoRJyDVbBibjOKZDWKZJl1rL/XOjfdgb2bzI3FmAdTCFAglCD7jCVwqtLjLrdU3QSCVMN48EHQiDKj+AUZtY3mQ2OxdZHl191l/rZ74Ul6Rq5HdDCFQApEhh8F0vROSw8+0xK1Y/GdRCPOaBIrTAny7fixGN6ONVbcOtcK635KQz6FEB/GUdF3EIVATkGpd5scfImlBpzMC+1HOxwTGRxRN3zJgEe+DRleh5N6CTTiUK/9Pk7jengRZeLeMC7GPEhFNBbWoUhwUEd8wZL9j0VIRyKgRAjSKBSUWoBjGBRwtDukkFeZvwWHet03cLRwwJwykQU5WAUlJ6HM4ZTgTCXGfgN7fwQ0DofGIcgDvUfJi4Y7ZNSg0d/xohU3Pmj+xuuhHyciWR/yysEiMQzvQeMsnJYjzRt1LfprGsZCNA5GGatnCwlFjBoyLV4M2paav+FeCzbfCc7ItIuGHHyZNmTaGt4Cjl9AEU8IacwMco5BSCMyTS8yQKaD7YvMX/8bs63/Z1Yxwz1DKDOlzb7+wikIGCYIcs9b9cD3Ws2g03CwxloavZOsaCKYAa/KwSp0WiG7zvLtF1vn1nnWuvZWy7fNQi0eKpnejtpYZjb4Xy2JTHvItJMXOfuKuEBjkG9F78g5+Ffzt9JxWXM1otyC3okchIMt02vgqY2WGvVFS/U/xsm0dGMijSzIUUGmfRxVv1PystKKyHRx7TdpUSKXKZyEg+oISqZpyzxOCQ5JYuw3kenD6XiOQHfjpKZx9p1MF+AFHIdO5EUyvelBC9bfAK+ORaaR+4NKY2inQ5l+jaVGX4ctxEGVTFdIpnH2nZ2WTKvzucZ8J9P3INO/4PHoyEu3auTpoBXZaXhNdrrf6ZYa/CU68LLTopHoLlFKlQB58bOSaWhEpgvrfoVs/xmVI5kWHx5EG+h0o6igCA+fCFX9uWZHnmWpTL1lnExDBWk9gWwgesffNtd8ZDromMUlu5dpb+ykqWVSxKZ6FXqDtP+C1Yz6htUMO9vStWNKvR4eUt48wtlViGK4RFlAKHSss87Nj1vrsu+wjafa5SV3nd0HG6IREOhpW2KHZZq/aulBp8D4RK1QHDK0jkbXKLqdPHxodEaYSAzGN7/hQcu9+HXqoPGdYZMnL4Hqw+KcAhqKXm16zGcs1YQnXIVScELJM7ixhAhH0RfSGdAj8ncst/zaPzG69HnORwickyMh6Hsag/wCGP4Uy4y5hMDekTjkTdCmJo7auUSja2fRCMZEBZ2zuurXKLxvgyFC4PJ25Az2JY2qC34s4Lg0XchI9IUokGkYqX4QiLMiPnQ4ltot4kUw9vPbnRAUV/zEbPMtVCMhEIYR5qVrDuhLdUmBQGeBCOrQz1pqxNudAlEE1UUJdqKR86AtlBdozG6yYsssK7z4Q7Pt96HwpkKeeLEvCzSWZDpAphOjMBRDiKzVNIcyLXlxDa5vFdFY4kdod071Zgzb8mvM61wFjhi3PjcaolEyTS822WmJ0V8lSv8GDAVO9D7IdNCB8V3/V/NXfI2AJR0rRbocjTxLXxZo9HH000TIG8d+1moGHst2JNM4+E4vRvxFO6Nz1NaS6WzbMtu+5h7b/uLlFiQUzYKvXQe0r2mkY5sn2kPUL9n8MYwajr46c9C2Z5mmA9W6kNHYX5utvYZ2jgzbwZPpRNOHLD36A6hgybQ6GBGNES+KHYWheBK9k9tqBQxbfsVtjC7ddnBlWs1YJJIy9N8YDXobHWMcfaIte5RpyPSzm81veQZ5uYFhpr8g03RMDqJMW4BMj7zKUkOJ+kmmiai4dvb1ABGOwi+UafFogJ0ubn4UGr9DlBonV1HqgyLT8GIRRz9ZsFTzV5Dpky2Jg+racq92egUy/Rd049d4DKJcGu3pY5lGAm2h79nZmYLdOPMoS8FjRZzqajB9rOJLdlrFmXY0w/6tkU0Dw0h/h3Z6GYGGP1qw8ovY6N7tdLJxwMAruE9Y1Dsr5miLNmuYfKPVNb/TUgJERkz5OF0NFl2gbx2TcvEtmWmwTP1EhhKPYshwFXncT4IlEYQ+G/4IFbEiFYnKAVY55TrLDD8b4eQeUlZ7pFH0gw8ORKrfVATmCEYWZ9GjXxc2Xq/P5i7Z/z8yFuRkePWvt4opVxK5wlgQaVF0QFg5zHaqleeKMKYRE1WD6S3NoMd5JL22ezmd44oIOhoRlj4pGfj1WZj+Iquc/CUcwGO4Bz0e0eicFgloeYHuLhpTTlBSjfR0yXnyt9wKsLSBGLDPHBg9Z+hceSNwoid8kojLdO7BPtHosBCN5Xh006hhkCQKRwYm8HHItv6S5xvWh/RRlZwrSAj85y017geMVH0YvhrHDmhSJ2V3NDrlUuRRaunkjnM0+jn4c/sfqHI414W8qjsceAEv5f8kOiw56UZSr97heo9dbdkr34cyrXPkzCbqJ8HLR9JDX0Fk9WloJFei1+teIrWuM9LCEBVRoMnfJ+BIpDfDPfZRpnVuApm2atp625PI9AZoRCH3MY1+frFVNrzBBk270moHn0y/px6ZJoLhZLqnvHB78FPUUnKRpnNV1TiDFIvD6YT+if1ywCTTvVz3EmEkfOoiLjb4o5aa+AWiQkdzjz3JtGNeYBKNaRedSRClCZLNZltuYx+G9yDJdHLk16xywmWWcjKNHIFj2F7Co3eZZpwV3xmZpiMY+A1E3X4FeQdDpqHBn2uJcdfTOUama8aGzdQl05C4UynJC3wQyvR4hpaOoHNCZ6n1HtRYX8o0tDkd2AmP5yw58SZG8OnUEUF1tmWPNjDUj5LppGS6DhrbXmT4Ezuo3No+lhcrINN0kjJTvmtpJ9NNtNu+2ekEnYKEIuzYaX/bY8j0FmishkbpxnL+2Kkh9utHAhw3M8w/qd9xdlZTNXEsZBmbk7YWW5V8nd2RGG/DGZ3BIyrVWy4vstNDnZ22ipkWtPwR+OBj6bIymS5zsKgEheB5m61x6g1WM5xeLkMCzuFyPQjdJLpR+XOwz/XK+XaNG6BMRlimYSbDhjhZHc8hBA1cQOMecOEB/A6iLDhXU79j6YEnlBgfg7sPNLrbK1cHKJNE5RJ1U4kgPIFSovGUm1IGzEsmVcxPkqFXfwLO1X/gzB0GrDCFU2IhVnvCsYtGlG+ybiJO1kR6G3dDGvW6JEEpoAMszqDhXDEkWDmJHhoKRMMero12i6PaPqJfCggcMWIaZrL0eGj8Me1Mb74vMHSPJyf1WfNG/6elx15M86Dsle+g+kWj40V9l5dyGqX08hhqciUaZtABYLhzy8+gWQq5L3hR9xI/zrHU+B9ZetS7+VkX0ujIKNGyi8ywP8JYeTAojISGtKHRz/K7lbbuMxpxeHWPxHZLTL6eXu6Z3FuRIto6omEX+oRnGY0lmfaQaa8eHNtWopDnUScRhz7BERrpJRqRoOSUqxmiPj5kIfHXvtAocp1MJ5FpDGHtVAu2opAZWgqHNPtCXkhkZzi8st8pNmg6jgG6bX9lWvlEii5UYthS1ROtY9Nd8CRJ3H0s0zb4E5ae+Fls0Rinu10b7ROOkukCKganH5n2lbS95WbauW9lOiAanR79Dasc+1H4fiA04ijsl0wXnEyn6ICq41Tc8nNo7mOZDp63xIRbGLp8F7JINFR6ZyeZFtOVlzJ5kQOAzCSUSgOf+J3wMXmrfSfT6Bwn0+2WmvwDSw89HdpeikzTtEqzqJtODt5yJrksYAf6q09kWnpRMj3MMtOQaUZvXHR3f2Ua2VCHNVEjO/0wdrW172QaRypRWGot/c+zyRM+a2d6RAJtO5yYwcHahIN1gt2RmtjDwVKbl9pam3oeZFrOalA5gWHXX7ETJ1DyViplDha9H4xF/cQbrHbEOTSilLMcLr73tUQVwwCpykGWZqw1u+VJOqKECeV4HJDxFdHQ4m0g4nIdztWJ0Ktejwzu/tLINYRKHYNVNjPZ67fUQ0/vgIswA3QUR8XUb9I7kxLAmKlE2IS/9vxX54I9F2Gzx7oekL/5v/kpRYIAH1AR82/FWJ4Kjl9EEY8OFbGjr5sx9nwLznM0gn/JEQyCJiJZd6BIRnDpAdLoFMYi84Z8jMjQJ7CT/UtOgdp5P2mERxKE9r26yaED0/a/0Mgw14EqEuUjYSwSzVcxTP0+cKikSjkF+0FjhLkUMo6gIkV+KxHVzoXUo97agToHKF6MhTf+BnqQZ8HyJb56SfISGg2rGc8QyD8YikOB9pFMB97WMHI14ATY/kBlehTKbjSTDn8Jp2AcD7govy9nGSIEilxVEnE5MJlOuJwtLz3C2jf+CHbpK5mmk9jvNEtP+gI9azCInOj9lRdFDSXTjET4PnK39U5+DwfFvpDp+aROXWoV4z/u+D2kcT/kRc8imZEjiEwn6ieTE0M+XNsDyPRAaDzAjlNJpr3RV9Nhei/PTadb/Lg/Mt1FY0mm6ST7rWuQ6aXUIxvTNzKdnIBMMyx44DJNPlnNBGQaB6bYAY3YhwOiUfqZj9J3Jn+PDhPO1YHKdA3pP06m6SCbOnYHWuA5kucTVaMtN+U/bWzdJDszdw/eBblquFdp27wHB6vs3s4GiucI2DASETD6EGz5MY/fLS+hg0X0xmcGWfXwf7OGsRfCT1U0HAxCXlAKWpRvWP4Ri+iTBMck7aFjSZ3Db19KXEVOFmFxLz3QOtaS9HegYVKvkqHsZ8kV+pZVDD/PESCvWDSmS/cXDe4DCRzaqbjncPRpt2jkBP4na0ZyboMVN9wKrSPZj0C91CLHIP88Pcjvkxd2smOsECdwBCfRENEYYhViluZYtF/frt1Eox4CI5YkQdXP0otu+TU/R0DdS1V2em6V1UTXrsMBVE88526o+/bE0ekyPQBFbe3o5Ltrf8RgbjhuDHlZJCnueJSTGd55ycoOMFzvZyw9tCucsXBDgig54VeOoWiOYBKN5cf125HuiIWXSTRXoq+/mXA4M7+cQxSeoVP3r7h2ftG8xvMsM+HToQPY5Vztho7SHcpp7DIHDkcpZHAjcd9ffwvPpahv1F77R547WxFZZNobxuSP5g+Ez6ueL/fS7dTWUXsLp1Izu0sjGrv3l+jA6XdDEcwWDtb/kAftViQvgUJowSlltmJiLDkkw9SpUy36szONkpVy+vRbvCg6IzkKsQrPSjiZZlh4422cdKAyTRS/8LwNmHItCe2vR15wol27sOoVdIgH9S1My4l0OpF90TGnj1w7B5ybskztaJLgPetouYsOwIHKtJ57E/LyPRyjbplmZyi30BjpFZeaowNlxfEBtLpjjkY61skql9Pjb18bTrg5kCEkGW0m0nhVU6xi8r8zTIrO1TB/ydEv1z3l8hzxqdpZ5+gTyoyIZYgdmdbM8cKmx1HbW6nvAEYhnEwvMWM2qNIRvDT845wrNeyeZVrHRVuKU7vsjsMRmWa0RTIdrL8R+jQMdwClJNOJYV+0dPP7w+ftIdMRVuIIfUS92jfaLzrFkzripEVBFA0v0r6Oxj6Qadnp9LirLM0oWIhHSEl5e4oGd3+RQtFv0SgMu4+JUM7ifwInyw0Lb/oJNvDAZdryc+mMXGdZOnWjWHvtzPz9uEk465GDlSKClSaCRcAkGiIUXZGt1rN0ywsEItMJhq8ZYCOC/tsuO01YiadiimeycpxVM4SQgLE08y4B8+fxNdYTwd3Kd5baKrlDNacPwBGvxJfYQeRUx9vh+iL3qKe2UXQaXVIiyKJKrLLpaKskz6dz0+9LN0XYHPOJKIftrn845EoJX+dQFLcSwTwZx4Xp+YzF+8w6SKDFFIFdDg2d0OhaExpruEUzAQA1mGtU6llAdLEVOg8jChpWz06YU2H7DM5QYf2bmU2zCEaTYaOCqHTRwI5oW98qqih6Fjk9TO30mt7v8pnEWM4B5HgrOC3jE/puHIDGWrAaTZpIO/QvJhgQthbfHOsHtkOwPWm2fRS6nIPUkNOZofI/QEELKlqi6EEkzRE9XN5VHG386qJRqgka83NI8/k8Q5dE1yScFF2+hWpXiEY1pAoe1UDRQVuL6Xfghy0UndxzRJVnTZCgGt3zi0ZC4qlhF1hu+285h3rVG4xo1A0ienSNSuk23Zhykq7Tx19CcumnEKpxbEsRqwKzNdx/C3R0+W4000B0ahOfDG29gWdY1+5OtbHwYRUkFLiP+FGGUbkU3rD3WLDkY2A4kwNcKOUvHMNbhHRF22FV4T5tu7aG0URjApkZ9i/uubujBezmtHXQuaHT3djG08bV0JHnp2hczbFNHfwA3+mKyHN7CapuGRA9UJ5Zcchl5q/+JgwwIzxBhmh3NHJtF4ZsdtGoRfIYXk4MIfmVWVlBIXSk9Qgs1m7zwMnPcTE8NgmskrCTsKqCng0cWwsvjKLtq+EB3cLdpMRvCfL1/KYLzVrugTmGc4yLHDacWY6dLox+h5WwIypgiEwHDaeECe3wtBsu4lldVRx+HqwccGnPpkIjaUvumNp/DvZUwGUqPJuIrIstcMvYh0yjHxIkyRfWn2Jex3LIq+eoaOSrnCZ+ulK+z21zontWLU+ykmT2D1rNgKM5VfvDL2CzLKy5CZ7bAUv0p40H0NbR5e3AL17U78HgWIe8ONHi4dSjT5KTWUdeSvvG31qRYTK3HEokLyJKtEaldE/3U9sqDqRumfaGf5EhKaJrikCVijpF0tHLoVFYNVV6NlxYRXWwW8+xuI3DbI+GRjmGqls8ndAM2GFvY1bX73gQzugp05wa4aHNnYqjmcq7ZHoZ+iFKR+iWadG4FfqWSyZ46LHQ1w+xlLzkeJQXOJbXD1doa5qyUqpPAEmma8fDgu+z/JKPg+FuZLp09S5fXTRKpvkkySMe9tZQpkvyomvgHCe3LbSpbjtOugW5EFn8tAow28KxlbT3eOiTES6JCt9FZHqmFQd/BqG6moPTwhp7yjR7dyldj81dRJ+sN8t9JLEFXqqOXTRuSV7UgJLpQkmmp5RkWqmd82hfN9FbjSW+Ab9mMK5GrtzQHbuTTcdasf/7aIz7OD6UC3Yj0xGRok0PX/4t+1JsYXTkLcj0SRxHKJT/CY3isyKHZ0umpWgwKjMl0+I3ithktuhESNIZdBIyE6pmPXso06nBpxIIOZkUhRWQ14tMi5byIvpUHI2qRxvcqLCSlOGLeOZj+K2TtL9ECFvaVRQ/gqVb7YlN2cAsTTAXP0L1lMuS83fgReVZJ/Ghgs138WAwBA+QkhH03ZTjT1pFI70fkg01LFigwRpg9sPHYExriRLRKHlo25ENbOm6wNaR4jBmsGenDITZUHJqt3aMyuOLmKIsWdQOeikphsuqh5xDFOtmcB4ClbPD59GD7GupGE/0ailj95e63Ckn/NAoeob2M3v9IGisZjgNjATCNvhw7mrfttO2KcB5ckdgH5yasBqY6i8LaMAIS+oIDW8zk6POsdwChLRiAt7aon2lLDyPR7WKaYwOrrf0kHMRUHosUlBgkAeL8dD3lgE4TmIazu1Av2yBplkrcVag/4zp0AYvquiZ1m4LbNGGwFppoyQaT729JLlciaZzrLj6KtptGI2/JrxgX//qmTMIN4pSzppHvlDkGEjxHz7cs3P6e84QqMp2LNaG7YHNXRvYCuiYQufrrUclLINimb0C2uGBBp4FCF3RJIfUgNdZvpZey/a/cJ+t4cOEh/ftrzQZ4950LRjFe4Nj0GjmiHA7cYxnI/vhQNOOckraaN+VLYEtXB/YcwjuW0Z4dlEzTinH7pvv22p4tAlcQ5+RnbC7ZrIUVk5HyGCSAu0M3vtVkANLMAW67oww/O0MT1iDcp0hx46DhhkjEtYBfQ8t8+25LWaTMF7PokDOH+vZ4SOT8GhgP53jWxP3V0cgNBgoEhRnEqeouPpKHCEO0hvscij3lVDWOmKNCrzPz7g8EMm0GE8YFthsBed3TPFswuCEbUFh/GGxb60o56Fg9Sy0vgH6z0Wu54PrKppRykXoqQKXS8QU8AR87m+8zWHx0mQaOUOmE82fxPEdQ70wHMwkGtVpIj3JLjoiYSMaMW7Q9NNFvo2AiA7JB+d88viE9cOheWFNYL9cGthU+NI1pZNpZI86E4POs2DxpRDOvbIvRaZxWAqbrHbouSzBMNjJocORGiUfjTjIJ0xHrms8W4G8Pgkd6ji1Qf8I5OXsY5Fdzp27PLAFyFE/eEC8qTp82qSq30yrQqa3r/4OIwG0mSbc7E9xMg0vwyAyumEOoHB0rqZtZrO5ybMLxnjOIXhuVWB3vxjYFOhw7cmfHYB2zkR0J5jORaY7uEbG0Pi4iUvkz/i1Z8A0j3Kb9TDQ/hDIuU6mwZ/p9ilkL9AOpVGoobn/FjanDfXsPaOli82egr4HoGMaNDZhgE8Yn7ABfIsk0fwk8rSKjBM5NerCy36l5UyvmAQDoKgKC/dfpuUReSjietZ5bHoddEAIN9Q9tUnT2klgOAP9soNbPLgUmW4JZVpN8Cz0nDTc7F9GJuxRZGkTuigDH7jhOzn8TqbpIK/5JhUC4EuS6WE81xp4+nImdJDXW4oACkYFQjp5hHci0+NKMn2PZBo6RsKjHxpPZxkb7p4Heje1BbZkY4Cdke6Rk4VzgM1KDTmPaODtMMCAl2anlYeUW2aaNZ+sbna6IpJp2TytnPTRiQkbhkyv2mz2a2gcBO1AbB3Qf8lrPBvckLBl0PYgfFDBMeeslmRaedNJZLq4+JNcMR4aF/O9H0UAVEj3b0JezsH/IxKvDrxzrsRdFM7x8WMa4LtT+yVszgthJ34N7T4IPvzM4Qmrw44/iw28h88kdKZqCGcLq4OMM914NtHAa2GCw7E4cLWWRalgRliCnl+ABtBDLQb8izGon3l/xrbRINtxCKpxpEYMSdhPfpuzD91SsG98JG1HT0vaus1Et7jRus2+PbUsb3k5NhIA0QzB6brRlq4/GtlsoEf0bvZxsqRJD7y74q4tMcU2FkfbsQSndTLtBcmFvFWg9WdvMvv4GUn7wFkVtnZT0Rm0xjrPGvhccWPWrnnEt7H1Zjf8S8rOOSltD88u2C/nFmyEbs99HaQQqUXtkozDesxMtOrDGUL9SEiaHqAHjY6sEs3usDwMehf+lgeJNOGp143hGl0Eg6C15oDNVR9I25uOSdmK9b4ThqFNEkuzoy/vsMtOTtrb35SxVRs140hK2zP1Or58S9b+/HxgQ2nUAm3iZsUhWNJxyrVQcqLnQtiuqt3/cURqdigLSG76A7MyzidEP9SdLzJpapuFr3Hr+9I2dUzSXoRGATNyUMK2tgY26rIO+zCG7nPvzlg1PWD1Kj8Kfj+6O2ff+yv4wmyFUm6P1oZJNh5DLiJDmQMvJfQMFqUhyN0TyBHRqIUFcxst2Pgz8/qfw3AZFkq8CY15ODiNMb364gprwqsTVhpybYYXn11YtNddlrXPXZC0T74j4xxUDVu/Y5tvl92UsyXg1QC9kZPlFv1sfCO9jN+44TOtxeKUnmsz0cJHzdezRDR2vAiO11pC6/ZoLRw1GkVOyDx6PP9+atIuOjtjO3CgKumJXYjcXPOLrN02K7DPnZSwy95egZJGgFF4py8u2pt+kLMZ4ken6ORm0WtiaN3vdz4dVnpaQ66g7XUfgO+VsPK9EI/BCdpYRHTrzSjimRhupm1LyYtGPvPhrZvOT9m5r0/bFhzoBpyDd68t2hV35O0vqwO78qykvevNaRsGj95xX84+/POCHUZHK+qtq8crGhO1o6xYezjthrPpZFoWJcSC2+y+gLNo8ZFpa1+LvEzEuJc6OhxjHV5rpar/ek/ajpvBLB/asbE+YefPL9i//SRvA6Dl95dkrHkYTmqbbwNRgkffnbXP/N63Iwg+q0MjfnIyTR5RsYL8uxqWKhjx4XA/h3tr3m6ChWEk0w8xMzptNTwrnX0MAfXyrZ74EOzx5RemrXl4wulHtedDTxbsP28v2qkzPfvkB8hjohrdS+df/7OcPfScbw1Ef0Ne1DBcxhqYWSiZ9hrPhM7JpXbupmZ3W0qOVx5csOlPhMfOw3iRjuEoxNmC/g4a7PhRnn31wozTKR3wnOT35Ptz9t17izaaDulS2v/UaQm7/rIK29Ye2Jd+nLVH5vo4NF6ocxRWQPAKjUcz9E/0fOBlyPRIgHAmpUTabgWGh6IhWX/JZ82lZP/TLcPsNdBgP24WwLTQWX8ruuVS5FZyLhH7MJ+b0S1X/l/Rrnl7yj54puyP7zrtulP7L3O2CMe/CcehICChMajoz4zJN6KD7zVv8OXIJYZTTtxeWpqL4V+ETzK9+Tra4GhL8byKOqndUtD5Ig7np96MjTmjJNM4/heiF6+mPZ8hmIDo2MU4Bpe9LWMt7J+9wrdKvvElnOPg7sF9guohVuh3Dk7BemT6ayheGFn47ktxMj2PyMEtyDSOKjSHeU2hTL8Iz3/rgpSdeXy3TL8Lwj773zmbhlN45UcrrI327QDvChh5AJ3UW/+Ut0/dVbCjJTPCkQf265qtUEMnXENww97LPhSpk2mhsbuiVuE4/4NtT4FnC/ZeMq0lkxhcQ2AS0FegA3T1e/EXpqZsCwGExnrPznuhaF/8aY6IpGff+hD2Z2zS6STp+AefLthn78y7LMpQpCXT8Al5qnnawGpeg0x/hJvq/r0XHQmP8lfyAt/6LX/F2amCrUc5fVjB9WE3KKwjAS35DcgHvHf72Z7d99eUXfhz306h//Nd7M8w7KL8oYtgm4l35eyqv/luVCwnInU3vMgEvlRxk35ip/QuMi1+l8bBcB63Y4uwR1ME+PWbi3bXfQX76SNF++gpSfvo2zO2eSu1VQUoN0L1Cwp27vdydvwQhgORJ60IjA4pPRk3RLkn8RTr646yLAsYZsZf5EJpjkGkrXZXuDR0VHBK5n/HvMJxVsGsh4S6FDwIz0dj0nAokmVrCnb9b3J2AxGBX9GIp5/AREuNB+7w7eMYk9OPS9lPENov3Vmwo1A6Upbd7cKNYPQUdSerjkRZsczERBpuX51ARZhYFyr/LLMQvKGW1vRSHB/5HGndhO9ODO/cpQW78md5+x1Rq0c+mbFxRDGWbglcz/LZRQX715tzbkjrhg9XuH334d2PwXlRjxeT6QhOEQ7Ps+iZx0KbqbHvo/1cq7p7CEnO2rWIBgkkYdX8lrstxXT7jF6HIueMIuZC3pwAPoHz+RUUh4ZcH7y8wik1WxzY+ZckncP10Ws67HZ6Fi98scLOPDZpVzxUtAwkyJCEhpeZXCx056LUQ05jSIBhV4Zyw3bclbSuPdCoYZ3i1mdZ++SbhJgPwzGQAgodLD0ZUFgL7fn0AhynX+VtEtG2uz5f6RwZQ6G9780p27rdt0/9mOgFj3zDv1bYl/8Fx/b7ORtUim64IVFyS5INh7HI5/dZE+qtOIRH0fyikYfYU4EW0VhYdz9h6mtZ1HY6zikVIy8uWltg+Byjdf6JaVtHD+yob2TtQzMTduOnK+2811XYbX/K2UXnVtpqjh1zXc4+Q8fk396XsavPMPvc7wt2OAonjzyouYI0ziUdEmNV+uSY9xGNGY1dQrB6kRdOpwcVOi3a1tpL+aU/BcubCW9Pw5w57nE9VQ1xHEtH+LTjKuzphb6deU3ernxryr74jjSGFlliiOSi8yrsMRyBjhwdFY35E84npm1t8EgOpvYwOh4TYPyK4ZatPha53GZVEy4hj4iI6B6cwBBaUSicC9Y59xs80iZL84qolJshK9o9NxTzriMTdvxRKfsflNdHb/XtFx9P2gWvz9jtf/FsDVHA7bm0fesXBfvuC749cxmG5eQq+8yfc7aCMcQO6NRka9JOLVdN8m76GJTxJP5fhnymYBXJjKRlD0U9ThbhtKfmoMzG2XScirRWHGdIWY70U0T7vntywiZMoH1/E9jn/1K0pz6ftDe/IWlfv7tAKoJnD89J2u8e860Wxr3hU/SGT6qyKx9A/4wlZUCiJ56Hxi3w+kbZ2X7H0ym/EHYqyfQeyJM8uDFdTbFffQtd67fTWx4sxgFeaNfj0Wn6xEkpG8TuD9/o2x+XE7X4atLOf3OVfRoaV4kGctg/iH7McYnWmW2pqLCl0LU0gkff4rn616BL2Z56ltnwN4a86NqRfbstUgzQs/kZcg+uMhtzLDfhhrpOjpeIRLldewrn8HPyd/Lg7NmfL0/ZWW8Aqx9mbfCQCtsO27/7x4xG4OhouPqpjfyBVoIH4XPq/in0WT3tvPJ6syPeyXMdVqIxehCd1FsRjViS1f/HtddRxxHUSYOJR0I2hXfMTj8pY2u2mr32KgILRyTthxen7M3HJ+32+/L2tnNxEN+TsjlLA3s7HQAjV9bkAFCFK8iLmzCWpiFqj0PR3m429gM8w2jO4aH2xouqROO2i24h3MeHWbJYFu1lP8+HTI8aYfaGYzP25MLAzroub98+L0WHM20nHeHZ00QtV7bQQUavqwN1K/vPeG3C7l1EnRUpe0L3dzTyjUxbFTRqeGvCxeCKF+ucwN5wVAOUiuuQ8CxzrkRutoPZOA6onaFTOCKz7+Gexx6Wtt/+DT/ijoL99pK0nY1DeN3/EkTgNscfkbaf4lR/GKfqdx/L2HFHZGzwg0SFV3K9w1P3ozLVTX6U1U6BaYhOazKe5GGPhePiuTxRo6fp2GUmUSczHNFnOfZvR/9IGlV89F3NyJT9A38C9WkXnJKxC2/vtPeflLQRRAe/dWfWfvG8bz95f9o+Qkf6ocWdtn4jzQkbuY4T9CRqJ1kxPRNFlJX2JZeJ7PcUUyqjxtYw1ehas78uTtqsnyTsodUp2wbjHHUkjPQiBuFvKRs2DEPPqzbEI996V4qcLM9+9EDRHuQucrScDoFmPXqK8HquYgJM/EOogJHF1Cih6H5s9F6cQaGmrUu4ZiyNj2ct5lKD6nocvKufNPvFfLNHlrEfYZjOWMGDz9ELeiJlRx7m2dtPT9vK9bTHAM9u+nSF/SdKbiU4o9tKpdRwlXBpksZrmUvdHBJz7LWHoWs5TwmWGxHSkZeFis41FjTqMDR+9X5yrjjtqUUpe/0E8iBGpO3XD3OTbNpu/AcePqc+t0pGzrPm0Sn79QO+bViXsg2jeUZkNqyIClzvkVZvWxU+v8++vTGXlIWeJY/QrKOHMepzkIxCksGOQKC79cXfQQ7tPgscLzk1YVUY1+/+Guz7p+3ZNUk7goTc10yvROn5VsU4yJMM2Vhbyp4CVw0JOzrklDI9XAJlHVugkQcrwgy9OAa6oqs4hUaDZLFc8vxnTIQ0pM4tywAGVCEcPnUnQ9Mo+vXw4+dwqDqo/9v/C9HwosawN3Hf+5bzG9u4bnvSxjZTZ3Vgz4g+tbe8Fxws997HFn5nW5wzrOGavdOoXneOsXmYiQhtklXa1ZHwcSoSCGoDNG5DtyxcwVAC9/3EEQxbjQps0/oOomxZO2x60SoIr/zhIR5kS9G+8wez959cAT9AE0KUK4IjbSkSPRKi8tXDrKN1nlXnN1qiOADBR9DKcOTWcu3oaBBxCJmE58MBIgSUZ8ZSUMnrWyp5Vp8HhUYPeRkAjatQBquXZGwQcnrxhDzDRUlbtSJly1flLEW07fu3o0SQ479/JmMZer0CvoF6hyALVdyrq6kZey/WMWy28S+WYi0ZBum5FziWFBUbvRQ9HDxBnYX8QgvqRrBSsp6f1ZHhgRo+FSlwAsOtCzI2tr1onx5StKHbU7ZybtL6t7AIL9GLa76NKHCr04Fy2zwWBkTxnU+j1IIhpFKoU4o3zWu+GkbAR4ssmX8R2jNWyXPURs/RC4W61kXJ85th3flW0e8sq/a2MKqFjFOUv3YyGKeWJKx9Ib3u9oJ9uw6ZgCfXthCVpJecf45IxsNFO2wgtpTUhB3z0ZVEWr9UXbB6HFf6nBRhgdOW7rCOIcdD90JL5BaoUcNje8BRkbRars2wLpc/aB2jW5XYyJXQSMU8v9iE29igF5KWR47f2pqzN6pW6NBIxDcT5C4hK+NmJGxSW9qe+VXRpk/H+dqWsxOpOwWujg/5I563Kt6QMGY0NbBsSqd0h+RFdOoPz9EbrZJpoqdWfNaCUWSi1PEKMCYLlA/5K6+36mmO9euwm7h3uhMH+X5GE9b4dtWIgk1EXxY2e/apVngPVt5A5zSLGpPf5m7Ll9vQqEYdq9I3Dyeq9zh5dygAt7SCI5JTPasI2vnrwHVXhX+gXZFz7wkLJhIRqVpuHq8qcxGs0qNJ7NL3Y98wvD9BQTYtgzd/l7bhhIJ/wPj+cdhGX11iAABAAElEQVTAhocxqn8v2H01WdvGGHwOL1++T9c9tAHfBwNYBqCin3nMWHOr0SsSWCbT4fm9/FVdVbMsmMAQZuoZq+yYw44wyuZU5zrk/hd0gsHt7gJRXWzKhm04gc8X7NitgbXdhBNIZO3iDhYnn5207HzPPjKLTj2YyhFXC6oNhY9PRDaDPavouA0RqoKvhFnXw7gzd/6jq0OZDgYsJcrJ6uzBnwg1ho2kK2lmq1yIM/OjhB2FHDyA7hl4N+kJiviuIv0F32HLd5J2zJKiPUaUrfYOrmK49frVyoHk7lIrKsIqIBF90ii2F5nXdoN2ukM9/4iqFLRXo2vC54NGfB0by/lJFHj+VoJBisWLeoJAAKHha92ikM1YPTq8Bkf+hWXIFJHeGqK/igBeMxs87idF5nVFOwaH8Yhhnt0AXx6GDVVASvR48qU00Su/xLwx4wcFqZrX2eBjbkbe8apQQJhJ1JVnr82vsjFaPRdhruvPGDM97ufnFOyh3xWt/7DAzjwjRy+XvAmMV4qY75LFBfv7/cycEN5dhZsiAIUNf2bdsd9bovnrcCxeR6hlus7adUOvUUXp8+D+mjvgTxYCG/o2ThPIpQdhUw2g3/C/DRudsFPoET36j7y98JRvo6d49sZTMwglw54Mb4rp58F0s55mvVaGb1SLrq2iGyBgixvvBd1NhJnfwW1AYRfmclfoKgoXqAY9PDNk/HW3uaGIRP8TIEpMWSqiUTqKxlVOw8gJSZs8JWmP/z1vrehs1eLkHn4cOdqzUWOTONlFy9KozhbpuJ5XP2Aun2E+sugJZ5/I7xINOoWaqsFLa9HuVHStFBDRgmDrn/CuoY9eec8hJx/mSdCGRc5vnpq0ARit2Q8TC+BR6Lzb5KNgOJisQJJGKu3b0meKvOKKu8r5iWARFn4r66o8hPM9nvvgKLl2dk+5E1k7/9DzUVGOVxCwOG1lzbE46f15bElW97XqWKEP3WM3TiaBkCbaMCs0Kk1gmma4a+MLOBNA1X9ckoRP/GUEuruG0n30EmZyAd37rngZ794d6RK1qhga3Wt7KulJ6h1VyItoFP+o95OEzwZDSyfYJAl3+Ns7rIVxhlQtY/eN5HCQpJVXiI8LGnBOVbYyLKvru4ruI6ddrwfKjCzdRzxVflJ0NlE+wzEtP6YF/kQXQyXl+yMaMzRT4whohA6lA3RC0w4Mr1iFxdTxv+kQMFRd5Hna2S/iNMOG2JjjMyqnXmiUEYMnw9fs9EZbROOu3wHvR3OyQ6QydC25B8M6Mug+ii/NvWsG6o7oKh6lfRPDRGArZ7sLK35W87sAjZ0It9ivixfdLcWPohXsIFdFiwliYtiK6NXx8qL92ofzE2Bg+Ilq5bfwLxX2iRdTRM8zA8IBhoAh4SzDmdbA2j0QnEGJe8inx/1ztG+A7CSJUrpqdAsVJ9cM4Sr/R13SgE7Jzg+gs3op6EZ1jD16lHoxrU+j6fUeXc8UbhYZyigyvJYZDA7cMw+Gun+aYQ4Vms5yhM+SDAnq3MwgDExoF93xrvo8OjsJHOhA98FDj8AsnbX7LxrOw3Do3a8kP7u8zPJroakAZgHOcLoRGsEjB40eBjfTSNsTkdZEjDTbgkVi4cpOTSYweSittejVs4ncKP+T9tu5hO208z79orIEa+WBZeA6I5Il3Si8iWrPM2LjwXuS4QC+zJEKk0LXJGvgJqLqDjt4dc+46D6iUZ0e0Rjdh8v2pSTAUY3jaJRUlGiEQOnoAsNuascEdAbwZb4FGslnQvW7PPMEvUHxsjCVWnWYOtnQzfWUel6+E/AiujhQe7kwSXSMn72W6Dj0gKMrer5yRucU4VaAx9LyFxxN0IgfnGaIX+1ewN6lkA+1vegvItNJ8HZtHjYFdbIhIVc7qwiLUju537v8Kdl4t1/Xgp+bnQ0A2Knua2lH8TiYetjA5PM/tdTXsbNnnGVX/KDdvv9HUifek7TPf6DSZjNi99xy3846NmXtqJHLiLQ+sSRwqQtK5XEPx3pd2acvIuqLsz9m/GAcrGNKDhY3QTFvQIstwMH4Tecv7PTsp3A/yGHAS8gyrqtGExBqJL22Snpc4Kmo0RIokl2LBABlr2nZElBJdrky2PWCsj00gJSIGqwo4VaJGlWbIeNIVznm3+BjVxgggA45DTnydbqWKOL0lGiUBxmSzIZKiWYpEecwYYCdo9Lbs7gLyv4IVBrOKSAQ96Ukxfxlxf2kLk4VTRLYDAIZvh6ndJ6OoUwKCIBwVEPvTKMIhrmSCJpA72KunWnUWTsXHQc7CbYEXEsgBGIuEdV9tqNFF7KryLTQIg5CZDy0r0BPyA0DQpccxozyyHauIrzYYYGgqbfgb2ffzvTpFrsWnSNljIOf4MN1QdDBlQ648HSdEt1P9DAE7HwIsHL06bcUB/yppypqiJhrUnUc59vZMleT9sOHLJQZuDm10Ckp1gldRTfrUbRL59Crc863jJoI6Ho+nE14UTmMeZSFcwR1KyJrySpoonejoKF6a5GhKMrR4r+csp2KI1bKQE6+nAEerOs+5WeKZl3bw5ioDdxDS87cLdxZrlpOhyyXD6yOkHSCaNUwryuqisdSkEIXKZ9NRYNuO9Oge7PPYScc9rNIzhzm3RiqkxDWCa+BpY+i1R71I5QbIWelZ3E6Tc6Vq6vn0ei3q6X0Q0pXz7JrXdHZ3d9CSiUCJ/zl/lKly5uT7lNVyIXrWJZ6sYouRqWrE9IrTLo4wqBHO0YV9PItZECJe8NUzrPc9Vo1jfSI9KLgEYYq6gioyOC64/x0zVg6zx3c6Q84SLh2c5+dTt3lx56vVZWiI+pvyyFwnTogKT8Wobn7ZuYCyaMDu5f22oWu8h17vlZVahRNNDrMRKMu4dFCjNmWvKhAqPb3XjjJXUQFXTwYPVlvV6idouM9ry07n1PUtg43BCKkMZQfx5tl7K5jOkH6aNfCvuhBHI7RvXc9c9c9Pa/t0QaOxvDxHQRqd+RWMq6SkGMFTV3HON8FxHchU/wkB5MTnJ5zl+/jn3IapSMjGoUZx7J0pKZMt9kVx9pcG2lveu9EJlMU7G3fzNkcDv3knSk7cSY5ZKSkjGMS07xlRDC/k7PDaE76hMgYdQg31v3MPvUheoVP4Uk5j5r3tvEy3ySvfiiizT6de4Qo1g4bUXyRv8zQcMYZtTSaa6lDkWjR5g12j9nFAkowFUC9FjWcEHOvVIGa/SmRtveGcVUv10KTK2CWGAV90OCSzrBP+q3D0VU50V6+I7wy3Bm1qGjsuqLrhD1sUKGjEXB7ozGiT0Rg2z1m7GXF4NpffoyIukcuW9exiOiuO/Ng7j4CX07n/hRu5PJ4RABOTM/nK6eDw+okdEZY6XaChBKdpuHE3nHkgKMR8PebRj2fDIYIoCfVk0YOu13gEi0T5ejQbp1OwX91dKnjrBIddxrSXawT4ENHowBXnJx9u2Ctq3sUneOikzyjo1GKskeR4qAvIVJVJHNKcnbywq1KqiGEjqZQCYdYw2331+VEcKZz4IQjdO6x6JnKinNEoMBdV2Z4o2cUfvTAcUndRTq9iwbtUnuXbun0sPaFp5bfJKTPaUQu2BcAVUdEQxTldUqyjEbdgfOcIZB/qd8U0ei2RXtUhw6wrf1O70Qna78rAO8w5EB0kbPQapB9KaUK3bV6xrKiKvUpsYDO1CO5K0o0dt1SzBAdK6si3BSNuir67HLCbnaUnE8d5RldHiAN5+7PLgeRuyd7IF3UOwPAvi74OCRnS3RG16m6ruNuW8RDo3sY0Yrs7HQGP3dbVCu1uWtVj2rWJ7pbyfkDyMjBV+dNZ6h/KVUg51pOviBSU2KTw+o4p7uoPj2YrtRFpft2n8Ah3b+X4k4FHXlKriOjc1RPd1GnWGinaGtV7ROt1PqLcqgdjTgJzsFheC7go9GRHlWUKuMCPYA6Tapo59t037DnlqMREJRfp4ixc8i7TxIuBWjS86eRGZmxIk7A/8/eewDYdVT3/+e+skV91XsvtqzmCphmTDUGQg0YEgiY0Esg4Qeh2KaTEJJQAyEG00wvBptiY/4QG2zAuMpFvfeyu9JKu/va/X++59779u16Je1qi+zojvT23Xfv3JkzZ06bM2dm8jgZ3Cam6Q4n+fxs5WPWywONtpTkraz2k9858R95MkRpIYP4BEaHnVvAJC+V+CXHgFL7FIcsF65TADB53BHC/TyethLeN6U6ebvULSrDk9qIYNIgV+W7pzJ+dMyvpN9ViPAv3UcKcaLUOHpC2p1lId2OjgvtkoNPIp6sbB+Y1mFve0m9rWKhwPoHQvs7YrjDzxXtcaz6/zExyqs3UDaL2LJME7pd4QVD03LNyUPGQB4DS3tK7WW6ZxtxWNMgz8Ce0flLG1++yToz7CxNjJFc9xTj9Ke+SfonEEEBt9MKN3Vf9PPwFDcyYdKHZ+j1jhfl7+ixfkk9KXXDut9xAUsWCb1q0jWvuL7RNc99EOcFJ7kgwsRDIAL2lHRKkqcP304J5HOPg/J3q4T7Yj4IDNBdf8ZFKpdg18dHbMJn/KzbFxkC9w4NBoyx96U79UZwSIgJSbUoEHwIER9lws0ZoshdsTy8GyICdq5WK3ptSbdmdf9BvbwLifKqPJ0A43iMy4EWBIcLWgSJC1QRn5LibzQCor8FW6A2+DNhOElqFA/lBq/2dX9hVKNJAqKyP7pO/qoq3UbYJXpI8qo60NIzyVaNUsgrL6uTcvK+t5VMEiLZ2GKsPjv2hSi4e9JvPqJF96gmNKN6IxxKkTkcNCeDQtAIkjvumve+T/gOHMptH3l9hSvlE4wIKt+Lpr/443VPgkkwMlXiUwr6rbJiGJnWL8tapip33EpZCEZw53vUcNuz65vb8px373Ne9H4eWZNRmfubKNyndOT1TfAYlVFhGsOVL2CKnLKahtFIHBgreIF9nzFel4dSzxx13aqHHjMMlFwxqe39S5RYRYFPEfq0UwRj8qyiaTactMop2DStJfZMalM3+5SMprQxuqserbjsIvoh9NGK4Id3uhOsCj5BoiZnBrL5FGiXgSYYtRqY+VMOw46KaWBquoR1pXiXRnCWgd/bNX0Ev9cBeyco0+pBvRshVC1hOlcjVwlRTdt3j1HxnBw3LAx06wK9qTuhEMRmk+K7oBrwQ3F6Dn+M0lQV5HSUmYccvNI4nkl5WKsDPh/FbE6ejEebmRZuGmn1Y1hgRYxlj5DJCN9aTCNcsFEvQpbSVUNfEq0lDAUlzbs4QXxQqP7gXZrM2htrmgMiobtmpqNHsjXHSKbe9u+uWCc0qj4ew1ZBMl72abqad3pNkmnEHiroIOT4s6ivIyz1mt9v1jwv7gIeZh7qZvMqRpAegT/Vl2dl4ERWrBaB5wAwNM0n1ot9OHasRp8A+ozHMeXGLMle4sgmspBASnI3q6y7bS6vhmjvPO2KL9nDRqBCQWT+dsdmdF8DjgTPAgTcd66NAGp4LGVoxk56lcEmMaoj5j/JJj1+of0Lq1C+Vx/aM8/H9qGgg6Bd8asTEcuN4PFqVjHvxbB6+/UlW85WVR1VfDo1AfM24ER/ycAKIKoKZ74VDj3EpqAE+jFkKDAf2ZlZgGwjeJK/AXERWQ5A1Fx5V2MIDVMBUiAAIV0mwheg/OK96FtUQDQFH932v7o6YdLbigfSJxqdcQMpH4jSE+1VU4qIRwZACSLTu0revyjaOphTMGqE2cm0jL5r85Rpr58tJrM6eTG6iv4qczfYk7e579YSv5NbdJpPt1WNA71L3SzfrCM+o4jgSGK3vXCeiUEEf4E56mRg78+qf8gkTc2KLWc0r0yt654qwPjwu7V5BCQ9IwZQpT1gFE/UoY8KMsATOUiBEsgKm6vjFYZFVijkrBNh455a6LaahOSO9bwsZaQHx4em+l71IkJiKEFef2EMY0y9PBK4OVYPaoFhAQJ3uxjYvBp+ZmBijYg0RZeMlrqBIGnJ1GXQcS8jjk42yI2ET7X6BNwIjOptL6P2niQGMWLByEvII8B4kbYLvnr4fpyEGSsKNV3Y1s6qwl3AhEGTpwtnncECApRIBV7Zs6NizQykhDYl5y21nX4OW/+XYms6IcrS7a9eoxg7ivupFjyHSXFGI5YTXPw8CgYwJTJpJDttDvuJzWYaXcYAMO5jo5/NG1neT9VLz89aPUpE8Ckpjmw/cTH3r0GJ1ROsrbZDi2HHVmzgn9HXEoaetf9/NBof91Q02FlM/xEczpQoY1pgDG0Ze0gtmKcRbATj/esrtvrusk0l+PWC84hzSuhObaJ59z1Qtq3rNWqnuRpR0Zjw0D1IR2B0hSTwInlS1PO+JLJJ4dZPu5yB70IqohPVWfHrFzwza9MJCgZK3wzzrnvKtu7esk1ZkLfzLh7Nymny8n8XSuP3v1bwMz+rbEEhaJbinhsI5P6xiNfh6wtYnofXS5KNMGqoUwpmsT1Bwwy6GpwKZ5COFoE9iz1Vpk4CCFIbiuLXvyrY3jUYU7FMbEekLGA7nsdelLObri/awU2oJDkIKF9UdRj5Vt7+FQIFf0mBk2kAAyDRe1+SeEJ5iQkMRi5jBuQq+oV2Qo+CsYQRPWNuxp7zggZrhF+E2mYMwh/8rGgPbWAvrNmBvfC5LGJgml8erXWbyvb9nxbtCO1QvKjznbQz8Yqljf+J44RjoeqmASOEHHeSIAUK4pTroS31VfKECyVViuESdjyIl/7llp37GjJEQkV91UFdz16ZsWdfDPPyW9Vtw0D46o+Lth574rGzArvsr+q08p/jYomfXRvaZ3imfZ0iEIEAZIftW6y07goUEIOyEQtoP+X1B4+swLf2P5nN/agdYvNX379RLQP8AjrtCgyUJ7LyVmyvE34e2Fq2j7JIaR36ZioG16dfU2dbuPcCVvCdj1Eoj3WkLYRHehr9VG69x0oPvclaw4m2hwjvBvCIRhKSHFW9/0ksAmyzIzsY091l48/6CpuLXwRfEnsKfjWbNAl8fOqpLAohNjbEyGKVBrFLgT2LGNm5GDNfv6jOFrGyvoLnrQJ8fyDW+4UbEFYaH6l64UpEu/smmP0T4PDZlIGwVQdHf3QRJ3+BayrVylo991EF/Nu8iWv009nvZseAFfC0EEZ+qjqb2NOrV+TtlU0V+6uLiKsi3OT6W4t2A0Hs7C5hI9CBH/8btoqADt73VVb9w8+CTyIxSSH8UmlbQ3kPUP1KzDsxAQKqs/lOq8x8Pkw0hvbAAPJa8SyPG2535kn23foXsmqKVVTcE/gS2UcRrtqhuBGFd5QRiHYlZ7V6TVLDsFr33Gid295LJy4HGhp5giScqc1SHEexODIYVmHxITaffLPlZ7+SMoW0qOOVV1UqRlIdeZhHeldJOaA1G8+fESDiCPbTQZ4V+IAjUkQcHOJgHVu/aaXtH4BBL+BFkC7DyUvW97GSKuK5qFw7URf+yPYJX2R7gku51/WeLjsYsUxjlH2ArAeAVQ4WJexBmwDMso63gdR2gHbGjB7zlwzi9PJR69z8KQzj79H8hXRqhMcYgsjSBl9tVEbxvSRyYkyHpbtt9MobrJ5DdaO9VKL+VDjQJOh3JnBsRji3SkDzinCo73ncn01olZb2bmrJ2oMMJXcBN3LR82Qg4FLnXmtd945oU0KdDdaHvu4OqCAHEFH7+e+l8KUUzrX6gf8iunnQ23SE2e/59op1X6/wmcK9lQD0EI3ZqteS4rj0DBJqhx9kMdRXKUsUrAwyYvqRFBdV3gtzPt7s3Bcy5TsFOCgDvnB4qOJiCHAeyk0bjT4AL9+tIa5kPukJEB+DN+eVn6HoO6XMqol8gnH/H3gJPNYtA2y4uIaWqlm7XfCepxgZspQ7YfAZZ5ktQxD5lhfk0WPBwUD6max4m4mx2oKwu4NQuS1azQc6Lm5luxW+NT2s7NqjZivejfvYlqWKT2mZvT9h6etN9BFCSvFo3gl89TXJVX/0PmIengvzPpPX1ReCkVq5bNrBxrIENkxEhu7FCPgVRmABHhbsF7MKSjyij7LLFrwRo1rL93G3U4weQLkHwMFDt3AfuaPo/f4mHX575F6G/2+z+ez6XIJmksGewhBWrGVjx2ZIAXTv4vsBYNyK/TCBPl9+GzSAoa1NU9ez8vFe+lqbp3YljZqP2o49KNytfwHRovWjPAb2Yyba5kl5dA0hyXgs3ooAeT8KZwG/qVBIkYBDRHzrJnbBnwwp0e+bDpj9Flh8k6akGvDLyVl24S9RatolV/Sod0Vz6ueOPTx/CL7Zxm+Qr9jK/iTJapWVg6anvRtkzaedMYzi4X2B/eDHGPZiI7Ktpro/sJXJaPr6ml1mP/9pwEakLOSi2tt2sAEzr2qgEo3jNVWXR7Ej2Hf8jps0MqTPfRYhaWACrMwrvHnJT/9WHowLBeHj6Q3C+230TPYxqpsMyAT/87gFGH+yGprbyy7y9Kc20759N6uFCSqfDL1dvxUYv8epDIR2HMKj9QP2jxiNUGd2K6oLPRIgM0pH7kcP/hL9Ak8f+jXlix7B7wn5RjBCd7m56MADlt2/1sZO5b2M9uui/fR1G6ta/+4XgT3lboxljOl98PONbM+QBdYmdA6Lb+0938VAbWGAx6rqQ9CY4y+pmyrgKAalu7BVH2AgvcLmtH0pAk3V9zEFeQ5a79xn2dZ1xO9eDBuKmCIyagGGV30zsMdPRyzhAdyyP7Qfb6nYcmRl+Whgl362ZM+dW2YT0sDWsdHsH/ksZZU46sbJRxAGGGyFltUe3RF0bAKPP9ftXhOk5I9Eyt1SPZu0MsDOoQd03qYPYkGGSL2FvnzBxwr2xLlsbgtfrAaHv4Yel8K3os0j8PWn2SLoAbZX2sm1TmKRzRGBQAYZcWxTETbDzyI0ZGcwf8lZPGEMFq6xpuXXscPp0+0bLR+2psrdjCgnsqx5s23IX2bnj7jcFqH4WlH2Ap528yzE2o3KUkMQmQSF8UeJZ7LSCx27bfPd78Ky+SUvwUU+Ko+yHP+vABbofGRgyOjhQNzxq7CO2WytguUJWlQR/wLbDQY0g6DFHOJnwehGGg3F2eLF8NfoPwxFjWmUh1E7S4mzrffbkbv/nir2gSOwWWuS6qW+JCG3DJOOfpyNXPkpPKSzKQaYhVv+yom9Dz0MbRkxzxHz+dPIqNICH/GNjBnBpneUtPIww8R5ce/vrOPey0DJBO7qqXJ1T2p/hJHu97t+0WulTcxK/B3y/EqYVnsXydDoMrJkWDWRLYFD76qmQ9zH48y+V1j2CI0xeDkkgIR9JQm6wrbvWnHN39JYlK638OEweubj/sHmZ2l3ZtZHLbfw7eTsaquuOoFDxyKNppucPOKy9EyxgS0oFbz0EWPGz6IvtZEA9PWfs3Abo/3cSm6r7f2FUTXRURz0nF38VcvNvoxi8CJwW080MtSePS0ULR5hlwsbyUewOh4hiYPAz6yRH/PjOxWTL+IXRowESBYf+CAbSH6bambzgMwnSKq3exIV0NoQIbL0p+wF+lTKpWKAUF7hSUcOsRjK5GSZCHw6+kN8sx9FhgMp2itOebnWFhSjsStFi+IPbYBavu8fkDhoHvdInBjG7vDpFziUCxQEZJd9DQeOTpHAmITXBaMMk/3AKJ0vntWRSNr+RYaNjiXhq0phlOSDKK2OjGBkQ4nWe4HxlSzxpgCPnFZfK6n0viTe0wi+3Gp1o5bbpFX/yTTfTH4DVAyjdj3XoFLCV6dD6IQB9acMPh2V08GFeqIRxtSxTQm9Jjx9ZPfNduDeS4EPpasBnTqgv0lyp7SVuL/LLHfmFRAdmiGJxqa4VjwYe4GR/+5F0BEfVe8f94QN0cMhBiXjIMromWDhgbYL2XqtVdZdTrkJv3C/34mOY2CXnf0Jq1v0lqhsKnCOFIzgaj+40u9JZB0FHn3M6vBjvAI8s5dOAzhRY45VfmGXabB1n7bytvfXwKhWqQFdSbm73+l6Fl1RluTOIlaQzfprZLcwFvGLCE0GggbAsuG1UbX6UxQF9h3+zWTXgrgZwC4Hmtel/hTtOU9fCU9/n2czeUPU21c6JGuSKA8T3rJnfY91X0+hXLaUgKhcDgPMQWDcybfgmA588kg7nwCGjmuTXBQ4otdq7YIRng6PbraC8/SD/EYvdOVIau/DN2Vp4J8fYfUrr8aA4SSEeI9B6WLF++3lMft42jQQNwlalKHnsADoLmhVenAGDZJTRN0rWKWPA9yq5Za7rXDvqxAbZNJA1Pu/d7BUpl6taWl8h7tMM2pvt7pl6Gm2VAjlxYKnhccSsOnIOGb4jd2UrAk8JtJNsOzlWSIvu4wrFQ3G0NOlPeyWcD8D72ARN5lSdjBg0gpzGEd2XIcbDEbSXkE+R6SnuOMhpZmMjBYwMigwTdgtOXaiZjgukj8S5gjQNqz2hpZvYnCcAwxA52qnWwnH/CFyUv8rBbmxWMdE5e/8kTWMmgFuBSNUHUstZg4coUl+f4l39VgyKEG4g6eHyiizFfd1++6fsu/HbbjYz6FMuD0u08vo8x96RJvJHfqh5fY80+rmvCLqYBmUcXkicHWSYKhNOqNOHjgJ5m5JMLLpS8juv+Ud37eGMuZ03XQKEB57Tz2L6J4L6snNZSHnZ6184Bkc6/MMygJuT+wVg5CfCkElMMZd67iToTAxzqc3NB3phBcr3dKRTdax47uQ1NSoudVyo9L7/pfdoDJLsOa+ablJT2WFN3TjSi2CRgNiGSxS/D2T+pkwCIcfXu1KwBqAx1LLXWxkei39vihud9L2rqwnvqJgGfw2DWn2A+IILiR2ZV6VScXz8mjg5fYkXNbC0siImFkFT+pvBpkklQm/0IDSwTusuO8L9DtK1wcjniF6oc9/6Wd52rQF/i42l2VHdx0kXTUO4PomcChTXaULRgbfvBMdjyVyFenpt0DVc02nOiNhkJf2Mn3Zej20uIqHSMyTSuILEHXkTgt2/4ol8PPpF5ATGwcCfzJCFo5yGIUrzSwI9WPp4wQ2Vc3tyKgBRg3qQrxVJcoMj96PJRvztDJ6Uu4+JhmAxHG1Nf/MMnteSJzLS1FoEJnXSNAz8On4G/1UqcKZYwOkyauvDSj0X/er9Oq0yCa+TBXt2/FTzjFkACUBcLJ4VOGZmVgoX7Bs83OYxXsaMIquo7rrCT2YI6uApKwRvUW/k79q0kg8v9Vnyiile2SjFXf9kGzQujfyZPhFtYge4bnd1zJ19BTo8ewungbMEcA3N5aRIjN50z3pGSSyKIZfNFB9xrXzNN6CDso1yQwfLJ4kjE70U52ny5zL50e9xIpXPD0GGJYBj5JgTHhaMnAkMC6rgVHo8+Q8zRYAB//Ezt5fBKfLgVFvJBnifH39ElMUWtm26GcwwQpYfDyoZU85+lp9OB6+EE8rCVcaW3gCbh3TJszovlL0xV+9CEwlBvDl1p8zyQFP93vmISrT/xIDFx6904rwX4Bc9PlKeBofHDo8sGnInZiaHI/ClWARGDOwotHs/ls4djzqD1ahBp6lXT+PefpsHh5bBwoOlXnMJI8lh6yX9j7P6ma9hMrpYN7QAj8tqFgg+eJ3wFcNOclInAEeVbZsvJgcuMEPpi8reHvLO38C4rEhfLSHF7Rp4qSrKIY2zMDQvt4Kubn2ihHNeIqb6RB2Lsah2JJdav9Rd67N5o6C4LEnH/YRAqP7dCSEpaj8Iwf+aAfXvJtpxSkQAUv/1QiA689H7dOnDBFUOIOvdOi7voliMPoM6sHpSweovq76Ezi6vvUs+TiMYKhCj8p67tj9S+vc8AbmzzmGBsJK6ju5b1zQWdraepOFo84lbmMe5clMVKdE8Oi7t4/g6nafdgmH8oIVtn2H6csPWViHYIKwovKiju55TVUnSBATMWflw8QrsHNxhpPUIy9Wdxgj8hEJRZ8EfuFFdXpy4wrCYhPGzo1fIub7aoxMBKkU00knSlcQQWkPBHsAz8Y5/ESQJNNwlFutv5c6nClr78cGoLwupXWfdIXOgWPkkKA72QQW5LlpvwWZzvFADEr82JwYRsEnAeFCokcVtc+iR1FrdAxE+RDTCGuvAjT1EcLUqbFHAX3+CZdptNz2M2hyDrtSnAVeKTP2WApPvcGYwKfvJI9TsJQF9Fg58HvOAnsXxiCG/oDgU0PoA52reQgF2QAtcpqEDM1IssIvNTAqd5JqYXMcJzdi10xZgnjTG2OPxskagEltcCaB6J2tv7G60ZyCMGou8IkLlOBZ6vbqoxvVv8m95Lk/4EfAoE5B1c1bvm2Htn2YLpGyGCiM0Es4yo9Icp5msVLUz4KtC4+C6Vip+izmaSs0W2kTRsGBr8LTCylooDyNJVpkn7uOFmxW+lrGwUnxCy2Iebp8dKsV1v0rhuB90BFK0zXLsVp4ovvi6XHw9O9AHTFt4zg6LoemPSkYI2xGPM2U1torAI1RjUaHA+KZhKd/yoz6PDxEx+bpnq2t9m/1ge6Ip3MYf7fC0/+EkTOLe9QxoIS5B0+Hrd9i/HQOzrDFlPZwnhZf9EwJv1ef6QKelgYqYVSWNr11kHha5TLgPPQ7RsNnM0Ce2zu/9AKjbnW7LVngbsF2HMnfsnDXx+CXLp6ODSyhAMSyl1Nzy+12+USCDgl6k9LncAk3sL6MIJhLHhkqx0yqDMNFndZx8C/W8uAVjNSYdpO3aUCEldSopk1kzzo2zGw8g43IFnh9LkwkmPuSEoSQvbj3N9a55p/AGONkf78b6vpSWi95EHYwZbnlDgyspYyEIFrvFeGmLzCSWYJYAX0yrnb82ErrXw9hMfoZkFGQgEr59EfIgdbhEc6C42ibjOKIhBcRdL9gZJTL8QOFzV/nAOUrGKEw+onG8EllJ/kNLBKYbTdhvBGYOhYYJZB99Kci+4hH5SSYv9Kx00obPod/F4WRE8MPRFmofiXxiwTJD+lejkcCj4GOXneBrOd9gDHGd4BBWT68FuPq4xgbtwAjQTOD0tfgUQesH/waA4jFbsD4FHi/YFQZEU+Xm++w0pr3s9t1K/fkuuHZoKTxLDD7Je6KMwgtmQ/qZDCA3z7RIgAkPM1lee/NVlnzTq4w3LwLxHwDTBqMMSrtbL3L6kcvZQYEw1XJ5V0f+lkCwHmaARMDpNZtP7SD696AXB5cnjYCtStH2NmdqZmT42lQhudKA6bS5muYSr8KZaGpwcHgF9HReML18CyWWBIvuXOyPC3d1L7DCus/Q0zql7Fb4OkBGYDqTCXx9Azm/L5Pj00Gj9DjSfM0A6bDD8Ev8PTh2+DpSZQ/kEGdA8ifiKfDg9fQN8A3mgEtfZYYgkmu43473UY8Le9aac17EdtHaDvlDBZPh/R1803w9BL09LyT5GkZpMyUMO1WdJ6mbzSVPuAkPYerisUNFS2E4didjHhaRfebp6WnO3CA/NAqG978MD1dY2BRJ4KtHTfZa6dOsUZ8ZVquKQOrGQ/Wl7HK5qHgyi5PEqESN1ZfCEM3CmDG9n23WMtD7wf+9SidgXoLemBT1mJZbtcfQWCzsD4ZneskYCHGFVaS/xgw4tfXwcfFnT9nxSbGVRlEi0AHi7DUS1oqXNiFIchOrg2z3ciqxnadEEYsdmCsENBYJKaptP51lMdIxZsT4ztp4kl/YzqzYWl49A8IgR2AOwcYp7th7Hh0SksKV8U19epSCtddogi5TVdbaQsLGFwQD4YASepF2HGEkx36CcYgI3yY1JWGEOE4rIHJkdP9t4x8EOkrOkrEaNiez0Avg2UAJjBSp4ysg99iZouTBgRjfeykd0ZN8um7Bx75rSkO2RAlpjkkiMOW64ARgTkoyiKpmwq0FcCBLzN1NAMDZi7OMbxv6tPj0aK/3sXT5X2/w3B5HyswtyBEmng6WH0NHApaEfuy4i/E65bBSxRkxdPQwPFgVJdL7miuDp4u77zeKuswrioYfxqgDCJPBywUKHXusPbmP7Hidw6rbWfCL9TTJ7nDIAEYy6wEa9nyHTuw7vW0jylgT2rEYCQQKM/s0f9lJdYevAez4evj8bTqjOvWV8LT8vRugla2fQBalHE1WP2s+hiew9OV1h+jkwg6p58z9VPoQmhUy6f56kr6UYMbh5H4TPhahkvnuv9kuv/zyJ3B5mnggKet+RuQ3yh2I5kfedAFWDeeToCtgbGWp5nqL6/9GPLrF+ARR8Bg8zQbE4YH6afMrAiPeWLv+kSLMU8DT3nfb33AZB3bBp+nXU9z1M2BX7CQbyZG1hz4tK88HelAVgYwRY3nas3boQ8Gr3jQB5OnMR6Y693GLix3oKexI0bOgr6QJcJjLe1VCTPua6dFYNTgvbAPz9W3rbLxTeDw4TzdzcASDWn/7J4GVmv2LPtaw7k2B+uRyURlI0FgGmm6x0r3CCBuW29t235sh9a9C2HC2U863NPd3wkx+osD/CMGANEVRgj7mZYqYsxwxE/ANJKEGA8juLwWwYgBBZw6BNfnmgloL4CQ4qY3kwPPjYwr94wMJowyDiAIRoLl/T+gv4jGIKA8U8+RDBCeB2cKd0oSLjEOA00As1qwjMItbPoKXqEP8IhRroOmTh/MJBhRvO0PYqwy1aWIkboxrnwVCxThMcGJcKoRj/DIFIdGuPt/bwW8QuU9GC9VQVwrbAYDVmBk6toO/wKhvCGGkbO86nDhq0+9r2MY9TuGESAxyvYC281W3vBJhOW3gXGwBXHSPtqMS7zSQvxZG2fWYVxrZB6w34VgdDxGHQgOu/Cofq8wxVHa+QuM6A8xdXkvMM6DFotJwYP0rT4BRxnODTxwDYqNiXoES4YFI0FeR8HEMDoa+SMccs/7GoxX2taxTP/HFm58N/TcQX9gnDmM/sIgwSie1kgQujvwJYpH8OE5EE/7wOSYPE1+Teu3Mg1DMHa4+S3Ag3KUcTUEPK2jxDTwObrvOuyBEYRHjiYOq4lZDAxE4dhxqUuUWIzDDDytAd1RPPoHN1xtrVuviD1XQt1Q8DQey/bVeA/+EPELijeoGxf1ay2/+DX4k1wUjByJpqmi0obP4unl40HtMq4Gn6dlZIWHryfmZzNwSe6Mo/uPz9OiR8WiFuHpwnqmBZt/wHtaTMPga9ATbZaR1fId6L+Fa8EIvxyDp7vkDtg6Ak8zRV3ZcBXG7gPw9BxuDgFPi9YIvQkPftX33ZOxoFCKbjzteOnO06K5Ct5yeVzKG+DpErANKU9TI/FnYRF9CE87jAwsQSrwS/Yo1cIITRKPWG65z6fcypvfxvOZ0KjeET0OptyRDsQw5Ri5ygEG8gySDZ6W3PH47FoYe+ppjL/ywT8zGPkfC3d8kLahpz115+lg/pKlzkEJ2AcZMd6+coWNZ/MoBXI1sFX8xkKTndf+RHvS2AVW4lBkCRYJEbnNyyzNV4BzZ+uD1sFZfsXWm2GWxCgYbITEbfAvQYzLvcCZco1MxU16KcGTy6AzeToYuclaloLwPU524TrfRGwUgngfrryj98AsGp2B4EEXchRZTRALKey8jymkJ3P+46VMd8kdOReLmZGbFhNIgLHzq1zeFYJKy813A+PV3NsXBRE7c3oXeVmD/se9BwUY4CGOkno+g+CLobkl7tXK1E+E0CKLXkaVrx47vAEY7/BAeQsR3Pm5NGEohFxNSxW7wGqusLzZggmvYqbhQsLImPIaMZt+FDPI4CZGr4CBc3QLwnsdq67/gLK+BgZCwCm2YtCFXA18uvSg8q14iQ5aZtJbmOE8D/f9QmiTUVEeo0RGK4JDK1UFY+XQGhYa/BZF8SOeL4nxLH4ZqgS/CI/wSwg8mYlv4DzLVQSizgfGGTyCpyVQWPVTYeWvVhWF7I0X7r+BUfhvCRZPBIh4ZqiSBC54KtxjYeNy8Phiduxf5sGyOkA1OvOQrnSe3oky28QULcbEPlZnYVSY87RwOFT8Qrm+RIyBZudqqx97sY2YdIk1wtN1yJ0cPJ1hVIvUwRBrsyI83dm2gbMe77Yje75IPDLxR9WYq6GCkebHPG3wtDW9AJ55SjQ9jKc6U89UVRyLp+l98XTIwLiCxyXc/zlmYOCn/GxQONQ8jRHMAqOwsgW5+HecAHahT3dp9bXHXIpWWcRUwetXad8Kv2Dow9PlA1+DleZCJomhT3uHKjlPwwdBC6s034rcgacJS4l4WkYr9EoYR4UFCy534OnKgd/gif4J/HRGjOfh4WnLc8jyJPZrU+yYYGRPNI8Lhae1OjeMebpyiGnkfTcgI3+HITF8PB3C00HjSsb0L0IHMoXteppYwRxGDUZTiMESEsohPV1mK4bKvu8yUMBA1UIan6IeQn7xtaBEmsLTwZinIhsvAUamX6Wn8bD6npHwtHZoD11PM9hnRWNFA5FS+3H19AkMrAp74uRsw+EDdv6d19vKMYusQwGPOilaCqPMETuFzQgO9tCCH4McAGlK0PdKGUqE1HAUeztpDjQssFEcWwcEDU+GsKYDI5apEjvghuwwG3Ywoit0RITv+wIxGh+WJMUGjCwNDYsbvcMC9hlhCR8MiFUvA08biHKwdth+qw+8nfCF36EWctX2IygEI0GoYZkYjgYxKAJCcQPJilIdIFzEMGj/s4MciPB9aflgj86qQHW/ED4wqFlLzDd1sipOMQgeyM2Gt05zgr8EHRT2k4c2Jczpgd3dixuSX1IKTLG70U/11ngeMMo1LiMQL4cEXQnDuXMN4DJ9jlfJcJ/D2WTuPvIZEvhUqJSGXOCFe+lbfjc8HjwBgxSWG4FtoHcPqz/uAU6+5VXz8y/FL8PF0/Sn9oQqYCBoA6f6JwIHwrjK04eAcRfw3UIeFFjdmeC3EfCGk6cxpDg0vFLc7KsJs4RQZOvmgUIZqhhYHBpf7lyHgwDjBRCzUmanhKe3Aw792IDcrlsCHmVgCVcAVToI/rbQ13dE5HfKeBqDWtOHDcshzwXAiA5xjyZKBTyGnRuRjfcxpod2tY+U+H+YeVoDE4kUazgfGDBAxdNuyKJgNRjuhFY7N9DRU3k2A/iGm6cZ+Eg2iqfrGNjlFgHHBPCKR1pnu6J7QjYUZyvLU8fTzM5oIB9ox+oGBsnO03iMACnEliBuBxb+HfKTGGTnacl14XE4kvQ09ZUPAMdmZM40fqKnFQ+r2SjRmwb5hW3wC4N3fpo8qDKyj6On+2BgZW1D2yE7/8GDtnLmpXa4fS/lAQRCWh4YzVFbG53XfAOAwLzDhpBapNNIVxwIDXYRD/1AaRSFEqekBxkJFQSfK0BR2DApMwcg/pMYCOoM7XSO0AtjhRDoID0dFi2Dq9phw6TMusGIMiPqTgYr8y7gcXdEWKI9P6wboaL4MucIhNxwKdxuMGIIgr9g6suAg+W7TLO5suBaI0seWrj7OxEuTwktClkYWkoyEnQot9Mjv0UDCjrXrt0eJA69+lSW5x7GP4IxNrS0SaiO0wmBU0mGtgw/DsP2PMOpzCII4r/deTrCYcLT8EmVp6FXF3CngqfBlQSyNkplp/cKctBP0dYUYZ7pmkbwuPdG9v5kgOfGlaTyMCcZATU8beJp1w58OQ6b6OdTzdPiF/pbh69zLJHLHe4oBc4vko8YhZLbQ+2J9lp7/ol5WiLZj3aCX5JjshKe1uGop5KnBYe2OKnH0zvpGRgq9DMefQBGL6On8VSH2mFcgeeK1TslsjHhaXSH60AMUz+3EDB19NYjgqdloUKP8hiFGH0anCS4yohXpKdHijC5L1vi+Hpa3HeCpIKwIvMTLT//VUwZIngTpUDZQb6eeCG2Edj1JXA0Lcp7ghIH/7EYD6NAmh9rM/CRLteehAA9T/LEt4f7y0dcErCCERwybYUYjqEARg+sk8I9focNKdjer8Ag4mH0wz7aEbxORAmMMMephBFYwsJ6BonPxx2+HFLEK4lC067GOu6hwtx9keXv0RSw8Dvc+BSexHgkGTE5eEJxQd7XgiXG47B5W6jyYUkwwNOCSQazgj1tTpxLMD4C+MVhiHlaA4+ePO38Aj8lsiiGfli/ZLxwZJCmrPPzX4Hux0CAFj3pGftxFYinDNv/gvwUfk+BgdWDp6Pd7BK+EB3Q14pjUrefqpQYTcIZHoPAdz/rAWOi5E4JjMKTeBqYnKfFzzOi3464GI+nlKeBrbwFr8pKdtW4HDgbgDmiN5eNbP5ZXH8Ng8+r2bgLr8wp6e9EBwOrPL3ymrtc5MsB0vNTzNOJnhYfayDs239w7UnwCXF919N9MLBUsiogOFbl+0hMleieCItvbWDxiEiCR0QVEdYjAqSHAfFogFEdzecRmWJiF6H7prd4saq0iGEY/3pkgP5IxqMwJL6VQHtkYKt3KBIYH8E8Da+EmhqWp0i06Phkasa/BXdEl723b7juPtJpUXh4pMOoDuXziJWNEZ2F2uCRxUium11cCuaELoeL3o5Xj+ARXzyCedr7eeAw9tHAErJEXEpCDh+Pv4l/V595hvRPioFhwIDoUbQoQxDB4t+6l6YUA6cCAwktxoos8WSdClDSOk9fDLgI1J9aepThGt87fTFzSlouk7f/ya1i/8O7yXf/i0nfSDEwMAyI9hL6q70eWKnp2ykG+o+BhP74dpL0P/0vJn0jxcBAMFBLdtVrXVR/DKT09N1+YuDkDKx+VpJmTzGQYiDFQIqBFAMpBlIMnE4YSA2s06m307amGEgxkGIgxUCKgRQDw4KB1MAaFjSnlaQYSDGQYiDFQIqBFAOnEwZSA+t06u20rSkGUgykGEgxkGIgxcCwYCA1sIYFzWklKQZSDKQYSDGQYiDFwOmEgdTAOp16O21rioEUAykGUgykGEgxMCwY6Mc+WIJHe2vEH//FFo++v8awwJpWkmKgBgPJvi6iR91mh/ca2qzJmF6mGBhiDCQysYsWnR4jwqTudIn8EHdAWnyCAZeF/OgmC7VXYPIgyZh+DwcG+mFg4eziwNogyzk9voO2wMPA0iG22t09TSkGhhMDOlZDtJflTEyO9gnZaDTgYPKQexIlvs9jKlOGs0dOy7qcxKBFycFQtMi/iP4kEyVeZVxJwaVGFkhI05BhIKYzBF+gXdwz0tOiwfi+6+lkwiqlxSHrhh4FSwL0IdEhKLCw0GqVQAfYxucyIUoqec7r0SGd6rPUm9UHXKZZBoYBjHqRY+kIx09yYHaRw7394E2UWH40v9tqjKvUwhoYrtO3j4sB5J3TYrndKp37zYockB4JQgx9HabNmWVubknRpbR4XFymDweIAdFXdIB7WGjmWodmF6HG2JjKc/6tDp93PS2DP03DgYFg/pKlzvlxN9hBhMbtK1fY+Lo6K1Yq1pDN2oa2Njv/vo22YuxcO3zoJ2b0k8sL+jMY+7ToupPTu91qlvGVCpPh6LzTrw5GYDpstcJBxSMWcEbtFrPD97gek0PLRi9HxsyDPjdAi/WQoWgxFSanH50MR4uRmE6LHH5ePwWDCtpsvcnPTXYl1ih6fL4FHTsgQfIE0OGpPJh6OFCS1nHqMCABqJklDPuwgcOoD6On8XsketrGPgMS5Gy9wh5oUd6tVE8PR2f1wYOFINFJ5sFhC+qnWm7OvyNXxvGbaZlSu4VHt1iljRPji6sjz0F+JXBLqT2SD3IcDtSmdQweBqBBwwugA0I777QQ+RDkllkw7sUWzHqLCxUpsRAjP2xbjSP1fhQbr9SfxR+RuGgxNfpBQpoGBQPySKHMCndDa/isGqdZdvQ5lpnyQuiy0e/JixAeXctYYD2eVmSjDP8MXgSnxdToH5RuSAuJ6FCysYzHigFnMGo5Y8tplhn/H7GeZsq6eNTC9s1WOYzsLECLmi7MSTamenqoSej4BpZiqyqHzRrPMzv/45ZraLJ8volYF7wIpBCF51M0hYMIk51W2vNLC3f/K9pvDvoQIyxk5JamFAMnjQEZRSgyCZDSGgymWRbM/qxlJ5yPsT8JATKeRyMQGBoEEOQug1+02PkOqxz8k4XbP4sS5L3cUsqQkSWBImMtTSkGThYDWPeVFuhti2Wnv8uyU55pwYgZOA4m4BgYwyBT9MrjcgGbH6XH1GHl0For7bzWwpafRLToMauaPkxp0ZGV/jkJDEg2or416CytNmt6oeWn/xs2/GLkomhxXFVPK4/0dKVwwMIjO6y09xfo6U9BfnORnxj9qWcVXA5N6mWKMGCKcFk0RUiQXEO43TbmX2bnjbrczit32FEUmeKxPCkAAYESuMCQpdyMIb3aSps/hzD5GTExWMnuihwa4NNS/y9jQAIEw0pfZQTI9PdYbtZlFoyci+AYyX2EhlzeokfPJFqMAzyhx7DMqO3IJitt+57Zro9ipy3jufAlQytVbMJEmvqJAaYEw+L9lhn7HMvPf7Plxq5wL0FEgqJF5KL/oFwZWpKNBByHlRKerN0MQP8/K236CCQIzbpi0zRNSov97IU0u+SdpqdLrdhYecvNf59lJ1+E52oKco7FFi4XE9koEpNsTPQ0JOp6+h4rbfy8hYd+RRlnkEm0mKbBxkCNB0uKSh4rBVjFBpTXhqCQhVsqIDv4dsFRIxQSRae8uTGWm/xEyzCiK6yfbpU9n4MOVvF+2nmOyvRPPzAg4wqarDDdt+DzGFcvYfqlCeHBVCCeKhcaUk5Oigk94sVSvIvojZiEzOilll/8D1ZqnGnhxjcifDD4fTBQS9/9ACnNevpiQAqNKcHslDdZ3cK3WmbkAuiMhT/IRU8JHUqZeYJ2kZdhSTIzsEzDDKub/VK8XbOsuOYDZh3bkZd4YN3Ln7wTv5p+pRg4JgZkXOFFLbGoomGe5c+4ynITLnR557KvpHAevcyfKi3ys5ueHmu5SRhkyMXi+mlW3vtFikRPp0aWEDeoKfJne5EotPIhkD4PRYSHoGpkyfBSZ2lE5j3XA4C4I/VMAqXcyevzrG7JPxGTQHxM8UHegyDSlGKgzxgQnfFx4+qLlpv9N9hFY6AtBVZJwIhslae3xH1/jrGl/NnRvP9yjLT/Rh/ezwtx2b29mt5LMdArBvAKIMcykzGuFr8rMq60ktoHnKK3Y9FU8oxCmTIU6eYnPcnqzvwEynEq97Sqq2aM22vd6c0UAzUYEL2Uj0A/Myy/9GOWm/hExqGSdYmhfwJaTPQ09JsZtdDyS6Dnya/DYFub0mINmgfrMjaw4k7JHLS6+W9nJdZilBuxVx7/0p+qonLU2RlWMuQXvplVhpdAELgy5R1LU4qBPmEAhaa4gpkftNzMl0CG9RhHsfe0T+/HmWRo6T3ez816sWVmfRhapFwPfO9PQWne0xcDyK0KA88xz8Rz9RYGoDOgISmzYymyY2DKjTAsLOgxN+GxyMYrKGIfRlc/yzlG8ent0wED0Ir8HZnDllt0BQ7QCyK56INO0VFfU0RzrqcbZ0GL6PzRF0HXbRQQmwR9LSrNd1wMRNgMUGCF+ywz/d1WN+UiOlG9qE/cafpCzjRgPGe51hMl3W7g/gjuN/JxGeIPiMdCCGVxo+fmvQUi2MxDMiblKU+aUgz0hgHRSaWZ1TBPx/P0Cgb4oyIjKSauupjeRHN1PWRBlt9+X6SWJL2HUlPcVnbWy81GYvBXDkCKFJCmFAPHxUAs+JBfirnKjF4I7WBcxbQoepPc06cemlPuJOVqnolmo6QcSE/ka37Sky074/8hd+/lRbYUSVOKgRNhINHTM97pnlA/uSLW0yLJWl1cq6d1LRqVbFSemHz9IoSes6MWoaffjM7eCARkStOgYUBbs2O5sgXDiHMsO/UZGLCNCADN40oqIAxYocWsn1lzaL8PQlswIbCRyIMSYSzKcede/nSQj1nApRMJMuZmhZ/qRO2unR23wjJT/9HCXaxaSOOxQFaajo0BEQ2fylYLZnzEggZip9xzxT1Snq/75Aw9LCXF95jAVrAIpp14TgmPFkKzHjjAg5GBLRnN8+i1WJCUIO3plPtyC9f+nPeJf/EMKihNKQZ6wYBCG4i7ykx7B3KM7WfYF9DtI+gqx+cwM9AbkYseTYFMXIVsLPEzj3G1l9m/HXqmBD2u7JH42gAAQABJREFUgk61pto3flQQcrbBclOebuV917H1yEF+S+5yP00pBnrDgOvpVhb5PN7pRl55K0NRKFo3mCDNO/dDb3KuQn+LoMVGwgbL3G9Df29K6JR7y8ej0xPZyCvS07mms60y9W3ETX8eAl7GTVFrmgaKAdQSFlFpHfFS72Zhy5ldUzGykjB9y0dDG7MosC89OWeFQ2X7/h0Vu2uP2ewGs7XMvlx1ScbmT8vY/tbQPndr2fJ0sEZvvqOxPAfsmZWb/HQr7PwUwkUmWZpSDBwLA3B9iJXUcL5lJz7OhUdirWcgxzXQ1qtXBfaEM7MmHfX7NRW75t7QzsaYumtfaI+fn7F/eGbWNnN9wwMY99JXiSCBIkM24stOfKyVtj4WQbSfZyg1X1V4LHjS+6c3BrQCEHmG/MqwJYgHtKPNJMUOoLTOnBrYOy7J2lhCVtfvDO2Tt1dsIQ/vIkTm+XMDu/IFWcsjYe/ZWLEv3hPaEq7dhJJGhIAlbzPjMbK2f5SBqYKMUwPr9Ka347Ue4iltYJbpb6GbM6oDT5FSEVuojD6+ClqcPy2wA4cMPV22h5iBHo9BNWeS2T8+O2ejR5ht3Rvaf0KnkyL1znhWtIieZtub7ORnWHnnZwiZpi4fDhwPnvRZXzBAsAtMzREjgUZo2oBMhlWslRTCUj5UsaY5WXvMisCmjszbE841e/fVnXbjFrOvvypnlz4hbxu2l23e9IydtTBjz/xM0ZbTkRX6LZppDH1VYWbs01k2vxGjjYfpSK0vfXMa5oHgKjssGK8NG7U/C9oNOpLn6kEU2psuyNi7X15nR9uhUQTDJU8ObNJ3O+2TvynbPz8ja6+8JG8LZ2Vt9cayXbeh03KEFGgm0EnasclZcToyoulitm74DzTn4pQWT0Mq61OTE4/B2Ivx7s+ETqK3tOVagYHl7Ilm/3J5nU3Ha7/7YMWe85SsnTm/aJd9uWSvOzewK15Tbx0ovhIurRc/PWNTvt9p/3x9xc7FcdrpdhQFcvJFduxyK+8WresmhScV9QnINNPpgQHoQh4l9rbKjMW7JKHGb3lDc5DR/XyufVHOnvXYvG3ZVbbpk7L2hHPK9s4vFWw3ntR/f32dzeTergMVe+HTMrYUOn3R1SVbgSqWx9UTyjoYyT6DY57MlMAOaDMdfA4GbbEdO5ort5AVBYvoNBRcTdIimfzEjO28s2SrriralRhWc/BWvfA8hmlYzE97TN5uuLVoF/xjp330moKtWpyzDzwlY/eh2ORCl7zwQ3i1KeQoRmjlDdxMvVg1KE4vazHgQelHLdCRN26IV5ihZtoF3VNmJPb65+ZtP1OAi9/TYas+0mEHWyv2souZxsFj8NdPz9seBMgPbi5YHhITJSeyI6pCxIjBlmFj0jEIKZ2f6QqtFoD0OsVAggGIqLQeubjKR/faVFnkImP/oZbQ3nZJzmZPydg7P9dpq/650371h6JdfH7eLpiM0oP4br2nZJf/e4ed94lO27GvYhefg1IkxEIn5lAECepkOlwruYL8kpgeu8vfBJL0+zTHgMtF5FUdHs9RCyLHBSiRnLuHtWhvXpmxSy/M2w9vKtrZ7+y0j3y90+bPyNqLL8jaOkIqbr69bG+CFle+ocPWb6vYU89DZkKEmvGWA0vXom/fvHnU2Qjb9dxL9fRgUB0GFh2XnciqP5YNe6pVSwiEJAZrt9khsrr3kHwvmx9Ye2doP8MVOWNcYP/5p4odJRbrgjPoGL6j7lHP0Ys6ELp+uq9qTg2sGM3pVw8MiNNRMGJ69meJYgEjWpQntJ5HI+qhOcX7beW4wYPQGK/Io2AMtv7tmwW76KMFjCye6x4peju6jm5wh9gF7f8isvT6ksw12dLLFAOSU+5ArWeXdskvJ5iYsKCdUQ2ET/B9N9PRtl0Kijd4PAGvwBfuCu1lXynZnr3Ev2iwyYOCQloYy0pX1tKlbw6J/OUoDB7G5afoTzHQDQPQRUicdA5HRf1knkQU5NSC3T+KcCwZW3sZcNoWaA49XY8NlZMSPhTau35VtkZ+f/HNeZtC/NVtq/GcUISOz/RZJrew5N0fS/nTMLBUeaTBdZWmk8cAU4RwvUb1OVxS3nFdTB7ghiruweV4ac5ufEreZhFUPAolJ0NrOkF0WsVQKKLoGJzNopPVYSNUTG0iT8CB0QFBnVHxIpbaDOl1ioEuDIg0gnxjpIjY8brCKL8O+upE/9xwW9Fe97x6++OXsOGJx1rK1PXt9yMsUF5/2cSbCIbGnvTXVTRX0KKUWHZUt7vpjxQDD8OA6AR9JbkVINhCuVG5pSmVWWMD++4tJXvs8pz96gMNdi9T0k/gmrAqayuEthBv60xI7LfbiUv9m5zNmJRxz6rcXxRZk/iVq6f8EVAmQjVNKQZ6xYB0Jq6qYARRPHloJVKgRchnGbPL37yvYi/awJTgyxvs7DOKtoBwnZF1gU9Rq7jnzQ3sFXhcH3NGzurR6df/qaAxaWTPR0W5Tg5YFhvkoEXuuZxMnvUKU3qzLxjAJJKlimSojtBqsCpE0yElvAboODtyJMS4Cm0rUzEd3Atd+eHm5pnmgpU6NVKrTdCGJ+81XdWUHz1J/6YY6IYBTSvXkgkmlM1nBPZfvy7bd27ijDdudOI9bWUBxg55rCDOibKZUGzJe9rCQdM5vSbNfacpxcBxMSDhRwanRS5iWtIpNwocvvaB0P77JwXbtqti6DJrZWXr7uaK7WRl4Tho9be7Q/soQe6vfk6dXfe7gr3nhrKdV42/SirmRclFdxmkHoMEK+l3bxiAqKCTsCZGWpcKm95PUPsXrivarXcVjTBpO4yebkE2bpVsHBXYNrysH/120d7+hQ7bisPkHS/KWzv5yhozxHQd0TpVVOOjRZdpGigGMFkZ8rMRaKWg9e8JtqNiQ6RJfnzGdt1WsovfyFE5PH5oc9k+d0vFDrSw+phXl84MbPM2PA2ywEhb9qAc6Tz+xkmjPw7h5fwjuccjgZI8S79TDNRiQB4mSETL1j3mJaJHCRJNTWsLold9qWSPewyxBNsr1oaR/+WbSjYbj8JO4rCMKRkPLEZwPMSA737udRMTXjhCikNPI8HS7WktIOn16Y4BGT7Iq5ADmyt+gkCXbJR5vhwXwFVMvVz4kg77JMqtgSnDm/5Ysg3IxTuYFrziWVl784vqMa6K9rJ/K9oUrP02KbRueNX5rWhHbcQc6PSMlB67oSf9EWMAugjGIhI5PLwIcdVQkbxYiyGd364J7envLtiT31mwHE6RB/CqfvrWij2WFYSsYbNbtrMo7XsV+997yzaGbUMe1xRtb9NFj9q7shPZ2Ox0n+rpwSE+9sHCSirtJhRrC/N7s7p1nrRQqClAFNivr6ojwL1s//hfBWtgyHb7ntAOM23zCoKLV+8g6JNpRE0RXntL2ebTgRrpucAgWC7s5BTv9g04y+hVH63pWZpSDNRiQASDtIDjwyPrYfYLuWbeuUbpIDdsLl6Ad30jby9/Vp19+1cF+9Xaii0azdYNiwP7K1YZnjk3Y1MZFHzkqVnbvrtiv18bWgcaMUOAsSRHdAj0+kiIeNlOqLWApNcpBsAAQb/IK8mtkC09Ao4miYJIfScrp5x5iM6LX5uz97+6zjbuKNsnbsKCgtbez6rBK1/TYPej5G6FPj/40qyHVdzO9QH0o/bJYigBfTMwPbqVYndxjcXm3qwU+SkGemBAXlSmka24k7U52yzHWb8JqUBFvkp6NE6Nx68M7FOvrbOphO+8/fOMRpnPfvZjsvayp9bZ9bcUbQuLLZ792BwxWqH9iYEAu93E0hVqxBVWad8PvW+E7hGyqZ7u0Qkn9xMPFv7u4jpOg3jQGT4qJlI68jgVcXtPXZG1GVPMPv7NTvvGfaEtx07aRcjAp76DV4usH0fAzJmWta//omC3ICtGyf2oIvj4afKdey1svREDayb3EEJpSjHQGwYkSLIshmj5MwSkoF8IMBYBUkqrUU7PWhbYM1iO/JPfFu2N3yvZ+QRtrsMJ8PRz8Rg8L29zp2asHQHyUvZtk/HfiI2m8BkPhld5ZbypLXdwg2BO1ZemFAO9YUByKjcTufgLCzv2uRxLtJpoqRNDqgGd90r2F9qG1/5VLImfKJkHiY0dwV5ErDRUvjddmrfLnpa3lzwlZwumBLafkFftAJ+kyuGHMOAegtY1mEjpMcFL+l2LASnSBujkfk6wW8sDmVVdSQPP+/DW//2zcjYBeXgVqwi/+yB6mutbVlds9/6KveDJeXvrC+t8kdBnf8RUIvRbDXKXEpcjpB09fein0H0ymOiqI706OQwE889YSaT6/Wx4d5nVLf+4HambaDe2fcLGV+6yYjDBGsJttrHuxXZe8GpbQED8qIaMEcfpkVsSFrvp3GewAPEeZnX2oBNX4K7E6dVFAjwvbv2elR54NYM0NtHSqsU0pRjoFQNoHjF7uNWy59zI7tnnYAMpqC8SKHqkIx+2c+sAsS7LNKiLy9GUn9TTbgTHIT5zGDeMZIQWb77NE15m36FKy11Wvus5/J5MsdJ0qVIDCWnqDQN4lcL2v1j+zKutbs5LIaGIDpUVavKtaLQj9mqmo8/EAaWVXKLRVuhvK4R5BvSp+CxN40gJKum5vy2FxnRMx+r3WXjgGjKu4HZCzcqTphQDNRiQI4RTBYKJf291yz7EQqBx0IucFV00qWNw7sTQmoxYm4a9Lj18BJLagsp9wgyOG8Tj+ottxAjyykyu5QSpvo03tbj5Wis99LpUT9egfaCXCpBCMpyF4vmGlfffHo3UYq9Bgn7vRyTFROIMEuNJamkSnbScfl+zh+XJ3FhZa1zhHQgydQioHVbecQ0DtCUQBG7LNKUYOCYGICLtv4IRXt75U4wrLHi5BGJ6lBF1BHKdyJ3lorWacrRkXqu4WEBjZyFc6hAe2hDS9Zn/5UGlw8q7foZkYTSgY1BS46oGg+nlwzDAgFJyq7TjGqby0EzIs8TrKcWkFYVlaGwVCyxkXClWUPQ2lkHAKgyuHDRZ5LnITF5UGfueyCTPfunAbRY2f5WXV/KiMqYpxcAxMOAbja608OCXrXwg1tMitprUhkBcjk6eGhtXejQakl3FLiO7CK26fycOEJ7rFJaqceXTj3VWObIZmftV6P0MaFFyN02DgQG0jrid/2GTlXbiaTqyBeZHeymYIE4eEEyeKK4quRv91o7t6kTpxcT48jIRIGHlqJV24WJv+x3CCYmTzut2IS+9OgYG0EKZxQSsf71LkNTk1F5DojV5UWuT7vu+L1C0vArsDBL9jjMpxqB88E+U+y0eYuyntFiLvvS6VwyIFpFbR26xInIMK4vfEFZstkNmTmOSi764Ky5DpCkalINUNJl8XI76NHgdM+BbMdy+T1HEu3h8YA+CjstKv1IMRBiAPkRw4TgcFj+AFDnxIovirQlzUBiF9HF1d3ayiy4lK7UP1hiyiy71XEW5O9VPbznKwBP6PnIb9I11lg48hZ1BSXQJya3jOYymvmeFrd/C87ifHpBBlAy5PFcsVqLr5K9c3j5y49uT+8AJ7UKalPb8xspbPoCzYFlUR/JS+p1i4JgYkFLTksGMVTb+O+eQP+ie0GhuJSKyaJqlewF6ovvdP9ENeVLLxLpUNv4HEoaBA1OFPWm7e2nprxQDMQZcNnKczdb3sSfgr7kp1YTYjInQ6a0XZHWnwzi7ewvqEbfNTMd8nVjA7+C9msPDWl9sL4Wlt1IMCANOi/PQ09+y4hbop8jqUxlEsZGVyMDekCUd/TA9zQhA1FzafaPTt+U5QSP1pPaGvpO+FxlYep3pu4CpwuL2L+OK2hwbWOoyt3V5ruvjJZ4rD8pRIzUZV6W17+UeAVqeTvT+8cpOn51WGBCTayXL4VusvPZf3TgK2JDRafGEdBhjyvOx4ov3yofXeDl26GbKZYIxFSKnFTkNrLGSW5Jts6245j1W3IuR5TYWg4C+0qK/TxlZjKtSsxU2X8MBzx/CtbWKMtLpmIH1z2n2tugFuqlsuxI6+hqKtgVPloysmE77gg7ldT1N3NWeG9HT/4+35vPpRxl9qSfN4wEuNWgQ4pmwTYwqfyKkI1Ei/zbXSSck356JP1jDWTwD5SNW3PFjKz74FjqfmCvt4J5OxyRISr/7igHF6+UXmR38npUfvJLpwtvwZGEw6diAKn0mNFj7rQrifPKiHvijlR+60qz525R3ZqrQ+or/NF8NBgigkhJjLrD44FutsP3HePnbInlXpUVlr6VDXceJOW3JxsrRLVZY/zkrb3o3SnIlD1PPVYKi9Ls/GIBuoJ/ypn+Cnj7vWze47lXsRDUdgxZdNkpPt+FM+RFB7W/kGpkq3Z3q6Sr2ButC2qpH6j4tGCkz7hEnwDGm5JXTKxEeKDJdc4JpWC6gzO5hLvcGq+z5V+4RLKdOc/e3hnxpSjHQHwxAMxqt1TG9fPj3Vn5gg1WmvcYyU55mmZFzoTti/KrjA9GjaFFJ9FtBfqyHDm+2cNdXWVO/A+NK7m95C1JaFJbS1B8MiBZRalnCJljVWlr7Cqu0vsty0y613DgMJfcgSC6Ktrpko9Oi9rpiH8Dy/t97zFXY+gNoUcYVXtpqXi7TlGKgzxgQjZWYcVpple0ftM62By03/cU45x/PjCGefx5HsrGLFrv0dKeV9t9NbPT1Fu75FOqcQacGre7VT2Vjn7ugjxmD+UuWei8kqD2I+/D2lSs4DqKO5cWhNWRC29CRt/Obl9vZTWdZeyPKrW4MDi0tQGxnYdYujkkivqX5LlYi3sieMWt4LgHCqM8/Scl9hCjNlmKgGwYgTy1RZgUgczRssnaxBU1PYGPj5RaMWsiql4l4tjifC8XnG9pqk9LW+4hTuJWD4TQluIQPXlRfwZrSYjfUpj/6iQGJSnkJtMXCPWxNtMgy455lmaazLTNqCfHw05mSxggjJkY7tMtjVW59ANn4J2gSD2o4AeNqNt8y9NOUYmAQMKD904pbkJEHkYkvZ7ul8y0zZinHFqKntYW7jH5OIqi0s0mp9DTb1ITNv4R+17uBlurpQeiD4xRxAgOrYg1YtxvaWuz8v1znx0MckYMgM4c/dGy4kW+NxEiyp3J4rbTqxpWZ223+KP2TYmDgGMBDIEOrtB/62mph7EgNAs6CMJ0Q0EoYwh6XJzhU+Z4FPfLMaVE30pRiYBAxIMVWYYOh0kPu1NcWWe7hD+ZTCdPblc1Oi+6kCkdBiwvi3+m04CD2QlqUMKAtZ6RuSxv4w27MsWy0YG70rLLOH3uUj+tpvFYZDTpTQx+EDWnqZYqwl/rUeSOfapn5r7RM8XC0ekHZ6NhgxExWw2AV7/50bFylndYLBtNbA8YARlKIFyuHC7xctOyc93DNCK0To0qraLQmvn4KXtU2C7cwRa0geeVPU4qBocCAlJMGk1ptPflNnAJ2Ltu3bcewig2oHF7+urFM4VzLAZkoPln96SkWQ9ETaZmavlb8VXYqxwsstszMy7Dxm10WQnTQaR2kyvE6B/9s4b4vp8bVMFJMHwwsTaswIsuNteyMZ3OQ5FiECF4r3abvtEqruBGX+Bby1FFcahUPY/edjlXpfMxdlp38JJTaCoQIRpSGZkxtB7kGKzffS+Dn27C3mI5JiPR0RFPa5qHHQIC8K7QzJbPS8nNf5iETES1StbYaKR+2wu7r+d7L77nclPsgTSkGhgIDDDDLijW9gBOenouxheGvnZddT0s2NrLp7VELd+Dhyqd6eih6oLcywXRfkhRYCUcBH98yWx6DSKlZgLFVwbhSR6YpxcBwYUAxV+UyH1n5VIqBFUqBMZpzV7jfGy5g0npOawwwDR2yv1otLcqrGkCf3AQ1ErOaBkhTioGhwoDoS1OFODtkWGmxjza+imUjxMh97nlKaTFGxJB/aba2b8kNKP/T3Ziqvd+3ktJcKQYGEQOJsGCUFtOi30luD2JNaVEpBnrHAITnxBcTXSwmu/KmxNiFi/Rq6DAAndXSnp8QoNpEf7UPhg6CtOTuGOi7gdX9vZpfacfVICO9HFYMiPYS+qu9rrk9rPCklZ3eGEho8fTGQtr6RxoGUro8VT0yCAbWqQI9rTfFQIqBFAMpBlIMpBhIMfDIxEBqYD0y+yWFKsVAioEUAykGUgykGHgUYyA1sB7FnZeCnmIgxUCKgRQDKQZSDDwyMZAaWI/MfkmhSjGQYiDFQIqBFAMpBh7FGEgNrEdx56WgpxhIMZBiIMVAioEUA49MDKQG1iOzX1KoUgykGEgxkGIgxUCKgUcxBvq40Sgt9K1c+MOGjv5JNs7TMSXJ9aMYESnojzYMiA7ZVE8bOvrhW9G1aNMXJTu9PtralML76MRARIu+uaMOJfSkjW8TIkzuPTpbl0L9aMEAdCb9LLqr6mnBjmys0uKjpS3/N+Dso4FFh3HWUZDh7EGOxrEwfk3KLMvusdxP++//BkE8KlohGcL5WkGOM7ZkTiWnCuTyHALNR+QqnaZ8aUoxMIQYcBLTmaxZDiL3E59jY0pnw5WRi278a2ft+P4QwpIWfTpjQPSlI+ykp6HFrPR0vHO762l0tmjSU0qLMSKG/KuPBhYziRxBUjmyBVt4K4Kjw3VXIKFRP97CwsH4NIhkK/4hh7uXCoDFCUhEpJnPZPZTIlACjo8fW3EqtS4w6VBiE4x83DDgUscaVOE71R5BwRjD5zgUMwpnMR4dh6cSRjxWgFdp3+VGVlhsBbYoBfkxft/Bl5V1yiws4awWj6JNPg5Tz76OgR/2r54wii6V4n52ehSs+pyqJLzV0mICYwyX06J4WzCfgiTvKSBJ/pUPr+VcQuSg9zGwZBsigDhizA+EPlUwOhS1tCgcqu8T/kjkonB6ivDo8PTs6wRGwZXAmMDMrWFPgqcWj/rdG4ynil/ATTAKdi2gpzfSleCs3Ok9Gkj21I03Kx6I1KLzzbAjMK4QWI7H0936+lTBqH4WnySyR/2sVEuLuj4xvwTzlyz1XEkRBxEQt69cYePr6qzI2UUN2axtaGuz8++515Y31lnb4QfM2uO6MJRtjPC1nM6kQ2U5S6AMq1COiV6tKDdT9dbIjkroPMFVbibw6QBgJWAdbhi9swCSg1/D8u4IhKR/4r4MsvOBEYQmHdmHDlRrBiclxET/lbYDX0s0AEpg5HFEc4uBcQRVxsQ2bDCKMUFUCCAhBMjBzmH7PWacXerdKfBHk6VhFfDzPOCw02o/J43g1pCmWHiEgvMo1a/tzg5iMh4F2XHADz36GXWiRX2GKwkIIQtAKoeoemN3fombYNmpZJsMsNyoGtXDBaMjiXqpr4LRUtoW0eLDeHoWzUBxqEmnBEbGp1JoWeAtr7YQdFonH8EDiwSjz7CgIh+rvAcJjMNFi9RXVRC98DTwqGudBLPwdCCAQbDjcbhgFADgTnCGIK68ng9njKqfBYJg9MfolewCfuCVOZU8XYl5OhF9QNMF4ynmaRkt3m2cOZhBnrQ91KWnhbbRePyzZ4A+aOFU6WmnR2CpYOihY7yfa3laYik7G/iaHK+nhqeFR4DSAe3lPd3ZIRZL1g893QcPlpiAThm5wIJJT6TsRfSPhFoW5dGGkttqlda7zJq/hYXcAYKWxIzAO0OddJo9B1BbaR01waBNL7XMuLdZpnEe517KUAH20iGrHN1sYesdFjZfC/JAoMOopg8XjMBWWk29QDThcsuOORt5NospLkYcdGZYaAbGDVZpuc2s5acRgWVnAJ+ky1ArX/WviArhUVrPSAe4pvytZUYvx1iZjgDWqewcZFvYb2HbWqs0/w7m/S2v8MwNVnF1wiVcDkkSHviUD0Hwm7GdVsGDTwPGf7BMwzRgQQCXUXQdu61yeDUw3oxwgSazc3mt1mBVW4cqCUbKL+/ns9Ns1JOB8WWWGbUEvTCRRzlgb7ewYyd2Dcr44HV4PLaA34U8k8Gqfh5qxUY/q47ydroMw2Xsc4HxtdjLC+h3hJrj+Ag8vQ0Y77bwwP9EXTucPC2Nr0Fa+UG+yxY0XWbBuPOAca4F+bHAyO2ieHqThS3i6W+DP9qVkdwZJp4GxlAGATwdZHPWOOZVVjf2DZYdMYdoiZEAWIEcm60EvxTg6ULL9cA3nrzwzCnh6TlmU16JwbcM2TgdOGp5eg04FE/zkcyRwep0OJQ8LToXLcIzlVb6Gj5oRCZOeQdOmKXwyxQMqzrQyCHanbuROw/CLzfC03f34OmhhBHwvK8C4Et4+iL4BXoctdiCOng6A70xmHOePnwfMP4Ent52CngaPDAIQfBFPD3usZYZuQgYpaczsNNhxDuzT4eQiQevAUbwnxtGPV3l6QeAB69v08stGANPj5wLT0s+EyEmnj6yCXL4M7bEd8lXD34XRDh2p436YyiT5E6ip5nyn/gqVAc02TgLmoOnkc/S0+GR9ZGebhVPQwMaiB6Hp4/vwWIk3mDNtsEutPNzl9k5CI+j2VEwqJjD5Qj1yqo/bJXO/Rh9v7Fwx9UYWigYWaJuwIiZhiAR92BluTxLlpmC0TLtOS48LIsbIzcSupLCI+GFCwUjRKZppfLuG6yyO1Eck2hEMco36H9hTBFWGcLPT7bM9NdabspTLSNlmxsTCbkMeUCPn35exlgVjG1brbTzhxbu+xLvI/DUniGBsUbIldcg4M5Bvr7GshMuhDE1GoPwmebwUa7DiNITowrGw2vQ0d9GMH8D/MOoGZjBYVSbBzNRsZSmjyjuR7A927KzXmm5Jgg/h7LNjQaPGFeqVjBiZDmMTBuWW+6x4ravmR2+gXacRR7RA23wzIMNI7SIMrDKQwiPV1h25ssxovFeAJ/DKEFchZFBiHBYaEFu/wE8fsWs4w5gZHRZ9QoONh7VbPHLYS52MVC63HLTX2SBBJzDCE/LSFG1FYQdhqCM2UrnAQZxN1tlp3h6FzAOF0+X4Wn4ZdqlCLhpgA4eEXIJT4fwtJUxBIsxT++63ip7xNPgOYuXekj4Bdw4gmQob2GQOcNGznitNU5+CmwyETyOsQyGS1Dl6ZJVgLFCXxcPb7ajO35gHfu+DJnOgGaHg6fxYDSeb8GMV9fwtPiFqcuEFn1wyqBF9HhojVW2X8sAj4FyBlp0L4dk42DTouROzNOV+xmIXGqZma+ybNPKyIAGNw/jaQ2sUMDl5ruA8WsYg7+gn+FpV2xDydMo3HANBv7fwtOXMaBjsNSDp31GmJAZDeRD8fSBhKcxZuQZHBae3gFPvx4d8yKMljnAyMBdejoT8XQIT1vC0x3S07+2cCf8UsRwzM4ERuFQ/TIESXKnpHroranw9NRnM1iaxm/JxhHdeboET4sW23daWTwtPR3y/jDwtJW3MsicAQ7RgZMvjvS0YOzG0wyCYz0dtm220o7vR4NQkxEGzkN0QA9+6cXAyjBFeFY0RYi3pyHcZhvzl9l5Iy63cyrtdlQUlcQZqD9QXOrI0Ecj7VihG6y86SsW7v0sCFxBBoAa7M4LUKqFu1FmL8aj9hbLjqUeEZRqqlCfFHK1Tu5ibAWuYAOE4xErt6620kbga/k+xs9Ksgoxg5kECUKkdA+E/wbLz8NLMJoRRTy11gVjXKesGOFRSg64Q5i1tP9PzN58CouZUVsexSbrukfnxW+fxJeYibr0VVkNUX3AcrMZVYyYCQxMvWmaQDh0PMbFV2GkXTBkWGSEvuc3wPhxGPUQzWW01AuBxW+fxBfAuVGA8Ar2WHbOBy0/4/kMbCYBI/0PjFpB2B3GuJ+FR5RspXMfxup1Vtp8Fb812kC5DKohKBiBpdRMH4203Pz3YkRfDNgaOcrLgeByGIXoOHk/Y+wBY1ghlrF9hxW3ftsqOz4InaI0XEGLZ0RDg5EEIwZwEQEycjkw/hPy6jFuEFBZTV/3gFHCWc+ZFgnb1ltxs3j680PL00V4etyLLb/gbfD0cvprpCOgix5jGIUa8BfxCygWT7fcB09/Bq/WD+iLVdwcGp4O4emGKW+2MfMut/zohbBtI2wEHcroo68TLIpdBKN/eC6e7tj/Rzu0/pNWOnIfNDKb/IPM06pPyhTDJZhxJfYw3pYGDLqM6L43fgFIp0cZPOLpg87T4aaPQdNHwD9ezSHhaU3hH7BgzlUY+n8V87QWp/Qmd7p4OgSW0Hn6JxZuvhIETxlCnj6Iwh1j2Xn/HPO0PLzH5ulEfochPH10Ow6la+HpD8NCy2grr7oe9Av9GGCij52nt8DTq9CB4ukLYp5Gx1XxmFAj1amfa3i60rbOSpswYPZ9kWahA4fCyJJsFE83/TVy563w9DLYQTyNjktkd2JLVPWLbAkShky55V54+nMM5OHpuqHiaXimdC/e07dabu5rMFAX0GcMlMSzVVtCAJFqYITJnKfL+28Dxn/Du8qAJodDpAdPZ5smTrrK3/Vm5ayd2JvXTptpjawOxJkHSR2xZrwU/51dYdPohKKoxSuKv/WyOlTAwOCasgnGnQ0CIciW7wAs1mpV7CjzAFNiXE3GcFnyXsuOE3GAJCkzh0HEVwuj6osFoIgcpe2u/HHnooC5f+inEWKcAQYIW/V1rO7iPZaZdaXVLf4H9MTCCAUaMYqwAK8bjP6eYAQ+wYpAzEp4j12Jwbrd7OifaOJknvG+v+wvDOCP8MXrMq7mfx4D8PJoqk3ELhgFg1ItHv1GAiP5YJTs2DNh8GW4de/E4N3JPSz+QREk6kOEvkaGmQL9/BnLz/prug7PmvDXJxgpAvezjO+g/ky857+iPOEWpvf2qRMGkgQjZZUOmKHE8mf+m+WnPYvyme5L+MGRXEuLSZ0xHhF68mhm8ciF2XlMMXwVgOhn7kcdNBD49K5glHG1Dlp6muXP+IjlJjxeiDkxjEkb6IcMU8UZeLpSGRO5732qi7IHKyU8PeVNVuc8vQLIwUHC0z3x6DyQ0CI8Q59mGblnxp4T8/TPBpmn1W8oV3h6JIb+uMVvx56eD3zc78HTCij2oOJuMCoYvsHq4Om6Maus2LbNSvB0MOg8TZ/IuFrwX5abh7KonwqMutdXnh4Fvyy1cORZPv1qhT1Dw9NZPJSLP235mS+BFMcCY195GtwiA2R8h/B02IwnS2Q46Dy9H+/fXMud+a+Wn/rM/vE0dCueFr+E2Tnw9DXw21Dw9Fqzcc8Exg/D04+LeZp+dh0ipPSUO9xzPEsHxjzddA634OkWpuQy03mHfhisFPN0ZspbrO4M9PQYDM0qT6ueHjB6vTFPS/Y4T8+Fp5E7nXhSDzETIQNm0PS0eDoyrjKzPmx1C9+K6J4XgdUnfgFWDLGsHCej0dN4tKIp7AkxjCqfGqoGlhQagWcdYy+y105qssYM3iiESs4OYWCdZf+dPwcDqxwZWP5q7Z+4M4U0Olhu1OzYs7hU58nIGqTOk2KQspj0KpTu//O4DM3Td+usXg2QBD41WoQGg9dNYI4VGNt5v+2XYAJhNCgEBoyMcjOzPmB1C96EfsNzwmoOBysxWGpRV72uhZHOA0aNPjOjl8adtxYYweeAYRQOIKzKfYx8MK5mv4KfGAXCYxU+5ekt9YSRV5lmspFLMGB+T7vxZGm60Jmnt/f7ek8GIDgI9rtxlZt+qQsFVxR9hpG6JGyYnnPvYf18wo5+RLkNlEX5A4XRDUBG+ayizZ/5SctNegIgU5/DXYun3tqcPBeMCEU8a9kxKDYXyF8FZtGiBNAAk/iltI+FKBdiXH0wUkx94hfVm8AY8zTTdFJslTIj0MEUyM7TTMNMeg2DkXf5FEf/eTriF1dsztMd8PTN4FWDEp4NOOFdcePqKhu78I2E/I2HPRH6Abip0mNvlSQ45FtwQBu5RoxxeLp4aBPjh/WQogYlA4VR5YuniQmTcYU3WsK/3zwt2lVJIzH2RyzByLoV+jk8uDydaSaq4NNM/z474kPRfxWHakdvKcEjz2p4OoSnwwPfB6/Ir8HkaaZ88xhXOcIlnKe9fxIY+gKjeBrlC09bMBND8JpB5GkN6vYSa/VEy8HTGRkufeJpwZ20QXgktIYBaMD7YQlaaf0eME7XAz4DTPB0WLzfMpNfz4AJnibeuF88LXpwfkFPy1jF81VpR9a2/S94nRQ9GyCIuLnB473o6Q9Zfv4b+Mmsg+tACvb6T9TPCYwMBeHpYBSD+EPrCAXfBIyjqjDGBhbuQ7mI60ZZefEH7dX1R6yRFR0Vln1GBtZSDKyzj2NgJa2NO1DGgeKgRi0kGLXN7MidVDpQ44ARrVZxjFiOsng/QmARQi42Cno1qhKYen4LMXxgVAXrZ0bNY8pwI4jBA6PR/oAUG0KuvI9A9hehLN4JcUAMLoiB/aRghAlGoGwb5mAc/IayJIwGahzIkEawz3iXT12CSHChcgVjf5LwiIJhhJwdiRDJT0XYYUwbI9IBp0hZZOf9C56rF1MaMGvk4oTfj8ITRqVtWfo5DMaBx68NgrCLach2WG7xpyzPtGAkiGOF2w8QvU1SbBqxjV4Mj9ezIOM6fg/UOKA/5QHKjyCe9WPM4DJaPVl+ER7hF/F0Bi9M5UgrXtW7gHGgPK1+Rj6MOptR7vvoo4UnD2PC0/UTkDvi6bXw9G5oZqA8jeeK1UT1E1+G54pFFfB0CB92ean62tkxzYDHHDEo2cbZVjhwM2WJrgeBpxVHOf297o2OjKuT4Gnnl4SnZ7Pd4RR4+hs0EOUzoKS2RzydmY/hMvOF8e+T5Gk3BJktoZ8rhle7+esxTw/EOEh4eq9lFzFgmnxRF0/3S3bTNOEx5unMmEVWKSK/DuFtU1D0gAyYhKfxNIqnm5g2OymejmGUDswTWiOebmuGp+8DRhkH0MBJJ/XzYXjwMZHnCk/vScudhKfR0wFGf7nlAWZKMC7lHRsIjD443k0g+8stv4hFcVqwUNGASTTQnxTnl8OGxSPWMBNHw6/pE+gw5ulIqwJwWHwIA5Zpt/EXADuVOVHFBegLvI2ATnLq4xoYdJ3n3mgMQn37MwAVUlVpbs5rUGy4mn2H4/42oKYiwVjeQCwOq3VG48J2azMqL8vXSGAbxUff+p3AWA/cgk3P9N3A7yqMlU7oaTGxCq+n7I00mQwnnQQLCAh20eZXu1WbEJbqE94Emz7CY8++VOiNntUlOBQcagcGWnb8ucQivoFueZB7Iq6TTSoco7R+MYYLMVcKFE9GkBRZB26EJ30a+SgJdsGU4LAWjxGAmk+nfZOfiif89XgYYdKB4NGJfy9TWn/NFMKLovZCwF4Xf9WfwpPg0HVtUt/qvp53PQOJCJIQmHKK4Rp3GQwgxdvj5dqCTnSt9tFOjdC0cEHtjzDlO8Mxvd6Fx9r+FIWo7wWjPlVeEjHA4PL85me/DCJdTnF4PUVPJ5ucpx+0zAxgHH+e9/MIwFY/1vKHQBffJjAJh7VJ8PuzfGB1Bk/jVc3C04qLi/pErTrJ5Dy9EX6Bp7UogDaPpB7V56FocbGCUf2ZwCg6dZTHzxP505BD7sDTWbZHyM2GX0ri6YHwi9pGn2b22Oh5BItrqhT+GQGM9cDYMwmuBu7ro50bEhjVvcn9BvCfQb420Ccj4OlKYTB4Go8dNJMT7YiGgpKNqQucDmthVGvEG6P5CJeiA6WEBvw+N0fmdBoCAydo2ya9cRB4GsSI5+C93PTnU2Pe6oOyw6h+TfAkWBI5KFgEa085qTz19PPoHIYqC1xyM5ARY18CfaN4fSCmHCeRYp4OprzOZZl4ujEbwi9Bl16jWMEqvk1oMZGTSY367bKS90ZnS1ZXP9Zys16BEF3Ey8jeAfK0oQMy0E226VyXGeKX3njaZbZg4dOTp5M2jIZGRM8BhoF4OkR3RfDFhJE0qj/f4DEsb7L83Nf7gDHhafXlcXm6hl8kI6v6hvaNJExkRNNZwPhGtwEGzNPYImFmr9smQX3E08KF6u2ZamV5VV6TSW2pleV5wneyE1i9Oe0N8EsXT+dc0RDlH4xmNQzR80h5CEGjHyhf5ERJWoBg+0O7lQDKSZMDm4pHsRAPFtSR9+G903NrCmwpBrA/gjNCuSERdpnpH7Jw6xVwxjlkVOpvB1J2gXihiX+HsXEBCk0kEhM7RR2Bblfv41502xZMQbggVzU4vPsgGZt5oCpplvbtWkYbSrqlVyhLBkxl4uss3P8/MAKjAk/9gTGuuPNOnxrU9KjaLumgJ9CI7cL5tu+AKuQGKD4LGOU0UmxsHlQXsGn/vJ2HowJbzqDM4RPQwKfgxCyrlSp7LiHo/V7el3eDl/uV1CuUDx6zc79AQDsj1NhqF0jQl93TwkWrfpEazFZMUqgf93FYeP/WVgmcSwizy0Af8t5kmGbMTXsue9n9FMTT2AyesZOBUbQX7kZwssUB07gJHinMkKt2JyFP1gaMAnN0YGePx1EBkOKNv+yLn4l0R0Z4FPwupSlX5eVmvNSKWtofTuG+vBu1jVLmEyVKZLGHBGZ2+vNgkxFuBKsOwHOa+ssegJN9pMrHB7aKWSDBiLy2O3byR3JWjyYENnME/MgtLcJQf2j7juzM17GFFsZq/dlRxpOBkanBzOinO91kmCYNSkX7i+QnS7THQf8z4eEiMEn4PtQGfOJfJXC6agLhBDyrF00c4l7CP/T5ivF4usecaeVpV1q47YMD5Gmm0icS/9d0nvdfJ13vPEC9c6A9tu6xEnBIyN3FANtpU2CC07Ph43b4ewTP1iF/Du/lAbCfCe+Ir7IYMGVWS4b7v05fYbCejMzhrQo8PYq4qzoMwBxGQWtHYP+ruoDtcROJUaUuQHTa/I3o72iEx+U8G0/fir+LtOsW9bse0bYVTaE1oXEa8Xy273468VisPs3Ju3EStMhb4ulg3pdA1CxrDIp2t/pM8hB8nEFfRhCBE27fuYNfok3heBrKC4NPaTU04DwuRiLjwgkYMPV4LKf9FdsW/YyGQPO+SOckYBRP216M/ZeCtwnWiCC+qxkARFfojLNieSeDr0TWv0gOakwFbGdOjeVk3AjJgHucFmDxSSWbN3KClaZfxnTm94GPGYOT5mmIiLiunFajs7qtjgH8nbLZJGvoy2XoNfGLjOiD2LM7xOOCCT5aAT9p54MMnzvFY4e5ELLVholFO2vMHCsz0KmsfxN1rOImjTiZvi7tQX9dQjMvwoBn1glkOU+jO5qAYToyO+Hpew9ThfSNEnSw8v9n7zwA7Cqq/39e35JNsum9bHoPCTWEXkSaihTBhgoWBDvIDyzYQVSkKIIICII0RUVQQJBOID0BkpDe626yabuv3v/nO+/dzctmU3azBP5yJ3l737t37syZM6fNmTMz0EG9CJVUQheuojvXQ5Ntu5v1LhNPj6CvvwtP/6iFPJ2vy0tNB77PM5AdD097Vg9sb6g/aXI/YGxDn+6Jp+vBmZORqJAdKOL99p6N7HSoZTt9Bjr9037xtMHTkb4/xOYZgozL2Pq6kL2h/kQdDEbu+Dwt+edoYFu+bbJ9usPTgl+2xdTV3Bdp63Fl1sa0j1sWGyq37jiE00KEAsa1owQ25wxVEhTZpsopy7xCkmLHENnsWafxIfv3aVFLbc7a/S9k7YG3PDsCxlC5k2o8u+SQsB13UNQmzc3av6fnsNzzdTqFweqqLEF4uZUCBM6uezP/kJ/7nEqryMrouQPzziVdUGhoKBofwULaAF8M6hmy686PWGdgWgfT/u7JrC1c41n3diH74clhGz8wvzKhBKG4EKK69p8Z60JH5yjDwYjbP9NpAoLkdm4gnbYv2GfQXEbKsbLhjiCinY60CIGbXgYuROkKxiUQ+weGh+3ciVFrA0MupTN/+ljGEqCjA7/fxrCpwmZ66Ksx4MvZ757Juo7MCsEqW4oXF2m6w0Rcuf+id3mR5bbNSmL4xAgIM0xswSEYRqwWVBC5ps/oyZnA+LXDw3bKIcTdkffNxTn76j+zNggK+e6xYZswPOoWKMm2ldJYuDZnj76as60IIO3a4Yw1lFCm7UQCOx+B099uEOT7BKfaSp8QbQguj2bjYZZtqzK52sGjtNgcmv2jD0RswoiI88JOeitn33sqaxPp9wVYKdedEbGxgyIuTOP1eTm7/9WsQQJ5RnVlUVzlaEu1ORb8LQc+mAAB4HDMZa9JMMKEcvWH2p7JVmv0uQxp8Bein7FhbD3C6+bzIjaiX9jqIdN/T87aTZNydgRKZB5Meceno9YPxSaD+qEXM/bYm54NQni7vpYxTTxWjhVB6QTEKk9y8o28oN4rcEUZSrB82V4l1OEiK2nT39ZvSdlC+uiuz0WtLYbnv17P2nNzc9Ydg+lF+PcL48J2FrQpr8u0t3N2xWPgFOPvdYxtRxMHQxPQwXMzcnbDi2mUTVvLdD6SZcpqegt5WntvIZ3C8EtJWWebWZ20EQiwBy5DLIPnR17M2lx4tXMpMKIovnd82I4eCw1CB/+ZmrWfP5+zo1F8L8DnX5gQstMPjdrc5dAkuE6C+EgpPE1Af7b6D8DICIF95pqVHE8zUAIn7TofYeWsKJuyut7OHBmxH3w8YpswSB55DoML+pfXYiH8c9tZERvaP2JJ+v3v9O1zyMnO8HdHFNzDPOsKTjcjrP9O22YuSlv7in7mdZxo9duethCrpqxelkMzEn1qJfB0ghg+VobGoJ3XltfZl4+L2gfGs0H06pzd9WxWtqDj3emQ6l0XRa1v17DVAsctj2dsEbJIfXvJ2LCdehhGH/S9FJze+myGfbwYlbcnXqztkZDTY/DKvObztCqP0ddlx1kM3hMgU9bk7PtnRO3gwRGbviBnfwQfnTEONiGOyuGFh78esw5tQ7amOmdX/zVjbcCnjG3RhQyDq44L29iqKHSQtv/MRT91HG3J8qOADesmieyGbZrP0/BM27OtpN1QqyOoevrmnN14NrzaLWwvzs7aI1Ny1gveeRt9OLEqZJ/9rHAVsvkrcvZFYDwMxVtHf/z2/KgNQB/JqI6B10lzM/bI5IS1R+ZmlqMzHU+jA5EFzUrEhTFagKcvsURFf1u7JW3LKV/9WVEWssdfy9qLyLxuwPhSQSd/aALxp9DvVO5fiSw/AvqTQ2HSOrMLxobs4xdH7R+vZO2pN1LWpU07S4tfVgEVKyGt7i2uzYKQPh6olxt4esqGlB3cPWwPnhtFXnv2MP08H6PE5+lrTgzbxNE8AxdPw9O/gKcPRw/+/pNR66XBPfWrz1Pgcu6yjN37cmcGpRMZxN8FHaE06xY1D0DxdCn8Qj9FsEkS8XJ7dVXSzhkdtgs+FbUaDGPxy+pt8pDinIHWfn0usrw/shwx9+fnM3Y/9DYAWmzLoPmOz8esFzKoLunZMzOydstrGRvdtsq2dTgGQ/W/VDZWRqYooQtTMhrliWNpkU+dAOQxrIxjmWXoxMG9SuxHYzCMf5+zpxEeTtn0MrvwnIgd0g+DraPZLxHebjhKKfmygFTCtPQMflL+iJupBqnj5tFdpj38EUaoZxmjk+qHaBUwso0ApjtKjmdiJOq//4sR6wZ/zFhodvjhjL6GmY3/ddaW8fyuMyNWgdCYMh9ByajXwyBbzJTTYhXtEuXLa8fGmm7/l4oTzEbdxRMfF4Vsu7touCxDZcGtvAIw5SIyLAUZBYKRjjl6dMi++znyUdV8lNIHT2KHq/5mJ/8GXAHPB8eF7HsfZc8xXvvH254tjeRsaQN8FCcqwwth7Q9BkvO7z1fMulPIvuDQf5d9ymzuj0DCFxDKfXaGEUK6CAX2jfNCth4ZX42Nef5ZDL5ozsevzdjxR0dtEN8nI1+10vdoUDWwxuzrk4BfiaY5suFsQGt/FFLw9wwFwEfH8eAG6Shc7CkJRtz9thWGeetjrL7+jKNJ5wpWu/U+RPzjj0Ttog+Cw2Xcos4vfYKmIHeuuCVjd18dtY8cbfb6HLqAor58KOq7AoMMJWLQrsOhvLKxzsB4itmSK82G30e/D2oejDXTwSM4rKKySDtaRdkYV24KnK93fzJipx2GxwV6697D7NsHQaYVKKzHs/bE96N2xEiELrKrd2+zq4clbOWdBV6CrJ1EEfMwDWdtL0apTWJ4jGJTLF/BI7onNLpnQsyaZ9CS32FUJSSU2bghOXvmoxE7dCgOUh6vokvueD1jC3AZfOSQkF39+bCtpT83YId87nyagzF4+R0Zu/DUiH3l/JCthnTqIfHPX4BMK8/ZL5+hEMfTdEaoHJ6+BVzQgH2hRydbcsD3IO17gnaORoKW2EePiNlVH4nY8D7Y2DTkFYyrvyyCvjIh+/bpYfsKtDl7IagBPd+6CHupBAPhaYQyRuPphzPIgg6GQbuXv8E7GnGKbpy8qOJ6Kjx9HqUCtyNUh6nd//F5ev5vAKZvnqczwHdm1D7zwZBV0R3y8D0427Pn5PGt9+wOjK6PHg+PQH896b4rR8Vtza20YX7OnvtsxIZQzExo4jBoo2qw2YduzNnrm4Gnkhu0y/p+06zbCfuGwwaeXs+o4/uM0kBIgkrZM+hH4OOTx4esL6S5lP78OgNiJydxsfz1K1EGJ3jTZpuNG2v2q8EJG3Mdz0H4fSiSCrpw8Rp4/0zEBLT70Rt41paHlcdANHeZDb2NuiDo5vD0Fhr91sdhBuhZAcolCfv910rsDPqsK0ZJj35m33syYwvlLqD+Sd+IWA+yvfKm2fFU+4e+Zif8Ejh4LM/vuMEh+/InwtYDslubSdjtr+RsUa+uAHyK2XJofvgDEDl93hwYq6cy+vkSbTsKPgNxGPqPXhKxY8bQ9BhVtzX7xX8ytgQY20GfP7mMLUIA561l4Oh0UET1F9yYsQ7DQ/ah0yIYhsxYwE/xUkiRefnZ7OZvJb2RNcgNbco9+p/0FwTbHJ5e/TTt+x4AHUJ/ltr4oVn7w9kRO2wI5Akwy+HPuybD0+icsw4L2ZUXw9PAUb3F7GL4VosFr3oQWYixf/EHw3b5WSH3/NHarK1Dbi+W3JHuSpxEP1XC079pJk/TR0vAfS0IU+A9saTnTozZlR8O23Cazl17Yblnjy4hH2B850MRu/TskM1cQHdBYpdfzKtRz37/Ws7+jtzZuh1+WQQOefFM+qHz28D/JIXITgl1R4ZDpGPOgebVEx6fvSTH03V4M26ijdCH5Fc6bl9Fp1xyatgGdKav4Ok/zQC4zSmbsdXsdxdE7YJTYvb6Wxkb0jNsPx2SsK031ttjK82euTBmo/E+TJuXsWG9sH9GyphN2V1TPOtdOdLqV1MgthVDwqQTIm7/B0c2xNQgiDxQ4jGsjnSosC1TVtu0F2bb+oEZO+O8Evt2+7Sdug0Xchq5MCxs3VfFbAOd2QOBeLMK5X6hKAgd4gqziWaPXnyvQXgjvd0O5iDaJSHIT0JUMcL0nf0mtifoBTaXjG+k42YBOAG3FJvaRv0jwjZ4c9ye+XPK3sL6zOLhOPbkuD3cNmnrlnlWNi9uc9/M2huPZKy8Kx4l3rsVWnJCx682K8XLLq19hoMLjhSoBMb8uI+rD18xbEUwuo5jg7SuwBjuA1yrMQboHeCWXVAPjGO7RazT8pj97b6krcbrUsbIaNxBUbszkbJaRucT+sasM6Obpx5M2bjlZhO70ESEyU5JMJaya3D/IyCuBDDCBBK0Lvnw+LD6b/JcWSLY0TLBJZXaEDDoLQF5wOnDyKNju7J9xRuM1m5LWh0GVsdPxuw4Rh/X42Yrmx21OS95Dodt+zD19om41a7M2a9WZawMxm2AFVx4bamwP8TL/EioskMTgs6HsQh2KeYIwd2xdRiP9AFuvRDHzDjaUQP4j561UyvjtvlFs5dvTVoc70vXC+P2EYR0fV3Sjs4lbMukkE2/IYmXE7v74ridEc5ZJ9zooNmhoQErcht61FOpAE8fRgjDJcHlw1i4VYAB1yQo593+VQgRcrFSRjhUduEg2j5kH8BNuuQfWXvtzrR1HBC2D4Orz1RkrYp4jIPTCXvr4azNeDht8xlNnvO5hF3TM2unTcs4t30eI8BBYV4X4CoDvsoKBEJHqoHxG8Bq+EL9Pm7da3sAAEAASURBVLz5t2XUewg3Cx/GjE691bPD9BhYb3QyZi/fnrax46I2bHnGbowRl4ZQPrgLdDUzYi//IWXbGfn2vChuH8IgzeAl/UC3mMXejNjk25PuWe+vJOyiLp71ZcgZMzad7YXkxPMSqmxH/0FbDQZWMXxFOHRf9Ywpie1IVQRxOFZj9Vtn2tF9kSOrI/YSylYwHrs2bYT8O0/lCWi5Dc+FbBK0GUeb9PwcOG2fs77Imgs6J2ztSzl7bTuw9w7bbXjrXIxpknY5nkYg0yd5nhbj+/jy4dLVv1fAYQNP8x6jxojHxofJzXZKb95/AyMeL/NAvC8f25Sy05B1mpU6kdHRwr/lbPo9GVsxMGSnXRC3y5hOPZ5YisjkiL32z5zNxxhIHhmxiSdG7ZdMHa1YxXREWZ1l+mNkNcnTxTD634FRYMqATCIPekIfbZEFmcUsBl5pZ/SI2Xo8AVMhl85dwvabNMzNfy2SOgyDZMYfM/bmwxlLTgzbyWciJ7umbcOSnK16GIW8lBmBpTnr/YWEHQRf3RhPWTwpnqY+0XwlfOl4Wo0WPPrj406/i5LjaeJmJev7DmfhTymhJm9bOzxCp3ZAJv8ta5s6ha0MN8Wvw2mLoVArB2C8bozbf/+ctnnI8jYfjtqhRyAnK1Ns0upZGh4b3z9qZQuitg6DcejSjN0Qz1op3usc5VtoWJ6n28AvbuX23nga2BnYeVqFWDWA1WoeovtN64doOAY9MPWP0OCwqHVD1t0QT1sUGKt6RKz94qg99kDK1s7JWRfk5FF4LW8qTTJLhGd6asym/TVtNUvQoLBEb8jwVs050QleF+Aq5yY8HdqJp5viF+FSuCWhSBxPR48gtnc7PD3LxsLTo+qi9tJtGTtofNRGwtO/hqfV14d0Ra1PR5bfCd42edYDnj4Lvill2jMOXXxgYJznZq/ekrLvwIZuM3X1cxhrrGdfqk3Sz3S62zwT+eZSYxj9ftdV7UNmbaOw9sPg6Y3ovZl2DDzddWXEXhRPo+9OXJcyfMIu/OXk9tDpf/GSw9MJjD7x9MUdczYcd1X18zF7E4/Qgpez1gFeWn123Lbgfr1JLB2Rnh7nDPVQe4h6Jxos4MvBqz8+feorLyOrvG4wK3s2hmwVMw6b7dQ+6MbZ4AKeHjYkZCduidvVuZ42hlmG4w+J2N//m7ZPXpe2KpwkT/9fiX348Ij9469MBw6O2lTsipMPS9op34nYw98psZH9QrblBWL22gy0+lg/ULLJQlUDe2GFjLD4+DuJTe5ImEPWXt7+Q+uY+48lQ4MQhaxu4uy3RHgFthiussXc6UlMUAVIpT05JnZTTBd5EHm0QxhGpiE7tVM/QHykO1feccfaINldp3BpIumNfHfK2GMOPjKYGyAmt4ayZbyoQ0lkUv3JZbjBsSKjwJTBtZtcnrWSKixKgp+SKzD42jMt1g4CEq042PwaCuU7JQnhu+XxCA9W2UkJ+FDwpSH5bzbc0LsaekUH5m9lV3Mtah8wZreAozXA1BeYSnAfV7PdxQbOeQTGUBRltjFrmU05S/Tit4KhfNuzUEm+TilyKTKsL628IuC/Kfjyr7hGFj2nwBBCONKXe3Cgg1GVCMvkhYEFUxbcCcYQno3kGnairvOspH/MPRMuHQ55LcWzEKM59bVczvnoI4oSLrRSRsdt6HiJ3BLu0fc7E0Tht+r2k74jPTUy0V4nrELxcmspN9/y/Pt5mISbEvAk21J96xw+/K7HhSwaLO0nI4ge4HcExs3DmK+nobwwQ84wikn+8Jz6C2Xlkl9f4ecuF+rDiHYjcY6l8HKsGPVpUXmpuB7aU6hKQkIOeOqXQH8FvqhbgJCGDuOdmcYkyK4eBRHrCN2KNqk6jxHRJCNk7R8nmtcxIh4DC+dR3QUg8hbj3wFB1qpC+9Zzg92lIZfUKoyizvAHdBajfp9/xS8Z+r4EI18yqB6jWamkJyEBG4poAsOtHiEu+oyjuD0P48Pth0Vmxy9FNO9K2PVPHrv6S0WOXzCqocVQaJulMe4yTAlFUbrZjTmLo8jCChYhpdbLGIQWJQwhsfqlLPxoi6wBd/VLmD4HpjAf0avey6/wE7+Ip8GjaN7B6NO8K7bhz6445N0invagE6gPOYciR94Id8JbCQaXcKaUBL8heCTBYCqH8le/x/geZSAgXg8z1enkk2TB6iy8rvaJsttTBqNdaJ5deympmC9c0bv5Q1t8ntY0regY2V2/Qqs9eYRc8YAjgawWf8s7KnqLwrMx6DGLly8JjyT6SQZRNXBFytnDSTITGqAo3gXf8HQoBHzyarBCWme97uCX3YDWcFv8Av5FJ2qft5ZBfR6OCHhRHZI18a55JIp/hTfpF+EqDa2m10KbGFVuh3ya4ctSsZ3eU1+IJkI+T2ve2hNP4/rYp4S8D/cDRuQWDgB8PvQx/Qluoh3zePLlCMiAxtAvK3fI8hTwZXF9iH8Ev37H6XfhUTztEl8cTzsdmOdpD55muF/IsLcLBUUGACfGqs7IM06qAJ2ioyZ5uhaeRqeU9Cnw9Er4VvjqTkeDq9RaZDszAoLZkZvI3ddjDkZ+7iNP601RsaMJx9OUqQUNPk/XwNPCo3gaegrLU0lKrYOnoU/xkONp+DiCno5VRmiXdDZ9i1GoGdV64I9VEsqCyMZDAB66USU0r0G4q3tfeEaNlJ4elH/HzYWm0GU5cAGN476Nb37eZvT/hR3nXWaXMOb53oVRuw4j9ZbXoUMGcE9/N2GxmGfH/iBlf/gsBuNheLfeyNggBnYZPGlf/l29bdxMOAUnzNRP+SyAsydd1UCGpOUTLHHIHQDOUTi09o7kY1bBfG87bzmG1hJ0GvE6SBLxqZiRgaNDCpC6jnNChmdiGH12TXSAMKWk1Rr7LETcG/zhXcdFehdKKUoinGKYBIs+qk4EHuYVverg8vtB9LBLUiYapkbuM3P6hey5fU3CCNxySog+HMz8dnhtEja/HiFYMIox6YhmJbUPpAgY966PjHwhPgwOJm5pKlDdRPiXw6/g9HGowbNwK1B2TT6Mgk+FNCf5MDbdPvWz0xWFehvgAEb1s4O3+Jnf77uAQCY1RgU2G8Y9t8/RWwE3jl9Ef3qFT8Mzvis5+JuEUUQgGHno+EV91py0c/sa6I96HW8UilaJu/S7UEL1zmFGN+jdBprg2Y5+VyNBvFIr8LQPh8pXnY4XaL4rvql+L+DN9btAERgFes2/pb/K5NO8CKQ5adf2qb9EYz6M4g1XMRf3jKvDG/A3lkk8ynennoFXXz6hJfhBh+hmK/C0jw/V5/Ov+84fR38FvPk04bfBVa8m82loS6F787Qo4hECBGdzUqP2gT9H99TjRC1Xn74Er4PRJ/1i+iOfkqOTAgjFNLIDRvUzSG5W8mHMt8/HjWM/0aIe81Fyz6jf3QOXDTJJuPLbpvwFeH364A4Z/Ia1BEa9S8GFPmiAUbcET6FoB2Mx3rjh41t53PNifvLhdE/4sd88TRkORoLwC3D4/LKD5vNZdpHlRTzdgF9wKvHifrs+aF2ebug/wpdKw5tthjfBzt32IbvshDZ26ac6YmDV2XWTaBPxWU9fHbe2DIYP+0HSrife98LT40xlstKUAfUU4s+/fDerg9MafG61+skXMef4qjia/5qSEJUzSmVNlJ2UONO16o/Jv9vp2bcsg+kYDjOqUdtwNLhOyl/yMkyEJmT693a5KoN/s4Fr/Rv7dnXvU07jVICpmODUGUr+K07RAZ9uqA07iF65/CQYfWorNNJ/tC/Xhvap8kYM7sMoHAndZNHHf8VdRZcFHDr4fVB2qlsw6oYa0RIY9bIK1vt+7XxVKsDkDCt+NjCjnokxaZJjVOUrdGGjEpST5MNIRhXa3NTQPr3bqAYJEW45GGlGAxzcc/gEfz78fjMblUCZhfa7B/sLYxOlFwtaUFHMLw5eXhGMjpd2i0fByMdpoIJUbDEeqVDF0VRXnLqHvtTH0Vmhi4rx1kCbTTxz5ThY/H7WjxbytF+OrhSntBOMAl33hYLivtU9tYeLIzG1R99ppzMOuLq2NdCiENASflGhSkKE7ykp1AUMDXTI4wb6g79d0ivkcbLHAcd32uCS4OdeXtwok+7qZktg1MtqX75QBwf4cMnHB48cvYFHJ2MEB6+Jxx0MgkXF6KoXhT8fLP125euqRunTzOQKFXxCFF4Jla17Apvk5Ioe83EwqT/1nI9rTyGf8roiKMbp8HwW/iqDCuXiiEXXZib3roBQpVxUh+6pWK5ObuuxPiTHQ+6dAsz52+5d96zw29Ghg19/+LhC3yGeFuiCr9BFxTzt2lOAyVdz/vMdMKqxhUwt5Wn3fgFJPq50T0VDd6rbwbgHnnZyEhpwdEG+Yhm6o5+Fz5bwi98+AQdghUuYmL0UttDAyGybnH7Clm78qtWmWLFJmFScqlIYeRG8wrV4rvsxiSTjasbbWTuJcJVvjIvY9z5DuMeHcvbJ28wO6pAlZBibivLwvTJ3zfE4uWQNBVQ62mLNn70KFsqMqcHQPDbzJRaiJolLHjcd8RkN1rkQJ5rBMJNrVIQVx/3c8Nz1ljCLay7M9JaSw27+6z7/VcHS8Joaa5giFILzSTSbYfWg3PZxYko0s+IawiWzDtiZOpD73k0hMAXh3NM7Xs9nZlPVhk3WWgwjRWl1g4JbnJG1UyWWBhYP16xglF3bAON6YMRlLxjlNpXbN8KUwg48ktchmnlxt1QanO78UBn2nkThaptXzUfEKbwWYCwwgetHEBoHT/5j4VfwpZnC0RSIEzY7N21H3WHi19QBDoe7y7Qj+87fqMjBCFflgNGXZn4mwQjYSdzLwo/cxkoOPvo4DR6FQ02HSGhoCsFtg7QTGGoX0x0NEnOnh668Pf/xYQQQt/fOzrkFS47prBR9ram/KNOUDTXwTKQh93iUKa4oSxx37kYyuDYzrerwCKxO+u1cx15/CQhZJFpaz0kM6mpNDWrqSsJLTReehD95DASrYNZ0jarXFKCjT74Lp3rPn6KJQ5vEDFBuK/K0ERvB9gcORqZZnJIFRk0nxNXH/Jcr30eWm1Yq0KemHrSNjKaehCqRj6a64nSx56YT4Gv1QCvwtMSPVlU31CUYmfIXjKrb8Y6m5oBFclJTcdL3CllQm5TX6W/yRlklp+lDFsrzABksxO9MDNzbh9SIp7O18OpW5IwUE0Wqr1WPaFHkoOlW4VX97UIngEM0kSIGxdUPDeiZaKBBBolfdBzN/vK05A7LQDPEBeUY+WsKXfiQItWUr+DMgt80fepgRFY2qXPAX5Kp0Ch4dzhUEHmr8DTTTh7yG9yJFrPU7/iF4jXlqhhL4UTT2ZqqdDDCG5LnDj28p6l4x/C8I76TDAonKIcp9dbhaQLBHE8X+GV3PE3YjqYBRR6OpzUNq++OTkUfPAP3IrmE9BFTX63D05IhzF+yesurA1dMV2rqdPc8TVaAEH6dzhGL8MmweCTLCl0niwS3RtZqSKvpaYVd1DtQM1sJcunSiSro41zW2pdssnlL0qy0NRtcFbbUg0zps+qyb4+wPTMpbUOhAa22ncwKUXuJxSK08cpPkJfntl0hBDXIA+gI2woDi5zMW3vbF3MGVX8qxUqDQnrSE4/FT7A37XBrPyZi55wXt/UYMH++m+0SIBwJPdk9Wga6kanrS3+asG0w5r0EzimOT92VJzTidOpXsBLwBl6gru6f4iV8ak4aKtNukgpwioLrusfor1eIGLyaudKR4BkqUVJncEkjIAaeELYzCdqcOz9rjz+UdjC27x2yz/2YIFgUyNuLcnb8UTFbgrC7744UhmOhz1QPHO4R3Ogt+Rn7EBFA1+XDukkGdShfd5ccjPS+JNea+7jWWqjP5QSj9+a7RvX5l9UMwTj+vIideHzcXnw1ZS/9CyOB9ztVhewTn0jYZhh64RKWnrOaaibzuo/+KW3l6DAg2IHHja+at4L9OyrPJxD8WB6Chz3B1/AuEiy1gdCE2+iCvpze8DWkbsd8HyiPygAWbRVw/JejNp4g4388zqIBgnJL6MsUPN1jfNg+9jECUJ9P22RWb5Wit5w+EA6UXF/BTOv/RajFrzk88+usWDkIGCGWvcJIITpip24JMP6SULPTLNSDNkrxFBSjitfXMEbJGV+KWe9eYfsziwLWLcy5FW5nsWR2LEt+X4YBEiiycWMIAH01bc+xHUac5jswRbD0lbfqQVbu/4OQr2/QV1XcQ7D6tJZvza5/VYCskS0zad8NtO8rMOWpFEyZ+dJdEeqSMvbuOfvKOJsMmt37x5QlWcjgT8+UsoT7Q9+KWSXxBrffkbSt7KmkoPxCM4EDeuLwaG/5bRjji4Dxi0hpxejAzHvFo2Dk/eoXCNu6nw0Jr7ZcxQSr6O3ZkNER69IpZOPBkXhg/uKcvTUVwQGKP/2ZElu0OGtrMaaOnhCzZ59L2zMPsHLmqLB99Ky4LYMuk/D2KFbK/P2fSZv7GrFGIWIyl/6C+iCEbp/kqr7aCz0Kh26wxJe1f0cYvQ6/XGU5YkA7s9JxwJCw9SKGasSQqL2B8FpOcPHUlzI2eCSLBc5M2Ossy49hGI4Bjr/8NWlvQp8HsUq4HYpvKFuxdMMomA7vrET5znoFZciWMN6Sn9Ihh8LTH1LleUTvCY8OxjxPe2vuZW+j7RbtewWnXPSyPuMJACdwt3+/iKO/mbMztoYtDV5/NmvHsvLpyCNj9vwLaevdh1Vu3cN2D3JmGwbDl36WYHFNyGaQX4HaMchoCXQ7fwaGWN0rlln2EwKfL4Cnj6af94JDWuHITVZJaj20fCtyfCAnM3yDRSKVVjXBs27UPWoowdgYLZNnpm0VKzKn/jdrH7skZoMHROwp+vcweNzDmPrVL+tt2KFsIXNOwqbPylgtUyHHs/prFiunHrpbMghDaN0T0PxNBZ4eA4wIsz3h0MEIIh1PL4Knf8XiJvDf9VyMzFIbcjwB+BjqokVtuzGNPltBcP3caTn7/PcTVoYCex7eFRzriF+793cpt8JaU0VpRG075PrF15XY5Mlpe/xPWfaAqrfssvvZYecJ+OWb8HS/feTpAoxbpudlVjfkYuUplsAYHcbKso7st3bo2JhVY/C9gbdi4dycVdPfX7qGBTX06+w3M3bisXGbxfXPN6bsmHOiduoH4jbd9bNnhx0cs9eg2aceJRaOAWNu5e3w9FJg/AI8TcxXs3j6OXj6AbfPYq7NEVbRJ2tDRrH1h/A4KmqLlkFP8PCb8HQZsUufvjBhCxaxxxPGoHTK08/A06wiHPfBiJ15atzm8yyJ2DuId595IWWTnsTA8ZaxX+X19Fv7FvA0Hbn2b8jw6fD0/1muZLh1ZqXjABaD9GYF3nC2z5ktnhYtvsDKu7HAgRfotSlMqyGvR7IN0COPJG3+VAxwWOBIVj2fdGLc7rknaUtnMbAn/kpxbLb5DXj6xywWOBIiOkOUxgP6cU/02MDTKLLVf+QF4jZ7X2G5WE/riYoa0gej6fGfW4hVcx6LHrII7m3LzeYsMTv7pLjbEuNQ+KkTckZbAy2n77fgcPgki+lU1hgWM7UD57OQqVZBjOW2xSjTlcBUgYEl0zv1FsT5FgAfxwsyckOEXnr2BMHKG9Kd7HpcYItZCXEz+zw8iFXcELcswPVBx4zbErWtdNj1URSBdI4arIZHKb+W4MgVf+UezLkGgZd/WLhyaTKp4ALWNERNTkYAwdgd+qGApLQLz/Qu7bp3HIYJ2a5i+fkk+SExDGwDbZmBUTMubD2Ji5uN9+APs7J2h7ga5eeSYASptn0mML5E2yhk+Qz/Ideiegp3d1x8GLnqzK4c73X9P1b19OW3lLYQQYJgNFB9bDTKixjFs6elLUOVzktAR6ZmR+yEg1hxgR59bZPZTSw1fzQKjMjQvIXFlZWAVvskO9zNRYE+Do6fLTzcE3xkcR2kPJSXph+0Uq9bQQhpKbPaJzDBzVgE1wkot78s8OyzCA1toudGPTTvyj4Rm7Y9bN+am7Yluq931Hw/OQuI/tmwBiJehNV9P3keIQ/17hGHKkAFUaAbSkOYrDayHh1pfxfApky9D2/h6LCPjQrbB1iac/fsnF3O4gbXj7w6Z2bIvk4QJeeXutpeoJk/QNC9qt3/EMxuCwTnrgEHa+cDH/XU/I4H7mG+Dv7uPlGOM9Do1/qFwLMKPPbkHh2pNgrF+kA+l48OWzXBmg++mLVfEeTZQGuA+zX2Q6vtBPyskLkOw9/RaaH5jl9Ei0kyroTetUx2/Q0U6iNbFewpFWDUtiH1c2B2iKmir53aMWejR8Dq8MR0yNQquY3Amo0n7Z7JGMWzInYUeO3cz+ypFWYfRnFZV/ItomZWTI0fxAaBVP34MoyxhdBMGTBuWgufYCSF4enVPyGzYFND9gRj0XNtRpua4jZitDb97KKu7CGDsK+n6KmbKQXUJtqbPb84Y9fM9Ow+BPBQVvIoPfQ29IkBoFOZbq+KWr++LDnn/npwXzIEditnSw8MLNsOP658hS4G5uXT3Lv7DiOw6mxND7nQDZ4u72vX9sracAabGyl6I7QYGUDzgfGpOQzqJrMP20BWnB1Bs3j1HoynyzD0jsOgnlgXsTYY0Yqv1aBKo99avKw/mMaPLU8AI31V/U8e/idPS3vEoZrBey4P9KOjQ0o30l/fIv63n/2yX9aGogxYQO2W7pcPhyTLPPslq7CmgJNruoGvY2ABnt//XNZu0I7RyKDIgqgNH4bhzP1XKe5mjK2/SP6wws/Wr6SPofmNf+L3w82AUXTL+0neT81Hv3QCj53tTvBQgazRvnBKWnk/nRW/103P2vpXwnYxK8GrjmU3FLrt168Ah3hYsHBR6s57o9kO4IXtWfu1GynD02sov5Z6qn8LamLkol37gkfH01Qkno6vhjd62uh2cbsGHJYigmZBUzq+tD1kvpT6fo6CzbIq9MwJDAYm5nF1BTDO6M62IZDKA0NiNgScS628guPh2lns1eWCiKhjxeuggwLX/wrYmsHTyqtBvHi6HTQJT5/GRrDiaa3jmCae7pDn6Znr2KuJrQK8N1itysCkU3/24qN/P4IhY93IRxH3jIzZyIF5yfcsjHPZrJQt0757m2n/8scAbWwLeRp5lZ4KT0OL8MsXumVsDEZ0Hd0xFRhDvfI8/SzG3Q/gj/vh6SFjYCbSg3M9u0geIcZrWpNybduIpZeF7YusJnYyUjQg2ahj95a/RkH07zLkh0sijHw5hRuNLkXPM7U8o6O6ftsZ4t/p69lBw6jjSQhMto0Sq6TLOrPdBZ6rp7BnTmMlq0yGmx5K2p3AKcf0tfel7NMnx+w09hqT4//hZ1J2MStjR7En4/aF2FMp9hZl0/JQ1dAx+GSX0XHHW2zk9czm9YA6iLcCYNZFOE/PWmThClx2PfAeaBf3AhgOFn3Hu2dTsJTVxoOpQJ6QfC4RERvWLf6jeQu/gvQbB/CbCs/2hBC97ycK0zmGyZkW6vZ1iw0FMVF+a7RMhapKunce7sQtW3HTMerQpnQ+e00TXPzuz1TNYjY561LBTgByRXPbbWQpjwFLMtJv/4LR4PV0HMSVhYibmyJI2np2ch/A2XT9P0vhLP9tgMKhxqbiGtcU1yhg9L0qwoK7z7Un7vqVLEfuD5616hgZTDvpCbwSXnItp7NcieflSdrfm4c0do9ExeOGpMbSTq2cq59ukRF/ZmHPma5sZVE1gkN2wnSmWpXG0o/yTuqXCKi6zmwxNDCC7QW0F5GPX5fZGakx3K1zOef6YpishrrUCSj6ZsEIJ8rLmZ1t0dH/YUXZRJoP8RfKEIzadG5WoU/Hgyc9wjlgG6lqAbB3Zw+breTZgtdoOB4bHQ/jWiQ8ss1CdsMrlp55PC+NpDTKdlOlKnlfEiVpulv+bs7wio25051UULzbvGDRQGMuMLaFzgYjMIQrJdWiUwfmAmeiDCUBTYqKi5NWwGVWPWbZNz4GvxzEy0imAq0X59v9d2CUJZVZhVF/vMVH/dxSHGT+xmZqEioB3TEMfTgUetNO3lML+IzgHcrSx6PoY9GnhMp08OgMbX7j2rYxTM1FUbrpxXdbbuHXinh69xA1+cTx9AzncYgPvYI9aCpsrmAUQgSj6gO20cAo+nNwgC/XmUwvHQQPCdcL4ftN4Nu9o3fZSydSFmWbgS2WnHOd8560lKdD8HS2bpqVD77RKqo+bZvrY7aIkWuN6gE32mC3H2TeBxjT3NMGj+Pgmw14+9j03QYy4tXO2i9sAIdctacSKDY1c1gFHqbwGquZeTnTIc8yRYLczaGgCrTOl70k0eIOng6PfJCF2qfbsi14WcR2wiF1Co9RZIlobSN4WszouxIYN9LPYtGDgD1J3jcEI/d7cG8VcrIX4qxLeRQbc47lZn0O2kHeuGn15vI0BaojOYg6MoZ2Vk6AFhlg+n3GU8HYFQ9Ab8h2EdXUgL/O4E7el57wUDd4xclCsmocJw/HLDy/HVADAypihAy8xNn1J9IhWGpaXVYkM1T8nhPt1nJOedpZRR8b+3vLlQ7h9AqYRfyij9QYMFaBw45knSw5zv+OwFwNLw8B1jaILW0uOkv8glzqQNfUAKP2Z2uXYJpp5d8t99YF6Bd42msJTyNIMksp7FSLjfqZJVk1+RZ7WLl+Vl9Tn2AUT0vm+XrPKWf6XDwd47k29ZypvkYVuHeq2fIKL1gimrL0ojvNW/TN/efpHldYfOi3bFum3OZCj415egwwqh9nyLPPdzltdQLCOGAU+Yvfl0AH67k3lnsRGVfQuseAJz3nWg76+DV4xOJ1eprM+5QowxUOYcPT4UE3W0m/T9nrWH8Tt223B0o5x5OpV0wrK/Pm2aT4t+2U2Gl0IsYPK1Wd8QXQo8Cb2GoF+lDeXu3uvh5YNaoa2SFq6fpV6OlvweTPQU+9LFQ1ZDjSgOXSbHEfGfJHzkI7D0WrHssDLrDUYGjEHY+TN564WZSURyuqdWXFY/5NtLV2pc5K6c44D0KgEGE1r+6K3t7Xr5h72RkWG/00jo3jQDYtLHiIVK8El84kU/0+M6pkNi53VWp7+wREqGn/wtQ/94GR+ZnM+hctM+t4GGksmcVRLUkAIEAidRYf+xBTWaMhAIRREYysJHe4FIzK6ifBKKebYBQTSCgzRd7QAyE8L+nlj1h67scZnIlBEQYtSlQkIV4+xOJjfoOt0BMYaa/rl3yBDha+CkY/uWYBu+BvDHu+JWIY4vAW3MK00RU0Ajw6IeeX0IyrlEZmCQdxfsJKRv4IhCFdGxkYokXB5B/XpNKlbAW7hJwQpyMtWFHvRpIut8rFa5J88xrLrb8TYTSQ28rcguTmKmawY8PPLD7oMgqgYsd2VEzSX8GoPtSnOPnPJFMEf/4NfhSMVA8GTc64FEvsLYpFqLpyi0vYx+/yrKXF0/davPc5eE7YNZ0+Ep5UlbpXdCbwfB4R32gXfznQfLDVDt3XO1G8DEkMzGztm5aecS74RJLvD08Lj46nn2Gv46OJf6gHPlYfFWAUjgSjkuBw+1vxTG3w6VODO/1WD+i9HFZhDrlTv/Z5S886EfrZH36hQBoeZhTbcdyDlmjHvl3AqGONeOJwJNy4wRo3BIt4WPAIFn1XklxysPlIpUyPKb7aJQ9Z7ZxPMhbbHxjVQUj48hEWHXOzxTj/NYLXV0dYAYLrO9GgZJ7gEw+L7gSTT4PCnWSjlK/aogFUkmMussjH9IKb8BRctZ88TYHanqfzRRYf8X32Miqjv4gFE1KKYBSckuOCU/0uGAW37udzuuzuTwlKl41Y4Pftln7zu3jO/8SL/egUtaoFyefpvj+3+MBLgYF+pxj1JdU7+hcswo/4Rc+cvOaLPJa6r3uO74Gdn+QjFpNyM9tXsn3jJfD022TCitxPng4PvY+zZM+2mPoZHApG0aHIzedpweH4nPvahqtYbpeorwUjz2IFns5smsXg+BwKQd66pBa0JKGnmcmJj/4vPD0Rnua8X2BUV6s+9c7eeFo1iwb0cXzu9HQpW3Y8C0+fjF2xv3qaGhiIlY590Go4jWNCdqPdtO0q7NNGBlbiNDsqtN02EeMnHIsIfZ0jnCK9TEf7iE7D0EuSAUh66QOWmXdhgac5F7WyU+dr9GKIDRQVK6UzhMKl3UF0XvGqXDVYRK5rU0l5RGD66LvDpKZj8Axllt6Ne+ERGtRDufS0ZUmdhDGQY+gTbn8Qoy98ojIEdZ8SRVxNwejgUo0gQQyifHkYZQAmCL9ZY5lFv4H4FyKMsW5bDKMaD+VyaDaHN4BYhKa/Y30jGAVOcSqGUUxLSTtgjCYI9ptv6YXEJimAQ3ENLWVQlSwPTP3LbADIWXoyAp0B2FBjQz8Wwyd8KYfwu0tSkbhusxtft+zin/G4ko//xi659+EGBWreZfvzxMONdocAO3ragZUmYWyAj37Wd/V1PukLNII7LrP2abaV+jH90od7ooSGTPms+/yX99iDyNs+i2n2cQRV96U4aFtSpJCEK9XQVHLPVIT/UJLHKW32R1vxl/wIbX9hFCweAycMtnC7g5nm6MbIH88BwaKqXzTnJ5/+dKtxH+uZ7mMSoNDgaabC00vuYorw0VbgaTqLDSE9rOIwc7s5YogyWTzeBRilNPzkwyGcFsOo33qmexkZV/BHpo5R5MJboKHF9HU75fCLaeaVQpFjueSb9E8XgtnHYBhxlBH1KIzCGZ5FJeq3+lQwFcOu74JRV73rIXdSm+dZ7YLrEbPEg+wXT1OZ4+kXicHiwGyMQLAJLpiY8PGoLHyovgF3wpfg8WlQv/VcN9KiR7y9uZrXzFv8U252zD/I51CuZibK095424GxdAw8M9jBl6Ee9bXftz7u/P71YfJh3FFp/j0Pnsms+Tfxij8E3r48FuZdK3Zk3edvvOd4mr2LFDta2hcY2Z+wiF9UsoORL4JZqTGM7jeZxC+YPxgblLHiYRfDZpHevNFSWuRVn6fRWaF24+HpLo5f/H72YRJcjt64Ckwfn7qv5MOchxGDCM9QZumd8PQ/6Kdu5NgfGBl84FjwUGQR8TTn8e2Np1VbMezCseB295yjho1RsU0yC2+GhlbQ13K/qa9bkigZnvZ0fic8vaX9WOuNYXRa+kl6Syv/2FyZvdBWRCban6KDrRuOArZddRgphlG8IzxKfWogkkUuZPH2Zhb9wkJyscr+obS8gaXmaNfW+tfxlDKy4PiKHQaMGrErie+2aWJOBdoyYs4Qd+Ut/QaCGEW+P53mKgOhEZh065MQbSVKYxTlMhooGFm7haepB+o0/OOeDMAluEVXX48ZOgyYMSr3KwFjuAfxbI8gRAcg2ylTfniNqoqU7z5V4QgLA7B+dX4UWXM/MPZvBRjVP12YaiQglHPMwjoqRv3rlHwz+lk0w39npG59mylWBPH2OfSRDKz9YFAhR1RL4ENu82QWjYzKGzDgw1XYHFoUgOSXBzBTMxkYv5sHTX3SYgblVZUrpciByrltKx0thksRTI4W9bwZeHR4RygxRErLAFyAB1Cbmbok+FuaxC/i6ZdR4oxyMabzPJ0fODWrVOEej0sI/kivgLaX4gJ3PN1CD2BD5YIR5c35mh5KPAJPhzhot8U8jaHvsTtzeskfMFJ/Bb8Mpav2n6dDbL6YqsUrHRtsccfTUcoF9mbytMc7YYyrLEbvpvk3WqrmATzSrcHTIFQb/NZibHDWWqRiIPDtB09rULd5Lvs4wtN18+mj/Rl4FjpbPJ1DsW2ZRpwNPF3WJ4/DAo82kMRevxTxdPVrlpv/HXgaZeYUGn3S4lTg6fQaVjhqUAK/JLruF0+LPrJrn7Tsoq8DXxWQ7Q8/q2HiF3i6jinRFKsTHU/TNy3WgeCNKdXM8ocIbv82PM20G+b5/iXBCC1ufQJoO8PTI9ERmoXIO0OaVbZ4THFX6VpCEu6Ap2+Ep4dQ1v7ytMJuulsYnq6OD7eBFVV2WuYFDCwWQBFPVGxg9cRMloG12wSM7vzYOgzABb/GSP0bMPbJt5eXCgaWXkcpahfXzY8jkHGJVQyFwFCWamQDYeyhIuUR/TDyUexNZhVzzgu+CmHB7O61/SWuAowyYDayCsxDIHMadijWlnql0FX+XuBTEeSRx8Uj2C299B6mtHzC2t9Oc4XzBzhCXTnwGMMNC1jCTh2w8+qg3cHp4wgYWRyQ03zugt9iAN6Av3ksRePBapWEAZwjcG/T0xhZA5mJ6g/MvtJQBbuDT898GDEKosQ0bWEbj/kYqJsegrAw1poV06TymkrQnFalpdci6N8ikBNvW1lvMgou0aPSPsCIR1Hxa5maKZaa9wME09sIEYx0x6B7ej9fw57/il8QbnUvYmRtZtQ7hFAOBLIMpgYc7akO8imrDJcQUzG4vzPzMK6y9IPbW8Jv556h2PNTwdgTnn4MnibIncO4W8bTCDmCbDMr/2a5hV8CZgwXzWm3SgJGx9N/Bh1dgBEB6o7S8uXOnnAoAAQHeZwg3oRx9Ud4+qqCsmg9ntZoN1l9D/JmkMXbNubpPcHo4wkjF57O1K+02rdvsbrVN2LwthZPqw7xNB6Tjc8yNoFf2vSDrlrA04pTJKwj+/bPMdj+Ck8PAMWSO3tqI4/3mgo8nVrFAHQOU5rIxrJevKVyfVrfUx0FPDbwNB7zt3/AAGIxfS09pb7e0/t7BZAM4hfK2v4cRhZHQLWBp0tbxtMGT2fX/gfZKJ5GlmkKsqGd+wLL7vL4PP0PdBinKewvT+MEyS28GB4cCYx+P+yu7n297/P0/dj5XR1Ph3biaZWzu77awS8avDMKsdSSu5l5+A4olAHYWjxNk0MdbO3Gp20wZzGfXroGAwvPW4MH60g8WIPYTSGDX6sxrEUwMhjJ1S3HY34zXkq85vHRBX7J46rIwNINEKOjSjYjSOu2sPy3Nwq4M7iQ0FclKpjPjvL5rft8ND2GMvOS61kye5/lFiGIQ1jtuq9ydwGSWy1KVM7RC95G6kBphMr6EkKG0gQ9O6poAkaNoBxzsh/M9qWWXsQyeB0O2iretUYNEa5C7KtRjdXtdcJA6IswxRAUjA2pKRjBlWDkdRkW6fk3YLXfhJBDECs6vtWShB3EyyrCXM3jfO9EaEAfulnxAUUwOmOhUKm62e/nQp9mayTkfsrWMQ/nYVSA6Y5OKLzYkosqkyBpxyT8IqYfJ1M+jIpAdsZqcR07waj3+NDXMqy0/UJm7TPg8XtMAc+lDAYQraIs1CbVxahMx4Bse5b+WgGv9HTT6yEJ06b4xb1WDCN8pcBNAmCz8zH0FRihM/3cKFL5WiMJj/A0yjJXt83xdJipBceXTcHoqvVhlIGK0q5fx1YC8NviS3hvMB/RiIRxa8EILzCizNX8ie6JQYv98obgXnma+gs87W1bgpD7nWU5EDfU6jwNfNSjY22SG34PT3fhnDnxtKYqinCwEy2q7wSf5A70iEGaInZt09s3WP2aW1rRuFI9SuJpBnKsuPZq/oWt1bnA02U82xuMebkjustWT8IrhOeq9lH4hVmCVudpBiWs2PM2TUEZdSvwNAb8bmEU7AU8Mhhxhj6e3px42g2YZAC1hgFINQ4G8TSG3zbq2LqaoKo8T+9WB7rXfBjzAzpWLeDpfdSyC2Vc8UwenNbmaenpTX9hEF4HTyO7dSC85PI+8LRWL3n1a5kWvJcp4Euhm+FF76lBrZHyPO3V3Iuejud5WpvT7ZWnxS95uZNlu4P0olstt+KagnFF37RawpsMPVUz7zd420t2ehcGd/CpIu928mBBWw0GlrrZ0WKRnq6djRH9K7YnurVJJ0gjA0sFFATytufZ63EK3keK52DKkOKJnLBAeeCOdQpMHeqsLaxKzeOuQ9HgJvPW/BKikkUsQdyaxpXgU1LnodhqIbBNb1MFbjoIzFm8qlNTQFKw+qizJHyIKfPYCyqz6p+48n7Bsrg7C6NcwUd5rZqoT7hhpYeH0shtZtQmOBwe5bHQM0YfDkYZr/yWp5DO9HA1ppmzzyy4lvb9Oy/kWtW4UkNFKbRbRpZGvdV/QJjU8rs0r9gc3oCrAY+CEbzKzQuMua0LYM57LLv4Jwi5BcA4kPutZVz5HSEYqU9GVnqj5TY8gGzdSp+1BSzuSZDIkPFpUcLXJWgRD2p202zcyr9n5PMDiuGe2/ertQRxoaoGgQwt1s+FXxDKye04oCoBrU0eZw6HBX5xMIrWaFd2G2fvTUKA/AYB8l3uMcXoYvaA1ZXr19EaV/paRhaGYK56quPpcDFPOxjV3+IX4RFaZKTo4ZrPwtPphfD02l+94zwdkier9hEM6gWwgzZyZHCiUWwTPO1ghB41oEuz6jK94JfQ8d2APwbYW5unRYvIGPEw0+up6nuJoUL5Qn8RByM4c8/y/Sy+ViC886zDLxl4euuyh2wLPJ2Gp0NxGS6ixdZMglE8jZxW99Xc4XjaU0C5FJvft8U87QZT4ukki1XnY0Tfwx5D4unF8HTVO8zT1eZteMQN5D3idNwAVDgT/Wm6T/DuwtMEYi++nems78NC8NE7ytPwS91b8Mt/QA9GTANPg+cCT++A0efprRiorxKHc4t5K4HRGNBp9kJy853i6a3InJrp8DQRX/vE05xNuu4/GH+/Zq8OPlFo0Rll4hnRUGsm8OJ4+mHksXianyXwtMMffd1Ai5I7fES4DTz9D3Tg9fD0PcAonhYOhefWSniUKa8az+8QTuU+nY1GFYyvvbZiVkMM1hH2J0IMehK6kRIdOloEZvGY09N4rZY/CB7R01ueg19GuPuNocuvImx8V7+lvHRKbG4hVvyhFmITvFA7AhTLqgrMADAEnOcQHt4W9n2oeRUB/hSVIBAj/SlAiqI1ESKgGiVNpWQ2cHMFQYnHEaM4MR8PI6+WvDHQi5fejsdqGW7p2RDiSzDNM+RHIWqPpVYXcsXwqe3qEOFxGbCAy/KTCSObwHTSCPCIdzAq5iPUML2FaSaN6mZYbiMw1oNLzdlrKfs7DqMIm09mDhcMl4rjCTg+jGnDYYyMukH3wK/gYU4G97YtwKCdBpwv4FCbRf4hwKk2SFm0NnNSpEvgUUKXqEIv+wZf+9HHxwLjocA4OD9y03p5lkB5yQ3gcR6nDkxBUT9HmxYBI4QvYd0qUwgFkHa5CEZoEcPOsvMYyRB30P4YYvXHMXJjOompdnmCJAQ9AlQ9pmBcAPGW/5K/GlpkBOm04jsh5IqAFYxa2pwDLyWHwS9Hg8sxwDgA8OVhFU+zu7F4mg39cmxsm+dpRuAuiPhA8fQ6YFkFT0OLHQo8rVF6DDhIjqfrlrGvr8/Tz3L3QPC0aheds0knS+ZD4XrCQE+yRMcJxGYR+1SKt0MGISmbIr6TEXhy03RmOV4k7moSdFgFPx0onkb2ZN6i3zo4ng7B0yHCPkIsdvB52ksxcIGnPXjaNj0PT79B/qHASRvecZ6WXIHes2+CTvACT1v7g+FpwSjDGhyz4MGrJ85x61xmLCbnl75nlgAjg3ct63pHDBf1nlJjnh4NT8Mv8HQIng7H8cTJE8TCEa+OuK2tbGex8TWULbSorYiiwygjx+dA8DSD49xiePpwx9N5Pd0fGCsg1yI9vZmNdze+UuBpBoBuIY14WnC+U/JbRSN3MgWeLjshz9NtR+G9hKcVc0nKpdnks25pEU8jG60XeOxUoEWXrVX/oFXsbXTbGWx++7uRw1m1qGB2trkIJW1SXX87JX2UHdKmh23x9XSyFn5ZhGxET9e8gCxno+TwAPAILncTF7Z7A0tNcZ4VGFXLgN0J5dsLDYQ5dFSGbSn8Vucg4DR/7d5Rpx2gJOULL+Am4rqSL37djORcqitcgTkEjDqyR+A65iw8eqcvMlZlvuu09tBKmJIK5fDx6Rr9r80oQyFg045xYYSw5sNdRm694wmEOCOGUYI7omZNUY3A4vpZSFYSbF3paxjDwadGHIjkw4gx546owTBpSIKR/m9IBE4zRZJXFK098mmopIkv8IroX5sC5oRDjqnhr8jN4W0nGDHwHYyi3wMIYwNPi3fxIngIZ9GiaFLA0gRHi6JJDwGnOLN3jaeBzcPQes/yNEY9S7wdjIWYtBD8wYJtYNZHCTkU6o4glrJ7t3h6PXBIwfmpMb/wW6vH/N34nWDy876TV/E0slEDE+SOFwJO2NvvbvGNJ7GNfjamZd1KRGf8HUB+EUOI/rUxrrcWQHw5I+jo04bffJUXOizZ8y7ytNPTvs4T4mTwN9bT6BjnYfV1pWB/h1ODnhZPr6QyjGf+cuhMoWIfZnV4T3AoPcOjd1BP7zCwSjCw2OZEBhYOjzJii1+tXmkfnPq0HQQKN0k2Ku2kp9XPe+dp1bH75BQopYvxbGAhn9DiK1VJYyWHCa4SIAew01S1P4pRY22Y7pAawyj4lHSf9hTHSrj77/Af4UQbaOZWQjvftUjXE/CkSegVek5TQ7FS3I23MLqYQd4DKYjVdvDiYARPEQwTgo3zuPLxqH4WDn08vgv93AAjVK7pLsIP33swCi98pBEi/YBPGBMOm8CjFLLyHnB+geZcN3Itm2iRAV9B1snz5gs44oUI7M2te45jmb7PCBJacGdruuYcmD8+TztvjwYdwp8S+HKpSO44PL5LPA0iQ27RBMLWJcGpMbAQ7POMHug+MsBvhm6944nKGni6K7Wh/B0AAkJ49OF7t3kai8qFKmyxyKA/4b1ihTPn4vpJYRVePR6ieZ8mHwPkd9Sj79dafBWP8hGM1q/wQDhsCo+Fe+8GT0uXuD22BhXBWMwvfj/7MJL/QCafp2U46QgGUl427g7Gd4GnHVDol9xGFjicZDbhKg4yWM+WWQUY5VRgoUp2wY3o7zk0gPt7cYLs2cByaNAfVaCP30n+tVDxgZUcAqhREtH4BOPD5l/fIzBiwYvvwmX9LdbtGOxCBAsWcz6pU7dZdsndXDG85AlsaE8hywG5NIVHCWLd10fJv+Z/Hfi/Pi2qZh9/xTC+2/AJLh9GHz5dG8H4roIJLAgRBdRHOx3KVUKvwD8MPrSCNb2VaXV5E7QD5bsCK5U2CK9iPAKTw6+uyqPru5WaglH9rPQekTsOQY1lYzEtCtZ3E4n0rdCIkR+uZPuG9qPp9oJsFC2yOjS7caZl2VfJHeQucN+V1JinBUQxHt9NHPoIadzPPt+8l2nxvQajdDFetkRfjvw5lg2aUwQEFGCUJ5MFDNlF5eRhGlghNb7c9Lug0XUfDSz/LZ+I/Kt//7109WHzr+8V2BAW6if2LPEy+mgKocCgbgoGoeIUCi7Sd1Xg+fjy8edf/fvvpasPm399L8EmWHy4/Ot7BT7BA50xqnTKTJaUP8L0YdaiBV/2vetg+/jzr+86QE0A4MPmX5vI8q7f8mHzr+86QA0AONnIprNaVKXVzY74NNMgUFkN/N6jRYH+3sOjoNoB13sVvvcyjODMTWfiDUFHe1oc54ivcB8a1fSmy6Nm7CU108DaS2nB433EgDQXH9+Dpas2BnS/38tMsY/NC7L9f4AB0Zkms3DUO7or0KS7LcNfv4MUYOAAYgA61OpLp9AcTVK3YoUCWjyAnRBUlQ8hKsjDBtkoMvR1tJ7tm54W9QbpXcFAoMDeFbQHlQYYCDAQYCDAQICBA4CBwMA6AEgOqggwEGAgwECAgQADAQbeXxgIDKz3V38HrQ0wEGAgwECAgQADAQYOAAYCA+sAIDmoIsBAgIEAAwEGAgwEGHh/YSAwsN5f/R20NsBAgIEAAwEGAgwEGDgAGAgMrAOA5KCKAAMBBgIMBBgIMBBg4P2FgcDAen/1d9DaAAMBBgIMBBgIMBBg4ABgINgH6wAguXEVnr/Tt/a+ckl7avBxR/j49wqPgkuAgXcEA3k64wht6I6dnh3t+XSonZ/1PUgBBg4gBqBBz9Gi6I/92fgdcseUBLR4AHshqMrtfeXLwsLVYYXvDXJy3/R0YGAdMHKSwKAyDgINc5hkw2Z6uqfN9HSyvHZ0dyed7lvnHTDQg4r+xzAg+tKBuRF3FInpLEydIqDbUmpRxALnKTrS/B9redCc9yYGRGsWjiMboTvJQ5RcSLQYgRbdAc/vTbgDqP7XMIAQdLKQky6iCY4bREbK4HK6G/3sTh6HJt3JF3tve2Bg7R1HrZODTtPB8V79csusf5VrNeUWPAUoOJ255U5sD3cq3G+daoNSAgzsigHoLsw5Wrk6y9ZM44qx1XDYM0KkhAN265bnT4NwxzftWkJwJ8BA62AAzYX+CkUqLLdlLue1csZbirPgfPM+3h5aXA0tavDpzLDWqTYoJcBAkxhANoYqoMGVZute5gzMjZbxZaAOew7LGVKXl5/7QI+BgdUkklv5pjvbCCUW6W/e6hstvfz7nMZNHXIiKGFbGU6EUKg7X9ogR/zQOP/wTmUKUoCB1sAAisrRV4nZ9imWmXlCnhZ1xJaS9BhyJBTFAIv2Jy9ncvn06zIEfwIMtBYGZFmhgjjvzaytZed9zEx0WM8nP0vo5KIlJBt75vOF82doBsZWa/VBUM5OGJBnKlpp3qYnzaZ9w3Bg6UhCDCo+kF5eT3fjS1tIEPp1AnP3ejowsEDRO5fUAaA4s57rKguVHm3RDh+3aNtRFi7ri0e8DeEvOfNSGy27bYFlNk3Do/AsOm0mHTqIvkPTScEFKcBAa2BALtTsdhTVfITFUAtVfoQD4cdZuHyghRId0GKcA5feygBtmXmbZ1uu5nmMrxeouTu02IWrRgSBF6E1uuL9XYa8VshFLl56LmRXCh2ehGw8wiJthlm4tCserQSzMBz+XL/GslvmWHrjq5bb/BT5U7w60NHqjgPK39/YDFrfihhw4Tr1yMMRZuMvtmhFLyuJVhA5kTUvWW25rQssVzvNvI3PEM2Dno4MRlcrxKJpPR2qGjI8kJit2D/5ooRSuQJQWJnZFqk4zeI9z7N45wlM4bZzAsXN5bpgOrIpkDNXz6Ue/bfaUmuetPTq+y2XWoEw6cVznS4fpAAD+4EBxQ5kVuIt7WHhbudbpNspyAUMJ4RDSDEuLv6P8hUoCL15uMG99GbLbnjFsisfNNv6T0h6FBnkWtCITYOHIAUYaC4GoC/Rogx9W2vRzp+0RM+PMugcAglqCkb0uGPc78m7JdlI/kztXEuu/ItlNtzLuzL68cI6xRbQYnN7IcjvXB/2NuLsjJIS+93IYRZFH2dxU5V5C21S/Gt2SsmZdlgoZ1tldCnJyMrhzkI25ravsszqf1luzf0YWusorIeTm/mMO/7uoOQd94Jv+40BGVfgOzPLEn2usUTfTxBH3BPdpY7CY+UMKjrKT04+0BWRtgiadljNAy3T+SirW3izZarvRx6NbbLz/NeDa4CBPWIghAGVno7H6nyLDrgMb8FovNt4s5wxBT1KiRWPwGT4h8sZxVVYrNfZFul4hGWWH2q55d/l/siCMRYYWXvEefCwCQzIuJJnaj3e+45WMvB2i3c9icD2ckgRmlOsi5RYxo+doAjRIu+EYmUW6zzRYpVjLLlmotUv/Knz/OP24h0NQJ0QbaLO4FaAgaYwIFpET0vueRuKMoiOJNuQj6KpLMa9oy3RobJJT7ezcNv2Fq8YZNnOR1tm4U1MKT7EKwdRVpFeJ3ekslPna/RakFoLA+oFPFfZNxAgv7XS/p9hEUwXlJiEhkb/dKx6ygmOwjXfc/nnbllyyCLlvSza/iC8WJ5la/+BJ6snz9XxQQowsK8YyCs0S8+wUJdLLDbk/7Dhh0OL0KGUmaNHldWYHnVPtKp8OZRhJTHxY8xTDGHNXWTv6l5RriAFGNg3DIgWWSGY2YCTqr+VDb/O4t1ORAzK0C+mRUrbSTb6pZNHshFva7TdMOTjCEIqpmBbrUNPlpNJZUj2BinAwL5gIGxh6Kna22RD+19pp5dtRmtvRzvH+FdtKyIT7E/RQdaLsIhUYVXrDvrKy0Xp+UhZbwu3H4tudE/UAABAAElEQVSTFf2+GS+/09PS9XlaLPi+9gWgIM++YSCKEJltJVU3WknfCzBhibPK+iMsIX1PQmDHcy+TovP6Wengr1u0y0UY2nN4Fdd6kAIM7CsGnOeKGJeOn7HYwK8T99cP2hQtKu2gtfzvxn/952wvkmWUhxKL9Tnfwv1vxu6aTebA+d0YY8HvPWBAMVesVJWxXjb0BxbvdCR0JEXlG0Z7kosqt0CPys97cTz8ZUN/bOEYK76YQgzocQ+4Dx41gQHR4xwrHfADC/c8l+eiLzk//OTLP/938dV/xr5t6PZweZXFB30DOfspZgoWFvR0vqzAwCrG235/l3H1tsW6f9NK+pzHyIrgN3muNCJrbuIdL5vEyOoDEVxKJ06AIDZTVn76sbnFBfnfZxgQnYheyg9nWlD0g3EFPbWUFiFsR8+x3udaqNvlxHPNpazAyHqfUVULm4v8c/pmpSUGXG2xThMKHn3dbK5sVH4UG/sGxjsfaSUDruLn4gJczS2rhc0JXvv/GwPymmbesnCPb1t5r4/m9XRLp5mlp3MYWW36M4i9jBXYY5C7WxtkY2BgtRqp5Bk/FGtrJb0xrmKdcEGmrCwWshJ0XWPWT3AvAfb1LFbUC2Ey6p57FmWqkDKibYdZotenUZCLgFZzw0EKMLA3DEAn0Euk56eJFxhhIUZaZdGwtcEmikBj+fFVvgzIzMq5XwbdNU5xaFP3SyHMuLGCK97Bor3Ogww7UkhLFGTjGoLf//MYwBD3skst2pGA9m4ns4Eoay3CHvQITUFfxbSosajkXxn0KFnY1LNS3gsTfKy4rTiLNaId8BxkVyJkmyDg/3nkBg1sHgZEcHhOWewT7f0x51ENybjyA9kbFSbdLJnZmE4lQyUXS5x8RE/LyGo3Cnl7IbSOF6ugp3k1SK2CAQVv1k9jhPZzVg0OYgIlZavqQraiGhGBrhvVKeQMKQkM+sQmsfDAKSg83hVtQjaU7a+yPEzh8JpaeEebulcSXjCwLTPDXY5mdeG5xGM9jfHWh3d5GKQAA01hQJ6l9DILtTvLIp2OYnUMdAVxTV1DZuitLbTYhwVYaeSMlNlyFnTVbID4iIUfyjMpOdFpnOtM9n20JL9EtGi8UR3S5rEII9zjm5Zb9E0KGEdmTdEEKcBAUxgQMbHJsm1mkPhRF9AexRs6qZr726CrtiE7mC3XJPuktDLQ5ytr+YEcrIIWO0KTGeg0Av2leTZ1Dc/4369Sz8jEEvo4Bn96wx8w3HoCAIXsZJY1BVNw732LAcUBoqejA2+wEFN7JejR7fXyQoERkU5x4vdLNdzYCsG1Q/ax9ZVkJuNUW89kwBrpaeSo9m6r4Fl/zVajp7NrzjTbMgm9382JzeIig+8twgA9QQ9Jr8U6HGrxeIW9vjZrZ40N26SfJexfl8etVyX7OkoekHU1guLBL0Rt2k8SNpnPN48J22S8ikmed2NRzOPfitu0HybsVT6XHhOxmZszlijryUiNaUJvIxA2poQWAR289D+LASQAK2NClUdYvE1Pm72FlVmlIXviyri9cm3CPjs+bG9AbxUY/jPXefaR0SF7mfuPQ6cJraBHiMi4moXh9bMzIjapQKc3nx+1ZWjAcLgNKwsPNk/DsyYl0/8sYoOGNRcDbl8hAogrPmyxdkMtmw3ZazWe3fHxiE37RcJuPzdiS9l0WZ6A1duw4TGo/vmNuL2O3Dx9RMjmQael0OkKnrGQ0MnSF6+J21nQ8AbsehleKjdScTrabQvQcSNIAQaaxEBeT8vhEelwsEWjZbasJmujRoSx0xWSU3hJ6hXbyaDT30Gfk6HTmz4SsdlEXLTh3TXQ63FVIfvP9+I2BR390o8SduGhYZu7lWnr8p4WdnpaHhTKLRQZXPYHA7imtfQ42v4shEA3W1OfNSmjc06IW4e2YUZenj3wTMbmo8wmYw0/8LmYnTwhZk9PSlvfbmG79LyErdtUb3+Y7dmdn47bgN4R+++UtFX1CNsXPhK3rfVJe2SqZ50qh1o6PgCd5rs0ZXYHKcBAMQZQMKKPeD+LVw639QiDz4wJ2eXnxa13F6YIS0I2Zwl080zWVvD9Z2dF7bNnxK0N4YIpnKLt/5K2Ot5Zwvcrjgrbp0+L25sLM7a1znP0vA1v1pX/ytio0m6WaX8Oy5NfZtTQCYHE6CBIAQZ2wQArqnPLLNHpUpynZda2PGfPfD5h44dGrV05Xn0U1voHs9aL6zGDQvb9C+PWrWPY2paFbOpbWdv8StY2YXSdw2D1krPj1gXPVXuU4fyVnv3qpax1p7ws+2dFOx5pyS3/ZJaQGJgGTbkLMMGN9zMGNIWcWcfWCR+zaElXW5ZET38cPX04XvvvFsaKhPTIy68d3B/8esROGR23stKI5WRw3YuMw+PaGU/VV86JWdfKsL04M2MnHRy1r56dsCnL661mU9hi7UdYMtabQtKBud869KaOW0lA+lDLoWyixAeMqIrYs69n7Pa/Ja0OF6LCVdZyPbYvLvERUXv4yZSd+8O0HXZd0latz9mxYyM2Fi/XqIERe+z5tJ3zxZSN/3GSacWQfXhC1JbjuEq06UcMTB8EFsO53cwZt057glL+v8WAm9/DQor2tmh5f1tdF7bxA0O2cbNnl91Sb2s2KXaF1mFjaT/HgX1C9sLUtF3/YMpqmbIpZZ5GA7jNfD/v2KhVb8zZST9N2UeuSNvcRRk797iYVSZyluLMzEj5UITRKnJD/0EKMLALBkRJMvjxMlUMsfXpMhvW1bNKlNRP7k7alDlZt5BQr23AoB9dFbbqTZ5dcVu9LVlTGDxSxBw8VYN7hWzT5px94Vf1Tl4qPkteBrenICtcI22GuHoCD5awGaSmMYCcQl6Fy4dYGj1dGc3ZIJwZr2Mk1a1iO5qEiAoyYhBZ1jUEnZr94v6kPTc9k6dT6C1HllKu9/w7bRf9ut4+fUPavn1H0ioYLHwAT9i8bSGLEvBOoCrEWR8YWE13RDPvOjc478QJbI+XW/twzr54a9ouuDZtCmaXG1tdtwUvwGi8UuqMFcQStO3JXdyOazCweuLJ2s7PNEbySARNgmnDKw6PWFvis/KxxB5lt0d+YIV5coWrxCAFGGiMAejC28ZIvtJSfEa08+zGJ7J25JVJ24CRHlWgSyH1hDYvvTtj5/ws7eIDdY6pbC99RF5lCJzVuMkNT5f1YAqHmIMyphoHlnhWz0akYejdbT8UiJECRoPLrhgQPUImsa7WnfmVKYtzNu6HKbv+qaybjtZ4QO6Bnkz/PfRi1iZck7QFq5GZ0KYecdKuHYnYuw2P6xE8W02soGjYvefOgmMbSM4n1F6DDYQbyMZduyG4A0Fpf0rIJNbZIujpciz/U25K289uR/5pilBuKj4ytOrRzydfm7UfPc6WIAxE83Sa1+XbGQzcMc2zWkXrEEvx4cMiHArt2aT5OetPTJanBUBsRhoYWK1GdHkjKBQmgAWpoIDNTtqyqjOrXVBaSnmBgBcKV3iUDpMAIQY+LxTIX4YSm11j9sTLaRs3PGpzf1Ril55LTAz5V0nJ4Sb3ZMhpbyN3UrRKDVKAgaYwoCnkOEZWFBGCVwqy6d0hZKWiST+JTvneo0CnGgQoOaVW+CLDPqtMuonLQD4F3XM2mrvH6jB+54mba5ACDDSFAWgkFCkQHwRzuPYFJWjYyUTlFy2RR8HDo9qHrA0izj3TfT4isbKGZ7pZSHxF8rofxcfr+I+Da4CBnTGQJybRSljyDNLpAa11hxbzVFSUWzdwhLTHi7UTnXJb3tNDsJ+mEvJz1elhO4Vwn5fwgv17rmftEx5eLllk0tPpIAarCKUt/4rQUCe4fYbUa3z3DSsVqr7ilrN2a4jB2l7PPi7cxENpafpBxlatViqgzH7xaMYWr8w5ZTi4XxjrOWpPTsnYQNaEptF2nsf0T0gSKkgBBnaHAYhKRzZkcYciDWSXyyjS8nglR4vck6Ag5ninpHwKOBbRiqbLtEpG7zFCKyE+QdnroNMIBJyPBdTzQsF8DVKAgV0wANFINopKQhCVk438aCAb3VMePiI9ZdQz0ZqIUHSoH86wVyGupPy9Qi5oEbdCkAIM7BEDeaISrchbJbpycpF3HK0Vv1ugOUylHamQX1sovbKKqeyTI/btTyTslVmETtyXsXE49Os5Ds9tzOxWVscD3/4O7O3PNywljCQvuZ59RbchLLTChc6kE+rhewmLVVqSzL0nF3q2eYtn40dErG65Zwf1YMqlb8SWYVTpuUZqV92Xta//JWvD+kds4fKc/XGGZx3wcKXrcXFlN0IY7Ong/An7A3Pw7v8kBpxm4my3bA2xBNXQYsjk0l7C1Mqy7YyuIMO6NH9WsKqV+5ull3CHb8fppY21Z0Cbs+Qx5XcN3/t2hSC5byyd70dcQnWtZzOZyy7xtjp6z289pAxBCjDQGAPQkYwhkVD9av5wiDhW1GToytZzBBhkoy0YRFurGDfKWzqTGKwlyErRqWjSVni2ibGCTiKZAQ3P5F0904IMvVfPCEH7GOXq1xS0JA99A4xvQQow0IABrfR3enodenqL09PLCduZh7wT1RQnZ3BBhxugU9Gotg+x5WaLWVk9nZWtXzs+Yt+6IGHPTSPI/ScQKnQ7DRqmeOTueqenLVQSnEVYjNQWf3dDLA4kZZ4l3nGC1UU62lkHm33jvKgdSkB7785h69clZMcMCdmTb3k2omPITj8mZuMGmn3mhJh17hC23/8jbetrcXJhMn9gTNgevbrExRp88Zak4aW0GP7z1MZpll57H7/kwRIJNCYLbgUpwIDWIXtrWdUKLcar7CAC2f/v7Kh9lJi+ERjziuubOD7kvKaDocvvfCpqR46KWv/uETuou9mJBGtuQ4gsQ4GddGjUPjQqbOedGLHhA6P2h38m7YXFEeuWW2GplX/GBYtU0dr6wOAP6K4pDDDYDOWgxfIxFqoYbeXlCbvig2H78ukxGzsoworAsB01MmQ9WZm1AuP9uvNjdu4EaK0/qwyJizn+UG1wiyeVP99Hnp4vGq6KWiX5jx8bsq1bQjZjxVYr2/QvS2/6Lxqua0CLTfVDcA+VKZ2JbEReRTscYduJZ/7ckSH7wqlME77B/pJpvKzE88WsxpZ6E6zq9GF29YfNxgyKWUemEQ9HZg7tjMhj0cVvv1LCyuuQLVqds3MPC9uFx0RtACuxHyYOq1vdFMusRTaGKoIpwlahO22kh1GV3fSYZbd/jWUGgy0WyVo73FFL8UzNI7CzLfO55fgWx3XK2lf+knGjt6H9w27l1n1/TNqdc3N2BAJFFvKHuoVswfKs3fJYxpbitOpORyquK1M7h8NN2UAyfhAKlGFdkAIM7IIBCEWxgKkV5m1+03KVJ7qYvwpoKJ0K2aPPpa0Ue6gSeowy3FLsVTvmBFexamvxspwTGhVMC3bEhr9tEosvOqTsmDERK8eDetdjKbuDZfMjCOZKV68xr/bvyCvRolwNQQow0AQGtE9auJ9lal5kl+uPQ3MVhD94yEKtXsUthc7Top84GwRqKruMoOFsOmT/eiltJZBxZRsW/MRyyFP2IIIGMdfcszh6sh1bOUSYW0yltrnyvXB/vFlyiQUpwEATGFCEe6QzcvEvlqu7DD09gLAHwnEU+lDsr5Dfgt8l0Fg5zyYRX6XnlehzhUyEOabpqVfTTiYmeO5Bs8qrRUHGM6t9AytsNd6SrhaqGjJcxQVpfzHgdnKfbvF+P7LyQZfYwrpSq62G2eUz1Ec6CMWmHd0TeKmm4Hp0E7TImI4ImAGMyNiWwwV6LsB7UMuKrWFMH5bHcKVjB+e2LbFtsy/nmKPJbGiqFTO8GKQAA01hQEGW7MtmbcZZYtQvbGu0vy1fy5yKAq4QBC66HfLrjvdKm7TX4KlyNIqC0w7aGnb1gk47IUxmYOCbphRFw1xGdYrgMq+z9IJbLbf0amg6MPbBTJB2iwFoDkHnZWZbmzFPoN+OZ6oPImMg6WgRmtKJFcb+VmMw6rXxrftdRKfd8Pi34/c80anyQ5/OYYq8HNgjauUbn7baGWdw8POowgNlClKAgSYwoODz+ukWrrrWygd8wWZuK7UBG7fa8+2vslhoM6KxzMq8eTYp/m07pQ7X1kYIVUFXSqJTnCADCXBfIP0tW9635yUjO8dsZHShbZvBwc/bMbKiHQMPlvDWKolRfCgxxtIrv2vprsfb4E6HWawt0yf/j73zALCjqvf/b27b3fTeey8QIFSlqig2RFAUEcUOz97+2AUUUbHwUERQn6CPIiqigAIC0ot0CAnpvWeTTbL1lpn5f75n7tzc3exudpMN5XlPcnfunTlzzu/8+vmdpm5ZMWnugJwoRaOOYj6LlIU8Y/3OQSg36ZjvU5lilSEkmSNvgTkLCc7tym25n2NybqWOubxXOZokxmnl2g4G5HynGOvb+XeGlE+2fpMm2NxxCcdfcW7YjPkrrqNmkybLCO5Kjk/hxxY+B7PiWFED8SqzXyzLQanB9mfZTuZbRFLncLMSvdqFucq33TEA46DkPG+Qtay50foOmmtHjRiAvy5Pfhff6QgSzXV5LftduWhCWUHSgzyy107gWXxfcw1ZDdbSUmc7Vt+AjqTTqRd1v5IqGOgIA9JXVXMsWPddKwx7vY0bdKjNZQ4OvtXuCcf+eDqabHrjnumv+FSfQ9liyS3MKL4lzswTPW1Yeh/7Md1JHZGdVl+gknoEAxJsrawabNlVv2cTxvHmVw1lMh2OV5mTFVclR6s8xYpDVzlczdI/KItEqorw91OM+HDWVmp6xaCVI63yvWMMSJEkp1uw/jfsuD7HwkGHc3wlw8ptrRclNIrX2knixV18ilbROV7ZTVZY87/Mq2FzImmPikFrB3OVW60w4IZmxrA+5/fWsu44s/Hvg2/oeGo4rw0/yunvKGmie5Ska3mf4ZiWdbfi8N8ArxO9Uj2VVMFApxgoOuB+2vzVv7PGXuMsrzOYSqGospdhT61VU7C1bdJK6lJCB3qy01sfc/rWS++y07vCK6XclS97jwHGatNjGJ25ylpW/I6wOGdwsf9L2G0jBFWLRPPrF1vTkktZJbMMJcKYTXuMsPcAV978P4sBtIP4pWWVFZbCP/WLinsRScEUlUxX2y7+xbkyVt4U6DyEm6+g7LEUU7J4XS2pku8/EgPiN/gxMR29+F3LbfoXgX3cd3U8u6sbXX5iqpp7tekea1n+HcqdEZXfXb7+j6RFpdFuHkRyvAWbfmGNq653ei3at6qbetHxG84VNt6vX4ie/Sk90vXwI8OQRTtdcbB6mt/c8Mwcy67+hjUv/y0jKNuck+WqkXLoUKHEz7iieLwUHvbOhda06BJ6fjfyWwatMhzT0+T6P12e+CU1mvMC/2z5RT9ECbwIazGZxe2tUMZv7SKB50WDJQUS5ussv/JqC1Z/jTIZGnRDPO2+WLlZwUA7GKDLr8UXzANsXvQ1y268h+AVPMZmuC45vSieay/FvMozne/Ee9mNd1HOVwmCUaZ42k0sbO/dyr0KBtrDAJ3D1GxrWfktdNrvyQB/uknRyqvY/S79pzu7UsyLXNGjXhI7Xb/A8gt/gJ69jTJH8qoma0UpOXDI0AviH5VrT2EArzYxwvxt15nPLOJk73EEAAYVlUPRpy0pFBFK9XLfnQ/BbGL2iynUPopzdZFbmehlDig6Vy5jTwFZKef/PAbELygOnCxrfNCCnctYGjPKEtUj4DV6WaXdcMuUhnCiyIKcMBkzFE3YuMzyy39h4doLKasykVgoqqTuYqDIi4leBD4bGE65FR4bxPmt6EYOa6YXSoHK05YXuVfiRVZs0WHNrvmzNS85jxFBZr4kmbDqDJreraQKBrqOAe1XuTXsa9OaH7G3Dxvp9sXCWrP2YoutTR1n16am2Rg6qVFYo42d1qqfIGt+7UNWWPQdVlT/k4nTM+FFpmFEBt0BUuw+dB2oSs6uYABiKERITz+/4Zc4SQ9ZZvTZlhl2PNFDnVPUG8XAphkyZEpEvUK/Edo0ss2D9he6hcnJ13AfD7lsPNflrfypYKC7GFAkKz0NJ2ueFeZ9wPxhZ1tq1CkcejrW8SJf4MdIFbjDc1klaGyYG2a3Mdz9ABNCryH0Pc/xc9TTg7fLlEh3wank/0/FAE4QvOih/4zdtFuWfNzym8+wqnFnWqr/AQSicJZwmDw5/8Wk0wJChqadU7Z9Hs7VtSz2+RMO2cyIZyvOVYyqyrW7GIjnACbY3KqUZLuJigYsJNNoFNMsPBfx52fA76ARXYidblxthfV/tWDz1QRU6SCkp5KhtXOlIivbNJQQu5++sOoKakCcpThLU9ng7CSUyUGW6DWBYT8IQyQryNWx/cISHLEn+NzIrTTKY3IUQRCRK6mCgZ7AgLZvcEpiOaXhdA14ryX6H2aJPtOIsA7kHhECv4mI1UqiXc9bWHcnS2YWw4dTIkesLPTdE+BUyvhPxYCMmCJWdDCDLejGDfQ5X49uPMaSfWcRYR1J35NzLnHCtEO7z35uhbqHUKP38soong3hXTn5GtapRK5AQiXtBQbUpVzM8RUnV1fblQfMthQLLnxW7fdKFuyxhoH25sZD7bB+462BYIg6niF2OmxYbMGOJxgOvJG3FXmdyAde7sBOVxysvSBM919RpErKpIXFMygFf5mF9agGDdVKP2jueh88ZRsDofCeZQidApESqaQKBnoSA2K4WCGwc7G3mcgWzKidP2T3NJ2FQIKXwsH3yZeIF1ZUeBHMVFKPYkC8WIziExkIkwxHt6wwjyCBU396RLDLqieapz3ciLQ6fanIg2NWLpVUwcBeYqB9B4vj6ojmP7ptq73ludvsEHSijmraZacHsYJanVGirM5Oy8mX4mw/qY5K2u8YQCG4VViLLTH+++xofDLRxO3UWiSMmw+D97zw++yh8QhDMezp4pTIfgesUsF/HAbgOdk1H/7rc5ilZ1wPr3GDw3jFjiG9OK9qAPtc3W7hiv+HcYv2c/mPQ1OlwS8BBqT/ZKAwQ8FyS8/+m3k145lShcNfTF6mH6MyK8x/4Z30Cw6CQXdNII7zVK4VDPQYBlyUf6t5/U4yO+5iSzI8nY5tsVZle74VXvwendKnYdvB8GPRhncAQMXB6gAxPX5b47ga7asabskBsxmK4YfmYIlAehY0mK9oQbiTTDpPq5IqGNhfGMChCtndhV2Nk/2mYbjY00p7CGlPIpSJl+LkgK1Pu1Mf3PyDznXI/gKyUu5/BAbgOfjOsR97ByYHHMT3mBe1BB7dSDirIHWZLka7/iPwUmnky4MB2WRCqGmCHH0OtASMmXR6sWinC8xLVbBEeUxD1Z2nioPVOX568KkIRHHMgQl8emEFjcnohi4oEU2Qc56ySFKxaA4vlT/7CQPir8hwhT5zsUImtbs5BOJHPSP8rYnxlVTBwEuBAalGsR68GLIxsxXQhUWjFobwIhPdY1X5UoBTqeM/GQNiRtljbDRRfbfIwjGf7mObpS8VdXXDg3vGU8XB2jOOejyHjixlj3aIVDRoTpnwXT8rzlWP47tSYHsYkCOlJL5TZEAfvruIavG7HldSBQP7GwNiO9UhPShedB++667jTX2vpAoGXiIMuGE/8VyRH51hLvKis9lF3uwCONKklVTBQAUDFQxUMFDBQAUDFQxUMNCDGKg4WD2IzEpRFQxUMFDBQAUDFQxUMFDBgDBQcbAqfFDBQAUDFQxUMFDBQAUDFQz0MAYqDlYPI7RSXAUDFQxUMFDBQAUDFQxUMFBxsCo8UMFABQMVDFQwUMFABQMVDPQwBioOVg8jtFJcBQMVDFQwUMFABQMVDFQwUHGwXjYeiJfJv2wAVCquYKCCgQoGKhioYKCCgf2Egco+WPsJsZ0XWzxLy+23IUer+Kn4XJ2jrfK0BzEQ7y0E04kPHS+qeH2vnPXWg4iuFLUnDMByjhsdH8a6US/xwB1KqGslVTDwEmEg3p/S6cKY93TlU9KTsf7sHKb/gw6WGh5/1PgYQRLclzMBk0DhlHgvqRN1+aFN9EQwd1SOdodVQFHn6XSNeGTcTynGXzkcAj7+7Kdqu1VsBcZuoatVZuFOZ48k+c9O2Ukd/cDuxW7DWx2Vw293HESrl17GH21pHfOhrq+E1BY+wVSBsTuUcXYLPhTv6WhMD10YumOb4MWEThboTmn7M28ZrfXVwVWhdfcxHg+eCYlKrxQcAo9OtfCw0ehGL5nAGuse8GG7pRd1fFjoTr6IIO/s7/8RBwsEaOt6x+w4KjrYyjkqarqQImKCMNHSIcZl1MOXLqneDGduNSy0/NrbzJo3QiTBKdB7AV4fQOYcwsQo7rxcziB4cscEgB8Hmw5WFSxCnAxwjEs9lyP4MiTBp91FFGVxMAqHglE0Foz66Hv8nK8vdXLHKEgoBYPwJBjFc4JLOBSMxefuGbdf0gRciaHwW73lN9zNlaNyCjpbiwRsXs1w+PRFHVVYhN89eYn/gJ/dZDqSF4dHh2PhMobxZZBp0VO0lPIt6RzBKKCKvOjoHT9/OWAsykMJxleaTIMTZMFLjzS/9t8W7FjCqWFbI3HR/erBnNpUy3P4NVLwXF+GVCbTkd5GrgPBHsm0O7NTMi15dhHglxrGjuRFPAcPxPzo9I54VDrzpU7lMII/hyfpR6WiXnRXfr5cdlr0Swwya1liVvc38/NbLB8IX6RUb1RSNaBxGHlS5xDuGYe06lWe5GmKUPlVMPt2kEPDE/35jsOiFDbweKd5wRa+9wNJ4yOheClPZVc0IOB8LeMw502XWLDxkog2og88px6bAghKnqFIQmB3ghAzX/Rs//0V4wtGDgAuvBDVnRzJtS+f3lQrYYCp/Dry4AR6Y8CjGEzKpMh8+w+4YskyZtDa3wEMy6GxerYcip0ARqvhwxlRATCKzgHnPCYmIQTwgaPzngWhR8CXsZUiK8hArIlgS3DiunAo2A24AnDob4rwlpxOHpxrd+6fFOFLkJzTIoaDjk23m//i7Y6Msl3cdbzo/AbZDQM28a1w/VKeTViS6ZUABb2dTHMgtQc8SjqoOqiNPiE0To3jGQC/5DINzxVQxB44So7gin5x8iK5aACv6CPR2+PgWCdPIPkl65gUZdoXrhYBA3yZRF5KMOJoBTjVAbwqufHGgkd49WWRaeFpg/nLzuEKCPpIHMSDYkpA9/TbR9ZfJpkOCvBbuBY268tnEOoZWByfNuNf16EG1zs/20tMB9Uvk0wXNgDjZnCEg5CQvMgGSi6gcwiO/Y1c6TUlJ3P75ZLpFcCF7lEHLyF5EYySC/Eisu6DZwP2FPz4Uss0NTt7lgSuhnvNnv2mBVKBsYkTLxZ5MrTh8ID0Ojc7kelXt4OlLnZ+OY1GQfR/t9nAI6DZLPTwOKJ5vZyMhvTOw6bV6JAX8UgfN6v/C0oR5kpPBTE6uFGSuz+SyhU1MKz5Z2GYUeYNOsMSAw/FJ5iJXR2DNwz81B9k6/FtVsBf89HH/4a4f+M+kawUClGHQO+3JBjFAjBJ7hnO+J1pNuiTwDgXvp9mieoRKIsUDmoIqrajj5cjp89buOMRs8Z7aB6CmkTROBjFffsjAaMUGYdkWx4Ya44wb8Cp6I+DgXEKowc4eglCtn4AjLUWNCwFxmeB8UEcCHCZok0J3nfGd3/CCC19GdWlZr1fDw4/hJ/Paey9JxEJGoiuIHrpc9A3kcugYTF0fgYY7wV1z9C8ObSRdjpB3V8wQhvJSwEFbOs4Kf5kYDzKvP6z4UVgTMtgCIQcMK7Fn15oYd1T+GF3whvkTx/Me9BABthZPS49ngBAjn4eHCZxRvu/yzwn0zOR6bHIC9qOFBaakOk1+PovAiMy3fBnQKsBxik83N8yjbWXzOSQ6fRoZPpMYDyMvsgMS9TwW8OrImUOmW5eAY0l048B4628N5pXcbZeUplGH/b/FLQ+pB2ZrnMyHeyYBx4fRqb/Bd7BYRKj95LINE6eOnQ1RzpaJ51MT4VNh6B3JNM+YGzBV11iATJt25HpZuidmoVMQ4OXQKZDvx44llmmz4nWa9BHrGbAHMsg06mq/k6mg4Jv+ZaNlq1fbE3bnrLm7fdyRvAzqJyXUqY3wVvrkel3OJlOINNerwnAEMt0Fl5chw0sl2nyZ5DpUgd0f+mdWKaJTCaz6O1dMp1wdhq5JQV5yfRq83cucDId1v+Jmzg66Un7WV5Ue1nb1REJ0OO9jzZ7zbesug+RVU2jIAIc5JHphuXA+IIVkOmw4TbeHQM/4ix2INPepOmzZGVfZUkIQcAKz1k48H2WHHWaJQe/FmL0A1UIJs9ctJZcapyH4QoxDArtBbWPWbAeJ6vuWopACFx3qaeNBrUqUhDQFQvm0wH/L2A8xZJyXJyRAEYIGZM1hHhesecY5LZiAx8wf/2NOIN/p02xEPQ0mQQjxkA9XG8jnexPAePbnIOqOQ8eOAzpQQhGV7ODsYjHpvUEYe6h03kdQZl54HFKhwzG6/uQBKOcAno16WpLjPgInzej/ydzv2joXIi+WEUcciaqJmewsOF2Czdeg8GmjYq47S+j4Rz9ZRiKWeDwLAIFb7AkxlYwihfFjDEevSKMOqXd37HA/A23WbDpl8CG4S31fGPO2AfUtX3VwYiD2vetjEK/x5JDj4+c03jowEEY41HywAfe8HEE/fV/s7D2CozabD7qEcvR6mkY1RmBpsi0DXw/MEqmX+McPyfTyFNco/ixJNMoPX/ro8j0Tcj09dD5oAj2LoTvydiNJF7cJdPe0E8SlJJMHxLRrYTHuEjyF4ewg2yt+VvuB8Y/ItP/gJd5pwOFHL+9d1fBGMv0ZgK8gjGWac0dQabp9MW8KKPh4TRryCvEABc23V2UaTqjqf1l2ARjLNO9zBvxYYJ/b7ZEn4kOv5G8lMPInEAXQffpvywj+n87MF5tXgEHfD/LdJBfYpmaOdZvzPut34gTLdOLTm/caXYGhrY4bCIrsjHIdDMyvWPdbVa/4XJwPRIV0Itncvpj7t07yu7+FuWp46nOe9+3oXfei50/jk7yYGqK7IvqjGnticaSaTonft3T6B3JNHoniUy7SFFPy7RwIx2NXBeepyOCXkSmU4Pp1Mnxc/KCPJGUU0kyLb0T5HYSyHoUvXMTneUbijKtZ3FO5d73pNoXM3x0clXarjxglqXAg09ApFe42B6rOs/eXP0OOxo5bWxlYwQHHeWWWsttvt8K2Omg4Y6inRadW6fkwCFDL2h965X+SywD0fznzcZ9j0DUF4iIHsEtht801uaIACMprldUcFGLYDaYPUn0yCN/4I2EeNfBW8N5HL8X5dy3vzCBU8RC9iZLTrrUMlPOJbItRkYgHI/wR7CVYMQRcwnFkuprqQFEPgYejszWACPOYFKC3ZPMJRhRxIU6ejF9LTH1x5aecDaRjInUEzG9q283GIWnJNHlQeCcHnH/ufSMCPc2EOVIjeEZbeqxJBhRxPkV9MwOttT071PF6ZB5JKAJDiU5sOV0Fh4jGD2ib8lBh9NrPwgBWIojiOFO0tNwUZj4fZWxj0kwEv3zBr/HMjPOt/RIHJj0IKgV11FGZ8ePoiPP4IUkUZnk4CNxzA4gekmUI78NGIkeODzG7+8jfO51aI0i9kZ9EXn5Kor4eGRBUQrVATyt6BzTkGfIVKL3ZEugFEMiviFzEtwQgyKCzoHpKRiRZ8ESoIjHf59A1OctRVSolUy3CyPyUpTpxKAjaQmyXIfTvz9l2ttE4PYyOtbnEIkmktIlme6H/M9Bpg9DpuGXHTdDZxzwHpcXyfRWZHqAJSXT4z+ITE+gHhk6Eg5Va1rvkpcEhtl1APsdYmHLdmT6n/tJptHTilD2PcyS079nyTHvhswjAC3mJWBqResyGJ1Mo+t7H+SiWtbyAk2j47QfZDpApnsPfZ8Nn3W+DRj1FkumB5TBGMt0EVanm+Fh5CKDTPcZcqSlex2Is/UwUY/tkaz1qEwLV+jp/HPI9JctPQ2ZHnIcuOgdyVFnMp2sxgZOQTeid+gYRzINTXpcpos858+zxPgfWmbq5yw1SDIN/+9B73jMdUr2Z5QHOx0yZSag4+QlGILv0URXAzu9lbmn05kb/fZho/kNaMhK2rba2uQxdi34Gct0k5w6xU53x7qR4AjBnPSAg5CZQxlcyaC//wqdd5fpV6GDBWNBNG/SFTgFH8JPYN6AL2dGghgnMKUehutliBnjRB4MciLTn1DlHEKWk822/g9El5PVUwnGcsTYhlMAjGNOixjfz1NB0bi6qjqBkfcTVUMtCQGDAMGuu4EydifeXkMsB9DHMaoaZsmZP7L08DeCK+5pGK4cXc4RaA+PMBrKOkGPLtEfGLO0q/4WYJSTRRmtC9kLMCnPDRWtZujgBEvN+G7kRJcYPS6yLQ7LgHc08OgZT2LayRycrLUMGT4NjPBLjyg7wSjnCsdl2CctM/0rluw3k16s2h8LouAsg9Hxo+4Vk5xDFFuy3zSm7sxmGORxyiNap15vK36OX9iba9G5GnehpSd/mmGssRTdPXnxkjXAOMvCatq3TU4WZboIovh5X5NohswEKOLJV+IUnA3pB3Vbpj1kWk5MkJxgtu234FUKuSfgU/uKMu3VW3IaMj36nc6xw3oW64j5rozWrWQgUtAeMu3kJeiPI/gHiu1JmcbpLexgmudoS8+8hNkFb4BG3ZBpyYtkmshrJNPw8U6GNVOCsSdlejlTbN5kyRnfcR0gF+V3sio8KwmXHeCxKNNJZNr6HoiThX5oVscJfukRmVbVVZiTZ4hYfdaGzzzPqvvNAETRGRqWUhl8rWwM/MaohYdMVyPTGWS6maEkn1EJF8lqVUapsL34Ipl+zhLjLrLMZKZ01Ixx0bMOYWzLi9I76BgNJVr1DAu3Ev0NcbJ6VKYTkOQFRpx/ZZkJOPqZgZhF6Z1ymSzDYzsweuooYKctOR69czUyTee6x3BIoCBssTqcuZmTv2Fvqybia8zXtkyZgzXVxsL7eUWwWtFZJItkOlE9zFL9Dwb/fYkM3ggKW8v0q8vBclEXBGqCIi4fBPF47GL+3RovBLSXigSFwTw86QRCEGiu07bfUVZrxLT3dtfuEZ5lWDA9DWMx+pSIacXQ3YFRzIahlpeclIDnWbq848/AOAYQKGufEswiRZX0ca5+4sLKoYYyxTAOxq4UDnxKtEtzoBKCsRHl3vQo5SpKtI8wKirA3AfrNdXSMy7CcB7Eb4TTVVus2wHQ2R/lQ5hpq6JeXp/p9DLo8eY2IKg94MA4XlxBNPR0nKvz3Fwrp0C6TGfAc3klqKCt93hWTE22YNs/wSs3ekLZORhxAEefh3P1SRwXaONnKRseaKXQOsIjOBSMcmwx1ur5WnocCvkqfveQA1OU6cTEn+JcnRUZImRay/Q1wCEqdv4hDzB6khd65wnmQrlI1rbfO2WnoffO3+9C+ThYXjjfUlOR6VEnUx6wMZzRLRh5SzAmkGnJS5jHadv5F6YPjuHJPsIoXAlnKQ95ocM05Fh4SENrfISbPeJQONC/0MGYRKaT4NEa68xregQYh9Fi5Ihy9vqDTCdYJJPoPcvS079raeYnejj6e1UeeEzWjEJmmK+14ylL5DCOid6UFexdecV2JeHFBJHevkPebyNmfsWqemHYkZcEOOwynEI28qL81X3GM8Q4kT7TnzDmGYagUnzwWSlv7z68i91KAmMama6afK6lCDAkgNGVR5241Hv+CAb4N8Xc1SpkOsXoQ3Lrb/g9gnIYpG0Hvgz30l39MIE+jQNYNemn1mv8mZZO0EGD1mnqRbPzCUsfDVrrd1XxiqXDxXEL7i0NnTPIdHX/6ZYJB1l623VWBaxV0LkKWPb0EczV+hCacld9h8urabeuNcFC6zv9ZzZ25JvsTfm7oVmLq31XBGsaDlaefyJq26R7fGQDZaf7I9M5JHnnzU7vxDZQ9Hh1JBndPAaSaEFq3BmySAgoxoI5IYp887dVO9R83WkXNdwMpZA0vDD2dIallzGa97MOx1FbFVz8EZddKt99iaIFiXEoEOYzudo1rgxhI2jaK6mDe7zj+S0uQpea8CHLN85nwjEODBNr921MH8XOxNLk5F+jiI8BD+qdxq1pjcP2IYvz8lQTs/1moi/jLDPpk3RYmA+Qb3B41Zj/3iWpJhn0FQyvXgbjHsjPFodK/WGqoVNeJbx3pRLxCb01f9IXzF9wMm/Qc0PInONQ9r7KVO0ulVdQ1uQIVbyrFZdVo5iqQg+y9wQUMXiAZqHLEBey6xpxQHmhu5659uJUeUOPZsLsVyxY9FE0DE6lI4f7U565w++tcjp5WUu732HJCcxdKzlXESQdFtLeA14JnBNA54Eh0ELTxRau+jrtPwQYcXz3Nsm5IloQDvuMJcayAAQjqXkskQPYzULlNMLLHnohGPdeYFxu3ubLLWAOY7BPMKJ3ss9aYuIPLMV8JhQPn8i5kgvTLS7XnDw6Cl6GyPHEjyHTy5DpB+lIjSrisTV/5FBsSEK7OmwXdniHIZfQX8iID04l83AKctBdKnHzruzFb3RLHeyta+SXbkg3Ms+xMPlzTLFcBI0Yunadkq61VrUXpJTjJNrgBITIR3rSN6yKHn8UFYrmoZbldG8IhLb39CC67xl2DD4J3PBM06TzLTcf/i4g465TIox1L6kuDRflNURfc7wdPPX/WVPvKeaLVopSS3+3B1BH1Qjtaj908YafaNmWS235C+/Hq5nFPeGwO4WVVSJ5yUOPwR8wm/gpp3+ijifRJ5eAU0jqSlI+wSicjX4PkcCtZku/hN5BN7qJ721gbPOzwyqKMm3jv8EUng8jLgMcP0VDkB2+1f6DGEZFKMd/DIcf+qy5BBiFR+jdlVTOhy6/CkWmCwvNZl7BWrLT+MUCKUcXPWuddEfkV9qtKO5J52uldSIz3KomfIxAw1IWEzwOrenMyol1b77i/9AIEThJDxBmSFQxvyZotiSCq9uIgdWXuViOF/SniJhyD1S3C/yRDCRZeeZRVn70+y275UZ6AlI7SnsWUhWNiTU/xroYVasPqo62vqNPt3RqIPpeSiVSIkVQVLhLgiMGse0zZRAEO0Q8H8PLir5wzMfNnr+FuxrO5KmiCnED+dY6qeQ4qfRiTYLRX8ckYgR0xDt4vReP2oT/y4FpW0xcZNv70hkDjoBZP2O2CDjTCClKOqo3fqmLV+cYLEA4v2029I0UkeZFGbUiYOXwqci2sOheeYqfa9xf5Q39jtkqyk7P5N1yGFUwmWN6lpfR6rvyARMTYG32r8Hla3gHWgi3e4LRE82KAMVwlcrmhto+Agdw00fMNjOEpO0HHH12y1x6q9WXWBM47qYubWUw+qPMWZkK3eW4UH4MY+lFlV1s+27P4kzKw0eRzlQ/yjwN+O5AANYgSCh3B2Oct4tX4UvbLSgqO4YOE8PVbj8uGeO9TUVl58oa8z6z2psok3a7yRViUrWzG8k5Bo3MATwW3oYuWqCiydUOxtD6IYcacBZVlRyViuhUTeW1uTwuA/fljLOCKke7cwv/wos4WI5mxQz8Uv4RbHKYppRdd7nZNjmZ3s4cwDMZFjyOPo+MRdypizLHcMTliMX7KlLB1d2LM8Rl62aBMhjy9kefaeHqL9L2ubrJC+6NOGe7V0V8MsBeKtzBSOR4yBmM0GMcAwzlbvpL5ZYDUv47qhNNCJYCq4mNa0gdgyaZP+pUhlxvB4XwZoka7YLWyU30NNsEDBtzovXpg6OfW9xJ3i4+Eq5Y7RgOm2x1Y061dMsqq07V4PDLNe9u4g3xXcBq2lGslq9qBEbmLPIvxlQfOhKSnvj3nmqIsAosyHA4YiIq+2jKpwTJURs690sxpCago5faL9o9lx6sIcA9iWKW0TnBERLcMVAq1+WLCpPTnQEffXD3Oy4aaZCeGTvBwprD+T6IOiTPnSdV1ZfVqIq8tS6bukNWyA/tjwl4wjJMl1GEloJdJyDA5rj8ZFNrWMxKFC5Ci3yHOAlNel4AZ4p0JvtOIv5xhmVf/Bvly05DnVfFKkL1IlqeAcFft9S0LyK8vW1RM8tj0c+KO07u5dt4LesuNl6y6/gDBKQSYZlAcp9nGToCQhr+FXYRzGm11MrfYNh+WfSOUcqdJghGBTW8m4F5XNTCOQYLGWn8slsBJWPmht4CgNB/UaIsCQ6nC9p55rLRC+2rniSKUDCGeVYirQS+RqJ42qej2xEiKpL4+UQ1xp5nNYOPBS+shhB8gkVw8NgxvwAAlzEetXDMSa7uK5HfwR/94h3BSANZlu6vvtyqMJy92YJCimSvUtjMcPvHWfrOhFu1U8XIQVLEDCnvh6JXaNmRm8e6toI9rlQPim1z8ItW9c9heK/lQdwzdaW4MiSIEkjHO3EZba9CozKowsFnsCnnFH6jHByMPOO2g6X4niurCH8iSbtkpECytr6IAI8zutu8z/36J4hs3E82DHrUymKm9i4R/OpJJSXxLnGVkcUZ8gacyBWFBIChaE1y2URTvapbAkUwklrhUff5SD2lDUeDH9puQoY2rCda2bKUh+BxjzCq5LZJMOaYzjXS0tBZwxWSqbgoB2MErnvR4ZHHSuX4dbDrflneuFcZND5nqcI2SxeXWbuXu/tHeKR36lVPchXHcKjKtFeAi2hDEYl6JrhdHq5lIEV4bPWMH3QSw+wqh4fWAhYBKf2i7lmx2Z1ADvGIFHh06pQieKLs5TBEz6L7NeA+iXDssWzmqbi971q1Jiqjo79t6yzlY6jIOfkOUaW7u3+JgdqtIG7AqMSwiu8ooxiZ+4pydwPGqAC9H1fCd4iX0GRv9E+U4mfFn3t1kWBp4ItVsHToHG/uVTl6SfCiZ6UHw518V9t3pYTDi/IUU/y102bw0DnkfSm3N99RqA4n8ctRWXKau5wkoNoHTnusdSGGo6HsBANxUb0d1cJzzav0+pMhhrGjvLvuC+72Ieeuj9PPvokh7c5643hJ8hZY7+Bhe7TqUnuDEf1vabIp/RO2iObU0KzpqGRRNKnXAeN5ZrKMga2HZLBHGHltK9I07yvMx/orkWrm1r7yHSyhB6b3mUsy88/Wa8w7bN7WnJ3zmoR95pQ0u6ym7Pc3r7cPPvwTG9q3xXmTULeEYaee4h5P8a5T0GRxilB5FdbU0IR61G2YtlRQO18EWSuBUYFaJeHJ6keGtJ3XuniLCaclgRGMUJHdSOVwqN62iRztiEV0T3lbPUeJJBBQT3jpjuC0rbTVb9iOTQxDvH+5nK3w0ipfV36ohVLsElC4mp+6ozboT9KNiovNSTEy3MPoVqu/rZ7zToJIiTYJjEorZdXrUlfdUiT+FoohSiSl51JnQOiZIkjK21E+V0gEoxuSUb64AcVnnV0iho5yiK7ymtjoMsRgRLNIisWVVV+qIa6m+CzOEpl3/U2VEQFMuc181Z44Z2eAdfRMlSInbHSpY1FcBW3gaPWmnrVX3W73yaQejdsMUlTVS3HBrUp0Pzp+WnwiWZZuAL/qccclyZHRJ/5dXrLejFO7z0UrhqU8T8M7ylH+RvSm7ux+N3q2218ZRg2FtlfZbplVrjLuKbNqF935dDc5Xixvl77LMOqzp3o7qyzCeZSjvPwuyFVnxZaeqc0qt7zs0sO9+KJyirpqn9pdXrVgjHXOrvsRTXf97vo3wSi6FGWw6y92kDOGL6aJyu8oqaOs5/roPaW2+WOaSA67xz9xiVG5+lt2x0X0Ixjl4HmMMGxITmLVoG/Ph2+0ew451s57GxHTXjheyP3fH87bl//h26H4oY34e6so6q/npq2q2rMv/iZnTThhaQI+zUuvstyKL/DjoC64l7sge3m+yRvSirdexzMhb7zNawjsktOS9sE3yylihAaHdsQgJrw111mvvg2WD7VfTszQMchtmLFEoyLhpDxVj+u9FO/Fr5auZYQRAzh+iKIoJdZwnhtOi6ItzlyXXt6LLyoDpypmNmeAALwnHCI3NNYHMOVodJ5KbeskWykPMBbjediicnx18nK7j/SuHNWxpael0qisfMi3lEFAdJbi5xJQN+8svlF8ST+pZBdFywuLay9mih95jLO7yd7xjX24looWEMCoIRqX2sDZpSpieOFpb0hrnlFxpbraFNZeVfG9snccjpzzBpxOYame4tc2RXb8syijTmaIsBX5Whd9xD5tWchloSonCsWCy/PrlnuXaxQhpA4tMFFqG0KO7nb+11UkgORIEh1SG0muTsFRLDq6u+uvp+4tKWR4X++4TWaJWKo9euKe8z3gntsXLe6M7QZjsUJXWnt/aJ+AcO9JXuSsRcnd4nVXdHyz7KoJ8Uph+ZgHv9194V6wx0l4kM5wtOquswV8JRj17q42xX5bezA6HJPdVd0Gzy6qD/wOxiIbOWOgglzDY8MeN6Czq+CR4aYgB1AMX3TVLccGpXrKyiKLqnN8EKNL94oocvfde/FD/VBjBF9cT1l5nX6NkbD7uw4GFQ2DlZeqWh3JuOlIEJcfwyxYHR8rJwslnM1yBSHVPODOrvLiNsSFtHd1jeWBYFSKYeariosf61FZcjDG8hFXqPxKVOtgjMAqNiiGJc4cZW3vr9zx1qn8HenYop7VcHOywf5ac4pd4DPFhc7KPScEVl2dsJvuzdvbXpO2j56SsSVrW+wX/w7tsJFmd52TsaEDEvbfN2StmQB/BroH2P5kf4bB05P5kX8VOFiiTLAOe3ssn1FMuAptUB+8yQcL9sgS3y45hzFt6Fgg/MzABSQVcWE0EYiPkzl+C81CrUM3X6TkHOGkYGIauHlDyhgzCN/bpLic0jvuucqQcKsGHL8ythQMrh7xWlyPe4c/cTUxHzq4yCZm0icZCYwTVMehKiDOHL/MrT0mwaUC9a4QU9QAMUAM+zjDVK5UyeUSzxzYGtJqm3RLRUtZ826oCFurevSwqymGUXAWiRfDxx1HT65OD7o6ysqNq4lB1G8+Ed6ifI6keu5gVvkx8PHLekf4LvsdvaoHpW+7vuheTKji3ThbDMeuzK4Iz3kMrR/qFfnjTgHqR1yG4yUV0Dq/7rSXolcFjxK84QhapkC4q+olKxryLRXv8u96ppHeOAnnCoMHeWjLeLrOKE/pPE1Vo8LUIRGtFDkRnG0LjQtq76qosd7hXdchcoSlbORR06bSPI4dEfc6DfSRfWVLVcVIQu6b4Tiamca/oDQ31YzDB6I8DkbmgwgurUrtIi5dPjGM2ysMx0JHycSEUVFsS8KUC5bhY4YSaB3XoYqyqKr8DmACZ1UoX7FIblvATuCJCF0AmauL9FM1eixEsXuaCEzDQs2ZK0ueGzZRq9omtR/C6JgRDQu6I6K2c0/EIz+PC9uBoYUVWUOAoTzpVYDMrSGqmQgsPWwXwQV7do1W3TIZfSBdJdcu1UOXPYVF0RzTYCMFtCmzvPzid+0n5IxXfMxRsBnQNKwl3RPBmN+gsqlraISn4qsOfjUvBywpcJQUHmM06KufsOxytoTkvURf4ISpPR0BpMnQOm6Fo2siXJRK7OQLBHIwMvZDRDp0owZqX1RhYQN8Dz4S/QRjDASPpRfhx8IWYBwEDcmjpJHK/EaAh20yo4APukvmtBwi9KCzaCY8dHm0RHVSdgI6C++ORyhQ91QletffCozUwwQvnnOvmCS/jEJzCk3A3orgid9K/mZ+M+ylkgOeJcGhI6mrCvgkmw5GOdVRuyK6udc7+CN41DZg07Fqeo/yYhYKG+D5GrRrkUVdISqaT9DIH6YIsBuMk2/hrtAoYHisNoDn9GC+KL9LCLv7oWHhKF90v72/4je96BrHVb+FpCIO49vSFczBZq00z9J2eMK33/y9YAs3h/bM06HVIk8/+myNjR9CWesD+9LH0zZuRMK+d13OVjGlkFuc04A+SEFzVp96KfZ2y24oWVoKfaUmGsQsfS81wHzmlMxOh/axG0DOSrOvnkVjeKweTTVOWLVtI4KlHYtZ6gGuXgAAOJ5JREFU87QTBQPzpIczW6dMAQrPmmtcqCMPREyPZJaDIzoP3BgvPzhXyimHXRRtFzmRl88jMaT2V9KQmyZwxgSFyULq8HcChxSderYipJKahaKVwUiizJzwAmdhEwLbF6UC02sfUGV3woEgcRchoR6Yw3PDZ8WyuKNvFOmuXEpJ9ygcRkeBaFhH54+VFB1PBQdRQdlICV2pkOhF9BVzHnCgEr2UkaL0ihwxtUW8inGTopSik4CwbMvVE8pw6nypooDG8JGj/aSGqgfuJt6zHwm41DL4uGFBvUqg2t7g1AlBsRhuB03gBsNf6jkioCHGJdUPGAWnjDa4TvCup5m9GqpzQ67Qy/Shnrii8rK52zrpXWf5ya73iggpZpJBEy/F0YHSu2QL84HlM9Xmo0giR4ungOaazXtVGJIc+ZwyLt6PvC7y87tEWH0vTxFaoK8WGRcjGDq4WQ6/2zG5+AL55Dz1RQc2QesWcCTZca/zR/MSq0HLdo3MAodQLyXXh/x9RqTYa6fGdm4NbcMWopRSlDIweRhUxwNVsQ0GyO9W1DKLoQZZXmaUFYgQBchQAF/1gmbDhids46bA9Qp1IoqAVLRnIAqthrrXrIMni7APn5aw3tyrxajJ+RswwLMG+GH1Oik7wOMIqgIdp0SfQykGBDj5a4vENgh1Wh1ENDwDDpkMW30Q7wkpmEkcp4FjEjZkqNmyZUlrybI1BB0hEVMw5XH4xsxNWB8M2oJnCm7IYPyRSVu1wreGLeIPzyYcy4AENFj9AoYuk0ccH4E4zJfrcxLgRbCJy31kQTDre6ukNqhx+U3sD/QP3jse4k2KmAe6sfjYxhyddDA89wjx3gg8gehwKQdx6lnMZCTav/wBcKPCeaZ1ENM/mLImdOeaR+mqMq/ECRWbl4Zb/4BoHgUzvI965LhHcOrVtkmTGBokCHLAmzjOiOX13tBzgXEM79Jenms90dwzxTNmT/8zbxkcFEcaAUPxIerqyE+nbVttYC8+DCwSWYqUjLX0TtlJF9TYqqUFe/Je5sH1h3caV1q44YfMAPgc/uBMMsZy3Ra68t9UDh6DOvC/4w7LjPm8tXDodIDs+AUmX2PH33JW2tZvDOyhO33rjQ8n2RDChON+4zx74yfStnKpb088BP8B45Apnh32sZQN7u/ZqsW+PXwPjlUNVKQB9duetu3rLrTqyVeBy/GwlGLxHePREUvPmZeZX/sHdNoqS0z4Ar+Rc/gxCwzDx3h2+qcy9ji89s8H09YP/lenSJ0oDVlNm+vZexntuRc+eOABn06BZ+d8PW1rVge2DufhDa9N2bV/ydnG9eig3kkrrPsr/umt7Pf2Y/S7HFaIAWNLt0Trt8VMbZKTl2YLFn0bWZnIMbDf4L0o30783SOPSti73pK2P9ySs+eeY24xeBSMzJu3bdtCO/HkKnvL6/vY/96UtYceDuwTH8XBOTBl9eifAeiDBTjT/3M99iSHI4vj4y/6AeqNiemzLgYQ5ECy2S4e0ftFuD3Ji45Se5oNTEdfytZaH0C9wvvI22bw8P6zU3YCuFj484SNXM/iNHTK4ytCG4Ze1E5Ox81JWgOy/RzjggfM8ew1c3DFIM0X3p22Ydjv2xk+/OwNeRsNE4fs3yVbG4YrXiUOFrRyq/FgGuyUHQbzPjlO9yLmzDGU9nDVh2xkmj0rmBiqnu64oxM2FIX86N0oNgTdZSV7DbzZl/enzE5aDY7MXXfkrQAjJlgmEGy+DcpvYmntJ6CXusQiXPtJNbeAvix7fnhs8BesuZQpSMfSGfqok0LxnMKGc16bsDkHpOx26tmBgVLPXIokj4I57rSUZRDKO2+DDXBONAf5JMZ0t2Ncbvnfgp362T5WTW/9+mvz1t/1KFvMX3k5oLF3zqiPCwFAIUbWtYOkyqSdmldbsOwTvHcxm6zOxZgHlmO+WAPK9NT3pGwcva0r/5dz6JAnRQBk6NXjOfMDaduCkrvpZt8G0okSHo/CYGQxYi/OD2zOwUk76vCU3XpPzuY/B04zm1lF8SHLDWVvqFFvRVnS0CKdOoCQisCzTinX2XdL32/ejJsxiFKSbFMBImUw/+szbMiJUf/5r3I4I0QtuS8696FHce4HM/bvJ327/XZWmQLziW9K2rvfmrGb78xxP7CTT0rZATOSdtW1LbZ2Zcaq/MXmP/dG86bfwC7lRyOsaCpglDGTQO6OU+GYhAYN1/6FVVXnWmLu0zgW0IGhk9AnBgNdv/6lKltFr/tnP8vbyOHc47UWYJ80J2Fnvydj196Ut4eeIgIrP5dn8oEKkOZ751fZWnqV37osb2MGYVihS7DpXgteYJfrwx/AYMyKrF8neBSnbpcxRhkXFv4Yo/2UpQ79AYzNViT0KBoYBZ823rOLPlVlDz5UsPOvy9uBI4GRFzfSoT7rhKSd9rqUXfjznG1G6TVBttMZin/P69L2NAakJe/ZnBkpe/ixgl1yS8FG94L3V1xj/vIvWOaYRThKwyAjL3XGi8KhBAPnNL/gYwz7T7Gq2d+wBhg/jxO/CPn4+iFJ+8qZVXb9dVm7+P7AZqKMxR4LiQrd8La0HTYtaYedn7XpyMsibOi3cHY+fXrG8E8dn/SmI/Pwk3k7+aqCzcCYLFx6Pg+WwLTnULcME4zdGYyxvGQ3mT11gdmMn5lNRqbh44HMr6jbENqvwMm7jk/Z13+cs7tX0R4iWa5M4P+vExP2w7OrULgFe++/8nb6EQn7Gb+vvzlnP8ZIG8Gg+WdUWR094hPApY1BSTx+Mwsmppgd+JFICZQcKixQezQXjDrHdPtzKI/zzN72Vd5/E0oFhCiaTDDr729I2+xJCTvhae6pyfCZK5ZpjZeclbQjTknZ5X+jkypLF09JxMFa9LakLdtg9lYcBlbBUD/KAN1hj6ATjwC+YadRT2R0KbHjJKKlqXQ7hLoLGN93HA6W+Fg8As4A6+k3MKWYbKcTKTAcAwefUIkhu+HclFUdbvaj34Z2tXrE4M31hfj6ry8mLTfR7KIX0UsZ4FTPoOFZs/uWm512CHAfGylY8VpnKYZx7WZmKz9u4yYda/1wArXHWSP8Phj+eQvO8LalZp++zbfDe2GjqV+ysYRmPXVOkhWMZj95PLCHe9E5AFVz0dfZqoQdOZVB5QM4Lxg6//wZ3w7rh/GubbGGJ3eYTeFBFcNQCtV2CmORr4g02vZ/sFKS/FNBiiJFOBrsgGknMT3mdPTxcur577vAI3rI9fuQd07qsWVEWtZz+9Rl/KEDc/m7cAxwEI6/MW8X4IS/Dt10PfL8pDrNGfit5VE8f3A5A/hSwymLxooHBUq7iQfOmYaP6/j0h5nSM6gLxxdezNIxHjyYFYjI7eKBBbsKnCeQoyqxFbbnpEM9e/3p6JgVZp95gfYh74dmiWbVJ+1BnMbBAz07Ez45siWwD/2Pb9UDA2tpoZFNtD8xGogoSHTsUKYFOB/ZQI/yt/BzZC/rlxxoLQQBRgLLKjpIb+/D8wFJa2SxXIry9NZwaPwI8vLttyTtTa9N21/vy9t1TwX2noPwLeDXNTjeN9yZt1kTE3byCWnbQCTx8zeHdng/yS1wYU309xWeaKrkBGOrwz/VU3b7vMAvDq+gokB358OZtyNoMIJwjef7a4z+8QeavfMeMR33hTLo7zCHof5os2cXvjNhy4hufPMmXuoNwTbdBdWR/DEoK/bkiZQx73SUYmXMkTi27N1mk07F2309MFCXMLvN7OcY9oPe4Nn/PuHbP1HAzn5TlZTFnYelbABE/PyfgZHrZ49J2IfflbCF8Pe26sB6vSFhfRHqVet9+93zICGkwPXUNWgO+4K8hnqEGMrskLn0mLZJGTdj1V/Ekxw0BgE4OlJ0ghE4jpuStjEohAtuEFIpD15zieJPnU0vcq3Zf9djYDDIdfQg7RmewkOcKGAnbfPsVtrRQmTjB4/wQvVyBBSFNWAY9SJoivSUjITo0E5yMGL8AtrG6zZlBO9OB0a9S5kI/4cnsVEfdf4CpVTDFfK5NBMB+djotG1eFtjVmrfE/cOJWuZwrq9Fs9zyNL3fuSk75mR6IOML9ssXaXRqIzDy+tQh0HksH+LoJUUnfLaThBdFKgvwBc0zn6uGFtQ+eca08auDMtaEI/AnYBxG94aOkcPnB1C4wSAEsCpvt2FRxgK/FPUmXv3YgURDJtC7e6pg92D8x/CsDgJIwYt/LOwHWw8kmkFErwM6qxqRbCAfhSuaA3aj1pxErgmGn6pY7bacd/vJ+NLbb672bTmGThvwEZCxJfDrKWi8oG/K1ieytpJsy3EMrzymmq1CcFj/gAMKLA99O2PvhCcvvKvF1hWIWDJsqHZkjDPlnAVEGXcAo0CjMXwUkcM5CznvMsfmg+wgneR3Hwmue4zRrQbPdJTk5WuDQMc+wOgrRFAFgsB3H+qZTbbvPoXo1bP6E7IePCNh78b5ufVZbRPAZocYh+mEZZIsjWeLR1ibTK5TQqM6TMRXyKdJ/TrVRlu3pBj6FhCIoj0KHEk6bCGwDGYxy1T4YhiwPAx+zsMQfP2sKnviBd/e+7uCjSLqywJnF8UaRo+YpUo2nmbWZBJWK8cGnnst8NUnG7FRGD7aLzaLk1acuuhTfKN4VaTQ09JwPCcfG5hkiDAJnOqv19C+B8mXwumnt2lz6DFVU2aKeh+pM7v8vUn7CAbj5tuz9tWr83Y0YgoZnV1+gHxecxXbCQiInB1DPTme6AzXPOpDw6FJ6WG3V1lnOIREyLQX0BFivEdOSLKw3RLQw2NVIl1Se4QaEi3wgGtvlrpAD+L7BKJ4E53Mk4gCXn591q6+w7djUAc7cBjm8fzhr2Vs5jiz83+dtb88EthrBhLRktpinq5Pvgz1Jakn1D51JZkuIq7txeFRHU0iVvgso9jDL1OlyHuOmShsRAkOwywylPVtFB2p8cC9U7hB5/yBDp/U1A+vzNkSIpGH4OjU4RgufMFs8QLUH5GXK87L2NlvCO3ZeVkbyGbRvRm+3Ai+B4DVJBG2UFE2x9xtASv/LakPrJE6CyngU8SYA8W1UShBeRuKHBp4rFKPHTk/htyryTKceq79fJVlkKFP/3eLTaBjMHoSzhg2ZgfDdecdWLDjpofWH7475ygcyq2+1aBz8qz+83uxqaf0mlaQqhcILhyZysEqfVc8Evkgf75KeqDB0opYINPV4Pcx3qwuMPKSqwKfitgFdhTvPoJDeCa67yfnVtmGDXn7OB07rJozVef9hbaoQtnrjaG95ZBqO2oa33N5m4O8NBrRMsKLKQ27OL0BA1Nyx4nClAX5yKO202yTUgUscD6bjUaT1VNELAmlUyZRZZ5IVcq5+iYdpi/RIXrk2YJ98no6lgRl5IcqPYADeOF3kOPXB7b1qLQdMgVa4FAm+wp3MDLziFXWKzyBgcRQkLuZqG+tpTgWoB6nSMjHqXVobVY3qCFnR8LkjAraC8hWJsdk9xaa10JD2ZnutRRx9ttT9sBzvl13b2DBeLZYKFRbf3m1pMMZL836K1y3I51CeanXBIN0Rjg9RWs4hs8Pey8GY4Wltasw51Zl877NA44UcBB3Bh6YFQE8EgJvhWeX8jOVw0Jg5KwRgnB/IIy6fAXRpL4Y3uMJN+N09UbJv3123u58jt0VmtdYc3Ipi6M+xNJzwSgA3B996SAhoDBEkOll+ZGTwMkylq6zbw7Owo5sYMvBo0ckyHJk0p4lWNzD4K4ndY+iEzL0OZioEcemwbO54Pidr03aU0sDu2ZeYEcyhyNAyHdu513s3+FNK61RvkevwSy9RzDB5Z5hVOgXdq9iNxTolGhejkGgl0cDVzGcUQcJPcEBGBrfGgGT46/YU1SZRE4S1B8ifDAGQxgoY4Z/kXY7aGjebqGnM4VId473m3ASvUSLHcImlM1DwH91P+e0KXK1ZxjBBx5eodcQ51uloEWKDVYDFNhz0FLJQ5FYASAb8jac+sbQJgUQEgiuB4wF9fwbfOtHBFUjrptgvY++scrWrSvYN/+etSOAKYfhHIzBzLesAhcjUPh9GMUQrTuGkaKcPpKqU7Zc77GsPp5nqRbmABCuLsiYg8MG4bCAIyVHtInelZQKzdIzF9jBoNTmcMbgW8117E10QKQ3lK8xvOVjsHvBsiMYpm/EgctkVzE/5jSisGz6K+8XtHeOR/GU+IHhO3bW15YZaSJFiepR1ljgZck0VXlY/GbhEdr5wLRDMAgmlJ/bagLBfwrQp+GTH0rn6fqHKBfvZ8kZ1bZiTcF+9QTROcIJfnYzn5Xm9+UoC3aEjrYI6BiP1KBKAFGrdftYrt9pOBxEfnM4B+n+tgmZNoxTAX2jyekbkZUl8OcWivzy6xL25TOIpM4v2EnfhrDw8XpEfx5Kupk8c6V8V+PQHJa0/oTb7lhFWTBBY8tma/SfQV7OwREDRjoTIknnCRjpkQccP5Lrg5w1r8WhUrQ3bevk8YJH3ykHz57HqVNSoOfS05P2fiK7N/4rbx/+ITwwMWErua/pO4oGSj9pqNmX18O8mNXMO+rPkHpL80bmuML+NcPZ9ZtIcxflRTD6nHGIKFpSMIbQgXcXgQ/RMyTc7BYjNHm2At7cDKjXfzRlJxyath/8IWsX/Z62AOM60FmPvN/5KZya8Un7DM7VdfdRBnK0GsD6JXGIKB9/zmqqBgKj9jGSOxy1Xe1vP4FH8uZol9DU2MLoRZ+JOIcJ1/npLyuLA6Ro+foWz7aTqZqo1jc+lLYJCPcFV+Xs0odDex2dufXg/MMnJa0JWbr4dt8O0fiR9B8VF9ShKDRbU9NaeGqcFZDJgE6vcL1nGMlBOfle4+jELmYbtq3MtxoCz3i2lLqmcFXYXt0v0Ww9Pc/Jo+kQfyJjGWTjwO9nbfsqqmEKx0Hw3dK17N0GXd9LhHMoU0KqcPbnEpke/IhnGzdgF7JrkJcT2X6wnxQkMg2D7CmpHTQ0q0h70xJGFrYxb20kMgyPAVMLvKh5kIpUy29bCb0/eDAdNSK76+iYH/YdCEw1ihjWoMYveiN6lo7MBeDxgKM0BSBpazZTFjYvx7FDLdnV0P612BbRWHULy50lnmuIMOxr2b5vJ1azBn28g1v9rFZ6BtpRuqO1bPMKwMlS7DfpTH6O6PijePZv/q5kGgebbFvg3WZ+jofuRhzgA9NxuuDP2h08hNd9+MjYHkYrhKn1FZ5QZC5S0DKfHs8aq02NsffQuznlv1I2dhgKgJ7hx0/O2AlEKX52W97eOjlhvzoiZROYxyEGeoSx+jUQ8bJ/FuzIA9L2zhMyduZJvh3NsN2W7YH95qHAJvdmfLx+HWPaLxKkYBPT9XeAFJDnxGMP+IFxNDQSYKG8Jo4HwAncTmTjnOOIXn06ZZOY4zUI5r74I9X24XW+fe+vBfvisUk7dGbSpo0mFEo1D17q2TKiVBf8xSc6QI8ZRVEg/PHET3EAcVZO/wUCOxQYG1fgKEC4ptWWWPcPwOsC86sNCHjIoaMBh0Z7DfNwArdbC+cIfv7Ngc0ldDtrPJE0hO+Jr1XZvBWBfe8fBbvhDJQZSmTa2JQNZ3jyvl8m7JnFgV3F0MHrj2CIhKjc+0707TXgcd5y3371mNnMAT4nyS+yPG1KcCxNQvC5XgbC32kSjCjF5nUonnEs5piPIL3RehNuvvR0z6YR1pk+QXNR6FX82LPHMGLX/zuwv380baMZEho/PGlvP96zWdOT9sCzvn3lgcBOOIKe23ur7Q1cD+H+Q88X7Mr5RD16t1j9xvnmp8dYfuuTlmjaiHwi1V1RxgwHBzsXMoSHHDUutKb+R9oU6PvtNydtHLw4BmdT84EeZBz/zscLNn8tEyMZ6hg1OMEnaZ98V8becTxwM7/lZ8B45sGezZyUtFuYByMnJ49jTf+bqPwOy9U/j1MwiWHrh0DNC8AoFbAnPCoL7zeucvkTTcuIhM6w46Yl7JLXIS8oiKEo17cek7a7JjA0QHS3Dwrhqs8RwQSPwuVvGULcyBDhZQwb3EEbPsz8iKcurrImnMhDUcR3PJq155vgGfaPyTYAozfIchvvhuBoGMnqHpPaoEngbB+RW+AM71bOu3vPoUQsPlmUaZZFn/vOjL3hcOT21oKdgQJ7HVHSiSMkS0SLvoNiZtj6SoaWnt+AfKCEf/AxGkL6yJVZG4dhlGOfr1uDczQfpI63/HrmKjn87UkZUwgGQzLt9Hbz8zibtbaVIYVPHhfacZ9J2eRRwIFX8vNPVNnC1b5dcV/BPoEOkr7JVPn24CVEz4g43EsP92u3+nbz/Xk7i3kw91/j2USG4ldvCuyHdwU2i/wtm5dixHBsmlZZYe1t3ZZpLzWVLYeAUTyDo/D1t3p28JRIpuXIPfHNjD3LYqDb6Ax9+G0Z6wt/jh5GBOkK7VNn9ieGPRbApz89NW0DMHDjR6I36ZA88uOM3fVYYOczteGAloWmvkOwYx6jBfCqIlh75MVIpgMcHy8zGr3zAob39cwL62PXxDI9FjyT7eEfV9kDyOcqImxnvD5jO4meHn1A0h67gvlgOPrf+yOruJgD86bD0rYWun8EXv7UScxZxBn97d8Du/65nTa56QXLp3Fetj7GnMw1wNg1mWYLbubIvojxRuc2vIgDdBg0StqX35S0Ucj0cGS3GkflSfBx92O+DWFo6KiDU7YRm3La61P2kVPolBBK+iVRl7EY3BOPTvHc5/gVOkoMb/3xH1k6CSgMr465bRzOjH7LbnoQmUZ2uijTHjLtwx/MZkf3L7OdVdPtdcjEpURrxzLRfzB0PvnYNDoyYdcg06ccQeRyUsrm48T/+ew0NsSzxThWP0Gmj74IvMgvWRPaL5C3s3C4L2I4/qF1GTvQw9nX/nacLFDYeFdRprsgL44XkH2dhZmVnV7LGX+j7IzDEvYL7LR0Y386E58+LW1vOjxpl99dsHPfjpOKjd5EZ/i+/8cQP8+fXOjbuUxF0dD2iYxAHTOngP2hs4PDfzXDn6P7skFPwxqctBeQyWlMlZa8dAW+okwzIuLmMbM/HjuLM3VogH3sBLOjP5OM7DR4vIyI2iJ6HVc/6NuHgXEIMlpDxP/hH+CwSqYZaTjv9sBuZ07bKcen7eHLPJsAreVL/P5e32YORJXXLiXwtwz8jX0VOFjqFmuDOg7qDeuXMaHxNS7EuYHQ4caNvt2LEZDSoONtWeR+C6H6NTDTQpyBPBqkH4SrJWyXY2HD5+lxnH18wk1K+9t9OfvLE/RCEerB6ObsThCijRPpSfvrfw1FupFkM3RoJtvvB01Mtmf+0FZCoOsJy65aXcDbJRQLk9fR+5WnvpFowKregb3AHAKl3jRvM/cUlRlAx0Edgq0owT/dk7ca7o2np5bHWfG3YyxoZ7jxN+av+oF7t8t/KNOqOKw3/xCRwE8z2XGMbSEysY7JjUuW51zgRTBuRnHQabUNjC8TcbZn5nPOFb2xGnBUx5j5QnrkX7giZ2cdn7SBhMH/+M+c3cL8p411CRtbnbXs1qcYGmALiFVsttYVPVzeAJScpelB1t0Pb36Ehva3jcxN0vTK+UwYVeoHjKIxQ/zAHthOlNu/n2MYBCWYpruwo4FM0Psi5q2demRgQ1Fy192esxuYEzMwhxPnMZSw9X4UMBGAJZ9yc85cwV35I1kmguOxGsive5IdGtiJm5jzhk1MQm0K7Glwlca496Ljt42hwkackrVMtt64wbcHnixYb4awNdVBkzc1aqug2xVM7Pz7M4FNJzKYVWREvfosk4rrrqEydtKe/yFg5Wt3UhUWknd09mJy8JuJNiWAMSCy59mjz2ahJa4G/LCTnpim7WjS+HIc6xYiMpKlRvgVH8f+608+q2da7ICJLCbh95V/ztpP7s3bFHq2/g6c4R33YShmWuG59xSHeroBpCZlF1axwGKpZXBUdyCfkhfh6t5/RzKtifhZYNpclOkF8ICGs/oB42ZorMCchkn6ICMP48xcj/O/nLyTkSfJftggmcbYFu6yYMNV8FM34HMyjbwUXoxkuvd0ZLrAcEZoK4syLYdkCzLB1E83F2P04IgP6XPBIyH5tQkh8waZe1XfkLUDMRz3opv+8m+fo3zIQ1jJr8NY0I5ww5Xmr7y4GwCSFZo4mYZXguxn2Gh+pG2uRaaZD7RkOXNLYTYn00xNyNFL/xXzwGSMq+G9Wjm54GMn8iI+XM9quZ3w54IlzJEB/j4Y4Vrgx1rSGX8C+nJY78rzui/T6sKnkOlt95s35kPYw362STKNM/7CIk2HJ7gCHrdR1wZ04M//mHU8WIWc1QG3hg0RbXtyEZ3hv7FbNsDpmQyr/jW2EMEKdrry6Z1xkswnnY7co/9HES6BA438a7PJxm1PWc3I0+nc9XHy0ghunmG4N0UbJDOS2y10Pn7HpHDpQznRtcBYj0NIIMguv6lg69AFU8Z7No+2PbUA54ERk0G90ta8nQ0odT6mN9Ma553dtb5IDCNXr3oIkV3JNGdiDjrJGokCSUfvAJ5H4P1ewKc2y/e9H32ybWvW3VNguZZ5mRuAU6SYQydOenLLaDoqDG02MiVmK37RZPg0X7uOCO3DZJiBTP9pr2Q6LCxnUetSq+p3hG3fCV9hpzcg0/+STGOLGxlizUDTW9kFQDpdepuAsdsQfDMwToMWn/pd3s5Dt08BxkfR7Q/N9+1PdBAmopRadi5FpjdhIO/gUJJflmGoC1/FbBxY7/uS6fWWRqZr63ynd1asKlgLek+Bhs3obo3q3Mj8qpGDfMdvJZkGV5PQN5firNaC+6ljmYsFrHcxz+6BFTzrU2AxA86zRokyE+xVsNEoSCG6wTIKCwe80aoOuNjWhmOsQRNYpAnENSgIKZsJwz1byW0NZ7hJKVJAMvIYvCn03jVWv1YaufgOO+XbMLRzDmT7C76FRP+d9ybwgl4UNYoXXnFJt9p+d/d0UyvxCPWP/DK+1pdtfguFK96oULEcB8GBUM4AjoUYE8MBk7F2SfCj0GYOhtmoWk65XpsHg8qiHDiYmQU76F3N+zzMtZKHuMkaC1K1SoKhbdIzB1t8lZXmk2PDVg7hzEz4qL24E0QIDtDr8gpGGGwGxS+EeRQ6dTDqVZqikPyB2O5tOA7r9Fx45P4o8g/uzdweoi3B/I9RDQ3TRpmy4m3h4JUS3PreFkZ6dWHheY7tYgL6iFNtUS0VxHAov+iL0zSdocBFmuQk3Al+lI9zRHh20ABQT0RorWAU7oF/Cosvq5m/07L2bxa8eAawH0jdvFgOI1lL8Op7nNQGJQertJwOBW20qjm/NX/gsbZkE0AId6KncCWYmHw/id/LUbguFXGl7/2h83gik8x5tfXwwnTgTWoCjuO7vOWWX23BcmidOTi61xmMei3GIV9LMPrb4bexlplzmdVXzULxA6CGEwSjaMl7I3DiNVpTJxiFJ30EO7COVrQLfn12C7/lFbo6WEEznGEff4dlF/4Ui/hDyptLBh5KA5HN5ePiUvxb1zi5cvQDPOZXQsu3Mt/3ImR6lNULRpUjegoO2GcSMr0cPFkthQh2vS9cI9OTwDG2y5bBH83I/NiRrCJk5VueAsKW9Uyk/waNu4PyxvMCjYvr1rU8xXDqXvzd9Yz5kXuaw7I5+Hfal2xBcz/gADCcaIcr8SLO3AR4bqVkWvNzRH99lIh2zEYNqKgFdEwI/7jbo7g3GL2TrZvPsaCfg6fXUh5M0JFM67UY5qiIYluiykLOSkxOucwy4z9kC3ZAPAxEK5km6jceeVklfYLhcLJSLFOLRIaD12XiAfGFcK9nYoyRGZvd8oA1PfcRqqcArV6LYSyHJ/7Oa6VULN95EkS9wsI8S87iODKO6FqME9hKpkVPcDgCftsofSRZ1kdlwANj4AEWM1u9eEB1xc/4Ooxo04Dav1p+/vsQ5zk8p/1t5YV8nSacPc3Z8jwWmRzyGw6iPtqe2ZKzbQxbynlnkbXDzRHIrfTyApxqwePg4DKAPHPBo0YjFuPg53CuGd22CbRnFBEQnYVZu/S3fL5gyaoyme4UqDYPNRrAYdlWPdGqDryUKNbM3WWaV4YCxxbRkQ6I48MYV6jjacAvh8vZF2DdjI5UR2XaYGYoBtstu4jFMRt+jJwdQgFkaE+mY7BEG9GidNUXkJJfwTzfk61m9ndtHcfRbN+MvKgcyBLrlvHAsYq6NVfavS9c6nX4dDa2RN/n42yVntWEdtDAKhZWMcT6wtewWXfDp+PI2EamVUZ5EnxKuu9g1RfccmQ6Pfrr1mv6F4nGc3ap7HQs00XdMh1+XFQu09Grjk8PQQ1oVtJzZTAO74v+6VdlzXXzOL/z03SScQJ1XvIrfyd3YYikZfVZoiMzrrPq8e9i4m7U+4lxJxo1w0zCE3bUMZF7jT/isWZwKAGQoy+ESwY1XUFDMoV1GN35zKGqOpRnovxeJnWFOOk8dfA/rWb467AH0sAxlSN+Fxzq7ehso/Ik3ZsVoMWkdlXR89AquixOVn75lVZY9mVgxKBp8uFeJSqVoCaYf3PIH1mRcUA0mbEIoyAlYODgqAaHjLKU8Kjq4me6z7xtpzvVU9ehG/l8oxVe/C7RtctoIErEDQ3uDZBUzO7j1vtgyxx0udX0HsnkX1nbCI+SVc0LEu20amcXdqO6dF8f4Vd4ljJhwAhKsOs/c0nyz2PQ3GGcQ3gIMfYmFensDfu0Vc8+H8etL8OhKmsXNExvc36JJuTvukuV5BKdRW8pa8EoeH0kNsE8IX8nw6PPvC96WcaiZK27CSjj/2H2aUtM/JFVTznXqpMaYqWiMmgkL4JNtC5PglFzoRThKIdfEYMsXJ3b8gCrME+kATIWoo3e2IsUyzTOdM3YU51Mx6UILkHbmUyrw6Q8knm1QXjNQ/AE8y3ya2+m04TR3SeZFhRYT06RSB50DzJ9LOemSQPrfpSEI80FlTy0lZeYF3nkdJKuwlWOOT555rYUlv3SghXn8XBfZRpEwEzpQ/5gNQNmEYEu0zuAqultgkU4imBwgLg/js58K6ezYNSy9hbC/o3zLqDD+gvQsA8yLT4u1GJAj7D0QZdZda8RwKhJ+REe9betvIijdF/XmE8F4y5OE4wsBmlk7uwzn2bo7FkaJ+sME+xNQqYDOp99R33eRh3wLeYvYRylK8toLTxKn6Tbygv3tLpdSXpHefSaFiOwA5o1E3Va+9TpTGeSwtLLxcx6oTtJq2CdTP/EqqaewyIV5q66siI8qlrRM9Yr5UWrj6RncVJeyU0GG+NketN95s97U1GmxeN7mYoynZx9o9WMO4XWR3Y6Lk0tFxzCEwHAVkn2RbpdOt7pJDLruzRrPmTl6Oo/Y2PO6jGZrjn4PmT6tdjA1jItXElepJuFy/Kk+6K1YjvyM8SQsi+sX7c8wyotS6+w3Iqvlux0cuCQoReUF/DK/a5WIUCMn4acXeZXjWFYkPMImUAXN1qwS+HFv4UIfZdgKInxRUT3AYuh5tQwryBY+l2GtdQ7c7lc3r3/U8N8ig10aw5lPvHgEoyCJYZDBNTv8o/ulScRTRNVA6Isfu2DKONvolDGkkXstreJShS1YSuKEGDC/nNZ6dvHMUaMxxgOOQDleBSseiYUOTyqPXzJYyz4yrFOt1i45itI7UH82lcY6S1nHyRsP8KCfgdhwongycks0jqGsRx/8XfRXzDqqnsORhzAgEnA/urfW7j550jNpH2EkYITI+na3oqUHWgBQ8J5JnDmAUwwql7VrxTDVX7VI4dHrsKzWxUGLxrz63LLMGY7HgTGQTwt04j86l5CsSWGA+MD7Cl0MCuDJkU4BDYHK1fBoU85bPF33VcSfJHMoEQwQpoL4i/9EfSheydHc2+NhStdeJRMI4P9JNOjS/IS856ydSbTMR4FdwA/Jlg96O94Dhi/g4Gk215qpatwL/8QimBYIuwXyXSeybsxnYUfpfbkJebF+LmcP+EywOHwcVKD5d+k/eP0trLsZaJAyXSBCL9mojuZ7g2tI90ovMTyIv0T0ze+FsHfdd/xMJOJAT63Dple+3V4kcjQPsFIxQnGplruR6ZHQ+s5dMro8JTJtHAlWARXTPv4qvv6xL+dnCHTOSaO51f+zrzaK4Bx4j7D6DFHNVd/C8P3cyzTl6Fv4Q58SA8DqtN7gkPfW310s5iEa7UloMMUSnfntxK5upwtCR5FHvfBAXTlow+Q6bAB/dB7rgXIdE44pMJymVb9MX3ja8ynMZxObuBHX45l00orLCEanXPj1mQpa1D8QpevIIcpFGHTAhzquUWZLpMXHisJTzFs8VX34iTcR7oHJ1V6Z/szwHgBehM+6iGZDlq2AOqhrE4exM4ju2CM4WgPRuFWuFOKYEQvwh8hMl3YfB9b13wLOo/XU5fnVeRg0TIZIVY5hE2E3/odSMR6GLiGEjCKc3Vdk/bwx+UluxRx4zLzF19CROMRHIPBvLgvBk31Cg7GfppRJMz0TvQHxkx/bsflxqTpCoyaJ4OA1j1thUXnw/zbUSJE8fbJoKle8MXkPkORhOEwRiZmEVXHEGm1iAOvOzCi0HHl/S33M5/pq7QTeqjLsU8CKhiFRxTJ9htYzTKDXZSnO1w4PLrylacLSbSmJ65IVWE9UcrlRK+Ss3ixKOVdKKLTLEzwDnb8i+4/m9f1ldNG27vDi2on/90eLSy/zq28BoP2XXhxOjf3xegWodZ4s5bv75zH6qhZjNqOieDrLowqTp0Rwt6FZZdz/OJvgHkCN/cVRtEHmc6tRKY3c44r8lI1FBhFHyGmi7xYzBvJ9FIrLP4BjuXjwLivBg0QVLb2HWr6FzLNBgP95+DPINN7JS+0x8n0U+id87EwOKk6iHqf+VEyjUO+k00ibThHdcyGh9AVewVjUaY334uTSocpxEnvKZmWw1/3JzZinI68wOPgwtG6WzKteYp6jzlmbIppKz5DOQcAY0/J9EDmS93HHNVZVtV3YsSD3ZUX8osXA04P2Lr8Gtu++iLU0DTK2ld5oQhNWGKydlD/Amw5uyjTtL27MKplgrGFqP7Sy5hT8Tt4cXwPwIi8sI+fZZfiuG3FBh5QlGnsC4+6Z6dlA4GRfezybC7qNv5lw/GesdNsDNN0N2zENjGCcR9kWtHePPMUWxZfgEw3tZLpV5GDBV6liDRXoekhdkivZb7QNJwsKQCUgp45AipfW8XMg/gZyNAybL9+EUqOnnjd9cQqp/JcQx09kYCD6Ea4A4PO9hCJvsCoScdKznBwdeDtCUb2PYFohUUXYnzmoTBleHYNlbny9voPyNCu9XXX0dMazLYPwKhdvyWkgrEEWulLsSY95yOFyBJsMbq/+R7wiHOlTfOcAygl0va9vQBUdXiDmex9I6vpxoHHKSgEHEHnUMcwtldPOYwYb3auz6+72YJlX6C8cXzEK+TZ5yQ6Uz4z+YO6fxHJmsjy6YncKxqNEh7bwlisWxdg0TJxzlIx9cQDJhG7uWH77OjHjROMOPw4MJoc67GxZ4LFDSCSDDxzMChvOzDGKJJCp01aDVZY+nPmaPwEeVGUsgflRTLdiJPeWAcvTo1k2g1mdQFGgU7vMZLpF5EXeuJ1NwHjJNrXAwZN6BGuEqOILN7MyDc0wznw2A7Apa7KtHbvBc/+tsejDlPzQmhNp66HZTrcfi0iOpS9eKYSYIxlGmI6Erels1rAszKZBkJOk7irKNPgrydlWkDouJhtf2aVp2R6EqyII9gNmZZTECLThbU3Wah5ih507kGZlkEP2SepiUn5qZqJLFiaQPGSaTkIHeFROCziEtlyjr5WnuJcbVvxFcTnQB7CQz2SgEMynWUyuVY/ItPJXqPBQfdk2m3zwWr0/NKfWbjpv+FFRSl7UqaRj8a7ken6yL4oGLI3dnrnApyr79PZ/hsyPRE895xMe8i0v4ONo9m6JikbyLYnLnVZpqMNzPOsXG0hCBI2LwGP2PoymX6VOVhqPoyaxDlo/DdOzAssBhuOA4OiStHLlDFwSQwvhpZASKgjI6HlriETdP3aRy1YfCEK806INrOIkOKrPXIRjChkepRBw2aM70hHPC+FYJRgJI8EVsnBiAKWIEsJEVYubPwnPfFvEA1bQdtwItuME7v39vpPsV7nZF3PlC6coxqWUmvvEzkxzripcPLtBiNOBTQIOeqkwK7mwdIv4WTgtMTntkWaXC/vYwI/LvrUh2M6/ofVfsyJqBkJjBgNp/TBUwm+GI/A4WgtGNk6QwoExyVcSeTKmxiV55wXvbuvSWVI2WEgCvQoa+mZs5NZopqjVdLiRYacXYpxWA6jHAJozUaDQf1ihgUvt8BFrqSIlU+824MwJom4sHdMUHcvuGM1EsrOE71ifivHo6sWeZEDDf5Dzp8Ltj9LeJ7OSO1VReeqp5ScQ1DU3iRDro3I5Y4FTH5AXpxMw4viAZeER+GFa5lMO6WtTSZrH8EpuBCZuxsYiY70WIepWL3qdTKNk6XOHTLtsZ9RSaZ57Oi2m7xEMh06mWbl05KvMVS2FplWhwm56xE6q24BAPE0hFR3LaxVgM6SaWjv5AXZcHnItxuMURQtZN+0/No/0xn5MqwN3pmkW24sVMu+pVimoevW3xDh6QuMwiMy7eSlyPMOPodQmiSZlm5EpqGptrPwV16DTH+B+5O4L/5ADnsEj6pfQ+tskMpxU01bbqLYQZZh+4tkCliJNkYQRjjUnET3Wx0lzXEUjCyAydJ537Lk57Zj7fcATzItvu1pmcZRza50K67D5FDQBz91JtNFG+jwRbTcr3sG54rOiKLRblpHTzlXNNUl2pscjUw/jBODI+hketAueXF5hEfhhWsrmUb/sArPr33I8k6m70Wmpzn6R2X31F9FGnGytmPHGrehykfBZsi0bKDsNGA5urWRF6e7eRLmay234Q7LLv6aW1TTnky/Ch0sNVqGDU8xz+GcmzBO2qQHAdUZhJoULoXiaR28MyBkZyfiMLseQs8zf/mvLSCs7GmAVweY9rgiFnxKMI56vc2L2KD8V0SzBJf2MEbxqcftYOQ3CoKZVrRlO0RaSw/3KcsRsg1WfxvYpBxxeso84qjsff0rteC4BxjBAUtzg81E3PDk1bNxSkawlsGonoOMRMgGm34tQrPkYpb80PPxJlAGisWFvyP1w48eSCoLvDjFgIO5/U84MY9hG6AzQ1/MHnD1egyFOJgRCLfDND3HsGmF28fFX/JNFPl10BklJwHuMUUcN69Ypgev6dy4rdeguBbzXbyoPBJgvrOtgWB0vMnpqyEbYAYMT+cZtiwswpjV/xsYUSBqr/u4l1VAD6QijFK+Gi7cfBUT6TeDOxxAFii4JDrLeDjaM58ABSwHOqhn/6PV1+NEfwJlvgVexKD1WC+3bdOgp87zzG9Gpn/OTvTtyLRgLMn0TmDcgPPH3kwrf23his/CgrTVdUZ62ljEsEIfJ9MLOPNYMi1HVM6JeFGRC+kdZEGOqZNp9vpqWYdMP0n07zKGf88nL3qrxzsjgk90Fv+QJNP1DyLTt0JLOfM4IdKN4C6G0d0ryfRqhvkfAsaLWaTyM/JOoIyXQKbr/sgKLjrKnDjglk87eYHGsbzIyGm38xx6Hpn22ZspUKdz2w3Q+QDgLPJ25ObQ8J5IUZme5COsscYtV1vT9qXUBW2RF6QDHHL+JPZF5ws6GHCqtKltlqGs7WtvsS0Lv8x2Ao+TZzoAwRu8Q8aeAK5YRrHdSRxT5pZKpoN6nH7ZQHhAm3o6vVMm0zozVPISFmXal0y3bAOPEylzf8mLZJrFROgSH5kOtDuns9M4sdLr5XpHKOJ8Qa3+lUznV1xlhRWfZ2sK2U2iX/sNRvCFkxU2s48a2x8F2hhceJOdlm0us4HCrc5fVTQ/j0xnl15qhTUXAht6qwOZfvWsIqQZuyeQL8b116JI6pjg+Wbm6xxJ2HQCPTc8fFLIBnxh80rmoTyBkf47CJPTMs49i5i/+HW/XWAkCVjhBXfxBr6bMwsPhs/G45UjIHjwIbvThk3L6L0/TA/8Qe7j+btDnWODu9+AKxasXmABHiZ6IHAHfpDx/QOjHjC9WLcRJwY2aPr/3Z3PbwxhGMdnu5Y0RLbO6qD0IBIuXHDiIg5cuPrb3CWOXNy49CScJCqqcSCRllJ0dzo+n2fm3Q7axGVmtn2Td9vatfOd53m+z/O8z/tjSB7WnjJF+xKMBNsZgvbEgVRf1cgPHQrAHPGPmFo5QsI1vMPlz/E7FSOdIU7OrbHb37gHy8k4k3gmVizETk6uEXDVl1YYmb7IRsvY4PmsN3eDav4iI3RGlwYsDj8qfnF+1MYrqgwPStENuId03kWT8OK75QvdB4WPP7AI9SpriuizC2Ak8OP0fCxKwenlhQcOktRGbBgQzCJAKMemmwYop9/T1+H0Tfhymfy1zmkGI5vv4PQSVejHmAal/f48/08v3RZGrjWC06p9eJdpkIvI8RTJgZzmAb9M+xY/lqmyPyPZoXOYapec7s3drzjNYcNRmWJqG04XcLpw2/t37mWwAMajlQyVZZOt4os7HkevoyKYDW+DkTWh8nvCaQ4C5gDQbO0RidbHTjgdVdytt9nhYxey2RPXWZ+1yBMSqASTsG7nm+xO5pBqOL3JOiaXvfXltFW3GHQ2KUO/u8bpEZw+fg1OX2FtFpweEPgpOJScXsHvvEDXD8NkI0FtldNAzVegxldmiW8Rpy/BFzlNPKZ5EHbBbE3xZYn+BCE6EDnJO23FQP0ONUk4rWXOzN2jtiGn52uc/kwMZN32OscRbTwHOz4nNi7sjXGfJ1hIIsSBcMyIUV6WL5c+1nu2aX/KztF3VIN8QyfctAPhEpOGyiQcuw08jbfIV3cwhjb5oLdgFSOegUiyE4bVBUaumX+i49hqYlK81MnpZ8Ho6M5RTxIyv7bSUGbIEfnkOJMxFQIhVGIqMULYQxh++lwnGAeIhmeN5W+olG7tYBS+9miVpU/3j5Bjy3qWFMrHZHBM0oyeQ47qUFNV18rQJN8qV6x7aBujhKAzpU/Z+Q+MIcOwx9PIEX2HodaM1ftovNU4HQkrm29qECYYp4bTJCfuHv4boxW3/hl0TRWpa06PVyt9AwX9RYEq+MJg2WDbOad/UuVnRiK2EIIRkOpZM+3B6ZngNHbRCV/+g9MWFkxcOuU0OOX0mGRK3223VXLM+gtgdNZGQ60Za3yo6Zcap+txWhfIpZOuYxOS5zyGnsW4dzsACVb95rR0emQraMwW86cE5InCyn/u5lUFiovgFhj52xaWhqJCYcniyrfafxVjJcN/MCY5TgtG5BhYKyklHbfu4HbTUvIYYlTnyDXpOTKatp3HXhiTLdb5IjZ1rZ51LV223TgtLvkiTnuXbT9yWl0bNZTjNHE62aL+R98oxmSL/uzaFktOc1znDqfNEJCjJyGVWKcBY5LjtHNaOapnVXswOf0bL1e7AC9Dw7sAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "e0025777", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "### Define 1-D line\n", + "\n", + "We need to set up a line of qubits through the machine that we intend to use such that we avoid broken qubits or areas with high readout errors. To do this we examine the calibration data (which can be found online or via the command `plot_error_map(backend)`). For example, suppose that we use `ibm_sherbrooke` and that we need to avoid say qubits 20 and 71 as well as qubits 56 and 73. One such qubit line would be:\n", + "\n", + "![image.png](attachment:b9ee6c9b-35d7-4e8c-a647-645f67052425.png)\n" + ] + }, + { + "cell_type": "markdown", + "id": "b00af850-c30b-44c8-b40c-e0c6642ceb24", + "metadata": {}, + "source": [ + "We descirbe the line as a simple list of integer indices and add that line to the `qubit_lines` dictionary." + ] + }, + { + "cell_type": "markdown", + "id": "13b544fb-5b38-427c-8b37-63f07cb577db", + "metadata": {}, + "source": [ + "We can visualise the coupling map and qubit indices as follows: The following example is for `ibm_sherbrooke`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fb35aa4f-3199-4bff-ba63-5781b08cf818", + "metadata": { + "hidden": true, + "scrolled": true + }, + "outputs": [], + "source": [ + "# Current Qubit 1D lines with key the name of the machine. e.g. ibm_sherbrooke\n", + "qubit_lines = {\"ibm_sherbrooke\":[19,18,\n", + " 14,\n", + " 0,1,2,3,4,5,6,7,8,9,10,11,12,\n", + " 17,\n", + " 30,29,28,27,26,25,24,\n", + " 34,\n", + " 43,44,45,46,47,48,49,\n", + " 55,\n", + " 68,69,70,\n", + " 74,\n", + " 89,88,87,86,85,84,83,82,80,79,78,77,76,75,\n", + " 90,\n", + " 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,\n", + " 112,\n", + " 126,125,124,123,122,121,120,119,118,117,116,115,114,113]}" + ] + }, + { + "cell_type": "markdown", + "id": "3b446989-863a-4078-86a7-9e12ad40a773", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "### Utility Methods\n", + "\n", + "This section contains methods that make building, executing and analyzing easier across the three different experiments. These methods are:\n", + "\n", + "- `coupling_map_from_qubit_line` : Modify the full coupling map to force linearity in the qubit layout\n", + "- `submit_circuits` : Submit circuits in appropriate batches\n", + "- `process_fidelities` : Calculate the estimated process fidelities from experiment counts data\n", + "- `prep_P_ij_conj` : Prepare circuits with the possible complex conjugates of the eigenstates of given Pauli operators for Monte Carlo State Certification\n", + "- `meas_P_kl` : Prepare circuits so that the final state can be measured in different Pauli bases with a Z measurement for Monte Carlo State Certification\n", + "- `resample_single_dictionary`: Resample a single dictionary based on its weights\n", + "- `resample_dict_list` : Resample the entire list of dictionaries n_samples times\n", + "- `check_jobs`: Check if all jobs have been completed\n", + "- `cal_average_fidelities`: Calculate the average gate fidelities\n", + "- `save_date`: Save the data to files for an experiment\n", + "\n", + "The methods are included in a single cell for faster setup and for those that are not yet interested in the innner details of how the experiments are run. The cell below must be run to do any of the experiments." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab2cd963-3150-41a0-b9d4-9a37ca82c85a", + "metadata": {}, + "outputs": [], + "source": [ + "# Submit jobs\n", + "# Jobs are grouped into blocks of 4 qubit number values\n", + "\n", + "def coupling_map_from_qubit_line(coupling_map:List[List[int]], \n", + " qubit_line: List[List[int]]) -> List[List[int]]:\n", + " new_coupling_map = []\n", + " line_edge_list = []\n", + " for i in range(len(qubit_line)-1):\n", + " line_edge_list.append([qubit_line[i],qubit_line[i+1]])\n", + "\n", + " for edge in coupling_map:\n", + " u,v = edge\n", + " edge_rev = [v,u]\n", + " if (edge in line_edge_list) or (edge_rev in line_edge_list):\n", + " new_coupling_map.append(edge)\n", + " return new_coupling_map\n", + "\n", + "def submit_circuits(min_qubits:int, \n", + " max_qubits:int,\n", + " num_circuits_per_job:int,\n", + " qubit_line:List[int], \n", + " coupling_map:Union[CouplingMap, List],\n", + " samples:List[int],\n", + " optimization_level: int,\n", + " backend: Backend,\n", + " shots: int,\n", + " build_circuits: Callable, \n", + " transpile_dynamic: Optional[bool] = True,\n", + " use_dynamic_decoupling: Optional[bool]=True,\n", + " dd_sequence:Optional[List[Gate]]=[XGate(), XGate()],\n", + " durations:Optional[InstructionDurations]=None\n", + " ) -> List[str]:\n", + " # Calculated constants and storage variables\n", + " line_length = len(qubit_line)\n", + " num_samples = len(samples)\n", + " num_circuits = (max_qubits - min_qubits + 1)*4*num_samples\n", + " nr_jobs = int(num_circuits/num_circuits_per_job)\n", + " \n", + " # Run some parameter checks\n", + " # Min number of qubits between control and target must be a non-negative integer\n", + " assert min_qubits >= 0, \"Error: min_qubits must be >= 0\"\n", + " \n", + " # Max number of qubits between control and target musts be <= line_length - 2\n", + " assert (max_qubits + 2) <= line_length, \"Error: max_qubits must be <= len(qubit_line) - 2\"\n", + " \n", + " # (max_qubits - min_qubits) must equal to 3(mod 4)\n", + " rem = (max_qubits - min_qubits)%4\n", + " assert rem == 3, \"Fail: (max_qubits - min_qubits) must equal to 3(mod 4)\"\n", + " \n", + " # First transpile all the circuits\n", + " print(f\"Transpiling circuits...\")\n", + " \n", + " all_transpiled_circs = []\n", + "\n", + " for n in range(min_qubits, max_qubits + 1):\n", + " layout = qubit_line[:n+2]\n", + " circuits = build_circuits(n, samples)\n", + " \n", + " clear_output(wait=True)\n", + " percentage_completed = (n - min_qubits + 1)/(max_qubits - min_qubits + 1)\n", + " \n", + " print(f\"[{percentage_completed:.0%} completed] Transpiling circuits \" +\n", + " f\"with {n} qubits between CNOT\")\n", + " \n", + " # Generate the main Qiskit transpile passes.\n", + " pm = generate_preset_pass_manager(coupling_map = coupling_map, \n", + " initial_layout = layout, \n", + " optimization_level = optimization_level,\n", + " backend = backend)\n", + " \n", + " if use_dynamic_decoupling is True:\n", + " # Configure the as-late-as-possible scheduling pass and DD insertion pass\n", + " pm.scheduling = PassManager(\n", + " [\n", + " ALAPScheduleAnalysis(durations),\n", + " PadDynamicalDecoupling(durations, dd_sequence),\n", + " ]\n", + " )\n", + " \n", + " transpiled_circuits = pm.run(circuits)\n", + " all_transpiled_circs.extend(transpiled_circuits)\n", + " \n", + " \n", + " clear_output(wait=True)\n", + " print(f\"Sumbitting jobs ...\")\n", + "\n", + " job_ids = []\n", + " \n", + " for job_num in range(nr_jobs):\n", + " transpiled_circs = all_transpiled_circs[num_circuits_per_job*job_num: num_circuits_per_job*(job_num + 1)]\n", + " \n", + " # Submit circuits\n", + " print(f\"Submitting circuits:\")\n", + " \n", + " percentage_completed = job_num/nr_jobs \n", + " print(f\"[{percentage_completed:.0%} completed]\")\n", + " \n", + " job = backend.run(transpiled_circs, dynamic=transpile_dynamic, shots=shots)\n", + " job_ids.append(job.job_id())\n", + " print(f\"Job id for circuits \" \\\n", + " + f\"[{num_circuits_per_job*nr_jobs}, {num_circuits_per_job*(nr_jobs + 1) -1 }] : {job.job_id()}\")\n", + " \n", + " clear_output(wait=True)\n", + " \n", + " clear_output(wait=True)\n", + " print(\"All jobs submitted.\\n\")\n", + " \n", + " #Display qubit ranges and job ids\n", + " for job_num in range(nr_jobs):\n", + " print(f\"[{num_circuits_per_job*job_num}, {num_circuits_per_job*(job_num + 1)}]: \" \\\n", + " f\"Id = {job_ids[job_num]}\")\n", + "\n", + " return job_ids\n", + "\n", + "def process_fidelities(counts : Union[dict[str,int], List[dict[str,int]]],\n", + " samples: List[int],\n", + " shots: int,\n", + " post_process: Optional[Callable]=None) -> List[float]:\n", + " \"\"\"Calculate the estimated process fidelities from experiment counts data\n", + "\n", + " Args:\n", + " counts (dict[str:int] or List[dict[str:int]]): counts data from an experiment\n", + " samples (List[int]): which of the 16 Paulis with non-zero expectation value to prepare and measure\n", + " shots (int): Number of shots used in experiment\n", + " post_process (Callable): Post process the counts with post_proc if given. Default = None\n", + " \"\"\"\n", + " exp_all = []\n", + " # 16 Paulis with non-zero expectation value to prepare and measure\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " sign_rho_lkji = [1,1,1,1,1,1,1,1,\n", + " 1,1,1,1,1,-1,-1,1]\n", + " \n", + " PauliI = Pauli('I')\n", + " \n", + " for i in range(len(samples)):\n", + " P_i = P_lkji[samples[i]][0]\n", + " P_j = P_lkji[samples[i]][1]\n", + " P_k = P_lkji[samples[i]][2]\n", + " P_l = P_lkji[samples[i]][3]\n", + " \n", + " exp = 0\n", + " # initial state p with eig value p_eig prepared\n", + " for p in range(2):\n", + " if P_i == PauliI:\n", + " p_eig = 1\n", + " else:\n", + " p_eig = (-1)**p\n", + " \n", + " # initial state q with eig value q_eig prepared\n", + " for q in range(2):\n", + " if P_j == PauliI:\n", + " q_eig = 1\n", + " else:\n", + " q_eig = (-1)**q\n", + " \n", + " # post process count if provided\n", + " if post_process is not None:\n", + " counts_post = post_process(counts[i*4+2*p+q], i, p, q, samples)\n", + " else:\n", + " counts_post = counts[i*4+2*p+q]\n", + "\n", + " # measurement projecting to states r with eig value r_eig\n", + " for r in range(2):\n", + " if P_k == PauliI:\n", + " r_eig = 1\n", + " else:\n", + " r_eig = (-1)**r\n", + " for s in range(2):\n", + " if P_l == PauliI:\n", + " s_eig = 1\n", + " else:\n", + " s_eig = (-1)**s \n", + " \n", + " strr = str(r)\n", + " strs = str(s)\n", + " try:\n", + " exp += p_eig*q_eig*s_eig*r_eig*counts_post[strs+strr]/shots/4/sign_rho_lkji[samples[i]]\n", + " except:\n", + " pass\n", + " \n", + " \n", + " exp_all.append(exp)\n", + " return exp_all\n", + " \n", + "\"\"\"\n", + "Preparation for Monte Carlo state certification\n", + "\n", + "It is necessary to prepare the complex conjugate of random product of eigenstates of local Pauli \n", + "operators - corresponding to the Paulis $P_i^*$ and $P_j^*$, and then to measure the the final \n", + "state in different Pauli bases - corresponding to the Pauli operators $P_k$ and $P_l$. We do \n", + "this with the following two methods.\n", + "\n", + "The `prep_P_ij_conj` method prepares a list of circuits so that the control and target qubits \n", + "are in the eigenstates of $P_i^*$ and $P_j^*$ respectively. The `meas_P_kl` method prepares a \n", + "list of circuits so that the control and target qubits are measured in the $P_k$ and $P_l$ \n", + "bases respectively.\n", + "\"\"\"\n", + "\n", + "def prep_P_ij_conj(circuits: List[QuantumCircuit], P_prep: PauliList) -> List[QuantumCircuit]:\n", + " \"\"\"Prepare circuits with the possible complex conjugates of the eigenstates of given Pauli operators\n", + "\n", + " The first and last qubits are prepared in one of the four possible eigenstates of P_i^* and P_j^*\n", + " respectively. The resulting collection of circuits covers all four possibilities. \n", + "\n", + " Assumes that circuits have qubits 0, ... ,n+1 where the long range NOT is between qubit 0 (control) to n+1 (target)\n", + " \n", + " Arg:\n", + " circuits (List[QuantumCircuit]: List of 4 Quantum Circuits with at least two data qubits\n", + " P_prep (PauliList): A pair of single qubit Paulis with the first Pauli refered to as P_i and the second as P_j\n", + "\n", + " Returns:\n", + " List[QuantumCircuits]\n", + " \"\"\"\n", + " \n", + " pauliX = Pauli('X')\n", + " pauliY = Pauli('Y')\n", + " for p in range(2):\n", + " for q in range(2):\n", + " qc = circuits[2*p+q]\n", + " if p == 1:\n", + " qc.x(0)\n", + " if q == 1:\n", + " qc.x(-1)\n", + " for i in range(2):\n", + " if P_prep[i] == pauliX:\n", + " qc.h(-i)\n", + " if P_prep[i] == pauliY:\n", + " qc.h(-i) # Change basis to initialise in Y^* basis\n", + " qc.s(-i) # i.e. Apply SH = (HS^\\dagger)^*\n", + " circuits[2*p+q] = qc\n", + " return circuits\n", + "\n", + "def meas_P_kl(circuits: List[QuantumCircuit], P_meas: PauliList) -> List[QuantumCircuit]:\n", + " \"\"\"Prepare circuits so that the final state can be measured in different Pauli bases with a Z measurement\n", + "\n", + " The first and last qubits are the qubits that the given operator P_meas will operate\n", + "\n", + " Arg:\n", + " circuits (List[QuantumCircuit]: List of 4 Quantum Circuits with at least two data qubits\n", + " P_meas (PauliList): A pair of single qubit Paulis with the first Pauli refered to as P_k and the second as P_l\n", + " \"\"\"\n", + " pauliX = Pauli('X')\n", + " pauliY = Pauli('Y')\n", + " for p in range(2):\n", + " for q in range(2):\n", + " qc = circuits[2*p+q]\n", + " for i in range(2):\n", + " if P_meas[i] == pauliX:\n", + " qc.h(-i) # Change of basis to measure X by measuring in Z basis: i.e., apply H\n", + " if P_meas[i] == pauliY:\n", + " qc.sdg(-i) # Change of basis to measure Y by measureing in Z basis \n", + " qc.h(-i) # i.e. apply HS^dagger\n", + " qc.measure(0,0)\n", + " qc.measure(-1,1)\n", + " circuits[2*p+q] = qc\n", + " return circuits\n", + "\n", + "\"\"\"\n", + "Set up Bootstraping for Raw Data. \n", + "\n", + "The following two methods are use througout to bookstrap the raw data from the experiments\n", + "\"\"\"\n", + "\n", + "def resample_single_dictionary(d):\n", + " \"\"\"Resample a single dictionary based on its weights.\"\"\"\n", + " keys = list(d.keys())\n", + " weights = list(d.values())\n", + " total = sum(weights)\n", + "\n", + " resampled_keys = random.choices(keys, weights=weights, k=total)\n", + " \n", + " # Count the occurrences of each key in the resampled keys\n", + " resampled_counts = {}\n", + " for key in resampled_keys:\n", + " resampled_counts[key] = resampled_counts.get(key, 0) + 1\n", + "\n", + " return resampled_counts\n", + "\n", + "def resample_dict_list(dict_list, n_samples):\n", + " \"\"\"Resample the entire list of dictionaries n_samples times.\"\"\"\n", + " resampled_lists = []\n", + "\n", + " for _ in range(n_samples):\n", + " new_version = [resample_single_dictionary(d) for d in dict_list]\n", + " resampled_lists.append(new_version)\n", + "\n", + " return resampled_lists\n", + "\n", + "def check_jobs(job_ids: List[str], display: Optional[bool]=True)->bool:\n", + " nr_jobs = len(job_ids)\n", + " pass_flag = True\n", + " for j in range(nr_jobs):\n", + " job = provider.backend.retrieve_job(job_ids[j])\n", + " status = job.status()\n", + " if str(status) == 'JobStatus.DONE':\n", + " print(f\"Job {j}: Id = {job_ids[j]}: Status: Done\")\n", + " else:\n", + " print(f\"Job {j}: Id = {job_ids[j]}: Status: {status}\")\n", + " pass_flag = False\n", + " if pass_flag is True:\n", + " if display is True:\n", + " print(\"All jobs have completed. Results can now be analyzed.\")\n", + " return True\n", + " else:\n", + " if display is True:\n", + " print(\"Some jobs have not completed.\")\n", + " return False\n", + "\n", + "def cal_average_fidelities(job_ids: List[str],\n", + " min_qubits: int,\n", + " max_qubits: int,\n", + " samples:List[int],\n", + " shots: int,\n", + " num_circuits_per_job:int,\n", + " post_process: Optional[Callable]=None,\n", + " all_counts : Optional[List[Dict]]=None,\n", + " display: Optional[bool]=True,\n", + " debug: Optional[bool]=False,\n", + " n_bootstrap_sample: Optional[int]=4\n", + " ) -> (List[float], List[float]):\n", + " proc_fidelities = []\n", + " proc_std = []\n", + " nr_jobs = len(job_ids)\n", + " num_samples = len(samples)\n", + " empty_counts = {'00':0, '01':0, '10':0, '11':0}\n", + " if all_counts is None:\n", + " all_counts = []\n", + "\n", + " if debug is True:\n", + " print(f'{nr_jobs} to process')\n", + " if len(all_counts) == 0:\n", + " for j in range(nr_jobs):\n", + " job = provider.backend.retrieve_job(job_ids[j])\n", + " \n", + " if str(job.status()) == 'JobStatus.DONE':\n", + " if display is True:\n", + " print(f\"Retreiving job data: {job_ids[j]}: {j} of {nr_jobs-1}\")\n", + " result = job.result()\n", + " counts = result.get_counts()\n", + " all_counts += counts\n", + " else:\n", + " print(f\"Warning: Job id : {job_ids[j]} returned status of {job.status()} : Adding empty dictionaries\")\n", + " all_counts += [empty_counts]*num_circuits_per_job\n", + " if debug is False: \n", + " clear_output(wait=True)\n", + " else:\n", + " print(f'Using provided all_counts data instead of loading from server')\n", + " print(all_counts)\n", + " \n", + " for n in range(min_qubits, max_qubits + 1):\n", + " if display is True:\n", + " print(f\"Resampling counts for n = {n}: {max_qubits + 1 - n} remaining\")\n", + " counts = all_counts[(n - min_qubits)*4*num_samples: (n - min_qubits + 1)*4*num_samples]\n", + " proc_fid_temp = []\n", + " \n", + " for _ in range(n_bootstrap_sample):\n", + " resample_counts = resample_dict_list(counts, 1)[0]\n", + " sample_fidelities = process_fidelities(resample_counts, samples, shots, post_process)\n", + " proc_fid_temp.append(np.mean(sample_fidelities))\n", + " \n", + " mean, std = np.mean(np.array(proc_fid_temp)), np.std(np.array(proc_fid_temp)) \n", + " proc_fidelities.append(mean)\n", + " proc_std.append(std)\n", + " if debug is False:\n", + " clear_output(wait=True)\n", + "\n", + " if display is True:\n", + " print(f\"Process fidelities:\")\n", + " print([\"{0:0.3f}\".format(i) for i in proc_fidelities])\n", + " print(f\"Process fidelities std:\")\n", + " print([\"{0:0.3f}\".format(i) for i in proc_std])\n", + "\n", + " # Calculate average gate fidelity from the process fidelity\n", + " \n", + " avg_gate_fidelities = []\n", + " \n", + " for i in range(len(proc_fidelities)):\n", + " # Use result of Horodecki et al. to calculate the average gate fidelity\n", + " avg_gate_fidelity = (proc_fidelities[i]*4+1)/5\n", + " avg_gate_fidelities.append(avg_gate_fidelity)\n", + "\n", + " if display is True:\n", + " print(\"Average Gate Fidelites\")\n", + " print([\"{0:0.3f}\".format(i) for i in avg_gate_fidelities])\n", + " \n", + " # Calculate average gate fidelity std from the process fidelity std\n", + " \n", + " avg_gate_stds = []\n", + " \n", + " for i in range(len(proc_std)):\n", + " # We scale the std as in the average gate fidelity\n", + " avg_gate_std = (proc_std[i]*4)/5\n", + " avg_gate_stds.append(avg_gate_std)\n", + "\n", + " if display is True:\n", + " print(\"Average Gate Std\")\n", + " print([\"{0:0.3f}\".format(i) for i in avg_gate_stds])\n", + "\n", + " return (avg_gate_fidelities, avg_gate_stds, all_counts)\n", + "\n", + "def save_data(name:str,\n", + " fidelities: List[float],\n", + " fidelities_std: List[float],\n", + " min_qubits: int,\n", + " max_qubits: int,\n", + " optimization_level: int,\n", + " use_dynamic_decoupling: bool,\n", + " backend: Backend,\n", + " spacer: Optional[str]='_',\n", + " base_name: Optional[str]='cnot') -> (str, str):\n", + " n_range = str(min_qubits) + spacer + str(max_qubits)\n", + " pre_text = 'oplevel' + spacer + str(optimization_level)\n", + " if use_dynamic_decoupling is True:\n", + " pre_text = pre_text + spacer + 'dd'\n", + " machine = backend.configuration().backend_name\n", + " base = base_name + spacer + name + spacer + 'avg' + spacer + 'gate' + spacer + 'fidelities'\n", + " file_name = pre_text + spacer + n_range + spacer + machine + spacer + base + '.pkl'\n", + " file_name_std = pre_text + spacer + n_range + spacer + machine + spacer + base + spacer + 'std.pkl'\n", + " \n", + " try:\n", + " with open(file_name, 'wb') as file: \n", + " pickle.dump(fidelities, file)\n", + " print(f\"Success: fidelities saved to {file_name}\")\n", + " except pickle.PicklingError as e:\n", + " print(\"Error: Data fidelities failed to be saved to a file\")\n", + " \n", + " try:\n", + " with open(file_name_std, 'wb') as file: \n", + " pickle.dump(fidelities_std, file)\n", + " print(f\"Success: filedlities_std saved to {file_name_std}\")\n", + " except pickle.PicklingError as e:\n", + " print(\"Error: Data std's failed to be saved to a file\")\n", + "\n", + " return file_name, file_name_std\n" + ] + }, + { + "cell_type": "markdown", + "id": "11e35681-d7d0-4d5d-8764-5517181d91d0", + "metadata": {}, + "source": [ + "### Set Primary Parameters\n", + "\n", + "In this section we set the main parameters for the three experiments" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4fc13eba-bc50-4607-88f9-8ada04b69794", + "metadata": {}, + "outputs": [], + "source": [ + "# Set which quantum computer to use\n", + "MACHINE_NAME = \"ibm_sherbrooke\"\n", + "backend = provider.get_backend(MACHINE_NAME)\n", + "\n", + "# Set qubit line and coupling map\n", + "QUBIT_LINE = qubit_lines[MACHINE_NAME]\n", + "COUPLING_MAP_FULL = [list(edge) for edge in list(QiskitRuntimeService().backend(MACHINE_NAME).coupling_map)]\n", + "COUPLING_MAP_1D = coupling_map_from_qubit_line(COUPLING_MAP_FULL, QUBIT_LINE)\n", + "MAX_POSSIBLE_QUBITS_BTW_CNOT = len(QUBIT_LINE) - 2\n", + "\n", + "# Use this duration class to get appropriate durations for dynamic\n", + "# circuit backend scheduling\n", + "DURATIONS = DynamicCircuitInstructionDurations.from_backend(backend)\n", + "\n", + "print(f\"Machine is set to: {MACHINE_NAME}\")\n", + "print(f\"Maximum number of qubits between CNOT for {MACHINE_NAME} is {MAX_POSSIBLE_QUBITS_BTW_CNOT} with the given qubit line.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c7718980-3efe-4810-afb0-29f8d252a2ed", + "metadata": {}, + "outputs": [], + "source": [ + "# Set the global scope of the experiment. These varibales can be used in each experiment or can set individually in each\n", + "# experiment that will override these globals\n", + "\n", + "SAMPLES = list(range(16)) # Set which Pauli's to sample (default it all 16 combinations that have a non-zero\n", + " # expectation)\n", + "\n", + "OPTIMIZATION_LEVEL = 1 # Level of optimations the transpiler uses: There are 4 optimization levels \n", + " # ranging from 0 to 3, \n", + " # where higher optimization levels take more time and computational effort but\n", + " # may yield a more \n", + " # optimal circuit. \n", + " \n", + " # level 0 does no explicit optimization, it will just try to make a circuit \n", + " # runnable by transforming it to match a topology and basis gate set, \n", + " # if necessary.\n", + "\n", + " # Level 1, 2 and 3 do light, medium and heavy optimization, using a combination\n", + " # of passes, and by configuring the passes to search for better solutions. \n", + "\n", + "USE_DYNAMIC_DECOUPLING = True # Set to use or not use dynamical decoupling\n", + "\n", + "DD_SEQUENCE = [XGate(), XGate()] # Default dynamic decoupling sequence if dynamic decoupling is used\n", + "\n", + "SHOTS = 1000 # Set the number of repetitions of each circuit, for sampling. \n", + "\n", + " # The number of qubits between the control and target are grouped into blocks\n", + " # of length 4. The provided min and max number of qunbits will be modified to \n", + " # align with these block sizes.\n", + "\n", + "MIN_NUMBER_QUBITS = 0 # The min number of qubits between the control and target qubits on line\n", + "MAX_NUMBER_QUBITS = 11 # The max number of qubits between the control and target qubits on line\n", + " # The max for MIN_NUMBER_QUBITS is len(QUBIT_LINE) - 2\n", + " # max_number_qubits must satisfy MAX_NUMBER_QUBITS - MIN_NUMBER_QUBITS = 3 (mod 4) \n", + " # at this point.\n", + " # This is just to make things easier to break jobs up. Not a real limitation.\n", + "\n", + "assert (MAX_NUMBER_QUBITS - MIN_NUMBER_QUBITS)%4 == 3, \"MAX_NUMBER_QUBITS must satisfy MAX_NUMBER_QUBITS - MIN_NUMBER_QUBITS = 3 (mod 4)\"\n", + "assert (MAX_NUMBER_QUBITS + 2) <= len(QUBIT_LINE), \"MAX_NUMBER_QUBITS must satisfy MAX_NUMBER_QUBITS + 2 <= len(QUBIT_LINE)\"" + ] + }, + { + "cell_type": "markdown", + "id": "cbe0103b-5a58-4df3-b851-cc0bfe7319c0", + "metadata": {}, + "source": [ + "## Experiment One: Long Range Unitary CNOT via Swaps" + ] + }, + { + "attachments": { + "59c82c7c-996f-4f54-8b6a-c730b233c35b.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAD1CAYAAAD+mCs2AAABY2lDQ1BJQ0MgUHJvZmlsZQAAKJFtkD9Iw1AQxr9qoWJLVRAF6ZDJxaoh6SA4SK2iQodYLaiDkKY1FdL0kUalgyBOLjq5dXFUB0cnERzcxUInQcFBd7EO/on3GrWteo/j+/Fxd+84oCWgMmZ4AeRM20pMjQsLi0uC7wF+hCj7EVS1AosqSpxK8K3NUa3Aw7U8yGeNlsSRzfLY9s30devezvHB3/qmaE9nChrpG6WkMcsGPCKxsmEzzlvE3RYtRbzPWXf5kHPK5bNazXwiRnxF3Kll1TTxHXE41eDrDZwz1rSvHfj2gYyZnCPtoQxhApOI0xOQRAQyJIiYpRv93xOp9cSQB0MRFlahIwubuqPkMBjIEM/AhIYhhIn5PAkyv/XvG9a95XVguEJfleqe8QGcPwMd93VvIAV00Q4XJ0y11J/Leqrewoosudx3CfiLjvPYCwSfgPdTx3kpO87rEeBrA3ZvPwEUcmRbdJlh8QAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAAC4aADAAQAAAABAAAA9QAAAACr4748AABAAElEQVR4Aey9B5xWxb3//33aVpal914tCIiKAhawl1hi7P6SaBJjijHlxiQ3ef1vctNuvDfG9KImMbYYW+wNFSsIggIiRVF6r8uy7dnn2ef/ec/ZWQ6PSxXUXc7snuecM2fqd2a+85nvfGcmlpOxyEQUiCgQUSCiQESBiAIRBSIKRBSIKPChUSD+ocUURRRRIKJARIGIAhEFIgpEFIgoEFEgooCjQATCW1hFaGhoMCYv/AQG71yYsB3PYbf+W/497M8FEv1EFIgoEFHgQ6RAmCfxzJXP05pz492G7z7Z3r1/D9939i3sblfPPl7c+ee9DTs/v4QZ5t8+Du6RiSgQUaD1UCAC4S2oLD2Dj8ViLtUw6Xg87i7/jTt2YZOVO+/H2/Pu/eR/826ie0SBiAIRBfY3BTz/4e6vfB6GvedX/k66vHv/7NOKPSbs1j/7b97t3t59OPBh/7w3YZGu/PxmstmmvO3rdO9NGiM/EQUiCuwfCmyP1vZPHFGo+5gCMP3a2lr7zW9+Y2eeeabdfvvtlslkmpi2jw7GXl9fb7f+/e/O3e9//3urrqoyGDzGM3fvPrpHFIgoEFHgo6AAvIjLS389jyItnk95oOsBK++4r6mpsXQ67fga/rz7/Hzgfkff8t3uybtPDzx4bwzp8vn1eQqHQ/j+e9g+eo4oEFGg5VMgAuEttAwfeOABu/76623jxo02YsQIS6VSTZ2Y78jIWjKZtCOOOMK5++lPf2pPPPmkJRMJ5xaGH5mIAhEFIgp8lBQAYM6fP99mzZpldXV1TpiAsGDKlCn23nvvNfE10hgG0vC5NWvW2C9+8Qv729/+ZlsrKy0hwEoYgG2ufB4X9k94HpR79/6db5j898D2/fak/bbbbrMtW7Z4J++77ywO0u1NlfL+M/HqBQsWeCvHs5teooeIAhEFWg0FtrX8VpOl1p0RpCJr1661v/71r076c91119khhx7apEPJdy46Gzopng8//HD74he/6OzuvPNOW79+vXvO76BaN+Wi3EUUiCjwcaQAgPv//u//7D/+4z/s3XffdUmcM2eOfe1rX7Pf/e53VlNdbQ2NUnIvEQbQwr8WLlxof/nLX+zmm2+2iooKB9yvueYae+SRR1w4XiCBPy7eUc/DeIDt3eSD5Px35ynkj/B8GEjjV61a5Xhy2F/42fvnHrbn2Q8OSAsX+arUoALz+OOPG0KXyEQUiCjQ+iiQbH1Zav05mjlzps2bN8+OOuoodyHZXrlypet4XnvtNaeacthhh9kFF1xgvXv3dkD8rLPOch3VjBkz7PXXX7dTTz21CaT7TqD1Uy7KYUSBiAIfNwogBV6+fLm7UJ/DAEBXrFjhJN0A8JV6Rt2jqKjIgd127do53nbwwQfbtddea507d7aSkhJ76aWXHGDlffTo0dZJ9w3r1tmyZcssK9DcvXt369Gzp4uDWUQEEoSF9BwVP8BwD7kpbdPGtm7d6vhqx44drVOnTs4PP6SR8ADeHTp0sG7duhnpwF17vWOP34T4MpLxnoqPtC9ZssSloVevXi7OzZs3u7AIG+C9YcMGKywstLZt29o3v/lNGzpkiMv/k5q9JM5x48a5+Jj1jExEgYgCrYMCEQhvgeUIiKbzGDVqlMHQ6bB+/OMfO91wGDidwL333msA8htvvNF1El27dnUS8WnTpjkADwj30hfukYkoEFEgosBHQYG0AGZ4Bo80eN4EkEXC/d///d9Oyl1WVuZUVAC2SM8HDx5sjz32mA0RYAWg//KXv3QAmPUyqOJ98pOftO9+97uG4AIQPmDAAPvZz35mp512mt19993261//2tkBgOGdDAZ+9KMf2WWXXWbMGvIdNb7zzz/fpQmwjuoLknYAMwKMb3/72y7se+65x37yk5/Y3Llz7Y9//KMD3uTrv/7rv+zvWpeDygppKi8vd3aTJk1yaoLMZhYUFLi4Ro4c6dJ21VVX2U033WRLly41QDgGkP+Nb3xjuwGB+xD9RBSIKNBiKRCB8BZUdB4sI/VGsgKwhskXSwI0duxYlxM6Hb7/4Ac/cFKhd955x0l/+Ih0CImLnzaF8UcmokBEgYgCHyUFCiTZhY8BaOFPGP/OM+AZnoUk+ctf/rIdeeSRblYPcIoQAol5G0muAeInnXSS3X///Xbuuee6C2Dep08fO/300x2YB6QjoDjuuONs06ZNTu0DXnrsscfa0KFD7YYbbjDA8THHHGPPPPOMVUsVBqBPejDTp0+3f/3rX069DzeoiSBRJ42LFi1yd/ygVnPppZc6vjx58mR76623HE8G6OOHuFErJF/kmzTAt5m55B0deQQt8HUupN+oFOI/MhEFIgq0HgpEILwFliWSIaQwXBjUUU455RQnTWExD50VnRlTol6vEHcwcJg5dkh0kMr4zs4DfNxFJqJARIGIAh8WBcK61T5O+BdScPiS51E9evRwEmpUPADCAFkAL24BwYBtZgcfffRRB6pHai1MhVQ+4I0II1jkiQHcMlsI2AW8X3nllfbVr37VgfSnn37aXn31VfNqe4D1vn37On1y+CyzkKWlpS7MLl26OL31pHjqQw8+6MImTNKCwOPyyy+3DpJe33XXXTZs2DAbP368czNw4EDHu4nL8138cWGw8/kmDoQt8G3yF5mIAhEFWhcFIhDeAssTMM2WXABpjJd80/n069fPdQBet5KODAODB5TTQdCJIAX30h3fETiH0U9EgYgCEQU+RAoAMNHnRicb0IxBuswuIQgaPH/i7gUH8DV4mQerns8ByLGD3wGa77vvPqd+MmbMGKeWR1wYD+x5Bui2b9/epQG9a1RJAPnrpEs+YcIEpz7iQTJ3Pzhg8ICkHYOdj5t30kk60uLRYXv8oI7Cne98a9Cz58XuXXaYcJzkNTIRBSIKtD4KRCC8BZUpTBnGjT4kTJ9OAsMiTVbQ02H91w9/aG2lN3n11Vfb6tWrnaQIN/ijY4PJszgJt4Tnv7mH6CeiQESBiAIfMgUA4Kh8PPzww/YLbbv65FNPOZUQQDkSZA9Qw8AZUOrBcBi4egEFkmxUQNhlBTAPCEefHD8ILeCdAGjAsueDxcXFzt0tt9xiTzzxhNMVZ3tXeCcXpn///o6PwnPZdcrzXYQeAHzS4vk0aSwQnyVvr7zyilNRYREoAH/48OEOjCN1X61tFvGPXjppIo0Yny7uqKsgdCEOTw/nKPqJKBBRoEVTIALhLbD4YP5Ibt544w3XmdB5wLyZZr1DB/fA/JmyRW2FDoUpVToRFgYxpXvQQQc15Rp732k0WUYPEQUiCnwgCkRtavfI5+l08cUXOz1oFpMDnJmpY3cndLvLNfOHtJqZPEAo3+BjLFTkHaEEzwBqdoxC/QTQiy41OuLPP/+8k24DfOGFbP/HgkcAO2ojqKTABwHQRx99tAPXEydOdGGhJ44hnRgk4wB8Fncyowg4Rk+dNLFTCmlAwMEzYJqdX1ing443Ki+kF3viIZ0vvvii888OKww64OPERZ78LMAhhxzi+Dj66oRBuv2gwCUq+okoEFGgxVIgpgYfcJcWm4UDL+FIuFn0g6Tnz3/+s2Pm7JWL7iFSH07RpMNhKpbO61e/+pVbZPSVr3zFLTgCmKNn6A2dTyRd8dSI7hEFIgp82BSAB7EzCXrbgFGk1iy0BCSjegdwRhIMKEbIAFCHt3GxDgYQzDaBMYHeZQLYSLsHDRrkpM0IH1gHg243AgsAOG7hlWw1iHQbEEwaWFD5/e9/3/FLdlj5zGc+06QP7mlCWLNnz7aN0knvKz1tzmlAjQbpOmGhb+7jB5TDWzlUCD+kHck4u7TQ9RIfF/kE1CNc6agtC6doMSeHsAG42cqQ/CJFJ/+EGYFwXxrRPaJAy6ZABMJbUPn58RJ3tsn6zne+Y2xpBahGMgTjhzkjhWGKF7BO54T9t771LcfI6VjYfsuHFTHzFlQBoqRGFGiFFIAXwYf8PZzF5uzC38PPzQkT8v37d3/3/tHRXq2dSjgwCOk0IB0BBwMBDN/9qZY74pmEyeUFGvlx+Li47+xbOB/h5135C4cfPUcUiCjQMiiQ+JFMy0hqlEqYv++s+mkBJlIdVE447AEVE+5IUrxeIQuAmP58+eWXnfSHKV8k6NjRUfiOwN8jCkcUiCgQUeCjoECYtxG/B7r+7nkUd2/4Bkj1Jp+neXvuPpzwM3Y+vHgjbyUMDvlhn+6hIbU9ALgPw/vxYeW/e3sfvveHvTfYkfZ8Nz6sfD/57nw40T2iQESBlk2BSBLeAsvPS2WYnmXqFgYN4PYG5s4pc+wOAFNHP5yFP0xt+ulR7PMZvfcf3SMKRBT44BTwgIqQora2Y3p6fhUGurj2INXTLsyzvB/P4/gGgPZ+8O/98YwJ++fd81Gew24Jg7DCxpdl2B3f8+3DcYSfCRNDuMQL6A+nl3CxJz/ehNOR/827ie4RBSIKtGwKRCC8BZXfjhi+Z/b538najux8Z+L9tiAyREmNKNAyKCChbS4H+NIMVjw6lXZ3Cy2fZ4V5FM9cYZAc/u7j8HbcMWE/Htz6b/BC755vnjfij2dvF7YP+8Wdd8OzNz7c/Hdv79Pk48ZdONywvU+zDyu6fzAKeDoTSrhcP1ioke+IAntOgQiE7znNWryPMHPf28yEmVg4DBhauEPyHY53k//u7ff1PZYT6KH/javTjukkvlzcnIzJdcr6FsvosyRnujBx3GAjPw3Kg3bxde4TToBFGMqXvPE9ltOevXrXXILzG/1sowDl66V21BF2j/BbrvEtv/z9u79nBYK8NNADD19fw/VqW4w7fqKEVHCWBQDrkZLGLhujpCl9ylJqBrqoLhS1npwbZxEuX/mXQ8upArBjc7Brc8wKGnBPHDggVGLIWUphqtLJoeJKEH7O0oqhMJcSIKc+yqXokVXEugUmJr1jfOMvRm31Hxq/R7eIAgc4BVyL8G1RtHA8mXaixks75J/2RwtXk3MLdQN2HbQ31yYbMpZJxaxebS/OX07bS2qGImh9tMmcFcCrmL3QnYF0Rt9p4gn6DwJW+EFkAVehWOAhGHfDnTPyLwvXjegd/vJxMvCgyHy0FIi2KPxo6f+RxL6nDQ8QFAbdYSlUfgZwF55mZWcDFod6//6e72//vWfF9pQm8RrHP2E6jXzQM8Yg7jBzDBhTYMOvfxIQ1xtAqZHVBl6j3yYKUL6oFQDEc41T8NQBThWku8o3Hlh74M53VKyoM9Qj7L2+7p7W26DYKH3XPQdRq+higOnGMvRd0PZ1QU6dG90ByYFP9+sGd40WOs9RzhRSY6csOO/qh/NBz1uvUBmvZdEnzlkRdgLl9OZxHXbbILukwLbr64W5Cda1j6hjDFE8eowosCMKNMOHZYVt0EfpJFXauxiP4/+0R9pzNmHJjNqe+ItG5HJNu623eFFcwFwAnEEzg2s+wT1wh/HtsilaAtfFv/8WuGz6hc9obqXpPXqIKJBPgUgSnk+R6H07CgAKAD8cD82dRZ+7MvgJA3UPtHblb19+D9geAAkQvg1i5XIFjhE7sYa+xJFY4gIPYqYJgBKPskZaKYjkPuQElpCO8zXhJSQ4jMz7KODLn8NH2CaTnSbG6iRCjN9hIuyJeuVBO9u4sT0dR3SzTzKG7w6chj3txjMAmQLLyD9/SLI8aA5mNWSr8pb1tlkOPbuZE0nL+cIvZR6n83Z1xVUTFzsSMlfPFQ99uZs1EeimCjn1k4qMrVu8wtatWGU1y9dakWmP6PJ21rFvV+s8pLtZp2LL1TNEkJ+UUiEJXSyeNP2q3jlbF0/0E1EgosA2Cjjcq5+g5dJOaJPMarrxrcPKgN8MNmrHOpLUEmqX8bj2YN9Yb2vfWWoblqy0+vUV4vdxS3Yts64H9bX23XuYdZRcUgC9IamWDxiXGB1peVZIntkvegt9CpiAos7GscXoRQ2/Ea67tDk+0sw3Z/Ux+YG3RuajpUAkCf9o6f+xj51GWqVDMn77u985cPT5z39+p0CcBaBIMdmRhf17L7roIucvDKJ43t+NH2AFfIo1aPrfiSPhnCxUBdCJXwKqBNAdkxbDhqXHUAHAmQy8O853fSGkBoes+CIDKAyeot9mKOAHYCwcfvDBB90hK8cee2wzLgMrBmmooFRpf+V77rnH7af8+9//3vr37+8GQkjCMYQbrkeB75380i+6ksVNUI6UJVdc5dvU/QRWQVVwX+lMVcbq6IOuHf/qXqkU6rS9P4B2g4A46ktcVDM6+1htztZNmm6T/z3R3l3wtlXWpa1NOmaFVmDVqYSVJBPWY1BPG3HO8Tbw1LGWK9dR6rWC3oUMEOXfDQCDDp+YIxNRIKLANgow4G1qhTBztcgGtU2nMqg3N4CVfYPaZ1yzUKk6edhYa28/84K98tiLtvq9JZasF7hOS21M7bW2qMES6rOGaDecUecfZz1PGG6xDsVWq76sKKETVSVOFx5XuC4qfonScRT3oFfSI6tGOwTs23qIOP2d+8ZvZCIKbE+BCIRvT4/oLY8CgJ60mBEn2bEFIjq+6O02J9HEK9sf4mfJkiUGkGL/8jPOOGM7P/sbgJMOsDRMGbaXyIl9ugVyATPku9i2k4o6kbccuelKJznBLZ7lpomRBswz+AXWRWZXFKAOAK45nISBGYZy5woDaf/MvVQnF3LC4f/+7//a/fffb9dee22TWgphebe7itt/p7TdDMd2JaZSpGxxREECrFXOSLwTAGlnuKtbde4ob+dQv7KXpasW+nF/jXmKKYsJOatbvsFe/McDNmPiS9a1rKNNOPlU6zF4oM166Dmr2bTVxn3mQtu0crXNmj7V/vX7W23YjNk24fJzrezQPg7E09Mrq64+NiYmukUUiCgQogC82jVJBCOuaTJY1myarGnDqMExjC6g/abNat5abs/84z6b+9pb1q1TTzvrU5+0QT162aR7HrIS6YWNvvgMe0cHJs2aPMNuvf4Pdvj0sTb+8xdaSe+O4jkKA/RNnDJEF/AU96pYhM6xxDjH9D3eIvDkeiF9c8luDCfwEP1GFNDMSkSEiAK7QwGkkFyAIS+ZbM6fB0onnHCC3XrrrXbzzTfbEUcc4QB8c+73m52YMUwZhu0kEUhKYJgY2TkpuGPiAehmsVyg2xs42faL1NuxWieVDcSljeFscxQ9NVKA8ufyAy3/jGpPPtVww4CO+uTrzYkC4cccc4w98sgjdvbZZ9tgDkuhU5WbfAC/S6KrfAOJmWpCY+dHkW/rIwHg1As6TQF21QEHxoWE3d2pnwQdKu/exJ3UTRJw2TkVFECznNW+u84e/fVfbcWcBXbquWfYoePHWUHnTkIGSWuYMtVqMlut3ZiB1qnoEOt39lG28JXp9tJd99sjUlk54wdftHbDByiPohMo30W7LU4fd3SPKHAgU0BNzRlwsTPiC8Ed/oIKikANOtxqP7Easy2vL7X7b7jFKtetsQsvv8h6jx5hqe5tTdNTlnuuwLKZuJWOO9gOO26gDT1rrL098RV77tEnbMvqTXbedVdb0aAOrp0zO5V1CimAafoEOIYshcjdoJxEuKTAUwDiuGpUK8OxZzxRk4ZSkQlRIL9fDH2KHlsrBdC/zTceBAGyMf6dZwe8xdiQggOEAFQeXAGiPJhygAqgru8cJ/3pT3/apk+fbs8995yTiPowvV/CDoOr/O/eXdjeP4f98pxvAN5oFBegHgADbNCbRBppsc86MdM6pTutKcmMdHJhmll2pKjXg/QUHBiHv8qKFfMOgOmZBZludbxjwfkx7v47efB5231fLcOlL09Sy64oXjWFmRPqhZ9J4e4l5NgjMaf+oJZy4403ur3tUU1pkD1hhss9TAlf/8J2/pn+jg6S8ncdJdWAj9w1MwL45pf/bH3G6pSmBnWqNbX1buIkIzfolSL5ogrJWWAEzllLQF1gIRf2sU119tJf77HFb82zc6+63EZdcpYV9Gpv6URadShjaemONrDwq6HKsgV1lmifsIPPGGuXfuvLVrlxs03+031Wt3Kji6chS/xBbOQ9Mh9vCoTLKPz8QVPt+QTh7Mtw9yZdPi07aod7E+YH8uMbI82DS7wDnk/66vUsJm/p1RX25J/usPp1W+z8b3zBBpx1jFmPEqmKSDyeS6vt1luDdkmx9FarVzuNdy+04Reebudf/Tlb8uYCe+Yvd5itr3U8A+l6UmHTBzCLyt0Jd3w6EOIwBGBmDSO3WfiH/NHbOi6REB9Se86/nPud/Hj3O3ESfWrBFIhAeAsuvL1JOkwKoBNmpjzT0D3YJlzeMd5d/t3r5wKu+EaYXBjs0As/7bTT7KijjrK///3vtm7duiadXh+XD9PHGwb34W+EybuXxvOOwc67C2y2/3VbCYr9wQLZiYJNCZ2er6xSlQVWuaDB5j6+yuY/ttZqFgpuizdrDY+AOBtbMLhgoiigQyNrdREEchD3uNs/Pp3cyb+fVdjtAFqwQ/IMWMZs3rzZarTIl0Oj1q9fbw9JZ3ySBmnsiOJ3Uzls2DA788wz7eGHH7Y33njD+QvTy9OQDw7cN4btHOb/uE4yKENflq5qq9PMSIfELa7UtoFF9UVWvyxtm+eut9hGHZqiTjyJ/rcWZkkBS39Kf2MwrvyVJ0xSIrJ4VYMteO41mzlpik1Qne8z/ihLF2mwlxSETyKhq9eUo9oGOqhqG6Z4GzQ6rE3VW9nIgXbGpRfZklkLbPaTUyy2RZ291jEkEL3J+HqT/+w+fgg/4fjD0Xn+ELY7UJ/DNAo/59NjR992REvP7/i+I7/5ceyvd9Lgr/0Vx+6GGwYtAcBVk1J7UQpFJ9mgNC497vnPTbVF7y6yT3z6U9brqEOl+y1srlWVOYFhSxQKIMPfpfOtfosFlvWJjFWXZK3vsSPt5IvOsQVTZiiMKdIrp63T+BWDRuS0aL+1KdY5gLcAN/GDuHGTkgpkIXosJFB9Dzri9HOUY/4lFzs1+GtOcLZTT9HHFkOBSB2lxRTVvklomKHDDDxjpZEDot966y3buHGjHXnkkVZcXOykl3QGYcYB8MFdx44drVPnzrZU+t9//etfHZO54oorbPDgwU7i2bVrV/vCF75g3/3ud+2xxx6zz372s05nnJx4UOUBOOH7rej47tPl0+jj55s32GFw27yRfdMKPGQRSDLEIGuT9vrDy+yZ21+3iqX1siu09oOTdtY1R9mQ8agPKDRxetgqDN/BR5itnh0Ac7bNx7gjW59Gn2+X30a67shPS7X3ZUb6fbkBsFevXm3//Oc/7ROf+IT16tXLrr/+epsyRcBT5fflL3/Z1Q/qA9sZXnDBBa7O3HnnnXbIIYe4nVIA7rj1YfpnaNqsaeo7VXiNnbTTJ5XjbE5DMnWMMQHw+g319uqDk232c7OtckOltenYxk44+zgbdsYIi7ejDgRdveT6il+e5Y8/agPTJZkNNfb6AxOte6++Nvy0461aEm9NsSgfCQH9rDpjpbu2wUpzhdJR1WCvQYtQs2nLFKTU+TdY73Ejrf/kN2zW4y/ZkceOs/jgdlKNYRAY5NXfySPPzRlo8kGND9uHxbu3ay7snX1rzn1rs6OuehOmlaef/+bvnl7cw27C4eS75d275e7D8Pb+3bvx/vflnTh8PD7efRn+noYF1YPdg/RAE4Svq/o3aDYrkQzUJmuWb7QpTzxvA0cebD2OHSE3tY6Rs/sQ+524QXFW7TLBYmi1cAUaqILJZSpth502zha/NtOmPf2CDTp1nCU6BbtqMWMXj2vLXdwregbyybiEWoBvtiJVWBnNilVVpa1MfCQlXoBEPCbvQTrf3353Vna+76XPpQyoK+Gy2FPaRe4/fhSIQPjHr0z2e4p8I/aNnzuNnO3kfv3rX9u5555ro0ePbmL+uPd+YApINVk4N2bMGJtw4on2xz/+0WbOnOnUC9gR4xe/+IWTdBLuhAkTbPjw4c79KaecYr1693ZxedBPZlFL8ACLd/xhF9egwC2yUZxeLYHvGL93K8DdS1mDL9t+kUiwtRxgi8NU2K4wJYnnypmb7cm/vW5b5setLNZTeSuypdMX2cRbX7OuAyZYSR9xzAL5E8BCIQEjaKhfnoFfgL49Az0unWLgMFFmCTDQALq3duPr2VbtsrNo0SIHqN9++22bPHmyfeUrX7Hnn3/eZs2a1UQP6hp1hp11/vGPf7j6SD1ipkQEbBrAQTfK3teRfDrGG6CtyjEuibTqgCqAxmRJ1SvqmKaJpY6Ukk7ozIkz7MlbnrCCzUVWrG3MNi1db48uf9DK2hVbvxOHSJOJhaVSS6HIHQIIZOO5es34FJZYxeKVtnHJai3wOsdS3bpph7N6ywoVVDsPkrLhr1BgX/XP7aiiNCe0QwrW1MlYeYENPn2MTf/Vn23RnLnWb8DRSjazB2qXtAHlm7xTV5oDbApmnxhfTj4w/+7o7i2je/MUoG7K0M53ZfLp2pwf3ITdeTfejjhcuexBvLtK146+N9fGfHp25Gdf2DdX71wTFOIF8CIpyWqmibYs7Csj3qBtQONqrsvefNuqtUj6tDNONytTu9HiDfmS9Fs8lzIS6hZnCGZvJbGOJ1Ia+KrZaZAMyC7o3MGGHXO0TXziSaudvcTajBusPkEqaHJHgxbrtrj6CPhLhv4rW6jBfNomPzbFXn/5ddu6eat169PNTjzvRBs4eoCTsqtyNJUpqd2Voa/1fWO4PuzKX/S9ZVEgAuEtq7w+cGp9Y6aBA3Y8EERCiWTyrLPOsiuvvNJJrPkOs8WPH5FjV6et5FauXGnt2rWzZUuXOgB19dVXG8CKfZ7R9/W7pLDXM7rh7HTxwAMP2Ne+9jVJHxJNgIJwAeDE4ZnuRu0vDWAjLgx3LwHgjjSCO368m/cRJuCPmhoMgBigRtzTCtPFNm/yOoGmrJVku1haYZOeslhXWzKdFfJvWY9MB6uL65Ah+Y1J0uGO+3GqKSAwpUeSTKc3vgdA3KcTenQTUHOH1zTmzwXain8oJ8AkqiionUAL1gr01oDsIG0LRt0bNWqU6xB9mVJ/LrzwQree4O6777YRI0ZYhw4dmgA4dWWtJOuotPj6sz0JVa76w+R0OipdLnrccU0TN0gKHS+kTkktqarY3nhulhVsLbKieIlTGSkpKLENm7TLyXOTLd09aXVFaSfhQoLtFn9JbwlJdXmJ9jPv3NfWvLfM2mggd9igQ4QDElZcp7qW0kALcRlT49qyUMI1DeMYAJTKLm5F1KcM6ZNbOevds591KelgKxcstgH1R9uS1cu1ZWNVU36p85425Il2g/H1yt+d5Qf4IQ6uMNin7Agf+8hso4CnObTiQCrKaGfGu/f3nbkNf6OsGbhTDhju2IXLZE/DDIe/J89h3rsn/vbG7Q7zJIFKAqkzIFx8PYM6iC5UvcSurXdZT1s5b5GVW7H16T1EUp5CbUkY9DMiHLqGanPqC3RjfB2rL7A2Es4E4mxZ1ulSnzT44BH24sPP2Oq5Sy3RNWHrt25QaxWUV7PNSqXF9QsKp0gzXKnaQlvy6hJ7+d8vW3ILc6spe+edBbZ5xQY7YdMJluhVIJ4hNbRGnhSmx87alS9jdhmj34AvRqZ1USAC4a2rPHeZGxq1b9jcka4hhWRbuL59+xpgGjUTvuUbzyyqpNNbWVnpOuoZM2Y4EASguuOOOxxYopPALR0FI3l2uzj99NOdbjgSzUMPPbRJGkwHRly4zagjQzqKNB4dcg8EfFq4Y+c7At693fvSquSDcZimdHCM9Mh9SbrcOtQMtUHJMy0uhhaTRKRWq3gKUHXIFNj//fxXtq5ksaWlFJx0ohHpDYvdNjCfiGGRX/DES9PT7jxAk5KSEvv617/udv5gb9rWbHz5+DxyCM/atWttqQZu8+fPd4M41E0oe3ZC8fULUE05o9bE7Mldd93lBnhjx4519rhfJhWo73znO24vesInrnzjS8ftfEOpCSBLcKZSU4kKmMdjKSuva2fDtFtJ91gXSbA1nU091CCSsnn+xVfsz0/darUFmspWuQPCAcxZ6XI3yH93bdn5P9/9iSToVWbVaXvurgcs86hUuCR5V9BOEyqp2Zgidcmr5iyUxKzOnvzDbTqYh7reYMWpIouRoIxmR7SXcW5jtdVVVNmdt91udzz8T1u1drWjjaeLv4fzyjP08G0lnwZ78048Pi78+/j8fW/CbI1+wjRiBhC+BI3C9vn55jsXZbYrgzvCxC2qgfBVyhl72gj2O4trV+Hv7ncfB/F6/uvtdjeMvXHXXP688IO2iFwFgbgbywqEw+sLc0kbf9DRNqygp6TRlfb43+6y+rYpQWLxcLXhrKTR7PldoHUcG9/RgT3JTfbcr26xbAnhqb/SlipxTZUVNgg0b9LiTamWPHTPA/bwrfNteeVKK9TgO61FnUynKTp34q3VxKxrrJsd1mGYdct213qSBPJ4Deq17mhxhf32pzfanK3zrSaudS/vZ1M7JA35h95czEz//Oc/d330Dj1EH1okBSIQ3iKLbd8lGsDx+OOP27Jly+x73/ueO6mQ0D2TReIIM/B2MAQk4HQIAHAk4gBypOhIOS+//HJNtW/T3UVthP2fDzvsMLv33ntt4cKFDoSH1VF82HQspIPFeIQJ0+dqzvhvpLM5N7KVNxhlvb6r44JjikHHJLXookU4bcsOtR7xUivNtJHEO2k1iQ22rmG5Ldrwjq3buFggjQ5VzUOgS90qP/Lf2HHqW2Ch224aT08kWuhGk2ZoT55bm/Gdp88zdYa8ogc+dOhQ+/GPf+zAOCdqDho0yH74wx9ab52QCU1wy50w3tXevc8//7zTCe/fv39TnSRcQM+KFSts1apVzn1zNESZCONOumysRoGNs5V9zDbkNliX9h2srKjESlQXNOHsilknW9u6Tett6ZZFlolrlaYqAAI3TZvoh+0JVSc0gEtX16j+SL9cAHv9qjXSD2cAqg5fO5wklZck4F3T17nNWxS2Bg+zFrqOWMI8haA/pYvqVMiBIpXVcltv60QXBiobNm90efN05O6fPY3Iyf4wlANxEQ/G8wCew/a8H6gGOkCnMPiGTtjtL0N5+DLh/mGXBfFh8u/7Ir8+P4TFc7jObR8+aaBewpm58x48sZi6V7KD9e3fTlojWW01uFpqIvqmWakG8fM6CXqS8lKidUHxynrtkJKR1HyBbdUpWwzKY9o5JSZJeYFOVk5UM4OV0daicavWzGx1daXVqSNxeaddOFIEfUKhbbZcjXiX+kU1c8Wd1oCgSDMkOgE3XWsbayrcwF8J3WND/WKmZcf02OMgIw8fIwq0PgTwMSLuxzEpnnl6Rg5wfuWVV5xqAEDZ2/u0e3UU3sPfPvnJTzqJNWBh06ZNduKJJzowhfQSd+gRIlXEP3rA7BeOJBM9cgzfSIt3xx2355xzjvXr18+FmQ8EnMfGH6blYErE5fMU/g6DZiMpsUPpAErqiSSkgSnHlBVmdBra20U25/41ll4md4k66zygwU4751S7svdYqyuukDqKpJmShhCCUysQY80hCYXz7gUIJxhMkdRRhonOGAYyrdWE6wp55L20tNSpI7GIl1mTU0891a655hobOXKk9usNpNC4A7BzUWfc4FALezkoyhvqSv/+/e2mm25yIJx6k28AyTkhXb4kMrC54B14lAMo6Z4UoC6S1MrWmr3+yAxbP2ej6kjWqhPV1nfEADvrE2dLioYeSQDCc+rgG6jTir9BYrfy8g42ov+h9s7iZy3VvszO+fJnrPSgPlogpg2KFR8T5kSE4OzZX//dMjoV84xvfsGybZQedfoxAQBDF1UAPLOm0u76xa8t2abUPnfVJXb8WadaRVWF6qCm29UJ0xFTz7mgEXUnpQGcH/DuC+BHuITj6e/D9G0tTGcG1343G2W2VRuvJucz6emAPWpzDAg9QPI8y7v9oHfKJGx4Jy4G7zw3z/vCPvbds1+jQ12kjuyruH2d9iklX9RvpP8+jm15hf+qDWiWkhbGSbVIx9kuFEELbfqgrgNs9v0v2Jp3NtoF3/yiJXqXqc0y+6UWCQLX4Dmx2ezhX95snaVSdsy3LrWMZrcQ0sQF1t3JyRqFZxauszv+/Gc79byT7aIz/8tWb9XMlE4AYq+kOOuNFF5G8bJINLYxZy/f9rItn7bG2he0U1hS28zVaRatzi757OX2g5P+x2r0x+B7d4zPN/WJ8maTgx49e+6O18hNC6NABMJbWIF90OTCzLyhgVdUVDigg5SybVsdYiDjmSLftzG/wJ5vMGN2uBimreSuuuoqp17B7hYwC9dhyQ07reAfhv3Tn/7UMVXuPcVICNMvOMEdYQLKsUdl4bjjjnN+fcfm0xS+h/OBfXNGrFHsUjgHxicxplin/sSsBYrsZLNDOlTYrT95wTr3bWNf+OlJVnK4AFlK0i25bRCDVTdHpuVYocDs5TswnpNuo2Xjh53eHO2gUSNjxTF2rdWEywggB5gEPDO1+tJLL7kdUQDgrvwFKrjjJy1Qc68WCd9yyy12ww032HipMGHfVGdEQ5bIHnzwwTZEknVAUTguT0/1k67EWKAbGNGaIuVH/+yQkmSbMgU2pNdgu/2Hd0qCnbGvXvdV63hSR7Nipq9Vf+QDD9QlJ7l2EF6AWOGq27YeQwbas5kaTVevtYM7DNIUtyRocquT6rUXvaRu0jndWqaDQbRgM9e52DLaI7xB52UnFL9IYiVWaiuWLLXV6S124tDBVi7d9yO6d3DggnSTt3A98c/59rj9IMbTMBwuz5Sbp7GPe0/j8WE3529vwwyHtbPww+4+6HM4HtoxxvMp8hH+nh/XvsgnYYbj8GkI2+XH2xLfyQ95e3++aL1qj8xKyg1LLmidAJkGgWvaKIutqxessaVPvWprK9Zaj2P6WG26Ru5UXlpcSQilqQar1oLNTHmxWfc2arO1arPaOUX9kcQv0iYvtjWvzbKqgoz1GTnEygf1sF7x7tpaNOAFDI7d+RNKRkODdtjKFiiYHnbHxrutYuFmqaJoDUx2o43RAUCfuOJ8s446SVr9SlJp3h1DXaFe+ToFLehboce+qke7k47Izf6ngEcV+z+mKIaPBQVowJ5x08iZ5sIgefCqEb6R+86Fhh9u/HTIgCrUCdDxRUrpGQbSMQC1Z6Ac1IN6CaC9j1QOfNg+Lp8Wwvd+cOPfsfN+fDr83RPUv29/h1kK6ODI8T2k8mKYurRDs+y0uK5YB8Zov+YqTSVmyiThSFSKqUt9RQzUMVjnV4zb+deP0sgzW1ltH1dAn53ZuaDk3+eFd8BNazPh/IXz5oEcdl7fv43UlFis+eSTT9pKqZZg8M+aA/YIZzA2fvz4prpAnfNuqGMYBnHQvVlDFQgbnMkupjiCRVgCwZJIm1Tz69TZ1uV0MIf297ZucqiFm3USYcc0i+KQd2NYgt4uELryJKI3NZ/i7p0s1amtzZs+02xrjSTvCjOrE/kEurUjmryzO4sk33qOSac0rlGhWxyqTtktKlMbXP3GbCstL7X2AyTtwo+C3lG+dlbPPsg3T6pwGfIMjWnfhO3vexqPD7u5+56G1Zz75sLdl3aeJtz95Wnh34nPPzd331fpgSf6y9NiX4W9q3B8vnblbm+/+/B9X7DTcNRGPAdlhxT4sqY9EWhbt4E9rVDt6d2339U+/toFSWg9BV8X7dz5ERr0M4SqZ1Qtpt4gf2m1S5ZwY3JaFP3evDnaZrDMigdoFk5nvTW43VA06BIAZ5E3tM9IFS3hdj2ps+7Dutt5V55rbbtJEq7tR0//7Ol26hWnW648qbWg8BIXdLM/vhzDd2iAgSbY0w5bY5/RLEEOIMsIhB9AhU1WfSP3Ddzb+YbOnc4F4xmi9+MsQz8A8GoBJk7HBCCh883uKLjHoPv8hz/8wS30RFecRYmEjUTTG9+RkR6e8+P0acE9bviO8Xcfl7Pc7oc8KB0w5hDzE+uUSoGguezTYp61MDod4MA8YVZ7zLIAUzzWSVBzknAoIoWDe99UCCwU4HZx7viF9Ho6cicvMNXWbHzZkHcPmskvutwM+pjSRjWFbQgB444ucnvddde5hZvMrvTUDI0D8Kob+XXW05F7cxeDLn0JissVG8/qpKWjjT36324LStWFDDqh6ohZVKldCtUpA6BV9pQ/VUCG0qIWUIewzKFOojUHhToZc9jJx9qC6W/a8ulzVZW0LSGhC4HHtF94XPUopvDrBeqJB+/sUxxPJ6xNsszWz11ss16eaoccd4S1O7iXQhTIaqxu5MvXdUW2ncmvU83RYE/tiIBwd3b5ROxp2C3VPfnNTzt2HhDxLWzy3fr3sJsP8gxP9Fd+3B8k3F35Ja79HW84jubTA609Lw7mJtVCXPkg6QZEwyfKB/Wxg8aOVLuabDVzF0mNREszkVjLrZvZ0g5JqKulXBvXjBjgXX5p2yXaSWX1a3Ps9Vkz7aBxR2jb0XYC2+ojBPSd6gl9QcAChPklPRcfixXKro2E6kO6W2HbQisoK7aDxx5qZQPKLSdBT0zhO14UypQvO38Pfdquvvm2SH0L89Gw++i55VLA1+aWm4Mo5XtEgXDHjUeYKiojSKZhXp4h+Gc/BYZb79epnOgdkI0pKipye4X/Wfpz2KEjyXXbbbe5/cPZDcSDKcIAsBMPz5h8cEWa/De++2ffAWDnDd+au2QpjwJugkP88Qq4RlcYcMT2FWKNcoJkktBwX+R09tDbo191a/B0B7Kx1zP+cYY43QW/g7ibS4/Pr88rNPT5IvbWZJrLF3bUMwzgmzrA4I1TVTmMh2/QaIa2Lrz99tvdVpmsH2B/eC8B8jTk7gGQp2OzNHeFROepfwFtt6WY4o9pe4ScJGDu6HrcUL5KU0Z7BAfSdtqBW6Kp2ZPGgZIreyRg+qYg3daXqii5ItWlopiNPudE6z2wrz1x90NW8+4GSd6KJQxXXZP/BkYDmipPpgTKNfhglwbWG8QzRZZbtMme+dcjVtCuzMbqyOycVFXcoFA11ecRmmHQhc83zeX7g9gRvm9n3KE1V3OGurwnV3Pp2hP/O3PbXNj7ys7nPT886iW0IV0YT6t8d/7dh/NB754O+zrcXaWL+Ih7f8e7u+EHqmFKNe1bzJmDeJC5uBMxS+M26vyTrE1JgT17572WXbTa7VKE6pnb5Uju6jMaFKvdw8zdwFy6Z0Van7HlneX20K3/tNIeHXT41rHuaPuk2oJTa1R09ClOgK6I42rbiaQEN42Sm6r6Sk2OaUZNjmOlajfiEZx+CxchX2Hj331+8+/hukVbpL55P+FwoueWTYEIhLfs8tvj1DfXodLAYa7hb9hhGHnT8P03nv3CJHTI2e0CdRT2dD7jjDMcmALIsA80W8tx4ArbEvqwCMczG//M3T/jLsxo8uMOf3OB7uAH4OyNukn1kDBAQJQYLhJupClCU3EtymzIaiGdwBUSTBht4DRgmFmBKPQOvQm+Kb0BF/bWu30nn5jWKtEIlyP5pF4BsAHLSL8pv/POO8++/5//aeWqPwMHDnTrAHBTpUVuv/nNb9y2hFdccYWhrsJuMoQRroeE4d93SsegyJUKZFzbLtJF+bGRWAodEbnjUCe32JBpa82GxKRXGtciXldPnAc8qY3gWHVHNUn9eZLulm2IraB7mZ36pUvVOTfYo7+8xVZOnmvFAuLxhC65S2qhVzIrrVOFmZRdYaLENs1faff87822eslKm/C5i6zNoG7afUFSNRb+qpr4PBI9Zqd5DZzsk1/o6y8C5Lk549vt7t73RRg7iqu5sPenna/n0IZnTJhm+ztuH+f+jKe5sD+qePPT4nky/NzxbDmgjacEeF3PJRWzoiE97PTPX2KLtd7ioV/dbJt06E5BvFzlhW4JizA1yGSALP2VAkH00lyxrXztbbv/xpuc2uLZ13zOSgZ0C1gA4yzHTzTwVHmzbkjdRVDmmraKx+EVzBRo8CzVk6D7kQcJbBK64DPukKD8jOzk3det5uraTrxFn1oYBdQDReZApIBnpr6Dba4Dwc7tWiIg7qWY0ApABaNj728W1rG/OCvZAeUAGcJm20NWdH/xi190YCocz4dDbzFA8VcmEOGeKB4kxDXhowGQIhVINfVNTJL8JFDwRUG40bAbRq6xgyWsuDubmA4Xe+8quu+IAtQJ9vlmoOZ20hAIx1BnHChXXWFhMAM+JFIcYMTagSOPPNIGCJxT97y0kfqDO1+PdhTnjuwFK90nV57Bo4qUChKkiQJ1dUNpTDZ2qPSyTnZP5dDoCxfODyHJPadvFspTnJGZFnF2GTvYzkt+3h7+7W125/W/sWOOP86OOOl4K1A7KKlSPBldm7TdmLbpnPrSFJv50lRLSG/1/G99wfqcMFxVL+7CY0BItWtMpkt39BNRIKLANmwrViDuDU8OqELLRJUEPgOfcIs0JQ3vcdYYO1MztZP+cKfd9d+/s8OOPdpGnX6CtSntYMXaprBNlXxtjlnFzLdt2otTbeqkSTbg0KH26a98ycqG9w/UwlBVcfwe8N2YBkUL6HeQn2+kgzYrPsYWpUjI425BCOlznnWLWjTUiMz2FIhA+Pb0OODekDICgJoDN4BppG/F0uXmFE3e0ev2pry8XNu0SedNAAnDd5gg75dccoldfPHFTYcL8O3DNaSJC5BF3IEqBE+AaxgiLJS9wAOpNs/ogNMkQF0Oors7P04NoZHTRqy0iSzve3B1QOVPvQKEs3tOAepHqkd888BaDly9o8OkDjGAYwbl/PPPd+pNqGIAwDHUJz/we1+EO7Vwpe1cILum03b9YKN14wxyEIJeUFdh9S7T2lRpnGGQuuGfd8JwRi8udVQGLmZXChPW5eiD7bIfXWtv/PMpe/2VafbKjNesfWlbK16V0d7DSbvtR9fb2i2rLVWYtEOOGWnjLjnHSg7tqQOAFB4BKmLij0xEgYgCe04Bz39QOUsLDNdpgfWAUw+37l0627T7nrYZL0+xV6dP0WYl7Sy3ttqWLF1vc6/7ni3VPt4pnRVw0iXn2RFnnmDFA7tq4b5At9qka/f6oZkzCEf63tDISPhGz+J4QSNzCFToNJAO9ByDTASeg+foN6JAiAIRtw8R40B8hGmhJtCcAfy47wJKJ510kgNSfoqcbwCq8BQ52w9y2iaAiWPGAWJNTPFDB+HkKABOSk4j0IYTYhsAbb66Z0C5LhgrDDYwsFeYLu+4DDgs0J1t69hhI4Dqzln000gBX+a8AqoB2NQBDHWG+uIXGPEdcM5grVD7p+OOO2Gg8uTdYY9OJv73xASzGOo25c2pn+jBlWejOMvpicuOGRK3faAOypEDp8/JHQP4DmoRPlFRCeypDYBznDn1LK2pQF0lV5gVqO5u4755mQ2/+BRb/uZCW/vGO7Zq9VxLb6i0Tod2sTHnHWddDtdWhEP7mpVp6zKFQf3KaADAAJG1Yj5+PUUmokBEgTwKMICmjcCzExJT0w41gSR+opakj/wViW/Qauu1yLrwyJ52fP9LbOSFJ9r6WW/biqnv2oJlr1ttps76jznMjtNMVIfhQ61t/y6WLU6Y1mY6/s7caSO2DiJsjDfgA8SqeGn3euRQMC39UPwsy1bfx9GcgRPnLvqJKNAcBSIQ3hxVDiA7JJGAHH8PZz0MngBMYRDkARVuuABMqKe4sPTOd++fsMN+w3Hsr2fHlgHXMo4PgsS07wQyC/YAR4+wQSdnNmirwmzjkfRZnaaJpnCYbzpmild3hD1MH0geLCJsnKPUx8h4ClDWDkTr7kE035xaU2NdAbRSN3wdYm/4sPH1BuCNwV04rLDbnT1TViosJ6VyZUo5hoC8G3QRgD6y2AogTL/JO0fdI+PCX0ISbHWp6liV7kb/qKBk6fUbF3mqH1Z1UCfMg/RCkx0LrLSsqx2s/YUHjD7cnpv9a1tVscWGnj7GBp5zrMC3unekbL6fVjjsnoLuqDvhU/EEU+BKQGQiCkQU2I4CAWeg3crQSNVccyBg+hpmsxjI10tGndIuRBIyAaVz5Skr06xT+bB+1rvfclv4xruWrkzbqAvPtNJjB7lwWKifVOfALiu0daeuqDaZEb8iDtiCO3eAOBsNfoKhunif1nlmlI6UZsWYVaML0jyzVB4JvjGh3mN0jyggCvi6HBHjAKOAB8UAJp79e3Nk8CDauwEk+cv7R8LJIjoujP++q7Cbi2/f2QGcAhNIM8VHAU6NxjFUsJYD6DBJALrcNDFYOLu3wLLpgw8iuudRwNcRrL06SfiZ79QN6g13TNiPt3Mf9IM7TDgsZ7EbP1pCpeKjgGXUG7IjSljH31k31pCcpFfsiMJmKEi2vMF3MPVMDdIb33SxJzHzR4FEDD/Kiy52QqCzdZ2+dk5BzYQDPmo0AEzHtQi4SDWyWF91WEjWibzll8hULwscANejaIQhHCT4/sKmOcMAwV2OnrgPXDZSVy+EB93Ji3t02QjnK+vp1BhBQAHyvI0WzcUd2UUUyKeAkx2rPlHVtquXeuf4eC5OHc6xANlt8+laqguGaki9zGiBMt+DOoq/oI67ekr7I+ygmQTtRxZxTsNsBM6cZulOo1WFd4qIat+cy1VfojbJFqRaf8Gx9oWlhZbmAB91Wxm1U07UdHrlCtu1aVRKlF7WFLnm5VKpH/oFTYVx078ufskv1tqONKlYlYTgm5x7F3jAcNeFe0cHwm/sfMhd1OoclQ6IH49RDojMRpncRgEPdvydL77z3+Zq2xPuvFt/90DKvwPWvfHgCdWUj8IQa8DvUCLgjV9UBlApCFhcUtLtRKO03NnAwGF/6gQAb8Ap509+cEZ42CX1wm4akWmeAtQH6lJz9QmJeNget/7y9t6NfycWX5+aj7F5W8pSXa3iU5mqvNyx865zdgG6nQA59dIVufagzGQAA3KHhexxzxHW9ZJlucWXckrHTdFnGvcaBzQ4H67qB8CDwzwY/gUgAVCsd6H1LAd7aC96jSjUUQdu5ZB/50aJ1IPekKBh6SrxtruLS3YAEy7eaV7U3Qx3pQnaOY9a55GpqdMpRAIz3Gu1+3itjhuvl4xPFwaX7tAi3YgOw93Z6wHSYMhfZCIK7C4FXPsX6KUBUHOoba4tU1nVfrhYf5ERAGfgiytmuvCHB7d1qPOnOkxtbLRXs9DnoG3ghybn+TDxYOfaPPXWVWLZyRNtGgELwNypG+p7XG1RcFwNWqoqwtl4IR68uR6D0bj8EC4R0YZzSmM97Z9PeJA9bSTL4Vy86B83bo9/HeyTTClvkopzNABZx5CVIFCllWddyNF9G8PKGdq4f47urZoCkTpKqy7e3cucB0GOCeZ5gXl6e69S4O8edMNA/baF3i13gJOXYIYBVV4UH+prIy/cFuf7LLZ9ip72HQV8+bNoKS79aV8/qEPh+uTrEt/9hV+3m4rrtXY/TXSmGQHwAgaHQqlsH4buN1uMUewJib9S2ssb0FtXB2BnmKaOms5XPaADAOoKixJaqAmgUDoScY6fV9+pjthNM9OJhuuQnt2r7AEadK/0tJwHVcjgTdJuEDZ6rA5A6DMDPA94/exMVmnFq9tGLRR+INnHIgAjkATJIoMNZqPo0GvS9drjR/r2yk1mi1LJAbGSvMcFCpKSzOd0sEhawAFQwiJQdpIA9ANVMChkkXbfpoM8uE/RT0SBXVIAAbdb0SipsseraYHKuIB5UvWftRRpDQTjiQKrVx1kQojDKDPVan8ptQuh2KwOzUqpkbG4kX6EEy0TaQFnqqjqsZ+5CQQlQRtUM2psbwqQFxnaGaqHVHAAuGsveq1TWnwdL3DrOXCL/6C/k1NnaJfOnxqpW5eid9oY0msGEPVuoMEgol4tTuqMYg4JjTqk6ahnwX8AegH8JOYO4UrS5oLGJv4BOteYnK1QiU9hcyPpAPDGLOgpMq2ZAhEIb82luxt5A+jszPjvAQARTBF38sDaMcfGd+xx6+0IE3dhULWzeKJvrZsC1I158+bZgw8+aBdccIENCQ9F7AAAQABJREFUGTLEZTg8UOMk1Y0bN9r9999vZ599tnXr1s0t7gSkU5eoY3ti6KDj7HYDakaMJpCKEgkbmaQaUlaxqMIWTn/HFi14z5YuWCZpccLWLdlgj9z0qA0a1c8GHjXQynu3lzRL/tH9bpQ+I4FWX+rABOlxnSV2ugIcK4m0ossqvfS3rmt37QP9VLmWXYPS4j7pKx0uoWzf6TJQQOLNVDim0fW2SPSNYQY+0U9XLBpIJJW3uqWbbNZLM23xzAW2edUG7Vcu0C3JX2mncut78AAbOG6kdTi4n+U6MQCSf9E2wUiC9GMUFVPxgA1milxKfGIDF9FvRIGdUEB1Rs2Oth2j/qouIUnOypKDqlLaCTalbQGrdeJyxboKq6tOW7JE+tqd21uySztLtBeYVfuk6aKiQdVzgFlglhEvB2XRnP3AtaltNLYR2gytqnGoHah5kFqlwzVR6reTyDP4pI3JgvDkhHD1kQbg2h3tl+9uxtQ5kEqLVGUCzZdgsBtvYN9xrYvanLHKZVusKF1khXWFVrdGhwF1Un/ZVsN64ey00h6XcjhhofIW1xVDrN7Y7uAZGIbSCXiHe2u0dM/RT2ukQATCW2Op7kGedhfYAKJwi+RyypQptmjRIrenMweq+DA84AYwLV++3B1FzmmIkTmwKUD9AEgvWbLE7rjjDhtzzDFNINzPpuCGxb8rV660b3zjG7ZVB/dwT6fTTesMCCO8G8+uqMr+764nc+hWh+pIKpVSb9iwNWdP3DfRXnn0JWvYkra+3Xtbh6KOVpmrs6GDB9n65WttzoxplrinwCacf7qNPWWsFlqqk1V/yUE6Tt9UvTbS7SYDOHbRBXe6e6IFrAuNWFozADkB8Di9sewycot3J6XT3emWezu9Ix5H73zbbj1YyggVOPgut0jinX6t8qljh8w2VtnMh561p+9+xGJVGRvaZ4gNLutl77w607r162FJZeCNR16wFx9+wg4+8Wg7/rPn6YCgrhpkBEH7XwdMlBknqQcJKK7IRBTYXQoEAzu5Vr0JDsCqV51NuXqb21Bvbz0z1aY9/aKtfutdK6iq1xrlYquWOLy6JGM9B/a1o846yQ7R4mVXL8UXYpKOay5K7UWVUSg5IbRKlXRNi3bnTdD0ZC8Y64A4AFvu5BAw7wa1esZfXG2SdkkDdOC3sZ4TCxLuQHouh7JnQKpkuDjB67RcdkApiGm7Xg16NyxYY1OefdVmTZll6bVpy4m/rNm81n77k99a+/7lNmLMSDv6pGOsvFd7FzmzbG4mTTwhpVk2DGAfAwAnpS5iF6Ozjn5aMQUiEN6KC3d3swYA8le+H+zD0nCen3zySXeNHz/e7e8M+AYccflwnn32WbvvvvvsZz/7mQ0fPrxRKtLIafIj+bDfSQZ8LjIfGgVQbaBuIB3bWl3dFC92XtKNJJyDfBi4Pfzww3buuec6sI4922juqTQcoIvgmd4cqXRK075b3t1oD95yr815Y4EN0zaax4wfZwOG9Lcl8xbbymX32KhTdfjUkb1tzbIVNmniJPv3P+63FQtW2CeuONPa9CnT4i1J7dhFh8AJG6PHoDo1dp668QnYwbS01LJ1ip70sV16AscuWY1+AxWUAAw4FRD863LT1nTJAhry1WTAHfqXAySMunS6Z93iTfbyn++01559wQYfcaQdff4Z1rPfAEtLsv/e2/Nt0ImjbMinjrd1y5fZmy9Ms9cmvWTr3l1i53z1Cms/apClhSdShKVgvb66O+EPi3DkxBuZiAI7oYA760rfAcCoaQCAU1I/2fDaQpt020P27hvzrKR7Fxt3yolWVFlvrz/+oh094Rhr6Fps77wxy/59w032ngDtMZ880zod1V+LHCU1po9hRKvBqTcOlHtGDjp2jYJ2Q/vDnWZzZF+vTwWybFCjQqKusyulCs7ORwK8qLlQv/Gui8cm02jvbN0H+Vd+APiF9SVWv67OXn9ymj31yFMSFmRs0EFDrffIXjbrldk6G6Cj9Tuyjy14b549d89zNuvF2XbKeafrsKBDLVauWT3xhRQHwylSHabrkg7wD+JnuLBdSpqSFD20PgpEILz1lelOc+RBNfc9Md4ffgBSdXV17hRN7AFH2Dm93UYgPmzYMLvxxhvd0fWoHrBrCm695JNwfBq8lJ074WBw5+PEzg8E3McP+IN+r+PRCifYLUW6hx8Cz/P54+7z42nwAbP0sfdOfn15+sRySBSSMi/d9gf6/PGPf7Rrr73W7r77bvvud7/r9g7HD/XA1x9PNx+uD3O7e6iKs81g1Zoq+9dNd9vSeUvsossuseFjD7dcG0m2JUSuT9RIslyjAzqkQN3ZrGvHPnZx/8ttxLS37KF7H7bsn2vs4q9dZPE+SKCl9iG9VN1kqEvSDdUTaiHqTyVlozIFOqiAagYZWdU518mz24L8JV2dlky7sR0CtPlTDoPp+yBk1ysHsrHg10nB5ceBbwdKFN6qanvp1/+0N+fMtLM/e6kdOuE4y3YqkeQ9qSn/enXyAg6FirQ8ae3b9LIT+/WyQ4Yfak//7Z/22I032wXf/aoVSv0my1Q5GSB/SgftGXr75uJp7tsmLg9ks9O69wEJ05JpHSzGp73TJpJSkYrbimem2X2/+ZsVp3RC7FWftV6jD7Pi8jJbLbD9+qRXbMBRw6zrKaNs9NoJtvSN+Xbv7f+0JbPn2wU6TbbrBAlxtIMJLUDV0bWjoInR56DWQctTm9NH15wUL0Acpu6qs0uI2qGQrxtY6ht8HxDPsNOdk6HmQXNCCi7roK3ij4EpvIs/ge+E2m+BUHN6VZ09estDNnPqGzZ67BF2pGaWOvXuYgmdwrlUA/gOOpFzwoUTbEzNaFv73hp74enJds9f7rb1K06wEz99qsXZJUmJY3tDx0ZIf9MoAP6h740mn296++jeOiiwraRbR36iXOwmBWAs4YuO1QOccBC4wThG5Dhc8AwgciBK35FUeoMd12GHHWbnnHOO3XPPPTZt2rRtHbr8Ob+SbBCmc69nb3ya/Lu/+07Jv+/t3eWHLInzkZ1wvvY2zN3xBxALM1NmD6DDgWKgM50zeS7RSZqYpBZEsR3Yli1bbP369VogqN0HVJc4tv7EE0+0Rx991OmR4xf6OUCoO7TDYO+foW3+hd6mK2rtehJLx+ylx6RG9c4Ku/TKz9iRJx1lWQHwTFL7xDdIuh1LaeGVoKemvrMFDVYbl/S9LGmjxh9pn7rsfJv32pv24j0TzbYCqFlkFUiMmcpOqzLxh5RNGXRp4xEpm5t6VnqdjrXSyEFPwiUB+GZLE/2DGFQbAn9KsRskuul08hnI+1wHrTeWk7nKiztJ3zjkdfZjL9rb0960sy+/2A791GmW6VKsQYWUVbQHfk5SxGSKxZfUN3Z3aLCaVM66jR5m5159hVWu3WwTb/mnZVZsdHsZe+kidCOppMrt7iJae0MZ+vqcT/MD6R067El+Pf3y79Rjb3jmCvNj4mjOeLcf9T0/bU6fWXWNus1CxE3T37Ynfne7devY3T777a/ZoNPHmvUo03aBWdsqBfE6tbVq1dfaIvnp3sYGnjrGrv3+dda1vL098oe/29bX3xVAZpEmCyG1nJGVnyyMVAQphc+e4EiR4S+uPIhYlTfL4g+NIJO6stm0k6Q7SuNWicZ9QipwDtDL/bbZJ31T+2NgrIhcPjgEiHbakNUQfEuDPX7HYzp98w0798Lz7KzLz7J2/dtapo2+FdDWxQ2Un/oCbUnaPmu9R/SxSz53sY0ff4I98+gzNume5y2nRagk0+10pNSQLpc2LBvfKPZw2eqDyx/3yLQeCsBnI3MAUYBGHTZ0JOHOhG87YvphfzwTFn7R5UWHd/myZe7uTkLUN05C7Nq1q91+++22tbLSufVMxauuhNUMfLyOkTYyVOKhQ8pPN/Z7ZeBsMk7o4DgfnR4MOQAd+yyevMR5aa+3ZvZgf8Xl4/g43QHLfsbED9oA3tdff71ddtll9ulPf9q+9rWv2XvvvefqH3WntrbW7rzzTqtS3YJ+1DUM4YSNr1P5d6RXGflBH3XF66ts2hOTbeyoY+zgIw5Rpy/ozDYGpEtnUzfUF8it0HFGQLxWJ3fKT4Mkw1WxrTbkmINszHHjbOqz02zVW+usSO6dXE4AgClytwODOs4C2bKloetdXdwkVnVLaXe1Tvd6gXxyUSMw7Jyq7gG6ASs4CgC4kqXpe+R4HNyDSgtJBXDTQSMvF8JwB/tsfWulpGzPWb+jR1i/CUdapdRl0kIkOQCIq+taAJcWYNGuLqyWi7ETg+hXq32MS0cNtDHnnmHzX59jS16dIzATpFOxqj0ofWoYCXZ4UKy0SU9fUuHrr7c7kO8eMO+KBtCtOeP5Ht/CvM8/ez+EHzZhvs3zR3GF0x6kjZpOfdZAghHq0q328j1PWIHq3elfuMxSB3WX/rd0xDXwTUgyndM2hQkB3BR1jbqtLTxrU/VWPKyPnfyFS622Jm1P3HavpddsdWA5q5E1e4g3CIzrXHq1A7VFbcZP3aUdsog6JzRdr/BpUgBnVVwnwWb9BHwejRbU0zIaBLNyo0ELPjO+X6BjCGq8A8jkiRbNoFORynWhzX1xpgD4dDvlE6fb8FNHWX2ZBrhFCkvgGyCf06Cftkz02WTGqlNVZt3iNuG8CXa41O1efuhlWzl3FUFrSK1dYBQn61fwT4rkVXG5ZLsy9QNerKlrkWldFIhKtHWV527nxjNPJNEwb+7eLp/ZNxdoFumeGBf36dOn2zXXXGNXXHGFfeYzn7GHHnrISTQHDx5sF110kVvI+dprrzkG4hmKjwOmAkDzHRjf/TPfwh2Nt9+7O0xNDJZLxrFaMX8ksUF4jZbc5GbbFXjZ9h7+tvvPLs7GuD2dsTtQDGoZlCd0rFddwzBLMmnSJLvqqqvsBz/4gRvA3XLLLU79hHUEAPHHH3/cXlP9YoEmfvMN5Qc9m7sy8oNahWmb7DdemKET9HJ21PFHWU1hndUV1EhdQ1I1bYWW1pRwve6aS1YHL3AuSXGdDtZBSp4rqLdkac7GnDxWC8SKbO4rCyxXr85WAMPVHYFUdhbhZD06aXpf+nH2J2bLElKsYIW6dTCItmQrqleKlCTAQn1jx88UOPt3J9iSTeHllM5EnfTX5623mQ+/bnMen201i2stroWV2mHRAQlXgwVCFkgaV7Fig4047VhL6hROFo5aRidv6qRAQAh7GGeUlgxSPIEeCfuVVtZwxATWYzZs/Fjr0LePzXlphjVU1LoBidt9wuUHam8bAIfbAG22OZofiHYe/O4q7/C2HV3er+eP/p27r/dhXkjJ5Bs30yT3H9bdxx9Oq0OQVP2MdMFVv5a/+qYtnDbbRp9zmpXp9NgaDX6zqaxmmtTvEIDaAXXZNW3AK7xBYJT21+6QvnbcmafYnOmzbeHkmWoTqo1yzsxMIi3wXZG0BU++ZS/+dZK9csfLVvF2hQaNGrRKCTzuKrraiuq9k2g7Pq82wYJnNZGCdFxnZhVYWapEg+dCN2igrSpol65gOIoNlopX4cQ0QM9uSNuUJ1+2/lpAOvY06bHrgB8WW+e0LiOmwXlGbcwN7jmNWYwgrl1egPG1NNzymJ15wRlWVtjGJk981Q0iNHRQ+hrzrzunOUMM13Zpg/iGYch4OruX6KfVUEAsOTIHIgU8Y0cS7cFRPh3CHUD4G369PyTgSDM7d+5sP/nJT+yFF16wX/7yl9a9e3cbPXq0XXjhhfbYY4+5XTEOP/xwa9e+vYuPThxg5sJqBGfYYfyAgK3TnIEzyjCl/kGMFA3EYAVyXDBinK4XUIhKB5wX6aNDSNtFAkOECQZp2O7THrwA2OhEE1LBIN/kFWkiND5QDGVNfsl3TU2NPffcc3bsscfaWWed5erTps2b7Xe//a0jB7Mpl19+uT311FNuXcHRRx/t/PqBGXXE10OACzTNNyn2/5W0q3JTlc1/c74N6DfAOvfsYJXofrN/L8dZooIi3emsgCt43bUFfWLamT206VzrrNY69uli3fv0tmXzV1qmUrsaFMovkjWBCLYddNPh1C0lgkN+krJnp+6G5TW26KmXLbdJi1Era23aPx6w0XaGdTthuKJnd28ZxUU6kNq73RKqcvbmE2/YU3c/bZvXbFb9TFrXfl3s/KsvsB5jeqgeUY8FrnXk9rsz3rQh3ftY916yr01boQBMMq7t0bZqVxmlKyXgziLSmIA9aapN1xr7IjdU11kqWaRdXzrYQC2EnTt5mqXXVVtRpyLlgXaptkfdZDBBuSltlB0AD9Mcvd2HA/gHgcTOjNM9lgNPQ+/W8QbxGO7OqH34tsI79dsbT3fPN/zdtYVm2oD3tz/uxO3j9+G7+q/6CW+t2bzV5r8yQ/rRba3P2BFWLy00KUQp/6JTssAa0tIXjxW5es9qirgWZzSoXSeFtBk01mlwfOjY0Tbt5am2+JWZdsjxozVwltQc0LtZOxzd+qhNfWyq1W3RcVpSu5py0FS78CsXWd9RvcVnNdiXNJxRsAtXMbMYM6XZrvp31tmCp6dqN6Fa21K/weZJneuQ8pMs24HVyarrZMaBd7oFtQYyozTHYgX23qxFtnb5Ojvn4nOtoHOBVTdUW0Zbg6bcSdFqM0L4bqClIFIadGcksY+pHVLmNeIjbXu1s5FHDrdXX59mlZolKDu4jdpz44BEieV8AGoRs3NJ/Knsw3Uh/EwyI9PyKRCB8JZfhnuUA5imb8jcAR1cdBC8Y7wb/95cBJ75zpo1y+n0fv/737cR2m2CRZhTp061Z555xgDdPXr0cNLwG264wV5++WW34wV+w6N7wvegnI5s9erVVlVV9T4G1Fw6ds/OAzSxNzCF9mZNaBpzzRpOMExJcJixxUuWienVvI8GhK/k8svPXhtoSd4Al3369LGioqKm/O11oC3II/mn3H29qaiosE2bNlnfvn0dTehsevfq5cA52eK9X79+Doj/6U9/coAdsO79Uz9efPFFW7duXbNUwF2xTqYcd9Q4a5Nqb9Vbq620bxtbt3a9ZbaqQ5XELCvJG4Kq+kSFZTZJCpxOSdKVtZrl1U43vM6pYqgjlMQ8l9jqgO681+ZandzOWDTT5rw1W5JpTSer7TC9jR5pVqBVrUoS77iVpwssPW+VbZg429puils7TcmvnzTLnlmzwrrMGGGrOqW0NbnqlUBHVtPySMFKs0kr25K0d59aZtWLq6ws1la0yNnaTWvt3j/dYx3f7CGVlkorLSqwow45wuo2bLHuBe1t/ZK1Vr+6NgByAjYFkoTnlIbad9dYmzqpomyotY1vr1QdlISSRaUqjwaBnoJ4sXUubmclNQI9azZa0SEdHIBSA3VgQs4k4fOzRTHbIHrTjlEl2hl/aLZQWpkldczTgPqKwc4/52c33AZ8PcaNt/fu4cVhfuzt4R1sCVtQWOj4p487HJZ3+2HcffzEFU4DCyA7t2lng9v31SLohVofNMxKunbSjEzWShjUAW21UDqVUD6yBcq/9isRYOXwnrg7TVaqKnKDClWydw87aOjBtuiteRar0YE4HUvduHCOJOwvPTTFijcUWrsG6ZdLvWrpjJX29L8m2uW9L9PuK0UOBDMjxc5EqI2lCHvRJnvuhltt5bNzrW1GB29pcPzyLffZuq0b7NhrL7VY+yKlhzJhBiiQQJNP96zuY9nby6xUWxP2P2iA5Yp1kFdWOyXRNcgtNKDc2De8wATo1eySYjBkOa6fHG7keOjIwWpDr2jB5mqB8MFOz12exQbEfxD1K++o6mRQ5yE8gidRMmE6O4vop8VTIALhLb4I9ywDvjH7e3O+d/TN2wPaPcNZsGCBUx/oJQCFQSLer18/W7x4sdtBBT9nnnmmO4Dl5ptvtjFjxljHTp1cJ+IZCm6Q8HD/97//bb/5zW8cCCceb7xb/747d/w4yZEkk0z5CerDzRwITzUUWLeKkTYwPs42rVpr3/r6t21D2SJ9hwkGTC+IM2B+HxSE+zDpSD//+c/blVde6eJhceKBYPw0O50UIAX1EnTDoYcrJ5U1z+y6EzYs0kRqzt701CPcUk8Y/H396193Azbch+uK959V53vtl75hX7nwS2bVWZsxcbq9MVUSX+lpMrVMZ1mdqFbnLKlVTdwKtibt3397wGrv0KJMVnUqTSyETEjKllJnm6lqsA7t29na1avsf375U3v66SekdiKpt/IU0wALiVcGSRggXBLoPlZuZ3Q5wg5KdxCQVVhKd7tMia1fuN5uf/PP9nTl21atKi4FGAm7VS+lF1qSKbTjBo2xg1KHWNt4GytUOoXOnXRw7YLldtPTf7OVdRow6ojB/++L/2ntBZ4XvznP3lwwz3Xg5JkdKTJIxDWIKJe0v7AyaVPvnWjVTz+p7RI18BTwZ5o+rYwXCKi3UWdfqnyk6yStR+gHalB+kloMpyAcbSkz6M5M13XXXWdrddBK0D48tQ+8O/RgYO3rHu9cOwLhe0IhH5anMe/wCuKiDX2cDW29W3kX+9mXrrP6zbVW8856W3L7JKtCBUVVK6X6BWcv0iBwzYKlVqqZpbVT51ptRaWrt9oIxdW/lEB4kXZTyWj3ny0rNtlv/+cGe6t+ldMvb7OuxOLVMamUFKoMRBMB+baJdvbOjPn2/33nP21rsSTU8HIB/6wkzQh9yupT1rOiyNrP3mTlNRoAaJYroVmw9puzNvtfk2zS/Jm2qnirBuVqy1IlkUaYBgMaLLCaWnk6tPfBViz/SR3E897zy6zozfXa/rAumCmFXSQLraFK4HlTxrbUVNrbT74rdTa1J2miJNRe0zlmpwqsanmF+EPM5rw6w+6dfJe9vmiBeINAP/2V2q+CcmCd5JeWlro1MyeffLIrcmjrBVjOIvpp8RQ4MBBAiy+mfZ8BD2YIeU87DToE/NMZeLUA3xFxp7Oo1l7QPtwuXbrYeeedZz//+c+dFI1dUwA43g9ScM9YODFxmRZ4sijPGx+f75C8/e7cYWiKTKiaO9IqHiRdcPp6Pa2Pdsio0RT9qpo1tr5yhaYNA7CBa8yO4iRNe2oIC6C5WWoXAFCk4QeKAahS3n5RZqGkebxTT6AldYW6hD2G6dusaPTII49YSUmJTZgwwbmjE+L4aGYTTjrpJLeQ09ePMC0lc5fEN2GjxhxpxcVFkmyn7LCRB9vAw/tqUSKK1QL9ksLV5mpcmaxauMrmvfCmHT7mKGvbt4PVZ2vdvsIcT52TukhJro0tmb/UVm9YZSVtym3C8eOtsqoC+OwAhcRtbqFlGmm4AHVxbdx6by21tluKrUgncRYp/yzYEowSONa3Lj1t3EEdbAurLiXVRk9emqk6aS9lnVJdzbao1tILqz7GpYueiWkLRaXlsBHDrEumi3Xq0MGGjxyuBaeTrN/gfjZEO0rkijWdr3xzDD2DyaTaVZWmzqc9PNkOO/pw6zKir9teUZovbpq8Xm2gjabY17650BbMmWXxYg00VK2VUoECBqIBRTMKDx1yDDNd48ePd4d17U0bCEJsfb/Ua2Zn4Fs74hl7mmvaBGH58Jqr53sa5r52n18HlFwNQnPWp1df69ROMzSq7+8tXGxz1iw3TQy5AR7VWvJp086ZFtPguFDIfPKkF22rNERQBqHesaZBeNQtukxX1Fi6tsbu++tEm5ddKylxwkZ3O8LGdhktDwKtknBLzmJFharLGzfYxClP2bLcKrVHDUa1K4proGoSUoS0o1OD7FMdj1AYEsyIvsSnZR8W16FdE+972N7MLbFqEii3Wam+aArMrf/QfJj179zbTjn0ZGu/pYM98uBjUoEJBrSovTBwzao9FUjCn9PuKRtstS1Y/pZAuvpJDRA4pjcr3sAuL/E6wHbG5r2zwO6c9k+bu+w98RrZKw4uopcLpUGSdvURqHYCwqkHB5oK476urx/H8CIQ/nEslQ8xTTTsfEa6u9EDmgBSSIPohDyoJjyeXdi6V2lnlMmTJ1vHjh1t4MCBwdZ0cGuZ8Mie8NADRvqJrjnvGAB6vh6l+7AbP252T6zWHU2s7gE2z/lrLN7ZOK3Iptz+rnXs3Mc+/fnfWrzfZrG9QHq+t/HtKEkMWKATIHPo0KEHFACHJtQFQAUDNOgAsC4vL3dqDQAX6IOKgx+YUOZPSaXp3nvvtUsuucTGjRsX+Jc7wundu7fbh56wMO+vwwDJeispLLX0SnXE0kct1BT1qPOPti2xCieRKgQVqJ9lOnzB5LdtnvYnPujYYdbv2D5WpU4yyS4jUhOhLnMM9eZ/PG5rGtZbOx2t/aVrvmqXXX2FWyimPUdAHpp7VpyqQQSaAM0u2mKP/ugvtnXKewK7bWQt9RflPyNR3wWfvdwO+twZTi2d0zTjAu5Z6a8Xaw573uT52tLtEatbVCcd70Kd5FljFdphodcRA+ya//iOlXbXVLfAeamk9489PEVtT4OSs8ZYpm3S6th5QoAg5QB/0ta9+a5VvDLF2h81wPp96lilTQvjFBfLH5DKxaWCs6m2ytLvzbUiSfndDLxAEaBC2AQVWeGRbRLeQw491H7/u99ZWu39/TSX2wPMUK8x1EPqJdeeGGjowwj7w87XbcLkvcXQW+2lvKCNZZdsttmJiTbyxDF2yKfGayGw9MHVrsTQ3cCWBZHvTZ1nL93xoJ1+6fnWSfWbRcXSFLRcocCs1jEUZEu0OHmSvT1zpn37/33LFsTWi3snrENNO9s0e71tXVplheyoIpBb01BlQ48cYgd9YpBtjleqPWrtg1pkXGAaWpZp5qt4WbWlX1tt9ZXaKlUhZTXAZjeWgnZF9rkzr7A17bVdoiTgqJ+oWal9o7pIE8ja4K79LLM8a5sWbLGzPnOOJTomJYlnJk8S/ka3aqz26F0PW+e2HW3sBeOsTjssMUJgYFsvd5qusqqV1Xb/vffZiKOPsgFnDrZ3li9SPOQq4c4rkAcNoCVVF78oKilyAghfR6gLLaYehCt09LxDCkQgfIekad0ffEMGYPjn3c0x7rkATgBrADgXagMwC3R9UUvhgJ6M7Nkthd1Rvve977nTM3FDvDAUP7LHDoCGzuOoUaOaQLdfrBQsjtzdFG5z53at0CugQlDcfWjQopeU+OH8LZtsWmKRlbYpttHHjLSiIZKqKF37w7Co1C80BWCS3z2l+/5I14cVJnmlfBlYUe5lZWVONYlFu5/85Cfd4AxVpP79+7t6tGHDBkMXvGfPnm5g5mmFX19n27ZFXzp4h575RssQtdBLfX67Uus+oLstWLTQKtZqKrhzsQZ/fFWdUCdZKECbiUs9RlLp2niN1THFrO8c7CFYZXWaT85VZO2dtxZY977drKCD2Kb0QduXtNXiSxCD/tnJQFUHNY+swksJ2MeK2tmE/3ee3b/kj7ZydaUVFwjI57ZazyOH2eFnnWgNnds6ibOOsXJgoUhhNUhKdsTxo6xUEvEn//K41a1Q29LkQLehPe28L57v8pGVekwh7Va66j0PGmjTdeLg5hWrNHXdQ9J/hVVXI6CtLp12prALBXrY/SUtgJ7Oat2DQEGDvtfpW5mkt/PfW2Addax9Ufsy+RFOEPBmx5e4QIBrMmo7fiExU+aF2ue9WIMoXyb5dD+Q3/dHu95VmJRDc/X/wyiHZusAbFbj3sq2UjfrKvWtdKUd1berlWr7TI0q3WwjM5Em1as2S9cJdCesXe9u1n7YAFU8JNdsLUofoUFilXYJekSLiLu3twuu/rTl+pZLgKL2VSd1jsfm2sS/PmmbV1WqjadszElj7dTLJlhp/1Ktm1Ai1B6Fp9UHSTYvyTrbAGaXbLInfnSTrZo4SyBfIF32mzUbOuxTJ9mYay+xVFut1UHbRwsk0eFmogppubiABqyF9uKdk+yluVOsrGeZtRvYSYJ4DdQlEWexaVGs2BIbJA0XcC7TQL3bYb2tJlnLMEDZRrWrXlL/IltaKXUytb/BaruDThni2iZqL3EN3LPaNx2BUSoj/XDFyiCCPsnT+aMq5w+jLh2ocewfxHGgUvMAybdnCOjvsvgSUMQuFqgWoLs7b948J81G2rlYuuE33XSTk2RyDLn3S6fOM0wlv5NBCg1QBaAD3NylZ/S79/gSAAH8sttDsNiGQhJnRX9XjJ6dJtL1OlRBwAlmFw6fNHCF7fb2GTUU/BIe0n9odiAZytsbdojB/P/svQmcXkWV93+erdd09n1PyE4CgYRAgISwCYgCAuIgigsqOuroMO/oO/Nx9vmPOjPquI2+jo4sAioiuLCLQFgkEJawZiFkg6xk33p5nqf/v++5T3Vumk7oTjrdneRW8vS9t27Vqapza/nVqVOnsA/OoU5/9Vd/ZZdddpmtXr3a7YUzubv55ptt8eLF9ud//ucO0IkT6k4YiMIVIN6S4ywc4pVVZuzkWSfZug1rbamOp8+gR8pytAC4jgpxXWryx+l1qF0g/M1IuuabJVU/Khor7OWnXrV1q9fZsScda2lJsnUkFWO8A3AufpiHrpyWiT4pKyo6K9uGnDPdPvC162zCh8+xvheeaKf+5Qft0n/6vKXG9VPdo+6jotKoNBRHmyYziJ4rUzbxXVPs/Z/XRjGdcpnqmbX3f/JyGz55iEA20mnlHRvHkhaOPW2aNVRkbNEj8ywrP0wcUmb0zJl4ejvTRAREwvI6euuqiL5RrVI8WLPgVVv54suyMz7ZMj2kHhXNJbyuKnNE9AttMbRZ7sO38ABH+Z94H3Yo2vU78Tq0g874DKHse121CgP67Ta0t409bpK9tmShbV21So1Eh2BJL1qyaNuhSa+O0pTxIpkFVV1lD0NeKz679CzlE0185SsLRjteX2GLFy20AceNsbL+1eq5tdJTrkmk2tbkcybZhFOOlYWTHXbi7BPsfZ+8yLqN6a52oT5b/W1U16XTXa7preos9T83vJ9d+NcfsxM/8V6rPGOcVc0aa6d+4Uo7/TM6Dbef1L404UV7JK2JQEZ5YpJe1AQ2r42ftOfh40YLpDfaskXLfAJep9U2NpwW1aYa1FewmbtB/QgTd3TRZQRVZcvrvIFaTfoFyCXpX/7qYqsR2B8+fpgAPH2H2jOdCTMG6YqlNVZJAO99EGMf4wYOHr9TXfCAyZ/DigPRaHhYZTnJbHtwIDRoAMy+QExr0hk5cqTbc77++ut9U+V2qZ6gq8sPNQPsPgPOP/OZz6jjkeRP6Tm4VccS8hA6Ftf3VWfJe/x4Hxx5DOGCX2uuUfcFBAlOdAV+cOo3RVMdW+nePfWneTrNn0O4tl4Dnbj0P/i1ldbhFp5viouXd4g282LWcsmSJb5Rk7qE3+OyvoEaCvsIzjvvPK+fxI/Xl3h9iNOM8yUlxIrAjYFu8vRJNm7iGLv33vtt5KQxVj2gWvB7pwZZTQapDxoF0cVMSzczD4hAGqbBNiNrJVtlSuyPdz9iYyaOszEnj9UgjKQ70l0XFFZchVVlYmMlDvUU1VYtRetFTaMNOPs463faRJ1wqZcayK1KZtJEn2Vyxl3AN5PEjETQDL4AbQ4cKdPJl3XonVbkrKKHPB0YRPXX1VfqG6zPjIk2Wabb5j34qA3TBGGQnncDDCShK2gikQJ8MOGllit/GQ4kkstq42hRp2U+fMuvbaQsUIw7W/q1VfCYnCssReGbUTaKqLZIvQ18D98CWkerCzyI17/An6OVJ5Q7hZk/qpsOwTlp9sm24IG5tvDBJ+zk0Zejwq3Kx0qMJNSaNOYFWNVgBGJ1VQNkjki3Xym1jVRtoz13/1wrSB/8uLNPdrDOoT5USG3nUFvS2CWJN+2xvIfWk3ox9VXbExG2RbB3BMc3EaJWmxQgphnpwKAZf3WlVFK0CVyWgrLdREwTdYWiiciprvNE3RcJpaC0lT2lM+zYYTZ8zAib/8h8O+7E49VGtQ9DUvBGtUVMogp6O+imTOiCZ9W2aUtYRamUJaK1y9bY/Kfn2bGzj7WyIVIr83zCL20g9bKhuCJvtXVxwMcq6ldSr8SUI9RFtfQILVxSrHfmAA28tdKbMNiE8FyRMHCoyre+9S37tID2V7/6VbvuuutcHYVNdRzIgk4vEk+AFLN6wDYu0Au5DECLZwa4uGseNv5uf/dQiVPino4+8hXgUDrq6rzjx7cjXCjbgZapI/LY3mlQ1gDEg4oRoA51JizmzJo1y/W8d2vCdu2117q6ysc//nHXESdu4Bn5CuCH+/3xMCf0nZaCqePOIVl71wfO1+mbW+z2G2622tWbpBMqaZmWgNOSLAMAsCzSIKTMoE4esYhSu7Fov/7ZHbYtv8POufp8Kx8gKbqGxyJKoKo5qH7LyIIGYnIj5/VJNHXNgOoFuuvKVc90kE6mhwbYGgAIS+2OqaOyCPirIEINkbTfoYTAAeVkq1ZagNp5J3At2EKyWsVRG0IiWFmwWR98t/Ua1Nt++6MbbOsLyyRVz2nwZ6OX1FAEEPhXLvqV6NgKfFfkpSC/Ypv98Qc/t3U7t9np115hlSP7Cvgrnxr8kVhSHIBHPfmiqHKt5XsU+sj/27zuxflz5Jd+PyWkztCnqh11O2mMzXj3GTb/4Udtw9wXrVzGwlONOiBHlkpUnSXtpfctan9CtFIJCs7pIJ10Y7Wt0wE98+Y+ZqecM8uGTtJeIgHojOq9yGqOTJ+t1tCg/SRqfDk8VW/TalsZTSTB6Bm1G3l5+6Za5zTRxeZ3SmEa1R6zA6tlJ1/50UoS9T6C4ZRLkWgATY6WpEk3bbZ7xmZfeLpWxdbbH+98UKfrKqA2WKR1aE9dUapeFaySqURqdyiTcyBYo/qVcum4FNbX2x90emheC07HXTBDx9pHAJ203DJKLNGoBSr/zku9L12bspTcHDEcKHWvR0x5koK0kgOhUYfrvqLR0eFcmlAKFEB4mJ2z2RC1lPe+5z2udoKu7sqVK12nl02WqB2gHw6tEJd0A+0S2Y67lDpYMBKOISNxh44DfGvqCuoM7B0IdSl+JQy/Bx54wG1/A8BHjx7dtDktvG9TLvV9o9PoNDDWNdjIY0fYFVdfYa8vXGrX/9f1tvQxbZjcWSMgLmmYhm3ZMZGpviqrSVdb9dZyHRCy1H7y9R/ZqjdX2KXSxx4+bYjlNagCrllF8cFTF269Iy3VJ/Koorh+dU4AQXBaS+Fapi5j2VoDr0u5FAbcoDior7joUJG4dSdRHu0DdSnmCEi+SQR9UT9im7ACCwWpxmSH9bELPv8RSczL7IavfsdeueVBq1gr1RaN9lWyGZ6TeD3LTEE6q+mNDfbGH56xn339v23h4iV2wac+ZINOP07m2EQLIOMARPklS3ryckU5Sv4mHGgVB7zeUjuZzHVP2fT3n2f9xo6wX/7oelv1h/lWuUNAW7b7MlIZQSBDPWOjr6Cw9jZrl0Whwl677T6768e3qM2Os1M/crFZT01UJc1GOqyGoRiln6os001UDR2d06DUiKJmFP0V5HYJN3GZcCNlzrOJWvsnWHVCak0EogLE2Uvh5EW3kY2ZCpDVlRMwlXEbPn2YnXPxmfb43Mft/lvvt5zKgylRJO+cfMvx86jC+D4gzdIxNVq3psFu+/GvbenSldJbP197PAY3tTFPTElG/QB5UJa8T9BN4o54DlD9EncUcoCOEmDzTo4whAU8hzgBSHHFxd8BrNBju+mmm9zaxd///d8bNsTpbJGCQwOpHuFak/475S95f3hwAD3/kSNHun10rMPgqDfUg/iVA59++MMf2pw5c7x+oEsfwlDfqFutdVrRdrCMioUO2dPolrLj50y1fj362u9u+b399Ls/tZEjRtvxM060bTrdLyfVkzWL37TXli+x1+YtsmXLV9mIiSN1UuUlNmL6KNcLzWHfjxEbvCrHgIkLG4B55fqdunGArXca86MBV+/0Xz95xF0JOIhFHoAwbp8NaRrSb8rMEr+QP0GwfsKmUXRXWN23qpzUUsbbh/7vF+yJm39nD9x4m829+0GboJP5ykQ0u6vRVrywxFZsXW3LF7xiq5atstHjx9kVn/msDT7rWKuVDjqnFAIGWI73W+jKaQ+o56lZjv1d8ifhQEscoI+nokeAV4tBI/rYhV/8hN33zf+1G773Q5vyyit2ynvPsAGjRlqFLPyUa1WpSvbAZT7Fdryxyp7+zR/tyd/+wU4+/WSb9RcfsdzI7mp7tDXBaGaF3vao/7pV/9GoSuub3vUOwK1g3nx8vFEwD+6NS/Vbrxl/aDfgXMmqnY63Y97pFznoR63bwbn83WSoGkdjZd7OvOJMtces/eHO++zNlcvs7AvPtNGTx0vYlNHEt1orTjLBKutDFVtS9uJzL9rdd95tu3buskslBDjh/Knah5LXtF8ZFXH+Mb0gPVdGIa9kjizol7gjmwOtH9GObD4ctaWjw6Qj25cLwJv34X7UqFGuXoIlE4A0Es6wecQ3VcrvWJkywxwhx43j6PgIGwBVoMW14x09G4BGHR89nfd2HZ+Loy3FkSNH2pe//GVXYeK7MzGjXoQ6QN2gzrgEXPeoq1C3uOIA5CFsq3gniRTqGK5uIskUepdsehx8yjD70KgP23OPPW/PPPKs3fv7u61BdoLTUhH93Z33SMXDbMSo4XbpZy61Y2dNsSrpZiMBQ4ebpWX0t6m2yNtYRvYqxGCuqgQA1/TSa5Zb5PHqzRI5S9rRG6TzboebsFQ/xWVzJm9xyqkDCTaGyrCZGg9L4ei0KrxeZRUfYCCRnoNkGX+wlNReKqcMsbP/9pM2atYMe+HhP9lrf3rOGtduswod1vPq3KdsRz/pp08+xt598dXSSZ1hmaECN5qclEnq7hMFlQ9VG9LPaPSPckOq0Z1uEpdw4B05gMQZ9Mi2ROoRk9/qYwfZJf/4Gev589/bM/c+Zm/KWtbYvoOtTPb0e+iU2ld+fo9t+fUOe/3NVWp/Ffa+v/m0HTPnRKsYLpv92tiYEuBlM3Va7dknuaJL02tgxUjIHJvgQFkcNZYwNJGoLuMh9SpJqX1lSYdUhc3he1ftKN8KHUXQX29nPIpoivavCT2aKcWejTbnA7Osz6Aa++Ov7rWbvvkzGzpghA0eMNx2L99lG9ZtsD/+53320rJX7M1Na22Iyn/5Zy+3Y6YeIxDPyKM+jZ3jOWygkG/5kGHPNTdRWfBJ3JHNgQSEH9nft1Wla4tEGlCElZNzzz3XevXq5fQBUjgAEoCJ0xA53RC6qKrgH35xqXmbAJWncCB/WujQ6GvlHeW61Nklfd6BMLfVcZikpSTRRZIdJmMBgPMcpOFhktZ81YSE2lJPCc9eL7c0oI9dYDTVN3a1DumKVg+qttMumWknnTnNdmzYbls36Oj6WumSVpRbTd/uvnGzrFqDe6WWmNEzVWTURzCdQI1ioxUE+cc9S9zBB0DLa/AHQNyd+2ngJRCAWt4a0+WgLfigPHp9LPmhyI6+OkYZMtIZdwAgqO5L5QqDdjjSa7FO8wMBEdqgdE05eXO0rLCM1uShuHKTPfODO+yFu+bZpJOn2YlfuNiqhvWQ2QoFrCmz3WKQNHO1WU5E4JXuo6bsmVAKoHvPsPIZ+ZHjxCUc2B8H/HRiVRsk1400AiloM5lsHFZlZ332AzZNOt4rZJN/07NL7c0nF7s62AqB1l4zhtuZs6bbiNNOsJrxQ3XapFTXZLIPVROf7AK80etWvUR1wzdQIwBSY8ro9E2vo0Lf3ib1RNOjySLBpo5H1lLkSR/kjZP2qbYrL9qsNyZd/RngTxg1MJdVKwAtlH+opxRRD6sxO/68E2zclGNsyfOLbOGC12zV2pVW7CGrLrbdXpORgmNOHWNnTzzfRk8bZZWyRY4JRvaRZDjO3gUQOqhOEnAmEDRD7ye9n2FyIY+k3YkHR7ZLQPiR/X33WboAaLiG+30FbgJGjNCSUGIjOEjBUREIKgPQIWwAWtADtAO24iAL/wDGuT/0znvYvZJxbLGXT/LQERygjoTJV6h7PFNvcKEOhfrCFYfUHJ3LENc93+GPy6PdXJrqpdLwwZwBnbENiZb0oMt1ymTZwD7Wp7GfPPUiyobMjGGvWAOhfIsa2KnDmBQkfwVJ4wDGSKVx0WAP0WjI9LpVqnKQi24FFDxEkIdHL4jrAECBsNQTQXkCik+YHNSGrqwGbIAFYQENSPeilScoU44oXTeKLnCAjeT6iqxVZ3pbekA3HWKyW5vQaqx8wkABB/GTdAQynLOkC2E9eQlK5QeI4OEXkklcwoFWckBTN29jSMGxx5+WKpX7yUZ4g/Sbepw0UudFjLTGM3faQ//8U1v45lM2+4xTbNIXLrJ0jSa5VSnZ65fZTkm/G7VRGpk6k18m1QBjpNzeqLhR3aQt5FSH3fa4QvOaFKO7qEkz4U1LAk4/4NW5WZ2mvtM+ySeOVuYx6a9KnQITCvoQV3/R6wLlEoIqH1plxw2fblPeNdXqd8lvu8ZEqNUUZHdcYnPMneqxqLKkte9CU2sB/ag9067JEO2M4njz09X7BDKSuCOeAwkIP+I/8f4LCPhpDmx4BmzgwjWE4RkwFEATgLul8CHVIO2M0+I+0AvhDt01Kkdz+gg5mrs98IgOOLhmvbV7e5cZAiTXVnCgpXoUrwPhPaS4D3UqhInXo1Yk50EYbpEMM8hhW9uHOh+Ew8RTI6Ne+0AYPikjsVzWd2zx7RngdWGgdLAqyTW0RId3AGL+oyLCAOqDJ7TwLF38Uc++SVR+kAPAc2XkZcAHgJMX3fiF004aZGtYC/qiiQRcGZM9YocQUkMhOBQY3HEZ+QFUENdnlTfJ+jwLDZqEpFHsVsYkRJQjXJQ3LEi4U5pxR9sgV0w+gCCKEH+d3Ccc2C8HosmkwCj1Sv+9rvsKEqfQqhLKoxHrP5oQ7pC0u0HS4Vy1amw3+XEYrJZ/ohUs2pdArJzXQhqXbG+z/6KglaKi1Mt0woPqNXVc7UYTY09T1R17/40lVTQ2VHp/r3ZBm/N2V2oDgTh+tK1oKkp9p7HoSn9Bu9I7ZPBRs9dIoawQingp6YGTwVS3nJXrYFzrV4JVBMDpnXcd8EDtmP7Nn/2VUowS91Uu70OcMhEDAe4Td6RyIAHhR+qXbUW5ADjYEObHSYYB8MQBEWTwj0smg3Q7gCXeh3vCBT1egHqQZLYiOx0XpNSBvj1BvaC3Tvq+t7PmcPTRd9QXjZyPwk0PJf8IYgbfAE6bnkNFcCJNlJpeA1SbnG59cJeH+5bqUPCLwjGgcxeBgciv9CYAYUVmoAeKI3nnIJOUTvVzdA/heN2M3QcpmoMIEXAaCl8vIAKNtCbLJI6N/HCwUMj+HtaQwB4X5T2WyJ5XyV3CgX1yILIuQl1SDSrVWVe1UOUF6FLV2TSNGhd2wuu036KWGaGqKHb7qY8OgT0uMm2c9o9ATJGh4SAYfXDGGD1Hk2wP6G2E+u/jkt5FwDp6F9rjnjq/p91GIUhUrimAALN7hXYQvY/oRPd7XofnqJ03pRuieuMN9GAN4Ut9UGlSEPLnhfCMJH+OdA4kIPxI/8L7KR/AGTvfAOX9geXwjqU8IQNfmkc9AMdSIO8DgA8ScoA4JpqCNYvmwH4/2UpeJRw4ujngY3nO6hqkP5qRNFw/dM4BBpFETezhMcalqDUCVcApGvVLL5lg+1K7jskOfrFoyW3CgfbnQKiY4VpKQfDbJ6oAaOopQLtR9bOR1SpJk5EIu9pYqOe8J66D2IgYwLWggKzqgJPZKI26SCRN1tRVwSL8rHtf+vHIUOkwR/vr+FQ7rHhJQu3MgT0Tr3YmnJDr2hwIoJkOAxANGA9AObyjBPF7VAIY1N98801btHChdptHJgpDuBCf53odab9z505u3cXpBL/kmnAg4UALHFCbLGrzaF7L7Vvy26xYIVmgemo2hQFk1CpdN9xPGQSbIAYHfPgbroTkQZLCgvRpdWV5no2lEQziZeISDhxCDlAZvUbqr6osc0i3lKKHCCTrtdA4h++w6TLDCWoKV3Q0rfswq3Q0Gx6gtSc+dNg8XGD/BqZFVM9DSFFN6voh/LwJ6fbjgPfV7UcuoXS4cCAAZsBx/Ef+w7twHwA00m82Yf7mN7/xUzE3b97sAD6onRCPH3p/9957r/3d3/2drVq1qknKHugcLjxK8plwoLM4wAl+Q8eP8NP5Tjr7JKvuhbKpIDSA2x0wgyV6rWYJefjyfelN6bXW/NW2NWlGb9ytwgBaFB3VgMQlHDhUHHBVE6qp1zfJqYP+tXCyWxyJXrHFQdZ/8jpFs2CVjqijismmReK60/jkp88yTskjgGzesUm5LlUvdRYdFl+utyVFa5IOrYRwiUs40JU5kKijdOWvcwjyBhBuDrJJpiWAHA/LfbDXDPhGGl5bW+sbNIM6CmFYTkRFhVMzOf1wzJgx9rnPf979DkFx2kySvt0lMfTo7ppugkdyTTjQaRygbQI32FDaS+YEr/qLK6OldlmMUCNV29VFuXPrJY5ySmgFdCKwzVPQVS9KOrhLdoi35vJWpyPutXvU44lM4hIOHFIORNZGUB0JOs+RsNrrMCs1qq+MF3nXC2elxz2a8uTjSAmJew2nzpaqOrrWDsll8iTVQ6b++ulgnO46QwBxu7cOvaetBCheitdEPLlJONCFOJCA8C70MToiK3EAHk8P/+bv4s/ce8ema9Dz5hkAjiQ8gG9oorJy0kkn2VlnnWU33nijnXPOOTZp0iQPSxxcoOUP+/gTwobX8fwEv9ZfS+kqwp7OOS5XCZQUTnlEzhh2sIc3e64RrT3PyV3CgfbhQFTnVf8ESlI6kt5tG4u0AwyAiuplEwAnyVhVdAwiwOGCRz2kZQt80LTxNnjtauuvQ3rYkImptmijG5ETl3DgUHOAChqhYK+qsmDiQ4AmjEVtxtwl09mbZSGl0F0P8ivIQEAmK2AdALRiBwquYqLxJ415UZHM9iy3iz/yPjvn/LN1su0wjx/12WGyGmsch7qYCf2EAwfIgQSEHyDjjpRoANt3ArfN3wMU+GFRJbhgQg5pOcuJSMKvuuoqe/jhh+2Xv/yl/e3f/q2O9GULvIQe6JYLuL+T3efm6TZ/Dmm3/qqeW/3yHuhdWjPdi4DC0NGX/A4+zYhQ8wnFXkkmDwkHYhwAZLukT+v1qKXgSvJEB9jBHnIsCuLvyJUQSx7AXZ2xEy46y6bo+O/yPjU6eVDqZFoG2vfkci+KyUPCgQPiAPVTVdj7Wje9qdocSa8Za+SvX11D0ap6VdnsD15kY06cYkNPneKWUjKyqc1Y4hPJEoZ2qbruoUH/HR2iA2AvWv9RfSylnw6XtSKmCj0OUvDQYg6oCEmkhAMdxoEEhHcYq7tmQgFQtyV3AFOk31yJv3vXLpv76KP25JNPWkVFhZ+WOWHCBJsxY4Zdeuml9vvf/94uuugim3rCCa6WQlw62kCjtWkfPJAF2tBL81eohY1rSFVco9Z7b38Xz8/BpxlRC3TaC9TH85jcH1kcAMSwQS2qq83KBohxfao9YCSquaH+EiCaaDbIK90zJxvMPTnhXiv+0fQTgFMi4WGTPwkH2pMDDqAhSP3Tz1dudPVxg2f9ymQnnDo59NSpNvTk43Q6ZnSQDzb52fCfkzSc+E2Ty4DemzKqzZwKLCuFURCZE3eQ7iKWqA00BU1uEg50YQ6oyifuaORAAIXh2hoehLBxIInfLbfeat/85jddwr1y5Ur74he/aM8884xv4vzgBz/owPy2227zpUY3QaUOFRpxOq1J/+DCRB0zf5Fz+xOmrrxzh3LpfdPz/lKLwu4vRPN3SP/57UmveYjkOeHAHg5kdFJmRof0sBETUM6kMZo4Ar75RXWwIJTj5gv1yAoUS/Y4QRyXeINj6iUhLEoKnpaOeKOu2GdOXMKBQ8aB0D2Gq9dXSa41CQRwcMB8WkjcjfqUFS1fycmT2nPkiF0rpDrZUnuKvUsGsEeOuh0B+kjPXMT1jlUdQH5RwpSoWkeJelvxthA9ByrJNeFAV+NAAsK72hfpoPwEMEld8FwAAEAASURBVBiubUkW4B0A+Y4dO+yuu+6ySy65xL785S/b1772NevTp4/96le/8o2b48aNs/PPP9/uu+8+mzdvnm/uJE2Ou2/JBbotvTs4v6g352+RtUvdRFLwEtXodVO59nT+B5dqiB14dujKF1JKroc7Bxxgqz66SUGB7ZTQCidiRkvte0AFVRYTbUV+pfrrqiZqn8I0lhPoKdOvQmCEEzSZXwLAXTJ5uDMpyX+X5QAHxmNKEAwcHc9OxYtOnCzWq+9lHyb1WwdJNcgMZ1G2vv1Yea+jkm4LUEteQeV2y4NYH+Qex6VpsqkH2khGf6ROrpeq47zXXwB7MteEKYnr6hxIQHhX/0IdkL/WAvEQjis/bItjghBAPXXqVJd49+jRw2bNmmWLFy+2bdu2ee6vuOIK1we/4YYbbOvWrX6iZsp72T2Fi4PTQL89ryCQlCTfHIeczUk3XTWfDUC+5K/7rHQR05mcNsJhL13v5Me15Tzsyz/iS8txonehxJSXcIlLONCcAy6pDlUD1MG9EAX1F1cSgkd+eukABHDtcBxkonCqXy47L8XlrYMjKr7T5FhxAA0PQBau0Z3fhCdQTuISDpTqB4xoXiPiYJcJpNdHheMYHf7lUfnTzK+xXkA8LQ1YXa1e/aGOcGdXEZuP9eTmNKHPfUH1V5fIITLXQ1T7vevWM/VVP3lysizBcVxCOPdI/iQc6OIcSHTCu/gH6ojsxQHw/tILwDEOHjdt2uRgslevXk1Ru3XrZrukJ46VFNzo0aPtz/7sz+x73/ue/eEPf3CdcXTHcXGagHn0xF9//XUH8PF34d4jtepPtIwPyKBjLkpEmFKXn9JgIBhuuULOVr/WYA3KY51GghdfWWzpbds1wOw9xKBCgiNf/OIS/DgfPNA7/MHG+qhRo6x///4JAH8HXh3tr/cC4oEZjjQiZBJUSiK74YLYkiqmZHkCB0hHGsiSf0qSx0YmlqrHLn1UO2Cpn/aERzBn6PBFk0Kv7TQYbzWCPgoXtaCAiHiXuKORA4BtnwCqnrDyQl2hfnhV8Ton4QWMof7wXvXLRwBH6apbWwu28qkXbOG8BRLKZGzSWSdZ3+ljpCBOfVVdTSMU2QOiQx2HZOQE4glQctFkNDY59dhRPfUdFUmVDaxKrl2YAwkI78IfpyOy5oOxEuIav38ngBnCA1IDeAak8owVFAAnzwz+RVlR4fRMQDngGxOHxA9phPu0wMJPfvIT++53v+uqLNAK6bSdF+qB6aVLYhqgNZq1SlTYI6Ol+owNqZ1mU6rPtRUrVsqW+fW2sWIZnHhbUiF/vKBMB+qgc/nll/shRt1qanyTauDBgdJM4iUcYHqZBf4g2lb9zkeQRiA8bbW76qx+vQ7Vkn9V/16Wl73wTIXgk3a0OSiXv4N2bxe0ETl5FFyvRaAKIE9TSticcKDEAeoC9cSVPqIbr3e8pgr6RE4zPeolNcendjsb7MWb7rK5P/2tpbfXW5nq14r759n5/+ejNuD8E6yojZW4eF8b+SR/Ew4c2RxIQPiR/X3fsXRxEBjuw3V/kQHIANKqqioH3uiGRwcsmG3cuNHfoa6Cmz9/vuuIIw1HVcWlcqX4gU5IE4BeWVm5V9K8o3Nuq2ORM5LiCTyLhkttRIRl0Ewxa+WN6vmFqbNSS6nMVlhFuaTzzdKJpx3uyfOBOOL37NnT+QUoCpOMA6GVxEk4EDgQtYwIWIPFAdW5upSte/IVe1LAZ/PClVK1ytjYM6bZiZ+41LKDq6P5aSTLpAlEgByoHZpZ6eq6vZ5QeBFSTa5HEwd8ZUX1irrCLyc1JbrKph5WlY7e3lWceCGQjTQaIM5+hs1L37Cn7njQijsabNJJMyy/ZYe9sPAFe/7OuXbuzAmWHlgdCW1KfX3SNx5NtevoLmsCwo/u7++lBxzya4sDgAOMhw0b5pLtRYsW2SmnnGL19fW2cOFCGzVqlFVXV9tOgfP/+q//sn79+tk111xjNZIAx12QfOQlJcdsIbbF58yZ4+osIVwAv23NI0NEtEVH2MKX6rU4yq40WZ3IFXO25K5t9uBPXjQ2j/7F5/7MGodsdnAS0uXaEvhnctHWvECHgWXIkCGGuk4yyMS5nNwfDAcASPzPSLfWV5+0yy3/5kab+z+321uPLLSqTLk17K61J5fdZfnulTbr2kussUagXVgJwN7kHGdr2qrVo4z0cHkMmzgPbNrZRDm5OUI4ENWDSGkv4yhcPazqEKsqVBhXA9HVtyWwikIFk7rftg1brX7zTuvXu5+d/NErre7FJbZ0+TLbvnaT7dqx3SpNwpzYOOT1uI1j0hHC4qQYRxkHEhB+lH3wUNwAfnkOgDq829c1AE8AZACRHMpz5pln2i233GLr1q2zDRs22IIFC+wrX/mKH9jzox/9yF555RVXwQCYY6Yq2AgPNEiPDhiHusrYsWMd/Ib0/EW7/GGkkOxGWJz9ZtvnS0KosiB5HzdhiOVGDW0zuG5rtuB1KHf8G7SVThI+4UATByKcIxAe+WTVlt5cstxWvPSaDevT3865+oO2ceVqe+C2X9jqP71o9e8/W8d8d5cFFVaYFEfxo/2XoChMGOoZICUg7qArappNySU3Rx8HfOsklUU/nXnpdYY/6IYjGY9WGSX00DNScMJRe3ySp3pZM7i3ZavLrG79Jnv5/91su7fvsvqdO6x7/35WrbrIKir0WhJ6HH3cTkp8NHEgAeFH09duVlY6vKDPzemXYSNlCBZAYgCOfsqlRvrQUXJF//vqq6+2wYMHO/hGPeWf//mfbfbs2fb888/b97//fZs5c6abKQzqKXG6AWhzDf5x+iEvB36lc48kei7bA3gUNKRo5EBOjmvUSMJgEiYI7ln6E/IU9zuQ+0AnlBMaoewHQi+Jk3Bgbw6geKUaDWpWXaZmV+ihvFYrTNLHLW7dbuVMdGUOziWWOm0Q1A72wTwcnm4pRfcFzVKD5JvWE9oJoXCh3oZ2Gvkmf49oDpRAMvt70rmM9gxo1UWVo14bf3PlWauTBZSMwLfMfnv94sImSq9a+tNz5AA78c/Os8d/eqf9cf7D2rBZtD7jR9vU959pqe5VAu/eITexMNSxJo823DCW8UO1kV/iEg50ZQ4kNbQrf51DmLfQyQXVCqSz/OIuhAn+HEmPw59ODgDOQNxTllE+8IEPuK1w6AHmd+/e7dZQ6ASvvfZaYyNioOdgvllaga4ncEj+MBywcK8r4hqBcfLjS6AaPHywaJZuyG8z7wN6bE9aB5SBJNKRywG1QeyAN2IhRXUcADR4wmgbMH6ErX5ssd1x842WKuRtezZvx556nJV1rxZCylpelR5TnEVt0qR+FtUmC8UGK5cZuUbAut65WcQSAAsMTMB34MTRdNVm3XyDpWXKtZ76oi4006DNvlSiuoJlZe2kTqsoRc3osCiItZMMkz6Fox41VmRs2offY8PGjrA3Xlys53IbffIU63XsSFnvKa2+tBM72XNEfQ7XpL62E2MTMoeEAwkIPyRsPXyIApr5AZYDUKTTCvdBCs7VOzZ1boBsgDn63zjUS3Dl5eWRNFvPv9MJmXPnzrXrrrvOpk2b5suNxIcOYD7Q84gd9YcBgVHB10ije/LE6mmLKJwgiUs40MU54K1PksRIFUBdutpv44Dudob2Ofyp6re2acmblinvZjPPOMuOe/+5Zt3KrChzoA1lrA3JsoqQOEdnpSTazKZkL65ObSSXkilnLKiorcu2vuv8dnE+JNk7NByI7MnLkmBZzhpQp6P/XrXFFs19ztYsWGrdpEI4+szp1veUcczaBKojVZSCKmSasUT/MA9e7J21/uefaP3nHC9iGgsE6LU9R9VVNNuxA/bxSNa5gorjoeFKQjXhQPtwIAHh7cPHw5YKgJsfoDhIDAIAp1CAbfzDFT82V7K5MEjR8SMM0nH86PywlnLZZZf5j/cBqIew8TTwOzQOdO3IW4MBQ0EJbXNxR9n9vMEQrEUehNDJNeFAV+QAkm81UK/LtMOs7ovZovU/aYK9Z8xwq3trq6SCKasc0Nsa+0gvV5JMX6oXSCoIeOcl/a6UjWZbX7Tti1ZadY02Do/vazlJNwvpBrUgtSGfqe4pPe039Bd7fJO7I5UDDapXSLbT2mSZ2VJrT3z/dnvmtgesrE7P6lcXPvSUve8fP2Pdzp6ow3k0XqiPxR8pOEfKs3kzL3Cey0roo5/7yw/VJ/Yw6LZdXRhvkjrarmxNiB0CDiQg/BAw9XAgSefUmoG0eScGWL/wwgtduj106FA//dJVOtSRYhs8WDm58sorfZDmBM2gzsI7pODh2px2x/ANUB51+YALQDj50P/EJRw4LDkA4NGRPD75BShx2mBWUu68bDVnB1dZrl+l2ib+Kp7CuoRQ4RqloqJlLavMZ23tn162P/7gdtv++jpLV5TZ2HNPstkffY9lBlWZDAl5G+mYifNh+QmO6EyjhMh+AlZc+LtK6iQv3/Wo9bduNum0k2zDG2/ac0tesCd/dY+dO220FXpkmRO6YAMpepjA5bRHIaXxAxf626xWWZoe/E3yJ+HA0cUBX8k8uop8dJe2OfAFIDO4hl9z7sSBOrrcuBEjRtiMGTNc/SQAcPwB6EggkIhjNYVTNLkP7whL+oRpng8PdEj+MArww0X3LLvHXcrX8eM+yX3CgcOIA6rOGalwZxA3Ngh46xk9b632SwopPfFcNNnMsOwPQAdKqQ3Q9suzZbZ7+Xp77Pu/sE1/WmS9t2at7M3d9uINd9szN9/rqilpIak9LUjEQVCipT8lJkXtak8725t3e2IrP/6q1A49ekQjoh/9jcLsoSFFGz1E74Lv3k973sbjHg7NOp7ffZUt+L/jtcSU6BJttI3z+23xCahfyAP88vuSP+H9Wf5aWFH/HlHYvmmr1e7Yad0GDbQpH/8zG3fWaZYur7StMje4e+sOKxdQl3p4VE/U53MLkM+IQJqdw6KPvjbWeaiHvGsvl0wU24uTCZ2O4kACwjuK010kndBJhes7ZQtgHSTZgOc4KOc+vINOeOcqKSWg3XRyZgnov1N67f+eQV4Dkv6hnYhj4xAKtNEFfVdWBeSvslIGfh4OsJG4hAOHAQfcKgo1HETjIEcTXr8tQWCqdKleY4kiCo9X2ta/9qZtXPSGDRgyzN7/l5+xme+7wCqlJL7qqRetduduNRU0dvlBg7YixK/25OTURpjT+o8AQlxuG5oWJ51yv9d7z0VkkoggkUlE9yeX+qEupotiRC9Ted2RjqcaxVEYt+Di4SOQid5xFD+6eHBIlLz9qlddwVG2vX4ULfxKGTzQfBfE2wLfXzyCPXx9ej2nTzIl3uLPj7DkpaG0mTdKN9ogWadv2qB3CF1YZaFfhJqMSumvWd++fay8X0/bsHqVzf3ad+353z9gqXydDRw91Cp79VB4z4BvvZG4RZM+OSJGFUb+yoHSIKt48aq9XMcJd9orxwmdo50DCQg/SmtA6Ky8M9wP2AwgO4Rvzq7m/s3DNwfqzeN3yDMjjI8yDD9U+ajbZ6zQC1+Sb9eRoEMKlSSScGBvDjj+ehuoEXwuvWgCO0I+SMob8ZcrwXQr1tbZjs1brW7bdqFhAbBchLqIJwG7W1NBv9dBmd4XZJ4OFMXhPg75RFOHI8opcEQ6alYQ8D6Gm7jzWAorsOhhoncRNe4dRsYjqCzu7X7NqQVAB3QvFa3puheRTnqANc6e5unHC1LiW+Bf86D7e/aocVotBA6v0dcuShUpp1lbQcwqNohrDdqgv1tmBuvTlqlHBzxtdXV1mthpI6aYi7CCfrT/lHE27QPn286eOXtx+UJbvnm1DZw+0aZe/i7T0cM+EfR0wgcpJcqldNuUs+bPTS+Sm4QDRwkHEp3wo+RD76+YzYF0PGwA6XFwjR/PSMmD1Jg4gU7w4xr84jQ7955uP4x0pZw0e+zc/CWpJxw49BxIy5RcEfAl/Dt44jHW79jR9sajL9rd//tT253fbTvL8jZj5nFW2a1SwFqwWOHzkp2yiS7npi6kXiBw1tCgPgArFwJr6QrtCWlsEHjLCWyV2llT29KN0kMyigTWV6NUzACWUQlDRhuaZhSN8C5cLzGkJOktxQst2efX+JUiI2nHYX4R367iogNtItUMz6qy1jx3/tzEs9bnnBNOnXnEpd9VAhlnbrTCELFG1Et9MhLznBRBGgW2c5o57Vq71V59dL4O09lqwyeNsaEzplixWupKZeW+HoGmU05/fA9N94xN/eiFNvjYCbZl4UrL6hTWQdPGW7dJg3xDMJLuFicbrS9OEjLhwFHDgQSEHzWfuuWCvpOkmvcBVMcBdQDg+IUwIRwp8T7+Lh635Zx0lC+jFMN0VC4f71ib95uOykOSTsKBzuMApxPSVmmTeYHr7PBeNvMLMmfYs8rWPLfYKmr62CkXnCpzhudJsplT0yhaGX+F4dICe1yxSJ6tk7QcSF2rqyxe5GWyNFsu84eou6h4QEFgZqEEyqImxloUYDBqhYQAsCFNR9qKA8L54S0Ciu4TEJ3yS2iwJRv+eOfviSQHGOdZRXJHKw9RI5/O+xvPp+eCosgFf8fLMQ/ntYdo3Z9IBSjiCzxHeSj4wRj+lRSKnHfOI+3UhcO7Xlpj9//HT2zln16S3rbZ/JoyO+1D77FpH7/YirKm06g9BWz4TWnFoqjNB42afKX6VNjAs4+1QXOO9QwWpQZVp3Bp6a+4xLypZK3LfxIq4cDRyoEEhB9lXz4A4wMpNnGRgPthO+qIgwsAmysDPBswg6ScMOF9CN+519Lot1cm5NeS915hkoeEA0cGBwC7qCMAdAGpHLIycPoYu2Tkp61+4w5LC3iX9ddR4lVq4+noTADMGGbSkpxKGspGzd0rN9lLv3/MVr202Mqrymzy7Ok2ZM4Jsv8ck1zH2hSA2E3WqaEB6gHxvCYnEUSEt5GPA+fGPf0L3mmAZADXunIbV00hNg4QiVC4CdxG3p3+NypZ67OBLrazo7VRQgICytz69AOmMzNxoQN+AuliIhMYTqxkepWqbbTX7nnUlj31qg3qNdh66Bj5FYsW2rxf3m+Dpo63wWcfp8mRqLFkoit7a9hMiaZ3Pquvpx/vySwbgVFV8lXTKBO8SFzCgYQD++FAAsL3w5wj8VVcWk35AMjvBJJ5H+Ih4d69a5fNmzfPJk+ebAMHDnQ2BWDOkithOchn+/btVllZ6b+uyEvy6uWXRCgZM7riF0rydCg4QPssYD2FXZwCVBXofqsNpGWOsKJ/lTXoMa9XtAqkp2zjU6Pmr+Ub8la+uWAPffcXturOx6y4o84aBbzfePg5O6v4cRt10elWLCtEIF9xiQN48wbmKFpgTvShWxRa5mhzT0lhCOvQPKBtjxi9B1oqmgNIfDLKt+NL3QO6wZtOS3SCP+GUbU+a+852hdKJR6WLSrfvzLVVEg5z+F7Rv4jvwsdyYjA8hi9+cU8/GbVMakOm89ZWLnrd6vVdT5gzy8a+51x74F++Ya+vWGRbV62xwcUpTRgeAUtOJ62q04SwvkW0egHwzmo1MSUd88DwKIQHS/4kHEg4sB8O0K8l7ijiQBxwOwANQLR0bYkVAYDzDinHs88+a//+7/9uL7zwQhOAD/a/Q/wlS5bYNddcY48++qiD8uDPNU4v7t+h9xqLGLh9guFipw5NPUks4UCncQB1gYybvYgAWqqkluBgDeG3fgBaaRe4agGgFtDL+7T0wde+ssyWPfq8Vaer7YyLL7EJJ8+03Rt32rMPPGmNOxoEyDCCqAam8DgfZDy6/Gh3Am0yymEZrJfqsBff8UlARQj9UylqRCKgaieJJJ3fHkc7ZvUtr3D83IoHYenT9gTrsLuW+jfyCCfIT1GA1fse7uXTNOcgCAH0a+vAjGQbfW3MU8J7NO/fVvoSXVYkKtSPew+oj9xnyACr0PddNe85W3Tj7bZrtWzFS6G+QqshkW6PqCk8ZgWjzbzOXF/DYFUD3kf67qK5V2EoUOISDiQc2B8H2trW90creXcYcCA+QHAffmQ9/i4UJQyK8ffsmN+8ebPV1tZ6MKTgDKx0xj7wafDr27ev7dy50374wx/a+vXrXYUF+rwP+uIhjU69xkfzTs1IknjCgY7hAFUeXIsEec9PkE1qKQX9sCcOuAINRs1D7VZAvVAvw3VSJt61dbvAdq31raixyTNn27Hjj7WyYtZ2bNxu9bvqwZBEdedQj3sRAhpCETAHUDRtCvSfLo0YWtE/wKPnz/9G8SJK+qtwEYzVjQrQyIZRJUAaHFaUV/+SF8DV2yi9aGcmTx3q4n1mSDhsyiS3SJTJIzC5eZ/rZfcChJituzKnQpdeCtuaMImTmKlB5M6HFl/UO4uQApW80CFBLcW6pe2Y82da5cTB9sSqF+z2h39nr9avt5HnTrdBJ05QGK1q6HtBymsFfTi0nM8QiPjvN6LfqIwoaOISDiQcaCUHEnWUVjLqSAvWvPNHwt3cL15mBpbwPlzxi2zJRp0x4RlghLStj0D4ddddZ5/+9Kftpz/9qX3hC19wci41UUeeuIQDCQc6iQOgJDXBSJc3ygOQm1bpEErvkSbjgoUNdQ862EcAV4EGjR9hPQb1sTdfXW03/n//YoUKWUmR9Py44ydbefdqTbJFx9u4CLn5QddtcSlqg+AydsczOwr2q+/+yh6b+5hd85fX2HEXnCDLKpoAkC+pyqSlKkM2ydceh8UPfB1Lev4dcitTjUVstyiTJL67KD13gcOynE7oFSClYB3oKHsciCOhzudhivjpEwOVQ2C1IH+AOH1ik/pJVDz/FqXbVuWcNNL1Gdv2+mYr71Nj5X2z3hdT9GgqFe4iFaOU0q/XckRRe3v6nTbBPnnzN2zT0y/baqmgjDvpRCsb28dSFZowZAt7VJfICXklz56riKbfkmP9j74X04G25D6ikPxNOHA0ciBqS0djyY/yMscHCVixL+l0ANwhTGAb/vwYQHABxPOMagq/E0880U4++WR78MEHXXIeDvsBuCcu4UDCgc7hQLDrTerYEPef7mnJkY52BKaQfALgHMSBwoWrCpKIVw3tYzOuPM8ah9XYttRO21rYZgNnjrWJZ58kHRbRoXm7WkIkT9dTJJQlAYFrh2jSRa5du9MKm+stLxWWCL1FaSERd+fhIzAX6VHLA7ol2p4vAXqsgLBRsEIzh8ZVW2zdky9bepsstYiOS51LwD0i2vF/AdgIJjh10k821TMH2sAH/mEqEkm2O796hJJH6y6a1tibi1fZT/79J3bH/95h9Vs47Ag6fAPdxegiHC/ILniFdMLZnFsok0fvtPU5c5JNuuIMK5vUyxor9b2l688Jl9EefFZIpMakMrCOwSeGpEvdFR36URq8T1zCgYQDreVAIglvLaeOwHAAcTZQFrShJvyaFzOA9TgYj4fBv6GhwR555BH79a9/7fTe/e5324UXXmgDBgywj3zkI/alL33J7rzzTpeKc4x9NqvhUfEC7Ti9zrlnsEpcwoGjhQOq7yAoLgE5MZmONQMHUnrHezZMYnoOhyC3KMn3xCvOssHHjbP1y1ZZTtZRBk0abeXD+0qCLnCpsBGQBmjyEwwUmMOFa1pi+Fxt2qqKOuQ8H9ImHPEVVnlxLO/xyViUflN2yRsEeaWfQ/udDbLqcZfN/+U9duHnr7FJV75L+SZAxzr6NX70cfyi1b8IcJPXaJIinmrCkgeMl3hLebVmEIra+kxTRNHYtGqzrXtV+typcqvXJCTXu1y8ES/FKGjzbXwlQX5pNlhqQpXTu7xUTgrKCwrljbKMI6ZF/BdAJ/95lSULH53n6LPDeb4s3xZX4nGzOuSvkj8JBxIO7JcDUc+43yDJyyONAwH80sFyrHw4Zt5NS8UKGx9IYt7eMfPMe6TaDz30kP3DP/yDVVRU2JAhQ+zrX/+6/fKXv3RwPnv2bJs2bZoD9Ndff30vAB7yEafd/vcaJsLI7ZkOz3uGj7C42v5pJxQTDnRRDgg3hc7fm0cJRwUEiBqKS8UJp4AFxLkCyG4DXNiuoWfGup0yysZeMdtGXnSKpUb3tQZZRUlLekq/EqEzyUylKx6Ad1GgzyXT6CMXpWtcyMjcoeBzyRyhr5SRK18pC62SXO6RvAIm93I0Y/2KeeWvrmC7lr1lZevrrG7tlgjsvi3CXrEPyQPldx7EqCMxXv/8Urv96z+2FU+87O/dqogb7I5AMvzd46KCMQkqTTccSO+vOBnpgWcLZdrwiqw6WiEI9PZ86+jOaTpoFjD3sILW2pGLwRz015ls+eTAyxIBbxUhwG2vOyFf8B/nqoh+Fy+HeyR/Eg4kHNgHB0Lb3MfrxPtI5EB8gGhSI9FIG/en3M2f98ULJOCnnnqq/eu//Iv9vcD4e9/7XgfhGzZssPLycvvwhz9sK1eudCCOJDyPKasSfdKIg3Huww+AH+4P5OqDuUYtkfTxDb1JpDcaXXwwiYYK+VB28qNrSJP87SvNA30HvRA3fnXPI+hPKGe8SHFexv2T+87gAN1+BPJQTQFa0SLw9RpKm+Teg+hO/x0r6uotRVdM0rkAl7VURcxJXzwryykBMrrKi+JLyIrAVbSksyxdjDIhOaIUpI9cr/aQzpRJEFDhKBQd6ciJoOKQNX6esxJgBA5GmYtCAgwxlZfSSZ2mw4PK0xWWy1dYOeb38Few1vZjpcQP+tJS/UfGveahF+zlGx6wFb97ymyXdqIysVFxXDIeLxQMBXzr9R5vmElhNJEJtzwrALzF1Tfs1msJVsqlZsLHLH1RHUyv1DFFowhs2MSVaAWpdxp+Ob+jcSCUAWDNKgP54aAmXOg9o76UaJ4RTy1658GSPwkHEg60ggOlFtmKkEmQI5IDARwdaOF27thha9assalTp1p1t26uC376aae5jfC33nrLgewpp5xi5557rt1www22ePFi321PugGAh0ESgM49EwN+6JWH+wO5piTOwZqDx5WIJ6KhwY3xWb/KyioH3viXV+7RZec5no8oXpSng3kXjwv9UO4D5X1XjddSuULZ4+/i9121LEduviLg1FL5wH7BORB3JBh8wjVCiAAxB2OlMB5XQDGf0mRbP1dz8KQ01DRm3TQh+i2AuwZNslNClDngmySwbncaOorXqEOCsNSCizZjanOj/ACgcRelLdIuPVdUoosekwR3nTzCBTBLXgq76y2jiUKmQeVyNRR5qjyBxz71Uf7hIcC6mG4QH0Dp+q8L0nR0sjPYdxQTvQ+ltOFgI1YWJAUvK1RossPJpVqxkBoJByOldKQlfIzWFEgj/tUipjLBas4ufxYd3rXkyGviEg4kHDhwDiQ64QfOu6M+Jps50QdHr5xDeYLrVlPjai6YKEQSzu+KK66whx9+2G666Sb7p3/6J39P/DgQ45kDfm699VbfzAld9McB54C4tjqXJClSI5I9jWKu/6oRD/NdOQ1c3dePt+riMfbiiy/ax66+17Z2X1kamqKU4nlra9othUfvHtUfVg2uueYa69Gjx17lbylO4pdw4HDjQATvhBa9Nam9gbBLrii9Y1oy6iNYQXGdl7TbJ6ShCm1GPyTp2A7JsvFS4YlTr5vmAxbvcKSG85Usj7Cnv6Adx8FwFLLj/jZZE3HECtTWjfLIY6PUclwH5G3Z4a2AtvLOxk2OjfcIflXZ1J95mfQceCBTJ/LTs15rvuPq4BGwjkJ4egL1TTa935Zm4pFwIOFAR3OgeZ/W0ekn6R2mHHApjAaAACzjxUDPHH+AMzbFecZW+O7du91+OINi+BEPWgyeZWVlbkXl3nvv9Y2ccZrtfV+m4Xxq2QV2+rCxtnXbFvvj4rttXeOS9k6mRXqsEFx66aXWq5esEKjsR5IL9aJ5meLlDKCo+SSseZzk+XDlgFaVGrXUJNSIbNXVUQSTkWzXp+pldEOK46r2RYlqizqxp6FMplLkkPQC0cHi2KfmyeEjwFJAPlKJEYgkcIQruZPTxkGUmJGUy+oHTYpVsC7lKK/6RLKNxREmG1EfGPHn7XkVfBYPXXjAygDhkXjDHKeiZ0m53cihaGfFnyLSc73OV9RaIbtTqwHVLkEnDlHro+mPNmNGcnCs4iQu4UDCgc7lQALCO5f/nZ56HAy3JTMBSCEB5x4JdnCAzGAFBQC+fPly+8///E+bMmWKS8QB2+iFYzUAoA4AR/UEP6TDX/7yl+2SSy5xIA9QQ3oMPa5td9FA0yQJ10DkS+AarbY/U22L7t1m444Za+/5wjetvv9bkjoFmVrbU9pfDEAoP8o7evRoGzhw4BEHwCk/dSHuAvhG/SB87xAuvOM5fh/ec03c4cUB//oChS6G1UUaEgKP0gfn+6t91wMbBb7T9dIfr1W7ry+zirxW0aTSnRYgB6YWJMbNFtAvL7lIx0Qm/uTTrH4BtUVaqht6J6Fyg45fB2KmtILWpZzy2CjJv9vz9glCZHUEHXdAeVOvUyo0U41GN+fIBESHJAWeAqgVpig+RABcLzDqTvGFtItaVcjmZCI2VSZ9fDgBJTFGH6JccRpLaXWxKUqX+lRJZhIOdCQHulhP1ZFFT9KCA4Cf5gCoLZypqq62oUOH+hH2AGZA5vz5862qqspNFCIJv/76623Xrl32xS9+0YYPH+5gG0sIId1wD0hDdQUdcuyLB6AfgB3hw33r8sjIpYHHA0fDHAeFuIdWwJ9OLbfXHphr/fv3sSsuv8DSoxjjo1EwpE3U4OdkDvJPKAO8CvcHSbLLRY/zjswxgcIyDhO2wYMHu4oR/s35yimsTNpqpM6UuMOUAw4WS3n3pqR2B4LkeMaGcivblbYda7faWy9utF3Skcac3taVO23L65usW1+psdXkdEAM8RWnBL4xoYdEHUk5YDM4gCR6z24CUJY9fOM1B9AQTP1LcKGfCc+ddqV/VAGyyisaOogUyCeTiCane/KPwzqNy/0xWSIHpEaYTU/WoEhMSrJYl6mVDv4OmZpdL7OE8qvYpXW+zYqjw3ZS1WzLFJ8lNXdVFTjp9OOJOvnkT8KBhAOdwIEEhHcC07tCks0BEANVS4NVHCiGe0AzLoS/7LLL3CzhRz/6UasWKF+wYIF9/OMfd3DOQT133HGHXXnllTZjxgxJwZpkPg7CAg3ohTwFv+bXeJrct8UVNaAHk2sOwpWNUik0qmnTl8akjCR1LdkwD/loS3r7Cwu9UNb9hTsc38XLxT2rHKyS/Ou//quNGTPGVzkAHqx8BD5wBaj/x3/8h/Xs2TMKg9SuxKcwueMap3848udIzzNSWmx9I6V1IC2d53S63Bp3Ntpzjyyw+fc8auuWvuGm9HbukJS3LGO/ufMuK9yz20ZPPMZOe9dsG3faOGus0cZNqa4IZnpzjabSpb6DiXIJQwao7VZeVF/QM+fodEeanhdlo1SXOpL3oe6SZqizBZ2aibntNCt6tA36JBXEgTbhShkMZWIO4vcSHFAmVHSA4I16Rqptu81en7/Qnr//SVu5eI01rNfKgmyvL31uif3wn/+fjThxrB133hQbMn6QCKl/hw+i0KiJSpSnkGIp4eSScCDhQIdzIAHhHc7yrpcgHXL4Nc9dGEy4IuXGoTYSnpFCYQscFZPHH3/cJd5f+cpXbM6cObZ69Wr7zne+Y4MGDbIPfehDLgn1eAwgneY0DJVETQBzH5YY7WKOPCbuwDgQn2RBgQkbG2w3bdpkGzdudKL4UYfCZI7NvdQ/JOC33HKLg/Da2lpfFSEcjpoXAQd/TP50YQ7kBfIiHCzwmC+3bct22d03/d6ee+hpGzykn5190Xk2auRYu+fme61R6uFnv/9sW7pkiT039zm74as32pxL5tiZV53ppzgWZdbQTYeKZkYqFqBvWic9CJDc64Wu6J0D19G7Vu8UhfJ+pgTcFaYznPclZFZ9SqEByb8k+k2qMkxVoj717XkDbGMtqoyo7lxZRxPR8rz2zizcavfc+lt7/k9PW4+aajt2ynFW27tg6/LrbeTpo219w1v2yB8esof/+KDNefdsO+vSs6y8h0xB5jThzWrDu1YgEpdwIOFA53MgAeGd/w06NQfvBGwA3gwkhAtXVAZ4DoCLQQUgjgoJjnfEwyQhUvFvfOMbDsQDuA00O6fgYQhXmUqjGxfGycQdPAf4tkFizffmmfqAPr/XmdIEDgDO+wDAuWcfAIc8fetb3/KVlKzqWQDqgebB5zChcKg5kEllBThl0UjWOrYs2WK3fP9mW7N8jV30/vfZibOnWmUvgWm963Z3tdVnGmzo5CGS2g63U+acak//Yb49fO9Dtm7dGrv0U++zquE1kohj41pO9ahJBO4ee/6ksRbCP/RTFA7b/6BXptmd0bap6ziu5EJLQj5T4CnaRKr8IZ32MB606Y9PGxTdT/uUPr3TUlkyOlk0p8N4lj+11O744a+sfkedXXbZ+23CyROtx4DetvDxl+3+lQ/YzHNnWO9xfW3NynWa+DxjT/z+Mdu4YoNdcu2l1m14NwhLDqG2mWzMbOJ5cpNwoLM4sK9peGflJ0m3gzkQgPH+kg0DSgiDnjfxAEaArOAATfwI//TTT9vPf/5zu/zyy+38885zaVYAZMQjfnO6gc6hvzL0RcCbodKHy8jL/ZM/B8cBNmHybfnxrXHhm/tSvJ75/tQHVlDCpA51lauuusq+9rWv+aoKtp9RZ8ERtjV11QMnfzqRA/rm2mSZyeSsYWO93f3j39hWAcBP/vknbMYlMy3fJ2X1OVnvyG+37Q27LJPTdy3mbXtuixUGFmz2lbPtovddbC89vsDuu/4ey28UAJft65wM+6NGEcHWtxcPjKsA0Q98K1MqEcZUDPw726keF6WaE9V71FGUVbJMvlrIHioqBSYzdK+aYLB6l9OywZoFq+ym71xv5Trk6BOf+6SdfOFpVuyXsfryWqvP1lptrs7S0gUvVBStx/iedu6V59pHrtZhaQuW2c++fZPtfGu3+K1Nr6XVQJJPXMKBhAOdx4E9CKrz8pCk3MkcYGAIv5aywjtAVADNffv2td69e7v+N+FRSSGMH66je4AV5ghnzpxp1157rbF5ExcAGffQIk5nuM5JtTNK2vFpBjWT8G0DGEcSDpB2dQFJw59//nn70pe+ZB/VPoJvf/vbrq7Cplz2DmBf/vbbb3fVpiAx7/iSJCkeCAfAwuzBZGK7YO58W77oNbvkgxfbiGkjBBB1+IwsFzZIClvMZK1CJ2VylD0Ts7TQZiqbsR1SdJ56/hR79wfOtaeeesJeeuQFy8lAeIOIYuEoMhPi02bPXtOd1DwKkoIX8qgvMQEUPQfmHqxNf5CmF0XHpeptitlyYG8L0gdvwHyiggQrT1EbifVGsVtsw6R1ngGTDin3yLKKJi9r6ux3t94nPfoKu+jay63ncf1sd5VOydRmFzTq4GVR4LoBXkrdpCDd8XyPBhsza5RdctXFtvbFtfanXzxuWRmy4vRL1g4Sl3Ag4UDnciAB4Z3L/05LPYCkeAYCyI77cY9/kEQSb+LEifbNb37TQXYA54QJ94SZNWuWfUNmCY855hgnB5gK9KHV0S5aeg1DNoMPI3RMCBVeuW/y50A5EP/O1IPww2489QPAtUT6v//wD/9g6H1Pnz7dHnjgATdhuWXLFhs2bJhdd911vpLCHgMk4dQXwH2oP1zZyMm7QP9oujYvd/PnzuQFLUpw2epW1dqTDz6pzZZjbMJpU2xXSuJxHZ2e0fHyHIMOwG2QqoVgY9RvyHZ4QVZA8mUCq5LqnjxnmiwpDbNnH37eGrbK7B7AmpiY4aP5qr2mJRlXBdB/pMa8k6eadbEoneeSGUDsqpCKqozeRys0xEUQDJ908R/qGXmh9tqCNoOit61Jgs7IjYTQip8XFaTHpEHYQgnhEz+iQDoIFvSEZyObSjGXKF9J8oWcZd1Fts5Fs7JCutmkj7/osWEcyy/84z8/ykhxrF78EZ+E4W3xc8vsjddX2vkXnGcDxwyxncWdfopouqzc0hJ8kG5Of7zEykhGBPLSqd9ZUWcTZ0+2mbNm2vy5z9rm17d4GhmV03mgOOGqFI8KF/qSeGFb8ou/P5D7g6EZvkn8eiB5SOJ0bQ4kOuFd+/sc8tzRSYRfaxOr0CAyfsIEl4C7dLMkJQ9AHTqoGPBrydGpdJgLSTFCaUiMOwbiyAEbEtdeHGhp0ACAIwHE+sxdd93l17/5m7/xFZVRo0Y5KL/ooot88vbZz37WTV7+7Gc/s2nTplm/fv2arKkAvqFB3XJQj3S9VP/aK/9dnQ6nJ4Y2RNvNttOkNtBsbfnDdyYP3DfFV2Na/tJKW7dik8362FnWoG6A7ZIZSXYBmHlt1M0UkNRKxiuwnNYuzgahzLy0NBwYCuBW9O2tCdoMe/C3j9u65ets6MCh0jNX+CxqKbRkoVLUUwRssTuuvYZWt2aX2ZZa65WusPRmmQ6RRZZ0VYMVy7RlU8AZeOobfWn34hmbRxXZi+vdgwByOce9v9FoS1/doHpWZiMn9TDrq3znFE7h3Qyi1Eqw083EgMmEnhSTqQXlJFvSh1cO8wWp7cmEYE7HyG+a95qtX7jKusn++aqXl9qwVbusfGiVMLZii7wy4nkSyldcgL58RCyjyQVWTepq6+yFPz1rQwYMtMlTJ+k4em1m1r8MEu20coL1FIH1tE9s9E46QVmB7KKWHupFM1uTsmlnn2TPvvScvfb8a9bnhD6+YZpJcYPUC9nXU6fVS9rW0eBCn0HdDffwoqD+pT1cS2Oqm6Ms1bfWpEF/iepn+DaMu6HNtSZ+Eubw4MDR0eIOj2/RKbnca/BsZQ7CwH8gcVuZRBLsCOMAoJkBBRC9dOlSGzFihJsjxB9dcFRRlutQp9NOO82BOWYv//Ef/9Huv/9+t6wT6hoD5rx587Rxb51PHmHT0TIwuZUQ8S+sJLG60N5lp23HHfT35ULYAGLYD5ITSD5mxBhb8spyqyrvbiNHD7cyjrpMl7kKRL0AY2V1ZPM7I5UJNlSCXruVSwou0GgF0RCwFBK1UZOPtew9T8jK0iobmh4qKbniSfnbpdxkC8Qr2kh81z7yoj3yzVsttXi99RPwffRHv7FJO7bb8R97l2UHCPAjlc6yGgdpgXHAEJJgEpfjKnVqW/iHt+y+Hz5nby1TXVWYAaMq7PzPTLUJ7+ovMC+5usTWWVCzwL+rinCaJRMQF89rFiFfUXZ6aQHg9O6ULbtvnj3wjVutevkO61ussoV3P2G1Asmz/u+HLTuyh063RJUPSO8RqdCasIDJVchSfuvXbrE3X11s00891Sp6V9qu/G6p82giKtuqro5CVCH3BumRV1R0czDdmK+zCm3kLKjQedHsMby79R/U21YuWmon7z5Z/Gi0erVJvmNeABwQyvPR4GhLzV2DeMBG8YN18DMIpwKt5s/Bf1/XEB4gHm+DnLUQf95X/MT/8OFAAsIPn2/VpXIaOgI6HH48h8G4S2WUzETjbJSt+H2Xy+iRl6F4/aB0qKCg883JqAwwDHrdu3f3w5127NghyV1Uj87TZl4spdx444125pln2kCZuWTPwbPPPuv7DFasWNGkW3vkcW3fJaKd8Qt8DSFDewzPB3qFbmtdyAfhwz1gcvLo4+z8Y95r+e15u/9n91iuUhJGbAhmKqw2I9OTAuplOilz02urLadv+tD377ddZbsk8RVAz8p6h0B0Q1mj7d620wqb6qx+W4M99/TL9tv77rR8Xa1LrzmyPaNDb1BPqakts7J5ay218C0bVNRR7ZKYZzbU2hM33mWPLZ1vO/qX2w4ZZEEiLwt9EsWjZY3SBkA3KyAb7XfpvnuYbXu2wupf727lhb5WJtC++sW37Gf/db91n1tr2ytWqwx11lCfl51uSSWVh3qdZokeOqdTak4kaTTfJpKOlytvg+uqreL5jVa1fKdVKW9CytZdaa+UFZj/3bHGVg+VHrxo5rppg7Ik9oCvtOI5/kZ6rwnG6dNPt2EVQ6ywQ9G3pWzp08vE7zoH7kXCaiKSyqWkZrJV0v+MrXjxDeu7rbvKqNUny2n6IX15JOwC/pWSym9du82WCoj/4p6f2+LFSzxNviGTOtI/Gly8vdAP4eiX2MvUFrev9tLSigLjYzzdd0qHfIUxle/CHqtPfvKTTXux9pX2O9FN3nctDiQgvGt9j8MmN3QAdCjxTqUrdwo+4Iq7TRCjDWDjsPkoXSyj8frAAM/AxC/444dkJ0h0AwBAosoJq/x4z2AUNv8C3qdMmbIXWAiDaBcr/iHLTgALoe3Bz87gAQAhfLNwX5Ypt1FDh1vP7tW2fMk6W7dmvRqdQLG+obCxVCNkK1uS5PKGMtu1ZaurWyx9dZmw4w6BWbNyqxDI1RmPsu6BVnZ+p6x+bK+3u372C/vmf39DtKReooBFSaTTSMJFa0LFUPtQ7+k2NF/tgDorMF/V0Gi7dtbbr+/8vc3buty25PKSEqsXUJ45VRLHATjof+cFwiuy5TYmN9PO6HuV9cxLOi21kZSk3ZW5/rZu2Qa744lf22v1Tyr/mwXOhegF5tETL6KXLgAujCunPlGwl05G2N6kMWLjUn3tyn4zbHBDP/WVUrlRiIZ8vVV3y9j9D/7B7t36sm2HkiYd3jmpT0W3HHpZkU5JXedds86zv/3k3ype1u6/94/W+OiD4mGtiiKJq6zQNCr/8CNnlZbelrNbf3qr1aV2uX64SEudQRJzoXrk/oXtjTZy7ChbplWn62VCdolAOKtQtMGjzdFuQhui7KEOtxcfaBthjAy0Q9/XmjSIS7shLvdvvvmmXXHFFU0gvDU0kjBdnwMJCO/63+iQ5pBOoS0dQ8gMHUPzeDzHO7UQtitcXf9TA5uPlQh7QOWJ6zAOMJhQNwDhSL63bdvmz0jGkYADLDltFWk3fjfffLOtXbvWbcwPHDiwKZ/jxo+3//7v//ZTOKEFza5a55oy3Y43tLEwaTkU5W5Oc39tOrT/EIclflRJagSlH77xIduwpsIu/dwHrGZAjVRNJI+VVBcJdK4o4Lgpb7/80a3SVa6wCz92iRUrI6mvq3oAQyWF3rJio/36+7dYdfdKu+Dcc2z9tlVWpwNvigLTbjVHEuiKxgrrtV2ge8EOqxCgzgq9NiLxlfpLVkrVJ5043Ub0nWGbsgLhkoSXCQjnfNejQLSro6gz0JXDKLuvHWdlr9VEB9loIyXyclUvqdNU2Dkzz7LT+g+zfE6rNfqe9fIHIGNGExOLEQhH9kwc+Qn0lsmu97C6Guu+VBOHdaIjUO4hyrO2ObXbJh5/nPXoz6bVWqvTBkoSy4p4XnRRCne1HPHhzDPOtW79e1mxPG1nnH6OTZgxSrhfElvVBSWkjZ+oP2RtybOL7YVHX5KZx4usanA3rRpwKI+CKb9FZZhj7p+UaoymNXasNtf/3d/9nYNwqmf4ltwfbY76S/n3V9fbwhPAN/rbTG6COxDaxKGtc4XmcRI+sD8Gh1/ijgwOJCD8yPiObS5FaMSAaVwYSFtLKMSPh28rjXjcDr13/c2oE9OQ3eayd2heY4nBc3jMLy6BbOlbxKK97TbQCfH29d2Cfwj3NkIteBA2PkGDRojPgMLANEGbeu+++27DGsrgwYPtlVdecV3x8QLYuIcfftjuuOMOl/qcccYZHh+alBnwBYhHIp649uXAgXzveA6Y4PoBWNok2WfkINv9xPO2e1ed9erZ1zcflmPBRKb2MgLIhXKpSVSUW0aqKlX9Ky1fLpCudpnJZW23LItUpbvZG0tX205JznsP7m9jzxhjJ86ZLrFuVJ/YdFjAODgH2Ej15O6//ratfuh5G1zWU+3DbL0kwbUDK+1TX/mC9T1xjNWCh9TkGfDYvIgDZOMIj/R9+ysNdsP/ech2vLZV6ZdbTnVtS+Et6ze8zD75r5+13lNEAGVt0nZo69F1F23mU85c/xrlhoKAObg6syNlz/7ot/bU//zWBkoVhE21G4rbrVL8+dw/fc6qjh8mwymKR1ZK5NHh5l9GGdtdqLWyXJltXb7NyqVLn+uRsVGnjrJdsrGeK1NKZEcS+6xA+K5tm23R/JSNnTzcek3orQ2XPo1QJiTt1zJEeW3WFjz2rHXX6tKgwYPsivdf0dSfhDYalSj52x4caC+ehnZJ/xdfSWyPPCY0Op8DCQjv/G/QaTmgcbNRjh9Hi3eVJUk6r9DxBOa05BfeHdQV5MDvMHAB3NIZh8nTgXT0IW7gcQD04Tmw4kBoN6cBLegHSzm7pWKCFRSA9uc//3kbNWqUPfHEE+43SdI5JOSf+tSnDEB+9dVXu654AOCh/NBsKR38E3fgHIh/7wPlL00pLz2RsSdMstSv77eXnn/Zhk0earlyQVWshkiPuyh9ZswBanYFnhUILchcYV51hDC7JAUvt4btRemBL7Cy3hUyxzcAga9WSthgKXDqEFX4U/2X191cpZ37uavsrvo6W/PqCjVnSQ4H9LB3f+FqG3jieCvWaLMi6egNcZGUS4/DATlKGkjnKyu0cXGy2XmfONHu+/4CK6zdKnOFkrQP3m7nXXWCDZggHfAqsqw8q5CAZtfbht2SmoOGyRuWTEhHx1DJS2XUhtMZH7nIMjIj+OJvHrb6XTut99iJNuvDl1ivE8aY1QhIqxxYb4Ef5BIQz4/NnlW+gtRgPXpX2YiR/aVGsti2b5lp1rNR+dvhuU9LBahaovza9G4r5sRL6ZjvLupQHk1YIMRx92XZCtuw4i1bvn6VnfmuM80qZd1Faiok63xU2lyZ5Cbu4DnQUvuJt6/WpBCnEb4NNOL+raGThOnaHEhAeNf+Poc0dzRoZtYMZFyDo5G3tcMIcdvjGu9kQl7ifgedBropGh/dMe4dJi58k8CTg8k23zzwNIDyQD9OF78QLu6/r/uQN65u47sUnzSC39ChQ+2rX/2qWz7ZvHmzffGLX7SzzjrLyiQl/8EPfuDqKR/72MdsuCyoxIH3vtJM/NuHA235zvtKERvagL9eI3vZ8adOsVeffEEbyqZav/EDbKcUIah3KYFbGQK0Yp1M4mV6WL0256Yq09IZl7RW1jwqGitt6YIV9tJTC+yMi0+zGqlW1KXqFEd7CjDZx0qWt2HsZ0s1RQi7avoxdvG//6VtWLpKOtIN1m30MOt+zEDf4AmuxEALbR5VkZSkxtKMKc291deJHPQauxVt2hXDrXtFjd32H4/Z7u277NI/n2EnXTbK8jWomJTMEkJLoJdNoTiiA72Br67PjY64XqmEwucq77BudtK1F9mkK+ZYQ229VfSotLKe3axQpbIoDHZR3MY5bUW0EbbjMH2IZfF8ocEqupfb8adMsdtuutNWL1hi42cda3VKuEG89jS1IRaz43V6zmt2gGpQXvrq6IK77rgOPJr/6DPSac/bqJnjtEOVSYQk8OJHsO3vqxhR0snfg+RAS31pW0nGabCCkrgjkwN7kNeRWb6kVO/AARo6P0B4AOLxxv8O0Q/J6wDkIB7yEvdrr0SFE6MBvb0IHmI6gRcA0yC9cklgG9OFTgDE6GAHuoHHXOP3bSTfFBzaOOgHPWbqGCsvmCXkF4A65Xlm/nz73ve+Z//2b/9mWEchfjwv8YlDUyLJTbtxINQDCML3A3GcxAigTFek7IwLZtniJ16yu39xp131Wa1q9Cu37QLeZblywU5JYcsrrY7dmBKHA961XiI96Ep784VVdttPf259B/a36WfPtAbpRTdyumYJnAKkswKnSNWBJng3yvBI2fj+NmRkHz3JV/rTSM9T2BIXbQB+GbslQbkC8UVH5ZRQ5WSCKG9smqQqczZwrPYmSHqeKUrffJj0WLRJ1CQ9z0lFxRNTWFEnsjvyjupISgkCxFH/cL1w+QGk1QAsr42YVT37aFMpkwCKrDBkRa/JZ+Qimm7JRGVgwiECagflClOwMTpwp/8jj9ndv/6N9R/a33qM6G71MlXYKNSe1uQlLZ1v0iU9Th+lREVNSLpgx6WjAABAAElEQVSnq23xU6/YYw/80U5/7xzrPbqnn65JPtjwHHe0x8QdHAfgabwtBWq0Kfq51rrwbeK0EqFEa7l3+IRLQPjh863aNacBZEGURu7ArlkHHA/Trom/A7HQ6YRre+cjhS5pNFx6TqB/ODg/aEQZRXIVDmwh7weaf+gQl4E33Aeeww/exZ9bw6MwKaA+4aANnbIyluz1DBgqbVgK+cYP02A//vGP3XY46ig4yhuAfDL4OEsO6R9U0nDYi6Y+HJjTdwfkKnq/MQPt0o9ebrf+98/spu/eZO/54EXWb8JgbQvkIBupv2mTZTZdpY2Psqcte9dl+TJ7Y9Fq+82tv7JCWd4u+djFAoy9dDCN6iHVCfCrvgqVD9Jwp1u1AOVXEz3uqrSqp4CFBm2WVBtnj2NeGzQ5AZMqGQEbwKpjVYUQARGXj656EguQHuclzU43arIgW9qIpjGJSBCC47CqwjNSZ08fTz0jVQdUc4pnJqNTLAXCpQZvFZKII3WW4Zaov4WWMkE75uCfQCOlcmEfXBx0UI95QS+PTCHmBlXbeR98r930jRvsthvusPd95H3Sve/hqjyKZA3ERQ2mMevlFwK3noVKe+1Pr9ltP7nDhh0zwma/d5YmGpSZtq3ykrbyEdpiaG8UJ3EHxoHAy+ax4XVbDtbaF53mdJPnw5sDCQg/vL/fQec+dMK+TKxOAkfjx59fZznyEJfKHDgo2LsEPparXIypGit98Ns7RNd9YoDcvn27q2tgXztIhtv6ncL3DZ08lkvYMNmrV6+mb3+gXAhgOYBx6ADAu3XrZjU1NW5yC7+QB59M6HtwkE+fPn38yPpQrrAES9jgR9zEHRoOhHoUl+SF79nqFAF3Mgco8azvgpwwZ7J92K6x30mN4kdf/5Edr+PoT5g9zXp17ytjhLJqIksqts1s3Rtv2PzHnrOnnnpWakgD7aprP2wjp4+QBLwW+bjqC0AVCyLql2i5qhPqoPxHL4WdbgfoArqNApcZ0DeIWcAU2+W0ewfvgF85onKr0OoLSv0dgRQHSykp2TGXTUPR0eEo6ix85Ql6CKehSX5A3FGulMOYc9rkV3SwckJiyh+WSkgYYbXLqXXvScq7lC3dKC96aFQm+KWQguuZ/k82VGzEicfYBz/7Cfvl/9xmP/jPH9m73jPHjj95qtnAlFYYZGNdJ352y9TooKQKe+v1Vfb4fc/Ykw/Mt6Fjxtlln7vUqofXyAy7DuhJRyfOkuvw3bkPfQL3iWt/DhwIf0NfSW7i36r9c5dQ7AwOJCC8M7h+iNIMDZyGGm+4DKRxUBQkjC0NsPF4hyibTWTJZ0t5AWCitlCUJBSpHFccg2wAY6g0hKPL29IxOfBmFNQgygDMkH44uPBtN27caH/9139tr7/+umc78KMtZYBfSJ8B3zgkoJ/+9KftE5/4hC+TH8yEJ+Qn1DloAb45or6qSlJPgX38wjfj+/OMxRPCANhDWclbqI9xP/wT1/4cCOpoUA78Dt+p1am5DoiAtZAjWxXT2ng4avZo+8jIa+yROx60eQ89bY/dPc8G9Bpou9busPXLU/b9V79hG7e+ZenqnM0++xSbdckZVjO8t9ULzKe16ZH9haqy3lJpsU0PUUajrKEjLucA3W/0DHrFG1veSK79gZdIjLHYTR+gAMR1kK+rTvPBnrkedcinJNmolhTZN1MiBWpWeEqnPwLMgGy/9WxBHX93XD1dXUleafkrDx8FwluYPgLoHj4Kk5Y0m8ARWFcekHBzMFBlvY09bYR9oveH7e5b7rKbf/wLu/93c236sVOtdqN07HeaPfv7Z23z9g32qo6o31j3ls2+6F121vvOt+phZbI2s1PSWOZHWn2AqYnr8hxocxvs8iVKMhjnQALC49w4Au5psM2BS/ALxUOiGkASEkjucQGUhXCH+ko+yUt8wOcecI3Zuttvv91effVV1x3mGPPJspPK5iHKA2AI5WxrPn0p2Zdjo0EIOvrf5R3lxob2yy+/7HxpzwxzEAT1gBMM28ORV1yoe5glDHWOKzwHsIfvD/jmuwcQ3x55SGh0PAcAtV6PQK36zuhLp3qkrPeEPva+z11us95zli16fomtW7HGdg7dKql50Wr6VtupI0+zURNHW79Rg3SGvfYNCHlHgBp9cWFYTZyj51KbjRUNINu8+ZbwrCogYJkQ4GD6Od6INpPwEjCHstd6F0GXokjujApKowx3p9IAdgQBiqt4BHNxuSi6OguInbd+4WUJc/udxyrdtXzx3EXRRCOUTx5KHwk/eW2UfniW/Eg6XsjV2YCJfe2q666yGQtOsWcef9ZeXfyS5XfIQkq2wR5f8JBMeHazaTLpOHnOFBs4brBleuhwJEnSc9IVT4mXpTlLyxlKfBMOJBzoMA4kILzDWH3oEwqAJ4DT8EzKARRxH95zH9QbevfubdWSVMbD8f5QOvIRHOArSMUXLVrkUtEHH3zQT00EoM2bN8++853v2Lhx45oAXDx+oNP6azQwtz5854YM3wWgyobG4JiMINVui4NvoQ6EOsL35z78DpS38XiAMVxIgyt+XHHx++AXj++Bkj+HFwcEetMOZqWTre/M90QnulimutDTrNdxfWzG5N7aRKjnOtaiBDJl3STFefLqA7zG6J22XUbgU96A8KKANLheBFvNDylzKCzwWuopHg+dd+LjJwUS3ZaqYgSgSVx2xxt1CFBjUSJlgV43aUiu0FERDVbOkEuz4VOeTk037e5QdYE72bTSlh1wWJqVRB4Zvk8KyjVhHpizSf0m2rjTx1pxU73shNdKvq9Nq5VFHXCkzaU6MCbdDeY5V3X6J/riyjuid74N7ElcwoGEA53KgQSEdyr72y/xAF7CwAfAAdjimgMcngMAQtJM3KlTp1qlQHhHupDXkJ+gBsFBLgDwETJRd8EFF9g999xjjzzyiF/HjB3r6guhvFxD+dqa98MLhkel43Cbb3/7265CwvcFgIfv3Nbys/JBfH6AcFR/4vzkHtqB122l3zx8+N74cx+em3+/4N88fvLc9TmA2TuX3AoOYgEEyIrFFDe7B+gDbAtKqmoJJAoIg7DdR7dAWqFNdLCzBICW3oW1GWK2zTEJiGgQ1+XdnpzqvZ6RBoNHUXchaULwX3tE9R4dbk4AZdNouTZrqh1INQX74EBvrSU6oCXWoXBYWsGAi+udIxEHMStfvoqnDZ/OLSTaarM56bybrLnIWrjrm/vUgNmF8lpXlGnHnL6DNmnmtSHd9etlyzDlSuxe6EOR/YRmwoGEA63kQALCW8morhwMkIRe76ZNm9y6BJvsli1b5rq4/fv3bwJRAewEcIUqyty5c/0o3Dlz5uwF5ggTwh/KsgPymBDgSA998A0bNrgEfKIOb/nsZz9rq1evdvWLNWvWWEG64BlJxoM7GJBIqimNxP7TmHU4uJzKPmrUKP+m7fF9wncOqxDhWwRe8P5AXcgf10A3+IVJILRJg1+oC/8/e+8B51V15o1/f2X6AEPvHUS6SFOUImLvPdGYaJJ108u77fMmm2z2v/tmy2f3zb6ryW6yMTEaC5aoqBEVNIqIokhRBBSkCNL7MOVX/9/vc39n5jIOMDMwMMycM3N/995zT3nOc0/5nuc+5zmOpqbm6+OdOg7UgkUOLUK4RI6BfJsNjPVAJvQytFUtMCmgy+ZvzgC4UCNdYHiQcWmWL6h9apw8TK1E1w2rk0otSFeqJ5oOEM6rX6O/pNkZAVu6IDXrDfhMNEo+zxy5aRAEcM0v2NhG6nDZCLehZwpWlxtGirJplBMIF85Pc/aSJb+0SDmSll1x8YFJ6d7KE1wHGviBlSM9oxaL2Md4nEDwT8A8ZqZZGJ5FyhW9UTT5wJ4DngMnngMehJ94np70FDUYLF68GLNnz0b37t0NVFdwZ8INGzbgpptuwvnnn280hcGNrh999FHMmzfPLFKMGDGi3jAONDV3oQTABASlbqHdEmUpY+HChbj99tutHNqmfOzYsWbFwwE60XTc9HGw0nAWDMfNXcrjS98BZfcedW6KC8cX/8RPt05A9y5dd308PFZaNVZueB1elOlMIyp9XbsFuO6LSFPK5uOcWg4I3PF1EkAGLSpQu+YSTb1fqnpEaTUllqVNa2LMLDehkR1t22WS29UHah65tsiqLfBoSFKAlzJcU+9uRENlrTKJddqIkOyasNXajFSixCeCWp616XxElkhUP0lbhgg2paz5TDa7rZWpnyCo1YRCwJjGM3mtv+Z2gs+5qYSYRr5quhCAcX4FI12igoJuloHlYR+aYuHMshALR201LjRlPP7HpeLCgFlKz/XFwjvPAc+BU8+B5u9DTn0ZWz0F27dvx3vvvWe6wnPmzDFp+G233WbS5Oeee87Mv4WZIGnzCy+8gP/5n/+xrcEFdJ1lBAEiJ6U8HvAVzu9o12FA6MDXlVdeiS984QscVCJYvpxbSHNg0RbmF110kQFEMxeWE6E5wHi0POo+sw0tKJHjsBVIvTj42kBbN2ALuxd/HKjVue618zvWWcUSKBJ/LQ3y90gTm8bWAaXn4uharpxmFbfya0aK9U75On/3vo0GfuHQlvZy7rnd5H4cvWE/f93yOJAhUk1RcpuitFgzW73LZE4VIpLkgsu9aRzctB+7PtiJnR/txsFPKpDez0lglQAkt2KnfW/VmqB1SkZEU3qUCqcJGhvfRkWA5MVJHpQmG3qVn0Atd9vkb4rXqWwV6WQYbWdPffB0tdoZ48UI4mnw3KTfmSq2EaJw2jePUck9lqSaioyhN5MTRhZ2JrGkXRc2RWHbMjzNyQF5HE3ShjppJn9j5FGkOoXq/dVI7K1AYn8lIjTzItX1NGcvSb6PJMuXpUdM5WgCN0WNd54DngMnlgNeEn5i+XlKUpP6yaWXXooHHngAEydOxOWXX26gav/+/RgqHWpKPuQc6NLA+Pvf/x69e/fGt7/9ba6k71BDt55JKi2naweoagI084XylEm7H/3oR6YPvmnTJqNz0qRJpres5w6MHj9tjR/Wm7n4R03evRtJreVU/qbCABfP0siBe127CZjSd/np3FAXVg/SZEm0aiL4+OOP45//+Z9tYa17b5Ls613qftGiRabz/5WvfKVm8a3y1TOd3TtvKB0+3KnjAKGtqXgJ4GoXx7x0Ico3V+D1ea9i1dursGfLTtrhFljnc45AZR3bYcTEMZg46xyUDSkzMG6bWxLFR7go0XS2KZYWmAwkvA0rm6TFguBZSt+FvyXZNnjPOqVFm7qX+kw8VYjElgxWLN6Mj9/ejK3vs77t7YAUJwcv//dSnHluNwwZ3xvth7PVaMt7SvCjJEpAubmcrMqo1SmLCOk3NR+7473IoKpPhFL7OJH6jjXbsfK197BlzWYc3MsFpUnyKT+C9v074MwJZ2L4pBEopgWaDCcalgR5rnQb3qqbq5Q+Xc8BzwEPwltBHZCNZR2bueGF1Ep0vXTpUtOlHj9+fA2wkt641D1kbUQ2of/+7/8eP/vZz8zutIC4Az1iSWOA14lmoejTQsGZM2eahN6BQ6cz7O51diDtRNPQUtPbtWsXXn75ZRw4cMDKfjQ6j/QOHd8c4NZZ9WQ0TUC6CZvSbQpvlZZ7TwLgAtqiedmyZbYrptJUGH3dUF10NBTSksNLL71kakjf//737ZlokATcTTpcWPl71zI5YAszqXtsoJfS2Sgx4bL5y/Di4y9g2+adGDJ4MC66cBbeX7ICe3bsx7QZU7Bh2zq88vQrWPjSG5h14yyce/U5iHXiPpGaKUranEOM2ro9ZzelgYXnBI7RWYUsDQO2TEta6jryKBDOHMhi6by1eOHhhdi+fj86FvRAt6IBZre7a5dO+HTtLqxYuhglXYDJl5+LGTeOQ35PLmCXwrURJuKawREhRwjEpYhj+eQQs6B5hJL4vEweDm0tx/NPv4wFcxcin9L7/l37Icrzns370O+MvtiwciMW/ul19BvaB5ddezFGTZtkCzgzXKwZjbrlrs1Au0/Sc8BzoMEc8CC8waxquQEFejZu3Ggg/PrrrzdCpU8tUCXQI9WTy6+4woCNA0EzZsywhZw//OEPbTfD733ve6Zv7YB4UwDYieKQaNDhbIErXUe3k7QeH30c2Jpp7DxRPKibjvihsu/du9cmTmvXrq0BsHXDunvxqD6ntMJOGx/95V/+JUaOHGk8d2DX8fxI6YTTcNf1vReB7XAauta7dZJwnWWdZ9asWbZO4a//+q9rngmAi14HxuvS7vL155bCAcLGZE5XmnarX579Ml584gUMGjQU1/zF9RgwYgAKqP+9fsfHSFA1YsLltGVdOgIzN16MN55biGfvn8N+aScuu/1S5HUtIugmYKSusxRIBBtr5cMNKa/pnzC+0Dw3BmMq1KK267wk5fV7snj+f97BK88sx8DeXfC5r03F8LMHILk9iV/886OkbRLGXjYJ61d9incXrMSLj7yFT9bs5s6T09BhZDHT4oRTXckR2llDKDxSGIPI/IqQzqUtSylsCEFeVcCna7bi0f96GDs27sD5U6birCmj0LtfL7zx4iIseHEBLr79EhT3LsamD9Zj0SsL8PA9szFtzQ7MuO0i5HXXhlgi/Ei5e3/PAc+Bk8UBD8JPFqebKR+BEg0Cq1evRklJCdymKEVFRSYtfeedd0ytI7wVtRs0pLYiVQGpplx44YWmyqL0XJru3EykHzFZ0adDYFDAUyAtvFumA2RKQOFEZ2OclZ+DUHMNoI2hpbFh9TVDakaSLp9Ip4W8jpfGHybelPevuA5c6/1JjUQ0h517f07CrWf6+nHzzTfj2WefxW9+8xtcd911NjkUgJfz6ijGhpb/I7Gz2hYXYS54bjEltfMwbeY0XHjNhYh21peRKupT0+qIALHpj/PdFpWi4xntcXXfa9FlcBe88PwLJjCYdfMltIVNwMhwtqhS+tmsX41x0ucmcrcjzroYiVRTnYQTu11xPPsLAtbnFuHSqy+i9H0E8nvEWc+oFr4rjQKOjHk0p1jQLYJ+HXuh71k9MXTxEDz+m5dw37+8hDt/eBHaDy5BOp6D9Y2kq6FlsIWglIgnecTEV6rn7Fm7Ew/95++Qqkrja9+7C72G90MV7YanaE5Rlp7k8mh7Pa9THgZPGYZ+owbhrXlv4Pk5L6CCvLzmrqsQof1wqYs1lp8NpduH8xzwHGgYBzwIbxifWmwo14mOGzfO9Kil5y2/a6+91hZqykThUG5wIzDrQK0KI4AlFQCBb6kBSHI+YcIEi6twcopzKpzyt8WXLIfoFABzTvcCby5MGMi5MIedc2O2SlSbigvBhzZ4Nm5gd7FP9llllprOnXfeiW3bttVIrZtKh3hpkxxKwqdNm2Y2h8V307tlou65zg117v3obDrhfHcC2Lp3h6ygLH//fbz55pvQZFHWe7p27WqqVKq3//AP/2BrGc6dMqUmW8V1db3G01+0OA64lrRl6VbMf/JljBk9EpfffDmqi5I4lD2E/BiBIudkWhddnaomaCQwp8RXO1OmipOYes107OUE88U/vGTS82GzhiNBgCnVjLhs6zlZuElyJRdX3VSuQc6SmMu2tnSozdSh9FGs/ko/nKF4Ha+MY+GzH+G1OW/hqmsvwoybRiPRKYUD2f0oibRjO2BfoXh0aep+J2LUcSd9Z184kGlegwf/+w+Yf/87uOZ/TUWsc6BfrrRt6aQ1lYAekSh6ZNZFqcnsoJRYhJOtP1Kd5n3gyAO7yPnYjaYegVM5ZWYxva0Kc/i1YP+ucgLwr6HHsO6ojlUiwWcxbuYT5QSDnSMynECk89O0jMLylsUw7ZoLqJoTwdy5L2Lg0IE467KxOb120aC8g5xkkcak8JatSpSjNUddjhx/8hzwHDhBHPAg/AQx8lQmI4AiEONsggusyMSfgJWeOTDtQIzO8pcbTB1NuRUrVpiEVbrhLrw9aMYfB6zCNDo/DZxhOuTvJKwujMCigKkrV/2kBuUMxhANhbyXPqd2obOhMRhsg7i5sIclVDsMHuZ9km9URkmQO3bsiG9961s17y+r8ocmKQ0lS/G00YcAsc5KP/y1ROmE60lD01U4vR85paf34+6Vno5nnnnGLPMMGjTI9MSfeuop/PjHPzaVFK1V+Kd/+ic89NBDOJsTS6J0S0d1wb13pa105efOLg89a4su/K4cL+TXnK7efJhnilY6XvvjG4hWRTDrqmlAIesAgXFBpBAR2v5TuxUQjRYQ7mmxJW8iua9dqXQlpl08BZtWbcB8StF7UT2kpGc+raNwUSHbbobo3UCjEC5dJq1FoLQfQpUVa9pMK5FKcoKaR4l3UN+yzCNCayLsUQj+C7BrE9VknlyBs8ePxIxrRiFTVs62FQGXOfLgukYeCYLRdFzgNMsNe+jDKp2MHMLYGT2wY/tkLJyzBOOmD8LAWX05gVCd5yJjkqSqLxvo4o21ApZbZgHlp2mBAK5seCu8pNZZ0c8/iH7yxV6ZEDqdSyvGuh6nnn2WKjTL3lyJ1Us/wmW3XoOew3oTfNMKiia6TLSQPDHDJ9ycp1oWYWjdRffawTRZkMI5V1L/ft0GLHzyTxg2ejCK+pYyTwYICJXFRnJIhZCfaCIRPIIe0qg0utr6j6v3jeFDuH02NF5T4jQ0bR+u5XDAg/CW8y6aTEl4sK17Hb6vLwOB99LSUtM1rqqqMvOG9YVrDj/Xybiz69y0aE/gah4l9Joc9OvXz8wTasEph4fDJOPHKl9z0H2q0hSolVRZzn0pcLxrCk2OdwL3cu6+KWkdK44D41KjeeyxxyBrN1qAWV5ejr/5m7/Bk08+aXbgBcy1PkGLT99ZsgRTp041uhRf9OmssmsSYVJ7AhCpu+hZeDKi587V9a97X18459eUc315h/3CaTpaws+dXzjcsa5d/MPi5vh0rLhNfa68lG84zzhVRvZu2Y01y1diyjnnoseg3pTUcnMbgme9kiiBp2xvy0J4hGHT3MWR+8TTnwiQoJlNHx16dcMUqrA8/sjj+JQ6zcO6jCAgZp0XIFSeIpg/KYLSGCW/UeqgV3HRZ8WufSjr2hEFA7oQfDJAnPVE6VPHRNL2ONGk6PvgnfVIHKzA1DvPQ7RTFhWckMuWeCxHQ4p8S0aqzHKLVECyXOwovfJ0PoF8tBqTpo3Bqlc+xuI/UZd8ch9kSqhOpQmFAWuRFkigTRbP8uYlSPyBauxfsQ6V+w6g08AeyD+zL5KUsKOQ0muWS7VVkN+k97l7TRrixjSaGOQ2npwDYMXCpRgwoB/GTTsLldFKAm1OcIi0s5wBJEl3RIbBKRGPcJOeGJlWwDSkYlOdSqCwpAATJ0+iSs0jWMX3c3aPCaSU5g3JU4H1lBlHpwV05ingnRTwNyQu2kRh23Uam1T3wnW9Idxw7VJhGxvXpa80tGC+Oftnl5c/n3wOeBB+8nl+ynJ0jVgdirtWx+K2L3eEhZ87v+Y4Oxpc2rrXcejQIfzrv/4r7rvvPpscFBcXQ7bDZc2lb19KnnL0C5DZoMz7prjTbVhx/FH5JU3UWa4uHxvKC8dHp97T0HhNCac6pnclk5M6/vyuu2wNg9RRxowZA61dkL37Hj16GAiXffgHH3wQUrOSyUr3nlXWJHd6lQTfTR7C6kpNoU1gXk6TnON1Lq266YX9w3mciDyVntLX+3STHZdHU+uGi3+0sybLzpqO1Um+4/aF7bH9421EcAmMGzOSwCOubXZYR7VZjL5cSGIcQwHDxhJZFEUp5SYol83trIBynvTF9YVuKErzi/DJqo8x7LwzEc+XpDigRie9sTwB4637seC+ObTA8iay5ZUoobnDyTfSEsjnLwHac3ijVFgRqe1NJrHFV2ex9p016N+pJ3r07Wg63Vnu4V5I8JokzcLhEYm0jVZOMDgxKKAKjYTDScZPkv72nfOpLtUfq9aswMEtCbQbEdBshVRZ+WdLGZgdBfA4RB3uF+9+ENveWoNYRQIFndth1FXnY/xd1xGEi75aZ0Xkj3w16RDtAudaG1G+/QB2ciHmtPOnoR0BtUnBGdL03gWXKdXWBEB0aLJRmMnnRIXLUZUeC5agWcjBwweiXVkxPnj3A4yZPg57yvexHTEOVWVicerK85qvw1yWPNClkWFXgX9b/HVtS+3LOTf+uPvwWf2Va3uK21Tn8lA7KysrqxHCNDU9H6/lccCD8Jb3To6LIjV4NX53rpuY83dn91z3dQdw96y5zsqzLh3KS9ZctDhPg/x5552HDz/80NQTtGPmN6mKISfgqHKKZtfZ2YNG/ASDVyMitICg4pdzTS230tAgIRdOz6V7os+iUxZYNJDIuos2iyqjWo3bIEpqVHv27DHVFOWtrzO33nqrqaWoLtx44401dGoB8r333ostW7bYgKT37waq46Vb6RyvU1mb+l7CeTeWFuWp9uK+Ip0IGsL01Hft8tR7Fb1lHcvwnS99G/s303wmbVV/uGo1Nh78hPBNaJRQjv9xIkIB0z2bdiN7MIX3X1+KLPWxs1xUmBcvNKArBFq8P47iSBH27zzIzXMieOeDpUzvfWpJBJCwgLazS7LFSC1cj31zl6NHZSD1rtpCc5i7nsGn27bjwCA+z09yUxtJMGM4b/wE9IwOwv5PdqNv/mikKglst1C8XJCHKtr+lt651M737qDSeqoIqQoC171ZkyJLipkgKFUZVE26dOuKA0uTOLgzjfVL3+cah7ctnPSuxRdNKPLSeShN5aHizY+x95U16Mr8SrhgNbu/Au898BI2792NStpFT1F3m1oybA8xqr7wPQpKMy/RHONXghhF+OeefT6im9luqwiume7+Tdu5UQ/p5SQnQnWbFBVo4tlKlO8/gHwC6sqd5YiWcCwgreQMdcSpAqTJRFUCHbt0xq5Pd+KlOfPw88f/C5WJSr4hTYTYp0qaby+bEyZdSHmfzxwUt0dt7EfvU1/bdKgfc33n0digNqFD/avahtLQ0Rin8C6uBBF/8Rd/gRkzZtT0m41Jy4dtuRzwILzlvpvjouxIDb6uv7tXxxKevR9X5g2M7PLWWZ2N8lentW7dOlt4eNVVV+Huu++2TV5+8YtfmAWYBKWgkp4qnOJJGuoWEjYw28OD1WLaw/1b4J0DzCq3Dt07PjSFXJeO4rr0XDru/njSd2kpDQfUBMB1Laf37d67G+BcfnqmLyL79u2zMkrSK4m37N//8pe/hFSnBDhFpxvsXH5t+Sx+yol/cu7ebk7wj96VmZokMNF7UF7jBp+Nke3PomWmarz0zMtIRKnWQcl3StulRzME1nGkqSsOSmkjVCd54t4nkSog6EzIWgr9KYWmMgdKqwuRphS366g01m7YiB/87f/GsrffosSfdZ9gNcq4/TNluKx0FM6u7kpJtSwo0e4869ehXYfw8K/vx4JDa1EepXY3AWiatrG/eNvt+Nsv/hRVhyJYtn4jlv/VGpJBnWpKu+OUyGvXzDT1yYvS3ZDZ0x4Lfr8YLz67jSCeC0il2BHN4/NKFBP8Zw/RfGKsEOs/3oK7n/s/+OMLT1FaT+k0AWuagL44xvCcGHSNFuOKzuMxNtEDMQJwqbVUVR7iZkBZPPfQE5i38wPsi9PmIEF4PsG25gGyZx4hwLYvPSwTN/HE1+/8Ju6YegdBdhLPPDEP1c8eNBWV/Cj17LUbJuNkyed4NVVr9qfx+399CNWFpJssTWunTE2EqJ5SGi/AgT270HNUH3zw3kr86ZVXUZmskDxdAfkVgG3T+kTyjF5soXwiGE++K0wbdepr1KZUz3XIqf7X55x/uA26a/esvnh1/Vxeylsg/FPuOuz6zrph/f3pywEPwk/fd1cv5a6D0EPX4MN+zt/5aeDUtcK68HXD6L45XN08lYdo6dKli3U6q1atwr/9279h8eLFlr0sv2jQVxgHLiQRD9PdGDpNqnYajSsqt3tXrvy6b6zTgNBQnjUl/TA9jmZJkJSn1h+IdumCC5BLwqiNh6Tvr8mVnCy/aGHmDEp9rqB9e9EbQEqYn+rEjh07zF9pHi+NYXpP5+vwOw1fN2eZlI+Agd6vFnVfdvHl2PjmJyjr3gmfu+FGlPUrQ4IAXC9QQLxI2hLV+Xj+D9xwau9OXHf7dUhy4abURQQ+M5TEasIV2RHBH/4wB/HiQnTq3B4jzzwDB3ZspzSXIJ7SWU3I+qfKULCb4LlKoJX9APWmi2PBIs4eHTpjaK8M9kcF/lVHMhg27ExE8ggyaTmke39a4zmnG3Gp6iXbFdUwUgSrUa6yrNgawcrFq9F3aA+UjeyJVIxAnpJ9amgTRKcQTxRiy0flWPXJLpR2KOUOr4M4UTjTgKoMFkY52RCgzWP47pxslFYWUoLN+zhplX9BIQ5GKqiOVYoB3QZiP83FSMhO+F3bLnPNOkJ6VLYhgwehgLrnMTaR8WPPRgnNIxJyc4051UgoB+ecxOj7cPkH2PrRZpw7fTIttxRwQkCpvvTGOcGIUIIerYhgyaK32fZSuOnmz2HItOE4WL3fVIS0/jQuBXJzOehtonSBcOefe9yGT67PUb9zpHamNlFA62NufHJxGsM2pe/6eZkf1j4O3rU+DngQ3vreaU2JjgROwv7h65qIvDiSfzjMibh2+ejsOqrLLrvMVFK0WE+ScPnPmDEDV199dY1OnAZqDQsmCeeA3BSnWKebdMd1+o5vTSm3S+NocRsS5mjx9SxMo64FujWRkoWXNWvWmGlCScDXr19vKigCcQr35S9/2STgP/nJT9CrVy8biATENSBJZ/yOO+6oqSuOznBex6KrNT53fDgRZRMvG5Ke43k4bAGlwwe5Y2N1uhyxkhi6juyGQ3FKarX4kgA8n9utFyaKEHmZE0Eix560v11VSj1pqkpkcpY6YlwIWb42SZvWlWjfowydu3XET/+/v0flgUqT0iYJhKW3Xbgvgjf+7x/w6Zy30TFbSKxJtSdibNnCvuFLn8P/vnU6Krg403aeJBAvLeuA/P1FKOEmQB2penHBLYOQbRdBpUA9ZdgxWlSJ0//T5ZV4b/0bGD5rCsZe0x1VnDzIZCGxOjI0q1gE7u56/0dYvS+Bbn074a9m/SXu+tpXSRvhsFQ+skyLvVM+Rcmxymos+vnT2PDYW+gd4cJyTjQqUIWDxVl87pt34m+vPMf4wwg2UQnUPzTZlhpDijtjcrt5Xnfp2Im65bsRK06hzxndMfyGcZzcEFjTEk0BgXNSvGXhE5l92LF3I8ZdOhpFAzsyHVl6Id8kzU/kI3agAO+uWY52HQrRe1AfdB/Xm8+kYkHNfRZQiwCl5WLfUwTIVXZCcE1BvGscB5y6ndqHayuNScG1K0nCnQS8MQKUxuTlw546DngQfup473OuhwMCWt26d7eFmeeccw4kDe/Tpw9uuOEGSrKGmZlCSRfk1LFpAw7XWdWT3LG9Gi9IPnaabTiEG2z0Tuq+F93L0s2MGTMwe/ZsG1i08ZC+dGiXTEl75s6di1dffRUC4LJbH05Daeve2R23iRj9nH8bZrtJj135G7rY0/HPxdO9XDh+3TAurM4uvK4lmbZ3T/TWs193tM9rhw+XrkG/SX0R7UBprBY9RovM5naU+hUxWgXJUFJYyWuZ6qvMVCBN9CdJdBEltu+vWI7yygMYwh02JX0ubV/KryjtOetWZsqRtHaLY8rtV+KFzbuwf+kmbrDDRd2Ucve6YCxG3TATsf6dqToi++Js5ALQgpJUTel1Rk98/PJmHNx7FhdyyvIE6yp1pavZ90QKihDLpyoIgbmk7llKkVOZStJO9RjqX5ue9MEsNqzdgO59y9ClNw0bto+iHb/kcGZg5BGvE8ySPlpoiVC9ZfqXr0Ni+0EcfO0jlFEdJE1LKuNuvBATbryE0uoidOZEgatWDeRLH1zE8o7F5LUWrIp8HX06oX2XDtjw4VoMODCM6iYptgWWjgsuKwmkU4XkL/mTTEiVJIKqKCc/BHAFeVT1ySSQT6C9d+tequtU4cxJw22SlKEZw5j0ygXAxVb2rbqSeopRYn2tVFKCPldBvDs2B1w/6EKq36rr554d6+zAvMJpfGxqOsfKxz8/NRzwIPzU8N3negQOqIORjrfAmuxhS/dXoEsbC7mdM9URCYjrfDyd2xFI8N7HwYEwaFYyep9u0HDnu3KWUbRZj9y3v/1tzJw5E5s3b7bJlxZl3nbbbSgoKLD3K+mPXPhdyy+8sNalbQHb4E/ddREN4kduQHdhxeXw+5N/wPkjMDQECFw8gbmuPbti7OSxeGfBYozcOBzdhnXlAkOB+zRBOLWmI1QZSdLCjSTQBLoZSoZtjxnpNKfi2L51J155fR7OGDsIvQfzSwh1wKVnLesqRNQGDgUTo1Tt6Dh+IK7/P9/Fm//0Oyx77W1uqDMV5/3gDkQGFFOznP0DVUOyRMUsiulbU0cEIyacgRXPrMHKpRsxZeBQHEqWU0WEEmwibGJWs4QSo454JkM/ws8MFbYFVPWgJF6E9ev2Yv2GTzDzpnHclZLepEvzF2ZhzoA0bywKy9dhZH/c8I//Cwv/7jdY8eobmHzphRj/nS8g25XSfwJwSZoDxJtLQCchYPJS5hItYUqkY+3i5MkwLJqzAKPWjkH3sYNRzglCjCo2WhCqLw0xTmLiMk9IXfKYTAySbKkBxcwKegGWvP0m84xi9JSz+EyqRCwhJwyC/ZoMaY6jcugQ9A5qgCC5d43lgNpPTbtQBWykqyv1Dvd/jUzKB2/BHPAgvAW/nJNBmuskTkZeDc3DgQJJAIopHXV6dQ54u86tbifV0PTD4Vpi+cP0nW7X9Q0Uel/unao82vVTQFwTLL1Dge0Y3/V//Md/mPnCRx55xFRWpGrk3n34WmloAuaktCeiHijN1uSOVq9d+wm/FxfePRMvjiV1E98VRufaeIRulHJPvGwy3nqXCxufeBF3fO8r1MUmIKREVlhEWg6ydh8jCM/SfrVMeAgAxmlJJC9dhD+99Br2Vu7FLVfejOIOBdR4FkwlemY8mf/WxjemhiZkX0jb+cM6obh3Z5MGl/aiCkb/Yup950wYMj/brEeAkmBcprCHjumEwWP64cVnFqHfGX3RfXQRVVJSlB6zLKRJQuwoAWxckm/B0Dya+qvmgk0Sn9qTxbynFlK1pR3OvWgky8QMSI8mhJJYa9JiMmOmJRvjArXZYj7vXopIjw44WMg1mH26AB3jSJBGbVQUVYbiAcM72FuTGNMNJljUhSf/xs+cjCWvLsb8J+bic32+ilh7CiO4sNV00LXoldySmcE4VWOoxWLpSt++KFuEj1duwRtvLsKUC85FzzO7IcX0xFkBbdvYiMRT/Zz3FtHKInq8azwH1J7CbUop1LaRhqXn2p/iufg6u3TN0/+c9hxQn+FdG+dAS2vU6nzkNLi7T+OORnVIOjQISzLuOqjjeYVKm/85V3PhPPy5ERw42vvQ+3ROwFuLMXXo+s1Fi2zDnptvvtl2fpUOpFQcauoC33m4DigtAXTl5/xd2v58dA44foXPak/Sz7fFsuRpQ5ziayKkd6S2KGeth6+50/DOuPLO67FhzWbM/uWTOLSDag8EgjHqLceoLiG9iTwCz3g+kSjF4PmUOheWRzH/oRexfMlKXHLN5RgycZjZ0VatiRG5S8IsZYkIkXie6oYWcdIyCCsB4lxoWEA6CrTwUtJfqrbIYojUOQS+bdMUJkSr2ci0i2LWl7gbK0l+/L9exK4PKmhTu4ATAKquMCwF7KbDnpVomUlU0rJKvIBm6miO8JlfLcRHKz7BxTdPQklfmjThRkSaGJgs2foRWiKh6kec15IwCwBrUyHRVE3LTkL4ZpebNOeTDeIh9xoySyQMFQBfXggIZzkhkCqNyiuATqUSdBzUGZfcdj02rd+OVx6Zh9J9UeTR6kospTJSJSWvGtlCJcDFsATjmXQ1N+2JYuuqT/Horx7lTsrtcd6Vk2gDkjkYStdbYx5iMunR+7R6wbxVdt7mjsBfz/xxbB6Iq3Wd8bWu51Huw32p47nrD48SzT86zTjgJeGn2Qs7XnLVmMON2127Rn686TcmvvJ0wEzXco6+uuBK4dQByV9nAbRjO4GJIN36w2oUzI0+DKCBL3CKF3bO3/kdK10Xru2e9Z5MWsmzNhpxqiXiiPydhFvvUu9WCzUHDBiA22+/3Zjm3r/Ocu6sa1dXdO1d0zngeKwUbMKT47Xjb5jnR8rFtcMadRhKdrWML0kp67gLRiNTnsBTj8zBxn9Zh0uvuASjJo2hpFwbwxSiIJ1vu0nGucPjxx+vw9xnnseHH63F5TdfiQupM50pZdskUJe6h4TeZsVEgJFVQt1FRIs51WYJNhOsR1nea3MggWteMlAQVrQHKiME8aQvQgDaa2wn3PL9qzhBeAq//PdHcePNV2HUlK6UUEdQzDzymV4+M6EmDMqq8vHJ6krMf+BPWLdmA264/RKcdfkAgl0mLNpEkKopgWtEKjWBLJx+AaG2+Y/1LeIMNygqJHhn0YRzbV8gdS8MG2BiS0iJ8dAv08zxVOo42jl07MVjUEHrQs/Ofhqbt27C1dddjl5nDuaERelRes8JSIx651Ljy98DLH71LTz39PPo0KUTbvyzG9G+f5nRSxGH0WM9qbKls+uanjCgIXjif08VB1x7VP4NaZOnik6fb9M44EF40/h22sZyjdiBXdfA5e+enazC1QXgjgYBMwE159I529IOiJsaAh+6+6bTrUEyN/owPZky+6yrz++zobxPLQccyBbQloT0ggsusJ1Ohw4dagDaSbjD71+mCC+55BJ056JcN9lq+nutpcVfNZwD4QVgDY/12ZAZIssoJdfSPZ5w7UR0oYWTuY++gN/f+wA6Pd0NQwYNxccEs8VElC/cNxert3yIDVvXo8uArrj9O1/EWeePRbQ0MFmo5hnNTdDZQxl4DPCp2qXaL8/U5U4S0WYkzqV9bmFgA7SG1BWHh7lA/1qmSVNUYxk+qxPuaH8jHvvvZ3HvPY+gz9zumDR9AkrK23PykMW+bfux4rkk3uYi0WXvrETH/A64/Vs3YuTlNG1YRrm8Rk9O4t3k3W0kZFkpzxx5lrv6NJpxlAt25Ay6nqgmCgpIOCw6g1K5PkdPdM1ZRc4RY1NaHcG5105Bh24d8NR9j+Pn/3oPzhw+AmO4mdne9bSrvy+DVYvXYPvrO7H01Xewd/dejJw8Cld84Qp0Giw1FGMR+ap8mYMR6PJURuaRy9GfPAc8B5qTAx6ENyd3T5O0Hfh1oMcB9JNBvvJy+YWvJV3S53HZkJZtaQEE98nbgTvpYTqam0qrK3tT4/t4n+WA3o+TcEudaNCgQRg4cKBNrPSOw+BbseUn8C0nAH+879QS8j+N5sCJ4LumzoJzOmwbdWLiAecOxZ1De2PN8g/x/lsrsWP9ZmQqE9i3swLvVi/BgMl9cc5Vn8fQycPRoRfNVEqKTRxoc2LtGEOnhYfUqgjAtRA2D0ltDWxLxYOTPYHJqLapJwhXWNN3ljkTPrBUuDCUjwhpFZOTBJ4GTG6Pb/S9CW/OW4Xl3NVy3sMLafavAJXlcTz91Ku0IELrIp3iuOiK8Tj3ktHoOqSUEmf2O5S4B2mGwSuTzTnXp7l7FYjV3Oq+LfLkA6NFNPNatLiUlK7KLhWUwBHos6C604c7au7QRTBy6kj0GdAHb1PSvXrBB5j/h1eQ2E91FILw53/7PJI9gf6D++Hy26/C8HOHIV7GxabxAOyzlVm+Qfr+13PAc+BUccCD8FPF+VOcrxtwNViY5FmDmEYJuvAzd90c5Cq/8GDl8ldeH3zwAX71q1/ZlvWyDf2Vr3wF55x7rumIi1450eakpubRlB83zjUlro9zVA649+kAuSTgrj7pmcC4CyPwredOTeWoCfuHzc4BvRf3rhqTmRYjSqjLhkrsS3CsZZU081fQLQ9jLhyN4ZNGcNv2DOb++gUsfPx1TDznfFz03UuQxwWYQoU0021AU/rfTCIA2Tm4KMAtYC272YKslo2IoxQ8RUVu6YFnaepPD7LUX1EaMVpHiRjCpb9E1wLiVHFJU1rPtYvUZKHd8t5xTL9lNM69dAQObEtgz/YKmvlLcwfLCDqUFaCsZzEKaQ4xWsI08qhVLkBsXRDvj+DC/CNVzJu/jKOlkLb6UV7yD8i166BUVN8yuM3nfGZF1T3jy0lPXBtcZaRQzqQ6DC7DzF6zMPmSyUjtSGDBYwux6Ok3MGHsaMz85sVo35MLQksYnuYMU9RxN0sxOX4egXTv7TngOXASOeBB+ElkdkvMSjvdCSTpkDQp7JoyCIfjH+vapa+zpNwOpGnbetmNfumll2qA9urVq3HPPfdg/PjxHEg4uDKOdy2XA05VyAFtN1lygFzv3PnpmnjCnAPlLbdkrZsyBx5d22xSaQk20wTFEYJYAUYtKRTg5L6OyHTgQkLtHKmFgTSRl9eRm+yUchgiaM5KQVowlehTAmza+WD7N5xq9cP0wgMYawBfsmEdxNW0h63QTEamVwK8aqRzaaL1IVrQaajWUuKCblPxoJ/E0Uw4Qn3qeAm/yPQpQg9qhZsT0FZy7Bup6k01EO6cqfx4n2W5Au01ptEQp0lN7i/KL0Vy4olIDXgdPA/SDJ6q8PbcbpUPw1jxpHrDeORvkrRESzIoLs1HtFMpirrS9nq2CiW0P96+D6X27TgZiWsBqzTAWRy1u1xfq2S98xzwHDi1HFC79K4NcsCBHVmhEFByZ7HCPXPn5mKP0neHA+DKa968eXj99de5HfQZ+Lu/+ztMnjwZsik9Z84cszCgOBq4dBbtTXMmysoNgE1LwceqnwMC1w5s6yzn3pPeWxh86x3KOdDn7s3T/5x0Dug9uKNpmfN9R7kxT76AKt+tqVQQiNP2nalhEG9LMC11EQHINBF0poASWpnZIxiOUo9c0NSsIpEWEsMjOIkeSYZ5awCYoQgug4cSIMR5naeFmXTa/0bhBLcluVZ+5mFQlCBYOuT0kv0SSYd1RSuKCm3hGN0AuuyM26pQir45fTDTfzrX5K1wDXQxbmspQb3seosMAemcto2VR5MMfjQwKXtAO+nOhZG+uQ7pg1v/Z3nKzjop4eQlRpUcwfhYiuVgOlpQGqHqSVTPCcBjFPvHaYVGExzF0bTIO88Bz4FTzwH1Pt61QQ440OPAd3jgdc/c+WSyRwBt165dKOfq//79+0MbtwiMy23btq0GwDlw13TQFlT9psc/mVw5vfJydcnAgkASXZjPeu7u69axuvenV8lbB7V6N+79NLZE2vUyQ5BnQNpAJQE4AWCGyFvAlXCQQJAP9NWNTVALOAOgzpxYVYTZDXDKvB9vBKYVPi2apAMiHRXDj4rHf3rJRaSmwfuYRMWqcowbZb76ow+9Akm5ogYqGfkML2k2v6rRM2p6MATkpF/56JZW/wiClZ5Au86KLXm2yqT0lVH9ztVj8dG+2nHnzIg2zWEU1n4SKjrEkSANo1HJ55z4p3AWVuEVjO1GkxPZSRcVku6LBrN/HilSAG7uI+sojMVNglgqHlQgJ+2mCq4QzJMe9oQXRkNT37Xie+c54DlwfBwIxAbHl4aPfRpyQB2vA0OnqhN2+Yt9jh5JTEeNGoWePXua9Pvaa6/Fzp07bUvz8847D3k0uyXnBjm78T+eA54DLYQDgo0aVgQQBQIDp/Yq2bOpQhj0JCimekeUwNZURSjyVfAM1ViCr2KMlwOljGo3povt8KgkxgwvDC9D3fbHbLXzpoTZBnJ5Ng0X0iIAayLmGuBM+iwDAV0+U146kZ5A21y+gb+SM/Cbu1dQm0jwcX3O9aeWpZVb5CjdNBVyaCFFG/zQBaYHNQmwjGuT4q1CxNhHByzIeeRCOOAeEBx4Gqcl3deshDd5BZxQkBcBiGcYEWMAXAo1tc73o7W88FeeA6eCA9Z2T0XGPs+WwQENGG7QONkUuXzdQOCk2zNnzrQt68vKyvDee+8Z4P7a174G+ddduOfinmzafX6eA54Dn+WAAW+JkYkEpUphmFeoj/2MycK1jbzgKNeiaD/KfKJow4YMKLUJ25qeUvAAfQYQVOGDgYqQUsibqi2SlstPe9JoO/kq6j0f4MY5FVSDEcpM6zkDSHhtO1GSJlM1iTICFygG6hhGGANQKm+0BqBXdMaYZoxf5QSe9Vy7aXJPnECthdLySJQb75heOU91nAQJgfqV0id5JEkp78tUYF+kEkmuQTUkrJ0txRUxieWyLwCk2RaYKiL1VSI6xAYeYovUUdxRy1xpuLNcZHsqXcWyaUmqKeJYWWWlJh0wIiinklOaDXS+j20go3wwz4EmcMBLwpvAtNYUpXbAOHWlEhh3Hb2AeFFxMb7xjW/goosuMhWUjh07YtiwYbRUUGYLOCWVctY0HJA/ddT7nD0HPAdqOUDAzPYp5Q+B8BjBX57aN0GfJMtpqaUQLwpCc2N4Al2JaynbpchalkqilBKneZbutICnnMULLg2I0oP/OQm28H67PHQeMwidq/ajbERfPhQNBKwSCitjJ5HXWTts0kkxRr+BjFogXFZPBL9lepAA1uJol06mY+EEal1ahNRSUREh9Tj1SbV9GqkXvcX5GHjBOFR3K0L3EQMtVoyTCanZKEcV9XAZtYKI3hwTgjv+1t4rYXcnNRyRXEmd8Ey0gGYegy+GQXgRwIMAPtglk/Tlknb9rutHde+uRYFc3fvA1/96DngOnAgOeBB+Irh4GqbhOt9TSbqjwQ1YutehoVG2wWUJxTk3ELiwzjqKu3fh/NlzwHPg1HJAeseCswKQNTBRGFASXzZu4e5DmUocRBWS+QTrXLAY5Q6PpnpN0t1ZpWAMA5rqE3SnreAFIAXwg8GLMm2qPU+//WpMuP5iFHTuwPSJviVBVmz+my45Y0udRdA/QK58mkOwJl2XvjnpszgiUvFyz1UW3jK84tgVffRQ1591rl/Tk6DfIqyn/fKzb7kU46ovRKQD9beZnwC4aaxbUkFaKicpIa2BJL8WmIv2ujmKCpPv2xPxRkr01dlKEUtec3Kj1Z/8VxY6NKFQmpLAy8d9fQxeDdPizCVMPwN55zngOdCMHPAgvBmZ25KTduA1GCRODaXq8CWJV6cvOtyhHTGd2onbfVHPFNaFcQOF8ztyCXKDmwYljUIhFzyp9bQBS2PTYU6hasMc9sjfeA60Yg5Y+1CzCRrK4SWlnzBfuLmobQbAVssvpdKhKAzIf8FFd5tfkoeRU0YhnUhh0MQzaBowjwsKCcRzE3CBeGFHxXMI0gAo0anrKwxbWroEsxzFIh0LUNClyBQxMlS/iFPiLvOIJr8OdFaYHAGoFKXpAtrs0oC1IC5jGP3BYkxlFhTewgr568g5pVUvX/jcAVlHq6JEaBGlqoxTgGy+6amnpA8fzTNpfUBRkLCy1L0k8EmWz+UoVqhfDNPNVMkP46qRqglEr8Gd0X9UT/Qb2ZdaO0yJjy1N46XyUCh9kWAOekZGxqSPT97T296SFtbGpEwfJG0v2vW3KrMmCXL2TuSRixf4+l/PAc+BxnDAg/DGcKsVhnWg9lQULTxIufzlJym36JLTIi0b3HN+bjBw4V04d3/4WWlwhKCTDqgkWsENhw8iCGmGSiKlrIJQHPzoFZNptRqnJzrCfuHrmoD+wnPgtODAYSBKFOeqc6CqwKbB6h4Az+CZtVP6OdCt54oiACh9Z+E3tSHpdAtMR9h+bLGlpc12RsAXi3ELGgI2wXMZ7Dhr5liMmTaWu8xzCGJzDGyYBOkYwA01MQdERZ9hTuYnwBy0feXEtm36K0yHxEiT2y16VFzd61cgujat2jZfmxXLw/jWT5BW8ammz1Ahg1LzzCvdHsG5Pirot5QPc2D8AqVhmUkFRVZLmEAoHdEWpCsadKMfueDCyszwoSj2RGGlBR4tiGDcFRMwcvoYlJbRRjizsAAuW96qa9MCWekEZSQPp2p7ckc5KrfsRV5ZOxT0a49ohA5VGwAAQABJREFUO6rJWNQMk1DqLgFG1iUP/qvrdKTxRj6aPJGOozGHobzzHPAcqOWAB+G1vGhTV26g0Nldt0oGaPzS+CCnEdwNEAQMNtBx4NBgqWD6tOuCWnj/4znQCjkQwKpcW2CFtybBsxb8uQbgmokAt+lX5/gg4CUhqW0Lz4cCXVJxMJhLXe84Jb4ZonWTrNrsVs8YQW2MWaqvUdrRQmlCS/WBCavx1XFB26zjyVtHV/i5wGngVCYBZ3cf+AZzahejNrPaq1x0O9X61sbIpWen2ufhWMe+Zrx6o4pX9ceumQDUeVxfMtIJT3PRa0FZEfI7FBoP1KsFKjjitIQQQV9v4DnCaUB5Fuv++Bbevm8uyrfvBYrzMPySiTjvjqsQ6VGs9a+aHdU4pwbkPOrSLUwuTSCxvz4aXTx/9hzwHKjlgAfhtbxok1etGoDX90YPGx1Co99h/vVF9H6eA62FA66y80wkJSAsyWeAXQMEZUJOXupsjgi6RhWC0WI5cbgB7ARDVGWR3HMQ+SVF3LmRm9kQwaZp+URSYFs0KF1jonmuuaQENQCeJjEVKaFmGGTmf5vCAanzCP1KlCA1PVOLUUL0Pnxiwud8QZtfX4oX/u13KPm0GiXxApTv2I93fzsHhSVxjP/z6wnKOaHip8Es35vMKMo6jN6nSfaZbDBB44vmM1lfsddYF5k3pSA+judAG+KAB+Ft6GWHixp8KmV3ahIqjYRtz9lXgFyxa8BG22ODL3Eb44DAk9BaYJ86aPu6Nuk1n+iDkcCcUJVO2uHSpMLmJ/lq4C8UFqnMYPviNXj7d89i96ZtiJeVYPJ1MzHkyilIU60hmk95LnVWpCaihYiWjsAc7/UnfZYcfGOq3jWVA64/V3xdO1dXyJImv6UWlKpKo3rLPmR3VqDbwCG47K478OZrr+CtPz6LXeu3AhVU1qOlmgS331QapgrENxVTfNNL0lcQTdKYl1WYHDSnn3eeA54DDeeAB+EN51WrDNnWQLgNTxykJDTSIaThAXirrNq+UEfgQCAVVQOoGyAH3gS63COG0c7tCqrdJCXxFGjWQdPcOPDeJvzxH3+JQx9uI9DOR3VkG17dsg357YvQ/8rJSBCwSQKuxhaRvrhMFPJWesmBNrfLyJ+PhwNugboD3W7RexiQK31NgvRubQpEvaJEJoFEVTW2f7yBXzL22y6lCfWItFYjlaMY313QPwZfQmqtwygNvtscqNcEzsIJmQuUq8J45zngOXBMDngQfkwWtc4ArrPWWR14W3LhgYnF985zoG1xgBgpAFYsNuu/Wr+agWsKJuvOdQk5oacBN9t8h+EUV3rWsmKy+Z33Ubn2UwzvOwyzbrgRby5cgBVvvYp1b65A/4snIa9UW6kTvBOsaRt65wQEDZizAYbbo3vuz43jgONh2DKLruVcXx+kqHdAQE2TiT3GnIGyUf2weska7Lh/OyXbKcQ6leDMGZORIQiX1Fs222VrXZZmTOAtPSO7CKTgtplRkHBYfTzn40+eA54Dx+KAB+HH4lArfa5OW53z4R10UFj3THfu2nXy8lOc8H04jHvm0nX3itdSnNFWg0IOp0pCO+88B1ozByTN1Hq7FPGUmoFAt/S9BarNsQ3IoonJvGm0WzarJb4W9hI2t81lkuw/qC+cSlGtgYg8WRBFefdSZEvyuVEPwVuSm+JQUi4cqOhx/TBF/etKnjXqKbr37oRwwPW7Six8HU48atLtNIqHd8dlf/UlLH7weexYswkdaGN99LUXoP+F41Gdx03T+O6iUuLPj3MiRSsqfN9xxjVpOF+idPr1rmUNh4/tvYZBeThPf+054DlQPwc8CK+fL23GV9ISdzhgHe68dR0G2boO2+4Wo1yYmsVAjOPSqF8ac4rZa4CglgYBbzv0453nQCvngATSAt+q7QLVAagikGK7SMlGp/yj3FQ+nWQYoWiashN4FtKi7Wm16ahMpHDXnW5jhyKvTyes/2g1qn/6/7C76gAOlUYxYPwILuzjVzYCcdsNU2oL1i8QmzOqJSUCdOHdSeWATa406yqmNHzqKFw5fBCS+yupv0+LKZ3bIVsUoWnC3Mvh+05JpYjvMU79lOSqbdizYSsKCdg7jB6IGN+1dkeVbnhgoSV4oapX3nkOeA4cmwMehB+bR60yhAPJSUqsHAjXuT4gHmaANozIMlwiTf1ODqp5ebSEkJOqu7ipFG2V0eleG0a4jXfC6ZyqaxtaCAgMfnC80JDBKcOpIsfn6zlw0jkQwGy2AFZ+AWsD5frRP9UOtImOtWl6RGly0GycGALnhJztPsswspQhLbaeE8/ERd+8FYt//SS2bdqN/B7tMeOmKzB45iQrF2MwUabDTJWFDsuHJ1N1Oeml9xmKA+r3BJ0zMW6S1L0IBd2KjTFmepJXZsbQKoh21+RbrEjho6dex4LfPYWKbXsR5a6fIy6fivP/7AZEO+abjXItwJWteI0R3nkOeA40jAMehDeMT60mlAPKDoQLRMcIlCXF1uH8XYFdeJ11HDxwAM8++yxGjhyJMWPHGoBXWMVzYQXCV69ejR49eqBrt26UrnGzDo3YLcEJCLgxQoBAjrQLEASXzjO497+eA62OA4a8Kd20RXTBFFTVXzaeI9ymMbHlAPZs34OOPTqhpEdnZAupisBGozYck04w4Zsm4dofJ07b0mdePxV9J4xAxa79yC8tRod+XZGhebskN4SJ0UyhGpwWZwbgP2hfAudm8pC3rjm2Oj632AKpr+a71OTIcV9qJ/q6QWdfKjhr0uQrnUkhP52HrcvWYf49DyG25SD6lnXDrs17sez3c9Gza1cMu3WW9I0sbjYXz278j+eA58AxOdBCkNEx6fQBThAHBJbDQNsBbwfE62bjwuussDt27MA999yDV155xSTiLrwAuAPyFRUV+MlPfoL//M//RKK62iThLtypPgdAwA37rvrzPhhDDiMvzKfDHvgbz4HTmANRSiwD3d3cFyuWJcrLyL401s1+BU9986f44/f+BQ//+T9i1ew/0T+BPEo4bSMWSUXZXPLiMR78CiZoTTOEJUO6ouuEwehwZk9kO1B9hTriUaJsqaKkaRVFE101MrU4pROkxYRcUzyN+Xm6kS4d/zTfZ8psDGqSxBLYpwp+5eBaAE2XpJkns4TC5gyIT5atRvnWPeg3bDgu+7u/weQLZyFO85Tb3v0Q0JcTvVjF4butpys93Vjk6fUcOGkccCjkpGXoMzq1HHDSaqer7ahxKim6d2HC1y58mhKwagJrSbudnwPfLo3S0lKMHz8eL7zwApYvX+6yODVnNyLkvoXrC2u4fDZ6aKDRoZMQhneeA6chByTgdtU9IN9VbILhXHk0CY0QgAX1naon1DuQnwaC7Yvex0s/n439y7cgs60a+z/Yivl3P4zNyz4M1BOEyPgvCar+BK5jJgEV8uKDfObCrdPNjKGAfizO9sTFfDxroaecgh3mHGGHefqbk8GB3LxIFSLQLeI5zi8XkoCb07vWF0z2iQXchEmb9hykgGXf+k04sGsf0lyUm1ecDxRx4SZVFPnJ0wQxiqv3bjbE+StQry8fzrlXrrO7ds/82XOgrXHAg/A29saddNedBZzrAk/3TKxx1wLaCqd7Sc3DzoFvPZM+YEFBAW655RbrkB944AEcoAqLi+vycumG0znR1wIXwRI0fVoVALDfmjJJLmd+HDAMnPPedN5ZBtEZTDI0eNQOIErRO8+BlsYBw8e5qhrUe9ZfSTIFsQWAc21XdJt0Uy1C7VXPhYQSGaxfvAqHuIHLmDGTcMsPfoiJE85DZPMBfPQWJ9JVDGcT2aBFGYCSuFSO6cgpe6Vtu2gKdvHaZN/yI/CX6oOkq8Gh5MLQzJLwPyeBA1G+mDweNe9D74X52vuwC2Jyvmu9R+mDg+YM+08chu6jBmLt+jV46r9+jQ+WLEFxt/YYOmM8MsThoHlD6hwFlUDvlYdql0Tj1EqyBQBa0K9+X/VC+n9ZOwTQvfMcaLscECrxrg1ywIHg8NldN4QdAuIKL4m4zpKQC7hKcpJIJDBw4EDcfPPNpj/+xhtvGLiVbrjAvMXjdfM7de/uCOVm4jh9IucgQZiStVFC9nA58JA+J9nX2TvPgdOBA9pURTq9wskRgR1dJNneRLy2vCTMEiBPpak6ICBk+gZZ2u4WGAucCbUTScTYNjvSUkYkUYUiRWc6bBRC19ac1HyCCWouoj+1ag5o0tRxYG9c+8OvY9TnLkZiSBnaTx+Oy//3V9F12lhu6sMKwfqR5CJPbeiUZP2zNTYZ1aE8oJJ1sVqAPoZq1jdeBiCdoD0SPVyg06oZ6QvnOVAPB/zCzHqY0ta8GgO+FdaBbgFwWVf5zW9+g/nz55uaypAhQ3DXXXdhyNChuPbaaw2E/+53v8PkyZPRsWPHmsHbPnM2M6MduAiyYc9/mDNxDMtCXJF7JCl4OI6T3h8Wzd94DrREDhD4EAJZZY4T2KjuRuMSUQo3U+rIik07SKbrq3szO6e2rLCMGy+Mot+E4ejQvxveX7kUq/9lDfZVHOIiyzKcOWlMAMCZloF8xeOFsJey9K6Vc4A4OVsUQ/uJA3HlkD9DppzmDAtYtzoXIEsEEafuf0JTPOmV06xllpO+/FQcB5ZvxDuPv4A9G7eitIw2yK+ejl7Tx6CiHb84imX8bCLhuQ7vPAfaKgd89W+rb/44y61Bvri4GHPnzsUjjzxigPtb3/oWPvnkE/z2t79F+cGDOOOMM3D77bdj5cqVwUJOxjkW4HfA14H94zsLkwSTBgPaObAtAGLfREmPOZ71abSuq43r0mj6WeXS4Z3nwInmgCTTUvuIEVDrrGrG+bGpAUhLABWUjO9PozBNc6Ep7oRI8xd5DKfNelQjZRRD526TR2LWt29Dz7OHIlUSQY+zB+GC792KXmfT5rdUWhhOKgWarMYlxaxTEANWdfz87enNAfWBJqXIo9UcrabtxkW3fdvRNmUB0rSaw4pkkzjVPNXDKPtR2ttC5fodeOPfH8Sqh/6EAwvWYfPTb2PuP/wam19Zhni1ahungvr0wi8ytSsWTm9eeeo9B5rCAS8JbwrXWmGcxoJEfY7WAk2B8DFjxuDKK69E+/btcZDg+2c/+xk2b96MsrIyXH/99Xj66acxe/ZsTJ06FZ07dzZ1D8W3Dj7HSwdQ5Se1lRPjBBPU4QcukvssL7UTifY0XGS5IyAi2pqCiIT5yjyXbCWfaBfkSWoIYMLlPtH5+PTaHgcknZZutzbGERgSwIkT4KQ3V+K9p17Gh/MXmYrK4HPPwliqE6BXGfV4g3YRAHglwPZcksWAm89Hr2mjIQtHRYUFtB9dZtZPMlTdUrPQGopAjhnkU8Nt3YbaWo2/v2gVHGD14PvXmh/WA9mW1IRP+t681FcRKZXwlmfN7CJYv+JDrHvnA3Tq1RcTZ8zAxhXvY+V772DtS2+hz3kjkelAKTqBvXbiVG+rwzvPgbbIAQ/C2+Jbr1PmMACu8+gztwKQ7tizZw/27dtnNsMlFZcueL9+/Qycb9myBaNGjUKnTp3wxS9+ET/+8Y8NsH/+1lutw3VphPOWasuuXbtQVVX1mXyP34MogQBC+o3anjsvG8Pe/RUsSz7pzeDTrTsQLVS+zSOxVjlLSkrQhXZ1NeB4IH78b9SnEHBAEmiTJrJiCSwZPN6fxdLH5mHRLx9DhrshFtOc4OalH2JPeQVmfvfzyHYtoJ1uqqwIi/PQKUorF1VqG/06oCzSwUCVzNPZn8TllHIG81OCMWYUloVbfAPiQXr89a7VcIAiity7jdisTW+bu6nya0hWM0BWCn1JjEfzbJdV1anKvfuQ5fqCTqUdMGT0OFTv3of3CcLLDx3kOJFEPv84kgRCCUnDlaR3ngNtkAMehLfBl64iO4msA8NNAYXSCRdgbteOWx1r8ObGP7KMIldZWWlnScvPP/989OnTx9RWLr74YnTu0sUWQSpPxbPP21zoqU2AfvGLX5g1FYt8nD/60JmDF3YlOY2cLDXEuClJr/JJ6J85H+vWrcd3vvkYdrX7WGIdC+N+RN+JcEpHE5If/ehHxg+l2aI2MToRhfRpnBIOaFInSyiSJ2aIgKJJ1vqdB7Bm/ptoVxXD1GtuQll+EZ5/dg4+fHkJzr7+QrTr0svaYE7Jm/a8NTFU2+ChOs9/+2BEaaX1EUxdOahNSXPLfdnJefKJYXQ7e6mmsaFV/Wiip/dKEUVtH8nLrIC4SsrKkmHFMPOXDDxg2CAs6dYOH61bjQruF7F3727siVfjvPHDkF/G5b5C6grPP6tQPHnnOdAWOeBBeFt866EyHw/IdBv8yDKKnCThzmpCYaEUBrloh8B81apVkGT8mmuuMZUVbWOvcCZNk2hN4ju6nTt3WlgB+6ZMCiyRw35seMj5sJen1Ebl1dbK6vwjmX7o3zGCyqpKfLT3I+zesZ5hayXhjgZ3PizpRt6orCqfNjuSEx3iw/Hwv5Ek+OCtlAPCLzFuvJKJUJ2K9ZofeRBnfUtwIhynBLzrkP6IlLZD9KU8pKq5hI7+thiTkstg0sl2wkQEsNVitCW9AXBem6Sc9w5YGwDP8dFalzLPORfG3ftz6+GANFC0pb1gs2C3voNoRaXmfnqmumBmCdWf09pU58nDMe6Oq7D4wbnYsG0D7YkX4LzrL8foy6cjU0g7KdJd0WFp8sc7z4E2ygEPwtvoiw8XW0DQHWH/+q4dIFV46XxLCq7FmALiMuknm+BSK5F+uNx+qqtoh80BAwbg61//OgTOBUiVjsvTpXnddddh8ODBBMUnRh1FoEJ6ixosmCM7fScJZ99PaeGeN0uw/A+7MIR53nbbPUj23WMbkNRX7uP1E+gRv0aMGFEDvB0fjjdtH79tc0AASKhZurlx4hlJw1FWgB4j+mHd6oWY/9CjKKAq1s6929Fl3FiU9O5iE0BrEvyJCFlrcsq41maMnULXOYRtGZhnoPsbXLJNsR0xSBiYK0YoeC6kP53OHFCdkAt+daf1NCbGCIrFB6x+Vl0E0TNcwKkvJRM+fxmGTRiDg9t2o6C0GB1HD0CsSzGqlRI/ucheuSK5/l/jgXeeA22NAx6Et7U3Xk951Qm6o57HBhpdR6nnulaHmU/Vk3Hjxpnlk23btqFXr16m9z2U5gmlG64wspQi6yharNm3b1+zriDzhHom0G62w60H58L7bt1w4YUXWpj66GiKn5OxCIRL/i3dxRTNaBXQttaSvTuwPLIdxe2LcP70iYgNDmyeN+fCTMdHx28/8DTlrfo4h3OAUnB6ZGgDPCYdXUGkrsWYdvvVqKZaysa3VyFNPdzeE8/AjK/egKJendiIgy9RVh+lg8IVyZqwBvWTYMjSYXtRcgJNdO7ScuCPAXD6OyBuU9wAV1l4/9M6OOBUUAS7VQu0kY851QHVDYrDAy96yM90m3jZJR/tywaiPQaav9bFpxg2Ih1w/mUoHFGd8X1gwE7/2zY54EF423zvNaV2oLDGo4EXLp52xvzoo4/wne98x/TBZR3l+9//Pnr37g1t0qMdMy+55BKcdx533yPY1pbXzkkS7FQyZPrM6ZkeyYZ4YztrwnyODxokNFgYNKHuK3XXJfKjjdpoNEUpXgJ5MS4o4of8PG6vHdUgwcHBucbm6eId6az0xAcvBT8Sh7x/UzggMBONa39D1mt9/eFEs3RMf1z5L9/Frk07UJmoRs8hvQnAO7I9yH5hro6zLhputmbJH9bPNEGS2qIk3HIKaaFC4Eug3zknEbeEnKc/txoO2LvOddtSe9J7tgmX/Nhf2mY9vLR6ZGf2cTxrbUGGVnpU1RRPH2hUr6S8aCrhPEv1SRJxJmP9tEUMfujhnedA6+eAB+Gt/x0fVkIHAh2IFhiUKonT6w4HDofVtQ4tvtRZizLTPAS2f/rTn2LFihVmFWXAgAGmUiLLKZJ+FxUV4atf/WqNeopL3+WvtOSOBLxdeJ1dnLDf0a4NOLDT1+igVf2SFyq7rAYSOXsmP8p4CMw1PEheHowGFsKCBFdulAjujve3sWU53vzaYnwb2FXwoArUsMC9/gA2yDtXB1kPAviQ82M8BzZVOwK1i1zdsdSCeHZ5jJ/adHK1K1eddFIbkHRQzvJgveT0UGQT7LB+2gSVXbVEifQM7HtriknFACsMw7CwGcaL8D7CrzxZbpySKeCkt1cH9OT24jIHl44T/lg2BqHsUoui5ZS9Hln56cUUeWeB9Tjwr721VuJAugWwMPwJhXH+/nx6c+Azdb/mHUueHYBrVUOZx7Q6oZ2IeZ9mfbT6rTC8d9FUb7WxlCTq9uVGkztW7WyS8cx0puo8045SKKK+mYkoHSF3a0e8MWM9DJNhv61dXy0AM0nn1A91b21Hz0JClRP9JkSPRoxjuYaGO1Y6/nnr44AH4a3vnR61RA78OfAr8K1rHXWBeN2wUh/R4ss4JW4OjOtaO2FOnz4dWqipQV2gYc6cOaaG8oMf/AAjaapQ/mEp+FGJPGEP2QHXdP1BourvA6DNszpshWBnzq6eV7xvxg7bMvM/J58D4WrgkMBhVKhGBIAi7B3UjsBH4MKmZ0or51SXGupyGDsACy6NHF2unalmKoDaihYPZ7OaFAZgRpJDczyLLlEbHvwDuMNf+8rDAIwvUKQ0koeSiJewbcYVS21UoChIMJyGy6LWz/kEWdf9rQ1X94m/b20cEBCX02Tvs471KeddWycCD64Uqg3Oes0KaXNJPZUMBFUZ7F+5CVu5cH8I7djHuhVZ/dYXzEBCHuRr7YDBFU9jlT1jXbc2aolxcsqxLEJ0rltW8gCp69o7z4EWzIFQC2nBVHrSmoUDGvydhRMBbF3LOYDurmtBgjpOSukoARcYl5MaieIJlMtJvUQLNe+9915TQbnssstMyu1UTRQmnL7uT6arGUPYR1tnzQ49J185mWT4vE4GBzRy8zgMLOul28EHlCxHecQkYc5IbkZJHuu3nQUe+B1dkjpJm9UygrpjtSaXCE/H61j/1KYkeRa56pAFeLTxjna3FI3c49IwRa7G8nlQCDsrkmKRfqWgT/1MzlyETXTlc4vw++/+Iz56/g3unJmi4QoB/OC5//UcaA4OaIGwNkbTofYT1z2P3DSWwhiBZ/a7rMbpveV45e7ZePKn/4NPuXYhU806TGQdjVC1SnGCqp4D/7xhpDgruKkM8tpGLAvDa96oN1eYmInKnXClOUoZpKn22hDX0HANScuHaV0c8JLw1vU+G1waB6wd+BaQdn7urMR07UCzzqWlpZgwYQIGDBhg4NupkbgwiiMLKF/60pdsh0zZxtazumkq3KlwNhZwCAgGBFHgBodTQY3Pszk5IEDqnBsEBaQlIa7rPuvDcBrcXVjW4cDxXDOTqy9WLlhDToyuZINUatuZJc/NdpDk0Y6Ll+Mpmvqkiom+2OSyNPBheTgaBORzMMelWZ7E7qXrsOX197G9P9XEZk0G96ay/BjEO8+BZuGAoG9QqTWpDbKQpDyQUQsma1JLkM7KnDhUhcz2g8jfy3UKB9MU2KgdsLXymfpqzY9VV5VMTNJtOvsGxC88MueTYRuJmWJ5Gpk8Tp+5k6c1Emv8jg6L1iw/VrwcgQF1n83GdRfB2PPZ596nbXPAg/C2/f4NIEsv3B1iRxg0h6/1uU+qJ9r9UmBcwF2ScEm/XTyF6dGjB+788pfNLwzizaMF/bgFmPpk713r5ECN1PdII2Su2HosoO7UTmzkD7PERlsBAH43sevaT/DhYEe6zuEHy8OFUZ5SPVFyyrumrVGCPW/2PCxfsgQ3fOVGDJg0hNt7E2yoMIyUI8XmAkpD9xrgBXJ0HzzgFat1fkUG7VMFKKSRZ9V35VGbggJ75znQfByw+sjkBaYD9ShWS1MDzNVizhzzuMihMEMVR4JvPbJdODlZVK+siaWc2oc5VnRWY1ZhSdoZV6BduuT6kpvPCSsTkBDcoL61Fz5zM9dcEv7kOdCSOFBTt1sSUZ6W5uNAMAjXpq975+ek1e4s/zCIltRbO2J2797dQLhSkZqJwpmpQT4XIA90Wint4L2cS89uWtBPbd+cGxBaEG2elBPBAUriOGg7AGwp6lVLNMVD+q20zGcANhjlOYBz2Jc+qgCtcwK4AgQKq8VmUldprFNLqK+zDdrI4QpRVQcPYdPKDfh4+Xrs3LzLslIbSpMu0S19WNPBzZGohZrJXOJSSMloUaYCEJCkEzwIbqL5weZZoNZYsOiysSXw4T0HGsYBW5cp7MtDX5PU3ASLUxR22M6ufCCgbGtxUlqiGSzUVB03gM21C2pvaoMS71gaSkGAmx5Ba1GiEezZtA9P//xJLHrqNaTKKUmnWhYHJIUOjsY3VcZrjFM/EuRm3YLyCx+81fOACcaIxiTuw7YBDtQ3LrSBYrfdIjpA7IC31FF0OP8wZ8J+DpCH/XTtDoEJhZFEXUBc/i6OpOUtygX9N/tK9Y7enUwOuPrj6oarP44G+dd1Lkxj65E6t+Cofc8a8PXaNTA6QJAhKJCJSnDHSYMDvCdkYBjWW+shw3rUqjVKrzbNuvQ26t6SYYqcKQQTWuatbCsjKM4WUS9cu1oGg3yMtHyWOwElAjrSETfNcLU38ZHxVBI9086Zxkf6K5x3ngPNxgHTPVH9Uz0L6pt2yNRn95jGB9bAiBS/VUF5zma4oJKX+VS5kosTbEfop2S470+uCQaTX8VSu83wOSs3tqzZjNfmvI63572LxMEE02VcNu4o01CbbvaaLsJzTsInTfg18c+1Sp6CcVB0uL7PhfdnzwFxwIYYz4q2zYH6gI/jiANLunfhXGfi7gW83XM9c/cunJOIW6CW9FPbf7Ykqlo1LeG6ofqje50dwNaE0NUrxwh379SenP8xzxr5PjMKa6CURSAO/MxXQ7Wc8ILuJIFjCPaMASBw9CodgQIK6Uwyp+sT7pRHgJy5MJPLMWlqMMYFasrbVVV3DvLO3fG5lkVHiQBUDpsk8JwlwKFQnF+kBM2Dv0AF6/BUTng5fIJtmgNS0dbXmbSBcLFClZGn3DihG1nxyXKvBrW5lAC1wkvszXBSVzGJuMKFqqrMFRq+p7/TNY9UU5WlqhDFqWI+E+BVfs4dduM8T+g5xTZn/RPHPVk0UvsVqLKiihj1MTmgfjhtJ5QMn9hpzAEPwk/jl3ciSHcAR2d3faR01Zk4sOTOCns04GRmo3Kd0JHSPXX+oR7+1BHRJnJ2A5EK6+qOzvJXvRPAdnUwHNY9FxiuAcQN5Zhe72deMSEqd/TTUGkSM1lw0IgulQ3K6CIEvZInp5hfWp/PhQpyyRim4EBvtrgdCrCnjfyph65wmWXiM6PNpEiHWSzSPEFkOExhZapNxDrxFAOJl0IvKp92LWQpk0mWgUdeXj6BDRey5dq543UjKffBPQeOyQFVU1MyYRU1qTXPVnX5KUf31bSupeYToe36JEMmeR/Nj8vADzjv5HpkWcmvjatrOX2YCqysGGa3RDO09hNL0joX/7Ks/zbUKDM1D/64uLprDqd2a22XeYo+E4XLApEQt+jQydocr42m5qDCp3k6cyAQ95zOJfC0NzsHBH4EtHV2YMlJJdXBCGhL2u0AkwPleqZwihcGGc1OsM+gxXEgmUwaoFTdEGhUnXF1SMTqubM97+qR6o+cq0/O3zwb9WOybUqqOEZyJHSDOa/kYQOlaFJ2JonmwCojC8yYjyV106BqoYPAxzmaBqViUjVO8sBap0/ttniN+cdzOiiBColiMiRpCTsVIZbHRWmk1j7A0yOPKEef8s0cHBVwBb5NzE8xZSauGCyeIRa79D+eAyeMA2pLakeqfwLGcga6tUaBk8RsPIZqfqUplFlQGkWJUoUkU5lGfrSA0nEgwXqseitwYru/Wo+Rq/YCvfyz+sznkqZrUmxtKph3som4FmZTbWXfbE5tSCXM0kpLmlJx23xICu8E4prER9h+o2ybGgPtuW9zzfYuTteEPQg/Xd/cCaZbAKc+oOz8BIgcGHLgSJJMgW+nbmKLM5mOAFV+Ppe30+laG/p417Y5oDpgu6wSfEsiqzqjeqRDdUwAPAzMVbfcBE6cc3WucVwMBmOTZucGP4EDy1OrLOV04gBafYhDPwf0wqICRAqDZyRBQmXDvPq0Ljrtczgfk3KLfkJ/BJSZdoaDeZJAXAvRTBKurPRIZAmA14CM2twD/mhhKcELAYxJ5RKUEFZnUMBClEYpCedT27GeVxnunpmh9P/kb6BVS7O/ap0cCHa5VKW1qa0BcFVtMz3ILzZ59I/RWg/2JxD9tBxx2gZvny1Age4PZdG+mGA8lUSEYF2pSG1MlV9AXhNps0Fus2e2FQJ7m2KrfeaxVXIVp3ZHZig+ZOMVCc3RVpUsnb5aaeIg1S+D4/oSpTwJxGOaRpCUdJLrS3hvE3yL5X88B2o54NFRLS/a5JWAhQPa9THAgR+FEUiSe/ihh2xmf/PNNyNKayl6pnBh0LRs2TIDXbIprngOqNeXR7P7sT8+qjvqcz1Up+7d8XBA9ePBBx/Enj178M1vfpPSoWBzJ1f3XN165eWXESNgV72J0t68nrswjc1fCy4DGZlGxUAaLtUTGywTWWxftxNL3l6CdavXovpAFQd7AoS8AvQdOgBnTRiLASMHINKBcUm7MLtqgaTirj4IbDhnV3wkyZ/kzGZj3OIcXnfsWa4+BU8oJeOFrLLIWktEZto0qDMNgYmMoQ7duJwkmQ9uTDouevgf0aQlTXUa7kC4b/0mrFywBDuXrMPudz6mhDGON156FRtj+zDm3MnoNHowYsX8fE9RpbVd5cMjKE9Av7I1J0Jy9AYe/tdz4OgccLVToVRXrQrxOp7kDzegOrRuK5a8ugirFy5B1YbdaL8jxY80GTxw96/QadEAjJ4xCWdeNA0oUUqq3DwFn68YKpg4ajMffvrhZFXffxhGMh/W4TTDqbVH1Y4YL6CFHnTqDeT0vNY56gKfIATTsVsB58DVtluFZyimb459g4QKSERQtbMSmz/ZiN079qCisgpF7QrRq19v9BnQF7FSNyEIoqk8jBmk5bxIoZz8deXyNk//02o54EF4q3219RdMYKgxwMYGacZRPAHpqqoqzJ07FwcPHsTVV19tJgtdmjrLSQr+1FNPYenSpfjZz36GQYMGWXz3XBL1k6Giok7XdWSuUxNmUQerL5cBuBDN6hB1ZuiQpDEou8IFXbOuvGs8B9x7f/PNN7Fz507byEmbOMm5Z5rAqW69vnAhnnjiCfz617/G2WefHYBE1isnGXfhG0KFbJ7IaTEl5e+UrnEyyM/EB9cewms0afYOQUCS20p26dIF1dsrkeTA2aNXH6xYuxLvPLsMZ4wegIs/Nwvdz+rNqqHJAGtULGWDbpZgPkOpl8nqVHXkcqO+YXNlTf8I4wlgCIoEn+ZZl4S6dSJAUf0U4NVGPLqQNN6MKtO0YEYLK/XQksoNzcxTEjWZK1St1SfvOONmq2OoWLcdy2a/gGXzF6Cqoho9OvRg/pR+lxYQoMfwzmOvYMljC3DmpDGYcsvF6DhhkIGXDK3CpClFFDVR2oATTckgW0ot5XRDurzzHGgAB1STnC3wtL6KclKdqab29+4EPnx2EeY//Efs2XcA/QcTcJ9zDj55eRmKupahZHgvrP1gGZ5a8A4mvvw+Rl9/MbpNHIxkEdc0sL5L0k3czdQ52aSU22ol20tKk9J4PnGxprJqa4Q1amKs1yY9Zyu16pyrwsGkNyiI+oUoBwX19aJZk2dNhoMIGhnYGhSPbT+TSaqFGAVIBCCfntj74T4sfm4J3n1jCcH3XqCSsarzkC7hSFMUQ9fuPXHORedi1AUjUdi5iKpu7BxifMa2HHy7ctkFfkYZCZaVFeXmXevmgAfhrfv9fqZ06mzkHJgRGNa1Oz4TgR4ujgurT+Quvnume3ctqebUqVMxe/ZszJkzB9/4xjdMJcU9VzpOtaW+/E6Yn4qa63glJbEb69gCTw0W0i/QnxzJkhqwOefnusfA1/8eDwfcO3dnVx90Vp2RDXpN7LQZ1P3334+RI0cijxM66V26rywuTkPo0Hb0ArH25jka59GY9roFq/DwvY8Slcdx/qVTMPSsoejdtTeeue8prFv3MW7//pdwKF2FDR9twIJ583H33/8/XHXrNTj36vOQKlWFCgb5ALCKCtYUektSbvaMeRNXMD3hWRJmjbl2Lw9rfxrYKXnmtdU5emftszrppQ5pmuA7wQcxlV0VkjPGYEFaMHVUgUz3lGUjNrBP+Fteew+z774XqUPVmDnrAgw9eww6dOqJP933OD5Zvx43/c3XcDBWjfXLV2PRS69hzd/+X1zx5esx7KoZqKK0P8rFcbbVNwlVU8kjPYHLFSZ350+eA8fkAOuP1jJUsR7H+BUmQsCKT6vw0s9+h6VvLsPoyZPxOdbRLgN6AhVV2P7BBnQeNhBTvv45TN1zKTau+BBPPvgklr2/Blf8+U0484opBLNsFwLBAtpsR1K7VjvIpE0cjgI2kjg37YlxEulqrL4qqblpgmuCF3vAH/nZeMV2xABaR6GvShaTaesLVPBn38xsEq9Jd4QqXVlbNEr1Ei4qjRzIYskzb+H5x15EXrwQoyaOwlCWY/varVj2p2WYcdMMbh8dw/tsc888OAdvvbIIV912BQZOGcRehGTEOYlnGdL8ERzXxEKzBmm0WOF08q7Vc8CD8Fb/io9cQAdodHbHkUOz01CPRicQnSZocqDc/ATk6afOLUqQPn78eEyfPh0PPPAALrnkEgwbNsziK46cQJeAlQPz5pn7cfmE/Rp/HXSsLi31ayylCqG+2/o45W1APNdtByozQSetsC5ukHdQ9uC68b/1lbPxqZy+MbSQygAli+AmYYkE7fqq7unLCOtDilKzsWPH4stf/jIWLVqEd999F1OmTLE64upNYzggOXW6igtC86kbzVF4w9IteOi/HkKnzp1x3Z23oMtgSsCzFVThSFDyW2kDfaQj0L5TMUYPHI5howfipcdewLO/fdrUZyZfP5kDJusPEXcgoLaaZAO2JGoavK2eSfymctpgzgu7JSBQcHfIk+ECk2sBiJdsW3aOWWD+ExwQPGiglvgvw58YbX0rmiXHnySl5XmcaOx6+0M8/u/3oqysDFd97SZ0HTsESY3uVXEkiqOoLmB77ZiHwl4dcNaIXhgxfjRe+M0TePbu+5GgVYoR10+njjg1dR2yYQ5SzRGx2ZyVFd545znQIA6onkulSl+BoloIvKsKr/3yD1j56lJcd9uNOOPq6Yi2y+eiTK7D4HhQGU0iVRhFMp+qJb3aYUi/afjzM4Zi3v1P4Olf3IeydqXoMWscJ4lc16DKz0OAnHtsst/QmiOZ8yQ453iSJzUVOVZf678N7fKeRFm7IWHSI7fdYwPvYBJNmjWxVfpqe5aPnvNQm6WPrjjZZj5sc5HqFF55cj5efeBVTJw8EdOvuRClPdtxPQm/SCUTqCrIohvbWq8zeuGsqWdh0/ub8PSDT+F3/34frseNGDVlDNs2E2QHQBFEbpJAW/7MS7RLhzw3Uilb71oxB2zO1YrL54t2BA44gGkgSEAodyh4GDCGr11SCitApcOBqz27d2Pt2rXYtSvY4U+A4M4778ShQ4fwEHXIq6urrcNVGornFua5NMNnA8cGRARGmn5QBML4gaSfFzVpKS/2s0GZDTYFzUCLbIJeMKDmePKuGzdcvrZ67YC01RvyWpO1DRs24OX587FixQpbxCve/OAHP0Ah9cGlQ17B+uPqps6NcVY38wlcCWwrNpdjzv1PolP7brjtrjvQbXA3JOJVHOy4KUhBIWsBtxDhAk0kCASyBOXRBEp7d8BVX7gWo88aiz8++hw+Xb6F6iwFBBaOCo2YOlinc2fdp2Wcm4Or61yTpFvqHbKfzGpY46w0DCTcbXqlfGJlZeXMYxLaxtvAAsNEtLiZI7TWs2mRqFRR2JCQ2bgfz/7qEeSzDNd8/Q50HX8mDhF0J7QCk2JytbO8GNVROOKLxqpsJeLDuuOy734Jw8eMxqv3P43ydzebNRVmafadgzKJUFFoVPLsnedAAzmgKiO1KprG1FxwzZ/exvL5i3Dh56/DmdfPpJoG21imnBU8wzXRCUqaWfMIyOOccOYVxVEdrUTJGT1xxTe+gH5duuK5n/8WBz7aBgaV0RFhVB78ZTuQicMK1vV0oQBsMB4JZMupBte2N5lDDNqN+p+gK5EqCyeoCkzxs8Fe0h6sj5ClEwLzIClrBqamwlDR8ijefXoJ5j38PM6/8Bxc+aWr0GFAB1QWJPgFK0EBFfMhWE+RvhTV18oLDuL/b+9LAKyqrmzXG6tezQzFWBQUIPMMKiAgouIsEDWJmsGoiekMne6k2+78Tnf/+H+6fyed/N9J1GgGk7Qx0YhTFEcmUWRU5kFA5qkoxipqevXe+2vt+07xKAsERIWqe6ruu9OZ7z77rLPPPvt0vrgjbv32Z9GuQxs89fCT2LFmm/VH9ahm+srB8e3MS/b4Z8qm71peDbh+ouWVzC/RKdWAgJGzWiHgKJcJdjKv3Ts9kyTcgDXPc+bMwVe/+lXcc889uP32223hZk1Njen03nTTTXjhhRewdu1ai1vAyKVjD5r86J30fz/sITNv7lBc7lqbtKh/kFmrBMGOphl1L6mkQHiCesMfNu3mwmeC8iZFbhW3Ur2wwReBt9ENv/OTf/4zvvKVr5j+97333mtqKOXl5ejWrRtuvvlmzJ49G3Nff/04ejydykpSmlTLDjlRByx4+S3s4ILFyTdfi9zuRTiKGpumllJ0SpItGijO5nSzdKKlqhLkNHodCNKLUrj801chmyB2zpOvIX6QSID6Jprg1tos2eVW522b+EjZ1AAyZVvqP3krPK7p8Dhpq555sY7ZIISQPDtfPg+RJgOcVmdQHqwnCuU1IIgwL7FQzIpsUnXpuPJPAFtm3MIcMCx+fib2vLcF135+Gtr16ozqMAe7tHwi6Zrm7OspKUxGmRkCnATrnhaZUUXJY7JzDsZ9bgoitQ1Y+PgM4AghCr1J2cZz6hoIanh/7Fn6lX/ya+AkNSCwmqT+traQj28sx1vPv4Leg/ti0A3jUJdHkBrmYYNE0j/pUkA6pYYSoEQ8Xktgzr4lFEcWJctXfnYajhw5gtUz3kCojrNl5Ot1DbXcSZZ0ynadOFRHO+Ep1FQcQdWWSupiUzhE8K+Gl5SUmWQsig6pbQrrsk0luIgyTpOIWiQaTHJDLBK+yc+Vb+l38ey1RRVSjVLPaM+c+dLC7iNbDmL2n2Zi1ICRmHTT5agraMChQCUl8XFkyxyh1p6w7TBmuw5SDlAdqEZejyJ85su3oSiRiwVPzEXgsFoYDRukIsyDVM1cWjz7rtXUgA/CW82nfn9BDfASRGcC8UxfmWA589r5kQ7v4cOH8bOf/czUTX7+859j6tSp+K//+i8sXLjQzM597nOfMzNrfybgqqmuNj1YhRdQbeqUhkD62XMCSyJxsWHvsIU2Bix0Rd1CTcMHouoG6EVwqqlzYZs+P717DVo02Dm75Tu9PJwLvqWCIin3e5s24f7778ekSZPw05/+1AD4ypUrMXfuXKPHG264wRZMPvrooxAwdwOb0ylDQ4qqKPyuleygF81ZhIF9B6DboFJUUwUlyM5fW3wE1PmRFEV7Mgsom4TqQtnfshMnaCaYKOhWiNGjL8bat9dg19Y9XmfOqXZHwQLOns42acXINy1dE6Cm+bXw4SSi5fWIVnDqvIqQlqM+dehJAhFRKFE6QT91WpMRHOYir7/85lkc2ncIiZoGvPXimzi06QjXccmnpq6VqswQctp7z2G8/do8DB7QH6Uje6MmJPTOtOtrvXZGyxFBivPiks4xXAMBRJBT+nLxcAMKyjpg1IRxWPnW29izfjsXb9or/ng0f0yW7577Z78GPrgGGjRYJH2HOQjc+fa72LthG/qPH4FQQYRtr85mckTD1tw4tROXFIQzPXHyyBC3rhdwJqckWE+i/Yh+6Dl0EDaQRusP0JwhAXGEfoP1Ebz91FtY/MIC5HOgun31Vvzyvoexac56tk/RuDi6Ub1lWGpeEW3jeYTPtlEK/95RJNge1T6JnW2gLH1v6+fUJBs7At5Ysxa/YI/BMfiqt1ZzsMDB+XVXIdgmi4NctktNVEmqzjgiBP8a92qTrDDLQ5E/I6RqWDCBNj3aYsJl47B51WbspnpcmIMAtsrGBFMMm+DBEHzKtH3X4mvABoAtvpR+Ad9XA2I2kmjLPrNsOMuiidkkzvCZKQXXtcC6N5VHQMDwCrdo0SJUVVVBYFsL6bp27WpA6nVKMEdz5Xvv3r0xZcoUPPHEE7j66qtNT1xhNU2uOI3pMU2dBVJleWX58uWWC/cuI0uneSmJhiQMTEfSDHNkbWTIUYoxg5u6skxZ2LN7N37JKc/qDru9/BjTTXs3QKLrD8cQVVYBcdXRtddcg9y8vMayu5Ra+ll1IBqT7XipLomWRBsdOnRAx44djUZk2vKWW25BWVmZ6Yb/4Ac/wCyaLbyZz5o6xXcyly35FsHye5vKUXWoGqOvG0U74No5UljVoz/BU+JZOkJOXXBBmfrEaCCLj0gzSoId6dBRw/HG7DexZe1mdB9aylCSdNHpvWXDy4t513M53hyhLuiCx15ABTtd6a52vmgght12JfKpEiJQ7a0wswzQxFk9/vKrZ7Fx7jrmL48ddJQgYxEOxg/h1n+4FdmdqArDSC1dZm33uu2oPVyFEVNGAkVZlOlzwx4uhsshKJElGBUkRLvMOSyTwkQN3fCac+yaEUJ2FD1GDkHdy7OwbekadBpehqgWn1p2lFL6kud0Ie3K//Fr4GQ1QLmutTtwwLn9nXfRKb89ug4eRBwaRS7bIxs+eT/5L3lwhKA1SiFIFttbJCuPg23tMUE6VtPjoBH5MQweNRIzHpmOqp370LZnb0v68LoKzPkTrQDtiCOGPDRQsr1/7QHM+O0M3E097FivHNI8G7LjEUS1Vav3YdHvX8DuN1dzvUQced07YNjtV6H7NSORIm4XGA5wcaek8xZMDcBagfergXD8cB1WL1+FHrScVNSnEwe4NexjpPalPkwBNCDnNe2cRzg9lqD+TIoDjUhDNho4ytVAueTi7sCrwNpFq9B5TBeq0miwQIgvdRpLk4MRDkysx2FdOaf+8IN4nvPrn8+fGjB+fv5k18/p2aoB15h1dtenE7cYggDVzp07DcgXFxfbYkuZnuvUqRM2b95sYEv+ZE9cVlKkGz5o0CA483QC9ZIMC5ALkGna8cEHH8TLL7/8vgHB6eTtOL/SGZAzEC5pIoGJ9GPJ5fuFJ2FiyW04UL4Hjz3wR+wJbTCpqHj32XZWVpa3f//+BsT79et3RvV+tvP1ccTnvrHrRFQXkm6LDoxuOPjSgE7Xei4nmpSllFdffdUW906cONHAuuKQ04BNA8BNlKi7waPCuPc6R7JCuGzUpagrr0I2e9k2uVyIWV5LCRzjIBhooKQ4lM3OjgscA1zEGKKZv+QBdoAh0YdSIZjQ1DSPNjnt0a6wPQ7R8gGJFuvWrsNymuCUzqiwesLSppROEnI+SLA3bXOI+5HMWY0DizaiXZygnrBg9Yod2LVlO/LHluFgrMF0xdX5B6kCk9zVgC20651dlycxPOOiqgzztmHRBjz+q8eQ3Y0DCKZVw8FCl4JOyF9TjvbZReic1wHYW0/ATdrWvt+GApgcAUWsMoWcwyxvBSXxkWxmls8JfBg500iiXU5bdG3XEUcl4d9fhRlz5mF7+S7mVDucRhgFl7+xbUpsaUHT9a/2qm/mO1YzB5Wa4RHNOfprrl5OxmtPFE5tRU51LYGJaP1M+HVz+flonlGYQmDarqg9xvQZiwM796NNQwy1y7ejZgs37OLwNUL61U6XEZalbv9hhGi6MLGzEkcXbqYEmKpWJPJUVpg4uQ554RiyD8RRQKi96p2VBLN7zJTpwYWHcGjPUcQ4WOW402Z42mS1x27aHX/luVeR1zeXFkwocOFgU1Lw7Jowdj23BPtmrkE+23oW+4D9uzZgTvl+9Dm4B/GSbK4RIY1rISkpXUIb6ZgbBicwluCmTV4BukQ7cbBchXFjLkEwB4wnG1kaWMiJZxDMR6h/ou+VFY3RupOWj7KdUNpu4m02opzOMZT2KMOGtesxrmocn0dN8q9Bg4C8Zu/I4FhTTDfdzk5EH/Tiu/O8Bnwuep5/wDPNvhq1Ay0fpoHLXrg6BusgyDAUZ05ODg4dOmSSczGj0tJSTJo0yRba3X333WjThiYo6NSRk82ZP90LlE2bNs3AmMubnp+pM9Z4nCRcMILSBgIkScLzd/cGtgZQWFCEacOm4XCb7ZbUsalI3aYZrEEQe33GP6pnWf/o3Lmzlf3D1PsZZ+ITCCh98Ez1I31bgWgHKLRAU0405ECH6qYdrZgMHjzY6EYLNydPnmwDPQ3aNFuiNQiyO64ZhqbO6pYd6VdvvweXl03E0YNVeOTh36I2Sh1SAlVSPyVzpAeqakQSWajeR9BJuvjpv/8/W2AVjVMyxXTomR0yAUN9FlVEKlBSUozK8oP4/vf/Fa++/Ap1wTWAlAqLHONLA+AoO94Rwc64PKc3SmpjyNUUOQkrQj3ZNTOX4NVnfod1gQOUjrEuCEgkx+4VLcX4DmOQl2zHzpjAngPFrEgMh2oq8YuHfoltlZsUBeo5SMhLxnBD+4HomWqDX//kQdQW8EWAG/BwmjxMUBDn6IBFRfgQp9wJEH//P/8Th7Oo/kI/ktppOCppW3YyGxWsw649OmDOq6/h6/f9DQ5UU/2FagMcWbC5aPDgtVGrD5WSmdO1o199T7mm9/awBf+48qqIjm5PVlz5d3Ulfy58c89cPJnvXP27d+fmWWVsoG50Lv7Pvf+GbNLetg2bsPnnv0RloJYESZApAE5JeJKD4DA3zWpfFcU7by3B3NWLEaqvQyCLamKcpdFIOCELQNVsN0eA//rRj7GsYbupjvQO98HItheaZF31ogF1A9dI1HNB9X/+5CfY0bCViyS56yaJXe26S7ANrkRPDK5vR+CudSDkN9QJr3h3F378vfvwTnIX9bbJA9Tm2YbVnoOkf1kp4ZCavQZ3naX65Q2jrkGHA12w7PXl2LJdaRxlS8/h2yy2V6qicFH0nnf3ovpQPWY+NQeFxQXGsxqoiqLBtsB8FjcE20e98gh35v3Vg7/Gs6+/hGpKzmWvXINd1oz3admOZSFp+PDh+M53vkPeU2I0k0kT5yYN+Lk6nRrwQfjp1FYL9Os6gtMpmpiACye9cIEgdUKuk5FUyEknFa+klVpkJ3NzZWVl1hEpDoXR2TEVnb/4xS/i9ttuMwn56eSpOb+SKKQEwsXwtRCIPI6JkVlSYEHwtHL6Pvz5P+ajS7euuPsHX0GkjB0A//SfZoMKkI5agc/cmU1odsKql1iM6gK8dvV15rGeHyElCZc5Sn1f0YrOUn/SAk23uDfMe23Wk0k3GzZssFkRAXF1RDJrqXqU04BN6k7vvfeeSZ2aA0ECzwOo/hOlhDgvPwcTJkxEgKb6ZNZMOuHKS1iDgVQ2Fry5nEC9EuPGXYRkFnW3KYkWwdRRr9w2zKmNYv6cN9kzU3eb22oPu3AoDtISkBZysngmPdOiSbO1bR18AL0P5iC6l4CDwNsGIezg1c/GqJfdv1df5BbWUfrGdRBqB5TAlYKDs6OUxolATV0mhaMEBtSYQo/ePVAYyOOCTEoambNOWW1wQbgrIttqMebiS4D2MaVOctXisoQt3MymfeaN81eigSorA0aNQHU+MZDaA7fRzqZqTJwdf1Z1Cm+8tYBpBFDSuzvLPwF7KvYSJDELBAQBSi3dDp2qd+VVR2uhXZX5RE50rHqwtR7pOjmRXz2Xf3d21/agmR/HH/TK1bUGqZmDn2aCfZImlM4AAEAASURBVOKPVERt4V6QnYue3bujYulelPbrjrG3fwoNNEvYwMFhmO+DVJfSWswU1cTeeuR5dO/bHT2vuogPCMy5KJq4maRMaqcKy751O7Gcm2tdUNQL+6neUc92WxDK56LralRxrFgQpWofras0cMFnKlqPtrRAkqDVI7d7ZpjtrziRg7wDlExzr4AAwwtmSxs7i2m1b9MOXXODBPDKkBvQ0x/bkxZqSioektAmL4Z2xe0RqAjjcPkhVNdX0j/Lk8qljrgH3lOhWlRX1FFtJYC96yu4aLqcPIILpLkGgyViA+LBwfXRvUeR1yEPq7nOZDE3Dausp5WUULWZUpW/OMG/9UWkK/WnsjomYVZzfO4T/+h+Bj5UDfgg/ENV3/kb2HUC7nwmJZE1EenzajpW25FLwl3NxZcHDx5EdzJgdRpy2v1QYOtv//ZvDTypU5FThyIGI0CmOORfoF73H96ZrJNMkqCDzumEa7pPC+XDZOaxWLYxY72L0JRdTq7XHKSvKH7pOXfh5dk9PZOz6tp1rro+1zvUMyljc2FsAEJacWXWuRulOpot2bNnD7ryWp3Lburma5ZAYFxSpQceeMAk3dILz6MOvYC8c7Kg8hNKvGQCU2EzwbujrwA7e+0aufy1lUjkhNBzeG90HFLMKNhBUzJlqkmUeBNnY+XOTVzP1YBR116IcBvmlXrgMjVGtG5Jxvc0YN7b8xFqm4vsnBi+ec/X8aXbvmDgWaoozJx1yKZ3TZAboipJ+aurMOd//44WHIKUc0uqFacqiRZ6FuN/fPdLyB9cQhstRBFciKXZ6tz6HLw1fT5e/9Nc6ZxQEsdd99gUrp06GaM/dSEqo5VIUKddg5p2XMS544WFmP3IiygbPxKxsb0ZA0EEy2Xz4sp7PBu79+zF/r3AgM9fj1Q7DoRUHA0wlGfpjb+3H/PWLEFWUS56Dx2M/8vF1XWURmo9mfTKw5w1kHcNMORUt6pvDWBcnet7Oufq3t235LMDRDqr3Jn10Fy5nZ8P8qewrh6dX53FL9x9c/GfK8/EX0Pkoe3COZj3xkqU79mF4n4liHZvSzAq0Mr2RdILcJalYVMFTRbOQH5JEUonjaJ6Vh3BMeEx+XYgSck5dcUbuANlQ2EW7rn3m/ha/yIzARqgFPvwukrMfGQWdq7fgmgsglLqaV/1+WuQU5aHyvBRa4/asCtKVa/4nirM/p+/QeXKvVRxId9n+5AFlwZuAnTH1+9BD7b76gaaQzXGT2pnXVNkwvak5smBNNPLzuGAYPNBPPejFzHmmrEYeflg2k+qJjthXqVrwjCyrrXilXew4KWFuPmvpqBNWTsb7BJTW/NMcGBbX1fFzcFepfplLb5+z19jKv3Fk3XWR4XZ5jnyIFan4EhmnZgLrZeR+qJoorX0GecKLX8c+fB6mI8jJT+Nc7YGzoSxK0w9gbM25RFjmDFjhi2oW7JkiZkj1CJMqaXo+WuvvQapocivk4q6jkuAWxJOAXDX8Xw0FeVANBmZ8ARvzYY4mWJI8/N6QKdyCVM43/bwLP24TtidVQdnUvdnKTsfWzT65g6Ii1bk+lE3XtvF//a3v7X7NWvWmFRbizLl5yXSzLPPPmuLM7V9vQZnrr4kVRa96CgsLDwh3RAaEWgG0IGgN84OfeXKZeg4+AoujqqkpEnTw9QDJ5jNpr4pqZkmxmoJvpOolbkE2velOjQFXVRXoaR8w3vv4kjtIZQM6Eo/lKyHC5Cfy805NMVMgjGIynKaKTR1oBzktZl8MTYtXomtzyxC5xpK4BnfoeIgLpwyAd3GDqNyaABFBAJS9Jbmh8yUXXnHNcjrWIgtazYTuEcxlAsnB44dALQLID+70KTg6sizOY3fYeAFqEs+jY2bVmPAuBJuvEP5HoE+IzK1lHyWPU6d9zg37ElxgFGbK4k8Z3so3RZGlxWHim0bsP9AOS7p15Mi+giKmIbpubPuOGTkoV/9eW3DPlb6+qNtry6lc/vs2q9fF+47eW1BatIpbmhTNrQfVry+EBWcsercrYhWgeIcdmrRImeUCMbjXBeR4iwMMS4FxFU4Sj1rScMjbBBRknKU7Wj18mUcGIfQbWB3hHoW0IOEO6TN7iHOEPXCvu17EKWd8K69uyDUjqNW/rfXtvB0slokqyYoIQa+Yxpm//BRRHYxB9y9qzKHM2U3jMfoG64AReEmrxFWJkPRL51H+4yEQFsDIDaRRD6yuXh5H9uM2ov0zm1XXE4dxeviZqklyPcptjtQRSzEfKu9EvJbO9ei1cD+GMoPlqNTt1IMGTEAA2PcyE7lYT51nMiJ//mu5dWAD8Jb3jc97RJ9UAfi3rtRuO7FECTFluTyrrvussVzWlApCZlsPAuEb926FT/+8Y9tGk2mC6UfrrA61Hm5a+nh6frsOmOnBh7I2eg8OKF0ZT5L95JwSH/W9FPI+zRFKYBifpkd6d/qqXOZt9479+bUz5lldx34qYc+f30aEOd3dh2JAPg//MM/mL73D3/4QzNbKDqSiolmVR566CEMGTLEaEsmDeUcjZjeZroq3LP07XEnTSXL7kBx92L0uKA7lr2zGBdePhSxrjHCAA2+9O0J1bmAUVPGQdK0vqu0MgUQ1B0GqMoSrklhydz5KCzKQenAbiYdc9/OqIN0JLmZ6MazG04v1H1NFMcw+e++gKXBXKz741wUd+mMSd+6Cr2vvpArukiDbA+mnEoa1ICQcATh9iGMvvkijE5dTEsNCRt8cKxAgCBZNCVyzKDME2phZUFZV69cb76JXldfhAil9AGaFSduIRBnQaRyw0GEqWLxNsmySsNb8QQ4JR6sS3J77TfQsUNblA7rZ9iGVWaYQ6BANdHAeAQMVD+Z7mT1numvpV/79dD0C6stkMZIPklOp5TRqlBRyatYQctCXUYNRVYuwSoHz1HxYapa1WmnWqM1kizbQSTBRZqkbeJZ5IUKcGjxeqxf8jYuvmECgThVH9lORJu2iRV3pSzon4eCPr1J0+TdnCnzNtRh+6Pah2ujppZCoN/rxkuQ3F+HlT9+Cski4Iq7r0PPG8cDbKdeu7cWTFrXWU4Xai3sGTiwlVQ9r00uevUtwbqVazFhz2WIlMa4uVActVTt0gLuONViFE7lV4MStJbp0yAHBQ1Ur8klL9i1dj8OcUHqlVP72IBBID2gxZwaiacboFeLiuOYc+U59sS/agk14IPwlvAVz6AM6jzUqF0norO7zozO+dMzqYxoCtpJMwWqtahOZuaktys1FEkmu3TpYlJK2X/evn272YOWeorbql5xNZeWnp9NZ3wwjR2kikc+SqZIPid1E17Ze0vw2NXJ0vfCWtCTefPfNakBp8edSWPaIVKAW9Zi9nO3Vc2aSM9bMyMaxGkAJ3vzAuvOuUGguz+Vc4ASqgilYxOuuwKP/PhXWPja27j005cjqG2yZadb0+ME39rRMhjL4Y6RpIsoTYlxUViQFk2KkIsV89Zi/erNmHLHVOR1aUeQwJTZa4uKvO76GP2wSXFMxw5bStUc7EU7UXd7YF+syJ2PSI9i9JpEAE5d0BpC7jDToi8DFZq+J76w+2ypSWlAENGAkPnR1A3fW3pMSmEEySOFubhoypX43Q/ux8rn3sJFX5xmU9hSbpGAnVNVjEfghGBc2WHmEpS2Jwi+cwO52D73Daxftx5Xf+5m5HTlYlAJ2pikduXUBiaaElcONdnuO78GTrUGJPU1ytZ0S++OBNBX4tVfPIbSl2ej/9QrKAmXOhMHgdTVjtA8odZoZBF4i1ZzSHz1bD95nH2q274PMx97GvlcOD9kylWUPOeRLhmnhDYuMyJNohgtnHQuE6xa/6Uwmu2klD2vWzvuYEk73h2L0GfSaKRK8jnAVZw86M94leIk/dumQ0b6mjPTYJTPOIrtP2EU5r25CAvnzceln5qgpskda5knLexkNho4wJV6CmG3DYCDbL9hdkDRFNd0HEliztzZaF/SBoNortTaJ/tRi11pEcirbMqyeInvWn4N+CC85X/jZkvoGFXm2V1nBtAzpwYg0C3pt5zza0yLnKdPH47q08/lf+6cOWb3WeYJBbYEwDMl3i68BfpYfjzmZvy1SXrN8rpmH5I5qoxNwvu3p1YDAtH67rYgkjQjmtCgTYdoRu9nz5qF6dOn47vf/a7RjWJWR6p3joZOLTX2zQSckjBzrztccHFPXHnDZMx8fjbyi9phNKXR9ZRgNcgKiNZMSUeUeug2K0JLC1HuYpdP+8Nr5r+LZ6Y/gwEjB+LCSSOoikIJtiyinIAKRB8hSsEFREykzLxrExJuUQLuL0KJmqC0pOBsV/QVVg8uvwxoC0CZDw/E8AH9yo+wsWKUT/lTGuqhtalH1wkjMX7N1Zj/3EwUtS9A3+suQSCXpgVp3k367JLOaaGnwRYBH0aSTQC+kws2n3zkcZQMH8Qp+YlIxrgIjdJ2ZU9pCkRxKJEupaWoVH3n18AH1oD4o00yCdhSJNxv8lhsW/MuZjz5NAenEfS9diKFxGwMbJtxzjIJxTaojZPetKtsdjAbVdzWfcETL2LH/t341F9/2TaWSmjGqJEqecUwTfsR3eu5c6YGRz1tDkUJpDnwJuCuoboZLQuy/chCk5o/49HGOty4TbvbKv+KwZO5q6XzmQYUOjMPpcO646LLLsYrLzyLTp2L0H/icFQ1cL0GFd2DjEMqMNr4R5UQJwDX2pKIzOLSTOLLjz+P9RvX44tfvR3BjrTSwjUcQZbfxgCWaa93EShPt3R76v+03BrwQXjL/banVDIxraaMLDOgY3Ty44CSzrII4JyLwz0XyHro4YdNVeXOO+9Efj7NMtBlMkcXV+YzF99HdiZfM2lfOgGPzRmLPS7JYyz8uMfHbjw+eezevzphDYg29I2ljiKa0QJdt6BPgzIBaycp10LNB2gnXqpMn//855Gbm2vhXBxamHk69KLNPiSvTrHTTcXCuOTGsTh4qBLPPvEUyrfvxOU3Xoq8UprLpA5pLkG3ZpK5ZQilxJRYHajGrBdewmsvzaV1hzLc8KXrKT3jAmIuxQpRHCY1UWLxZp3XgRMksOzqSBME9ersqR1iZ3XzniqUEC+7etGlfOqHnbxCCZtbPExEUFhA3DzwperDprBpBx1tIxh76zWIczfB6b/7PS7euQWXfuZG5Hah7XCabAtzbVuMEscg7aTnRXKQopnFpS/Oxow/PUdrKCW4+p7PUx+2DdPSoEG6q176LgOcKGgsh7LgO78GPqgGREEJSrcDtDMvF+hYgAnfuJ0TMwlM//XvMWrjZrbFa5FbVsK1FWzjBL4xms4McJ1FFhct7lywFM9y87QGtoVrSZ/dJnP9BM35iUQ960NsGbzVwFwukydkXttLxh2kSU/tZikndRGZLoxxwBnkTBPHpdzVkpHRjwYMvLK4dVLsAu+eU5q8prcA11Zcc/NkVO/dhyd++ydMoZ77wEuHMz4u5q5mCEnCpfLIdIKcYsuPFODI3kN45c8zMH/OQkyedin9D+EgoN7LG9O1uMlUNGMr1S+lqvbvu5ZfAz4Ib/nfuNkSilk5cNOsh/TDTD+6lhqBVE+0M2amFRNn5cSknfQjlQLpi5eVlR0HtCwOMTM6AXHdf/wuk8Xp+vTy4DPH0/9iAtyXXnqpqZ9I9cR9ewesRQfS/f7GN76BXr16mdUdt4jXdawuzKmmLlN9klxZR0oJWLiYdn7vmkz749mY++wsbFi5BoOGDUTfnn1odoxWfTbux7InFqKapsKWrVqD3eV7ua37KKprXIvskjxbzGUT01LV4BhUGKApLYicBSo0sJAuaIo2j4XYk5xBirFbN71PDQzYSQsXyEqDAW9GprhUVgFigWxP992bPQgaQPDo1gPMAhUh1DKSaEkhJn7rdmQVZOHtGXOxc8laDBx1IS7o2R+hA8QvR0M4On8jNu/fgeUL3sT2HTsxdPxoXP7lmxHr2wF17AVizK+lz1ilTyv1FYM4fGip6sd3fg2cSg2QhrXRk+hJalNayByjGsg137sHHR7vjuVPvIKtby1Drz792Bbb05Z9Hfat2IxlP/lvrF+/Htt2bUVPLli86Jar0G3MUErNPeITppd5Qts8inFbW7GRK2lUDa85p+eSuDMc94Qmqma748xQxPyznZL2LR61L4589Zjw2WhfA22pv8g6kCwQqoVKTStAv7ndCvGpe27H9F89g0cffgpDFm7EGErHSy7oxAWmLG8whpxaqdQcxfo1q7Dg5fnYtncPpn56ClVYLuFon/XCve2TjE8NTINy8Qlv7QUf+K7V1ECABKi24rtWVgP67GJcsrMsne4ePXrg4bT0umlVZJKILFMc5Tb1cgJTUlGRU1yZIElSTwF2gZGmDNKlbQE/0h+RtkEJShgocVVaBBhJLsTTBg4rnyzH7+6biU4XZOOrP56GnD5kjEJWZMY2Lcm8++7s1IDopoFrCvTtMxdaNkcbGshl0tyZ5kCwUottzdEKii71RVO0xb177Q4sm/cO1q5aj6qKo2jgTpkBTheHcxNo0y0XHXp3w8hLL0TZ8F4IFTE/VLIWMA1Jx1qdOX89SbfFqFjtGX+Ydx6ahqaELEK98s0PzMDzP3kUAy+5EJP+48sIlFD6x8wQkst7o5OpQ44Z+I6dMd+TGtMLzEiTwtx8l+K8daO1GfrT4ySn2yNUVA8eqkHFsk1Y9toCvLv2PVSVH0bqYC3CpPesdrkIUxe9pG83DBo/Ct1H9EegQz4aKGG0zYhsMMCMKwN0KqUm4k2AyDRVOt/5NXAqNUBQQW/eQE6UIzUQSZlNzHukAZVrtmDDwhXYtGItDlTsNxoNcC1IVlvuSFnSBRdcOAhll46kiRPqixOoBqWzrSlMDajVRk40BaVU0zz7OP7BZ2pN2lhrwx/m4ZV/+gU6jOiBW374bTT04loIErnC6Y8JMX7GI3BsxWAJmH1v3lf9Bt/R6pBepfiiljvRrpi5HAtffQt7d5Ujn6p1oSMMe5C2zHtnYW/VXgqhUujTry/GXXUpBxdltJrCSLjuxAa6NGWq9k5lMEaoNJmY4uYlf/XzkTpXXx9pIn7kJ62B43uBk3r1X7akGnCNz5iPGFCaeTVXRvfOMbZc2myWc2oEutY750/3DpzruqnL9Nf03cdxLx08iTG1OMjLN+EG9ffUYWihjHRzP+k8fhz18HGmIVrJnDlR2s3VsZ45Ovuw+dP39DpW69GYICVa6kULad9+ZBdcO6QUE/fWoGpnDeY89QYWvLgIE664GFfdMYmSb1oaoakxWXBIcjtrKkx7YEKRcBqZmSfRa7o9HXdjZnXvOk/5UXmYLp/JDBvNQvARrxmOE/Ds7JkfhUi3P2EVk5zznbpjy7+Ljvfmm9FKwmhSOaVFjxpkpjrE0P6yQbhieB9MKK9C3T6aYuRmKBGqpcgOeKQ4jwMAbmRSQNpn1rVvqPKqjUOt16cETxggwfwJ96hFKG699p1fA6deA+k2wZNo1BqAo6KiEHJH98KIoT0x4shVSFTVclAsyyIU2BSQPgto3kdmCmM0Wyhqt0XJPKXBqeHxD8hIJv/Qtde21JpE05J2U8Er3QdYtsjvj6NxZT89kLBAesk2YYNiRqNBgQC0dsGMdo5gzE2jcNElw7Bn035sXbeddsKXofzQLuY5GzfcMgUl/XqgbWkxIhzMW8OiKVE1rEyg7w28VVdKS+2ZF/z3cm258H9aaA34ILyFfthTLVZzQOhEYeVXU+RnEyidKK2P8rnH5/jL8pjUlYnJrrMAjzFncUHfnfUaOB1aOxuJS2qmr0qK9RaKkdtJ51LQ2cyHEBDHuuUghybK8udqixAKqdoWIrt3DvcIYVj2gILKkoJxHaXXQTK2OPVX1WlqA55MZ16IG6QCIxpzyzcbONjTNHpQG/pQMVzxKV8mWXcgpTEqhdTBeJRZXepd43v3SO+8suk3qZVw8iyzKMU0AVdMSzPJtnzmuTSGoUCSYJ3ARunLv6nHcBdQRkFpoQC4/EvWz3j4L0Cu+vOdXwOnWgMebXmqHI1hBCo1CKUT/kUef/JySVu5Hm2r3dhbkTX98pAE3WvDokPSpI1Q+Yoe6aNZlwnA5cH0xulZs0dKIaz2xniCtgkXKVujWmZFzUdqJrIM1Bi55cOy0ihw0sBeEnlrbrwOcfDLlaQIlYXRtawTuo7uiOoDh7B7w2b05EBj5KdplECDCjq1L0F5zXJpp12z6GLZ8kru5dC8Wha8p969/9tya8AH4S33255SyUxSYAzq5N4zmVvm9clDnXtvxUQt/2SCYnKShgvM2IIf3ovB68eVUTxaTrzZd2deAx83AFdOA0Se+pwhLZKynl/DLD7j9xZMlqpKnKA1UitAzB3raMMkFfJ2qdPG7ynSiGxyS2JsUivGJTCrWE/UQRr90J90O2XiT07CbllB0RGgtNmbQfKgiqsXdcDOKZToThI8pSPcwCxYngVEZEZRd3qms9KUwPDYM13T0LLUetJxeJI9BrH806ckhAzrwLtYgNueXukrSTnhJkvG7vwfvwY+uAZktUc0IzpKkyjp6BhVCewaPYpwCXQb2EDMMpDuLQQpU+uFaDvb2acXHnZU6cWu+1NwjEdOA2KhYO1oqU2xshi3to9VimoLsiIkp+3pvZYpabcGoF6qUl/0PKtNKf/erfEV2xhIamJMhYs96/jXwAYZpNlCcxa/2rQHw/Wrlq20vQrSiZxJjdAeWK6OvZQ/37XYGkhTSYstn1+wE9SAA5nufAJvLeax8U0yOfF/c+KpZPoh25xH8gkySTJs7QLqdNv1jEIPO7xA/u+Z1MCZ0NiZhGkub4ZX9XUJxK17JQE0Spj1RB0/P3IDO2dCUoIB0YIkXIKfhOrqDz3q4K16Xk9n1KbZXQ+amXCavtSfmpSNZw30FI0Xp54zJT4XODfvlkZGJO6hdcoCxzy8gpgnL22GzeDeaTzD94qMBwFGimXw6JoR8sIGH4zMtgQnEFEE6vxVcmsLDKlSN075N80X3/nOr4EzqQHRuzbaEeBW+zIyNerTXFOIbUPErDdeO9TaHPEAa3IiYmsTPOnBKTqFd+03yZkoc6RpmS311v5I2CJs7oFjayQZ6Xit41h6nmqNfHkA2gA78xanzrcWWEqzW/nUwuwETRQmWQYlIA04WUqxjba4JX3Q5uK8xusNsNMNTW3cMQ2XWS/X/m8LrgFfEt6CP+7JiuYkcO58Mr96J38OGBlzVK/f5Lk9yPhx/k81jYygZ/FSTFSc1zvE+kwtgILCulp2CAIlXLSnncrDCdlK9oC6mdhixyDpoMcu04zScpaO8yzmsqVGJRqwKWEW0A1uTqWsZ4Nm1GFr10yBSpk4EAgNs0cUzBZN2FpEfnPaLEMoEbXFjSFuYi+VpBT1MjQ7krCOXHZ+GYlQLw+D1NZZkpbUiyt6HppbEZkZTjC9DtGc/HidfVYWd/qI0DYwVZ9SiluvOfCT6ofCH1vE7NGadfW8VI69J/Sk9KztachA2tQLe8kYLGHesPOnlTSjW5MAOj/KC4uQhiNWL3qlvt82QeHZHB9ac+GNBzfSz/2TXwOnUANhIW462fWWiUu1ASNS3hvNk76kkiXYGlQjFD2LXkmcokfBdBnLDFmb4xM95KGdLxXZqVkQYQC2FYFvLucw0M1tAYSYGS/Xp0gdJZpF/W6vPcRlrYjpG69QHhjc2gSvLX8qAw9699qPGojyooNSdVMx03u2L63zELCKhNnepcfGQAbgxYP4p51BVT6VyaWnG3EBxap27Lc7VUTrcD4Ibx3f+X2lbAqkBXoc8GkKnp1f9z4zMufXPdO9A13y79675zpnPnfhTuUsFizQIR7vAeP3h3J+PB5HoEKdPePzlECEySlTu1NYNncLVi3ehq1LaxGpK8aRzUn8/vuL0X98CYZP6Iz8fkHUhLmvGxlzjAxWllKC3NnNJIcmRRELVQ5OlIv356u1PJEVFGd20FlEef3111FWVoYLLrjAqsHZBhedZNKHoy/tzCp74rITLqfnsrYT4QYfzr+9+IAfD6ZKGsbOzz6VJ4XT9tPqQNVhahMdSb/rk1JHIagVgcmpd+R7TUMHSDvq0AUPElyoKdmdRwvquL3JZVlKEJ1ZD00iDFHfHId5se0QajYfQHZDlAslq4FNhxHqXYQQrZLUsbPVlvIhpiXAIdBicUtlhVE5qZ9j0gbwHc1Z9vjDuml0du1J2U3lha+tPZiHtFRQeWQqcmkcwTt76B4fO8uP+fR//Bo4jRpI06RN3jSSJ+mPUeiZaFI61YbVRejO8Z3aoGZwFEzSZVubwGujQ/3whcA4Zec2o2Tt0tY40I94s9QM2bDrGHmKgDub6zdCXHy9ffEK7Hx7A7Zwx9zc+gCOrNqClf/1R5RMHIE2o/oDbQJUQJM6mng986d8qK8ij5I+ufEmtVdmwbKsDDJXktzbAF8PddBDAzfKSrIMDWq49NdoaYvh9UC/XrHVJj0hj5kqZKrm3/uhHys1ffuuJdeA4+8tuYx+2ZqpAQd4xGh0aIMdSSrl3DsXTPdLlizBSy+9hLvvvhsdO3Z0r953ll+BrHqCqDfffBODBg1Cp06dDJi7HQ9PRyKamYDDR5nPml47P5Ie2mQ8DTpr+/HkwRTeeGEDXv/LGzi06wByszqguKA/aqNVKOC25ocqjuCZ372I2c81YPQNwzH2phHI7RgjU5epRabiVQ0rhzeSyBiCaZq6fy8A7pyud+7Yge9///u47bbbDISL1hxId3RgnV264xb9XH/99bYDq8K1acPNdOgEwJ1/F/8HnV0nZrqapAdJt7Qsyrp4fj/rE9nhmX60Om124jIBKGf2Swi+BYs9587eW/WWbrdLz6Y3WSnJgpga8T1VWPv6Qrwzcx4Ob96D6M4G5ASysGbJMiz79rvo3KcHRl05AaVjBiJEGmsQECfhJgkCIiZDSyfpThl9sSM7rxN3edH5WP5cuV3wpufM9y4eF29Tv/69XwOnWwMZ5OrByGOkaVEZzdGToz21tmOOoDTjNpMuJUcWG9ZQ+hiXSUfOxhw0FTJue8+ZrSAHsuHKONa89DrmPvUK9m/fi3aBfBRzt9h66m0HaL9//ux5OPT6THTs0xOTbrrW2mOqDVuHy6DSMgB+LLXGV8ojk5alFZ01I2ZdBNt/gtNQUqqxkYa80a/Atsb+buaMj9POK6xXF43DYR+Au+ppBWcfhLeCj3yyIkrCqCMThDfnf/PmzfjjH/+IG2+80TZSaQrUXRgBKknhtPvhv/3bv9nW4//6r/9q5um8zUfEuNKM0wU6xbNJTujXY1gnDiR/HrumlJMSyKqtCTzz0OtYPG8jhgzsg6k3TeamCu1xYGMSv/nRDFxy0zAMv6wntm3eh3VzNmH2owuxfsku3Prtq1A8IId6jHGEOLNoEnGCpYTp9Sl9j4GeOCet742+v3Pu+siRI6hK25bPlJQ3pQMHxrWpz5/+9CfMnj3bNn0S+Da6ypCcuzROdjbdb1KCSbWM5iS58qbErVtlViM0hxCIc8DGne0StNWXMOkVX/BfXaJAAF+Z0REBcpNb8aGAgoqqMgRJD6k60j074O1vLMfLv3gUVbv244LuPTD28qtwYPk2LFvwNvoPGIT2Q7th4/p38dQP70fJwF6YdM9tKB7RC/WcpolQVYU9uJcGC5YJQE5WTv+dXwOtqQbUhsXjrQ2zbSYoGDGJNBukVL2i7CGq2f7mPPgYlr7OGc7+Q3D19dehKzcHKl+6FjMfewpXfO1W5JR1xI7lq/DO3IV44gcPYNw1l+Oie6ZwO3nOwJHPaxG12ndcghyqr6jNq+fiKX3Bnshu0nxAmaJgvIE6N5ofC3NdhpC5uEZKei/Os8L7zq+BdA34ILyVk4IkjDpk19upkTRXJQJBOgTY5e9EUkmnYtC2bVuMGTMGjz/+OK677jqM5rV08RyYOlH45tJ2zz4IfDt/xuwMPTHEngBeeGgplr6xFVNvuxRjr7gAYdp/rqc0O8BpykSkDoFYHaJtA+hZ3AG9+xSj5+AuePSR6Xj0BzNw57/egPwLsjhVWevpEZIxm51xT4x6LEn/ympA31cDOm1NL1pQJ5Y5wNNATH703J11bZ0d1VBEi1/96lexdOlSPPbYYxg3bpzNpJgKy2nXsbpMHuooeRL9qHOUE3lIMq7nCXaeDdrdkr1sICzzg5SWm7kRSbekp5kG7oxH0jiTbDGozKZZR0vJl/RN97ywCE///JcoaFOAad+8CyVD+iDUthgFz72FJVs3YPCNE9D2quHod+AANi9ejZl/fgZ/ue9+TPvrr6DNuL60jUwUTymdbcdpUj1l0Hd+Dfg1kFkDGlS7RZJq1J50nH2SLJ9wI53krkq89MNfYdPSZbjm1lsw5OqJlHwzhmg26rdyl9kI7ea3zUFej47o160N+nBX3AXPvoY5z76Io+F6XM6BcZyzo0HxMAoAIlRpEa9yzptR83hIhAyFbMBc41l8gnwuoo3sxHQ0c6qLY1F4AfxfvwY8yvDroTXWQCZTUfkdYNJ15rvMa4EpOQHopk7+dLh3WoR2++23o3379nj00UdRffRoI+hSWIGus+0ycyXdQMTDmDt9I5bMW4Wpn7kc46+/AKmieup7C3zXUgeXKjgBbrxCwEU+i6pUNWraJjDwyu644yu34DDVVmb9eTGSlQSWYsI+8P7AT6bvKiAtJ+As15S25Ee04s6mO06/bjOfwqIiU19ZuXIlXnjhBaMpLWB0tGWRntKPaIyH/tUBMs0QYbiWVmqtAG01ULuIUna+jPNa/aXUQcweMelHErf0v04GxwXJG50AgOzLNwSxbcFqTH/oEZR06YzP/d3XUXrZKFS1EaCvQV1+GDX5HLx1yEUiK45Exzz0njwGn7v3m4hyiuWJn/0G+9dtZ2Raf0AqphTO768ba9m/8GugsQa0KNNZB1JT9NoJZ6HoI0JpdbQmiUV/egFblq3FjV+8HUOnTUaikPrZMfKibK0BUZunrX/6T0a4LoM64Mk2uRj7mRsw4for8NZzr2LV83O4Vog8gpGnbLTupeL6F0nElZ4OqZiw5zMe4tZwKFOy9mLqMeyGUiGmybwqnO/8GmhaA6Ij3/k14AEdAU26TICceS0wdSIJtt65Q9Jyuf79++Ozn/2s6YYvWrTI3jtQnxmveT6FHwGp446MMGKQxC6e41nChz3r92PW80swZGh/jLm6ExLZ9aZaInN1KUlr6UmALMitg1V0Lcqpo0pCVbAOfUeX4LLLR2PRzCVcwLmfOr3ZlOiyubCcjYmkr/zTsRpwgzF9X0m9RS/um8uX++4667kWYb63aRMq9u2zSJzfiRMnYtSoUfjlL38JqUKZSbFjyZzSlSTVZo0h7VvkEdLirTQQl1ycubPeVH6D/L4FAe7ap47Xdu0gTfO1dpSUmTH2p/TNfKfpzIA9iS6+5zDmPPwkcrJzcN09n0eyZwdUcwGnqXeTxjRVListNTRTZuUm8NfC36yBXXHDt+4gMEjg9Udf4EJOhuEUttRfTEp/SqX0Pfk10HpqQE3P2l26yGon4sjWTnlzZNlmLJ31Ji6ZdBn6XncZF0c2kM9wiM32bcrelJRHOMBOcsF9kioiZsaTq0QbcgIY/emrMKTvILz11Muo3Vxhll084E0GIKcodBIv4KG1JMqMFopqqb7nlx743Cy4pBmFhD1ymlHznV8DTWvAIYqmz/37VlQDAj4CBw4gnajokoTLjySX0vE9fPiwXQt0L168GA899BBWrFhhqggOiAuEFxcX4w9/+AOkG6yFLg5oKR3FZcCkyfMT5aHxeZoh6l7hjZDJE6W3naKZilR1Cu++WYHa+sO4YupIRIvEAOsJvMkQybEDZMBx7T7OvcS1cE9gLRHSHohUTeA25bWUnAy8sgeyIjl4e+Y6JCuIqWjOThYwksZUG1luY5Y+6ELlzqxrlb2lOQ3E5Nw31rcxmklLxbVW4De/+Q22b99uzx955BF85jOfwa233oq5c+daWK0p0AzKHXfcYTTzl7/8harSnhqUi9el4erTAjb9sRGbB2gdcDYEzRtRg0RdYdovO7z9MPZv2c9p5xjm/WUe3nl8BQIHSCP0J1UVDxErhKjD+4bW0fKdBn4b33wbR7ftxRWfnoqsshI+o0lD+g1SSq4p7XB9PXJJdnnSHVe6XOwb5I6cRwM1KOzXDZdfOxl73lmH7TwCBP/1VG8hqRznXBtxD5vWg3v+Yc6KMzPeDxPX+RBWdeq787AGtDhetMrPFycPbVRPqU9h8+zF3IgnG4OvvIxImf5MMuO1ZTFv7ZhZrzU+XAwdSNRSpqIhMjftCnMAzJ1zL5kyGTWVNdj5FnkAH0krLcU4nAoKMbyNzzVGV/pSV5PUW6yGY2zgKMNwFC3rLdE4h+21BOd1hOhcd6J+6VSca4eZbd7Ramtqn6dSVy3Bj9djtoSS+GX4yGvAMQVJOJctW2aL59z19773PVM7+ad/+iesWbPGVBLkX5ZUbr75ZixYsACzZs0yyxgOfIqhyFKGUzMQgFOYEx3GUMVUdWT4U8FdGItDrJEMed3izejbqwSdS6kewRV3oWSUet3Z1OPNJuOUPWgyUqYfSkVNaJlNpplD1YIcbUhOrtq2Sx769R6EDUu3o/IAuSt5qvi6mccS483Iw6lcu/Kp3M5SzEf+0T7mBJp2EqoXOemIy+3atctooba2FuvXr8eTTz5pIFxWUKZPn46jVFuSUzzjx4/HhAkT7PnWrVvtuftRvKpPHXLN1b91znwnc2iWDXXesg+sgzA5Qlqo3lqNpx98BvvWVZA2crHvvXJM//kfMfPxV4Aajz713W2Ux3gMXJP+AopUUP5wAqsJwrt26YZuw4cgSdOE2pQkzg16UiGmQz1VG2opA+zJ1bHrQbyeQIDxVlM/tdeIQaZbvpqLNykuRxYHg7a7JsO4cjGUldXdO1py9eCef5izq88PE8f5FFZ1ej7l188r25DaEf/VqHWZbe3fe54sP4LNq95Fzz59EOsmC15SCWGLDWWTn3DRM/VRbIMdzoSGExTIUBAjeYpxfyLqJBdFt+t7AYo7dOTC/BXUXeEgmior2itCvETrQXRobZPuZTspbWvJdNEDB5N469m3sGHVZrbfCGZNn4nXHn4ZgYP0rbZPm+H2x/An+5auHTLD5s/xVJ0VznctqwbUG/muFdeAYwanUgWOGSiMAJSk4QLUWnwpG9BaUPftb3/bgJZME+qdJJi33HIL5syZgx/96EcYOnQoysrKLDkxGwdGFWdNTY0B9YqKitNmNgovSb2k7uPGXYJYdR5qD9SjW9ciHHiPyyqpi5vi1KTAU5LSzzi5b2U58VBdBLX7w6jawN0yCbzjlJYLHcnOqzZr6NS2O1Yu3oD9O45g3bblWLvrXUrNaf7K2Omp1JrnR3kroq7zJZdcYnl0ZvpOPYbzy6e+h5zO7tC9Zk9kA1xrBp566ikIjKtOXnzxRVx44YWmFy660MAsSj+ip5tuuslmWf793//dWyzFePbs2YNVq1Y1LhR26SkNz0nqJPirfGjamWeCY6mWSCFFnXMskINttJizacEGFDW0R5wzInoWqKrD68/ORE1hPaJdczRdw8kTSb2pesJoSEHIpomzUcMuRPbOoziwbQ+uvGgS0K6QnTaQxb8oO29P7M37KOMkPeXFeM6KISvFg2sRUrJnGOaAryQX/QcPwsoV61BHqw5LKzbhSNVhgm6v7jLbneuIRT+SsrvBjfPjlf3Mf1XvUhFy6z/eX69nHve5FNLR2MeZJyds+DjTbHFpcRwtZccgQa1sosisqKTb/fv2R6S8AeW7ytF7yDAEaqiGcqTGmmAwykWWkkJTNzt4uAEStsQ01q+oJRjnmX1CzBZC8yYVwQWlZVj/3jpUHzyIA9XcQZl2v5WWwLgiFA/hv/UDUgoPBuuRrEpg+QtrsODPCxGppmlbmkms21OHOY/NQhVngC++bTwaopSIS5flJC6zHWttjWYE5dx6Gdf+TxKF/+o8qwEfhJ9nH+yTym7TzlhqBepUtCOZpJQCUgJFAgVdu3a1bJqUm+/btWuHqVOn4p//+Z+hjVv0XvHJIkum0zv5EQg/HWd5M5BEnd6CAvzgB/dhQtl1QGUEq+duo1RjJ+IRMuwQpZLkswFKxLmLA1KVMeTXd8HMPy7A3OcIeKjoV588QgabRalFjB7puYIAjlOWS5asxP2P/zve27uBC3pkrkpTnKeTS0bHMn/3u9/F3V/+sgVsyUC8aWfh1JNUcA3e9lEHXFJx0cIbb7xhAzDRkO0qST/um3bt0sVoa968eVi7di0GcnBXT/WO//zP/8Szzz5r9CY6zOy8rHIVh4FwdZgaVPH78srs9BJs8+shHI9gQFYvDMkZyk46QAk0n1NyHY3GcODwfvzv+/4X9odIDyQahTPNFAJjbawToznBe7/xt7iu71jUV9Zix5r3EPnv11AbrGFahAkE+ZxUQQ53zdu/Yguyj9Bm8Wvz0WbLVtTyfZLz3BF2yNqkIzeZgyO7SfNVtdi9aTv+x398D1t3bKakjp0+natLnQUe3dlenuUfxZ0Zv65bmnNlFI25+jyb5VRcRr8ZFZf57GymlZFEq7oMS4DDthqkNSFSLMZfPB5/M+1OpI7W4R0OoOfPmkNBCdUnqUKYHaJApq6am9VSIn64FlmcvXr6R78HuGBa22kKzgfU1tguc8j3D+/bC+SG8L/+8Z/x2vpFbKOazdKf59iVmPqi+ErIwHs98pIxDMoajrY1Hal+xgEy/8LV5Dls23Ofm4OfPvUADgbUt7hYjv9cjl4cbegci8VMCKG+U8IqCQGcv+ND+3fncw0cj4LO55L4ef9YasAxicLCQlNJkepJZWWlASrZdr7hhhvQu3fvRhUTjebFOC6++GIDXJJ4TpkyxcCy4pI6i3N5eXmNG/u4Z03PzUICdXr2R2EkTSPm5eQhK4d63pRKdh1Ygn7Dy7hBQw1BkbZQ0NbEhGPESVXbAlg0h8BuWBd07NUe9aEaMro6JhmhNFD5DqN8xWGs27QchUUxdOjYHtSEp+SEzcbSbJq7E98LKKouVEY5MVQ9a+lM1ZXP0Y1oIzs7Gz//+c+xadMm7N69Gxs3bsRf/dVfmU151YlzqqMqqqdoUKYw6pQ06BNw0mBP95LaNh3MeeFFKToEZClZNzxL/U1+twZKz0IcAAYirH8OsGpoFScnmk9QruVVQRqjpJ1hKnhGotxllRK0oMwWEnhrGlqzICGC8jDfBfk9k4y4Pp7Euxs3Y13FVtJYLUE7pXBc7FvNzls2i4sOJClVq8TC+QtQuyLMhZikV6ZL4+LEAGFK5sJIltcg2j6bUjeZaSRw4JbaGuWp3lwdqm40WySn8rvnOrv6tZdn+KN4lIbq1MV3tuI+wyx9JMFUJldWJaBrSRp16Ppsu8y6PNtxt8r4xCKoypXFNpiMU7rNtpDFQXEkkmVmAbuUdkO0VycKtRO2CDNAsO6ph0exd9NuVKzbip4D+yLSIYfznmzzaZYTpDpKFtUW6xrqcIRrifbt248d3GyMGuPG78VHzJFEvCAa1pM/cDCdl8hBj/Z90CFM04T0J7UVrgal1Jz7VFQexc4DO3EgeZD5fj99NdcPiGYkkNi/f78laVaTWE7ftbwa8EF4y/ump1Ui10F8UKDMzklhtKHK008/jW984xsGpmROTovr7rrrLg/gsDOTP4VTp/7aa6+ZvzvuuAM5OZzip9M7HQ54XTx6tKkdOKBxwjw5PpaByMUetegzh2CtQ4diBA9QYllI4FQSxZjbSrkZCsEFpR0ySRciU46ksrBrySEsWLIAfSYMx/DJ3c1cVSopkEP9cU5LEqNhxv1rkVUewuARF+DB6x9ARSUX8FHnIK3pe8IsNn3hmKpmBZxEQ2U/1fpvGt/5du++sdSFvvOd79gumqtXr8bAgQPxN3/zN7jmmmusM82kCUnPZaJQAz2tNZDKk+pLqhL33nuvmcDUwEb05dQyjq8XD4Rr4a2mgQmhCaClq60pbep7c5SWcziK2Y/Pw6pZq1EQzGHnGkJNpB7TvnAz7h3HTXQ4MEtq8Ra/lXpyDgEoFaeqDK/LSnui7p3dyM6nibNhl6D/9WPQEKKuKfNNaEAwT3okrZTPWY5Xnp+B62+7BUXD+lBFS0vBOMtCWqwjYM+nStSiP72ItXs3opQA4qEHH0BNnKFZVtWbBh1yqg+p8si5wW1zHbh5OMMfxedUURTF2Y7/DLN11oOpblWvOlSvqk+BcFfXZzNB1aHSa55Gz2ZKrSMuylA8k7EEzVEOplNcyNy5bSeE9tUjqyAXnQf0RP+7p9IT94AQwuEuWqr/QCQPm/7yJnbu3oUhUyeiYGRvAvCj9MNBugb3nLpK1URw9P7fIbF/F/7lO9/El1OHUc94aDjLZj41CNcifs+Rf3O2NED6yY3nY/0rG7D6pdWcUWOeODiPxLgTMwf4l117Gb459a9xJFhN/y7s8WfxPTnl050lXBDP0ztdt6b+wiqhlfz4ILyVfOjMYqpTUGejszofXWuK36kMZHa8jjmoY3adiHS9e/bsifvuuw//8i//gvz8fPzjP/4jPvWpTyGP15lO02jSH//1r3+NK6+80nbcbMpQXBoCpyUlJZnBP+DacTSHxnXWxisEQjQ51aOsGO+s24Q9+0YjvxvlGWSgfElJBQFQtIZqAbQUTWllIovSEAKz+iRllNRUka5uijp90cowNm55D517dUa7joWIdMpB+64dPDGIpJQfkLvM166MepbJaDP9tJRrlTWzjLp35dfzYcOGmUrOunXr8Pd///dGE67seq9DNKmB3a9+9SuMHTvWZljkR/GIfjSYcfqSLuz7zu4DGZl4tMEY6E3XpH9aLJBuaV6nNrRS0gY7V25DTlY2LrpsNIaMGYJAGxJFlH7tW2siWWFt8tpLimSUzQVg0fwQKmtoYrE7dcKjXHfQQOk8fVChiVJ0qjZt4rqDvARyurdFsG97lo+ydpZRtuyjpMlgRRz76w8g3DkX4U756Nm5s5dNS89Lyv/1a8CvAa/lSjFESiRybG12lp42CHILufnOhh3vom99LQIFUQ4oqc9NPk/joLSaQvk0peeSoieyqMYS5XO21RQDk61wYM2ZqAO12LJrO3r0KUXpkH4oZT/iJaEEvLQswYwfSdK14LpXx76oPVKHjQvXcSfeKLuaOvS6sBeuveMaDr61UJQMQ4mfhnN8VEEyr08jCt/rOV4DPgg/xz/Q2c6eAzjuLAAt6eQB7uLnLFMoTYGd5sC43gksE5HbQrru3bubBEkAXCoqUk2RXrbAt6bQBOx/8YtfGAP55je/2QicMuNWnHJKU/lygM17mvkrRijnmGEmY9Q1ARwZrkmaOZs/YHxnzJm/CGve3IxLb+qFeBYXw1GkkeLCHG7fQBhGaShDZfGaWdX8JmrJOEME5m1DOXj3nXK8t20rPn33DciiqkADpR7akljAyUQaBGen6por76mGPd/8uc5C39HRUaaEUc/2U8VEFlG6deuGd955B3O4cFeWdCQRd2omDz74IKqrq3HPPfcgJzf3fbTh0jlR/bjP430ljz6kViJLBeyPeZCO+Li4tAOm3TkVCept22LHHHbxlI4RKTNqb1CgjThMn5xUY/FKpCWaaR9Dt349sY6bg/SvKEe0pIidOmmfizkTHCzksOOto6UexRtnfIFQnAtAOY/CdiEbxdnsrOvKy7Fp63sYdfMVQGEeAYMWmzF9Zc53Lb4GPoiOW3wFnG4B1TS0QIP9gCAtm7PXVLgLZveLB2Pusy+hev1m5FxEUMxBdIAoWXsASJzdwNYlIUuC64M0E8U5Ckq2OUvBtqpFmTsXL8G+gxWYdMk0onLOnbGdhmjVRE4ScLZka5WcWGXqUk+zC5O4F/UrxKf/4WZsfOddVFVUcyF+IcqG9URe93xaS6JgiLNnZlvcYvN//BrwakDk7LtWWgMCytI7Gz58OLZs2WIL31QVDjC5s6sedRZuqlqqHwe1epzgXSBeKiQ//elPIVOFDzzwAPXgKk1y/uqrr2L27Nn40pe+hAEDBpjqgEujuc7nxADc5SLz7DHH45/oGQ8CodILO6N3v6549amXsGcd1Ui4YEZWTbSoJ04bzuKmAaLvFHWBhavjtB8b5PxlQYo7G5Yn8fLTS9GptBiDJ3RDKpvAioBKi+WMGb8/6cxsvO/69Mr1vuDnzQOVU0emPXjRkVRG5PROsy7SBdegTfT0zDPPoF+/fti2bZvRivxp0aVoRxZ3tGmP3IevQ482tPGPBkW2wx37Xq6hRIh62NFimq9sy7UA2SQGPtOhRVmWNkGxycBti7z0x1e/zQ584PiR2Hf4IN559U1k1fIhF/4GOCVdSykbaA0lGOJOmIqG9BZkZ6+ZpCj1V0M0lZhNHdSlM+dRmp6HwePHUEec6ltUVxEJ+67l14BoWu3DP069DqQaYtaOSB4U25iqiFEKm16vyy5EKJaFWU8+h1Al1VE4WE7QFKGaLRk9GzoHuBSmhG2ATZ5Oxp/QoJy71VZu2I2Zf3kBXWjrv+PIfmysjJ/AmTDeDm3245qlAX81aIFy8oBkkHFH48jrEcPwaaMw/ksTMHjKUOT1zBe2Z1un5N0G1pZT/8evgcYaEGn6rhXVgAMyAsBaFCkQrsWUWjAoO81aBKd37nBV48K5e4WVuTkB8U6dOmHhwoUmBb/zzjttod2SJUtsUYusWEivTbbCI9S5lPqLASCm0TROF/eZncUeSc5ppTtZw4i2DeOmu69CdmEUT/xyDo5upmk8AiTtb0Yobnp7Ys7xAKctBbAb6lFI7lq/I4HH7p+JPXsrcOMXLkV+TzJhRi/5uU0mkokfWyt/ZrltqaEc3dhsRAbAcN9a73WtwZvWBojurrjiCjt0L5OFe/fuxW9/+1uamhyHadMokaKz2ZfTrjTRhOs2vWvXjVon7l4pXk1R8z4h/W921NrWXsOuFOlccZjXjE5U9FBHKVgDVZlKhvfH4NGj8DatIOyeuxrZ9VREaaAJRE5vB+viXIhJqzuMJsLFY6FaAgCqoSRq2WHz4YYZc7Fw5lwMu2ICCvqW2oAgRrOF1r8rX75r0TWg9iB+6B+nVge2QFHA2toqSUM4mCDY7nkTpergxM/eiHc3rMMrD/83sitqyPM1MBaQJu/RQk5tosVxbkqBaB0lFspHgqZGX/7ln7kQ/Aguv/V6zmhxAT1fW8snUBeY14J+dQT8JT+yS1sfot0zuYSbllgYv/LDEXeKC4oaKIWncRbrloLkHYb7ees7vwYya0A9jO9aWQ04ICQwJHURWS751re+ZZuoPPHEEyap0zsHnDKrR2Gd03upsEilZcSIEbjrrrssjFQI9EwScZmik+WLttThFXBXZyOpj6SBp+/E/nQ4ZxzP3aTPYpJMh5RNISM6jsjBZ/92GndePIwH/vlprJ1RgZyaLGTnZGu2kQySqgd5YUSoglCYzMf2+Un86r6XsH71Znz2q2PRf3xHmp2rNSAl6K7ia8MHp5PYJPFWf5tJHw5gqFL03eUk+ZZOt4C3BmZSZ9IMyf3332/AXFLvL37xi3b9ta99zWZZHK00R48W6Qf+ZNKMPLMT5iNtqqM1AaIiTUsHCLw5NcKvrLzynlPe3rBL0jBJvPiUdGVYnL1tRGEZUUNhBOPuvAXFZd3xxMO/x47ZSynhplS9gQM9ri0IUuIdZ1vhRLjNosdoMyWvIRtbp8/Ccw/+hjbC+2PYzZPMbCYxAcE9/TXNsrLtO78GWnsNWPdDEM56kL1wdQcC12q3xMFm/rP/VRNw5edvwrJ5b+GlnzyCwOq9yA0W0ms2VQ+z2O7Z/9BzkKZIY4lcVC7YhD/e9zPs3LITU77+BXQaSzOoVFVR3Gy27KuE2L0GKSAdZuM0c6Vspw3iFxqoq+EoOl+iAAAKvElEQVSyXdN+LQNpZ2Uvj3rliWzEX3jjO78GmtQAydZ3rbEGBGgEjCSZlpPerQC5FsIJJEl9xL3Te/kXeJaTqoGuJAGXpLsLbTl35mIy7Yr5/PPPG7hS3LJs8YUvfAETJ040SaYD/1KDMRvi9HPmwMqycoIfTW0yn+SY9dw0pc/Y9vjydz+D6fe/hv9++A94bVY7jLyQGzocKkCwJgd711RifsUWrFi6GuuXv8cd09rjc9++Bf2vasPVdTQVZXVENQLyYTFfmaizBE6Qemt+rO+pw31rWZyQLXCpLMm5mZBJkyYZ/cnaxx/+8AczQahZFPnTwE7XI0eONFpz9tRFN5kmLU+5ntVxe32ofT8BcDlNEcul+FGlH85u0vS+jb61646+N99l0mgjOBYdsDOXvmk8TGlav2Lc9Hd34on/9zB++9ADuGTVGIyYPAmRnqWIHYyjgLrf2XUcvNFGceXmrVjw0qtYNX8x+o0dgav/+g4ESotIU8qM2lpGhi2H/k9LroFM+mrJ5TwbZbOmq7bHxinwncbGnpSZfCdGiyQaJA/73BTECLJffHQ6Nnz/hxh88UiMGDoCtVsrQJkK6rccwK59S7F0/htYuWw5hUZF+PQ370Tna7jrbR7VxRgXJQaMn21W4FlNks6lLx6iobq8mWBJ9sLlR22YTt9U+wloiK9riy7db3o+/F+/Brwa4DqBDNGmXyutugYkwZb+tpwklZl2c7VRiqTkAueyYOI6DkkpBYzmMNyfuQX55ZdfbpZTpGawePFi23pc/h0o+3gqWNyQDJoAKUUwxc0JZaUKNTvqsG7+Vix9cxN2bK1F4gB9HapHmDOPERp1ads5BwPH9sDAK8tQ2DOP+rsMZ3OIHnfV2h5x4ZCMjJPbCrT57v01INpwbEW64Nu3bze1Ey28tA6L9KKz/MlCitYS9OjRwxZkyhKKXcsueIYpS8WnQaCL9/2pvv+JppDlvJO+oefUeTogricaWKU/refB9ezeXeOvBmGab9af5ltCkohxCjrJyKTGEuY0d/3WPVj29CysnDEfR4/Uo6RjCSKV9bTQsxvdevZAbX0Ndh/ci1iHQoy8bhIGXH8p0Jm68aS1mGVXNMsMWR68/DdmwL/wa6CV14CNT9k21Dw0IPa4sNoL/3lI2mzrL1hPgaMNOLxmB1a8/CY2L1mGyj37QYujqOHmWtnkLRHu/VDAHZVLxwzGoMnjqc/dibNaiorCKcalOJWC2r2pouhWTs/ZRu2PknCJpPQnvmJB7OrYnZaPBjU1a5lXBOeOc/34uZOj1pcTH4S3vm9+whI7gCOJuKThcmqkDjg5e8wODDlgpPfPPfec7Xwo8C3wLmspffv2tTjk7+Nv7GSHZJ4CS8adJb3W7j20VNFQnURFeS1qKKFMVlO6ShsWhW3CKOxIZlnM8pID2+p5TllSoUAxmEREzFh8VDqABsb0wnfH1YC+c+b3djTl6EjnTD9aU6At6OVPdCRJuMC67t0AT/7PWAp+XO5OfiNFFDkTZnnkc3yANAD3ulqWwzpWToszmGiDW4dQl4TWdWqDOEpJ2xZaSdi8bB32bdlOHfA6RLKj6NinFD2G9Uf34QMQ69YOCZpA05BOi81kkCWlxWOWDUnpvfwcnwn/zq+B1l0DbnDtDYiP1YUD6Go29eQfKS5yjrA5BY8mULvvICp3VeDgzgNIcHOtgtx85LYvQG4pTc+25RqOGPsGmi9MUnAjwbesmLBJ0qXBtfgWH4g3iP0L/IsPePJ49hm6Yrq613PtJeC1Xv5KNK/DgDtfn0NOvNV3n2wN+CD8k63/cyZ1B7QdgNJZR6MKCgFSpstsvALtOmSeUGFkT1xmCjPVWTLDfhzXyq3YqDY19rQHdfbUDxLcES0cyaYHDjTk0TzzPXfLTGk1vHFhPmdYsVIt4lQ0YsByFH6I29Kf4vRdZg3o+8s5+tBZtJV5L0CdudBS7xytOVUl3TcNm5nOR3Htuk0XtwTSx7oo963dWd+fbz1xXFqHWxvdyPQlN3siQA/U0e9RSspqa8wCT1C7YOays+eW2HESkzbPixN9k+RM0pbiQDEgHVPrGD0Zn8uLf/ZrwK8BrwbUTjNbh0nF2dS06FosWbJpbUNfp75Iz9meAtwfIiiPOuTSPDxBD9pgSypgEbVZ292Hfngv04XiAIpXdsYb+YGiYNzqDxwI54VFaX0Eg1lQ63voyXwxD3yoGM8l5/jyuZSn1pYXH4S3ti9+kvI6IC4vDgQ19e5AlgNNko47PV8HphTGNW5JM51Ob9O4Ptp7MVL9UyuPUgk5bfEg4CQph/T8krTlzLs0c+TyGSmS04/HSGXHOQ3CCdY9BizuSqBl+n8eE7aI/Z/jasDRiGjA0YR7Jo9uJkXXeu78NOe/6TPdf2SOcRulZPSUrqNtTDPjne3CqfxQn0UyMZsKp0en3uKpr4gGFcjLt9Z+2houPglTlUV6MQrt6Y6mqU8DXsabkVRj8v6FXwOtvga8JufxaVaGGzxLxUztV5arxK9D5C22C5sapAx7q0WR72uvB6mSGRvnAsyU9FfY3qRSYiv6VcHk/QLh+pMqiqxtGYi3+OXB4//pMbilK4DfCNTlJe2E++WPCTXm2b37pM8fKT/9pAt3nqTvg/Dz5EN9HNl0gMhJLt29a6hOJcABawfa3Tkzjw50KawLl/n+o7sWt/OcwRtuCy6dPEm4yWptA6EIGbFMXUmbQFLvIHW8gwI+Qa5upxM2CombepyTDFkhxXY9ZqwrTS8aWLc3/k9mDeibu++fqVLi/IhetPjRDc4cfem5nHuX6V9+MuN1705+5ndqdB5dsF99v+Mr77G+sLtOf37n20nQ6MN9d5UxpU6cXbDsz6co3g5QvN3AvGoHP0FrkhcjEk1R7YkzREZTSk8ZEX0xDqXJl5YHThJYGC+N5jLrMuSf/RponTVgw9N0ezShCtuXbrXJlVpdhMIUz49eeGpdKdkmEp+n/X4pjsl6iYQxAT4LCI2zzXIDXbZn9hY860jIQgrjE2CnBzscG1BYcwynNix/Au6WEXIIe8tXiiHNAtxTL9w58ut47zmSnVaZDR+Et8rP/sGFdgDcgSnXWJs+170kmwJQzfnJlHp+cKpnw4eYpZwYYhrgEAkZAOdTvRW+FnvUgjpdSv4ppitUrhACSOKtnu6hveCNJOBip4qBz8iNxep913wNZILvTNpwvkUreu5oR88drbh3OmfSlKM9F8epnfX95LxvZb/ukffC6zfNx7EX7sr6X77Tt5ZAzX3/xm9PWjGAzffaidNohIkYpLYVYmkaEa1J3US6oXrEQ7SmflvEprJJ2ua95IlvPSCua9/5NeDXgKsB49rkvx4gVrvjGzYdSa6leqJBvKwWSSXF86R2pf6JA2Y2YgllEnqnK/pVP6Gnan+KU23SgXCTbKuN2gud0m1WfYAeM5zlR/fWmPXM6yccADePaf/e9bnz6/jruZOj1pcTH4S3vm/+oUossCDnN94PVY1+YL8G/Brwa8CvAb8G/Bpo5TXgg/BWTgBnUnwHxM8krB/GrwG/Bvwa8GvArwG/Bj75GvCFaZ/8N/BnPD/5b3De5cBvuOfdJ/Mz7NeAXwN+Dfg14NeAXwPnWA14xqDPsUz52Tn3a8AH4uf+N/Jz6NeAXwN+Dfg14NeAXwPnbg38fwo9BSZN4/WJAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "d892de47-78f4-46b7-b425-da5ce4b9c6b8", + "metadata": { + "hidden": true, + "scrolled": true + }, + "source": [ + "### Step 1: Generate Quantum Circuits and Operators\n", + "\n", + "We first examine the case where a long-range CNOT gate is emplemented using nearest-neighbor connections and unitary gates. In the figure below on the left is a circuit for a long-range CNOT gate spanning a 1D chain of n-qubits subject to nearest-neighbor connections only. On the right is an equivalent unitary decomposition implementable with local CNOT gates; circuit depth O(n).\n", + "\n", + "![image.png](attachment:59c82c7c-996f-4f54-8b6a-c730b233c35b.png)\n", + "\n", + "The circuit on the right can be implemented as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d54f7f67-ae85-45a6-86aa-9d0151d572bc", + "metadata": {}, + "outputs": [], + "source": [ + "def CNOT_unitary(qc: QuantumCircuit, control_qubit: int, target_qubit: int) -> QuantumCircuit:\n", + " \"\"\"Generate a CNOT gate bewteen data qubit control_qubit and data qubit target_qubit using local CNOTs \n", + "\n", + " Assumes that the long-range CNOT gate will be spanning a 1D chain of n-qubits subject to nearest-neighbor \n", + " connections only with the chain starting at the control qubit and finishing at the target qubit.\n", + "\n", + " Assumes that control_qubit < target_qubit (as integers) and that the provided circuit qc has |0> set\n", + " qubits control_qubit+1, ..., target_qubit-1\n", + "\n", + " Args:\n", + " qc (QuantumCicruit) : A Quantum Circuit to add the long range localized unitary CNOT\n", + " control_qubit (int) : The qubit used as the control.\n", + " target_qubi (int) : The qubit targeted by the gate.\n", + "\n", + " Example:\n", + "\n", + " qc = QuantumCircuit(8,2)\n", + " qc = CNOT_unitary(qc, 0, 7)\n", + "\n", + " Returns:\n", + " QuantumCircuit\n", + " \n", + " \"\"\"\n", + " assert target_qubit > control_qubit\n", + " n = target_qubit - control_qubit - 1\n", + " k = int(n/2)\n", + " qc.barrier()\n", + " for i in range(control_qubit, control_qubit + k):\n", + " qc.cx(i,i+1)\n", + " qc.cx(i+1,i)\n", + " qc.cx(-i-1,-i-2)\n", + " qc.cx(-i-2,-i-1)\n", + " if n%2==1:\n", + " qc.cx(k+2,k+1)\n", + " qc.cx(k+1,k+2)\n", + " qc.barrier()\n", + " qc.cx(k,k+1)\n", + " for i in range(control_qubit, control_qubit + k):\n", + " qc.cx(k-i,k-1-i)\n", + " qc.cx(k-1-i,k-i)\n", + " qc.cx(k+i+1,k+i+2)\n", + " qc.cx(k+i+2,k+i+1)\n", + " if n%2==1:\n", + " qc.cx(-2,-1)\n", + " qc.cx(-1,-2)\n", + " qc.barrier()\n", + " return qc" + ] + }, + { + "cell_type": "markdown", + "id": "222c5d97-8da0-4abe-b7ba-457701ad1fc7", + "metadata": { + "code_folding": [], + "hidden": true + }, + "source": [ + "#### Prepare circuits for Monte Carlo Certification\n", + "\n", + "We utilize the methods `prep_P_ij_conj` and `meas_P_kl` to prepare the circuits for Monte Carlo state certification." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ce0aaecd-3f3d-4f68-991b-dba151b988c3", + "metadata": { + "code_folding": [], + "hidden": true + }, + "outputs": [], + "source": [ + "def build_circuits_uni(n : int, samples: List[int]) -> List[QuantumCircuit]:\n", + " \"\"\"Builds the unitary circuits needed to estimate the average gate fidelity\n", + "\n", + " Args:\n", + " samples (List[int]): Which of the 16 Paulis with non-zero expectation value to prepare and measure\n", + " n (int): Number of qubits between the control and target of the CNOT\n", + " \"\"\"\n", + " circuits_all = []\n", + " # 16 Paulis with non-zero expectation value to prepare and measure\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " for sample in samples:\n", + " P_prep = P_lkji[sample][0:2]\n", + " P_meas = P_lkji[sample][2:4]\n", + " circuits = [QuantumCircuit(n + 2, 2) for i in range(4)] \n", + " circuits = prep_P_ij_conj(circuits, P_prep) # Prepare circuits in eignestates P_i^* and P_j^*\n", + " circuits = [CNOT_unitary(circuit, 0, n + 1) for circuit in circuits] # Add long range CNOT\n", + " circuits = meas_P_kl(circuits, P_meas) # Prepare circuits to measure the final state in P_k and P_l bases\n", + " circuits_all += circuits\n", + " return circuits_all" + ] + }, + { + "cell_type": "markdown", + "id": "7c6b8e59-c90b-4276-873e-a94ac2d375d3", + "metadata": { + "code_folding": [], + "hidden": true + }, + "source": [ + "The `build_circuits_uni` method therefore builds a list of ciruits to run with different Paulis $P_i, P_j, P_k$ and $P_l$. For example:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e048983d-0441-40a1-944f-6f6725f01096", + "metadata": {}, + "outputs": [], + "source": [ + "# Sample circuit\n", + "n = 6\n", + "sample = [11]\n", + "test_circuits = build_circuits_uni(n, sample)\n", + "test_circuits[3].draw('mpl', fold=-1)" + ] + }, + { + "cell_type": "markdown", + "id": "56d737d5-c672-4364-b46d-01c778259b53", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "### Step 2: Optimize the Problem for Quantum Execution\n", + "\n", + "For this experiment the curcuits and operators are already as required" + ] + }, + { + "cell_type": "markdown", + "id": "a94633db-ae77-4ed9-95b7-fda2840aa55f", + "metadata": {}, + "source": [ + "### Step 3: Execute the Circuit \n", + "#### Check Parameters and Submit Jobs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ce365dc7-3899-45eb-b3cd-3f93b6505d88", + "metadata": {}, + "outputs": [], + "source": [ + "# Set local parameters and submit circuits\n", + "\n", + "SAMPLES_UNI = SAMPLES\n", + "OPTIMIZATION_LEVEL_UNI = OPTIMIZATION_LEVEL\n", + "SHOTS_UNI = SHOTS\n", + "MIN_NUMBER_QUBITS_UNI = MIN_NUMBER_QUBITS\n", + "MAX_NUMBER_QUBITS_UNI = MAX_NUMBER_QUBITS\n", + "NUM_CIRCUITS_PER_JOB_UNI = 256\n", + "USE_DYNAMIC_DECOUPLING_UNI = False" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8e9464ca-8d90-4c74-996b-e3c2e340f759", + "metadata": {}, + "outputs": [], + "source": [ + "job_ids_uni = submit_circuits(MIN_NUMBER_QUBITS_UNI, \n", + " MAX_NUMBER_QUBITS_UNI,\n", + " NUM_CIRCUITS_PER_JOB_UNI,\n", + " QUBIT_LINE, \n", + " COUPLING_MAP_1D,\n", + " SAMPLES_UNI,\n", + " OPTIMIZATION_LEVEL_UNI,\n", + " backend,\n", + " SHOTS_UNI,\n", + " build_circuits_uni,\n", + " use_dynamic_decoupling=USE_DYNAMIC_DECOUPLING_UNI)" + ] + }, + { + "cell_type": "markdown", + "id": "1e71058c-f202-47cc-a03c-1a5148a18682", + "metadata": {}, + "source": [ + "Check that all jobs have completed before proceeding to analzing/processing of results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2f6590df-9c65-4a79-9ad3-45dd780231d6", + "metadata": {}, + "outputs": [], + "source": [ + "check_jobs(job_ids_uni)" + ] + }, + { + "cell_type": "markdown", + "id": "a597478f-62d2-43ec-9aaa-0ed6d868aa03", + "metadata": {}, + "source": [ + "### Step 4: Analyze/Process the Results" + ] + }, + { + "cell_type": "markdown", + "id": "c424f663-d67b-4eaa-aef7-e9c97676f203", + "metadata": {}, + "source": [ + "No post processing of the counts is required in the Unitary experiment. The average gate fidelities can now be calculated:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87945c3b-4a2d-40fe-a54f-522fe27814ce", + "metadata": {}, + "outputs": [], + "source": [ + "avg_gate_fidelities_uni, avg_gate_stds_uni, all_counts_uni = cal_average_fidelities(job_ids_uni,\n", + " MIN_NUMBER_QUBITS_UNI,\n", + " MAX_NUMBER_QUBITS_UNI,\n", + " SAMPLES_UNI,\n", + " SHOTS_UNI,\n", + " NUM_CIRCUITS_PER_JOB_UNI)" + ] + }, + { + "cell_type": "markdown", + "id": "b72ea6f1", + "metadata": { + "heading_collapsed": true, + "hidden": true + }, + "source": [ + "#### Save Data\n", + "\n", + "The average gate fedilities and associated standard deviation data are now saved in order to compare with other experiments at the end of this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "69213efb-9f7f-43d4-9660-26e930802954", + "metadata": {}, + "outputs": [], + "source": [ + "file_name_uni, file_name_std_uni = save_data('uni',\n", + " avg_gate_fidelities_uni,\n", + " avg_gate_stds_uni,\n", + " MIN_NUMBER_QUBITS_UNI,\n", + " MAX_NUMBER_QUBITS_UNI,\n", + " OPTIMIZATION_LEVEL_UNI,\n", + " USE_DYNAMIC_DECOUPLING_UNI,\n", + " backend)" + ] + }, + { + "cell_type": "markdown", + "id": "9160c610-2a51-4b92-addf-9390a31a510b", + "metadata": {}, + "source": [ + "## Experiment Two: Long-Range Measurement-based CNOT with Post-Processing" + ] + }, + { + "attachments": { + "64faac2c-cfe0-46af-a2e6-a30fce568e67.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGeCAYAAABYc/NxAAABYGlDQ1BJQ0MgUHJvZmlsZQAAKJFtkD9IAnEUx78XB0raP4iiaLjNIE05HVrNIgQDuxKqIThPO4Pz/HFehVtz0FRbQ2sRNDZF0NAeCAdNBQ21Rzr053o/rdTq/Xh8P3x57/0eD+jyq4wZIoCiaVvK3LS0vLIqeR7hwwi8GEdI1cosnk6nqATf2hk1BwLXaojPOt2dCgT2nVul3iMmj8Lzf+s7ojuXL2ukb5SyxiwbECLE6W2bcd4hHrRoKeIDznqTjzlnm3zRqFlSEsQ3xP1aQc0R3xMHs22+3sZFY1P72oFv78+bmUXSIcoxzGAWKXoSMoghChkRLNCN/u+JNXoSKIGhAgsb0FGATd1xchgM5ImTMKFhEkFiPk9GlN/69w1b3toWEHboq8OWZ3wAly9A30PLm8gCA7TD1RlTLfXnskJNLK9H5SaPXgO+ius+DQO9z8D7uevWq677egJ4vMDe3SfAzmOJAZs4vQAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAACqKADAAQAAAABAAABngAAAACyrcrsAABAAElEQVR4AeydB2AUVff2n91NIxB6b4beexekqggiSrOAXUHFAtgRsP7V1/Z+L4oFRUVAFBsqXUBAaQoIItJ77y0kIcmW754bJmw2u8kmW7LJPkfDzt65c8tvZmfOnHvuuSaHElBIgARIgARIgARIgARIIEQImEOkHWwGCZAACZAACZAACZAACWgCVFB5IZAACZAACZAACZAACYQUASqoIXU62BgSIAESIAESIAESIAEqqLwGSIAESIAESIAESIAEQooAFdSQOh1sDAmQAAmQAAmQAAmQABVUXgMkQAIkQAIkQAIkQAIhRYAKakidDjaGBEiABEiABEiABEiACiqvARIgARIgARIgARIggZAiQAU1pE4HG0MCJEACJEACJEACJEAFldcACZAAjh49ildffRXDhg3DhAkTcOLECYwYMQLr1q0LKTppdmDnCQf2nnaAi+CF1KlhY0iABEjArwRMXOrUrzxZGAkUOAKbNm3C4MGDERkZiRo1amDXrl0oVqwY/v33X6xatQr16tXL9z4lpQILttkwZ4sDZ5LU6swmoGKcCf0amdGpthkxlnxvIhtAAiRAAiTgRwJ+U1DXrl2LDz74QFteOnXqhO7du+Ptt9/G888/j0aNGvmxyXkvSj3WkHBRWWBO2RGlHnC1ypoQozbUJoUEwpLA2bNn0bVrV9SuXRtTpkxBbGws9u/fj6ZNm6JIkSI4cuRIvnNJTQPeW2HDLzvssLj8WB3qR31bczPuaG2ByWVfvjecDSABEiABEsgzgYg8H3npQBlm+/HHH/Hoo4+iWbNmuOKKK/Ddd99h2rRpSEhIQIUKFXytwi/Hn7uo2rnRjvnb7DiXkl5k6VjgxoZm9GpoQbEov1TDQkigQBFYsGAB9u7di++//14rp9J4+c02adJEW1Tlu/zGx40bhw0bNiAtLQ2PqN/6DX36yK6gyIbDdvy6K6tyKpWLUjrrXzt61jOjQnFqqEE5IayEBEiABIJAwGcFdefOnRg6dKj2VxszZgzMZjP27NmD5s2bo2bNmihbtmwQupF9FUlKIX1nqQ1rD4oN9bKcTgI+X2vHkfPAw1dZslhnLufkFgkUTgIzZsxAhw4dULly5YwOikKanJyMjh076rQffvgBW7duxaRJk7Bl82aMfu45tG/XDuXKlcs4xt2GlOOriAK6ZKcNVuV76mo9NcpOtAIzN9nxQAe61BtM+EkCJEAC+UHA5MehLJ8VVHnAFS9eXFtQRTkVKVWqFKpUqaKtMPJdLKliYU1KSsLp06fxyCOP4KabbpJdQZG1B+1ZlFPnipfstOOGxmbUKE0LjDMXbhd+Art379YKakTE5VvB8ePH9eSosWPHagATJ05E//79UbFiRf0nv+81a9agd+/e2QKKj49HYmJitnly2mmzJqPRIwtQokY7Zcn1nHvKj4sxtu8QlSGbTJ4P5x4SIAESIAEfCYhyOmvWLLRv397HktIPv/xUymNxMpw/aNAgFIuLyyjBZrPhwoULaNu2rU577733tNL64YcfYv369Rg5ciSuuuoqlClTJuMYdxspKZfG4t3t9DIt0uzAkh1m9XBTvqYe9M8UZZ35fkMaHu3o34dbdHS0l61kNhLIHwJFixaFKKkXL17UQ/ry+eabbyIqKgrVq1fXjdq3b1+mkRCxnMos/5xERk98/Q3YrSkogos5qp3FbBdQunSpnJrE/SRAAiRAAgEiIAqqPDv8JT4rqIcOHdIzf81O2t+OHTtw4MABtFPDgCLiozp69Gg96eLKK69ETEyM3p+dgipWV5m44auSar14Ac2fXKIsMO2ztcD88Mtv+L/+A/3FVQ9/CgcKCYQygRtvvBHPPPMMxo8fj8aNG2POnDmYO3cuSpYsqV8qpe2uQzYydO+a5q6P/gpRtXS3Ha8vtnkc4o9QAzcfPd8P1d/p764ZTCMBEiABEiiABHxWUOVBtnr1atx9991a8Tx16pSeuS/p5cuX10hkyFCGBQ0pXbp0jkN/FotFh7cRi44v4rCloUSUNUcLTFnLRdSVcDrZjSPmoiE5+efloihmJYGAEXjwwQdx8uRJTJ48Wf9G5Xdst9vx+++/K4tkaV2vhJk6fPhwRhskZmqlSpUyvgd6o0VlE1pVMuGvow648zLtUsOMKpwgFejTwPJJgARIIKgEfFZQJX7iyy+/jDg1xC8TLebPnw8ZEpQHmISsERHfVBn2N8Rqteo047u7Tzn2t99+c7cr12nL99rxysLsLTAfPnM9qrwavJnJue4EDyCBABAQ/3EZ0pc/Q/r27aujcZQoUUInPfbYY9rCevXVV0NipqampmaMjhjHBPKzRIwJT3S34OPVNmw85MiIwlFCedC0rW7G0LZmj9bVQLaLZZMACZAACQSOgM8K6qhRo7Q1dMWKFdpiKhMr5GEnky5EaRWpU6cOxBVARKwzrhZVvSOA/zSvbEbneDuW75WhycwVicG0lwpRI0G/KSQQ7gTEmioW0m7dumWg6NGjB7Zt24Y+KrSUjIp8+umnemJkRoYgbJSJNeHpbhG4qAL2L1QB+z9dY0c3FaB/aAcV/zQI9bMKEiABEiCB4BLwWUGVoXwJyG+IWFeeeuopyENNfE1FJG7iR2qClAT/njdvnp5wISvWBEskxuljnSNQLs6G31U8xVPJ6TWXKQJcU9eMQU0ZYipY54L1hDaBc+fO6SH/TmoSo7MMHz4c8pefImGmiiqraXyZ9AmP8p3KaX6eEdZNAiRAAoEj4LOC6to0WSZRwkk5rx51vQpHc1BNmhL/NrGmir+br7N7XevN6XucerANbW/BPW0tWLzVjvdX2dBJ+a7d2YZrJObEjvvDh4DELpaYp7LsKYUESIAESIAE8ouA3xVUYzKFBOo3RHxQH3roIf1npOXHp1hbItUsi0ol01egcR3uz482sU4SCCUC/g4TEkp9Y1tIgARIgAQKDgG/K6gytL99+/aCQ4AtJQESIAESIAESIAESCCkC7qK2hFQD2RgSIAESIAESIAESIIHwIkAFNbzON3tLAiRAAiRAAiRAAiFPgApqyJ8iNpAESIAESIAESIAEwosAFdTwOt/sLQmQAAmQAAmQAAmEPAEqqCF/ithAEiABEiABEiABEggvAlRQw+t8s7ckQAIkQAIkQAIkEPIEqKCG/CliA0mABEiABEiABEggvAhQQQ2v883ekgAJkAAJkAAJkEDIE6CCGvKniA0kARIgARIgARIggfAiQAU1vM43e0sCJEACJEACJEACIU+ACmrInyI2kARIgARIgARIgATCiwAV1PA63+wtCZAACZAACZAACYQ8ASqoIX+K2EASIAESIAESIAESCC8CVFDD63yztyRAAiRAAiRAAiQQ8gSooIb8KWIDSYAESIAESIAESCC8CFBBDa/zzd6SAAmQAAmQAAmQQMgToIIa8qeIDSQBEiABEiABEiCB8CIQEV7dZW9JgARIgATyk8CJRAdstuC1wGwCyhUzwaQ+KflD4Ny5czh9+rQ6B8E5CQ6HA1WqVEFUVFT+dJi1+oUAFVS/YGQhJEACJEACORGw2YGRM604dCGnnP7bH6uecj/dE4lIi//KZEm5IzBhwgSMHTs2dwf5mHvz5s1o0KCBj6Xw8PwkQAU1P+mzbhIgARIIMwIxkSbERjiC1usY9ZQLjt0uaF0qcBVFRkYGvc1mMz0Ygw7dzxXyDPoZKIsjARIgARIgARIgARLwjQAVVN/48WgSIIEgEVBuZbCqIeK0S/6L8l3+KCRAAiRAAoWPAIf4C985ZY9IoFARkEk1K/c4sPm4HcfOA6dkko1SVH/bZ8e5FKBxRRM61TCjaHSh6jY7QwIkQAJhTYAKaliffnY+HAnIjNqIiAgULVo0192X2bHJycmIjY3N9bG5PSA1DViw3Y7Ja2xItmY9+qSaaLN4px2/7gQ+Xm3D410saFvdzMkwWVExhQRIgAQKHAEO8Re4U8YGk4BvBDp16oShQ4dmW4gooampqVnyPPjggxg2bFiWdH8nnFZW0pcXWbXi6U45da5PRvklz5tLbfjvMiuSszbbOTu3SYAESIAECgABKqgF4CSxiSTgTwJiBZU/d7JixQq0bt0axYsX139dunTB/v37M7Jed911+Oabb3Do0KGMNH9vJKph+zd/teGvQ2oo330zte+pGuXPJOKbumy3A+8tt0LKoJAACRRcAqVKlUKFChVQvnz5bOOZymz9atWqFdyOsuUeCVBB9YiGO0ggvAhs27YNPXv2REJCAiRu4WuvvYY1a9agR48esNvT1cHevXtr1wDZHyj5YIUVG4950ExVpTVKmfBsNwuuqeX+9rVopwM//hvESPCBAsFySSDMCIiy+dBDD+GXX37BkiVLsHTpUv0n2++//77buKaSPnfuXNSsWTPMaBX+7rq/wxf+frOHJEACLgQmTZqExMREzJw5Ew888AAef/xxPPvss9i5cyeWLVumc0dHR2PQoEGYOHGizutShM9f/1QTn5bv9aycippcQrm/XlnTjPgy7quLUHe1+Vvs2HPacznujwyvVLEybzgkvO3680IIukZYL5zEiX/nw2677IRsUuf35OZfkHL2SHidsELcW7GSyr3m8OHDeH/C+7iyQwdtNRV/eXE3qlGjhlZc161bp+9Pbdu21X7w8hItLkeSJyWFwyaF7RKhglrYzij7QwJ5JLBgwQLUq1cPDRs2zCihV69eenvlypUZaUOGDMGZM2cwefLkjDR/bcgQfZrr2L1T4cYNK6fA68eT1HD/rmwKcioz3DZFbf9bKaZj5lrxwgIbXllo05/PzLJixe7QYpZwZDM2Tx8Fe0pCxmmyqKm926aPwPn9axiBP4NKwd2Ij4/XbkOvv/66nrw5dtxYdLrqKj2a06dPH8ioTbdu3XDjjTdi9apVuOmmmzBnzhz9J0rtnj17cOeddwbU7ajg0i3YLTfu9z71IikpCS+//DJq166tfUGuueYavPvuu6hfvz42btzoU9k8mARIIDgEjh49mmWYTB4eIqdOndKf8k/nzp3173z8+PEZQ/8ZO33YkBinaw/4R0GyKA124Ta7Rx9WH5pZ4A/deNiOsfNt2H4q/WVAWMlLwZ4zDvz3NxvWH/TPOfAHKJMyl0aIRipruKv/DTGbI4O2rrtRJz/9T0BeiH/99VeIr/uUKVP0y7FYRTds2IADBw7g5MmTOHbsGMT9aNasWeiu3I3uv/9+lC1bFl27dsW+ffu08rp161b/N44l5jsBnxXUtLQ0bXr/4osv8Oabb2rfkebNm+O5557Ts4C5Fm6+n2M2gAS8InD69GkUKVIkU96YmBj9/cKFy4unm5SyMHjwYOzYsQOzZ8/OlN+XL3tOOpDgMswsc7lc/+A0cu+6z1m1OnMROHreKbMvjSskx15UrrkzN3pW3JNUaK+Jq+ywBgib2UnJ9BapNS0FiUe34cKhLbhweAvOH9qtXoxUQ3Mh4hZAyT8Ccs9wlWLFiuHVV19FfHw8XnrpJa1HHD9+3DVbpu/iYiTD/SISZUTKKFPGva+PuzozFcYvIU/A5zioMvQ3ffp0bW6/9tprdYdFOZW0qlWrQtbgFT8ScXY+ePAgZBZwrVq1Qh4MG0gC4UYgLi5OT5By7re8gIrIrH5nGThwIN544w189dVX6Nu3r/OujO2vv/46V35hu1FfHdsy4/iiavnu1lVNzoYzrZvGq0lS8rirVsKEbjUzP/hOJQMbjzi0wU0KmjJzGaqY9qrjMufLqCTMNhJNJbDBfr3HXosesf+cA+9PX4hS1sPO7wIej8nNDjkPCdYb1CHFvD4s5dxRbJ32GEwWS/oxSttMTjjt9fFW5b86ZcrXMMP59cXrw5nRDwTWrl2bpRTRBQYMGKB1A7mXiB9pdiK6hOgWY8aM0RZVcTESa6t8igVW9Axn+eGHH1C5cmWPEUuc83LbfwTEJaNcuXJ+KdBnBVUspxJXUYb9DJE3lxIlSqBVq1Y66S/l2CyTKvbu3avfdvJbQTXerPhSbZwxfpIA9G/zyJHME09kCE1Ewr04izGklt1v+dFHH9WuAcbvzfl4d9u1r30MtQa0ULvSlcnSxUx4vGsE3FndLOrH20YF5W9VzelXrA5br3wr1x+2ISK9CHz40fs48Md3kNnB4S4SWqzMFU3Q/kXPCqowMjns+M+bb+PYxl9g8jM3s9mCTq/8gyJlvVdQY0pXQ4vHfoSlSAnVOgfMUUWw6vmmXp/OFLXiw7CHH4QtNZluAV5T829G17B28sL7zjvvaF928R/NSTmVkZ3nn38eTz71FNavX68VWzF4yf1Hhvx7dO+BH2b+kKnRosx6e+/JdCC/5JmA3GdlQm3IKKhiGX344YczxSmzWq16Nl779u11R7t17w75Gz58uNcXjJjvP/vsM0hZ/pYz5sqwR12PDX9vxIR1q/xdvC5PVum55557AlI2CyWBQBCQmbFiERXfLyOuoPh9iUioKWf58ssv9eiI/PY9ydNPP+21BVVGlM/GtcQWJ0vn+SQHvvzLpixfmaVSnAnd65qx9bgD61x8Vo8kOCA+lYbcevNAFL++idK6XEsxcoTXZ2pkKWxVKC47bGTtv0MZGB64ezAsFzp5fb/OWor7FLs60RtUfEvlfeG1iJIsSqklKn31sogoeYXx/nzKqmnjxjynXnTEgup0cXjdAmb0hYAop8uXL9fuf0Y5YrySe4w84+V+k53I+ROrqUyI+vfff3HXXXfpiVFyzNSpU3HHHXdgQP/++PGnHzP5xMsLsr8UJalL+kGFV0hkL8azI/tc3u312YIqMRNdT9pPP/2kze3NmjXLaIXEUTRiKWYkZrNx8eJFfUGeP68W3/ajyEVWrl4ntBjZU8dZ++Dbp/1YenpRUoecJCqofkfLAgNIQG78oqDKsJsR8kWG3uRFs2XLy0PvMmlh4cKF2g+1UqVKHlv0lLJ25EYOqEk6D/5g1T6nctw5FTXmm7+zDss2r6KG9rWCasfXbvbLMLUW9fnk0JtRXim0lHQCspjB/9REqCUeIhyoWxcalTPjhfvvCogqZ1Onc9i3VsiLRLAkWg8Nj1GTrYJVI+txJWDMTzHSW7SQkRLg999/N5Lcfsqw/osvvojRo0frYX15UZb7jyEyeUr8VmvWrqVHbSW6iCFiEJNJWJSCS8BnBVVm7svKMrfffrt+WxHzrviFiO+HODDnVWRyhjhOGz5wnspxVY7d5ROF0RB5VJ2JqIoNamboVVd1xj1t3syiYBt5jc+8vDn50nejXn6SQDAJSJB+CXotQ2mipEZFRekZsuJP7iwzZsyAzWbDqFGjnJN93q6kfErLqDlaJ1WIKF9F1NqqSjEtR+U0E8pIpaT1a2LGP2om/0k3Ln8V4oAHOloCopxmakguvshM/iyi0/jikYVLAUiQYWAZmk9SMZd3797tscViOZXoQPKy/Ndff+lQUs7KqRwoEztlAqfMdzEmdHoskDsKHAGfFdSxY8filltuQePGjVGyZEnt6yX+ahI01xclTR6OI0aMCAjQv9XNeaMKs9JSDTMM69A2IHWwUBIoiATE6iB/MuwmwbNl1qyrTJs2DV27doVhBXHdn9fvEmC/3RVmzFFB9n0Vk3on7d2AA7ruONYua8I7N0Xg3WU2bFGRE5JU5IRIxb6uSn/gSgtkf6hIydod0fGF9Zl8Ya2qve1f+CvdsHDZ9hAqTWY7ciAgBp958+bpuKXZKaiyIMjIkSN1tJCbb74Zu3btylKyGLDkpVqUUxl1pRQuAj4rqDJzX4LmysUTGxurfdX6K3+QOnXqoJiaFWyIXV2UcmE6WzONffwkARIILQKe/Ii2b9+ulz/9+eefA9Lg7rXNWKDil0pMVF+kcnETOsVzTNcTw3JFTXjhughsOmLXQfrbqGgJo6+JyOS/6+nY4KariA1uZsn5e/JWcPsU3rWJDiDh6XIKUffdd9/psHfiv+pOOTUoioJKKZwEfFZQxUdEQjzIn4gE1pWg3qK4RlwKCyKB/CWotwTtF3O85Lnttts8xi8rnKjZKxIIDQIydGYxQvbkskkyOUpePmWFl0BIgwom3NbMjOkb3Mfq1HqrsppZlS+les65FUkf1NRM31O3dC4nisVa/HNF/4tSTwLnyWWXc3GLBPKHgFhHP//8cxq18gd/SNTqs4Lq2gsJJSWmdhnyN0Qeho0aNULjJmo2rZIopdTGuBk6NPLzkwRIIHAEZD1rb3y33bWgdevWkL+8Hu+uTNe0QS0s2HfWgaV7VEghl53yfccJB56dbcWZZPca6uDmZlxdz/VIl4L4lQRIIOQJcMQ15E9RQBvodwVVwkLJrF8jBqq0XvzYPAXzDmjvWDgJkEAWAnm1nkpBN9xwQ5by/J0glr0RnSNQsogN87bakaqspRkz81VliWrtAFmm01nEalpcLXp1QwMzblEKrpRBIQESIAESKLgE/K6ginJqxD8tuFjYchIggfwkUEStIjW0gwWtVEipqevt2HVJIXUd1pfpPDKhu7Ga2HN7GwsaVwqdCT75yY91kwAJkEBBJ+B3BbWgA2H7SYAEQoOA+ES2UbP6W6sVo9aryBt/7XfggFqG84KaxS0G0mLKYhpf0oS2Ko/4rlJIgARIgAQKDwEqqIXnXLInJFAoCcjwfssqZvUHSKD5i2pxOVFQo5WVlUP5hfKUs1MkQAIkACqovAhIgAQKDAEJNC9/FBIgARIggcJNgApq4T6/7B0JkAAJhBSB9HjYwWuSq99y8GpmTQaB/JiNnx91Gv3lp38IUEH1D0eWQgIkQAIkkBMB5a5xbX0zzqfklNF/+2WVLHerpfqvBpaUE4F27drh0Ucf9Tr+siiXy9ZsRGxMNKqUL4ute/ajXnw1VK1ULqeq9P7U1FSULl3aq7zMFLoEqKCG7rlhy0iABEigUBGQiW+3NqePRqE6qV50RpZGlj9vxWp34KnX3kf5sqXRsXUTfD1rMW7u3Q1d2zXzqghRcAMZq9mrRjCTzwRkrgGFBEiABEiABEiABEKCgEyMlFXjZIl0tWac+k9/yL9eCZVTrzCFfCYqqCF/ithAEiABEiABEiABEggvAlRQw+t8s7ckQAIkQAIkQAIkEPIEqKCG/CliA0mABEiABEiABEggvAhQQQ2v883ekgAJkAAJkAAJkEDIE6CCGvKniA0kARIgARIgARIggfAiQAU1vM43e0sCJEACJEACJEACIU+ACmrInyI2kARIgARIgARIgATCiwAV1PA63+wtCZAACZAACZAACYQ8ASqoIX+K2EASIAESIAESIAESCC8CVFDD63yztyRAAiRAAiRAAiQQ8gQiQr6FbCAJkEChJCDLF6alqX+C9JqsVk9EJJeBL5TXkr87JWu5p6Sk+LvYbMuLiIxEhIUXaLaQuDOsCFBBDavTzc6SQOgQOJvsQP8pVsQG6S5UIgaYPiQydACwJSFL4NixY6hUqVJQ2zdt2jQMGTIkqHWyMhIIZQJBejSEMgK2jQRIID8IKCMVjL+g1C8mWwoJeEnAZDKp6zN4F43dbveyZcxGAuFBIEiDa+EBk70kARIgARIgARIgARLwnQAVVN8ZsgQSIAESKHAExDh45LwDNvWZbE23Zhe4TrDBJEAChZYAh/gL7allx0iABEggM4Ezyu9301EHFm+3Y/txBxKVYmpVI8trDzhw69Q01C9vQo86ZjSuZELpWJlWRiEBEiCB/CFABTV/uLNWEsg3AufOnUNERASKFi2a6zaIT15ycjJiY2NzfSwPyF8Cm444MGG5DQcuWU2dh8/EipqQCvxx0IE1B2yoWNyEB9ub0fYK51z5237WTgIkEF4EePcJr/PN3pIAOnXqhKFDh2ZLQpTQ1FSlsbjIgw8+iGHDhrmk8msoExDl8/uNNoybb8X+cw49Mc3TjV+nK8Pp0QQH3lhiw9S1NqRx7k4on162jQQKLQFP96lC22F2jATCnYBYQT3NTl6xYgVat26N4sWL678uXbpg//79Gciuu+46fPPNNzh06FBGGjdCl4D4mc75144v1tqRYsvaTiM2rNnNk0D8Ur/aYMf3G9wcmLWosE4xRiTKli2L8uXL699OpIpr6k4kOsBVV13FUQh3cJhGAk4E3NyWnPZykwRIIGwIbNu2DT179kRCQgImTJiA1157DWvWrEGPHj1ghMDp3bu3dg2Q/cEWs4phLn+uYnGvB7hmC8vvB886MHWdTfuZugNQIc6EqbdF4rGOFngylH7/jx1/H/a0112p4ZNWrVo13HPPPfqlbefOnThx4gQkhuph9QI3b948PP3002jUqFEmIIMGDcLSpUsxevRoiLJKIQEScE+APqjuuTCVBMKOwKRJk5CYmIiZM2eiYcOGuv8XLlzACy+8gGXLlqFbt26Ijo6GPGAnTpyIsWPH5smPNa9gDyydhItnDqFOvxdgv2TUs9us2PDBzWj2wNcwWaLyWrRfj9MTkZS/557TDsQq5blNdRMqlzAjMsjmgDTF6IMVNiTKal0eRPSjGNXGKDeKv3FIgjp+hrKkNq5khoX6lMZSokQJ3H777XjiiSdQo0YNnD17Vv/NnTtXrY6Whtq1a6Np06b6NyN5pk6dinfeeUe/7H3wwQc4c+YMfv/9d48jGQZ7fpJAOBMI8i0znFGz7yQQ2gQWLFiAevXqZSin0tpevXrpRq9cuTKj8bLajTxgJ0+enJEWjA1RTpNP7lFWp8u1ORw2JBzcBLuMZeezSAvWH7Tjmdk2vLjQhml/2fHxH3Y8+J0Nn66y4WI2imIgmr5NzdLfdtJ3LvKQ2HDYgX2nfC8rEP0MdpllypTBh+9/oEcZihUrpkcaxK9bFNXrr78eN910Exo3boxWrVph1KhROHLkiFZk//jjD8hLoPh3S55ffvkl2E1nfSRQoAj4RUGV4b/Fixfjtttu00OEzz//vLa4DBw4EFu2bClQQNhYEghXAkePHkXNmjUzdT8+Pl5/P3XqVEZ6586dIUOb48ePzxj6z9gZ8A1Z3SfgleSpAgnb9NIiGw6qiUjRyiIZoe6u8icK9aytdny40qZjjuap8Dwc9M8RO5L9qBTPVr6s4S5iOf3oo49w25DBWsEUX1IZSfj333+zoDlw4ADeffdd/ZInyqj8ZkTGjBmD5cuXZ8nPBBIggcwEfFZQZbKFDF/ccsstemijZcuWmD9/vvbLWbt2LSpWrJi5Rn4jARIISQKnT59GkSJFMrUtJkYtYK9EhvoNEb+5wYMHY8eOHZg9e7aRHPBPk5rJk7DvL2z99jls/+4Z/bfjh7Gq3tDQWH/eZEOKB4VQlOo1++04qkI8BUvExcCfsvmECuof5jrqvffei5v69cPChQtx5513Qvy2PU04NNjLC12bNm1w8eJFmNU1LKMSUVGh4Y5itJGfJBCKBHz2Qd28ebMexnjuuecwUg1nRFgs2L17tx7ekCGPUqVK6R+mTLywWq36AViyZMlQZME2kUBYE4iLi9MTpJwhiD+diMzqdxYZHXnjjTfw1VdfoW/fvs67MrbF6prdw/vcRTNMiMvIn9OGlBVVshLKNe4Jhy29XQ57Gk5s+CmnQ/V+u92BkydPepU3t5nOqr5sO1ZUWUs9v/OfuQj8vS8B0ZWzhu/KbX055Ref0oNnisFhsijG6RKp0mJcfE1jL+lJFtXs4mrbyGuUf1H5sYovq0ii+rLv6HmVr/BrqeLC4ioymiB+pDLSIAYZd3lcjxkwYAC+/vpryG9Bhv/Fn7t///4QpXXRokWZsov/d06/mUwHFOIv8luXP5tN+VBfSNQ9TUxKDNjvtxCjDHrXZJTBUwSL3DbGZwVVQs5IaI2HVHxEUU5FSpcujUqVKqFZs2b6uyiv27dv1xMsRFF96KGH0E+9hVJIgARCh4D41om/nLPs27dPf61QoYJzMrZu3aq/16pVK1O685cmTZpArLKeJLZkeXR+axdSUzzlcElXD6zoEhVRtmEXqLlRWhw275W9k6dPoXr1GsotwaVcp69i4RIRtyXZNj6d05y3jf1FlOLc9JHZKFK+tux2K6K7jnhkOA6snakqsOnyJaNRhnyKeKrX3X4jTR/o9I9NQe0wbjWKVW+pDcwKHa6uZcb97ZXC6qSkSm9Fme0Ub0Ybl6D8yr1Xhaey4Sc1tC9uCoeOHEbr5l2QdP64U02ZN3PTdjnSU98zl+r+m7tzJTm9bYP7Ui+nur5cyXNLRg9eeeUVr5RTsbBKtAtRaGWm/6+//gpZJGO18kV988030aFDB6SkXL74H3vsMYwcOfJyA8J4K0KF6Lpl+Ggc3r8H33zxEa7s2Q/PjX4W2/7+M4yphH7XLUoHFHfP9u3b+6WxPiuo33//PW699VZEOw0NylvP+fPn0bZtW93IZ555RseGky8yG/jJJ59E9+7dIZp2diJDIoGQ9HuCRT3krMq662FMzseK5UYmM54pJFBQCMjvVSyi4jtn+MvNmjVLN19CTTnLl19+qd+SH374YefkTNvNmzfXUQEyJTp/iS4O6yXrnHNybrZzMzkqMsKC1q3aQFwF/C2WiCgUVZZFq9IEPYUOMiuNL75icVRu00pV72qr9HOL7FYUjVZ1XBrld6jNMykO7DiZWTuPUdPy66jlTc+rffvOZHUJOK2WRjWkiDLBNmvaAPa0GkZSof2UZ8+ff15WhsRVTX4De/fuzWL5dIUg518spxLpQhRQcYdZsmSJziYuAT//9BNuuOEGPZFq3bp1GYfLy57EUKUIATW6omLKxarV7mrE11K/FjPi4+NRMkZdyJSQJuDPVQZ9VlCPHz+u/UzN6kdpyKZNm3Qgb0NBdba+yKxH1zdT4zjnT7G0SqgOGfbwq6gHSIlaHdD04Z/w0YcT8VSv5/1avBQm/atSpYq2Gvu9cBZIAgEicNddd2kFVR6uzz77LA4fPqyH8eVtWHzLDZE4j+KDJw9eGSnxJBJyJzs5neRA/ylWxPp8F8qulsv7SpUshXkqtE+g5KdNdrynwjqJRdKdVC0Vgf9O/QCxQXpv/VC15cfNdh0aSlTy1fsc6i/zG0EltaTphwMisP6QA/9Zqqy6bhpu3Nqb1a6M1xYtcJOj8CWJ1bNy5coZz6py5crhiiuugLi0SbzT7ESiXIhyKtZScQUQo4wh4sst4aVkFr+EcnNWUGWk8Y477jCyhvWnTT1DH3/1fdSoXhVX3T4IX836FaMefwJd26WPyoY1nDDqvM+PBvEnXbVqlR7CkAkW4pcjsxRluFB+1M4ib5PityZvojlZT8VULCFvnIdAnMvK87a68CMr1VSGBTNKlymHGJcgynku1+lAUVDF7YFCAgWJgATpf//99yFROERJlYkcEvt0+vTpmboxY8YM7RsmIXSCKbEV6iCiSAmlNFyu1WSyoFTdLspq6UErvJw14FvX1DVjxzE7luxNX07UqFDaWy4WeEitbR8s5VTqrqssoxHKE8OZl9GmvHxeWdOd+pqXkgreMfKck3u6RKXxZGARy6nERpXfkISSkiF+Z+XU6PWuXbv0pmvEDGM/Pz0QcPrde8jB5EJGwGcFVdb0ltUyZN1usZTKyjMStFi2iyrzvCHia/TUU09BfugvqAdgTiJm4t9++y2nbHnaL6uijJtvQ39lARr2Ht9Y8wSRBxVKAsOHD4f8yTC/DDe6c1OZNm0aunbtihYtWgSVQeX2g3V9RpB++WK2RKDJvZ/AkXnkOqjtMiqTCUcjukbgSjVb/0sVA3WPGjKXcaUBTcy4vqEZFZW1MpjSvIoJZVQQhpPJvtdaSgV3uLpO+CqoGzdu1BZP52gWrlRluVPD5UVWXHN2EXDOKyGmJE6qN5OsnI/jNgmEGwGfFdQHHnhAvy2uXr1aW1zefvttPVNRwtPIcL6IKKfiWC5DI1988QWKXkoPN9jsLwkUFAKGD6pre2Wyo7yE/vzzz667Av7dkyUwFJRTo/MyU75DvJpwVN2MB75NxYUUE+5uZ8mXFZjKxJpwk1KOJ/2Zvfaek9osQ/zX1zPrFaeMfobbpwzXy192IhEvZDKUjB56Uk7leFFMqZxmR5L7SCCdgM8KqoSfkSFBQ2RoQ9YjluFCw/ry6quv6tioH374oQ5jI3kqKx9NY9a/cSw/SYAEAk9ALD3iQpMXkclRderUQZ8+ffJyeFgcIwqdKKqG72Z+Lg/at7FFrwK19qD78VGrSj6mYrOey2Y+aoOyStFtlrfrJSxOuFMnuTCNEwxukoCPBHxWUF3rlxioSUlJaOTk2ykO5zIL8q233tL+O7It8eBy8kN1LZvfSYAEfCcgEzM8zTTPqfTWrVtD/vJ6fE7lc79/CchKVsOvtODNJTZsOubQK1s513AiwYF7v7VqVwSJheosYrGuXtKEx7uq2dSRznu4TQIkQAKBJ+B3BfXQoUM6Dp0RA1W6IE7jFBIggdAgkFfrqbRewuNQChYB8X19upsFn/1pw5oDDlxUMWQN6670RJRYZxGHgCiV1qqqCUOVe0LlEjk5ATgfzW0SIAES8A8Bvyuo1157rV7+zT/NYykkQAIkQAK+EhAl9bmrI7Bwqx2/bLdj41EVaUAVKoqq6KeilIrFVNwRGqrZ/xKR4Nr65nzxnfW1rzyeBEigcBDwu4JaOLCwFyRAAiRQ+Ahco5TOTmpFqWNqaH+zUlK3nXAgJc2hJkCZUKuMCQ0qmlBFKbNFZEifhtPCdwGwRyRQgAhQQS1AJ4tNJQESIAFfCYjyGV/apP96+1oYjycBEiCBABFw8T4KUC0slgRIgARIgARIgARIgAS8JEAF1UtQzEYCJEACJEACJEACJBAcAhziDw5n1kICJOBCIMJswhWlTIgJUojNYtGqAXpmkEtD+JUEXAhIpIv69eu7pGb/9cTps7CpRWlKFY/D6XPnUSQ6Wm0X05dc9kemL2ZTslSpnLJxPwmEFQEqqGF1utlZEggdAsXVMpyf3RzkWxAn/oTOBRDCLSlbtiw2/vNPrlo47v99hvMXLuCRO/rjf5O/Q8tGdfDArTfAast+JS+jErNz7C8jkZ8kEMYEgvx0CGPS7DoJkEAWAvm5ylKWxjCBBC4RkIUocrvSodlshkn9RVz6NJtlaCD35fAkkAAJpBOgDyqvBBIgARIgARIgARIggZAiQAU1pE4HG0MCJEACJEACJEACJEAFldcACZAACZAACZAACZBASBGgghpSp4ONIQESIAESIAESIAESoILKa4AESIAESIAESIAESCCkCFBBDanTwcaQAAmQAAmQAAmQAAlQQeU1QAIkQAIkQAIkQAIkEFIEqKCG1OlgY0iABEiABEiABEiABKig8hogARIgARIgARIgARIIKQJUUEPqdLAxJEACJEACJEACJEACXOqU1wAJkAAJkEBQCDgcwJ5TDqR5tzy9X9pkUqXUKWcCl7r3C85CXchff/2FlJSUoPUxLi4OjRs3Dlp9Ba0iKqgF7YyxvSRAAiRQQAnYlYL66mIbjiSojSBJjHrKfXNHJCIsQaqQ1RRYAv369cP+/fuD1v42bdrgzz//DFp9Ba0iDvEXtDPG9pIACZAACZAACfidgIlmdr8z9aVAKqi+0OOxJEACJEACJEACJEACfifAIX6/I2WBJEAC4UrgYhpw4IwDJxIdSE41wapGsv8+bEfFOBMqqD8KCZAACZCAdwSooHrHiblIgARIwCOBBDWvYuE2GxZtd+BMsgOJqdDKqRzw8i82FI8G6pcDBjSPQHxpEyI4duWRJXeQAAmQgBCggsrrgATCjMC5c+cQERGBokWL5rrnDjUNOzk5GbGxsbk+tjAeIFN9/thrx2d/2rH3rMOt4plsBeTvSCLw6x4r+jcy4/ZWFhRVSiuFBEiABEjAPQG+x7vnwlQSKLQEOnXqhKFDh2bbP1FCU1OVGdBFHnzwQQwbNswlNUy/Ku105j82vLnUhv3n3SunzmTkZmtRo/w/bbbj+QVWHA/iTHbndnCbBEiABAoCASqoBeEssY0k4EcCYgWVP3eyYsUKtG7dGsWLF9d/Xbp0yRR25brrrsM333yDQ4cOuTs8rNIWblOW0zV2XFTWUXc30lQbkKL+3MnmYw68s8yGhIvu9jKNBEigIBCoVq0a5IX/2muvRefOnSHfPYnkk7BSFO8JuLuven80c5IACRQaAtu2bUPPnj2RkJCACRMm4LXXXsOaNWvQo0cP2O3pkdV79+6tXQNkfzjLQTWcP2WdTXHxTOH/elowvq97LyqJZrPhiAM//etBg/VcrN/3WFUf3L+u+L2qPBVocvOU0mmcc5YnnjzINwKVK1eGjCRt3rwZ//zzDxYuXIhZs2ZhwYIF2LhxI3bu3ImHH34YVatWzaioRYsWmD59OqZNm5atEptxADc0Afd3T8IhARIIOwKTJk1CYmIiZs6ciYYNG+r+X7hwAS+88AKWLVuGbt26ITo6GoMGDcLEiRMxduzYPPmxFgawP/5rx/Gk9CF7T/2JL2VC0RhPe9OPnaWG+7vXMaFycTdamOdDfd4jSunmo3as3u/AOWXFLa7a2baqCY0qmREVQgHtk0/txbG136F690dgjkyHaVbt2z3v/6Fc014oWrG+zyxYAAl4Q0BipN5666148cUXUbduXZw5cwYy4rR9+3b9Ui8+/fXq1cOVV16pX/Aff/xxjBs3DsePH8fUqVNRokQJjB49GgcOHPCmOuZRBPymoIqFJTkpCXY1dBgZqVbtUH8pyo8tukgRtYJHCN3xeNpJgATcEhALgNxgDeVUMvXq1UsrqCtXrtQKqqQNGTIEn3zyCSZPnqwtBZIWTnI2yYElO+zanzS7fmdjXM047IJy852/1YF722YkBXxDlNNPVlsxc1Nmv9nvN6rzXdeBR66yIDJEbtkpZw7iwIovULXz/ZkU1CPLP0exSrVRtJJSUEPZ/Bvws8kKgkGgiNJjXn75ZTz55JNIUnrO22+/rUeYREl1FZlAKorpY489hi+//FK7U1mtVjzyyCP4+OOPXbPzezYE/PLaLrOCxZrSQFldateurYcJ337rLf39302bsqmeu0iABEKFwNGjR1GzZs1MzYmPj9ffT506lZFu+FqNHz8+Y+g/Y2cYbKzY57+15G1Kudpy1IGkrPPRAkJSdLmfN9kwe3Nm5VQqk9BXi3bZ8d2G/Hc7yNJ5J59pk+oEddIshJgQIAIS8USUzZGjRmHt2rXa3/Tpp5/WFlR3VYoCK5bSZ555BlabDWJ5FVcAsaJSckfAZwU1LS0NgwcPxowZM/DTTz/h0OHDED81OUFyYps1a5a7FjE3CZBAvhA4ffo0xFLgLDEx6cOqMtRviNxw5Te/Y8cOzJ4920gOm8+dJx0QK6Q/RG7AR9Vs/kSJ6B8EOa9itC7eoSbJeahL9MBvNtpxXsV1DRWxpSTizI7lOLVlsf47vnk57Gkh1MBQAVXY25FPPsetWrXC66+/jtMnT+khfhnW9zTJ1DgFcowY7exKQT1x4gSaKj2offv2xm5+eknA5yH+pUuXYtGiRfjll18gjsAi9913H95//33UqFFDf9+6dSvmzJkDsbSK43D//v1RtmxZvY//kAAJhAaBuLg47Uvl3Bp5ARWRWf3OMnDgQLzxxhv46quv0LdvX+ddGdt33HGHjpmakVAINhwwIa3FSKCC05i8enCO6mhBbBRg6K2ieJYqYtJD5aO7Zx4vtyslcMpaO45cCjN1OsmmJl2MginpaMAJOeKqIqXzW9nWk6q073tHvgScUGP+qr/+FFGMU64aDxQt73Wx9pQUnNu3DpaIaK1Ymy2RyjLlvck55WIKbrlliOqJcXa8rjpXGUvWagFzRBTGKZ/tklc0Uv6Jy7FgxmcKoX8Z5qpRBTazCaXrtcHu3aewZe0KFKtcS7kVfYwJbx0LWI/kxfvkyZOZypfh+rfUaHCS8s0fOGggdu3alWm/uy9ilPvhhx/0PVPC+cmkU7lPPvvss9iwYUMmy+vevXsh99LCJK+88goaNGjgly75rKB+/vnn2jfN+e1ALKfFihVDy5YtdSO3bNkC8cFo3rw5vv/+e21plRMoEy4oJEACoUGgTJkyOHLkSKbG7Nu3T3+vUKFCpnR56RSpVatWpnTnL/LS6s5HyzlPQds2mc1oVulWlM2MA62qmxAXnVkRiRQtVSW1vyLzQJVdjaD/oKyUhjiUxrpkyRJcOLbDSArYZ8mqDdG2c/bFiwK9auUKHN/8q9KtMrc9+yNz3iv8rmz9OorkYo2IyLjSuKL7Y4goWlJXEKHAHl4xJefKLuWwOuyYO38ebKmBtboOGFYXsXEWrF61Cj2vaIjDBw9i0cwf1EhipNdtZcZ0AmalQwxRCv/Zs2exZcNf6FSpJv7ZuAFbN6wJKCLjhdyoRO5vonD+9vvv+OOPP4xkj58SSuq7775DMTVhSiyoMnNf5uesVFZXCUUl/v1igTVEFOKff/7Z+FrgP0X3e+KJJ/zWD58V1FXqxyj+GTIxyhA5yfJmYCit/fr1M3bpSReiuB47dgzVq1fPSHfdSFFvzeKULIqtf0UNp8XEw1b1Xiz/fQV2/TjPv8Wr0sT8LxYnuUApJFBQCLRt21a/6cssUyOen4RPEZFQU84izv/ym5dwKp5EbuhGeCpPeQpauqiVX28ti5WHnVquFLrHf7bC7GIpe72XBcWU0vroTGWFdtl3KlFsiekSF2vBwgXzUCrG3/c6o4bLnwmpkXj/bxMOZrNIgNlixoLvP0es2f8KnVVpv6+sroJTuYn/qpR8k2qToSyLzpz5VeBy/9xtiZvKhg0bEWm+zNxdPl/TJn77Cy5cvIgvvvgCX81fjt7X98En77wCW3axyHyttJAeb7PZMeGruahaqRIG978Bi1b/jedfeBktG9QIWI8tajJ3x44dM2I8i7J19dVXa2PblClT3C5c4twYsRpKjOjy5cvj3nvvxWQ1idSQMUoXkImmAwYMyKSgNm3aVEdNycllwCinIHxKGC5/ic8KqjgEuyqR3377rR7aa9KkSUY7DyvfVAnH8OOPP+qAtpXUhZediIIqbgLiFuBvKVv/KrQecRfWrVuLzd+86e/idXnygKeCGhC0LDRABO666y6toMpNVIaj5Dcrw/jyommMhkjV8nIpsf/EDzW733F8fHyAWpq/xTZNsuOPIzbIBCdDjmsXXacEtUP229Wg9FE3+4zjROGtEmdGvdrVUUy5CARaxMe06wUbpq1XG260PNnfr7EZjWtXCUhTlN6BqHVKEb+oKgqSWNTLQa0aNVQ0mcBWKJFrTOq5VVmebarOomoU8YpC+hsILEn57ajrQ1nbo6KjUK6cuAOalFtguSyTOP3dDlFKDYmKisI111yj9Rtnq6ex3/lTLKcyD6e4cpMaMWKEtpw67//3339x5tQZXHXVVc7JkDpqqGuT4p7A5bPhfn+OqWICl2F+CVwrPmxirhbLp/iayjC/Ibt379Z+GcuXqzdLNYlK3layE5msIW8t/rfAOHA4rQzmnotEnxtuwKu31c6uGXneZ0wuyXMBPJAEgkxAgvTLS+Hzzz+v3/Tl5imxT2WYylnkRmxTzv+j1KzWcJTW1UyYug5ITHfP9QmB3AXrlVfKzOUBKJ/Ky+lgMeT2bWrB7jMOrD7gUPfXy0cofQBtVN8Gt8j+3nz5iCBsmVXIqyLK/9lJmZZZ/GaVZjYHCVoQuskqvCAgSmsQxWyO0FGJJI5pdrFLZXUouUeKi5SEoXK3iIkY8rZu34qSJUvqiaiylDQlZwI+K6gvvfQS7r77btSvX1+96ZRDlSpV9EmVdbwlcK0hYjpv36EDki4kolv3bjqWYnaOtDJ86GnyhVFmXj//PmzH/Pk25T9XGzd1qJfXYngcCRQ6AsOHD4f8yQ1Zhqrc+YnLaihdu3bNmBRZ6CDk0KHKJUxakVuyS02ZclKccjjM7e5YpWP1rC/D1253ByRRLLVjro7A8t12LN5pxxqlqFYqLoqpGZ3ildUqhPS+UrU6oOO4FbA5eT/IvL0rx6mZ/Eq5Vu6lFBIICIHExATI0s7OVlV3FTVu3FgrnuJ7KS/47kRe6G+//XZtcJPRYYp3BHxWUMU3Tayme/bsgcx4E1P39ddfjzp16miLqjRDfFLFYio+WhblSyT+Fv63jHrXYeYiARLImYDhg+qaU9x0ZPnTwuTY79pHb773b2LBuoNWJGQzmVzsPdn5lolB6Oq6ZsSXDqJ2eqlzohBfVUvVXcaE9YesqKtGUbvXUSbUEBNh5KycGs1zl2bs4ycJ+IOA/HZl5Dcn+frrr3V8VBnG9yTeluXp+HBN91lBNatxIYn5JX8i4p8mQb3lzUP2iYjDsEwakpnAixcv1paXesriSiEBEgg+AbEI5ORi46lVMjlKXj779OnjKUtYpNcuZ8KAZmZ8sUa8TN3LjPX2bJcNraWUw5ub569SqOwFynDgvv1MJQESyJmADNdLIH6K/wn4rKC6Nklm719UMxnF7G2I+KTKm4hYUmXpxKZNmnL5UwMOP0kgyATWrVunhpTzppW0bt0a8pfX44Pc1YBWd7Py5ZQVoL5XIaOcJ0wZlS5Sw+fuRFKrqyH1Z7pbdKxUd3mYRgIkQALhTsDvCqoAlWF+w6Iq32WWGmeqCQkKCeQ/gbxaT6XlN6iJhZRLBJSOP6SlBeWLmjBDLQ96Isk7Mt1qmHBXGwsqKiWVQgIkQAIk4J6A3xXUdu3aQf4oJEACJFDYCUSqCe+9G5pxVU0zJq+x4fc9dqSoCT0pykwqs81FxNMpWuWrHGfCfe3MaFE1f4f101vFf0mABEggtAn4XUEN7e6ydSRAAiTgfwJxMcCjV1kwuJUZB1UIp5PKmnpBTdaV1aRKxwLllbW0upr9H+hYnP7vGUskARIggfwhQAU1f7izVhIggUJIoEysCfJHIQESIAES8I0Ax5p848ejSYAESIAESIAESIAE/EyAFlQ/A2VxJEACJEACnglITEiJbxosCWZdweoT6wkMgWDHZ88uTnJgeliwSqWCWrDOF1tLAiRAAgWWgMRdfem6CNjcR+AKTL+Ux0UOK2sHpl6WWuAIzJ8/H96u9CSh9n79YwNWrv8X/Xp0xC/L18CsLrQn770ZqbLcmRfivNqmF9nDLgsV1LA75ewwCZAACeQfgWol6aObf/RZc3YEGjZsmN3uLPv2nriAHYfPok7dBtiw66heAKWRUwz4LAcwIVcE6IOaK1zMTAIkQAIkQAIkQAJOBC5pUnz1cmLih00qqH6AyCJIgARIgARIgARIgAT8R4AKqv9YsiQSIAESIAESIAESIAE/EKCC6geILIIESIAESIAESIAESMB/BKig+o8lSyIBEiABEiABEiABEvADASqofoDIIkiABEiABEiABEiABPxHgAqq/1iyJBIgARIgARIgARIgAT8QoILqB4gsggRIgARIgARIgARIwH8EqKD6jyVLIgESIAESIAESIAES8AMBKqh+gMgiSIAESIAESIAESIAE/EeACqr/WLIkEiABEiABEiABEiABPxCgguoHiCyCBEigYBBwOApGO9lKEiABEgh3AhHhDoD9JwESyB8CZ5McuHmaFTFBuguVjAGmDI7Mn86yVhLwMwGHetu6+uqrsWrVKphMwVkFPiIiAidOnEBUVJSfe8PiSCArgSA9GrJWzBQScEdgzpw52LZtm7tdWdKaN2+O7t27Z0lnQsEgYFfNTFX/RMhGEMQapHqC0BVWQQKaQGpqKpKTk4NGQxRUCgkEiwCvtmCRZj1eEXj88cexfft2r/J27tyZCqpXpJiJBNwTiLhkeAuO/c19G5hKAiRAAu4IUEF1R4Vp+UZAhqyKFi3qVf0dO3b0Kh8zkQAJXCaQagNOXnBg/xkH/j7igFiW950FVu6xo3opE8oWNSGGnhCXgXGLBEggXwhQQc0X7KzUE4H333/f0y6mkwAJ+Ehg7X47Fmyz448DDiSmARZlOo1QU2V3nXJg3C82AdfLYwAAQABJREFUFI10oE1VM66pa0b7eM6h9RE3DycBEvCBABVUH+DxUBIoiATOnTsH8SXz1lLt3EeZmCE+b7Gxsc7J3A5xAucuOjBtnR2Ld9hx0Zre2GjL5UbLHBv5brWbsGq/A2sP2tC1lgP3tbOguJpcRiEBEiCBYBOgghps4qwvWwKnTp3Ss0SzzXRpZ8WKFVGyZElvsjKPE4FOnTqhSZMmmD59ulNq5k1RQi0WS5bZug8++CASExMxbdq0zAfwW8gSOJ3swHu/27Bir0NbS71paJoa9l+olNkj5xx4socF5dWwP6XwEJBZ//KymZN4my+ncrifBPJCgApqXqjxmIAR6NGjB/7++2+vyr/22muxYMECr/Iy02UC8mDy9HBasWIFRowYoc+BKKjt2rXD1KlTUb16dV3Addddh1tuuQVvvPEGqlSpcrlQboUkAZvSQT5eYcNKD8qpDPGXKgKkKKtqQmrWLvxzzIH/LbPh1V4RKpRR1v1MKTgEihcvjmLFiqFatWqoWrWqbviOHTtw/PhxyKiKazSAMmXK4K677sLnn3+OM2fOFJyOsqWFhgAV1EJzKgtHR3ITX08UKIr/CEh4r549e2rFc8KECdpSOnbsWMhLg+wzm83o3bu3dg2Q/a+//rr/KveiJLtdze5RyrXZkvm2ZbOmwBIR7UUJwctiUxZI9T9EpxMlML+Uu0Vb7ViuhuwtHtxJyxczYXy/CKzeZ8fbShF1zSbt3qQmUs3caEO/Zhbdn+BRZE3+IFCuXDncf//96Nu3Lxo0aIASJUrAbperU65LE06ePInNmzfrEZWvv/4a58+fR40aNfT39u3ba+X1008/9UdTWAYJ5IpA5jt9rg5lZhLwP4ElS5YgISHBq4LlRkvxH4FJkyZppXTmzJlo2LChLvjChQt44YUXsGzZMnTr1g3R0dEYNGgQJk6cCFFe8+LHmtcW75n1MpJP7kGzB6bAdsmPUpTT5eMaotMrm0NCSU1TOvSWY3bM3WzH9pMOFI0y6QlHHWuYUCbIw+Tidzrjb5tSRrIhrhTQKPWeZ4SbcpfTqqyws7c60EddElGc3e8OUUimiZ9527Zt8eGHH6Jp06Y4evQo/vnnHyxdulS/cIpy2qJFC1x55ZV6f5cuXTB48GA89dRTePvtt/WxH330kR5BCckOslGFngAV1EJ/igtWB0XhCabSU7DoBLa14i5Rr169DOVUauvVq5dWUFeuXKkVVEkbMmQIPvnkE0yePBkPP/ywJAVHTMq+J38uYjaFhiVdlNNJq22Yv90O2U4XB3artB83AeOujUCN0mJTDY5sOOTAsUT/1HU0wYHf9tpxdZ2s/P1TA0vxNwFxxfnggw8Qq+6pr776Kj777DPs378fVuultztVobjvyEunWExHjx6NO++8E0t+/RVF1CRIeWEVZVUWA6CQQH4Q8PluI75shw8f1kMIjRo10kOEYm2RtzGGDMqPU8o6SSBvBMTCUrNmzUwHx8fH6+8yec0QWSBB/NjGjx+fMVRo7Av0p0n8Z1V4JIc1Vf+ZrOpLiMiynXbM/NdZOU1vmExFOXoBeFdNVEoO4rN+24n0GKf+wvO76h+lYBAQ//yJyvqZkpKCW26+Gc8//zx2796dSTk1eiJ5tm7dqpVYGeovqvxUZeRErKjySSGB/CLgswVVfNPkgSVDBQ899BC2bNmCu+++Wztejxs3Lr/6xXoLKIF77rkHMlHHGxF/yP/973/eZGUeLwicPn0aRYqoGTNOEhOTHmPI+UElQ4MyFCgTpWbPnq1925wO8XqzWKyyJuY8kTijPJPZggN/zMDRzfPTHTwv7YmKKZ6RJ7uNQNsuf1GWU4kp6kl2n1YWTTWjPl4N+wdD9qlA/M7NEb9YWVrWWVJk/F6JfEj4KdeWRaoCjD4d9M7zxrn4sNo2aeu+CUVi0n9DES6+0v6GIb9Dd374pUuX1i+PUcoy2lW55axduzbHquWYGTNm6NETuf/KIijffPMNxAdVFFhDpM7czBMwjsvtp0XVY1b/WdRvXiy8ItHRUbktJuD5DRYxUdHan9ek/PQp/iPgk4KalpamZ/zKxSzDATLrT+TGG2/EvHnzslhjdu3apSdaxMfH65Ppv26wpMJCYNWqVZCZpd6It7P9vSmLeYC4uLgs/r/yGxeRGcDOMnDgQK2gfvXVVx4VVLHGZudPHFm0DFq//A+UMdQrcahJUhWaXoe6A/8Dhy39IJstDRs/us2r40+cPIVy5Zp4lTe3mWKKV0Ddod8humwtj4dK6KbeA+7HiY2zlWLuoil6PCpvO+yKS+ORi1C0SjP9EqAMz+hVz4y72qqHvnr4GyITuMQHtUtNM9pWy/xwldGxaWvtyv/Urid57d9/EJXjeyIt8bRxOD+dCFx72wOIKVoM11x3LTr3HYxvv52BJ4fdpp55gXNBkQlNriJD+7Xr1MGE997DunXrXHdn+S7D+1OmTNF+qOISIL7l4sJzww036KWk5VluiNwPZNJVoEUmZPa5ZyQOHtiDb6dMRKtu1+OxEY9i7xbvIrwEun1G+fVbXYkGra9SrhG3o8VV18Jqs6GMUvbNYTqBV87bzz//rKO/GIx8+fRJQRVn67/++gu//fZbhnIqjZEJFuvXr8/kSyi+L6LIirP2rFmzMt6KfGl8Xo+NjUm/QUf51Pu81s7jsiMgN8idO3dmlyVjX+PGjTO2ueE7AXnBPHLkSKaC9u3bp79XqFAhU7oMCYrUquVZIStbtiwMC2ymgy99sRQpJZPycyWRsaVQvGp9qOeAFhnq91bMShsrV66syn5ZQfP22JzyRcWV1tae7PJJrSXiigHShtx2PLuC3e2zWxEpFrxLfB2qcrGWJiSr3pvSE0VFFgtprLLopinr6Rll3XVWUWV/SoYvLdRD14yyZcvAGhs4hctdVwpKmiglYmEsVbKUarJaLjY6BuXLVwioMUb8Q519ROU3N3z4cJxWLjkSacNTODmDqYSb+uKLLyCxkWUy1dNPP60nSsrkqAEDBmh/88WLF2epQ/oZSNHWaFVFZGSEfnGWuorHFQ+KcpybfhVVLyQiJUqUhEMpZxb1uy5XvlxAX0py075g55XrIjLSfzMpfVLR5s+fDwmWLn/OIj6pV1xxBYpdWlNdfiTijyp+MHPnznXO6nE7Ufm+dFCzCy9evOgxT153xFZthcq3TMLHn3yJ14a8nddisj2ufPnyWL58ebZ5uDMrge7du+u39qx7mBJoAjLjVyyiBw4c0D6mUp+8TIpIqCln+fLLL/WNKLtJUn/++afzIVm21SRzXPdRGmJzdT8zNK704uy5UPRKlyqN+Zu3ZGmHvxJeW2TF73sc2trorsyiqp+TvvwfKolrQxDkZdWeVZfaI4rnr7sdWLjTauisugVVVCCMSYMi1epRdry2WGmjTk2TTQlPJVZWkRrVKmPB2pXpX/hvFgJj/99nOKsikHz11dd4feI09FFhnX744oMs+fyZIHM9xEBkSKVKlSAv7t9++y1kxDI7kee2DON36NBBR+WQCVGyCIeIDPPLc7x///56IqShBEtkAHHjC4aM+r8PUCe+Bh4behe++GE+Xn7l/9CxZXp0kWDU700dc5b+gdlLVmH8u+9i+k8LEaFeUrZu3ebNoczjBQGfFNQTJ07oh5ThIyL1SUw1GVaQi16crUXEB0YC/Y4cOVIP/evEHP6RB48MX/hdQVXl2kte0Dfp1NQUXUcOTcn1blHIs7Mc5bpAHkACQSAgQblFQRXLybPPPqsfUOJnKn5oLVu2zGjBsWPHsHDhQu2HKg/EvEqSstg5K0Q5liPD4m6Gxu0OJzNfjoUELsN1DcxYvd+mlgvNWoe6JaB5FWXBvTR6kzWH/1NqlDRhhbrTGfZOUTRdRx4jzenap+xTxqpMFlTXFtUq7ZrC784EDGtlakq6UcVmmPmdM/lxW+oz4pkaxcoIpYiE68tOZORDLKfy2xbLqbNyKseJ36kM1crKcZJXRkoNEWXV8L000vz9aZO+qf9syq0nNS19lCQtNXQmRBr9NVygUpXrg5wP4xow9vPTNwI+KajiWC2ze2Ulivj4eMjJ+u9//6uD/t533326ZbI6xQMPPKB/BM7hLXJqtvjD7d27N6dsedq/U00eeHymFY88Mhx3T340T2XwIBIobAQkSL8x0iFKqjyEJPap65KoMplCHr6jRo0KKoIyja9DWvLZTHE9zeYI1Or1rBpS8+lW5pd+tKhixhNdgPfVyk2nlY4SdWm8XBTWLjVMeKRjRMaEI79UmEMhjSuaEKuwOA/T53BItrt7NTBU3WyzcWc+EohV4aHESGS44LhriviQinIqLneinMrLqGE5NfKLoiWh5WTluFKlxGWBQgLBJ+DTXf3uu++GrDxx2223oXnz5npoUH4cMrzdvJlyzlcisdfkhyAKrPi3yZuZWFNd3QKC2fVEsdwoCcEXsmBiYF0kkIWA+K/Jnwzzy+/YeXTEyDxt2jR07dpVR+4w0oLxWbJWB12NsxFVZvZX7Tw0GNXnWIfYIjvXNKNJZRMkJNOUv+zamvrODRGoXVb5ZgVZv2tUyYwrSqoFA06l3+9y7ICHDEpXQYPyJjRQCi8ltAlIbOIffvgh26VJz549q5VYUU6ffPJJJCUlZemUKKgymjJnzpyAjDJmqZAJJOCGwKV3fDd7vEgSpVR+DDLMJzEUZWav+KSJo2wLNSQoM9rEwipO1uIrI1YZmaUtD0DDNO5FNcxCAiQQZAIS59Sdcrp9+3asWbMGjz/+eJBbVDCqU7c+lC5iwo1NLCgZ40C0usM2qBB85VRoyez8YR0siPHJDAEUU9F9BjZVQX+on4b8RSjPVXnmug79Ozdc8kg4PxnWd6ecGnllxFNCz+Vm5NM4lp8k4A8CPt66oJdJEyXVEFmNQoYESpYsqZNkVuCIESP0tlhQxQ9VQlj4c6aXUTc/SYAEciYgEx3cxU/M+UhAJkfVUSFs+vTp40125slnAg2V1bN/YzOmb3DjGKvaJjP7txy14+DZzDP4jWaL9bS7sgpfWcMnW4ZRHD9DhICMYlJIINQJ+KygOndQhgU2bNigZxEa6TJZyJgwJG9issKFa0xFIy8/SYAEAk9AJjHmNUxM69atIX95PT7wvWMNrgRubmHRgfi//dueaQa/5DutRnefnZs+yUysv84iLgnX1jXj7jZB9k1wbgS3SYAEwpaAXxVUoSjxTx991P3EI4mzyKHBsL3W2PEQIZBX66k0X4J3UwoWARnqv6u1BdXUrP4vlV/ssQQ129ipC66KqewqoxZDEsX2hoa0nDqh4iYJkEAQCfhVQRWrikyu8OUBGMS+syoSIAESCAsCooT2qGPWoa7+2u/At//YcUAN6zsrp+IEULW4CQOUS0DbK0woHaR4rWFxAthJEiCBXBPwq4IqtdO3NNfngAeQAAmQQFAIlFFK59X1Teiuhu5PJTqwX4XcS1arSMUoK2v1UiaUKabWd1dGU5fR/qC0jZWQAAmQgDMBvyuozoVzmwRIgARIILQIiPIpSmj5OJP+C63WsTUkQAIkkE6ADka8EkiABEiABEiABEiABEKKAC2oIXU62BgSCB8CsrxmyRigSJDuQnGyzKjMDuL4dfhcZIW8p2XLltVxyL2NqiGxyRMSLyImOlKtGuxQq4xZEVckRq8h7w0qmV/C5Ty9IcU8/iAQpEeDP5rKMkiABAoTgRIqoP2Pd0cWpi6xLyQQNAKilM6cOTNX9R08egKvTZyOzm2a4XxCIjZs3Ynnhg1G1UrlclUOM5NAMAhwiD8YlFkHCZAACZAACeQzAZtVxcK122G3qT/9aVMrPrpfxCGfm8rqSQBUUHkRFHgC586dK/B9YAdIgARIgARIgAQuE6CCepkFt0KMwMGDBzFmzBjs27fPY8tWrVqll9Vdvny5xzzcQQIkQAIkQAIkULAIUEEtWOcrrForyudrr72GNWvW6H7v378fo0ePxtGjRzM4yDCViPGZsYMbJEACJEACJEACBZYAFdQCe+oKf8P79euHbdu2oX///rqzO3fuxH/+859sLaqFnwp7SAIkQAIkQAKFnwAV1MJ/jkOmh2vXrsWQIUOwd+/ejDa9+eabGDduXMb3ixcv4s4778TChQv1srkvvfQS9uzZg/nz5+Ott97S+V555RXcd9992LFjR8Zxp06dwhNPPIGePXtqK2tSUlLGPm6QAAmQAAmQAAkULAJUUAvW+SrQrS1RogSmT5+O7777TvfDpmLyyRD+66+/jrNnz+q0JUuWYOrUqZB4e4cPH9b5Dx06pGPvpaSkZByXmpqq1hG/HNDy1ltvxa+//oq4uDhtZR0+fHiBZsXGkwAJkAAJkEA4E6CCGs5nP8h9r1OnDurXr485c+bomv/880/IDHxRVBcsWKDT5s6di1KlSqFz586ZWterVy+MHTtWp7344otaia1du3ZGnltuuQXr1q3Tyu/AgQMxa9asjH3cIAESIAESIAESKFgEqKAWrPNV4Ft74403Qmbci2K6aNEi1K1bFw0aNIAopiLz5s3D9ddfj4iI3K0hcf/998NsTr+cmzZtitOnT3PFkwJ/tbADJEACJEAC4UqACmq4nvl86rcoqFarFb/88ov2M7366qvRu3dv7WO6detW7Nq1C5LHF4mKitKHc0k+XyjyWBIgARIgARLIPwJUUPOPfVjW3K5dO1SoUAEzZszA6tWrcc0112gF9fjx45DJT9HR0bjuuuvcsjF8TpOTk93uZyIJkAAJkAAJkEDhIJC7cdTC0Wf2Ih8JyDB8nz598Omnn+qJUN26dUNsbKye3CQTqMSaWqxYMbctLFcufb3ozz//XPutNmnSxG0+JpIACYQuAUewm6YqdJpPGezaWR8J+J1AMEcHpS7Dfc7vHcmhQCqoOQDibv8TkLimoqC2b98eMrNfRMJDyex+I+appMlMfhHjx9G4cWPtnzplyhTI3x9//JElj+SX4wxrq3ynkAAJhAYB9azDt//YcCGIgyAR6jYypJUFlstBP0IDBltBAnkkIM/PTZs25fHo3B0mk5ifeuopVK9ePXcH+iE3FVQ/QGQRuSMgVlKJU2r4isrRMuQvMVDFmmqIKLCSr0iRIkYSZs+eDXEHkElUpUuX1umueSQe6iOPPJKh2GYczA0SIIF8JWBXCur8zXYcSlAvnkFqSYx6yg1uobTU9PfdINXKakggcATEmGNEvglcLZdLHjx4MBXUyzi4VdgJOCud0lexkjorp0b/XfNJevny5Y3d+tM1j1hPY2JiMuXhFxIggdAgIL9Piyl4A/0c3g+N885W+I+AMarovxJDs6RgvcSGZu/ZKhIgARIIFIHg6WCB6gHLJQESIIF8I8Ah/nxDz4pJgAQKCwHRRdNswPZjdmw57sABtTDamYsmWO3Ap6ttiC9lQotqJpQqYuKEncJy0tkPEiCBgBKgghpQvCycBEigsBOwKe1082E7Plptx+YTDkSJu6PThJxvN9lhV4qqTNa5rakZfZuYUSLGKUNhB8T+kQAJkEAeCFBBzQM0HkICBZmArOIlk8yKFi2a625IyBGJQ+vOXzjXhRWCA04nO/DFn3b8ttuOZGVBLeLmjip+VHqRM6XITttgx+r9DtzTzoxWVc2gmloILgJ2gQRIICAE6IMaEKwslARCl0CnTp0wdOjQbBsoSmhqamqWPA8++CCGDRuWJT0cE1IUnnd/t2H+djtSlHLqzc1ULKt7zjjw4i82rN1nB91Uw/HKYZ9JIHQJSHSd3C41HqjeeHNPDVTdLJcESCAfCIgV1FOg5xUrVqB169YoXry4/uvSpQv279+f0UpZ5eubb77BoUOHMtLCcUN8S//3uxVrDjgyDec7sxh5lQVjuruPbSRD/v9PKbf7TlJFdWbGbRIgAf8REEWzbdu2eO655/D999/r0FSTJ0/G3XffjcqVK7ut6JNPPskUj9xtpiAlUkENEmhWUzgIHDx4EGPGjMG+ffsKR4ecerFt2za9YEJCQgImTJiA1157DWvWrEGPHj2UD6XSqJRIDFtxDZD94SzrD9ixcp8o+p4pNK5oQtMqngfxz6hg9ZPXKdNrPsqpJDWhS1l0TyWqvuRjOzxVnZJwDEfX/wS7zZqRxaSeWsc2/IyU0wcz0rhBAiRwmUDZsmV1LHBZzEaWFH/11VfVIjd90PHKK3HnnXfis88+w549e3T88V69emmLqRzz1Vdf4fbbb8ddd92FyMjIywXm0xYV1HwCX5iqFQvb6NGjcfTo0cLULbd9WbVqVYbi5jZDAU6cNGkSEhMTMXPmTDzwwAN4/PHH8eyzz2Lnzp1YtmyZ7ll0dDQGDRqEiRMn6rwFuLs+Nf0b5Uuakq6z57kcic+58YgD6w76WFAeWpCaBvx3qQ3DvrVixE9WPPC9FW8utuKM8qkNtOSmhuRj27HjhzFwpCZmNMui/Hx3fT8GCYc2qDVMM5Kz3/A2X/alcG/QCDiQESrXEconz6ltIdLOunXr4rfffsN7772Hli1bQpYQ79q1K6pVq4rqV1yBK9SfWFAPHz6Mm2++GT/++CPeeustfKaWEL/11lsho2iipKalqZtEPovfFFRZBUisSjt27NAr/YgP2+7du/WEinzuI6sPMAFRYP7zn/8USquiK7p+/fpBLI3OS7K65imo32Vlknr16qFhw4YZXZC3a5GVK1dmpA0ZMgRnzpyBDBWFo2w55sAOZXX0x83zojIMLt3h0OGogsXy4FkHRiqldNFONbFLPYOkDUnKn3bZHgdGz7GpEFm5USED3WoTzKLJO+kBUiOXMg40d5ZfEAmIe9a8efNQu3ZtiMFB7ueijIqB4cSJEzh9+jQOHDiAqVOnolGjRujbty/WrVuHxx57DNer0bH58+dDVo2S+3soiD/usZAhwYcffhjNmjVD8+bN0a1bN21S7tChg36Yh0JHw6kNI0aMwKJFi/Duu+/i2muv1eZ6ZwVDzPgvv/wyvvzyS3Tv3l0rlwafr7/+Wg8ByHFSjrxkGHLq1Cm9Ju8111yDgQMH6oteLmh5+xJ55ZVXcN999+mXFOMY508pS97MRKGVpUivvvpqyLKk8qMxROr86aefMHLkSN02eZsTkXWHH330UUjdMvwwa9Ys4xD9KcufPvnkk3qIWn5gv//+e8b+v/76S0/skWOl3pz6JAe666uky4/7pZde0sMj8t1gabx13njjjZg2bZrsypAlS5ZAlDrprwyvCCNR6ENNxAJes2bNTM2Kj4/X34WHIZ07d1Zv49Uwfvz4jKF/Y184fG48ZNcxT/3V191K2U1KCY5SKL6zMzfasdeDErpPtWXSH7ZsXRf81W9vy7GmpeDCke24cHir/ks4tFddd/lv3fG2/cxHAsEgUKNGDf3sFCupPD+HDx+O7du3w2q97B5jtEPmIMgS4fKclKgu8sInq1Nt3rxZK7JGvvz+9FlBlU6KmXj9+vWQB7E85GR4UPzXZKKFKK2U4BKQdXpvuukmfQ7EnP/rr79qP8ItW7bohohfiiio8mYlQ7bGhBcZzr3tttu0clarVi3tnyIvHOKrIiLKpQwXyAtIiRIl9FuYXOgpKSl6v81m0zO/PVk3jhw5opViectbu3YtKlasqJXonj176uPlH2m7XE+i+MlswpMnT2L58uVo06aNVrrr168P6Ye8+X344Yf6uAsXLqBVq1b43//+p9slQxfiKykix8qLklj2mzRposuXvKLQirjrU3bpUrYwMJgJS7nWRfmVdogCe8cdd2DOnDm6fNkviqm8xIllUpRvcVb3xEgflE//yIuC67KxxpKx0jdDpO3yEiBMZ8+ebSSHzaesI+/qeyqz+JPVcyDjT303VM6MNKf9zscfT1DDmVEuJsIA0UxS7fp9r2eXAjFWrj3owPEADfVb1BNH6siNpJ4/jb1z/w+7fxqj/3b88DRSks97XYTUF+Hzky7n6kziHKsk+tIyyxHiixBiYvyeI9XkGYvFolsXExt6y0JbFEvhaTFbEK2eAyLR0emf+kuI/BN1yU9T2ij3RZOOJxf4xhnnzqhJ6hY3u0qVKuHFF17ABx984NUQvbgByMRXMTSJcipuXfJ8dxXX54Lr/kB99/kXtHTpUq2YymeLFi10O8VK9M4770A0egG3YcMGTJkyJcPpVvKJrwMlcARE+RPlTD5FoRPl6NNPP8Xbb7+tKxVlUvwIjZBBonD997//1d8lXWTUqFFo0KCBPpcyKUYmzIj/ocwIdBZRcuXl5MUXX0S7du2cd7ndHjBgAGSmoLyxyRDE888/D1HkjGMlxqY4dsv1IyIzycuVK6eVWpmgI2+EVypnb6nvoYcewscffwyZvCRDG/JjExFfUREpW/qwePFiXd+9996rFVUZnn766ac99slTX3WhLv9Ie2Rmuwz7iyInNwlR3K6//nrt31O6dGnt1yk3FXlACGexHIeaxMXFaUXauV2GH5K8bDqLWNDfeOMN/SIhLwvuRM6bKOaFSUwmC0pd9zqianS53C2lAL3Tx4LYSLXhJOVj1QNL6QAT+2e+zUpg//G/2bD/XLoKm5RqQ49rbob17D6nowOx6UB02dooM3h69oWrCXEDhzyCC3tXaCUh+8y53KuAlB/yLczFq3h9YJFSFdDwjo9hKVJCH2OOisHKcU28Pj4p+SJate4Ihz2rJcnrQnLM6ECTbjciMroI7rzrbtRr1x1z583B+Fee0fedHA8PUoaiJcuiYceemP7Vl4iIikbpStUxSP2WE89eHiEJUlOyrcasFNOW1wzA5uOHsGTu94hv0g4vvfwSju/bnu1xwdwpxplq9ZqhUu3GeFLdz6s3aqWuMTuaK6Oc+ZLyH4j2iE61d+/eTEVXrVpV61RiMTWe35kyuHyRCVHyTB+gzv2K5St02EEx/ohhZdTIUfp5bhie5NBbbrnFq7jZ8kwX1wIxbPlDMt8581CiKD2iFIgzrrMUK1ZMW7UkTXz2BKgoCyKlSpXSn/n1j5xgkSC8VOdXFyG+g6KcioiCJhbRrVu3ZrRHLlBDOZVEeYkQZUQsioaIs7VcaP/8849OkvMsF78MCYjPSvv27Y2sWT5FAROlUUR4y0VriAzRy4UsIkqcXBdyjRgKqlhxDeVUbgJibZVhcSOwvITOEGVQ3hjFErpx40ZtCXZ+8xOrqYgM70s4DXEPcJZdu3bpr5765CnduQxju0yZMhk+qXLdS9vF8isiVuCzZ8/qdoriKiMO0o9QiTNn9EE+pR9i5XYWI1pBhQoVnJMzriW5rjyJXG9yrRQmkeu2YftTKO/SKVnKtFh0ZgVVW+1UUs0ymdNlmD3a6c5rs6Zh546tSDqxx6VU/3+Nq5CK4qkqNJY5c5uca7IrvXn7lr9xds9mvyuooniUUDO0ijhXmMO2QzEXpdQcmW7pi1CTi5Xqn8NRl3c7HHZ9vdqsytE2QPL/2zsPwKiq7I2fSS8EQguhg1KlV+lgAWFFQcW1rYB1xYK9/Xd1dQV73XVtu4jYEUVELIAURYqCVAFBpJfQEkgIqZP8z3fhhUmZtHmTvAnf1TAzr9x33u/N3Pfdc889D+1U6z5Djejbvn2rEaiI41uvbWfwSS+bnw5dpmrrxDdUgZoriYcOS5g6AiBQt23dJocSTrTVZarMnxvr96TTeZfIcZ3LsnvXbmmqAnXvnt2yWb18Tim45qE14iVeBerOXTulgYpVOH5wPwoLD/ebmThuwRzVGP2EgwFhbta9x5sBcADBgQjROf+7eTLqz5ebmFPcp+DY6dW7l3FoYVTcKgiLK+i1tdZ5vqJ9xD3OruLRTJavSogHxDt43nAxQQpxhpbgANDY2Fhpr0OsCHi3xElxR8SkKwiQgheiuH1Kuy4zpoW4z7hF5s1fJKve/6K0u5VpOwyBY+jXKQUpI3AdrFLwGlhB0RBYngXeUcuLNlln+cH7/Z///Md4zh588EGvsZS43tYXFQK14PGsY0DAoVhpjPDe84eA6496irIL28I2DE2jBwlbPQsaC3g0sdxziALi2Qor8HZO3pZ71u/tPc7JOh+EM8DD2rJlS0EPFQHpiGF1YkG+PIRWIEwBMaYoVqwvUk15FsQv4zuF2HNvZevJToC39YG6fMqqEPlq06khfIzlX6+z4QtKpv9cEiIxKlpHf1w4XhITk6zSoGa4rF25XGqWRbVZO5fxNS3LJS8sdsmahKJ3xOB/vWpBsvnn2Tosfqq9KHrrsi916wHGzwqVA/bdw0o0IjIi0sxY9vcw/4Q3PpKU1OM6ajJT3pg6Sy67dJTMev8tI1pKNLKCNtiZcEj+9d7ncv0NN0qKtqvrf98hc+bMlaYN6laQBaU7jFt7SY++MkWaN2kkt4y5Sj6bu1ieff4F6d+1XekqqKCtvv5hucz/aY38961JMnP+EnPvykjXh5xkefzAbbYF3lmE8M2ZM8fUDMGJUUlk01moI9nFFYyEITQOTqAli5fItWNG502IQgYXhJ9h5Kt9+/YmbNOqa+7cudJD72WlKeGR9jVkPgtU64kzOSp+LI8kYvQgLBDzhwKBgOFmuL4x3IlJNZZ49XbC2H/KlClGYHjbplzLIZZb9JEud96snsG1snn6f8tVTXE7QQg2bNiwUgWqZ3J1eLEQRzpo0CCvZjdr1sysg8fRCtWAMIQXbPjw4WYdBAnEHTokCNFAzOdTTz1lPKTYAN8FqzzyyCPW20KvnrbBc4vSpEmTQtthAb478ARD2HkW2IkfJryS2Bc/VvQAIYxRIE4hdCG0IF6t0AbPOvDe2zl5W15w/5I+Y8IUntx04403moYAE9cQnuDEAs82BCoaO/TIEW+LYXx4yj1HSPbv3y9osBCHCv7eSnSBzo637QJtefv6OfLt7+58M+/TC2tQgScSz4rCTPniSqMaQVI7tppEqmfQ3wUPtx3eLkfWH1T7NR61YInSkITre6qXszq2tL9AoAYF4+ZdOvGLzm1wSP4YSaQfcoWGa7ujxpaioA58F/0tUE0nXHsp0ZGWpzdEImy8WZfiVEvcJCriRLquUO1Eh6gnG9lv0Y467bfqVq83iks9qWHhJ3hGqBfdaXaGhp5wsCCOV90wxgEXqvbq19OvxdOJg5EvOGDWrFlTrEMP28Fz+mf1nC7UkLwrVaRaczEsY+FBxdA+5mlgpr9VcB+uDPY+C1SIUMQTIu4UNyucFAQohAG++CgYeoWyx0kiThDDrXgFMG8FHjOkvYHQsLvsSK0m728L0Qt1lQy5q5/d1Zv6LM+gXyovRaUzZ86UsWPHmhnviDXBlw69Jm8FHQYM1yIJPToRGBbHdYRnFbMBMYsbMZuYAIfwAIhehGqg8Ud8KAq8jrhe+E7ExRUcBD11ZIg1iEmkwkA8KwRk//79T21Q4B1mwCNuE1kCEBKA7xKyDWDGP24KEFTw6l533XUmywCCvf+hgeKIq4WIgojGDxOxkhDd+O4hBALHLeqc4JEtajnOtawFbKZPn244gRuGf9avX29s9Rx1KGu9/tgeXmVwRMgFmOI7jN8uOpyeZerUqeY6I0b5dCy9mwdJDZ3pfvhUf6zcGCCaujRyVYg4tYzsq/bfpRpxEs4h/USoE77aNfSmemXnYBnYwnI1WHtU3mtsy74yaOJyycw4ZQPSMw6YsFw0MkJHKk4t5zsSOB0J4D6CEWuE4lkjd0VxwH0QToifl/0kl2iIXFHhVwjLw/2zqJn/RdXp72U+C1QIAQgheN0gOBHviOFMDL1aMYPwalmeLcQ4AhRychUnUCE8MHPbHyVyb464driNZ65Xr4b+OESl1wnBCSEHLzR6V2CO9EAoYOvZA8MyeAwhpPAFtnJ8osMBjxo8aHD/I5wDT6BAQUwi4o9RMBwA4YiJcPjDhKfiBCqEEGJlIJqRZQBiE8dHgW348yyYDIW4GghUiCecD+JnJ0yYYDaDiML5ITMBkg5DWFnxtRDc+K5BCOOYKBDimOWPCUtFnZO35djX4mbZWBRLbGNtB1GKBsSK10UjAtsQ22nZj3qdUtAZwR+G+XEN0aksWOAVHqTeeMvTXnB9Vf8cqo67i9sFyaQVOXmjRuU957hol5zfSius4HJuyyDp0MAlK3bmymtLtFNZ3yV4NGvdamXvhPnTdDjSPMWpdayillnr+EoCpxMB3EusEenihCUyyOB+CwdRUeIUzOBRxb3KH47B8lwTnwUqPF9wC8MjBpGBHFwDdBlEKoJ2CxYMGWMIvGBMYcHt+Nk3AhD3GILHMC2Epqe3Dp5RCLqCpWPHjibuJDk52YhHyzOK7dDZwBACvsAQlghhsEQa1mPWOtbhOPDAFlcQJgCRgxneBZ8HjJ6gp62oB9+Vd3TWPTz1EJsQx5YAtI6DIen777/fTMyC3Zb3Hq+Y5Y+0Gxiahrj1tM/bOXlbjh8vvLCoB6UolghnsbytWA+v87PPPmuZan4bngHoeSsc9MaKQS1oEmaJIsMBPPSncxnSJkgWbs2VbYneh6qzVFwVNwAEr+XVXYM0TrVySNZVcdxJ++fw4sbqKGpcjLPEaeVQ4VFJILAIwGtanOfUOhvM0LfSH1rLCr5Cm1lzTgquq4zPPgtU3IghGKxZvsiDimFhpDWybtJIBQTFDpEDgXrLLbeY4dXKOOHT6ZgQcUUJDU8PX1E8CqYU8tymOM9oces868B7dF6K6sAU5bGz9kUHqKCgtdbhFeeFHmJRBaIXorqo4s1ub8stcYq6imJpeYOxHp0DiHGIZlwLJPSHCIeYrqwCFrC7PAWTo9D5tOKSy1NHVdineoRL7lWP49++zZajHsPPnuf2+By3hBSj+Ya1CpL+Z+YfLfDcn+9JgARI4HQm4LNALQhv+/btxsPmmaAfw6zwXkGZY1gfsYcs/iOAzkFRwtR/RyxdzchsANvwerqUr7/+2kw0mjZtmunlQkAjTtsznVdFs8CEM6vzWNZjIysB/sq7f1mP59TtoTvPqOuS+wcGy3+W5ci+5MKe1ARNwF9UCde+wfka53lTr2AJpT4tChGXkQAJkIDYLlAxpIoJFriJWQWTUfDHUjEEMMPaiQWxqpggdDoV5JK1YnWdct7l9Z7C/osuusgpp+EIO7o2CZJ/1wuSZxdmy2KN5yyQqz+fjTp6ZobTHz4nWHo2ozLNB8ffH4ruK/j7qKyfBEjABwK2C1TEMSLujoUESIAETgcCURpD+rfBIbJ5f64s2ZkjWw7myl59StQxzQuP+M44nXjURLOfdW4YJL2auaR6gYT+pwMjniMJkAAJlJWA7QK1rAZwexIgARIIdAIYqm+nM+HPig82eU/T9XmmJuennlho8Ik0Upj9z0ICJEACJFA6AhSopePErUiABEigRAKYmR8Vpn+FnitV4q7cgARIgARIwIMAA6E8YPAtCZAACZAACZAACZBA5ROgB7XyrwEtIAESIIHThkBGtj7+FU87rchSTLqvijSDxyIBOwjgUfAVWUqTZ9Uf9lCg+oMq6yQBEiABEihEIEiF4uujQjU+t+Km1eOYGgbMQgJVhsCnn34qpRWp+Oo/+so7+uTEUJlw1w3y8pRPZdvuBHn0ttESEa7xSKUo1pNAS7GprZtQoNqKk5WRAAmQAAl4I4AY3ermyVlUjN4YcTkJlESgrIIxKjpGn34YLtEx1fXJjLESGZUqdeL0iYtFPMq6pGNX5HrGoFYkbR6LBEiABEiABEiABCqawMlBC2vswmW9qWg7ynA8CtQywOKmJEACJEACJEACJEAC/idAgep/xjwCCZAACZAACZAACZBAGQhQoJYBFjclARIgARIgARIgARLwPwEKVP8z5hFIgARIgARIgARIgATKQIACtQywuCkJkAAJkAAJkAAJkID/CVCg+p8xj0ACJEACJEACJEACJFAGAhSoZYDFTUmABEiABEiABEiABPxPgALV/4x5BBIgARIgARIgARIggTIQoEAtAyxuSgIkQAIkQAIkQAIk4H8CFKj+Z8wjkAAJkAAJkAAJkAAJlIEABWoZYHFTEiABEiABEiABEiAB/xOgQPU/Yx6BBEiABEiABEiABEigDAQoUMsAi5uSAAmQAAmQAAmQAAn4nwAFqv8Z8wgkQAIk4CgCuWpNdo5IlvuEWbm6AJ/xykICJEACTiAQ4gQjaAMJkAAJkID/CbhVgCYczZVfE3Jl/b5c2XAwVzJVpK7cmysvLcyW9vWDpH28SxrUcEkw3Rf+vyA8AgmQgFcCp6VADXa5DBC2v16/F1xBAiRQxQikZoi8scQtP+/KkZTM/CeXousWbM2VhdvcEh0m0rm+S8b1DZaakSfayvxb8xMJkAAJ+J/AaSFQMXSVmpErm/bnyuZDufK7/rl12RZ9/WV3jrSsG2Qa5WC2xf7/xvEIJEACFU5g9Z4c+c/SHNl7JFeKG8XHEP8xFas/bs+VrUluuaV3kHRpGCRsGyv8kvGAJHDaE6jyAnWPDmd9uzFHvv4tR45ow4uGFn9woq7SYa7lX7klvppbLmwTJBe0DZLaUVSpp/2vggBIoAoRWKfi9Jn5bjmq7V9Zyl5tOx+f7ZYnhqpHVUUqCwmQAAlUJIEq2+pkqydgtgrTv32VJdN+zZG0bJHwYJEQPeOTI/xGqGJZUprIeytz5GEVq4u25XCiQEV+A3ksEiABvxHA0P2/l+R4FafVdDh/ZLsg6dm46I45YlZfXayeVxWrLCRAAiRQkQSqpEBFo/rpKre8stgtB467pDQnCdG6Wxvh5xe6Zf6WHEEdLCRwOhDYv3+/jB8/Xs466yzp06ePzJw5U0aMGCGPP/746XD6Vfoc/7fUbdo1bycZE+GSsT2DZcCZQaJRT0WW3cm58vFq7bgXuZYLSYAESMA/BEqj3fxzZD/W+rN6QT/SBtVbgRc1NkIksogAB6RdeeF7t6zVYTEWEqjqBPbu3WtE6erVq+Wee+6RCy+80Lz++OOP0rp166p++lX6/HYk5ZoJUaU5yeJuBFj3o7apSWmUqKVhyW1IgATsIVCERCt7xWlpaTJr1iz5/fffpVatWjJs2DD54osvpHPnzjJgwICyV+jDHrt1EsDL6jnNKkZftolzyWODQ+Sb39wyaXnRG07R5c1quziL1YdrwV2dT+D++++XevXqydSpU6V+/frG4IMHD8prr70mzZs3zzuBnTt3CsRsaGiotGzZUqpXr563jm+cSWCNpo46kn4qpMkXK9M1RGrW+hwZ3V1jolhIgARIoAII+CxQjxw5IkOGDJENGzZIq1atZNeuXfL6668Lhg3/9a9/VcAp5D/E3M2aQqWEyQDI7xcWKhJUjNtgk87wX6YzWYe1LTo2K/9R+YkEAo/AqlWrZNGiRfLKK6/kiVOcRYsWLaRatWpSs2ZNc1I//PCD/POf/5QzzzxT8HsfN26cDBo0yKzjP84lsEVznNpZVu7KVYFqZ42siwRIgAS8E/BZoP7jH/+Q1NRUWbx4sXTq1ElSUlKMB3Xt2rXSsWNH70f2wxqkk/pph32N8uxNOSpQi1GxfjgHVkkCFUVg2bJlEhwcLN26dct3SHQua9SoYUZD4E294YYb5N1335XevXvrBEJNU1TKxw2tWLFCsrPV9cZS4QRCXDmyee9ZOiE0Ou/YCGuqVy1/h7t2NfWw6hYxuq5tnfzrsOOB1FwzidS8T86Q7xev1smmvKbgUbCkZWRITk6OrN+w0TyS6/Dhw7J8+U/idtCEhsNHjplJwPv3J0haxolkuL/+uk4Sdm8reDqV+hlNTHaOW46rtti+TW3TBdt2bJcI0RnNDip79+wxtm3R0eOs7Cy9/i5ZsWK5tnsnH9HmEFuz1Tb9esqqlSsk+egR8z1dru1zWIj9IyLt2rWTmJgYW87cJ4G6ceNGef/99+Xzzz834hQWwbCzzz5btmzZkjcMCK/qY489JuvWrZOoqCh59dVXpX379racgGclh4/lyk6bZpti0tTmw7lyND1XauhEAhYSqGoE4A3FDRW/SaukHjtmOpsNGzaU2rVrm/cQpL/88ou88847JmxnzJgx+fax9i34ilAf3KRZKp4Arln/R36Sak276A3U3EOlT9Mg+Wuf4LwsJrAqSFdiJKmrppHq1CB/Zxwi4e2f3TJDs6CgPdx/YL8Mv2eEpCbtq/gTCoAjXnHrgxIVU13G3zlehl11o8z7bo48fOsYZeec+0d8o6Zy0Zjb5PPpn0lYZJSccVYnufnmm1Sg7nAU4aCQEBlz92Oyb9d2+fyDSdLvwlHy4vPPyPpfljnGTvzGug8YIl36ny+P/+NR6TVkhLi1Q96jR09HXXP8eEff85hkpKdJ1263yvCrb5a4Js3kT8Mu1A5Asq084fD4/vvvzbwGOyr2SaB+8sknEhcXJ23atMlnS4ZKddzgoqOjBTe8P//5z/ojuFmeeeYZSU5ONje+fDvY9OHXAkNaaGAzC4aYYtnJzk2Ovs8o0NFBWxJmtdO6/o8kbbxPhObZZCWrIQFnEMAQPuLH169fLwMHDpRst8Zkv/22LFiwQG677TbTyB7T3y+8qBgRuf766+WWW27RnniG3HXXXSWeBOrE/iyVQCAnW8JiogXp9lBytV07eFzzPu88ITZPLD0xUbRDA5cc0QlQmwu0nxC2CSnqMdd99X+JCI+QAf37ijvd3puaZUugv0ZFRevjYUOkW1fEQbgkvn4DuUDD3yAQnFLCY2KNbY2aNJHgkFC10iU9evaUjLOcNSHS5QpW+0LMSE679h0UYZC0bdtOGtZ2Tuy7SwVGbOOWxrYOHTtJeFi45CjTIYMHi6u4+MEK/zK4NKQxVEL0ezj4/POkdt06OnIWYtp8d3YJ8ZBltBWdsdhYfMfsKcoYMq58BTesNWvWmDg2ywuDm9yA/v2lif4APvzwQ5kzZ47cfffdMnnyZElMTDRxbKWZHQxh271HD3MDLZ112iD0vVFqnfNA3uaN9HnSjw9Wj4ElOE+uCQvJlVpRQXJcr02yPmHKs/x2IFee1KTWmOmPkjDzPjm8+vMyfeGAND4+Xn766acTlfBfEnAgAUx6Qvx4ZmamGfXA7xMhOps2bTJxqVdeeaXMnTtXhg4dKvv27TOdUUymeltF7OzZsx14RjTJk8CLmo0EMfmWPkJf3ZW/uZP61V3yxqgQM0v/mQXuQin5IE6t5rO1hgC8NNInn4aneVXu/d9efFuOHkuRu0ePkucmfyLd27eWGy//k6POc/feAzLxzQ9kQI/OknwsVVZt2Cx/G/cXaVw/zlF2wpg7J7wm8XVqSr/uHeTDL7+TK4efJwN7dHCUnV98t0S+XfSzXK/XedqsBSqqg+Wp+250lI0w5t4nX5fIyHCZcPf18sqUz2XLjt3y/EO3qKjWyTgOLj61NiHaw0H8KbwwlkD9dNo0423B8F6Q9iJ27NhhJlY899xzZvYvxOpHH30kXbt2LRZLjoq8pKQkSU/XaailLJHJR6WWx7YQptX1WdJBBTqwwSdbbFybGlbrfXK/6NDcfPkAk5OPyJGjidrIlw1VeHi4hyV8SwLOI9CgQQOZPn264Ld5/Phxk/u0h3YKzznnHBk0aJAxGCMkkZGRJhQACxhTarAExD9nahaSuR6WGqFZoC20mj+sw/sCq/N97qyeVpbiCJxQ/zm5J4btfPD9FHcQn9a5MWyoBbZZ9jkpRtY6ObcydOkfWFp25uL55A4rebYZnmqcvjq2nDTNshnhXU4vZVNdBc4GORMxeeKJJ56Qc88918SYIiY1IiJCOnQ40dMBhKysLHn55ZfNsH9YWJjxzkyZMqVAbfk/IpYVsatlKT/r5hPnn9pjl+YBvOqDrFMLTr7rWF/TTF0QIl9tyJFJGmPlWXDJ8ob49f2MD/8nbev9T2/QnlvxPQlUDQLIvPHf//4372QmTZpkQnMwAoCC5P19+/aVBx54QC7XUB2I2TvvvDNve75xLoFOKigxMaqsjzgt6ozCVcFe1N5I3KJWcxkJkAAJ2E7ApxbnwuHDZcKECSbnKW5gf/zxh5nxC+9hly4anK8FORYROIsbHjyqjRs3NkP9pTkT5Fwsy1+HBrp9gUlpmNlf8M+aVAkvbcF1nkIUj0FtUS9U7S+bHZbNpTlHbkMCTiKwZMmSfDHl+C7P+HyGGfH4fuFCeeSRR+Saa65xksm0xQuBZrU0vrCxT018Xs39zwhiTug8GnxDAiRQEQR88qCGqPC87777zJ9l7FNPPSUQqE2bNjWLkJoGXlPM9MdjFJHAH7P8/VGidVS9XT2XrNYE1b4WiNizm7gkooDg9bVe7k8CTiaA2foY4vcskVGRpZoU5bkP3zuDwK19g2VtQo4k6Fw1b1K1pIH7uprk4ZquQXmxrM44M1pBAiRQ1Qn4JFALwkFsA5J/Y9jQKng6zYcffiQvvPC8mVyB2FM899sfJVhb2n6aSmX13vzD9uU5VqTGp57X0luTXp4auQ8JOJ/AypUrVYiUJFmcfx608ASBCG3h7+ofLM/qBCg8VapgQRq9N5e4ZZ+m6CuqtUM7OE5TU9XTyVQsJEACJFCRBGwVqDAcuU5HjhyZ7xz69+8n+KuIMkhF5Wydufq75jAtb4H3tLd6T7vaNDxWXju4HwlUNAGE4bBUIQKqKztrjtMHzhF5caFbDqtI9ZzHcVxztX/1m05E0e0KXvm6msT/tt7B0lM7/SwkQAIkUNEEbBWo8LzgsYhROuu3skpUmMj/nR8s936ZLYnHi7YiXedN7Uw89YSUglvV14cgXHe25mGj06AgGn4mARIIQAIQqS+PdMnU1TnyjT4hL10fBoW+CKSnNXsf80ARg48Ue0O1oz+qS5A0oOc0AK82TSaBqkHAVoEKJHXr1q10MnH6OL97BwTLq0tyZF9yYU/qJk1IPe7z7LzG2dPgM3RiwX2DgiUumurUkwvfkwAJBDaBWtqm3age0YvaBcmPW3PkN20HD6aKIHtPsIrS2hpr2rauS/qfGST1YlyFJpwG9tnTehIggUAjYLtAdQIAeAS6NAqSFy9yyYS5btl4SHObwj3gUQp6R+FNGNDUJeMHhEiEs3PXepwF35IACZBA6QmEajvXKNYlV3Y9MfszXcP13epNhUBlu1d6jtySBEjA/wSqpEC1sNXQJP0TLwyRtXty9EkpubJmb47sV4+BFYOFBP54kkr3Ri7p3cwlZ9ULotfAgsdXEiCBKk/AZClhppIqf515giQQiASqtEDFBQnTxrd7kyDp0lgkKzvYPHP6kIpUDOBjEkBslMt4Dwp6VAPxYtJmEiABEiABEiABEqgKBKq8QLUuEgSo5tuX+FCXxFe3lvKVBEiABEiABEiABEjAaQQ08oiFBEiABEiABEiABEiABJxDgALVOdeClpAACZAACZAACZAACSgBClR+DUiABEiABEiABEiABBxFgALVUZeDxpAACZAACZAACZAACVCg8jtAAiRAAiRAAiRAAiTgKAIUqI66HDSGBEiABEiABEiABEiAApXfARIgARIgARIgARIgAUcRoEB11OWgMSRAAiRAAiRAAiRAAhSo/A6QAAmQAAmQAAmQAAk4igAFqqMuB40hARIgARIgARIgARKgQOV3gARIgARIgARIgARIwFEEKFAddTloDAmQAAmQAAmQAAmQAAUqvwMkQAIkQAIkQAIkQAKOIkCB6qjLQWNIgARIgARIgARIgAQoUPkdIAESIAESIAESIAEScBQBClRHXQ4aQwJVm8DTTz8t/fv3lz59+shbb71VtU+WZ0cCJEACJFBuAiHl3pM7kgAJkEAZCTRv3twI05CQELnnnnsEnwcPHlzGWrg5CZAACZBAVScQcAJ1/fr18scff5jr0rlzZ2nSpElVv0Y8PxKoMgSuuOKKvHNp1KiR7Ny5M+8z35AACZAACZCARSDghvgnT54sCQkJsmfPHhk3bpzs2LHDOhe+kgAJBAgB/I7T0tJk9OjRAWIxzSQBEiABEqhIAgHnQX3++efz+KxZs2vTM80AACg6SURBVEa+++47ueGGG/KW8Q0JkIBzCeTk5Mh7770nM2bMkNdff11CQ0OdaywtIwESIAESqDQCAedBtUht3LjRDPWPHDnSWsRXEiABhxN4+eWX5auvvjJxqHXr1hUIVhYSIAESIAESKEgg4DyoOAHEof7973+Xe++9V2rXrl3wnPiZBEjAoQSWLl0qqampMn78eAkODpbLL79cLrnkEmNtruSKS/9jIQESIAESIIGAE6gQp1dddZW888470rVrV8nN1Zuaizc1fpVJIBAITJs2zauZX85fJo3iakuXdi35m/ZKiStIgARI4PQgEHACddSoUSZu7YUXXhCkqrn66qvlggsuOD2uFs+SBPxIICUlRTZs2CDJyckSEREhjRs3lmbNmsm2bdvMxMTu3bvL2rVr5ciRI9KhQweJi4uzzZqEQ0myYOlKGdyvG8WpbVRZEQmQAAkELoGAE6iLFi3KF7cWExOTR3/vwcNSPTpKqkVF5i3jGxIggZIJIKb7rjvvlPUqUCMjI8XtdkudOnUEv7f3339fPvroI4FAXb16tWRnZ8uTTz4pdsV/YxTkl183qZG50rNT25KN5RYkQAJVnIDLBPzkO0mOlObDUd4PgTTeHHACFTfNokpqWrr8a8p0Obtja7lkyICiNuEyEiABLwTGjh1rPKc//vij8ZpiM2TIQPgMYkV/++03Qd5hZM4obUjNtl17tTOZ6+WIpxanZ2XJ/CWr5KxWzeXo0WPm79RaviOBwCCAjpv2tWT3/kTta+XKsdQ02b5rn7gdNBFwn45UqPKT5GPHJPV4uoJ1ya6EA9ohzXYUZDdA5rolU9uGg4fVZjX6UGKS/LFjj2PsRLz8kaMpxraEA4na1rkl2y2yY+9+yc5yDk9MQz1hm1v2JByUtIwM/XrmyNad+yQi3OYsKqp+G9arq/WG2XKdXOq9KPkOUopDJSUlmZm5U6dOlWP65Y+KipILL7xQJk6caCY0rVu3TsaMGSOYxZuYmCgffPCBdOrUqRQ1l26TZas3yAcz58rtoy+T1s0alW4nbkUCJCALFy40cd2vvvqqXHbZZYWIwFuKdatWrZJ69eoVWu9twb1PvyHp6bgJFl9ytAlCMxQcFLBJRYo/Qa49LQhYQjTIFSQ5KgDgqQpy2HcaN3tkzjCdTPzuYKPa60TnpOGpEIP0P/AMUiNL2zmuqC+c1XYFBbnyOuNObMes7yZsA0uoPr/Yqdfo3usulzOaNLDlEtjmQb3ttttk5syZMmHCBBOflpR0RH74YaH5MSC2bcmSJbJ9+3Z55JFHJDY21tYnQGXpcOT8paukXaszKE5t+VqwktOJAIb3MazfunVrr6ddv3590+n0ukERK/p0OUsyMrP09uK9pKgXZ+2mP6R5w/rSIK6W9w25hgQcTcAlP63ZIBnqRe2o96HVv22RurVqSrsWTU3nyymmJ6tXd+WGzVK/bm3J1N/moSNHpXPbFhoa56ywOMj7xb+slSiNha+vEyc3b9+toqehmUTpFJbwPm/bs089pgekVfMm6t3dLa6gYOnXpZ3RPU6xM1dF4+Jf1kmoztnpo7at3PC7HD2WKr06t5PQ4OJa57KfAY5VPSa67Dt62cMWgbps2TL55ptvTKzaiBEj8no5l156ielBoteDmLY5c+aYiRWl6QVlZGbKE6++J1n6gy+puN05ckyfSnM46ag8+OybJW3u//XaO4mpHiV/H3et/4/FI5CAjwQwhA8PJoYovRV4guDBKEvBUFdGRqbu4m2/XDmuoTnZ2jYkpxyXDB3OYyGBQCUARwl+R/sO6RC/lhT9bm/bk2C8VU45J+s3dvTYcbhSjVl7Dx6Sw0fsGZK16zzBEd5J2HtI7+sY4k9UMZ3loKFztGqJyanGtoOHj2goh2YUysmWbbv3qe12kbCnHrDMys6SrWrbcTPEnys79yaoPgu25wAna8EtIt20+fZUa4tA/fLLLyU+Pl569uyZJ05hnjW8gS9bixYtyjQ8iP1DQvXGWcKVhus6VYcRo8MjJCLMGT8yfDdDg21BCwwsJOBXApj8hMeOYggfcaZ2lQMaO5aeBoFadHGLW284bglTgXxER1kE4VwsJBCgBNDRQkk8kmxeM1QIIDbRScWtw7soCL3BfRklKSlZ79v2etJMxT7+A/vgoEpWbx9Ksorq48czfKzV3t2zNO4UBR5J66Ej+xx2zWEfbMtR9Ziw/7BkqlAF2/0qqjW4A6ttKxCoiBu2q9iiohB/ipjT4h5bGB1dNrdvmD4C8cbLL8z7EXk74a079sqMeYtl6KCe0uaMJt42q9jl+rsPDnHeD75iIfBogUIA+YR79eolDzzwgLRs2VJ69e4tWTqCgdn7144u/yjAE3frI4i9dDCDdWhp2tcLzXDjPTdcKbWqVwsUXLSTBAoT0BjEf7z8jpl8dOvVI+SV96abofOb/nyhjkycEDGFd6r4Jbt0VOO5tz+R3l3aS0rqcVmjoQjjx1wmTRqUPra8IqyGx+/BZ97UTCKxOmTeQaZ+s0AuHTxQ+vdoXxGHL9UxXDqqNPO7xTJ3yS9yzUXny/RvF5n7/tP33+QoT68OfclDz7ylqQPDZeI918tLkz+TrTqBdYK2z5E2TWbyBBYSYp9X1haBiti1WbNmaU8sSfD4QjsKYteem/SJzoYrWo2j7wftbwX/zpi7WD/9aMehfa4DHdNYveE+ee+NPtfFCkigIgi8+eabJnUUHoKRqeIUnU1MYrxuzFgTnpPl5XdYnG2h6hkVL21VckqqbNqxS3p0bCtxtWrkG3kprk6uIwGnEjARMHpTCjkZ14dQNvyFhtpym7XltINPjuxhdNMKtcMyJ9mIE7U8vZgpH3SSJyYiOc1Oa5Q4+KQos/yRTrMTTC3brOseqjY70U7YahVbfjmjR4+Wp59+Wt544w157LHHpHr16saljATfZ5xxhnWsMr3igvfv2t5r7xOQt+zcbdzUXc9qocP74WWq398bR0Y6I9zA3+fJ+qsGAczOf/755+XRRx81sahoeDHqERIWKvfcfbfceuutElXGUZDiyMRUi5KbLh8u1fTVajCL257rSIAESIAETi8CtgjUmjVrCp7sdPvtt8uMGTOkWbNmcuDAQX3SU7CsXrXaELXiXUqLF96XUcMGet08NT1D/j3lMx3Wbyx/GXlBXq/V6w5cQQIkUCwBeE1r165daJvoatUEf3YWiFLMzmUhARIgARIggaII2CJQUTEeOdq2bVuZO3euJto+KjVq1JA+ffoYv/K5554rbdq0Ker45V6Wq0G/bTXmtEObMylOy02RO5IACZAACZAACZCA8wjYJlBxal26dDF/BU8TqafsLnic6YjB/eyulvWRAAmQAAmQAAmQAAlUMgFONa/kC8DDkwAJkAAJkAAJkAAJ5CdAgZqfBz+RAAmQAAmQAAmQAAlUMgEK1Eq+ADw8CZAACZAACZAACZBAfgIUqPl58BMJkAAJkAAJkAAJkEAlE6BAreQLwMOTAAmQAAmQAAmQAAnkJ0CBmp8HP5EACZAACZAACZAACVQyAQrUSr4APDwJkAAJkAAJkAAJkEB+AhSo+XnwEwmQAAmQAAmQAAmQQCUToECt5AvAw5MACZAACZAACZAACeQnQIGanwc/kQAJkAAJkAAJkAAJVDIBCtRKvgA8PAmQAAmQAAmQAAmQQH4CFKj5efATCZAACZAACZAACZBAJROgQK3kC8DDkwAJkAAJkAAJkAAJ5CdAgZqfBz+RAAmQAAmQAAmQAAlUMgEK1Eq+ADw8CZAACZAACZAACZBAfgIUqPl58BMJkAAJkAAJkAAJkEAlE6BAreQLwMOTAAmQAAmQAAmQAAnkJ0CBmp8HP5EACZAACZAACZAACVQyAQrUSr4APDwJkAAJkAAJkAAJkEB+AhSo+XnwEwmQAAmQAAmQAAmQQCUTCKnk4/PwJEACpxGBzMxMcbvd5oxDQkIkNDT0NDp7nioJ5CeQm5sr+E3k5ORIcHCwhIWF5d/AIZ887QxVG0PUVhYS8DcBClR/E2b9JEACeQTuvvtuqVatmrhcLtm6dau89tprUqdOnbz1fEMCpxOBjRs3ykMPPSRt2rSRn3/+WZ555hk5++yzHYdg6dKlMmXKFJk3b548++yzcumllzrORhpU9QhQoFa9a8ozIgHHEnj66aclIiLCeE5vvfVWmT59utx8882OtZeGkYA/CTzyyCMyevRoI/jefvtt+d///udIgdqjRw/B30UXXSTwprKQQEUQCDiBOmHCBJk1a5bxwNxyyy0yZsyYiuDEY5AACdhAICYmxtSSkpJiPKi33367DbWyChKoeAIpqWmybPV6CQ46MdydkY6h+lxZueF3camIO3g4URYuWyNZ7ixpe2ZTaRRft5CRy5cvl0cffVSCgoJk6NChpsOWnp5uOnGFNi7ngp37DsqWbbtEb5qSePSoqMKUPfsPSkZGhqlxxa+/ydZde40N7Vs2kzq1ahQ6khWKg5EPFhKoKAIBJ1BbtGghkydPNnwwXNi8eXMZMGBARfHicUiABHwkcPDgQXnwwQdlxIgRctZZZ/lYG3cngcohEBEWKrsSDsovv25WA3I1tjrHGPL98rX6SXTdIZk2e4HUq1NTupzV0quRluiDSEWx20NZo1qkfL9ijRxKOgptamyDILXKgmWrJEeXtm99pvTr0cFazFcSqHQCATeL/8orr5S2bduav/r168uuXdozZCEBEggIAocOHZIbb7xRevXqJX/9618DwmYaSQJFEQgNDZE/DewlYTphyBKn2A4TnlAgNLF85Pn9pE7Nwl5JbNOqVStJSEjAW1m2bJnUrl1bIiMjzWe7/qkRU03GXnqBTmwKyWebJYTdam9MRJRccn5fCTkpkr0dG2LaEtTetrFrea7QW2sXy0CtJ+AEqgX6jTfeMD+UK1SwspAACdhLICsrywzB//jjj/LFF1/IqlWrbDnA5ZdfLhjex8zlt956y7Z6bTGOlZBAGQnEq3f0LyMH6wz8om+l5/TuKh1aneG11okTJ8orr7wiTzzxhLzwwgt+C1lr2iBe+nZtX6QdwSpKLzynl9SvW7vI9Vh44MABMzlq06ZNMnXqVPnwww+9bmvPChWnLvihtVivJz7x39OIQMAN8aN3iiH++fPny8svv8x0F6fRl5WnWnEEEBt3/fXXy5EjR2T//v3yl7/8xczitYYhy2vJww8/LGlpaSbVFOqKjo7OqypL009hWTDj3PKY8I3zCXRr31p+3bJDlq78NZ+xzRrGq4f17GI9jpixD5G6a/duE/LSsWPHfHXY9QG/q4vO7S3bdu/VvxMeW9QNLyrCDwae3anYQ4WHh0vr1q3lZRXT7uxsZt4olhZX2kUg4AQqepkrVqww6Wlq1aplfmAVNeRgF3TWQwJOJ1CjRg0ZO3asie8eNWqUIGepHWXIkCFFVoMb5QdffCdtmjeWXl0Yl1okJC50LIHhg3rJhs3b5OixVGMj7kmXDOkvMVElD9d37txZ8OfvEhkRLldedL68OOkTydARDJQ6sTWMnSUdG+0BYsZZSKAiCRQ9LmGDBStXrpTbbr/NpMxo1qyZIL2MHWXhwoXGq4MZ/FdffbV8/fXXdlTLOkjgtCOQkZ5hvKIjR46U888/X6666iozixgg2rVrZ/IzIlbUV69pacDu2HNAVq7fLGk6E5qFBAKNQO3Y6nL9n/9kEu0HqTi9+Ly+0qJZI8edRhPNJHBe726aeUBHKvTv0gv6C2xnIQEnErDHLVLEmc37bp4s+mGRyZ2G4cKjSG9hQ/nqq6+81rJ+83aJj6vFH5xXQlxBAicIIFTm9jtul08//dTkNmzfvr3s3r3HCNZLRl4irqATExRyMO3XzwWpeX5eu0Eiw8Oke+c2fj4aqycB/xBo1bSR9O58luw7cFjO7dXZkaEq8OxefF5v2apD/XVqxAjCEwKmBMKcKeXr9OJ8C08R1HRtvt2B9u3bJ3v27JFsjUvBE2KaNm0qyHWIGyBubrn6WrNmTbnjjjvkqaeeOnVkm98lHzsuj786RXp1aiujhg4sNu7H5kOzOhIIOAKYMdy7d2/jMYUHFTcuNAXIweg5izhb40Kb6W968ODBMmnSpDJ5U5/778eSdnIosThAaCsOJh6RKI1zi4k5FZNa3D5cRwJOJJCVmW1yoYZHOPsRvhkZWea3HBqiOVwdqFjQFiUcTDSTz6pFRskRnVhZQ9uG6FKETFTk9yIl5bikHD8uNavH5IV31FcnmW+qyuYzUB9DwqFEbeNFGuhEuP3a1mZlZZv0Z3aPjuEYYy4dKk3i42w5iXJ7UHFTee+99+Sll14SpI7B02GQUuPaa/8i//znP82XH/EDOSdvfLZYW0wlqzf+Lpk687iHClTGpBYDiqtIQAm8//77Aq9pv3798n4v+N14ilNfQSUeTVHBq8nA0Wp5K+o9TddE5mgrsrPdknQkxduWXE4CAUPguHb0WMpPwDi3VOVBUxzTSZUoqWkZmv0ju/yV2rwn0mBlZWeZWlOOp+Wl8DqcdEzX+H/kqbSnA5bQa2jfDyalqM1u44xIOnpMEI5iZwETt4pfu0q5Beoff/whd955Z94j2mBQZmaWLFmy2Bbb0IPaq0MlAFtSSdfjztNkw41VtSOP2659B0raxe/rgzU3XoM472k7/G4AD0ACxRBA/uC4uDgTM1fMZj6t+scdY0xDWFwl+9VL8tqHX0i/7p1kcN+uxW3KdSRAAqcJAXdujvz9+UlSt3as9NKwiU9nfy8jzusj/bo550ECEHyzFiyVeUtXypXDz5EvZi+WYPVIT7jnBvVQnhCuzrhcufL3FyZLRGSYTFTbXpr8qXly2KN3XKujVhG2mxiuD7Cwq5RriB+i8b777jOPHMWM+urVvQdZY1sM+Y8fP75MQ/zpGZny0Av/Na7o4k4W+h9iFsmGQ1QUOqLfokbEVo/WL8ONxZnOdSRQaQTwe5w3b55g0mHduoUfwWgZ5ssQ/4PPvVnipCe0DzhGqGYJ4MiHRZ2vJEACGBFFm4DJXGgjcH+3e0jaV8rw8LpzTtgGDYKx/fDQMPNkLl/rtnP/TPX0Ip1sWFiYEc/wqoaGhBY7uFWe4+N63TXmUmneuEF5di+0T7k8qG79sixdulS6d+8uUR55DAvV7sMCfCm7t2ttYlu9VQNxelyF7MY/dhhvZcN63m+03urw1/LIKPt7Jv6ylfWefgTGjBkjb775psyePdtkw0DDD7GYmJhonmZjiUUMAVnvrdfS0mrasH7e874L7qO1ytHUVDOhpGmDehKhE6RYSIAESAAEVD/J7zt2G0EVq7Gn+zWGsnbN6hKrT8VySkEbhtj5w0eTjaf3wOEkXRIkZzSOFzdOwEHl9x17TDxvi8b1ZdveA+o4SBe0u8HB9g7xI6A53Ma2vFwCFdytG5q/rgG8ogcTk0y8RHHHSMtIN72rTI2rOKBfFqeUmPSS8985xVbacfoR6Nq1q3nkKB43Om3aNDO5cceOHZKqeRznfjdXZ/TvNrHkx3UCAJL1L1q0SOPLr5XY2FiZMGGCeS2J2q1XX1zsJu/NmGNGSO4Yc5lUi2SHrlhYXEkCpxmBuye8KnG1a0n/Hu3lg5nz5Nze3WVgD+cM8eNyfPHdYvl20XIZPqi3TJ21wAzxjx87ynFX6t4nX9f5BeGCtvaVKdNliwrWO0aPlHD1qDq5lEugIr4Ss3rxRKcjSUl+eaoEBOqu/YcEsyK9FY1PkEx3thkCSNTJFfhzSqmhQ/wsJOBUAvCGvvTiS9K3b18TqgNBGh8fb5JxYx1iqPB4Qzz1qU+fPuY0Dh48aEY0MILia0lOSZXDR5JlQI+OFKe+wuT+JFDFCMADidknORqLiuFolFwdTndaOWma8Zia99YCpxkKe046dS0Tkd7P6aVcAhXe0xtuuMEMEeL13XffNXGoBw4c1KH/JXlPnDCxoXozww0P7zGEiFKaOJIwdRP/c/xYs31R/wS7gmT24uUyf9lquXvspVK3Vs2iNqu0ZWUdDq00Q3ng05YAfmN42AX+CpbmzZvLjBkzCi627XN1Hba7TtORRNJzahtTVkQCJEACVYlAuQQqADRq1Egmvz1ZJj45UVq0aKGxDMEaexAut467VVwjXfLZZ58ZEYshQnhjnnnmGXnxxRelWbNmsmbNmhLT2SAyoloxOc+OJh+TNb9tkU5tztRYivhSid6qdOF4LiQQ6ARqVHdOPFmgs6T9JEACJFDVCJRboMJDOHTYUOnVu5eJUYN3FDPE6tSpYxgNveAC+eWXX/K8phY4bIOcqb4WPFd4YPfO0uqMxhSnvsLk/iRAAiRAAiRAAiTgIALlFqjWOWDSBP4Klmh9qtSZ+uevEqa5tgbp4+RYSIAESIAESIAESKDiCTg/jrPimdh3RDzAhYUESIAESIAESIAESIAEHEOAAtUxl4KGkAAJkAAJkAAJkAAJgAAFKr8HJEACJEACJEACJOALATyqicVWAhSotuJkZSRAAiRAAiRAAiRAAr4SoED1lSD3JwESIAESIAESIAESsJUABaqtOFkZCZAACZAACZAACZCArwQoUH0lyP1JgARIgARIgARIgARsJUCBaitOVkYCJEACJEACJEACJOArAQpUXwlyfxIgARIgARIgARIgAVsJUKDaipOVkQAJkAAJkAAJkAAJ+EqAAtVXgtyfBEiABEiABEiABEjAVgIUqLbiZGUkQAIkQAIkQAIkQAK+EqBA9ZUg9ycBEiABEiABEiABErCVAAWqrThZGQmQAAmQAAmQAAmQgK8EKFB9Jcj9SYAESIAESIAESIAEbCVAgWorTlZGAiRAAiRAAiRAAiTgKwEKVF8Jcn8SIAESIAESIAESIAFbCVCg2oqTlZEACZAACZAACZAACfhKgALVV4LcnwRIgARIgARIgARIwFYCFKi24mRlJEACJEACJEACJEACvhKgQPWVIPcnARIoNYGPP/5YRowYIcOGDZO33nqr1PtxQxIgARIoicDhw4flzjvvlKFDh8qXs2aVtHmlrV+4cKGMHTtWrrjiCtm1a1el2VHcgfft2yf33XefYXnHHXdIQkJCcZv7ZR0Fql+wslISIIGiCDRt2lQeeughefLJJ2Xu3LkyZcqUojbjMhIgARIoE4Hc3FwjqOrVqyePPvqovPaf/8jixYvLVEdFbjxkyBDZsGGDpKSkVORhS32sxMREadu2rTz77LPSsmVLGTdunGRmZpZ6fzs2DLGjkoqsA19Cz+JyuTw/8j0JkICDCfTu3dtYl5OTI9HR0ZKdne1ga2kaCZBAZRCA58zynrlycY/X+34Jt3q3tinbt2+XZ555RuLi4uS8886Tb775Rvr27eu3U3B5GHXifQlGnrRk0KBB5t2LL77oN9s8K/a06sT7/DrKc1vrfbt27QR/KA0bNpSpU6cK2u2KLAEnUF9//XVZs2aNAYWeB76M8MqwkAAJBAaBp59+Wr777jupVq2aXHrppYFhNK0kARLwK4HN2/fIr5u3GcmXo4I00+2W5JRUWbXxd3PcNb/9IYlHU6RaVKQM6detkC25Kp5CQkIkNDTUrGvSpIls3LhR4NSyy5GFuhb9/KscOnpU6xT5fftuPVaurFi3SdKzMiXYHSRffLdEIJbj6sRKn87tJCjIUx4WMtsvCzIyMuX7FevkWGqaqT8jO0vc6bkya8EyOZCYJDm5OTJzwVIJDQ6Rls0aSodWzb3aAa/p3/72Nxk+fLiEh4d73c4fK6xOij/q9kud1157rfz73/+WN998U2rUqCGfffaZX47DSkmABPxD4L7775eZM2dK9+7d5cEHH/TPQVgrCZBAQBGoHh0ly1avl29+WCazf/hJ3CpQjx47Jut/32ZE5oYt22T2op9VXLmLPC9XUJBxXFmjMklJSUYj2CVOcVDUFR9XSxb8tFK++X6Z/LFzj7FtjYrozKwsScvIkK8WLpH5S1dItcgII2KLNNbPC8PCQiVH+X23ZLl8qzyzdKQqLT1dZs77UQ4lHVW2OTJv8QoV1hulft1aXq05qkIcIVmNGjWSe++91zah7/WABVYEnECNiYmRd955R26//XYBvMsvv7zAKfEjCZCAUwls2rRJMtLSzM3nmN580rXRZCEBEiCB+Lo1ZdSwQRKmHtAgFZtWsQQmXls1ayTn9upirSr0Cg/qzz//bOI658yZI3369Cm0ja8LWjVvKOec3VmCg4PzBJtlI+qG7ef16Sad27bIW1/wmPBKYgQYQ+bHjx+XDBW2dhbYM3RAT2nf4gyt9pQHF7bB84uC9xef20fq1KxxYkGBf2Hfww8/bGx84IEHjHe6wCZ+/3jqW+D3Q9l3gF69esn5558vWdpjWbdunX0VsyYSIAHjEVi+fLmZDYs4rn79+smYMWNk5cpVprHyBdG7774rV19zjWAkBMNl/3rlX75Ux31JgASqEIGeHVpL767tEXFaqNSsHiPXXTbUCNhCK3VBiArGCRMmmImXcFz16NFDLr744qI29XnZhQN7yxmN65s2rGBlDePryPl9uxdcnO/zLM0w8Kc//UkwEenuu++WN954I996uz6MGNJX6tYqLEChUXt0aCPdOrbxeqiffvpJYOfatWvloosukuuvv952Ie314CdXuPQmUdR3oaT9HLEeaWrQS/r0008dYQ+NIIGqQCBNPZwdO3aUxo0bCzqDYWFh5ne2bt1a+fLLWTJo0CC/nGaKehIiIyIkRHv2LCRAAqcngcMaZ/rK5E9NrKRFICQkWK648Fzp3629LjrlEbTWV8brjr375eV3PjND59bxozU+9o5rRkozFa9OKYtX/SofzJiroRGnpF49HdZ/+OarJKKCY0rLysRvk6Tgwj506JBxY0MDY0IEZoJ5usLLaiy2x6QopDyAW/yTTz6Rm266qTzVcB8SIAElgN8pBCl+oxjyiVCBiL/58+cL0rVAnKIgDx5E62uvvSZnn322REZGmuV2/ZOtQ12vvf+FeiXiZdTQQT63E3bZxXpIgAQqlkDtGjEy+tKh8tLkqSZWEsKqU5sWKk47VKwhJRytaYM4GdK/u3w5b4kZWcpVv++Qfj0cJU5xCpiotXXHXvnxl3WmXQ0NDZER5/VxvDiF7X5xVSB24brrrjOelsGDB5vh+IEDB5ocZcnJyThuuQsmViAZL4b3MRsYiW6tEsDOYOsU+EoCFUIAv5Wfl/0kl112mbRp00bat29vBOj48eNNIwbvqSVOYVDt2rVNBxOdTohau8sWncG7O+GgNGlQj+LUbrisjwQCjECLJvU11rSrtgUi9WrXlEuG9HfgGbjkgr49pH3L5qaD37p5ExnQ3VkiGtDgFByusaaN4+saOwf27CRdz2rlQJ6FTfKLBxWz6BD0iyTcVt5D5PvCUwlwI4R4LW9BTBz+iiprNQ1Fw/g4DfqtXtRqLiMBEjhJAF7TK6++yuQLXLlypdSvX1+OHDliwmUgXguOdOzevVu2bt0qV111lURFRZWKY1pahiBdTEnFne2WH1asMSlM2pzRVFLTOHGqJGZcTwJVncA5Ohlqw7YdMrB7J4kMD3NsuzC4fw/ZuWe/XDHsHDOM7sT2K0Jn9Q/WuNgv5i2WAV07+pVlpIYN2JVay6cY1BxNVfDxtE9ktibDxWxcpCK45uprpGu3rpKtKQ4QtGwVrMfQPCZcQLh6emesbXx5PXTkqDz5xodybs+O2lvwX2JeX2zkviTgFAJI04bcdt9//31eMubibEOncsaMGWZ7DPWXpjz43Jsan1U6bytStCDEwLPNKM0xuA0JkEDVJYBZ7ugsF+wwO+mM0aHHH9ovJxfYCJ7IPuDPctfYyzRUq4Ethyi3BxUe0htuuEFmz55tRGetWrXMjPop704xArXgjcatXlUMDeLpMXZ/2QB+5frfBZ6Yru29z0qzhRgrIYEqQGChPgsaQ/sNGhTfkKBjOXHiRPNElrfffls6dCj9ENaZTRpKRmZWsbSQj2/rrr1SI0Zj1OvV1bah2M25kgRIgARIwMEE4EG1q5RLoEIQLliwQKZNm2YSbuOZshCdUOeIPy2qTNUJTUipgHQF1pMeitrOWgaPylsff6nJb4tOymtth1cEUe9NOGRm/348a77nqkp7H1MtUm768/BKOz4PTALFEUAMN3IGltRZfPXVV03qlsmTJ8sll1xSXJWF1kVHRZTYW8fvHCVKt43WxNYOmaBb6Fy4gARIgARIoHgCwepgCLLRQ1sugYrHeE2aNEl69uwp55xzTt5NDi5uPN2pYFm2bJk8/vjjZkITJk2VpuTm5MofuxLMZKiStocwhkgNDQo23piStvf3ekTdxcZE+/swrJ8Eyk1gwIABxjOKCYexsbGF6sFvCk9sQ9YMzNy/RnOXlrVgVCMt3XsCajy72p1zogO6/2CS7D+YWNZDcHsSIAESIAGHEIDDY0APDQGrXfieUh4TyxWDCu8LJj+1a9dOJumwX8HhfE9DkOQVSfURe/rhhx+aFDae6729h5f2cFKyie3wtg2WJ6Uck0mffCVtz2wqwwb2kkp47G0h81RbK5Mgqc3JWoXYcIEzCGBCFH6/yIqBmHCIVEycQsjOcB3l+Hz6dPnrX/9qHm+HWNXylG27E7wm9sdQPp69PX3OD3L18POlSX2dYVqeg3AfEiABEiABxxBoWK+OprA6kZ7QV6PKJVAxAepivYlhtv7XOkHKm0D99ddfjdcUcW7vvfeexMfHl9rejIxMeeSVyepBzS52H3hzMUyIsAHHJPhWcV29RrQ8fkf5sxUUe9JcSQI+EkAHcO7cueZRdtu3bzd5TfF7RkcST3tCDlQ8irRg7uIzzzxTPvvsM5N2yhcTsjX2FCE8SUeT5Z7rLzcJ+n2pj/uSAAmQAAlULQLlGuIP1qF8DPnddtttsmb1aunWrZuhkpubo7P5M8zNDilp8GgsTJ764IMPTDqbsqCDq7h2bHUjgovezyXpGVn6tIlETSsVK1ERCMx1jg+mWnTpUvEUfW5cSgL+JYDfF2LHMSN/27ZtJpQGExibNm1qRjm+/vpryT4ZH+ppSaSmmIqJifFcVK736TrJ0qXDHef27kZxWi6C3IkESIAEqjaBcnlQgQRPcrrgggtky5YtMm7cOKlbt67JkwhP5kMPPWTWbdy40TxnFkm/rVI3Lk6GDRvm1etqbVea128XLZdvf1guj97+F6lVg7lPS8OM25AACZAACZAACZCA0wmUy4OKk0Ky7s8//9xMoEDcGuJSMZQPsYr3ELDIizpdY9kwnGgVeGyG6EQpb2EB1nYlvSanpMrydb9J9/atdEKS7x6dko7H9SRAAiRAAiRAAiRAAhVDoNwe1Ioxz/tRMjSn6uoNW6VF0/o6Galw5gDve3INCZAACZAACZAACZCAkwkErEB1MlTaRgIkQAIkQAIkQAIkUH4Czn42V/nPi3uSAAmQAAmQAAmQAAkEKAEK1AC9cDSbBEiABEiABEiABKoqAQrUqnpleV4kQAIkQAIkQAIkEKAEKFAD9MLRbBIgARIgARIgARKoqgQoUKvqleV5kQAJkAAJkAAJkECAEqBADdALR7NJgARIgARIgARIoKoSoECtqleW50UCJEACJEACJEACAUqAAjVALxzNJgESIAESIAESIIGqSoACtapeWZ4XCZAACZAACZAACQQoAQrUAL1wNJsESIAESIAESIAEqioBCtSqemV5XiRAAiRAAiRAAiQQoAQoUAP0wtFsEiABEiABEiABEqiqBChQq+qV5XmRAAmQAAmQAAmQQIAS+H8cImhm9qNAWwAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "e3e88181", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "### Step 1: Generate Quantum Circuits and Operators\n", + "\n", + "We next examine the case where a long-range CNOT gate is implemented using nearest-neighbor connections of a measurement-based CNOT with post-processing. In the figure below on the left is a circuit for a long-range CNOT gate spanning a 1D chain of n-qubits subject to nearest-neighbor connections only. On the right is an equivalent implementable with local CNOT gates, measurements and which requires post-processing.\n", + "\n", + "![image.png](attachment:64faac2c-cfe0-46af-a2e6-a30fce568e67.png)\n", + "\n", + "The circuit on the right can be implemented as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8fb3b80e-240d-4795-9142-7b87bd24b5c3", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "def CNOT_postproc(qc: QuantumCircuit, \n", + " control_qubit: int, \n", + " target_qubit: int, \n", + " c1: Optional[ClassicalRegister]=None, \n", + " c2: Optional[ClassicalRegister]=None,\n", + " add_barriers: Optional[bool]=True) -> QuantumCircuit:\n", + " \"\"\"Generate a CNOT gate bewteen data qubit control_qubit and data qubit target_qubit using Bell Pairs.\n", + "\n", + " Post processing is used to enable the CNOT gate via the provided classicial registers c1 and c2\n", + "\n", + " Assumes that the long-range CNOT gate will be spanning a 1D chain of n-qubits subject to nearest-neighbor \n", + " connections only with the chain starting at the control qubit and finishing at the target qubit.\n", + "\n", + " Assumes that control_qubit < target_qubit (as integers) and that the provided circuit qc has |0> set\n", + " qubits control_qubit+1, ..., target_qubit-1\n", + "\n", + " n = target_qubit - control_qubit - 1 : Number of qubits between the target and control qubits\n", + " k = int(n/2) : Number of Bell pairs created\n", + "\n", + " Args:\n", + " qc (QuantumCicruit) : A Quantum Circuit to add the long range localized unitary CNOT\n", + " control_qubit (int) : The qubit used as the control.\n", + " target_qubi (int) : The qubit targeted by the gate.\n", + "\n", + " Optional Args:\n", + " c1 (ClassicialRegister) : Default = None. Required if n > 1. Register requires k bits\n", + " c2 (ClassicalRegister) : Default = None. Required if n > 0. Register requires n - k bits\n", + " add_barriers (bool) : Default = True. Include barriers before and after long range CNOT\n", + "\n", + " Returns:\n", + " QuantumCircuit\n", + " \"\"\"\n", + " assert target_qubit > control_qubit\n", + " n = target_qubit - control_qubit - 1\n", + " k = int(n/2)\n", + " \n", + " # Deteremine where to start the bell pairs and \n", + " # add an extra CNOT when n is odd\n", + " if n%2 == 0:\n", + " x0 = 1\n", + " else:\n", + " x0 = 2\n", + " qc.cx(0,1)\n", + "\n", + " # Create k Bell pairs\n", + " for i in range(k):\n", + " qc.h(x0+2*i) \n", + " qc.cx(x0+2*i,x0+2*i+1)\n", + " \n", + " # Entangle Bell pairs and data qubits and measure\n", + " for i in range(k+1):\n", + " qc.cx(x0-1+2*i,x0+2*i)\n", + " \n", + " for i in range(1,k+x0):\n", + " qc.h(2*i+1-x0)\n", + " qc.measure(2*i+1-x0, c2[i-1])\n", + " \n", + " for i in range(k):\n", + " qc.measure(2*i+x0, c1[i])\n", + "\n", + " if add_barriers is True:\n", + " qc.barrier()\n", + " return qc" + ] + }, + { + "cell_type": "markdown", + "id": "75c0cde5-1300-40ec-9fea-e3018b762ee2", + "metadata": { + "hidden": true + }, + "source": [ + "#### Prepare circuits for Monte Carlo Certification\n", + "\n", + "We utilize the methods `prep_P_ij_conj` and `meas_P_kl` to prepare the circuits for Monte Carlo state certification." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "df8920d5-68ea-4c6c-8c7c-787d23e4ed2c", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "def build_circuits_postproc(n : int, samples: List[int]) -> List[QuantumCircuit]:\n", + " \"\"\"\n", + " Args:\n", + " n (int): Number of qubits between the control and target qubits\n", + " \"\"\"\n", + " assert n >= 0, \"Error: n needs to be a non-negative integer\"\n", + " circuits_all = []\n", + "\n", + " qr = QuantumRegister(n+2, name=\"q\") # Circuit with n qubits between control and target\n", + " cr = ClassicalRegister(2, name=\"cr\") # Classicial register for measuring long range CNOT\n", + " \n", + " k = int(n/2) # Number of Bell States to be used\n", + " c1 = ClassicalRegister(k, name=\"c1\") # Classicial register needed for post processing\n", + " c2 = ClassicalRegister(n-k, name=\"c2\") # Classicial register needed for post processing\n", + "\n", + " # 16 Paulis with non-zero expectation value to prepare and measure\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " \n", + " for sample in samples:\n", + " P_prep = P_lkji[sample][0:2]\n", + " P_meas = P_lkji[sample][2:4]\n", + " if n > 1:\n", + " circuits = [QuantumCircuit(qr, cr, c1, c2, name=\"CNOT\") for i in range(4)] \n", + " elif n == 1:\n", + " circuits = [QuantumCircuit(qr, cr, c2, name=\"CNOT\") for i in range(4)] \n", + " elif n == 0:\n", + " circuits = [QuantumCircuit(qr, cr, name=\"CNOT\") for i in range(4)]\n", + " circuits = prep_P_ij_conj(circuits, P_prep) # Prepare control and target qubits\n", + " # in eignestates of P_i^* and P_j^* respectively\n", + " circuits = [CNOT_postproc(qc=circuit, \n", + " control_qubit=0, \n", + " target_qubit=n + 1, \n", + " c1=c1, \n", + " c2=c2) for circuit in circuits] # Add long range CNOT\n", + " circuits = meas_P_kl(circuits, P_meas) # Prepare circuits to measure the control and target\n", + " # qubits in P_k and P_l bases respectively\n", + " circuits_all += circuits\n", + " return circuits_all" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db53b428-14e0-485a-9e9e-b17d59936c02", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "# Example Circuit\n", + "n = 6\n", + "sample = [15]\n", + "test_post_proc_circuits = build_circuits_postproc(n, sample)\n", + "test_post_proc_circuits[1].draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "dce65873-1601-491a-bca5-1f6c4595d842", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "### Step 2: Optimize the Problem for Quantum Execution\n", + "\n", + "For this experiment the curcuits and operators are already as required" + ] + }, + { + "cell_type": "markdown", + "id": "32426af9-cb12-41be-a125-f557ce8c4b2e", + "metadata": {}, + "source": [ + "### Step 3: Execute the Circuit \n", + "#### Check Parameters and Submit Jobs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e3383899-5cd5-4f3b-a02e-29cd21da6fcf", + "metadata": {}, + "outputs": [], + "source": [ + "# Set local parameters and submit circuits\n", + "\n", + "SAMPLES_POSTPROC = SAMPLES\n", + "OPTIMIZATION_LEVEL_POSTPROC = OPTIMIZATION_LEVEL\n", + "SHOTS_POSTPROC = SHOTS\n", + "MIN_NUMBER_QUBITS_POSTPROC = MIN_NUMBER_QUBITS\n", + "MAX_NUMBER_QUBITS_POSTPROC = MAX_NUMBER_QUBITS\n", + "NUM_CIRCUITS_PER_JOB_POSTPROC = 128\n", + "USE_DYNAMIC_DECOUPLING_POSTPROC = USE_DYNAMIC_DECOUPLING\n", + "DURATIONS_POSTPROC = DURATIONS" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d503fcdd-917e-47ae-9ec5-e28753f61b1d", + "metadata": {}, + "outputs": [], + "source": [ + "job_ids_postproc = submit_circuits(MIN_NUMBER_QUBITS_POSTPROC, \n", + " MAX_NUMBER_QUBITS_POSTPROC,\n", + " NUM_CIRCUITS_PER_JOB_POSTPROC,\n", + " QUBIT_LINE, \n", + " COUPLING_MAP_1D,\n", + " SAMPLES_POSTPROC,\n", + " OPTIMIZATION_LEVEL_POSTPROC,\n", + " backend,\n", + " SHOTS_POSTPROC,\n", + " build_circuits_postproc,\n", + " use_dynamic_decoupling=USE_DYNAMIC_DECOUPLING_POSTPROC,\n", + " durations=DURATIONS_POSTPROC)" + ] + }, + { + "cell_type": "markdown", + "id": "a6d7ba99-73b5-4cfb-9b53-0ee29d04551f", + "metadata": {}, + "source": [ + "Check that all jobs have completed before proceeding to analzing/processing of results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d6936453-392d-47b2-9649-9f243f599beb", + "metadata": {}, + "outputs": [], + "source": [ + "check_jobs(job_ids_postproc)" + ] + }, + { + "cell_type": "markdown", + "id": "32884eb2-27da-494c-8027-625cda60b896", + "metadata": {}, + "source": [ + "### Step 4: Analyze/Process the Results\n", + "\n", + "Some processing of the counts is required in the post processing experiment. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "37def43e-e7b2-487d-a407-cca8a61fdaa7", + "metadata": {}, + "outputs": [], + "source": [ + "def parity(string: str)->int:\n", + " return string.count('1')%2\n", + "\n", + "def parities(string: str) -> str:\n", + " strings = string.split()\n", + " parities = [parity(val) for val in strings]\n", + " return parities\n", + "\n", + "def postproc_counts(counts, i, samples):\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " \n", + " PauliI = Pauli('I')\n", + " PauliX = Pauli('X')\n", + " PauliZ = Pauli('Z')\n", + "\n", + " P_k = P_lkji[samples[i]][2]\n", + " P_l = P_lkji[samples[i]][3]\n", + "\n", + " # determine parities\n", + " counts_post = {'00':0,'01':0,'10':0,'11':0}\n", + "\n", + " for key in counts:\n", + " parities_list = parities(key)\n", + " w = len(parities_list)\n", + " if w == 3:\n", + " parity_of_c2, parity_of_c1, _ = parities_list\n", + " elif w == 2:\n", + " parity_of_c1 = 0\n", + " parity_of_c2, _ = parities_list\n", + " else:\n", + " parity_of_c1 = 0\n", + " parity_of_c2 = 0\n", + " \n", + " # add parity_of_c2 to q0 (key[-1]) only if P_k is 'X' or 'Y'\n", + " if P_k == PauliI or P_k == PauliZ:\n", + " parity_of_c2 = 0\n", + " \n", + " # add parity_c1 to q1 (key[-2]) only if P_l is 'I' or 'Z' or 'Y'\n", + " if P_l == PauliX:\n", + " parity_of_c1 = 0\n", + " \n", + " control_qubit_value = int(key[-1]) # Control qubit q0\n", + " target_qubit_value = int(key[-2]) # Target qubit q1\n", + "\n", + " new_control_qubit_value = (control_qubit_value + parity_of_c2)%2\n", + " new_target_qubit_value = (target_qubit_value + parity_of_c1)%2\n", + "\n", + " new_key = str(new_target_qubit_value) + str(new_control_qubit_value)\n", + "\n", + " counts_post[new_key] += counts[key]\n", + " \n", + " return counts_post" + ] + }, + { + "cell_type": "markdown", + "id": "d4d9d41a-730a-4f93-b5ac-4a6e0eb6f51c", + "metadata": {}, + "source": [ + "The average gate fidelities can now be calculated:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fd75e142-b465-4198-a2a9-9f029fa8df1f", + "metadata": {}, + "outputs": [], + "source": [ + "def post_process_postproc(count, i, p, q, samples):\n", + " return postproc_counts(count, i, samples)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "009a508e-3a58-49d5-94e3-a610286984d9", + "metadata": {}, + "outputs": [], + "source": [ + "avg_gate_fidelities_postproc, avg_gate_stds_postproc, all_counts_postproc = cal_average_fidelities(job_ids_postproc,\n", + " MIN_NUMBER_QUBITS_POSTPROC,\n", + " MAX_NUMBER_QUBITS_POSTPROC,\n", + " SAMPLES_POSTPROC,\n", + " SHOTS_POSTPROC,\n", + " NUM_CIRCUITS_PER_JOB_POSTPROC,\n", + " post_process= post_process_postproc)" + ] + }, + { + "cell_type": "markdown", + "id": "8410a6c6-e9b7-4f19-91cf-4957b6913b61", + "metadata": {}, + "source": [ + "#### Save Data\n", + "\n", + "The average gate fedilities and associated standard deviation data are now saved in order to compare with other experiments at the end of this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "366852e8-cc0f-40fa-b4c9-1a277a8aa9cd", + "metadata": {}, + "outputs": [], + "source": [ + "file_name_postproc, file_name_std_postproc = save_data('postproc',\n", + " avg_gate_fidelities_postproc,\n", + " avg_gate_stds_postproc,\n", + " MIN_NUMBER_QUBITS_POSTPROC,\n", + " MAX_NUMBER_QUBITS_POSTPROC,\n", + " OPTIMIZATION_LEVEL_POSTPROC,\n", + " USE_DYNAMIC_DECOUPLING_POSTPROC,\n", + " backend)" + ] + }, + { + "cell_type": "markdown", + "id": "19607c2e-f49c-48ed-ab1e-f9c0ee6af603", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "## Experiment Three: Long-Range Measurement-based CNOT with Feed-Forward" + ] + }, + { + "attachments": { + "1d5e0458-5431-44b6-9bcd-13d142c7b7c4.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADYCAYAAAA6V+1qAAABYWlDQ1BJQ0MgUHJvZmlsZQAAKJFtkM1LAmEQxp8NwVL7giiIiL1rJav/gFlE4WEzheoQ7K6mwbq97G6Ft/6ButSte9gl6NIpgqC6BYHgtcBDQcdID31s82q1Ws3LMD8eZuZ9GKAjoDCmewAUDNtMzkyKi0vLovcBfoyiCwJ8imaxmCwnqAXftT1qFeqjKI/xXZeHN3PRp9T1brD7pFSt7/3tbwtfJmtpVN8oJY2ZNiCEieUtm3HeJh4wyRTxPudck0uc1SafNXpSyTjxLXGfllcyxPfEIbVFz7VwQd/Qvjxw94GskV6gOkg5gilMI0FPRBpRRCAhjHm60f8z0cZMHOtgKMLEGnLIw6bpGCkMOrLEszCgYRwhYr5PQoTf+vcNXW1lE5io0FcHrqZ/AOcvQG/V1YIq0E8eLo6ZYio/lxVqHms1IjV5+ArwFx3ncQjoeQbeTx2nXnac1yPA2wns3H0ChMNl0FenyKkAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAl6gAwAEAAAAAQAAANgAAAAA104GMwAAQABJREFUeAHsvQmYHcV1/n3ufu/sMxqNdmkktIAAGQRiM/uOWR3wEm+xYxOv/8RJHCefE5v4yZPE8ZM4xku8xbsdY2OMMV7BLDIgIQwIEAiEhED7NtJo1rvf+/3e6unR1TAzGmAkzUhd0p3u211dXXWqus9733PqVKhMsiAFEggkMCYlMJqPp19WiUc+HAq59oYqtv75MSmIoFKBBIaRQCkkNVbmX8T6dq1cLlrIChYKR6wcCnM6ZPy1IuNfz0Blcs+B90j0HdaXsoVCeQuTtcy1fGOfsixvukkoFHF5S3qGyBMuhzm2XyGVtzjs+2O5boddOIe4AtFDfL/gdoEEAgkcRglks1mLRqOWZptIpSzf9z0Wix3GWgW3DiTw2iRQtiLYp0AhSeCRB7DK5QwAK8OPDLN8EcBUSphFkpbx4NjLbqjrKlMklLOEtXG0yOEqtkmwW8TyhR62vRaJhq0ElCuVE4C5uKXIHeNfkAIJHEgCAfA6kISC84EEjiAJRCIooIpf+/oVrGNBCiQw3iUgeOSP5JL2YblCoK5QqGRRwSexXqWCRSNpzsJaueSBrXKpaMWSrtoHvkoArpLlLCKWq6TnJiZiyzFd0UjCSvmM5fKwapEoZcbc1isz+BtIYHgJBMBrePkEZwMJHDESEMgKA7IK+bxF+xiucHhsm0eOGOEHDTmoEpAJ0Qdd/o0K5ZIVikUYXpkIYxbOM/YLZYuHS5aK+KZGb1t0psT9S+AnCf8SFirBYoktw5ToUrjKysUoXFfUqoX28gmLhIF2SUBbQHj54g+2w0ggAF7DCCc4FUjgSJVAPB5HCRWsxK98/dKXz9eBfEDElPn+YQfKe6TKLWjXWJWADIXywwIj8ZF5UT8yYvh3lfIcLYWASWEAErlKtXL06muIx3BFfKJLF/qppDx8B5T1F6zTmC2N0ixa5RFkOb7yA8YSur9fLseCFEhgCAkEwGsIwQSHAwkcaRIQcNrd1mby85o0aZIVYQPEeCmNBEgpv4BaBNAWpEACY0kCgjwaySKghJNKAkAFIBibaDhupWzItm3utJ0vtVuouwAxRe4BGAmCrI8244QKwURZjOaBXioHU6PDXyWeFeE4Od3rBwusWCFqqbpqm3jiREtNSulhGkuiCeoyBiUQAK8x2CkjqZKU6EiU5UjKCvIc+RLQWBHguv322+2FF16wD33oQzZ16lTX8Egf+KqUgliwHPkr/b8ee+wxW716tV166aU2c+ZMy+VyDrzpumQyWXl5sB9I4JBLwHFeAk/gHhFaRWY1xgBMoVDcunenbelvltvyu5+27C7wFabCfoBE3n6s5GMmB7wK4K02K0UY5zjQl0JRD3BFcc8v41yPX1jSqq3Um7CWydPtqo9ebCdcMM8isSiYzkN1wTv6kA+DcXHDAHiNi24avJKVTtKD59h31M8bvAj2yeRo2fNBeh7frgcffNBWrFhhb37zm621tdWZG/3zA+XhjxUxXWWA2MqVK+3mm2+2TCbjgJvylziXx2SpmZKaGemPs4FlBd8DCRxMCYQASi5kBDeRhbAEG1XGfhjGKd7yYSv2FG3n+jZL78nZ/Na51tzU1A+ONNdEPz7CmCX9hOcjuwJeHVgWi+zFAF2YLWG6ygCxKM75caG7npi98NQO695ZsPTeHM+JQByO/DwvSpF+ROe+Bn8CCTgJBMBrnA4EPdxSpGIkfAU5XFNGkme464NzR4YEBIx8k+FwY8KxYJgUBayU5Iw/d+5ck2+YWDOxXvPnz3dlJQFdSgHocmII/hwuCTifLM+CWJLd0QEwmRQxLJaiFsklbUJDs5137SI7btFMjpHB++9M7m4GpANcXgPKzvbocVdlgSkOF52FsiwPL4tyIL01Y3dnV9pzaze4mY+6kiKDFEhgWAloeAZpnElACm7v3r32+c9/3p5//vlhgZd+eYmh+NnPfmarVq0KlOM46+vRrq7Alvy6fN+uA5WvseY74Z988sl29dVX27PPPmu//OUvnanRL0+M17hK0o6BhhxXXTZsZWG8GNn4XdGtMjWS2eOc+CJKi4PRgqJsxSzZkLdUSxp/LD6TM1bFJ9WctiSfeP+n1xLNefKapRrilqxPWFVTypITiNbVyCzGuqgl6jhWX2XxWILiFWpCLFmQAgkcWAIB8DqwjMZkjj179tidd95p69evP2D9xIzdeuut9pnPfMbSvb39NPgBLwwyHBUSEHgSwNLW3xfYknlRxwWqdLy2ttbe8IY32PTp0+3nP/+5Pffcc5ZIoHSk2Ej+9QP33cnD+Mf5/qAU3T/a4fSj3nyOvVAbZR9S+702+FV17elTpi9TqS874F8VbA8kAX+cHGh7oHL2P0+HOPDlXOG9PiZulzMZangWZXZkHJeYzUuIiGwoab2llAG3LK39aNx6wjFLExYirS1xujKEoSgme6yYaLdsqsc6o2nbS+DU3niOPHkXrpViLcc4CkXisMLeczJwaAzVzsr6K0+Qjh4JBMBrnPa1HtSRsBYKEyCF+ba3vc2eeOIJe/Chhwj2t8+X4XA1X68ZKUKcJryfqIerIkfpfTU7UckHXBpLinkkh3kl+WvpI2ClczI16pzMi1deeaUD/AL+ctjXWNQ5lakyVKa2/j1U3qFSLLpP5b00uy1fzqEk+YeztasTdEg5zZkMMiA2k8xIBZqd6c3TDi0H4wHRnIJqihbTMKVNAmgCoxTiPmrnWP2I6R74UV1Hml5JuwbeR9+HupeOa2yM5DNYuX7ZA+unYKfFkPqLWbfcP0IXFfnxkKcPFVsiHAtZDB+tKM72RlyuIubHAoCrAPjK51OYzGvA3jWMhxorF3CYLxAqgk8pi7md+F9l/MQUiiKqOF0hfpSECcXCp8yNNC6K3CdPu4rsy7/MT4O1Vz+E9dyoLf541bgcSmZ+WcH2yJHAOLMPHDmCH62WDPWw6qGujM102WWX2S233GLf//737cwzz7SaGl40KJhDn3gx4Zia5tdntIzSxjaA9wUvLCnMGPvBb4GD1Se+spJfoPy8lPIApp07d1o6nXYhJqQAtm3bZg888IADU+ecc47NmTPHjRUBMIH4yy+/3O655x779a9/bVdddZUtWrTIent6XB6VU83YyrIVWIv0mSD9tSEHrpE3mm2VP5rGtD8TU/cqFPPWE+3leMSyBRZ9ycWshk8swzjLMf5BXKVYyWI1SWJkwnaku12cTPnyZAr4UOJwHYvwhaxai8/59hCEU6nMl30qdjRbMvKyfLmO5Aon+1cAvl5J2YPdf+D7ReNvNPp/YLnqnDygS2szahZjnO8JqKg0jFcBJjNXLDBDN2/53ozFCx2WjG22FBFRQrkGK+dqLUxcrnVPbbcnHttgXe1YBABFYS03hA9YOVxtqQQgrNhrx75uih13+iyL1nKvOGEm4rytAGKxKJNLGEdhgF5lEvDTOo6V9Q3xDOkZ8/0sc8hEYF7va80MDpbuqpTgkbsfAK9x3LeVLzL/4dZDLQWpl6a2Ssonp+gb3/c+u/Ev/sLuuusuu+6Nb3QQx7/uUImB33gswsHLKh+yl5busU3L2vC3CNv8K2daQ2ucl1AQJuNg9YXGgcyGlb+uMyiZ+++/33oATu9///sd6Pra177mTIlisZYsWeJM1PNgusJ9kznkZC+T41e/+lX76U9/aq2trQ6QSamKIVMS4NL9pFScsmH/YCeN5YH34hCcFQo/z7w0QgjUAJ1iPSXb/ehaW7/8Kduwdp11xUvWeuoJ1nrG8TblZJyui2IiwlYVTVqOJWa0qHIUE5SSfIjEoKg53A1g5g4ftj+V7wC/Er6J2P/ub335+N+H2wo0eNB8uFzeucHeIQKkbqwN6Peh6jbYXdS2gWXrmOqlbWXKw0LBOTnmKcaPOvV6UawUP+bA3BZNRi1ZHae/8MWC0SqX6wTPeAfqXQn+LuZ4BvZYZ+dei9LnYZXHjYh7by88v9327HjJqhOn2fGnzCaOHbMkmekoMpRpi5SgcaCxx6xHxrsYrXCfeV713K+unFfSjwOtICHmT+9mBXvVJ0hHhwQC4DWO+rm9vd0aGvD2rEh6kSk99dRTtmvXLjvv/PNt1ZNP2r/8y7+4F98nP/lJO/74490DfgZMlxiML3/5y27bxJTqQ+0UHQJYRbJhW/alp2zpVwio09uIiaDblt22yd7x+TOt5fg6WjOymZqu4cGfEUtAQLyS7dKFAlxylvfHlUJGLFu2zIWbUJDV//mf/7F1xP069thjHYMlxSJFcT7j7Fe/+pVzstcMx9e//vWOPRPw0q953Ut+Yk5x9o3RgUp0xBV/BRnLfayXLnEKD6Ual2lJCo5/xXba+8tH7I8/+Z3tXrPJCumsZeIh2/D0Wnt6+WN2/U3vscnHz7ESE1JCmJFS+O04govHTBjLe9o8nStA54DYK6jfocq6n7Lvu6mOhQYAlqHqo7yDlVGZ35UnsNv3GXhO5rSBSeNiJOPAzzNYHQbez2FhwWBnSqSXhKRIBddWQFQk5YCR+q8IlZnP1/Cpcz5f+oEKLLdZCybZ1NkNVkwXWJuREhkT4jdfeGaP3f7jpdY6Zzqga56lauNc24uZsf82jg2FyuNHhjfe3Y8OxnylfFyF+v7ouMajWC49T3pO9EwJ7IZhif22V14T7B9ZEgiA1zjqT1HReij9B7qy6g/hu6UXnYCXlGVLS4t1d3e72YwCXgoPEE2lHKvxPpivu+++297xjncM+XL17zHaL4EQv+q6Xuyw5d/pskJPLT4SWg1tsnU+s9se/c5LdvXnTqls1qjtu5cdLzm9aEe7TaNWyYNckECX2u4c551SwtTIr24B+mnTpjnT4vLly12ea665xrZs2eKAWoxf71ISYsA0BiXLefPm2XXXXWdf+tKXXHiJ4447zhoaAdECPoy1IuUqv8pXfn2UDoXsB95LsZTU74VSr3VuarM1Sx+zLU8+by3FhE2I1RsQy/Zsz9jejjW28vf32rkTawmaqYWRUYxRqWuv7nJHlEpXU3TUB2HsHtbkt9evhL6rHwYmnwEfeHyo7wPLHSyf+nMk+Qa7djSPAXPcP8ElHwwXQpiRkUWkCvMeJkf5XkVw0lJA1QI+W2GxVSKZuCDM+o31dSn6F5XY19FtW/faylXPAOCydsH5SwBn07mW++ga2q1hoY3AbBiwF4UlzfSmLd8D84b8h5KL3z96lqp4J+t50bFD8WyMpsyDsl69BALg9epld8ivTPGQDpWkJBWJfOOGDbZu3Tr713/9V/v2t7+9n8+AHu7TTjvN5O/1gx/8wM4HpOmagQ+88kk5i0XTR98HJilVfQZeOzBf5XfeWY5FyK+psXT7cYBBGBfKxrOGuUURW3n/Gtv4XyuswKwhmXpw29BEpdeU/Bfa2WefbSeeeKI4/tdU3ni+2AEJwIQvE7VFYF0+XgLp2n/ppZds1qxZLs/Xv/5150wv4C6fLf0610epqqrKrrjiCrvvvvsciL/ooovs4osvdufSsGi//e1v7ZFHHnEsrMaJA2RoKd//arAx5S5+DX98YKGxqyTTTRSlVhOLW32s2hKFuCX2wGis2WMTgPstoZRVYfJOsJZfAmWcyhXtnp/dafc/8qDFkilcwJhsgHLOU2/5CmksOqXe9zg4Z/vXUN/RuHQwBS95d3Z2ur6qfD79iRIjua/6ZyR9pPJVB39c+GXr+GBs+mB5K6/x97Udyf29/OKsvH9hqKhI32LW5UTZUqkau/icy+ySRYxN+jCHz18GX7ACr4EwjGY0zEumlKGYDNMv8DvF4T4UTlhnW9ru/f0KW/X8c7bktJPt5NfPs1gc30jKCPFDRMsJaUA4P3pkFQN4daU77Naf/cSW/uEP1tXdZdmMx/hV9oFXXy5HPgsXLnSTnk444QTHFuuc2LIg6KovpSN3GwCvcdq3enD18V9O2t+8ebOL1aUXryKUP/PMM/bBD36wv4XKqxffu971LhePSbGY3vve9zplqOv9pH1R39dee63t3r27/x7+eX878GXrHz/QtiU0x66tu8mmx15nuXIPPzCZPWRZe2Dtvbb0H37AD8mX/1o/UJnDnZcivv766+0b3/iG1dbVHbUvNv36V/8r+eNGv7obYaq0FJCWBFJ/Cxx98YtfdPs33XSTc7qXDPWykF+KAI3yiFVtbW21xx9/3NasWWPnnnuuVVdX29atW+0nP/mJY8LczQ7zH0HtxmiNJfCGn1aqs/Maj7MZ0RarBYhF8sx4RHtWwYRI/W58cZOtWPY7fhAwY43nII9CLWorcKFfDn2ga6wwXn4/HmYRj9nbV1VXAbhTtmTKKZgWPeYTdOXWYCwDnsL4gYXDcJ74eBUBbeAyBnmBMfC8PbJinc2ZO8vOunChNbTIwZ7/+Hbl8RcsYYqM6Ick2cWmam8vYPeRNX90k07EIh8oaRKLJjqJLRbrJaA62PJdByonOD/+JBAAr/HXZ/vV2H/xim341Kc+5RgqKcFvfetb9olPfML5dwkg+cBKD7f8eDSrUX47gyWVqc+//du/ubzK49/Hz68ypXyluF9Jkt7SwrITnotZx4o9VoMyTDPdv9jUbpe/cbEtrpvgitNqZxit9NPwlRQ/aF61XeyeWJqjPan/xQz5oHnChAlONl/4whfsn/7pn2zjxo2O+RLrJZO0mKzKpJmKulbjYRVsqMDaMcccY6eeeqpjVwX6xcyKXZTPoWRf+VFZ/lisLHc09geOUXcv/jifHY1XoOPMXI3Vt1Vb717FYcLRGto1Fk1YD/45nYWMTZoxxc6YXWfdjL0sPwcUpylEnoNV59fS7kHbO8zzojb4rOBrue/BuNZnQl9t2SVRkQDjKD5ccnZXKkb5nkzYqUtOZaZtNeBZPliALdZaDEfUw3KixxQJeaXwEqUiQJwxseqJjXb/75/G73G6nX/JGTZt1kRnfpS8ZWqEjHf4u4hfl7sXchX7WVddY2efha9jtoD5fo/7kaMfOr7M/f5SP+gZEePV2trqxpbyBM71r7b3x991AfAaf33majxQEciE+NnPftY+9rGP2QUXXOBA14IFC/Zjs/Rwy4fnP//zP+0jH/mInY2j/WA+TypbL4l3vvOd9pa3vGVYCQ2sx3CZUcGwBvg+8MuxzMvp0a9ut3tubrN5ryvbJZ87wybMuoAp+uISRj9pmvYrqevo1+Dwl+j3tfrWB08CzgJX27dvt+9+97vO2f6ss86y97znPe54pdxisKCe8gm5/N/HXK3rPv7xjzsTtlook6Uc9W+88UZ705ve1C9zyf5wyV/Aq5zD/MgMt/jeom379Upb/bOltrmtEx+vauvC96utlLYmHKjf99FLrPH4mcyII24ZsZnkRB1ygTFpnH419P0O0K474O24b4f6z1Dy9BX8wPro+R/qmoF5D/V3Bzyon5/8HwY6PpLk2Ej6BlctusjrJLwMYbHK1lw70aI7mTXIP7GfsVDGfVxeAFeoANNUSiimvW16sc1+e+dDzIIt2eUXnmTHzG+2UAImTDHfAHeRBGwvQF2zIL21IQW+GF8A97qaOjv1smvtkksudW4YqrfaMZTMBb5q+8L6+Hn852skbQ7yjF8JBMBrnPbdwJermAxN81c644wzPPoaZecnmYq0dNB3vvMdpxgVf8lXxH6eyq3/IvDDA1See7X7eiEqyKFeatFEyCZMTRLgMGu1LTBgcxLMmkMxhAmwE6SDIgGZGn2F5jMM+kUuk6EWzX6B2Yua0SjQpJmKcoxXPl2jrcaQxoVYLcXwkn+XZsnKJC0FqTGZ6mNAJ06c6PwHB2uI6nGokrx/CoQG0GzaEIEw49mITUu2WKoYsxV33GWbu3qstypiMxe+zhZfc57Nu2ixRZoJpIk5SvXME8tLayFHxHoJuOiLvtOAEv5fTscfuuaMSGye6WtEWY+ATN47Tu8V2QIjCq7mfLzw51IsLo7K1Ni7u9viCTxJCQsSgcaMuvUbCcJVhLHPMS7wst+zvcvuuPVua8NUftVFF9tx8yYxBjKWzhCOp0zIB72/CDVSkn+XS9699dcf01WY2uubNPN836AYCB71nPgAS5NW5HupsTXc+9i7X/D3SJFAALzGaU/6wMgHYAJeco7esWOHU3jy0brjjjvslFNOcTPWxFwo0rhmM4rx0rIvfhmHXgQOgqG0Mi6GpZbcKEnRYQqSQgvSwZGAwJPPYPnKwB8DAmAC5gJhCpiq8z7o8msjIKZVDzR5Q0tQyTdMPoKaoKHAqRqDKcy5AmhKKnOgQvHHq1/maG4VQFX3rExSkr0EUMW+5GadhcNJi89qsmOuOtOeWLPa1q58wlpxbr7gQ2+1CYtnWrk+YmkFw5TjNO3B9x4fMNqBchRDQsgvtzgyqhI2hZOe7q285WHfL/f1nd+3qpAvdx8gHPZKjqACAiR+vYfKLjDkfPEics6ic8A7MQKiciFrY/MF06MCocoRPl8kdEgxDdCB3SoSTgLAVcbLPgRQy3TmbOldj9oO/GQvu/w0O+uSY62qEWf6erqYH4RhgFc5XWTJNWYtAvLcMfU9HzlFRBhnUcCb3ACLmDRVb5/tquyHynboeZFPl+qvNFS+ymuC/SNDAgHwGsf9OPBB7ejocCxFfX29C26pSPXy3ZFilCOnpv6LnVDwy8OVeE1ya70geSE6lAV9zzFFBT+6fqkfnh4QMJFCEIhSEljRvmbBaXajALui02urGY5PP/20MzkqGr3AmBZn1zqNOvehD33ITgXY97L+p5SID3rkq1LZlwPH6cF0IB54r7LQEvXWnLcCdSxhQsS1x0KpqOUgO7o1q21C0urnT2PhYw7gFxTB4RpV6hRhKAJgg+3SUOUUx9jK+sV+mB1KHxdJchEYqOyXsVbxyr5zwIV+8yDJ8DVVHhkSRXRFCJKroKaabcgbhZCqMJ2clw9WIS83B8YAi2Xn86yqACjTWNAQWPX4C/bwQ0/a7BnTbN7s2ZZLZ1jpoJPngtmOPC8JSxHTrcqqWRg7Sr9nKavEIyS8pxAUmgmpN5naoB8nCoyq52U4vy3/h4m/4oKeoSAdHRIIenqc9rP/kqr8RSjn8cWLF9vkyZNNfjpaSFsPtxiIm2++2cVrkhlJDtL+9Yer+fKMkPO8/srpS34SQTq4EtA4EOiSb4nPJihyvaZH6JwYL5kI5ad12223ObN0a2srPiuXsORK1oGrFYSI+PGPf+yc59/I6gfxhBcwVUrDZ1OGM5kczHHnAB3Kbr+Ewm3CrJhldmKBSPQKoFmOw4aImmAJmep81lIAkijnFX1cyjscYUkhTgtUxYS0GJ1KnHa7/kjV1/HE0B5M2Us+o5lU11cSVkHQuKxZi3zKOOaFANzwZUJF7Mu/MGyJiEZ6yjowR7ZHiR/IPcDf1rurbE88udVeXNNuO9dlbe3DvyUXazTidb+nei/BbnrJG7Eli0+yS6490ybMbWQc8AYTUArnOFtve0q1lhaQIwnqiS1WG/R+Hkzu7r1NHiVXjtsL/hwtEgiA1zjtaSk6+V/pAffTNMyHWsZFjJcYC6dgefA1tVlO9R/4wAdsPg73Y+VXrxRXWcGR9HYM0kGXgICJfoX7bJcUQpIxpF/l8tsSSNdsV33qCLvR2trqlIbPZInl+jKsqcbWhz/8YZs5Eyd0rvGVjGJmVf4QOOgNGuENIihirEUoYpmz2brhhjLGX0uq0gG2yiHYh6x0zj/sg60R3jLIdoglIAOzi7HW12O89pxfn3pQ/a7/AtslZlCHYl24NuyxDL6mEcULTIXtlHOnMzv3aguzhmcYZ/so5kqFm0gnMvw0zMFslWzKjMnWNDkFo9ULQGdmJO74misbCnVSTjtb4na5AXPg0VIJxnyAdohFFtzuMEogAF6HUfiv9tZ6UJubm124hxkzZvQXIwWi437yGY4JHPve975nWiJoODbCv+5QbfV6cq+oA7+nDlWVjuj7KDijzIhivZKwXhpH8sGSqUMg66Mf/agDXTJNK5yExo8CoQrAy8SopaYUFPWv//qv7bzzznOAS0yYwFblD4CxIURpwH0Dq9Ik2H9UrJdjQ6SU98ve34T+vP1Hgp2xKgEB6n0/Q/swUF9lNeuxIAf8cNZipZxVs1+OApvw/0rVxezEk6dY+IRpAC6c6OUD4aazcnFKNksKZn1PZ1ssdrHYNuCtIQELjJme2dmlYicrDHUBvjzfxlcqn7H4Y+WVtiHI/8okEACvVyavMZNbTtIyK+qhHerBVUBLKVH5HPjRyCt/aR3uxkjX6ROkQycBsaSK3aXxIwCmJMZLxxXdX8lnuNwX/rigqQA0hZ6QCVsmRp85E5hzAA4QN7bSASCTnIBImuahxY2VZCoda61wFQv+HFgCdFyfNxd5K3uRcUCk0xCfclROWQVM6zHiB1Y7E6QYL42UMKxXKOUBLrFlPmYvF8SMUqIsCxonMkNHYLaYISurQ7iqiO8Xs2DL+HjJTh2kQAIjkEAAvEYgpPGYRWDsFIJaiuHygdlYAl2SacX7bTyKeNzU2e93+fbdcMMNDrBrVqsYLZ3TVmBLPoJirgTIfEAv5aIp7wJdiu2lmbOKD6c8PnDTNcrv32dcCMYNPtUZhYsMRH7tFyVA54M0riSg2YVycFcKQWHy5uvzHS3gQ1+0LCbCnly3bV29F+JrG75gfZ0snMacCwG0IuNYywK5iZBCYISPiLOuYxKn/IimuIr4isJ0xSkPVqzcHbFNG8vMhCXwMytwBCmQwEgkEACvkUhpnOZxvitjuO5631X+Nh3DVR33VRMw0nhQeJGTYUplXlTy47QJoIvFUvJ9tsSKyZ9LPmEyUSrStm++FtMVBnwNZMdcAWP8T+WYk3oWuBRbIokoNFeQxp8E4LP6J3cIRCspdpthThRaKuIonyA8xJ7udvvtLY9YdarBevPy34IFY5ZiDiasCPImvJeFE/zY4Jp0sdcKsaxV42jfkK+xVC8/StLEdYuVLBPBqR7LYjzUaLn2KmtumshEkypGUTCAnPCDP8NKIABew4onOHkwJaD3Y9878mDeJih7gAQEsiKAKiWxPQOXffIZ0vnz5zvgJfAldksgS1t9d+wWQM2BlnHDdlWMNnYdzERPxgFe+gkgZ2oxYCI6gjT+JOD89Pxq6wtjW28Y8V3JuridfNYJsFcp697Gwuhh4s0psC6R6Eusv9hV7rVYddx29e6xbbt3uAWxmydOsS5mNXa07WEN7YS1Nsy0RE6gDJDG41Nk/IcwWSYLDTZ5EgGDZzc5s7W7bV89xhUL7Msu2B50CQTA66CL+ODfQIrSNxtJEVYmnZPvih8deayzYJV1D/ZHXwK+IvC3PsiqvJPO6bhCS0yaRPRuwJZCTWimo5J/rX/NwO/+8bG57UNVsCGu7dLPcp4moUbHZpWDWg0rAfWaeC31rD6uFxm/Ym6LgKtcOW/JhqQtPHOBzV0427ARerl4VeZZkVPBUEMEcM5gPrxvxf22bfkGSzXW2+Lz5tjT+U5bs3yNNUdm2mnnX2wLpsxniSGYMRbJ1o0UgNUUE4z3bryRGZH7v365T5ACCbxcAsEweblMxtURKQ8pxRUPP2wnsDBx5axGvyECXYpoL3ORrzz9c4dzqxekPkE69BIYDHANrIUPqMR0aWajtr4ZciTXDyxvTHzvG3CKRF/Gf0dfw7Bcjv7Sl37Nfbhr2wcQ96vGUE/LSCt9oHwHOr9fZcbMF09SHvTy9r2qyc9L7G5UkeaJfhurJX5hLG/pMLMQ2d+4fYMtfWSp1U1otNMWn2ntzE58OPugrQyvtKpSDf6MOVuVX28PlJ6B3eq0F0PP26z6ZquNEYKFgQIHLIcvlqJiJmSI0D6xJKxpoFLHzMAYwxUJRskY7pyRVE1+OZtZ5uIv/+qv7L//+7/t4osv9n7J910stqunp8c++clPuvUb/4p8+nUWMF8jke6Rl8cHU2rZgcCT2FP5d2krfy851usa7Y/F5LeNKlYAeg+s6EWHNw9JLtdSz2KCXRQmDsF4OOcu8qKovSu8XL65yl3irlYZXqpU8v6x0dmqBl4tKsvzTFi6a8U5V4mK75UXvGy/Ip/vCOXy+MfFdPoX9e/4B0Zn69+K0rwq+Ad8eXOCW3u9MFQd/OPetfLP0xGFkwiLvczzTf/l48UqBLpRmSDNCtScAy61JdK2LbvRfv/svXbXU0stXBO3i6q7bNbMVlsd67RHazM2vZ5F0sNdtiXKDEZWNthcYAFt7tMOvoux2HqUMkOK48X7V6ArrlmNmvkYpEACI5BAALxGIKSxnkWmIEUbVxDMwVI1C7fOmzfPfvCDH9g111zjZqUNli84dmRLQKDJX5RX+wJUAiva90FLpQRkvnYR7jko8O77eim/AL+2hyuJ39iXvHo4Z2p30FPirm2wEllMTXimsYdvG1mlHlX3YkneP7BegC6ZG3UsUy6wAAxx0OUAppu4G6HMhXr4Lwd8/97K4vzE2O6XBhML144s6WLNzvML0d24i+pbJlgnCzwXtXakqkOdNSVAMdpHlIR0nCMUwNmLIkuxmp3KyhEKuUB5ihYfkr3M3X7ElR7R7V0mD/0CUrxLSlrSiXsBX9zWr6L4JCdw33HLr4ovFne590WyEogWA5WnR90kES7X0k5a/TVP/+eLrL9JOIgyC6Kvz3TbnU88aI8//5x1NzVaBjbs1uces9NrI9bdWIvTX8K2sVRUVzTOWrIJ7hSD7Yrh5lVjxVSzpUMsH8TRqGSlejC7UeLsGyI6EqRAAsNKIABew4pn7J+UspD5xzk/A8D85BQLpiEFyJSC/fM//3P7zW9+48DXP3/60wHj5QvqKNvmAecaD4rdJTa0wHcBqsGSFJjGlsaS1mNUPoWkUNKxw5U0yv1QlWHq0cd3wM4pPAZKPBZ1C1urjgoosIN2xDEBhYk+XpXPWTkbpt15zE84SoOwQoQ8L6eJRo6i7YwVYITDmJpixHviHNHtpVjLKO0CAI3A5tbLPQTiJrrSJQyUbqU4hM4GJAc0nJYecGKQr+VQB0Xie+Q4OrU0jg9nknhqNRZj2SMHnmio8kRZsiYU6kMzg5RVeYg3AaBNQIJGSFAkMBegAbnhYF6iPMkrwoLQIe6pNQhd41zOUfgjObFeueRFnFLrjWWsm5mDWqe1LlTL2olenQqEa8jSLoWGiLj6VlZj3zsuBNjy+p4C873kLVlHKGN5+k/Haym3ho/6soi5scQMxSJAL7e9zWIdvXbKrHm2c+8ea5460WqaGy0K4NrJckJG6IjG7qJNL+StvdBtGzBBTg7v4B27iVL3WFVoEg71cQKxchdE6Rg1ZkWGWFbIyZa/QQokMJwEAuA1nHTG0TmnZABeAmD6pb97925bv369tba2WktLizXjKP2ud73LmSOvu+46O+nkk53/w2BMx6FqtnSVPkE6+BLw+1mgS1HoZTaU83wRVqsEmBpsXTzHHFA1jSmFnRD4amhocOPrcAIvSWv/cYMyRgN6wVxRfehvqWdnaWK/DsVbykqNE4icRbLBYZYECdWzdl81TEYNCxxHYimuQ0mj/EtFwJeiZsa4whUEA8VukfN92ADFLpDg/d2/LhyWMq5M+7BC5dEh9vFLAviUdH93c4FH8TYAL5ay6emBuQGYKKpnvkgUduoY9umjIUr0Dyt6u2Fsc7DVIQa/okA85BNPJpyjeTpHf8snijaPKr5Wv+CULhNgL8FMu6JpHN8zznSXA0onogL1LGbNv2woZ3UwTQlXTw5L3EhiP4DrRoEn/VAYmfE9Cwh1rQRgxQBOVcxeFJumtThzrrlhm9U8w6448yLb3dtp9yy/35qTdbZkzsnWXcrY06ufoQrUJRW3egZKp5ApN40ATPHKB7gKCJe8LhYbx820FJHu6arINkiBBA4kgQB4HUhC4+i8lKGU5X333mv/9u//7hSlGIu/+/jH7cLzz7crrrjCvvvd79o3v/lN+9znPueYDyniQ5W819P+dwu7N6leW/4neH3tL6HR+eYDcoGnb3zjG7Z161b71Kc+5SZjyEQdAVhVJo0jTdr4/e9/b1u2bLHrr7/eLSckwObH/qrMf6j3NUpkjtKoEdIRgRNBSct0VsTHR+e1dmQYpFSVhb+BBQvBePVu3GXbn91i7Y89bz2bdlu4M297nt9sWx5fY01zJlmqpdrC9QTChOkqaGkYGLGoVlKWjRJl7sAbZQtLRbS0jO7Ef2cRI4vq4VvHOOklH9/43w+wLZWqKQNKyC1Bw50ILlUoxGzlyhdYwmmZdextw62ApWuKaeo3BVwgw5dqpFZ7EvH2979RKbyJNmTIqkXSxZwB2gCTERYNr2tM2MUXnm2vf/1ix5K7xabV5lFNmHJhhrojGWuP7LF1XS8yxmC8YI4iGaCl2C2akAbg5PjEwWEpRYt3rKZXkf63lWMzvVaG2I+LEYTJ7KHOBQBcY22TzaubiFQAsioUJ3gaBlPJeqSpRjumqsGKW9aZlldkZUYYYPIAuAvpHtizLHJRyBTMlhKp61TMiZSjEedGHccdJmSrLEEKJPBKJNA/jl/JRUHesSMBn8nQVp/Ozk77EmvqXXXVVfbmN7/Zbr/9dvvSF79opxI4c9q0afYXf/EXbo3HlStXuuVfBmMudExmKC01NNpJ5gtIB5di/MJm4Q0XUyoK43CwX2GDtXW02zeWy9P46OjosHsB5pqQ8XEAeWXS+UoZycdLazUKfCmsxJ/8yZ9YV1eXA14D81aWcyj2pWx9hSd4oH3njwabItNVGD+lEMu9KPJ4kkiX29assWcfe9peAmClX9xp8b1Z62nrgu1osE3PrLUX/v1mq5s3zRaedLwtPO9Ua57X6piYAmbIPOBLwTXlQ6RQq9ypr4lCVDx3fHVgS7fjQ9VcDlcnl8PzK+u7aPiNipbDEKa+Mg8K6wq45zrLuoArHn7KvvG9H2FyFJAk6GehnTwzyMO6m9RuqOfHk5QA3Aby9VBXfJUMdqvPnFgkZAIclCUitbbk1JMsEQfA6hn1m8nu6KSQZTEvtpd32/Oda+07D/3ENu/YBK/FzXYXrJoYWwI5YsMy0Yytrc5bB8FKnUCprUM6aqY+1E2LYjcgeL2lju1NWXMn4Ks2ZRnIqdNOOtVmXvJWYnUhewB4GZAZYlyI2Y2VMJnzbqsCsNaGa6w+WmVJzIQZCq1PxGwqpspoLm31ALFd4ra4T4T7SBweHwcDymH3m5FjSppBqfOqZpACCRxIAgHwOpCExsl5X2E+++yz1t7e7pzoJ2JiFPj65S9/aWvXrrUpU6a4dfZuu+02x3yddNJJLnimlOjApJfVH/7wB1N5ftkD87ya72K99AIUe5B+kvXSQrNs3doX7atfeZTiqMfLq/JqbrPfNWJ7lixZ4iK2a3r5YO3d74Ij+IuYLDFWCg+hj1Kl31ZlXyuw6hlnnGF33nmn/eQnP7GLLrrIhSSpzHO4RCXzjtI+5Ue/ArakjL3hzECC4Uq3ddiTd9xt9991n+1if3bLbDvplNOtJVRtTyxdhqkubK1nnWQvde+0F3Zusntv/bWtfnilnXblxXbi5WdaoqnKMviOWULMCcMW1StfIqlZJKka8PHqImOUQJfDBX3PlBvvHHc/YbxsfDtQosz+vCqfnycRIk7l5NNVY9dedbFdfNHrAGBpiJwqiCte47qpUv+z3F9A33HVtxd5ARrki8QzGMJ3LUfTli9/1u741Z2WTeP/J6CJb2isqHsKiHuXj8ZftSSH31pvKI2Zr91WPv+s9ZTTduq8Bc5kmoKJE4CpZSHrdDxnNTHMqWEc//vq4IAT9Y5Rb5Fx9LhFya+9amYhRifgSI+f1tNPr7bqzWthA4njJUDEx/NXE/cVAVDLXT5qKQBoHGezSJqFskHMGJitFuDeAOAqEusrRTiJqEAwSwYlGCd4O3K9XDlkblRva0T4qXLfPxZsAwkMLoEAeA0ul3F11PfFUaXb2tqcT47idQlkNDU1OXCl40qa4fi+G2+0j/3t39p9991nl156aX9sJpeBPwImYjuuvvpqS6fT/mG3ldL1gYu/P9zWv7j/Gr28+PUpwn5+/Hy7uu4mW/bUH+3Xy7/IEb3UvCv8MvVtJPv+fQbm13eFRLjsssvse9/7njWxQPRg/kyV1x/J+4rFJXn6MnV9jakxjYwEyOR0L78vmRQVNuLyyy93DJlYr1/96lf2tre9zc2elYlactXY077KUZmHJglE+IZrb8C4O6MkQwVGFuxQGAel7m1tdu8tv7A//PI3NnHyVLv6hutt0etO4ZmYiplprz3++JMWq0vZomuusJOa4ta2Z4e9cN8fbcWKZfaTb/7QtnW02YVvuRLzYy1txdkbvyphlhCK2Y3nPl3rdD8NV020oDhzQZEjDv5utiBMi54n9iNc7K47gJDksuUcx+U0r2j6+se9SvhDRVH6C+bNssuvOIPnm8C2MFjhhHyOKJtyi9ynBHhwZtaoJkbA0eQBUtjt8mmAosyLwmn4P4ltLuRClu4u2O9+Lx8pTGv4diUoT9d7LTpAZV/BafWR/K1SAFaZFcU0zZ8209526ZtYkqfeUhwTMCLkKZMYsuQx5yCveurdoPGVwCevwBa3e456x7W/o9Ru7dgN2wGPz7Vvt15mMspvjAV+4PVg1RkbZeyGZUzIJQG3OAvD40gfA2BFoMjiYKlqOrIG/7aa3rylaqI2hWdhRw9y6CxaLetg12N+jHHvYkFBKdQ3kq/XN074/svrFcgkyHp0SiAAXkdQv+vFJMVamfSi18dXijIh1hFIVSYnOeBr1uNQ6eabb7Y1mGj8a4fKN/LjqAaUBWt0OMYrvJao6A+V7MTZC+3Yy//a/Wr3mYyRlzl8Tr/tZ5111pgKHjt8rQ/eWX88iAVUv+q79uULqFmL8vfSMe0LgAnAv/Od77SlS5c64HrOOefYlKlT+0OXCHy56wFfhyo2nBuxAAqRPHJ4lzoXUyJmpATIUGRxLaS37I677IHf3WMLFi+yKwBd0xbM5wJeefiX9+wmqDCwJVpbZ4UqGA2Wi2luarWJ9ZNs8vzZdvvPf2p33flr1j2O2uXvvBb2J2xpfL6iOF2XFCSTeymcgMCEn1QTgR/NtCwCXLNy7oY1lJe/nkpFSHd5Kp5HyXq/pK8ObGmmomY2Oo8id32xxNqB+Q6YLz4ZAoGqnfFuypQvksrGuTxL6AT6JIZPm46pb4rcP4EJrZxtoW+Z2ZjtpYy0xcIwnszOy+SYCYijfll14X+U2FXOfOpmFFa2cL+avqovAlyN4QZAT9KaClXWWKizGfFp1hRvsgTsk8BUDsCZZXZinH9JzILlPrueJwnMvgDfCOgxQvvyAE31f5L9ukgnZswOZqrKkR5fL6QmGFzSLE2+a7wIxiIZ96NUTv5JZrKmNMECDqw2Vm3HNE22TbUN+DPGbH5yAgCVeYzhrXZsbYvNqZ/I7EueE8ae61HAnfObcH3mRuWrkklw0dEngQB4HQF97itTNUWzzgS+xFgIZKWJv6QXsZgupW58dL70pS85pkuM1lDKUiyGZkEOFRvMFfYq/ngvLA8MPvOzzXbrQ1thIU6wKz/5FpQCLy+9xA5CEpB4mZI7CPcZ60WKxZIcKsG0jikOnMDVo48+6hisM8880y2oLRCxaNEi5zN466232i9+8QvnJ6h2CqxpbMm3SsyXTDuV5R5cWQgQOI0H+IInEe1EXaVYxWhueWKN/eHn99iiuQvtqve+zRpnTCNGF8oY5iqJ6i1iq0pjyurVbDXMWQVMcA6gVIds1knH2nW1b7Hbbv+x3XvHL23GjCn2uvPPwvyGh1eRdibFDgFouI/Ajkva8ImpLhRZBBQBDZhZB+OagS0D+MiVaSRJLuAyfAl4uV8jlCNgGQKQhcOwjCz4LOYtLPBZroPhI8xFb9o2bNxg1bX1NnXqdPJjMsRUJhmJ7drT1mk7tm6yic1N1jiBqiQIIyLWspc2SXTU1o+6Ln8vfT8Yj6ImJMSJg5UoJaya9Q+rcoTtAITFmXkaywC8YKFcEFSYtzBm1V7AWBZnd43RCCApjWkyj8N9DOAlIJVj3OnHGosCgafbbW96L7gVOdGfSuJF3TuHmYqO8RI+4hpJt7q6xhYuWMjs3hpipFY7Jm3xjLlWl81wfdqSRRhgwFf9gpNtasM0m5NstHr6Qnx9TLMbXSdISjpyMKRF0UE6IiUQAK9x3q0+a+ErUwVKraqqstWrV/MCnmqrVq1y7Nbs2bOtACDTjMYnn3zSfvjDH1pjY+OwilJlCrCMZnK/Q/kVGUPxafApiCULnuFgjxLTVH/ueTBSALo8qbqgqChljRsfJCm8hHy4fvSjH3mxulDIv/vd7+w973mPc6iXCfJP//RPbdmyZXbLLbfYhRde6FZBcLMhAVv+UkJ+eQej/waWqVEi0FNE6fpcg4CTQiBsf2az/e7231hDssYuveIaq5vUZOkcLA9KP8xyLyGcp0tRQAsz7EqArjJsiJaVKQuMxWExONd64ny7PHOl/fi737YVP/+9zZk112pnThRZRggEzGH4KOqnjJS/EkU4lkgBTsPcJxrjufEoFmaMAlBVPoAAtOpdMNxfZ4qXWVJIDbOmWqofJWJ+XKvVeoAY34vMBgzDxm3csMO++rXb7aTXLbL3vvvNlgf4lVjKJiLzGrP91jyz3n586x128QVn2BuuWexFyigpVlaSkvQkIhfFsHIlC772AUp3ZJT+SEZ9/xCxcDJJRlLM1frI9KcleDhKABBLYQKtZTanIGwxyzsiiXM+9crjcF/CFJkrYyIvwY4RHDWE31gBgFlNaJBqABrN5t2CsRG5SYLqnBxm2iwmxxw3lo9Yqo71G48/zur1ioOd3M3s3UhHzk6YcoxVJ8K2fddWq4tX2ynHz7NCN/6Cm7dZdy5pE5pm8K6Sfx+NoFyKdOBVIvPHIieDFEhgSAkEwGtI0YzPE3Kgv+GGG+yzn/2sU5KK5SU/nZkzZ9rqZ55xwOvd7363nci6jgJiQzFefutHE7DopVviRahf7l7i9a63bN8LizOc04EgHSwJSL76iK3SVmNAQFygS5Mt3ve+9zm2VKyofOJ07LjjjrOFCxc6ECbz809/+lP7u7/7O3e9wITv46XyBL4UHf9gJpnfFPnTTVrkRnh0uUCnWkGvRGDUx1c8ag8/uNz+/Ia328TZxwBCOqyAma9ImIEIvldSyqKl9CMAYxXjD9WM304Mxb+7FrMcgCYB2TR31gw7c9FJtvqpp237E89Z7WRCpqKQc8yUVBxQQQIBLilbf9TKnJjt7bZtW7dhztxj1dyvBbYtNXMKjt5iqLjAQxwOiA1u6teTAkBzwEv9xL5EqpAI5Sp0PcBC2l7fyRnDl6uQz9iTTz1qk/BHE7nd3UMJKbGbZOHiPXva7JE/Pm3HLzie/ApXQbjUNKAkD1uDubEAc1ZUmAmAY0kPJb5QyuMeThUxCknPt0x/ChaRZrJAEcZRAU2zgBeZjN27AGFqGR4JlFCnNJEeoq+yJWJ+0WOburbYqvWrbEdmD2VwHexfdyFjzfiLLTnuJGuO11sSoFlHjLaJ4TprwKMsBhADTbupEDV0vrgw9b76rbmhmjNp27juSevcutMm4fM3cUI9ZBby20tQ1lTEmidMs0Jj0rZv2W07122w5Jxaa5hc3ycRD3jpixN139FgE0hgOAkEwGs46YyDc74iVVW1ryQToYCVQgaI9dK+TEFay3HGjBkuiv1oM1nuxq/iD+/cIB1iCThwBODSNk1cr+eee87VQKyWAJZYsbe//e32D//wD/bQQw/Zscce68aP4sDJwf6OO+5wYP7UU091sb5ijC2ZHOWYL8ZSYN4fiweHBaN8zWBEeUYdo8HYR4uCeax7R5c9v2o1tFTR5i0hSDBtjGdgOJKwR3KbgtkoA2jCAIsEMkgAosLkldYvMHuxFy9rKf46yk/BHM9dcKI998SztnH1Opuz5BQLT6mhnV4wThkExc9EuIcbx7S9Y8NWe+J3S23lH5bZri3braGq1o498Xg7/V3XWctxxzigAJTysBf5nZz6NLZ7FKiHX5ZMWZ7xVEAsA9YEPCoYLM7hBdg9MWBlgEsPkwmEsKgW7GPZ9nYTCytdsCQzMXO0KQabXCRCfAmzXThUBRMGS6l700YJTkvpyMzPIcE95MrsQgFUB01G8QFVlQFzIRoYZcsiZ/hMicMSe8UkHqpTpH8K5SytzdveOrOdQKQ03zLkzcKOr9i11r636pe2oWe3m8mYIsJ9B1HrZ2cbWF+xxRpnTgcUp+mTiD3Xtd7q8lFnxpQsCzQwS19l6XM1tooBkxQMAyh3du6wZkKmTMYUG6duhZ5OzmH6lEM9fmaJeJXNmpK0bZkd1t22k3tPsBixwHxgKtNloEwRQpBGJIFgrIxITGM7k17eAla+Y738IRQGwE9iNW6B0Xj44Yft85//vIvJ5J8LtkefBPwZiTIVyvn6pZdesvr6ehfnTUBJY2nBggXO7Lhx40aPxWIMHXPMMY5N/SJx4X7961/bQpgwhaTQMkQCa3IoF6CXaVKzYXXsYJiOS9BMYkEcqNIsPUIfyK8qBMvRsWWPdW3eafOOmW8NM6aCxgARcby6MP/VAszcLDT0bhLWqIYgojUAkRBr8FlNLcCtaLOodwSHeE0oJJS7TZ11jDVMmGxrMUOdgkKvStRiZiSeFz5EGPL4J0OgwBJgahvMyfcfthe+/Rur3Zt3EfOLRGDf8vgq+8P2brvqY39myQWtMEqAD8U04LmVwkbklOCBHvE8cnKX+7b8tMTLOMd5WJt4KgF4AJTgZF+C7cmz1QzhGA7zhTyz/YrNXD7RWI7QYszKi4DEUsTkSiQIlxDDFwwfNYVXUIyzIuAtRFlaHimc6LJUZAc+X12YYjmPD1bI8UN6NlSzUUoUFYWlS1Hn2fh3FeiP3TBZNfjdWbnLdmM+jMIotgCwdkdythdQBeyxKurSAAySX1eseZEllhD0NrzXVu5dY/esf4wqZmxvsYvgrGXbHWq3dVParXvPc3btb/4eUB216iKyYcz0xlgmCkAnxrMMk1UD2KwlgO4sWMSrT7jILppxtnUnmQUO+5ktZqwtCjiL11oNLBpitCiTMKZPr7fdzJbNbl9jMZYcCkUmIFMYQ8oUaA1SIIGRSCAAXiOR0hjOI0Wpj5u91MdiCIj5TIPMPm27dtkXvvAF51B/7rnnunM+IzGGmxZU7SBIQMDIOSrDTvkATI71AlD6rvMaO34eRa/XWIkD5hXvS2brBx980ORov5igvJddSjgSrtM1Ml/u2bPHBV1V/DcBO//HwGg2RT5ZWZgpgZ4oLFCKOEtJlOspcxfZTPxv5DNUz2zMZ+99GGaiwXIJTFooZbFisp7FuaaMs3mxO23d7Xtt29PEk8JpvYBprhqn7igMEBP7CDMAAyMH9QwBDniONFHl0bvvsRWrH7cOFlpW+AGBy2QkZU3haqvajOP3oxst1JG1ZpR5JASfAijqJljWs398yjpu/qqliYrfEQclMjuyAMiQf5JCPlA9ai3fI5n6kCf/sH+6tsgPa+KEGYS76KYPxE4RHgI2K12gHLIlAIoJ/MgizMrLwH7t3t0JoOtxJtEk4CHCMj1dPUS5F5UGUyY50F0kmRIxf1KHbJ62PbbSvvKN7yLVdu6LmRI/Jt4ko9J1gm8qaQ+AJhIrA7Z2YSLMW20VAAxfrBiMUpb3VwSzKdMsbUPnZnupYxdsFGFOFHoiUWeTGiZaU1Wjnb7wZHto4wrb/eRmucAR56EakIuJNVFtWZzHilrrMUv8+00v0YEsn8YnQtuL3JeG8Z99rutihYPN6ZK11DRYw3Ela4RNTPYAqmFAwYD0qRhCngfAooLnhosAtwQcJ/XtJdRIKjuNMd/o5EktghRIYMQSCIDXiEU1NjMKWNUSHkJmorlz5w5aSc1o/Pu//3sXRFRBMYN09EpAAElgwWdJJdMNAEkAAEAASURBVAkfpAtsad93llcezY5VcvG9UIwKL6FJGTt27LDNmza5vMrnAy8F7/2P//gPx6K5Cw/WH8CDcIPDEihSsU+nzTvR/t/177WO7i7btXWHtfFR7Kx2fLxKAJCy/Nq4plqxmmhWur3D9u4idte2LSx9jDKFKqrBgRv0YrWwPqms2CRiOe1usylzZ1rP0xvs+9/5st2x4m7wAA7dahu6XIyXIp+3wn5cWHOsHRNtsi5AJ7ekggAsmKcOmJ377/iprWrfZN2iXKi/B3s8YOPKUnkuybRI0XIgI1OESSdNTbNs8tSTWc8QnyWYvQxBP6MRfJcAEj29GOJg6EKlrN19z922/oVnYMMAT4BIhV5IAsja9vRYN2xemDI90EV+KuFCTug2mN/uu/d+e2jZzxgbhKiAlVIODy65Sr32PxQn5klTBuqa47b9wmZrWTADPy9Mn7Rzbw9mYsyzux9/1JZ2v2id+N7l27sxpWatrippkydNtmkzp1m8Kmb3PvGgbe1ut+suONs27d1lGZaCIswZ8bjiVlVIWEdNnTXPxkkes2oCtlNrX/bCoslvbDaxyxqJ3dWAn2Bjumizw002k0WxM8+sYRHvKCCeWeCwm4nuNuuoZlIGdYgAthLUPcWPjL1tey1a08SkUyqdQp77d95rl1NQwhEvgQB4jfMulimnnhASn/70pwdtic7LV+VaFsYOUiABASSxo0raiuUS4NJSQDIPCkQpCXwJoOmckvKJ/Vq+fLk99thjdt5559mFF17ojudQjHIS17UK2KsI95pVK78vleMDO1fQaPwRe6GQCpQVUTBMHM2jAIXTTzzN6qa0wKDkbdLkSXba4iXOrNbBkjhy0g6h4MMwPnFm1ZZ3dtoLjz8FWxSzSactsjwMVAYTYjhM2AEYlxRslcyTURR0COf6OD5PMUyPsydOsmMmTgHMZfrMhBgDAXS1AKKpxQbAFkvW9JasClk4toi65jBLSuU3NE+0uTBTvdBbvdQ/BwoscU7QS20RiFRyyx05ecJocQb3eWbSzST+XgMBkrvIzz25gFCprg/hcziieF15LKY11jp7OnKv5ZhMaywWHSO6Pd5S27YqGLLX97oPB7kZsuNeQnC19SyhU91ImfiR6RyIYrQYL0rzEnhOIBiLLaZNABf7mo360tZN9hOY1M0btlgLLGT3lKhNmz7NalnQWqbd7nKvrd29kWDLzzJZIm9RmNlrz7vYzjv+DHvg0eXWxlJB9ZhTexhvVVlYqVDCFrVMt0ivxgbtA3hlw70QYAWbSL820bYm5F/bkSF4a40lYXzdpB/ylfCbywP6csQ202SNCMyixnBOQmFbYMxFAdplyQ1QPeoy8mUVbI9YCQTAa5x3rZSd4hYNNTvRPz/OmxlUfxQlICXiAzD5Yyn2m4LpKqiuxovA1i7M0z2Y1sSmKglAabKGZjoKkL3//e+3OXPmOHAlU6PvYyhfsX/8x39018uEqeMqc1STQAcmJZUq4IVediBp2qRp1rG5zaobazHNNduF111loXoACItAy7zm0IpwB5/Muk22c/Mmmzx9il144zssTr4SDBFa1QNA8oHCHJXdgT9Putc6cE6vZy3H9/3l/7OLt15tews9+BSRHTNhIpog+CYzArf12Eu//aNtXbYadoTo7EAzzWLsJOxB/dSJdimzLOPNdW4Wn2YCFDVjD3bFc6CnLeSVGg9RnkQWBgTwlw9+TsSQuv/ep2zVc2sBHpjmMDVme/CrA7glkpiIwceS9YXnnm3/8un3cl85qXMloRfivOVvu325/fNNX6XposYokqS7KS6ZZk9GuOd5515ib3nz2Qizg4bROMd6VQA177JX/Vct6UHGOSLjZ7vX2+d2rgB8snA2IKe9o9N2bt9lLc0tdt05F1puVhO+dY0wTIAcgsFu6tlqP3r4Dlsl8yJgaH7LLFswZa5Njk2y8+eeY6lpcZs+cbKt7l5n8TRwc3uH3dP9CKZK5KpJCW6QQHOyDqRrF+O5BdayCXPjEpaRmtl6qh0za4HzB4swQzTfu91sa9YmJiYD/qZzneSEQPmxUgxtgchkMfUEgBYANnoSetWiDS4cZxIIgNc467Ajqbq8xtyP7iOpTWO9LQJcPhDSVmZoASiBLC2ePX36dMd8aX1PsVya5SjQJZOjFlxX6AnNmj399NMdA6byampwTif5gG7y5Mmmj5J/L/dllP440OiPHJgLKXSZEMtipzD/1E9stNXr1lpvbyftS8B0AKZgtkKwO2InYjBfOfyr2onjVYu1TsvziFXBsmghorinqlJW7ILFA61tYhmhZ3dvtTnHzbMEZtaG+dNtyuJ5KFv8spCPoBFXufAOYcxWL9VNtUdAZHtWbyBYMc7iAJopzCQ+801n2hlvugQbG7EepMCpNNjOycwhQVeKK4waUhH+Op8s5At0QP55Fsl+1gVmLcHg5HPivQCgsFxlsWywkWUAXgEmTusvZjgfx2za3Q1IA0jL5FjAGV9TO8O6vwRGuZ708A8j1MbCY+exlusbWGJMdwfQunqQbZSS7tjJ/bWs0YZtj9j//OIJwl4QoR5z7NzZ8+2t1020yfhxnVhXYy9FNNORCQxymO/daQ8/86g9t2mjzZwMIAPcd2zptMdXrrTj6ufbgpYFOMQDHpFnVU/KJmBahU+zqV1cX8T/DQbP8YMg0SwMVTdADpKSgLisRgA43s4qAOs79toc+jRWA9MJU9vDmNgdyyEDWERJGvkIvGd3tyM7TNJ1TSyvlFAvuX+jJKKgmKNEAgHwOkI6Wr5eMisOpuikqPw02Hn/XLA98iUgVkRO8EoaC/L5U5R6Aakf/OAHLuCugJZMhRdccIEzKcpJftmyZY7tUkwvAS+BLYExlSeTokCI75gvlkfxvWR+RFeNelL5JQXeJWk5GQEVgSc0utXjfzYbAPHUo0/Yc6ueslMuucwKScxGzJBTEFItii3TpEyVvThhdwG4SkxZy7HtprKaBSgOQ4xameWHnt74gm0BsJy1aAHAqwbmBDMhzui6f01YJjzNk+MvZSZp76wzXseSOFX22A9/ZaseW2X1hCc450+usKlXL7EQsxLLOG57cUqpNwBIscQEc2iIaw+9wjcYGtguF32dZon9UvPCKHxFdZdpUMf0UeujmOtksowAUhQ0VP5SAnOazSyQ53GDAA2YPzFjYAjwl5zqKddl8ZivLL5virgvZ/cIDu0Kl+HqpuJeY9I4kKy6mEmphXzU8gTm2zh9koiwXE9to51QMxWgBOMK+BWDr2s6iT+29Inldt+jy6y2KWmXn3WJTapqtrt67rP1BIVtX9iOb+sxVgA8lTX1EPYulA/Zwqmz7OrTL2XtxSqrhXuM0G8EC7E001V7yBMFjNdgAG5A7E34zNXiF5bdvMdKTYDQlIy3hByBDStpIgRslyRR6s3ajrZ2+i1ujXWEkqA/+MO/iv5TpwQpkMABJBAArwMIaKyfFqiS6cd3fhZLUZkEyKQEpWylsI7mBaIr5RLs75NAa2urfeADHzCxXHKaV7rqqqvs+uuvd3Hg1q5dawohIQD24Q9/2E3i8EGXwJuAmpbK8UG9G2MozoOVxNNEmXEmqKKPgIVjaFC8sTKzG88+0x5d+hDhUx6yhafgkN4y1dLFNHk8k3wBVgz+B7CF4Q2AU5afEY9NCVCmEBXyd0smq2zrlq32MI7eDdOm2OzFC61UzSxErinwLDnYh9O7VK+DETApwk6RGky3C2Zb/ewp1vnYIzaxNmZTFs21UF2Vu59mTCIsuQbxAX4IhTn2aZ+0+AlFTT2VLvShkBHKK5CrE2A8oTD2kbnELJAGUOzu3o0ZMm3gO75jisQklwBpCawV8FfKEb2/J90B5oLJgR4qEc+BsF+UL/k5qbofb0Rt8AK0utZJwq89uSpTTIwKC6q4+Gc0TtZdrXkJLqJhQoL41WHmTCVYK5R4XssJgXPv/UtZ2meOvZ5lmxbMnGtxHOY7WzvtoXXL7LnVz2JynMcqBQQ05SYFzJYFwONkfA3fcPyFhKJIESusCuhFe2EH6WkXSiQGOxgl1IeW/okghJ4NO60b4JXettmiE1nSCLBeSz0iKUJ1IN+u9jbb29HFzMi41U+YYpEqWDX2Ne5U75DqDpB0lXjt4gpKOMIloJESpHEuAc0kUyTxD37wg469qGS41DQBs29961s2e/Zsu/Cii4Zkxg61GPQy1idIh1YCA8eH7n7iCSe42F2dnZ2AgbLz7dLsRQEshY5YiVnnz/7sz1xIEuUXCNBHoMvfH6xc5T0YSRHW0dc4OHvgS3q7CJgIw+pMmTXV3vqut9sP/udrdvcdt9kFLe+wGvy+ZDosKk4XqEkKH1cjgmuyg9KMwm4Q7cmiBB5NsW7fXkxKv2Gdxu2Arz99zztsxjGTYLvkqg5wAHDprgoDoTJVEZFMcpdyXCKoqhcn/Y5cjwtjQbwJy3GihDO5QBDZuNob+27860tf0i44aNDnQrG9+hO7ulZYrFjCQRxgt2DBsTZ9GiCTCBgFTIshWD0CaRguYTYB5u2kk06wCRPq3BqOYtvCMp8BLgRI+5MAnb67/xXH+zO8lh3diQ9AU4onCVYhxBigSw7wAmP6DgvGMTzmbG+OkB+Mr0VzjrMrzrvcjgV0deNvp/ynzzzVNjS8iOn7KVswb4EtmncC4JTo9KyJGQdsFtMsFE6JNZRUX9BfjVcK5kdoPKP7adWCHoTHVEjKi9XNtNp0rXW1bbeu7bupSKf1ZHqJLdZuu/eyeDxgvYyJsnnCJKud0EIcNWoI46UxqDZFeWa8UaDeDVIggeElEACv4eUz5s9K6Wk2mhY4FkMxVHr88cedKenkk0/m5csquUE6KiWg8SL2U9t+horvAk1ytBfYkulQcb2k9B544AE3bhS9/t3vfjdmqphjvrR15kRpHtLQoGug8kb5jUKChHCgS6UL8IDDnI+PgrkqSOrrXv96e/rBR2z50gcsOXWCnXr+OdbUOhO2iIkAKNQojlBV+E2l2IYwKSadPxFBSgFVWRTvsl//1p596FE75+yz7OzXn25hAIoCmiZhq2TezAO4IJnwDfM+VMeBLkWJF+DB4MfqPtyL2GAKZSA2TXGkBMwcuzOEDDxpOXgi7LN/4n5qm9P2nBHmE7uYx0Q4dco0+/u//Yg10X9lgKRmrGrdSoFDmShPPGGh/c1HP2QtLU0O+KSz3bRVy3hTCO0pwRT2wUYHDPe/8eh9E7umBXxiAF5FK9OEghgUXgKmi0hygC5ishGNVDIKxyN29lnnWE2ZOGmpJot0Raw+2kgYjbA11TXb8XOPtyfWs9QPgV97wxnCrCZZuxEzsDOvCkgTl41/tUVCgzBIPNMugJmxrzU6S5hbQwAwRekvV8OJTWVWJwB9Z8cG20oIEQHlaDJhvfg/xnGmnzJ5htXWTKDvESzMpWQvwCWuUGFLODh6ggpKOqIlEACvI6B7pUClSMVs+UmKUKZFJSnUG2+80a3DpyVfpECHVpR+CcH2SJSAQJUcscVkaV9J40dgTGNCYMsPxiuz41e+8hWX/2/+5m+ciVFLDGk8lfryCYBpXybtwWfWCpL4EELj0d93d9afivQKQBmsiUxWYppUpFN5KNE0LFNciANK6/J33ABI7LZf/PTntoP4UOdfdonNmDMXOqUB0NFp9UQcb0JdRwjeGSUcRLkrbesfe9qW3nmnPfvCC3buGWfZFW99I4E5q4i2iTmJ0PdRZhN6reB5Ax3on4Kfan1DAugDsPhCPUrMVpRjVpb9AghN5juZ9YSbHHZSvVWQPmoAYMFPMofJd4vS+Hh7yqMFryNCnJoJCXDRLfIwNmVAQAzT64Jjp9EP8HYyJXLPdFbO9OrbhFURUmb+PGJmcUTBUkE15IlbOoPpVOADsxtOTWqIGwceL0fmUU3ITv1GGyQLlmp0Zj8BPoJ4IAvO4aAmcCnH9xSmvKqGZqvBQT7Sq4WMxFyx5BHjTcjszJPPtJnzZlnjFGakMgU1y78C2xhjWf6uCcBQTCFBKFo+ePqIIc1his2JHWV9R/lyacJijpAReSZgZGtD9nBbm9277lFrbEnZkokN9uLz6zA7t9mSxWfZ4hPOsNqE+DOAF4W5lRD4VqIPKHFUpRUUduRKIABe47xvfQClbeW+mqWXj5IA2ClEGb+UKONyoNZWs858xsNlOgx/pFr0CdKhk4BAlfp+7969Dqj7IEtgSuCpBqUlp3ixWWJSxYC9853vtAsvvNCNLz/yvcaaxpUbY32K7uWtkMZDobte1liUYtJH+3yEQNw+G8pycSHYPWDSpUSjVxL0ijvQwvVo8kgjZizKKuNM37ikwa5ofKsVv/OAPblytT278mu2ZOEiW3TsiRYhwnsUt+teFpPe9scXrL19jz3//Cp7ZPWDRFYP2dmXn23nXHOlNc5pofaYkZgFWSYCfA6UJTikmPIFQjYk+K1TxXqAMnNqxlwOLZ4gXzUR0ScwuxFIZ2Eiq8ukFlM9+a/Ut6EBFTLoO0NJtEt3BcmRUTm0lVN8jAkBqHnggpguFruuIkQClSjj25UDzRSgwWLECpPDvcxu8G4O6DAlgP6SfxXniLIfZxGesEBJivKSGUtGN5NvOy5W+IoByGsIQ8HdRz0Rpx6fuILtYBik0lHiadXZVuRSFSG4K/G5mH5q7dS7Lg8DBY3Zw3GBsTCAtxROg3/x1dNYAcBNa2yyKU2NTjjbC7usLYKPG/ljmI1TAFBCzTLEiMoPcxbWpAroSbGWMcaGZnaW8YeNAr4F4OMsO1Ti01Fut4faVtkPdzxKnVL2x8Zue2nnRltDmJIbJiasbt7r7ITqKfBozH4kWKu6lLBhyB15U5NAoY76kDkiCwzGyRHSrVKgPvDy/XK0wLHMilKc8+bPd7PR7uTX/I9//GPnJC3gNdAZ/1CKY6DKOZT3Ptru5YPsiRMn2nve8x7nRK/4XWK/fLOjY6wEulBOIZRSa2urffKTn3QhJwTMdNwPqOrGTl/eoSdsCKLI9wXt5Pa0FWDyVbrOO1jhbURHjChJ8eo6lScw0XcPjoXww5FSdlwYJrdJ82bbmz88w55e+pQt+9099sjDK+zJPyxn/b2E7dy5yyKb4/bExvUs68M6k7UJm3vyAjv70gtswUkn41gN0sHBO1QN44Xjvu9jpVoriaWRP5KCsqLJ3THVSFULAxZ0Lq4vmLKokqxTXpVdTv+Pd53/TYJQ3QW7+uXErmZRlvNZnMHFsCkOFjG8MMmVS3WYSimcPPJh0sQ++b9hPaUelAW4VUkCYG4dHIBZAed0MWYys5VEPXEshFlN4SvUOyXCU8icqqrr2tFLckVXWNcSwWph7WQGpfBMtICcwI+AvTAfmXHl6xWDGUsyg1C1UD2yAF3l98cyBThzn9inGABK6zpqkpF8+MIKt8HsUzF7Cohaor2a0OB82xzrJplINgJjYhN1P5XEwvGA273MbNxLt9exbtTeFPJlYsUezJNd1N6t5YB8wnx8+WgsSJkGChUhBOmAEgjGyQFFNLYzOCWpFywfH3h9//vfdw7RcoaWb5fMRN/85jed8/Sb3vQm++53v2vXXnuttba2HtbG6aXlv7gOa0WOkptrfIixOoPwEc5cI/lzTGNHwN1XaP5YEsiaNWtWP7MlhkvmbB338wwvOjSdU7UDc0m9c06n+0cAqIQ18foO6sQwSaOmAqTx1SPP+kaTvutqyle8rXhdzE6/+kw7/vXHsy7jetu19iXbs2mH1W3dhumQ4KTE/Zo8Z5ZNZDmaWSdMt5oJ9fiNoVRdFcXsoaK9L65OqqWM+q76/X90R/fFKfkCpiuMtlSzr55s+FZZa74NlgQyPDDptcZVwmXUXMyezG675777bPsOwhoAXHKhOpg3AIeoF+8C4RHMjdRQO311oosBV7vwZ8I0WYKbAdgAC93s0A0bNrDGZg/1oxyAWJQZnSqbRg9Wwdd0jChjBJQlmhesU4nZDTvSO+2F7WtZKQD2iGEhLq4KtirJWEizYGIv+STVfaZPAVMd8MCYX5lC3wzVnfhmZTszVo+PomZuau1L8Kgnd8lAnUAa2DIf6upO7hpmRqqTtaB3t8Ap5Yh5C/GcCD+rDl4NXG28OqngIAUSGIEEAuA1AiGN9Sw+4JIy1JT/u+66y9797nfb29/+drvmmmsc4/XII4/YdSwbJDB2991322233WYf+9jHeMF6inewNvrl6pzvLzZYvpEekzop8ubTS12/QLV1ry3q4ByCFVRoBKpppPfz8w0V38w/fzRtZU4sYErSWBHYigHEfBBWKQcfWCmwqsBaGLAlx3WfHavMO/S+eldqSkkaT+rO/+hYH1Pl9nTcz+spM+UYPA1y3hXrH9eWA/oP8MkkFcMJc9bkBlsw6WRbcO5JBIjCBIW/WggTVBT2K9QEGEFRFwEsOTloE3pAQUXDoqlgs8rIS4rWh3t6cfaRXPtVET3ttHsRgCrcIwbGN/mrPgdOqrvupeS3h6rBmk2ZMolldCba2vXP2pq16wgwCigMaaKMDI/7CpdUBcT6MAbfvLqHSts43ku9FPiTUAgCO/h/ySeqoaGFZZZmYWrENCqgwTX9jVVVRiUBapjcIEerCLG0EuyvWfeC/fSXtxPwlbHFfavw7YozkUHAq4e1FXuilaZqrxJ+HDq/SmqfnNvD8uNiuaa2rW02Z+E02CfJxYNsHpeHHGjWPqn6JfRteR78VBJSpbPzelfpIJ2dgyHMyb9OX/2MwTaQwKuQQAC8XoXQxtIlUpBShkoCSnKI1lItCnSp71rUWNHIX3zxRZdHUcrFemnplyuvvNLmzZvnHKtVjp90ne+/4x8f2pzkXzWyLV4V/NgW2EOZSKFD74cxDykKtFNyQ78WR3aDQXKpPUM7fw9ywRF+SIpL6yvKMV6goNCncHywpeZLZkoKsCpztAC9jilQqn/OZRj2j8aUPr6q8hWbD7gEZbQvAE4fYRbykndv7Q+u4HR+Xx43mFDmLvmHua2Urrs7kdgzKOUSs//cEvGA/mI15+prLK7I9sxsVOAFOa93ZdOwYPhJ4XheAAjo0YooDETl/Yasl9PPnOUHhhzAkZcDqn0IbfC2eNXe/69qXZFAC+qzM85aYv/ccBP+aJ30m9fQEksTaZFpXLP6EhKlTwcGr9XpEAt1lzC/hpyJTLXRfQQ8o875ft78VgcUc8T/iuEXRcv5jGYiyGypCpe0lE2ummynzz3FGqrrXQDbTBS5Ux8tAaW1FaP0VzzCckgRxd7aJw/33qC9+46ofpRbxEkeG2CKOGrHTpzLjMeFMFdqHVcLbfWPC39nQLucgFSqNya9G+haD7LpHmX6NA8gV3FeeSpr/5oMKDX4GkhgUAkEwGtQsYyfgz4wUo2lEOUQrZe+fHL8JMZCilNJAETO9f/1X//lmLFjjjnGvdT9vP5Wv9i//NWv2tatWx074h9/rVtP0eIvA/MVf34SL8aTiZb+jD36Tz93DMxQ7zGxM5qF57fX346kPrNnz7Z3vOMdpnUEj+akvu9nrUAUbskbxorPYg0EVDIrSuFrK79Bt/QM+2K/Rix/B4jQag4oSNmL8RTMkspCabnjgCLHLOBg7QbAPuXo7Q2m3PblkXrVtwK+TgKJKjedxmE8kWScsVwfdYjAZsVYQgf3bUxu/IkCOGkLDkBWBO+V+AGgWYkRos5rgWT5/yQI4qlyi9RNflA+cFJt9q+X901/wXSOvZUs1SYHvpAhBaqaI0wD2ouMFP9r5szJNpvArL6I5KdVwhTXbz+rLF0IpT959SMQFZf6YGrfeZ1VdmdK1ngAxUle/n36i3nNO4QsASA1FRqtOdVsjWff4ALbyjEqA8uod4MgruOoGCMZosxniYfmS9u7vVqwP/BS/RMwaPKrc2c4kIwlca7H6wsKUi1WAFpncxR/ta/pXpH8lXzVx87k6DqRgxzS3d0QpW7prFYF8PzSNK4GLUiHgxRI4AASCIDXAQQ01k9XOtWrrgJZUopSlH4SEPPp+ShKQBHKNbPt/PPP7/fX8fNqK0WsQJof/ehH3X7ludHa10v2uPjl9saGxfbHFx633zz+VYrmpXiANBAcHCC7Oy2W76yzmAq+eLEDpyO55kjMo5mKAuACUAIo+q6x4Y+ZgbLVOND40kdJ32WmHLmPl65yar1/41gUDumoAE1Ii1Erlxx8mLWm45VJfJhLA4eGA3R9OVGYrkTYCPf7gvGfwxE9jAN3kf14vMaNLHzRSah1Zi1q4WVFhHdqnTzCRTLO6XgU/ycpYKERDyv11cFd7fFAyi+A5yCkawAHXO3FjIjR5Uq1EwBW5plz7erPp7xDJeX07uqeB6f1AV6gB7erP/qPPMqY5stisQS+qMl+yd1wvyPUqYoy9MpXXv8eZKRMgS5Jwc2aVEgMMdODlLF/ia/8Wxz/rRh1CGFSrK2mX3BYLwKwBHWdT1xf3SRZrSpQcE5ZAyuyT5Da85zkBYgIi8F39ZoilMXpX8FlBWf1jmsQ6c0zyJuGvtZ7U8yn829zV5CvT/66KMMEjCJLPu2THbtBCiTwKiQQAK9XIbSxdIleFv5H9dIsRgW/lMlRx5W2b99uS5YscfsPPvig/d///Z/95V/+JZGsT3KKwZ2o+CNlIXbolltucYxXxanXvOteeyhNxRnKPtxk7fcU7LzTzrSLLpvjFErf+27I+/gAcsgMA04ILMycOdMUAPRoTzI/CWSpf8X2yIwoFlH7Oj4wyRQpoO7W/OOkrpPP0sgT2soBBY1DARG2+u9AicCJQJ3K9cCQaQbbAB0rABRyDETlCYGGinpQLzdbDf+kPOv85fHDqaJtihclnyIZMj3V69VctfFZLO+ImBYlqWwPNPkvRuXte4xcDtVC6tsdd38r6+WyODm5WYjK55gUtqqjy+/lGf6vSle5qlXfHfuec/+6kIJTqb7lKtqiuFK6Rsmvj//dO6rjmrUYIs6VV3sdUV4+DlyoVV6oCncGPzD5jrnz/B2VpCpBFQljIyR8stjSlSH8syIaE9RD8dBkGlRWreVYlL3wQIly8g7ACWipSBhOSpC50k/9e+rM/i/+2b6tk4N/zJONyvMSsuOQA+T+oWAbSOBVSsB/v7zKy4PLDrcEfHDlb2tra13MLs1iVOgAAa1NmzbZaaed5lisz372sw6IaFajFOrgQS955aJ0r7/hBseKjGYb3euMP1FeqCsiL9qtv1/vlqs5/yNvRInwuqzUcqN0YwEOtVPA4WhOkoFm62mVAwFz+fqJ+RLrVSkb7asfCtBHL6xb58zX8wlHouPKr1SZf3iZInMpOoEu7aAkBUbUzVKPLviRK0DlouyVbWDap/0GnnnZ9xixvDIEUdUl0uWakahYWwLsHtDwoQQn+4aDd0vvi6ubcvpDhZPaVR7/kPDCYNVEjC5XiVgOJZm93LhjTHN/j5kWUNLFFYXyVeX5yQEoJysdIZ8PBtzWY1sUhNQlyioBkMAcB06qMMySnMTVOAfC/EJcy/zWSS4CfLpglJPqS9Hc3RWsYLAy7rmvijDrdvbdV30Qc47+w9SDPBKnwk/A3XpFiA7kLg5Eg+wlUxGkyueZZdXWfffZV7rLwJnBzu3fT/uuCfYCCbxyCQTA65XLbExd4StAbf3997///S7i+Gc+8xnHZNx0003Oif7rX/86QSKft//93/8d0bJBDpShPEYt6cWrmDooirAiTPOqjOB3ksM/I+YcZnklax08vXHdW3J07uzLZXRKG5+lSAZi/zTxQjNaV69ebeeff77NmDHDAXABLV9OyqekGY1f+9rX7LnnnjMB9mOZsKHlU2pqaugeTzn51wwtFSlBKXJP1cmktXnDdiZ7bLdMb4bFkJOWkeMV4ETmNK88TxlLAeZRvA4Y9oMDqW3uTdwmgTk/EnqJGE9FFoKuq0vZnLmzWNx7ogM/RbFfjKmy2A9/TOlyVyPvj9cSTuugY5LYat+d0D28fMI3leDN3wf9uHo4PzKATbwWto2gUapbTDHAmpg8wnqNbskaQIGc372Zjh4E8Uidvpto48yoKr2yluLtuBb/Mwfe3Dn6VGCqr55eLYf4qzz4V8nPy4MQKl1lAk9oOLX15OOYJ2URUhmirAGHh8tW2QJdlokxm5R3AOsdcGetl+iMmoxNdT7qqCTmldogdKA/xw6MKt3rglmQ3pLlXNIvP+J+qfPccFZN+kAeewJjGpn7J+VRX7IZ2CgOyntQJ15+na4KUiCBkUsgAF4jl9W4yTmhudk+8YlPOKZCzJU+a9assW9/+9sunMSpp57arzgPaaP6FJ/UsDMN8brSNPCCwJZe9MxicslXkKNUOR8kjFJx47oYmRb37NnjPn5D5OuFinMMjWO6POrGzXRraWmxH/3oR3b77bfb/wfwcssFoemc6UwajzScfL0c6ldPk+Uxa/7qV39g0fZbbAtrIoYA3XmAixSkgj4oydFdyV2B4pWlUd/0T0qvDCNTDhECgnqXoXtYOZEP/kkwKC0Ta+zDH7mRECrXERwWny05iYvlUQwmtm7Gn8rzquPaodJd4ji4xlO8qoJrp74DUQROGJe6VODR1Ud1VuVYoihC5NIkILF3Z6ftXrfRuvZ2wUSFrbe9wzpf3GKpyARLNgFYARhlZleG+PVRZuag/M68US8ZwJJRpidPVZCy1WD/vuxq3UWyuOp7wEnASyV4MmOnL+0PDwRzqCHn9PT9/+y9B7Rc1Xn3/Uyf27v6VUMNCYQAUQQIEGB6LzbuxP5sx078LTuJU5ezsl4ny29iOytfkteJXyeOgxs2Ns1gIKKILkBCBVRQQ126urq9TJ/5fv995khX4l7pgiQkodnSzJw5Z5999n7OnrP/9/+0Yt1913ZX0nCLal1vLnh7/faG/pQ0BisH9sC7qlL6pMNEiddvn5dYKdVzykHJ2zWEEwDPA8eG+c+EwS6wbx89ENgiDIWK2vBs1iQor8X97wKbxeLmnLftQLcEq+Lurzb47gbHG82nAdKSnPrls4zeYW8sh/odqLVSKUnAl0AJePmSOMk/xRT4hvaeigMvLgCX9ovl+Na3vuXYL0WxH8ye53gNX4862Xd4y+rx6sWpc11/cZDqzZ8HYpSgi8C+3oIsmy/fBuz2228HKD3msh1cd911zkFBBvpBbMJ0ntS4WqgcO3qQGLXEKXegA1QwM/IsU+iKbcRZWre11WbPPNMaasm9F0gA8uA/CFqpxCuBIJHTib6ey2Uxdk9bDG/EHEAlm4PVIN2NOJIsqWNkIxaEPdFyHSKswtrVm2zD5nXW2dHr1lslWY7EWegtwTmy/5Hlj7c4Yxjlxuy1wfgFXhhKVjZTjvWhXbFJLLIKwSDiJUZcL/nIFehnAVAVycBu4fmY5uCWN7fY6udX2NYX3zBbt9PKWxPWEKiyjtc22O9+/3vWNZ+kzvPOtnNnzSVA6yjaLQBA0tZeGbb+OBfGESAOY1cJkMtHKnC6DLBNNYEJ5EbYU+tmXzfX6s2nnBef2sjLLs4VBwH2bXsG4t5XD06EMFb3gpH6pJ5gbgKwmwBtaiFoCMVtBGl1yhMZqyDNURGGFNsc/ENX7ad/aV6qr5dmkT7h+Xj3oJ4+NZwYqlHFmMd0X7uKNdwmb5zlgBLnadie+6l/8DCfnKuB8aGWFTJDbXlXcTv0xkH2C8zTX6mhBf1UyZsVzGNYN8UYVN0Y86AcMNyrWB0Ql2tJUyWgX01KoggBcvPMB5IAcD4pivCodUwx3rKlUpLA4SRQAl6Hk9AJftzFp2IRVU49GdW7v8p5EPhFf/lpodRxBU8dNRp39BOmwGDooS9Xch5ozsi69Nw6pndH88M3qPfVhDKil7eiPGEF3n2WVMBKMeDuxNbv7//+700ZEWbPnu0Am4CZK9TXOYrJNljRcuzd0v2qM83JynjMPnbHTXbrHfPwQGS+AqI8o/uQ5ZVTj9VQa3CQxTRCPpkUsaWU6iaO12E2q/rey2FFWCR5m/3i50/av/7fe5nv4lEKhJOQ3Q+eaGwrXIAWWa2TeuXEdrAIh7huAV2fbJ5U/F6Cs9h2S7VjvEIsqKoiT8Ig1xczFkuErGdnqz311DP2/NMvWqC115oLFTa7+TTLRjpt144dNuOM2dYFUHpj1Rpb8fprtrz2cbvx5jvstMsuJIcjEIR2BAtZ/lGVAeSQZR+LvQzOuZRLR1Sg77LNW7tri/321RdsS8su11/SewMgcCjgHF/KNFMsfu/97xigM1aNKgao1T3JMKA+5Zfk4nWoj2+ee7FdO+kM7PgElinq1DCKVJ9qz7vPxRO0T/ev+NU/FqXP/vbBTbtruoNuq9jiULUPOtvNh4Mupiv5TRV7KECqXd47/Sse13f9E4jyfhcEc6XNsANh7McZSBNHM8sBV74Kw4moV4ySkOp5BnwHdaz0tSSBd0ugBLzeLZOTao9sRerr6x0j0YiK0V9MBw5CHorf/va33YKp+j7rMbDO8dkGeMEqhIkWnuWBGJH9if+kPj4d+tBfdbD5oWCqUjfKy9GxWMwR/fXugytlPHjhhRdcGBJlQrjyyivdMdURc+bbhB1aeFpAvbkXFdDLweGQB7GmBlaoK0U7YiBYw5J4XsIiYZpFYR+gJYt9VoSgplJLK6eerpnVHxcsjFlCSMg+MAw4U9BT5VbsJwiqO+yABteFuaC2ty5qg5c0WAJiCjygKOWO5XKX9ECJIzL0XQs219W6nknB2qEbjCjieypv3W9ttCfu+7UteuMVmzR5ml3xiRttxuSp2MDV2uL7HrZ1vbtt5t3XWtW0Zpu2d52tW/WmrXziJfv5v/4fu2z7drvwntusvqGatDS0TW5BpQSMZFCcMgwnLf0W6Ke2NaAN69fbw4/9FoYK1oW0PmUOOCILMY+MwS/uXLF2FA1X38XwSE4acQR5anyI2vqQa2t/r3XDik+PVttNE06HJSQoqwToXZnPQxfZqFWq+sDCd2l5392EgzcDax5m++CGD1Ndhw9ximRxiMNe46oAMBc4L/554b7rxIFydpOCARZF7Z1bei9JYBgSKAGvYQjpRK6iB4FURr7X2cF9dUa8LFQyiFY54MFxcOXj8d09BQ/7KDwePTtlring1NHVZa8+9ZTLcKD5pIwGF1xwgQNVsvO67bbb7NVXX3V5PmUjKO9ZMWfDLbrDDv4wX130e5gaWcb09qDK6UpbdR0AIqPEPlKRA4ZY8cA5gCwYJkBAHkYrm+VxxTGhsjSsDTiRxNEZjPNhTYl63ycAyVIZR8WoBZbdqERl/SW44S2k8pILyLAKlOdMetgUxsjDaKE9dGyG8ALN7yvubKmW8AIIBT07qbaNW+3F/7zX1q9Ybtd/5HK78mN3WWVNvQNKBijrj+ZsL6qp7rKc1TRV2GmjzrBJ2Midd/Yl9tR/3WfP/s9TlioL28Ufv8Hio2osKrsvMV2wW8KLWszdr0Lf1Uf2JVNJqyivsCsunmfzzp6L2g4QKAiljqvTxcLt9NpxA+RcjYXGlARaBuIR5SGkpGG7+jl98dpV9vCTv7NEMkUiaiSIilc1QiFxcK4Xrv6gbxwW0RPyBTZAbu4mDDx9QB8Hbesk2TlwSCdJl0vdPMEkUAJeJ9gNeT/d8cGU/zmwjcH2DTx+/Lc9tVBxmTn+3TkFenDwnJANoGK23X///U5dLUYpmUy6XJ+y8ZJB/TwSa19xxRX2/PPPo1p7yu644w4PQEnNpZWe4rcrVs0nYASa9i9UHoJIkl1BauUIqXgi0CIxPP4UVysC09Wys92eeeY1mzxxks2aOcXtT2f7aCMH0Cq3LVtbbMWy1TZ58jg746zpVlYesyQ2SQIXEeI+AQHwjuQL/50KlA2niIMdkgF/UGpN4UWOQwBR6Dv7C6hOpTrSGNRfMVwFR2UIEAERYZ5CxEIIwqold7TZcw89bm+te9MW3HKtXXz3HRYkNVcBL00nC4HFSsZUF7FEPA+zlDaGaLlU1hqnTrLrvvI5K/zkl7bw8YUWqC63y+681iLYejm0A4pRt/SroIuuaEuQNEUf1X7zyLF2/nRi8MH2BWC7ooDOgUym0nDJw9I7fz90KgCoZBQeLd4QyDWAV8DaerqtJlrm7O+kljVSCEW4HyHdu2LdYlcG/Qg6IOuBOXdRybDYeX8MxYEM/Bi0reO2U90H5B5Y3j34d+858IzSt5IEhiMB74k5nJqlOiUJHAMJFGA+cjJ0dqX48D4G1yk16UlAC7QAiQCGM6Jn4VYCdXkuKrL/d7/7XfvmN7/pYr399Kc/dd6wit2lTAd3EvdL9l8KwLt161bvjtGWioCabAn9jAnK96c4YClopxzsktLnyKMxA7MjzzwVGdMLJAmA5ZkDin21Yf1G++F//JhYY684YCSbHIUficC+CECtXLnKfvjD/7IVK1YyDsbgbGsALaz0+idE5czPmFJOBcp4ZQcJgrMAORkDqPQsARja2WVtb262rg27LNvRh/oNFSZIRABL8E0PRoEvFTFxeQBbmDqBnqxtXbrWljy32JovPsfOved2S4+rt73ZLktWM5fJFZiPR0hTlLWeRI8LKxEABPXyPU+YiRyNVk4YbZfcfpM1jBltL73wkm3fuJmLBi1NRP2EbMkEZOmyY77og4KIZjkvT51kNmO9iV5TSq9sot8ygL0cQDZTfGVJlZTtx2Se/TqWAFSnCQGSISF4op/PTNqljcom+aRuor/H+hN97t7JgUH+hn207RJOwzIGiUl2uJe7QZ7onbzcG20levsgJz1lnVTYeTFtRZnur3iCbPmgi9+F9wcEtrEDwO8J0stSNz4kEtAzplRKEjhuEnBKIf+hd9x6cepc2LfLEgDTYqi4XCtXrnTbd999t5199tlOhSgg9Y1vfAOAs8IF3xVYOxdgtmDBAnv88cdhpZ6xj370o05wOqb6st1ybvxFUJcDSMl2Sg4UusUKA6G4XMJHiuHkeY95oMwZvwOkUqmCdbR3kgi6z23nUaMFsKlSW4TqYiEv2N62TmKM9VsZ3o6d3TlCRhARDtZFBJWiLfnR9cX1JLD36udqkQJ5G/sAcd152/raWlv29EvW2d5hofKo1U8ZY3M/cpmNmj7R8uVCPEIR9B3AI7ZLVFgeVaOYstSODlvxzGKrDVfYBbdeb4XxTdYG0ElUwDoBsCr68DhksAJtUc6Lc46M2ftpJxiXsT+sG+BvNMzX/KuutAcevN+WvPCqjZ4xHtAWxYMui60XQV/phjCl2slwvpSoWL0zNvqCvIFdyBvbNgCnPC0d6UgVyZaru3+iq0hDD0snFhBVLn/khCNEuWcsEd1/0irJozioILowbWK7RAZ2o7KtiMRcH9TeoEX7dT1eynHpjMz5KsAq5lBAV2E4xNTlYdrotBuPPB11vROtcFcYqrhFtjSRkE9E6mjXUe/9ROtzqT8nrwROvF/AySvL49pzl7x1319r7+6Kr4rw1UHvrvHB72Gd5fnGg9gtdB/89U/VK4q10uKtoqTqe/fudYzWaDxeNU/EuCh5umy9tmzZ4vapbg3qNGU8WLx4sXPmkIfjrFmznEekDPNV8rAl/bAr1dQVyNOSxZLrFmRdMQMQErPCZTxUweLsgmUyGQIhYAJxvZSoOhYrBxTILguwBssjYBGPwY4RasECeO8CbsAgrl0HNZhLIQEMwkLkYXXUfCxK4mS8DGWIL+umKOlLty5dZk//8Be2fc0mSCZUgTkSHy8OW8+mFrv565+3ijkjOBPQxBkKNepwBwH1c4ARsVJtW3bZRlSd8y9dYBNnzrQ+WDQlTw5H49THKh5QE0jkrJLM2yPCVRZPIs9++k7IiFwihT0aYIiQBWLwTp8+zUaV19jmN9dY7+4OK5s6FrurPJH2hboYuwRGBwTAJKM8QDmL7EIykocOi4g5hCFTHml3NwV4OCEsuQv0whbGCFDb1r7XWlv32iYgKEpZqyS+mey8Qshn9JRJeDV6wDDDefKmDGJwD8yUQD0Qpe3BirsotmK4+QlgqUheAi+OriTEh4aSxjatLEqEfd1P6um++s8jd9IJ8CaF9MHFN1vzRnXw0dL3kgTevwRKwOv9y+6EOFMPMLEMrXv2uIVSHo6DFamVVFeL7okCvmSUmw+g3PBXmOIyOlj/S/uOjgQcsBqw8Ek92NnZ6TwaKyqI3cQxxeTStoCXQNTAInWk7L0U/V7pqJQDU2yKzpP6S/NLRXZjra2tqMaULxEwAkAoA0yVxWq9hXlgowJf7M0RRqKAHVUE77oaPAOb6sAxgJRkphJPR2EMxc2q5HpeaiEBEq9oo2jTRFshVHay99q1pxXQ1kN4BmAXBu/lrWlb9j/PW8uajdYcoE3igqWIK9XZm7KNzy21DdNOt3G1F1oq7BmXi7lx8mIFLsewvzJaYVvXrLdIOmDTZ55NUNRyCwNiKhhzGDDkwgyE1D88LWk72gf4A0SCcCwOcOLnBxhU+mZkTOO1dU129mkzbcnSxdYBoGuYNc4SBIYlyoSgy74iiYqJigDuFEnD/Y4dzwXgodEcwMmFQxBDo9hUqERVJ8t2oqfLnsMj9Qns8tbHAKSVcavDezjUm7SG+ga741N3M16YLtSjuRhZJFD9VsF29Rav6QDYvp4cuMFtd3ArRW+lUPQXE++TjhKCoUzm/wxGycp1v7zo7we280F+owv7ilTXGoEU3wP3D9zeV7m0UZLAUZSA/1s5ik2WmvogJSDQlYK1UFqgmfwF/pWvfMXl0/PBlb/Q3nvvvS5noyLanyjgS4yXC1bkHnsDl5oPUoKn1rX8XIsatT9HpHKUh6LPgmm/5o1eMrRXcSpKjOz3bNpkGzdudF6NivGl/TpPdQXAFBNMAOzh3/6W6PT/hSqQYKYswFUVZXbm7LPtnt/78r42XcN6A5RIp6a0PmK0IqEqe23pOvv3H74AeOim/RTtwoyyiC9dvo1rEoATMOOtlpo3biI5Wy4to3nSzqyDwfrX//Nd27N3o2UwiK9MBqxhV8rG7DUbzfFKbNBqAXAKQBoDEaQAV6//4jH7t1d+ae0AFBUFBdXiXAELNzZWZ2c0TrbMunYbUdFgwbZ+C7y2BXUfgEixxcRGoV6LAtDygLxAa78DZb3b26ysdi/xuWhTlu0VlWRqABTBisUAcJOjdbaKutsWrzAbW2Pboxmrh3wJcT9EYIl1SYhpQ4abW3c6xiqLy6dAjCQCFYcYAHPU0e/aC+8ByAHwCor2JROmMDOzpk+3XiKyvtix3YLbWmHhMjYVMNyHHVeOEB2Kor9+1xZ75JVnbVSknGCtaUvCqkmyhyuuDvdcoCpGv6L0X7HOqpH7tPGTbPyYZgYED8Y8iSh9E3PleBWmNoW+8Cn1YoS5F5SQRZ8WR6vsAa6Oe1df/f7yu5DMhyyu8SGPlg6UJOBLoAS8fEmcpJ+i72W0LJWQ2C491ATGROeraBHVS8FVZUB99dVX20UXXXSSjrbU7SOVgLMPYr6o+PZeivMmdkrslwCYFm99ai75YUh0nnI3/vKXv7RVq1bZF77wBbvqqqtcO2JTNb9UnNE3IET5HZ9++im3T29SDYJ17PbbevStuJ+5yZomJU8EAAd2cKEgkumUvUToivUbNjG321CZ6RwW9lANDBxpeDLyHvRxl84W30ObqNZkjN/dk7G33lpnP8M5INHXyaIqzAPwSkfsmtrTbGx8plUDNvJZAayQYuWjcszY8nVL7b/ffsuBLXVMhvDyhNS/clSD59dPt/OqplhdJm7P3vdLCz9IKAvYogTsWhIwpYdpGaxdlIj2/d191tfVZ7/91W8s/1DIykje3UPy7mwZqlLYsRgG/o3kTsz39Fimp9cee/Ahe+e5B6w1LlUl6ljuheyhZDuVov99ZUHbWwGorasC7GHzht1cNgW7Rb9Ckj197ZMzAzG5MnhPFlBJVlRUWQgW68IL52GfN9fSO1fY4od+5dSV9dWVVlFXYzEAcaGfTATYYb26bKmtXbYSVacYMJ4jRNPff6/YHKrIXCCMDZ28JvWP+1+FvOsjcZtP2IvP3vpRmzyuWbeHOaf7NFRDx36/GMG8gCvzLYdXqCJxCDgrfREQ1HUgRzYEZrLz/lSKJ3rtdQwZe9yeBqBxCIip8M4xb2D+3HYHSm8lCQwqgRLwGlQsJ89O35jZB1iOeQBo+QBMI5Hq6GMYTi9cuNB5rf3whz90IE3nlMqpJQGxWyq69wJTUinKY1G5PGXvJdClOrL7UlHGAxUBqjfeeMMFUT333HPtnnvusXLOFdsqFs3NO86VMbrsvT7ykY9YW2eH9WB4XoCxkoveRRddbhMmjucay9QBZ8OkKPTKy6e+ZAh+miR0RCDYaddedb596pM3AhLwjMOqPih3Q1Rkr76y3v773vvwXMRkHuP3YIg0OCyUQVR7IfIAhqyLEBNJmzlrgt1461W2a9dGwkBUAtrKSMlDrPfuqL2xpd8mYWw/EtCi/Ijb8t22O8o4MHC/Ol5HImes0vhpZAAJMl1XiptyQNKlU862vtXbLdXSa/HR5dZSjT0bcSKyLM4Z2okwTFzhLASoKpDSiJSEVo2XYy/BXd9uxKuQBboWm7XqPGmJegvW3g94AgDuACg9v2kJKY/aAHFcE/kLSmq5FwRQKZQDACaPtcozZ8CsCWDyx1U8ajtQ425t227rN663NwHEW3Zstx4cDwRwmhrr7bTJU+x8mMbWrg771QPIDceFj14433a99bYl93RaAAN7lRyG+jniirUD6hC4EDD3yB06zBt1QdQhwEsOsBWQQwLyaMe4ayOAMtix227kGtMEyBCqY5dkY3Acih53+iM1ifo5lq20FLLbFNtpmzJbbVJgpJ0WaXYsZ2856nWcLGJyRuDeK78nguIFcOZVwKiuwDNVf75I1Rtm3hnzUCplWQeWSkkCh5NACXgdTkIn2XG3oOphUFwE1X3tE/hSEEx5qi1btsxFHz/Jhlbq7lGQgECSD5S0eIvRUrDUBx54wH73u9/ZxIkTXUgIbYvJkpG95k8LNoQ/+MEPnO3W5z//eVdPDh1l5dgwUVTX/xR4u/DCC+3MM890Xo3BAkwMbEhleZUDTwJZB6zqgDJBDII5AMDEtOUJZzHWLrnodIAXHnzo1ZQ2SAFGu9thVQAV8ogUiybr7yAveQt6UEWG6yGbTMiGb//d/+Yy/YSIKLOyihoXHX7nis328vcfsf5X1wFglJaHM2vjds4VF9j5X7jN6ibWAbjAHoxZEe2lbAuzAEdTqEHJ7fPo935kfcFtdvldt1p07kTLY4ieB7QgSgsoKTegC/rMXv/1I5Z4abFd/4m7LD5rkrWNZsGmbnVv3KL9AD7WaQWFXYb91bZH7rNLJl1uV46OWxofhSQAMwdrJq5F1m9pNvqqorY5n7TNHQBiGdgDCTZu3my/XPKyLV73tq3euR2TKliuunqrr6q0XuS9acc2e2XrZnti+RLbC4OJF4T9wW132aXTz7QHyJe5N7vXagCku/sIR4Gcx06banPOnGMVtN4hGaMqDMAQDV0AUlCPid5ue3XRQivg3GBNDRaYMd1yhPuwHGwl9nZEG3NNaDxFHenQTR7LI9wjzX3NM/2BEIBiXdW2zv7rrfttXmyWfXH2JywAQ5jBs9TKNN84QXiLeeAKQE1uBB4o9hxHBCH1Xbk+NT/lyckXr37pvSSBISRQAl5DCOZk2q0F1C/aFjvxK1RCUi3qQfPFL37RqYUUCkCL4T/+4z+aiz6O59lgyY39tkqfH04JiNHSPBEAkl3QnDlz7LzzzjPF7ZIaUQFTxW5pjojdUmwuGdM/99xz9pnPfMauvfZad76ks29RYltqb6kvpbKMEQw1jkcdkbO4RsziACody+DVJ/ZLKpuAFjKBJ+yJ5KWXLVTxiaUQbBREGiElUHnRR3nnhbFxCmJ439OvuS5WgUeXMEFBwUNh3GBTcthuZQvVqNowvqdabc2HFniZAABAAElEQVRo1HJiwfhNqA6gpg7GaNTHo7ay7xFbR+7EsSOb7JaPX2ejrptrZWeOYjGGbcLexzXNEq2eykMwggoxgNF886Rme/aVpdad7LcxAJw8DJ2WXmg+C2KHJmakEGF5htXpzsJxVTP2ukqrZV8YmUQBZwGAIV4GAJW0tba0OPD6ma982qbOm8m5aYBcNU3KBJ9hMI4MtlgtmYT9+NnH7P6Fj6PWjQNkMy6Y7UvPPWPlZBb49DkX2cyzzrTmseMtWllGCArCZpDT8RdPPGIria5v8TIX8X7BxfOtkcTbCy6/wtLE8WpoqLc0tmM5PDMLvf2W7uxyrJ3AbgFA6XAE/Riq6P7lM9i79accK6k4Yg29fdaWAFnKpZH/JxIMUV9kDxdEx/jOzs323NIXbNE7b3PbemxKy0ibeeEMVM+aWwAveY0yZwc+X/ePRvNwf9E8ccBy/67SVkkCQ0qgBLyGFM3Jc8Bf/PSAkCfaE0884diJT37yk0599A//8A9OtagUMAJhX/va12zRokWOATvwoXKsxzzgYeUMWPUY01/NbolheeSv0GPdhVL7TgKaMz7zpTASmhPNzc22ZMkSN4c+9rGP2XXXAUhQQypP449+9CPnwfilL33JqRIVt0vMlhgpfao9qb2juB9qDgrcZQEHGQE8AR90cDE89hQ8NQAoEQ+iVV2cEhE6AWAwBlrlmQBBjkcAGxHYEgWJEvPgYlEBrtgNGmGZO2CiFL/QVAEgpmsI5Om8NIt/HrsnRZwPWjkhGCI2atpE29DYYFkAVvP0qTbpqkstMA37sSxG/PRZaYYEGNOwOeKWpGXK4AVYhXH/pJnT7VEYvJWrl9mYq+dYHi/FbBqABdCIYfQvLVqA1EJ56mQJIZEGlAghCozKkigL8FRUeDmVtG/ZYZu3bLLakY02ekKzxcrKuSZRuQC+IQCoQ12cHWGwVaggFZIhi9G8ZC6bsxkYzH+uaaRNm3m6NY8ZD9Atc0E/wVWkF8qgPl5jfXtxBhg1hutnbMe2nbZn504b0+ypHzPYOmXLAIOMoYKxbn97ve3c8I4R+ZVBaGlArodFXlRD1RsYozyx3MOWVmtr2Q02BvyichxYDrhlAw98gNuacWHmQEdLpy1+8TVr6WqxCQDoyoSyImw1G0U0/wI6YuaOJCD21MnhgD6eCCM5oEOlLyeZBErA6yS7YUN11wdfWnAee+wxu/766x3IUn15ocm+S8Dr8ssvt0svvdR+8pOf2Pz58w9p63UsQJn/HHcQCxVRgAe+pzJST4FePPCORXEOB8imVLSmeN6KmjN6CThNmDDBgS+FgdA+5WIUgNq+fbt9//vftx6MwP/8z//c5QQV6PKL2vIN8RU/ShHqC2JL2B8l/EFeajHFpiqqeGSfJMaLHD00wacrKKNALEEW7kKApNi5Ltrpc+t2APuZIB6BURBXHhVcnlCi6VQndfpl20xbUvEIIGCLRXLnEPY3WItxgHlEfXkdZlGBRdhQjLA8jFMOcJWAZcOE3bppO8s1GLIlUGdWKvyBGC/adIbgAkL0LQwDIkvsphmTbPrcOfb8ay/ZeRsutobZp9Nu1DFzGoogpgCkvASDBETNA75ATgRRRcVLG+6PjBj2UISwWL5yqb2zZ4ctuPkqq0JFl8WpIIesAozBxSkDYElCCvEgD8Ow7K+Qaxp2KsC+uRjMR7ArCnOfpOrtI5K9AqHKOeGZl1+0+5941OIwmnfecBMAo8Pue/IJW/TcIpv1sWZriFVZb7qfSPV4tIoBBdQ21TfZ6FGwhAkcGaTC5Z/kMlTRL5XuWCfM3aZEt6UYk1UShqS6ytLd3XgFyH7MN0AfqpUPbr/6y93n3matF2/buopqu2jaxdbX8qKdWzvHrmmcbz3hLgvtZtDcNj2rlFFhf2H/wK/7D5S2ShJ4TxIoAa/3JK4Tu7JUR1IL7d692y677LJ9nVUC7TVr1rBY4anDQ/pzn/ucfepTn7KHHnrIPvvZz+5jLPwTtGiKsZCx9aZNm/bZ7/jHj+yTRUnRyPHy2rkz4R7uLcRbWrYSw26nzjnEk/59XljjkS3T5MmTnWrNB6nvs7mT8jR/zPqUQb0Wat8uS0mrVTR/5OHomCyOt7W1OS9G5We8+eab7dZbb3Ugy7FJtKNAq7pbWeyHPLst1iv2s4y7BTkEWIrCzBQAR9JfFQAP2lIgUNljie2Uqkp9EmAJYo81Zkyt3XjDZajET3OAKBhM4rkH0IN4CKIrnDipgdRF12A8T+DPHGq+UD+LqZgmQF5B8ykJu8XqSMe0wAYw2C/DUDwLkMoLvEDEJLHhSQC4SKwDMKJhDNelzksAQGtkOwYIEeLQHwVugHwGAU8F5BOtr7QLrllgq9e+ZY8+8rDdXlNmVZMnWQHVY8GFcODatIWJFqEc6DcyUk5FxRELAUIZDH0O2uYdm+3lN5dYzdhGO/PiuRYm8n0OJ4QITFFeTBF1JB/JRl8DnCuwpXujtb8fRq2c/oSI2RV0EegJcAur19bTaYue+h/73TMLbWRtrV19w3U2f9586+jrsndgwJa++rqtOv0sGzl3HgIC5GHQhiUX/QzZeWfhNLHgWqsBoCqZeFRAmmsdqoS5f28ChP/6J//XWmgvSOiK2dj3LSFumOHVKRs6ZoNrx+FjRHq8CqP0CgIcMarJLm2ab3WxTfb8nlesAlXsjNNmWHehw2J70ElrDuD44FhYJ3FO1dwQ0iyVkgSOUAIl4HWEAjzRTtcCKNAkNZJfZLOj/Vo4tPAJiI0fP94ZU0sdqYf5wUW2PzKm/va3v+3UJAIvR6/QNxbjOYFr7ZLQF+zhJx6y55/4iVPTiJk62kV9F6BQLLNTOZSG5KD7KuClbT+vooCQ9gcB5ZK/XvreDWuxCJW05ovAulgwz34L9DKg6DwVgQT/JaREM9xTLbuadR6GcXZgTo0lQ3rAEItZXl6NqASDoV5rntBoX/zyPZwdAdCJ1erlBRPE3BWImjat2b72R78P+wNwSnazDw8zUROAo6ySaYspUyh3dkWiYrJoo0ACaIEM6kVJ2yMAlkbNVoAdKqsgCCpMUj/bAUW+h5XSDBQ+8EOyFAAhaV2fIxGYrEnnnG7zr7vSFj76W6tEZXn1xz9qVY11qDSxa1K0U0Arl4DBUj8AUBBwYcItGOEVQK62ac0qe/jRR20voS5uvft2Gz/rNEy6YCFJ5xNQvDLGAtwqCkzcMMdALQV5gNK8mMUoFxIzliPnophFCTtP292oFtevXmujaxrtZpxpZp51hht3c3WTXTH3YvvvVT+2Nxa/ZpeceQ7t8DuE/SvHlivOvRtB+Ikzmk+zOu59uYCx5OquyMfBRYcoEdl4de7lGaKBkyKJMUxqbLIlMIUCKg5kIz8BOL3Ak06+bH7gRV1WeqUAscTisJFiNqP9fEeuOUJz5MlLiSkgoqQmfc9leF7quekQG/tgZD0Osjj4D3wEpQt+WCSwf3X+sIzoFB+H2AgBKbFVfhm4rYVPHmvbtm2zr339686QWovlwUVATTY/U6ZMcXn4Dj7+fr/rkSUz1Hw4YyM66y3flrO6ynqbPHKyTEWOyUNZD1LZKjU1Nb3fbn9ozhOgUj5GMZ/leCRKNv7Lt4vyByuW8C4SY48cOdIZ2Qt0DQbSB84ft2gVG9CCtX+J0hwTnBF4wNCdLfCexVn8+vMADkBPgdARCkUQjRJbCjCWg5UKESNLRu0CHzKil4dhJBDnm4CbgocKpLB4atHHXimI2jBHKAdvniWxFYMV4ouHIbShC+u7BwY9+zMPVCnvod9HVXR4TrvENPFdGRJFhJSNqrV5AK+9O/bYiy+8ZtuJ2XXjnbfZ5IlTYM8AIKQhigfjVklqo3iQGFtE7A/ye8r09Nu6tavs17+6z3a0t9oNeEaet+BiSDAAHzjF5ZhkwS9wPad+1yg0EPWlCGq90AZuD/XFLqpXyFTbAIhGotFfveAKAGWFTT99BrIsR/VIHk2i8Z85aapNxt6rfVeLdbW3W+PIEYAO7Ou4ZljAFDswqYaVH1NjlpeeJw/1YaiCXJQIm/Ml1zTbLr2SwItK8UObalbw7LgWPesAw7qRAuzqnru7AEXJXHt0y3VA4NlV0HcV9rn6eiuVkgSOQAIl4HUEwjsRTxW7NQIvp50Y0fpl8+bNbp8W3Xfeecf+7d/+zS2oVxNraeCi6dfXPv2lJ+NqeUL6aiT/+JF8ugebHmAYU7/1nzvssf+9y26+4Vr7+2/9PgskD79BQOCRXE/nCgyIAZRsTvUSAXAp36IC6dYTo8sFTC2yoweAJmTmAy+BLclPqkl/Lug+Daw/lFy1lOUdgvFWK0Ev2VpZoBrGpQIVD6ETCjWACI4Ha2kT1ZxU0Q5sYLMVqYTiYQWkDcX70uotwBbAfqsQ5Bjtu/AS7IsDMkxAR7QFJcfiquvrmj5gUS8UrsKFkQC0CBCxA5WdQIH4DLG/Ok8V9cY3ri1ySAu0mLMwoKSemFo33fNpq378aXv02adtxeqNds1lC+yC2edYU1ktBmNG6p1KS+ztscDmFtu7eb0tW7LYlq1dbTnUijffeatddtt1FqvCoB6mJQrAzAkA8YcT/92lXR/cCDyA4PXGdZfj3r4M/SogOwWglXqzqq4Wb9TzHEDW+QUYsTLdK0JXjG0awW/tRguSM7ISQ34dB2s4UInTJQFDCRTLPtJocw4Bbd1vUbUOVXCCoJFoUVZSW+7zlHb7vAPCMCdC8fGg+qK7HOTGRnlFZNPG+HkHiDJmvTheHFax6wd+K+4sfZQk8J4lUAJe71lkJ+4JWghlxyXA9C//8i+OsVKuveXLl9v/+l//yy2y3/ve9xyD9fnPf96xHkONxqmEWGylXjqaYMgtenr6wUzEca/X8hEFEFZzHfgMHoQsfId71g/V6UPsHw5IOMTpH5pDUv3onkr16ttmSTYhANnBYEqAyzekFxsjFbbPeA1fntgmAWe8JYstNgrkR0zmym39+i6cPrZi05QEzOD5p5ATgj/YLQmrURPApITXMDECXoAtqFLAEuwYKkFFlpe6zQEr6q9+sxX1qYAXOSc5OwjrpNAqeVGpgCW1R1e8F2OWGjRMh/QZQh0mb0PBLhE9wngqHKINPAn5jKGSC8PQaQwh+jJixBi79q7brAHHhOeeecGeX/iiLX/kBTutotHSAK4OgtA++eOHrBsqqKtzu0VqIjYVL8pzb7zcpl10toXKYxzh2mWCfFwL8Jjl4mLe3G+O66jXHhRUb/imDrkCQwUIzBMaoQ+GrQz1WYpI/PrdKoZfiHpx1H9pkpLLE7KMcBcEfbC5c862WrGGHMsA+MIEPpWsxe6IjZLvZxzQEaYfDnb4lyte9eCPAkyRAItws8SrItjsb3v30dvvvRdB7cBdR2HbwVAJS+UQfRaWdGpc3WDQdgGVcy8q7TTsqrsJ0hg4wMk4AGMupZDXqncz/G190hbTkHr6coiL6nCplCQwQAIl4DVAGCfzpg+OtJgqlYvYiWeffdY9wP/4j//YeTTqu0JN/O3f/q0DZWK19v11etDg/fa0e/iL7EGNvOsrj3I94Vm5Avp0XL4uoIo8Otkvu5vSM+xdgjuqO3RvpVYU++XUW8XWB95n1RHLpZe2Bdj08oHXcDokwCX9sX9LvXVR9xfPslSH/fsvf24PYKAuD0ZFBXeqPEATllcALUWVl4oROy48GVniHGDLktw6iApPqkgsr9wxKdyATdaLN16+QNR2wIDs2JVaJ5MnBAPHBf0cgAGsaLEN8hkRguJI3rEdAjiCGjB0dFhHHKCg0zo3R4M5wFkQ4OX+eODJGQH0VJXX2KU3XGKnX3CGbVv6Dq9VltrSiqNIzppio1x0+dH12E7Nn2UT50yzUadPtvioSgsQwiENUFLKH4FCec8pfEbe2RWxq4i2hLNQ5NFH9cGzXRMuCONJKQcVOTgoL2MBNleJwTWKMOOXnZlCpsXKSQ3EuAS+aNzKSVkkyWVgwMLEA4sCPsKyKfNE4e6VA2JU12/RgRRaHaqoL/rBCqcKwLqiaw1SVEd3wr8X725djRXbKJ7PDBpWkdG78259V23XwX171UXZuiI1h2HlkVoP+1qG+lqD0P5QkfES2M/ykocruzlRoJF7pCZ5KfWm8Ly+6t2xqsVvblfprSSBISRQAl5DCOZk2q2FUS8VfUZ5CMsDTYEuVZTCRR5q3/nOd5zqUB5qWlCPb9ED1n8d356cSld3iayLYEpASwu6WJLBij+XdMwxKZyn+jrPn2+DnefvE4wJu3hd2qMli8UeTHDe+WPt7tsvxPu2ndhUALtgFalc8GqUjQ0gwKObvD6FgkRCd0CI81n4tMSrTjrGqseiqAU3rP6wMMpAf9TIs3CgmKYfgutGikSH/eWwqoCRSuG3HsAKAC0K6AkBCrOKiE8eRNXOwLZm8RaUBRq9cmyHGA+cFLFBox79yMPUgtNYkGF5RlKLNgsAvBG1jTZiYoOdef1sy3YlLNnRgwoRj0qSYpfVEqi4EhZKaXjE6DpsIRUdjC9jFhASKpTaLwv4ynAdLK8IwsqYuL5UiFmoFTFhFYSPSGAI3iEgTP/Z5LdMWqKsRsAJAg5qX7LE8UDsjVwfUmpLnBbntHMfCKkGUCJ0BzZZUp9WBolxRgw02Yt1cw7uAezzbPE4/d0FmbtCXQWcTbu+YowOU5bIwB5pMAcVYZcUOtgEQnNG7vQXvowr7f/ntergL3t1H4ZXwjChCnLrirt0cS6xQ627oj4CoDO8gtz3ArIkhbd9ZebvWV0cMIxKO5NPYOuGnGhrWxT5xBTAhBMVQYUM4BlQVx9oS7koowwTU1XeGA1sqK5UlIq7XOmtJIGhJDDceT3U+aX9J4AEtBC6RZS/5PTpFwEuqYdkFC27rl27dplUjdpfKqemBKSGUvHBk69WGUoaA+urzuHqH9yOQIVmpBY/bYVZpK64Yp5dfNE5gC1YHlgjFTdtWR+9RXL/HNYe/R9Y1I4Agl9bhzUqBfCUd51CMriI6qz0MtpPAjnEiZEFRuiDF4svbFoaEJImWGoesKMUQeLXFEFffI2qYkXGp2fDBOpyOwVABYRUCoStECDzYBvvsrVCfR6vK7fKCQ2czXHqS9Y5/UY5R8FhfRbJRUbXFTR42tRHiEVdDJeAl7oqxkVKP10yBguYJUL8y8+/ZJ1d3ahr4fIATrJREouk+q5rNJRljO4LbQos0w2+AjhUjzYdOwNIEiDt7eiy7radBICd5Y6J8XMn6yR1arAy8BjVJDMxXlLJCkT7wFenqk+6y3qJVQyJYdQ/PjUygS/V8kbJJfWP9qUu9YJncPiQRVegMC4a0YbeisWTu2sbASnVEhPEqQhVoRG7wlFTz4GETVs6jFo2KY9UZhMgV5RWH/NBvKpuSgMgS7IUKBXrFWaw7vcAyBRrygQ44Mp+D0qfJQkcLIES8DpYIifhdxnNKwCmvM+cVyPqB79INSSDaIUQkMpxxowZ7uHxXhdQv73S58ktgYHAfDgjea/1D25TDJW3DOrdW1yD2COVV8TAMkABVGsCIIq9JZLEX3z9dnR9AYoDi8csaPHzYKS31ArAKNWNVENabgVgAjARjhnie5oLlBPQNIMleQ9Pvh4AV5LrynQsC+CB67A4Ly32ghsCYhGnhjsQfPi/LvfJIfW72APOZS/7pI5UoUueBAASrprbW3xzzXrXchd0J1Cf/XTNW/vZJzCj0GSjauttRvNEe2fHdltBPC71D4Ul7TNS1aeuXjpfQM/7tv+6DhYwHklU4St0XAb08mgcXUeMtLGVFiPZcwVgkvwDHH5Xjzln8OKAb3GEQ7GhYiXj+TiAllAOimfmusA1AEySob4KO+myDvfw3Q1j8EsesFeBdvOoXl0j+44wt2hAd9QVpyOUqJh33B8vVASsGxcXoOY/RXeVTugLnYhzPsSW2ydwqSr+y21QXc3KQ9KblapbKiUJHFoCJeB1aPmc8EdloyUGS8bzAmB6DSxOXYQtz1e/+lVnzzOUTdfAc0rbH24JDARTQy2SAyWg+sOpN/Cc/dtaprSUOZjithUGQbhEca48fAJYQlel4KZu0XO1vDfXV63IAwtNqj9aGwVvdFifikjvkmdj6+SM4GF7cxiQi+TTccE0OTxmYMYSLJSKCJ91TJa4ILEWtOF11wNtbKvX8jT0FnSvI9pXXMq9VVhNqxTPdX0TsBi4b7gIgnPEtAkYeCyKB1yr+F2fO2OWNdU1WntvD/0DNDHOUFChM6Tv3C9f5YLUH1w+5BUbpkJMfgkOWQh6CfDJ/o5PqUQ5fRIhV8qIj1bI9FKvnhN4lryHfruLHOZNORIVT1eeomLynJpV3QP8FMXnPt22AzOHaZDDYsfSoDqs2tw9UEs+oyYZaMT67s8Wta1U2QpdIucAxUjLy7PB78C+S3rzwv+6756zQ8CweDE+NIB3nawKpVKSwKASKAGvQcVycu3Ug76hoeGQnT4YkB2ycungh1oCYkX9MhCE+fsO/nz/oEvXcUsrn96ypetlYbkUnyuCGlCsgwtVgSW4syyiGrv2FYErljle/sLmVmkM4/nO6qcFULkJddQBFdXli9iJKO3L0FzKQ9kyRQEzCkkhI3kFRXVUhSpDGEWglcrcqQJ03lItYKCr6VJq36kIvebddx0brBwg06EqDXZicZ/iZ4l1k/R0XQ9AEeC0qsYaqvFGdfu8Y3qAa4SSnle8C+rs/XfZO6LvOqqX5KNPnSUrJmUWiGHfRk4lB1rlWHD0i3dFd029gcByqHs9sOuN1x+rhK79CpVxuKL7knQpoJQXU/IAxPOKKt01alipLMVAesyXc+EAcGv8/ONTLGlAqHugwAQ4AVQxPjVVZOI18LC7kP9GG5qygngDwZl/uPRZksDBEigBr4MlcpJ+f/+L40k64FK337MEBHIy2PspH6PivE2cONGFllAsLwVUHVgEHmQbqHmlCPflqKpVpJIRcDsAXAw88V3brEr7liwP1ARYcKXeUeiTHGquIEbNZLvZV8RQHVjUhl+0zUqoaJz65Kv2CEjopWjkAYV8AGgRK4FFF8PxNOwRwCrG+MUGxWCHIukCKXcwuA8SK0wMGStnvi+LzRd2WsqzyD+FaxDIKTDekJgxtc8l95WB3SruHOp3OHx5CQ4wJoEBLilVmdg4hoEXZMYB1TxG8y4vpva7f5LEgZ1xdmN+R4uHhC38ol36mkEmKQE99JOaA0EqyckhiCOFsMdRLbrnCnqL3jQNO5UndZNUzLpv8nVUn4DjSN5j68TqSf4DcPi7uuODIWWdRDpF4AO45p+ss7D2Q4hylaCmHBv2FY/102Gmi1N1ygtUV9svO1TN7HFnqR7b7nrSmaoULy45OQbSSdQ7VHovSeBQEigBr0NJp3SsJIEPmQQUEuKll16yn/70p/aFL3zBrrnmmiFHKLCgGHCPkt7mjjvucBHvBcIUiFYAY3hgYsBi51gUmAgM2lVCLIQy3ldbLj0Nn+8qbjEcsFdVYEM8QkbneQDCfeeLY9BYF2XDGCJkAmHbLSZ6g9AJ2a5+62ppsR3L37Z0R6+VE0ogu7fXOldvtoqxTVYxqgZbSAyvtZKioswAvBTuSXZiAiNOozSgK96VD9jhZHKwbIYCYweeuf+b4JQrAoos95B2liHv46uLl9jrb6y01r1tjoURmAgo6LBwwADROcCkN7fhHVOLYYdwADogOqlYsw5A5wk8G7Rpk5vtuqvm26TmEaAIKgJGBxmw69aRvKWCaXJlpiwFs5ZmuyfVbd28AmKm6FMUg7sI8Etj84CXB0QPdU0NXZ6K8ifQPYnjrSh7tjHlI/AQ9UQjCCUfTdUVrPNCP3hzkzvLEclS7GwRkKkp5lCMOZrUDQCQxuif/vDweoRENY35Llt8T517KIioBkulJAFPAiXgVZoJJQmcIhLQoqGE2OvXr7eXX37Zrr/+ejdyqaEFog4GCFIBtgBUfvzjH7u8jTNnznQ2hMMDXGqaZc63dRpExix1LF4eyHDvHpoapOaAXV51t1S6RY9DWm+llnJMFyElpKrTgunUZYRIyLR32ub1y23V6yts5+p3rHdbuxU6+7Fritnapctt887NFp861qZcNMemzzvD6ieOw86JBZZr5QBcuOkBDOA+tOjuu/6APh20ebB8Dv5+UPV3f9V1UMH5RUt9d18vqb4W2m/uf5BQCESdpz8Z5YIMlHtxp/zKfApeCMiqq/R+32fEJQ2XrGKwQ5yPjFxqolyvjRvZaGNGTLDJzWMBF8wHMW7CJcXxsnXkhSER9cFSGMJ3Em9tU+smW7T8BdvctgWAS0+5VhlGeNF8FI9BT4HqomQccOWDO8R5ukXoAxUDTWyZQkPUxWvsE9feaU3VDailBbVUPMs2yUQvvetT91Sg2t+3/wqEjIAtCwqE8gdCGb8HeZAKceWlruc+6SRNW92t/efxpVRKEjiEBErA6xDCKR06RhIoPqiOUeulZoeQgA+s5OWql/99YPWDQcJZZ51l55xzjj3++ON2G7HhFlxxhVMRDt9Jg5t9QPGXJ336L9XRy2MgDqg+1BfWPS12aU7R4qxwEQqdEic8RSTJ2AgLIFVj69ub7LlfP2Br3lxN+AU8AxvH2PSzZlv7+u3W39puk6dMsi6CMW3Zut1ef3uljX+ywW75+F02lQjvkcq4Z3zOU1I4SOyX7L3UbS3kWsYdeByqj+9rPwyKrM91ERCBtpx0WN07iQ0WJgn1nR/9hE2aNMH6yccaC9FH16n9F9N9FUNXRBLeAZqL0J6YQKJ78UIdR50E+rUnn1xkG9avtq4eBbH1xra/taO8BRAPKlgpeTnf3rzJHnvuOctVBq26ttxlUsCvEoaSFOAZGb4jAkczSgLFIrDDWFzRbrb1kaFeGgP5GKFEWtv2WrYzadfOv8oaq+s9YKSxF3Wt++3G9rNpHtPlNeu9exeJgz6VQFwgqwx9eBRQ6nJ6OprR66NkpleplCQwXAmUgNdwJVWqd1Ql4C1YLCywEx5Nf1SbLzV2CAn4wXOV3UBFnz7rpThFKorurf1jxoyxL33pS/bFL37Rfvqzn9mF8+ZZWRmR46k3ELgdDNhcI4d907X8JUtQZvjASyBIvVfMTH06pRzMhEv/o2+Ari2o5h6/9xe2ecNGm3nOXJt9wcU2dsx4tI6V9vRPHyQQacbOvvkGq5rcZO1te2zZquW2btHT9rNv/3+24LYb7dI7b7FQQzVIhIWXlz60dovs0ILv7L48cbnV35NJERew3+NTqOuq+xW970O9+4u4R/7JyN8DFvqexMYriq3dBRfMJQ7aXJdeSN6IcshzUuQSrm+CIg61FPtCG/qdlQXl9QczBHhIwwIJsHb3JWz1mjW2YdMKA9O5W+A8Q4vX5WPYRcycd32NlddBQ3ahrmCygjBuFVZnwVTchZc477zz7Kwzz2S+EVmfgB7xQhxwg90d80HPCbrJy1cBMlKBMcbnmncHA8TFzcCi9QG8w+5+v/TUi87KS5ZeOYCsO9t1Tid4MtVt9F8OrHpC5yB19OKGC/im9ZvQuTIGwxPWnT3Ai1RtqLh74G2W3ksSOKQESsDrkOIpHTyWEtCD0z08S4+sYylm17YPjDw2xFsqfOAk9ssHX/4iItWK9inX59lnn23KdiBbr8cee8zuvPNO16bOU1E7evnXcDv9N+8Ge9+8Nc8/Utzn76SiYyT87wdWO/ibwLrUi1oYZXyuiRSQsT5G9HniUPWu2WS/+g9UpC2tdsdnPmmzLrzA4rVNDqWROcesMmZ9GD0FsG+qqKm2ijH1NnL2RDtv6hRb+MBv7NHfPGgZFtmr7r4D98gqzuMC4EL1zhsnDAuLfVQpfwQLhAfYUqR5FanwVE+5F51DgjvqDh3mTQPRcPgnVkWqWnZhbkZ7nq+jupIEcUq1phhlwgMKLeHUjwoEKhstriuMIMwQwDYpJA9S+eblEtafIyVTqJzv5IiUowGxu0IYoodgC0WeKYF9RI36QOQwPRYO0kslywUL7jwaUlvehzsmh4EYdnU5kGKaqxNqFqBUbs3142zmyJkwqeSc5J9iiIVREUfoQshvmH7qXstD0UExN9/0XeMza7Ueawm0W3mhzPpgBjOSuwNHGgfwjY64JOucn0cw4ioVCFVFMdPkSiuDfCd3zUPkHUZ9qaC7ZfoudTNydemZCL5bCHggVsMWuKO6A3F8lEpJAoeVQAl4HVZEpQrHTALec++YNV9qeHgSEICSB2Nra6tt2rTJga2mpiYbP348f+gHHcP16U9/2p5DLfSjH/3I5s+fbzouQ3s/d6NYNB/IDe+quvl6ael6r0XLI6luOC0JZBDwkuF0CO/FMmicnp0d9sDPHrGdrb1296d+j6TUF4MIiFRPOphgDDYlAdAs9JIuqM9yEUIQREmSDIDpIY5Y7uLptmDal639B/faow88TiLs8Tb7ugWACZblChbtGACAdEOimTqye8jVWG2RHMbcOYzCUaEVUgBC7NYKALoUKswk9kxCJXVicViaDz9a/0chDs/jghUYAesi2q9DXViP6qscAGPWj4E6V4CpKueeZS0JSI6xHQGxhJwlfQY7MIBFOI6NHsl6OrLc0zowRNrKY0AfgE4WMBclP2Y+XU0kCbxAwSlBjN4DsGIu6Nlhbo16qwTj8gB1XoPMJZdoiPkg1CcTPpr0Xmxn2Q00tN5cp3XHO60/1GMF+lMD4IpkK6wsEwdMcU8BTvlICyl7umkHoFioAhuRxzNfbkH0y3KYCDMDgiS4Dgsy4XSbjZU5e7eadMyqs4Rp5Z7EaTeajRGEnvHgyUqYVetDeBn+sEhyNwSaFD4ul+vHfov5zL2qR73Y2Ivasj1hp43rs/p0r4U60zarqcaagxXYoDFfxKLFCF8L+s9hkxYMFenCw8irdLgkAUmgBLxK8+ADlYD+XpU6yz2ch7EMfaCdO+hiLrI1C4nAxXsDFQc1VPzqM0JHo63BrzC8vf71fZWjxifvxX//93+3tWvXmsJLyHPxrrvuss985jNWU1NjU6dOtVtuucV+8Ytf2H333ec8Iv129Kl7Omg2BJ+xGKprjh0pHnSY4/DQhJWYxVmG1CqeJ5pUUuWoFwMAyBcfWWjLX15ql195pZ234ApYnD4PAJHOh6D1eL/BuEB7SQUF6iCcOmCKqOdpXinYoabTJtg1N95sv970n7bowf+xCVOmWs20sQAEgBANaF4o/IISXXdk+oxMjFYBsMr0AgSEXAAiylcIjqB9MStK062HrQY4vPE5UQAKxM2IfhHLUwC15DNe1PcorF4+LjUasAPM88yiV235G6vsuuuutvPnTbc0alTFpwrRRxw07XdPLrK339xs/+9Xf89qGqQqxp6LcQRIIi6L9wLgUe55XmBT2B3Aj2OWhtFf3WKFYMgzDwKM3QFq5OhO1TH2qIgVUlG+xCyMUQ6AlwsiMypUAVrFdMUKeMwyJzIAxzz2a4UCLJ1kC4TKkxydu2yhMoAUMo0o/hjBX8M4DVQQRLoGcjCJ96eYsxz3N0HoCuA2daXeZDxKTyV8yPwO5ZLcGr7DFCpDZQDwF1MMs1TS5kRr7Zr6iXQqaKcB2NrCldYwotIubJ5t46vGAHy1bCqpE8CSbTGNIXojT8xSKUlgOBIoAa/hSOkUr3O0AYhz2OIhqb/neVwj3RPzgSUVUR8P8r1797pF6kingRa6urq6wwa7PdLrDPd8X1W4Z88e+/nPf25vvvmmA1rNzc32xBNPuJATY8eOtTsBYLW1tSzq19lvf/tbe/jhh51H5JQpU9xCJ+A2KOgabkfeRz3F2VLoL8Vp0sKuaO9hVvCOHa22/KVXYHRidumCy1kYSeBMzK8CCalzLKIBFkrlIszxnZCqnEUr2BMpzRBrszWh4gq2dtqksePsCoDb0w8/ZitfWmzzp93mQJUCcSrfpPOghHnSXI4ADAppgBEgI4JaS/kYqwFcGeZPCnUtqztqM+b44UDoPjloRB6AUZseANJBffFsIvWrkW2X6zTX2bB+o/3uiWdsDs4QgfzpAC/9uoAcUYGCoK1c9qY9/9xi+8wn77Ix4xutr5d4ZXizZgFmbhC0Gyz2TyBW7SOOwxb10vFyTp3nVX/XMFWpWKQaVOJx4BXehgQ61YUoMoyXihPai37DwCLYWB5T+6xAoqy9og7YJQFb7ak99k4n3qkh2LBIyvphL0PtYasCMI1sGGmdkV5rjyetB0aztdCJA0LSqsM1QDbYL36DlYC1HOpCQXexkEGAOBnNLb1rpwXbt9uF5G88/cJrLFMXsZZUi0Xq5wDI6iyQqbHeXb2cX2ENtTUOdOUcUCynLUlL98cNp/RWksAhJVACXocUz6l9UIBLJYEKQ0E3y8vLXcBN7fPZDm0Ptwz2TNKi4uW1G+zocFs+NvWkZtuyZYt97nOfs/b29iO+iNR5f/qnf+qM1Y8Wi3bEnaKBjRs32ltvvWW34rX4la98xS3Is2fPNqkXn332WbvpxhshBsIuz6fAlxivRx55xP7wD//QzQN5E/qZEXxW72j0a8g2hEawt1EibIEKgS4t5FB1tn7Jm5bq7rMLzpprDY2NTN4M6kUecwJAjoUBVhDcKZBjMc8DxHIsmDA+8ngL4OEXgikJopIKAwpmzJxlaxa9YutXrLLZey+zmuYmWCTUlIAUxwyhjosTd6pAewLp+Z404Sq2uNAb0bqoNUweaVWj61GZAU1CsDzOMHvIUXGAMYBaXPoaV40/TLgeV2SEA9CLO0ZdAEwOo6wA7YYJjVFgLGIqXTwrAcgQwVEhhQQJItEKmFvYMkByKgUDxzhjETwiCSmxz5ZLl+CVow8CT94fRe5iQ765UxzS8tg5QVkPiO0/Rd91yxSiQqBL4CeqoLl86lfvcZaAYdpJ8ZLjhIBXQOpZ3R/OFfOXhwVL5HrsycWP22MrF9qusi7rqcvZ3lCflXeE7NK6mXbzjTdYd1nauirztrvQgep5LwAubr1k4ow5+zGFiOgHFKcAcuaC6FYjlzDMZXfbLtTQ/TYOFfvkMXXWlmizSEvKRjdOstry8daxJ21tO3qtp3uX1U6Gn6utpl+AdoB9jrFJlEzGUilJ4LASKAGvw4ro1K2g4JZLly6173znOy72k9iPb3zjG87Gx6kpWGyOpOhsqRX0YD1Ri+yYtm7d6uJZHY0+Hg0AdzT6MbAN2XbJiP6cc891C7fUNaPI2yejegHP9o4Oq66udqzX7bff7gKwPvjgg7ZgwQKbDcOSBfAIcAmoCpAfe/DFnInI5ollj+u6yPIMKNGXtE2r11pdeaVdNO9ityiywrPQKnUQQA22SwBJwTPLAF0VsgOCtbIgXAjHZS0WggkJVbIvk7TaeDVxrSbYmzvesc5de61m6ggj2DoFxotVewRMjGOj2Ne3odVWP7rE3lq01DoB6YqYMO28GXbhDQus4fxJ2CABL7CKH84fLFrMvaL6sDIY8AecMXdxt/8hMYSIyaXwGcAKIr26NExVqDjzOaAowCuL6i8H+1VWhi0aqrus1KX85gS4UgSXzclDoVgUgkIZBcKo9ICg7BUTfegfp86OR1BV0k96CyilvzBpIEHXqsZbjvq1goo57OPUmgzg09hrlRfvoUAld8cxXmKidD8FvBQyK6g3zoU/dKrhbBq7vIqklY2KWbyq0nb37zLr7bL+vqCtzWy187Ltlqw02xxL2q9WPGZ1kSoXF0wqzCj3XCUdEvBCVcl8KIf5PKN2rJ0GKBsBoJ48caxFR9ZbLh61/q69FkZ9HIsR840bX1Y7wmqxRmvZvt16duywWJwo+6ivCzkyCWhuSWSlUpLAMCTg/8KHUbVU5VSTwO7du+3P/uzPHOtRX1/v7IAUUFNRzydNnvye1Ut66OovV/dMd9t6ourRfeIWjVtgo7sbtcYRFnkJnnHGGRAv3qJ0hM0d0ekCRwLP+hTQEhtXhp2MigCUGKzRo0fbGkINiO1shD1S3WnTpjlmTPZgDzzwgE1mHlRWVTlDe523efNm07wZCL7E2hzNkkfdFwLsBUhxk6FPZbFyGzd6rFWlQta1s8Uq2d/P/WqjH3kWUzFjERZ5qRODAI1AAtVSW8KqkkFLvLMHI2/UjuVYDcWRSSGF9go1l1isPtIKYbCd7O2zLmJ+bVq9wRYvW2z9qYRFYhHCUSAzmKXaJP14vcW2vYJ9XFu3Y9+yAIe3d++1vo3bbcRF023nKGVElDrvcPOdPvAPpOV+K2Hs1hqJPTZu3OmwVfuBkGyq1JLG5AqqvhAeg70Ehu3pht9JYCCPXi8slq14j5Pc4wyemDGpFwUzxfLJQIzfpLwwW1o77PWlb1kqvYek5eqHAOah753m8vKeNjR1JNdWS+kUDOp6wFCf61Y/NlMvr1hmiV2tpGnKERiVWjCAnbBVaza+7XnTwqbCB3I94GMUcMhWBruttnyPdSf7scfC0J19UdILlZeFbO55Z9vo2ePshV0rbffyHkvI9ZA5EMBbM8X4EkLHMFpPrXjFw42i0PQSe6ZeRvBIlCujVLUY6Z9e0WR3njbHbjnzQovAUKqL8opUHiv9ImJ5L4elFXqsvKbcanpD1t+zw/KJMqoAVgNVgESuL0a1VEoSGIYESsBrGEI6FavoL9U1q1fbG2+8QdygC+y73/2ufetb37KnnnrKsWACXlpch/MX/KDyc+uFe3N/0XpPyEFrHredGt+4cePse9/73lHrg8DJ8IOPHrXLHtCQxqWXb+PlH1S/lD9R+RxVpEJUUb2IwExfnwNkFcSSElDbwV/9Am1iw1Sksvybv/kb5xmp77rGsSgyzpaaSgFSlWswjsps/tnn22c+crtlexK2e1uLPfabB6xQDhABCMQASJUkmE4JdBGYsxxQ1bF5B+Atay//8kHLVoesO5q1dl6paNoaYIbqErA0MGK7+EOjN5uwzpa99psXHrOfPXq/JdIJVK8hNJv0A7AwIVBjl6RPsynWYHUBZEH/MtgsJQAau1ass4VvPGnPhlphWQQtinN+SMF490bV9NvSfGkaOd7uuvP3AV6wKtAqym+pIulmYVvKAR6Sya7OLvvxTx+2519+mZASnVQQAJH9XYUtW7mN7wJ+up/AHFS1AqNJ1x8CqQKQHnzoUXvgoS2WTAGcOdULC+EuNeSbAOBegFTbjAkE0ccAfk+rvbllEwbwhKsAiGztaLfv//M/W3UvxuvIX16OAoTJirTtiXRbYRwm8oAleRdqMUr0J2zTnq22Yfc79kb727ajZ6dTK0cwfi8DIE8f32zjx06wLubi8lfeBGzHbN6ss+2dbdutTx6OsIOpHvSrkFt1jQ1EDQFwIy5lMQj4EexxopAg6LZVk6Ggvj9iDQC6EWUY96fxdcSeP8AcqEyJ/QNYYXRfyHR5IDTYRz8SgPEu7Oh202e8GbknBdm4OZhWAl9DTpbSgX0SKAGvfaIobRwsgTiBMmUTIvXYqlWr3KcWgzjMiP5yf9+gy79QcV0+kf9SlOef7/3nd/tIPo8VGDmSPvn3UaBL4EuqogRR0QWqxHxpDjgbJkCOGK2HHnrIxATKJkzOAqqnOmIFdXzDhg2uOwINx2K8rk2RGMwfeVMqltaYilrrPq+T63mApWncGOtMJqyitsIqWYgjceayPPUAXXEW2wrsFcXKxGG0MsT0igO6KrD9yVeELV5RY7lWvOP6UZ9q/AoJQcMx2QKxvCpemAzRw3izVQeJRdVLyA1ARiNtlcurj/+9hK9Q/2L0LZhgbYY6YW1m8ZZi7dAlSJJuha/IwCJFUSXKNktqfwU2defqzW0AHhSfC2SRBUyl89hu0c8kNlxJgFQYj03JKp/upw4MIWBDKkEBEbXvbXtt5ujvLozLu7vWABjbNErUe8MAEfSjpy5uueZGC9US8qENW8jeHrxEo6hby60XG7scCdnb9nQgf7WqyPkwWrBOydGogFHrqd9iuNYyb1YuW2Vvb15v7f1dtrc6YYFRUYBOxDqs3zp6W/hDcL01rasldAj3sitrH593jc2ZMcd+tesB25DdYZXyeuTvhiByO23mDGtsqHNqTAE+LXZR5kAV44+gci3jhjRho9fcH7DpSe7jFhjSVAcgC7u9SIVlU6gwBWAJJxFt0xyXTRdqUJBZZ2+7BbujVo4xfyFSjjylxpS7xzBkRq1SObUlUAJep/b9H3L0emArN5+MqX/yk5/YV7/6VadOuu222+yiiy5yC9778WSDI9NTX++sQt7CMGQnPoQHfJBzogzNB9LqT1sbCy6AWmBLbFcHtl1RmC6Fk9B+qUp//etf22qYUDkcyMZL9XxmTCEn/uRP/sSpJwe2o7b1/WgVQQXZ02TRCfUDGCpY4M+dNMMmjD7N3qpabKNGj7KrCX1hTcR9KmdxR7VYAKC4eQfrkU9m7MX/fMA6N261Cz9+i1XOGmvpMnk6AgDAY3FsgQrdGNn3p23NwpfspaWvWN3IJvvsFZ+30y8409pYdCOAmH4W7jERUtKs3m0tj620vbs6bQxqp4DUm1yvPYMhdjRv199yu101b5z1s+3S+xxCFBobGi6gCaEtUKfGw2XETJtgY0ZNhWm+17GPvijBUDBghF4AF0axqWqur7G7P3ad3XLT2ZYAdEoN6Gy4YCe/888P2aKnnvNgAQ2oDbFVzqYLO6qayjq76YbLYXivt97kdo4BMWHLBJT8sg9E+x3Q75jtDVBHj21Za62APWtsspozZloXf6wVelM2AaZx/mc/bROCBEYl1lgMQNaH0rUt3mHr0u/Ylv6dgMqgdfV22sqVy231W2ussq7SLpg7x0ZNGWWVTVWAOMAk4GxL7y77xRvP2ur126wGFe/VMy60K86cayNi9XbdGZfY1lSrjY2PsDbbQ9iNkO16e7O1lcH06TnDMASJZGfXgBa0HkosDgPYiVo5Q4qiSWNOt0pU60FinglEhQjjH82mODVugQoChuAxiXcELfAScO3jE7kVItjSYSdmxPLKI68S7PJnS+nzUBIoAa9DSecUP1ZRWWl/93d/Z7NmzXLqxTNJ6/HZz37W6hsaHAPyXsXjP8KlJQrJr/wkKPsWm6PY16MJQt5Pt3R9sVF6qYwYMcJ5q77yyismYC3PuO0YECu8hAzsFUpCsb2WLFni7Lpkp/bJT37S1RMzJnAmUKZUQjfddJNdeeWVrl2xYL78juaYHfACEGgGZWTYzAJYjn1TqCVpY0aPsdU73rQ+nAUa68Y6tVYEY+usFl/Z+WiR7EtbImbWHoIJG1FmFQ0VFo5hWVWNrRYsUaAT+y8CYqYDCWvv6nQMoNRWYyc22w0TR2IDpBhTRooarKDYqJzbaUtbzJY+tNDqMNTXZfbk+mwXaqkJM2bYxffcbtVzJzoAUFz+nXze/aZfCKPC0D8P0OBnwj3CYJ4+74WB87x/OSwwxD0M4I0ZUDwvvkew28pji1QWjxGuBPDR2cfYFYE+ZmmM7+PsF5BytFvxp6c8iAJeUv1p11lzZsJinkM7PXyTQf+BMMK/l7q2K0Xgtbavx177/j/Y3u3vWHj0SJuLk8bTS5eQj2iHNVZV2ydvucPOHzfJggDeAGxenuvusS57eONj9uuFSt1E4Nc4XrOnT7Vp4yfZSNqoqq92hvFYUVlrmLyO6R32wnZY9+42AHXUuvBK3d6z3ba0rsYWcZZdNPVMmwhQwm3SNmPrNTYVth0bd0BzoVbUs8bpOOk3QXbfIfRHJX9chGUnCBg8N15h08Y22+wx1dgLjkCu3MNQpWU69sLekcZoFL+PyhEECUNW2HT1dLSgvk6S8YAQE4C0HCrpPKFKZE7naDVPOqX3kgSGlEAJeA0pmtIBqZ1k4/T1r3/dLaxaSLXIHp2iv0JhBlxjxQf50Wn4qLYi9dnKlSt5uEIrHGGRWkzG6BMmTGDtOj5j1uIphkp2WwJLKuqT8uUtXLjQ/uqv/somTpxoixYtcscExGTftRXvxv/4j/9wrKdCTmgM8oQU2FLRXFG7Uklqjmiu+ADPVTiKb4IJiUIa2yDSzpRXABG4FmRLqKrMJp0xw159+TV7/fXFdtMZU53qLV9esAz9I8MOXoyADQU1LY+QHDtnfeQvrGFhzmNs3Y9BfD5NQE/JBcanY+s227Jji9XAoNWOId0QizajZIHFOJv2sLHG8DtrDfW1Nvu2Ky2Ksf62l1daH0BEKstpZ82xeZ+5yeqnjKfHnMl8F+s2dBETTIgI1G5JIqnrG0s64AlgW1QzauwOcgL+0JvywrZIuAIAJfWnmEAFTJU3Yww1uagepRoKCRXIUxAAonpSNwqT5PHOLPDKM4481FkUYIRZvlNxBpGBeqv2VXRtqTLFdOveai7pM4RdVIrzC3g35oiR5Qr7mRCoark3lRXYfynaPnVgt5LIXDk2M8Tt6saLUU4HZaj2Zk2b6QC08F6W4KdVfWGrJVp/Px1dsmS5PbJ0kdnIqF10yTyzjj5b/Mpym7b6VZsmlg2GSv+kCiYAvVUAiM+Zfjr0JddRoFz1h/4rTVAvtRQoN0qfx+GNeHr9KMvEm2xTstvidaNhD8PWyTj2lsHm0odckpHLiD4qD1gM6/GkzADuQuE65ktMMwLweiBI9YRQei9JYHAJlIDX4HIp7R0gAame9DrS4i85rFnOviTgDFJ5JrrH+5G2fvTP16KicAp/8Ad/4NRw/kKjK+376794WdX1y8HHtF/HxRr9xV/8hVPb+sDEP+eD+BTw84v6KAN5FXksiskUYJIzhUKIyHZLAOuSSy5xcdzuv/9+lzLonnvucepnnSdbP7FjrvDpj1uATuM9Zt6bABjFLpe9lICEAwQAnRAL/9jzZlrtYyPshSf+x6664iNWNWY0C2jKMT5VMB1yeHMgGoPpIOrFIOelSSGTArgIpFS3w6CxcCdRCy5ds9y2Zlvt2osvsYrRtQQbFdPFQoxaTzZVNQCHchbuEMxT+WWTbVZzpaW+l7G1jz9jzeMn2AVfusNGLjgD+y5Ul8x55R48XNGfIrQIcaPQsAJGLOowegK2MtoPFBKAhwSsEfZooQ4zAntGCSORzXRbKrEbxIKKkTHG0FeGARey26ssp9VMO04TWwAJ7YAwwiWgNisovATYTfG1goDPMOEewsyBIM4CQCZAFvZw9KEguzXEkwTsdWHkntfzQH+ECdxxbgJkBj4BhQIUASD9zqCK/vJdHqUB+h3j3kShAjMEM9UrRfqmvnjW3o6k7VKcIFDqEdqBEB8AmhgANwbk3F2GLHNbbeFrz9jvXnzJzhoz0a699EqbOmaStVXstWB9ylZu7bLXWrts/gS8DaE2+8lSkK0s2E6i4v/F+TfZlMbJgLByotSXOQN7qRwlX8lWP4cKZDQGdW52yzZLA7RBn7B2eaunjxbsIFRHB6psoJVU1ahJ21sTluhJWkPVNIsFJyO3SkAXf8TglBGh1wyaV6mUJHBoCZSA16HlUzp6lCXgQJbWOP7tj+ElpcqJWcTiKLK7Xkej9OGNdTyKgJDWfX2KpRKQ9tkqAabp06fbX/7lXzoHCjFZUi82oFJW4NSXXnzRfvaznzmbvy9/+csOoIkx89lPH3BpXGrf36/vA4/p+9EqAl4RAaAibJcaTqCoGmbq3AUXWcu6d+zFR5+waz7+CQuOpDbG1EFyNKKbg/iBRZJtGGAgAigSQEnBMhWwBYsp12KswjasXGbPvv681Y8ZaTMvPIcQWTgKAPgU5DPHGAW+wrA1QV4h2kwLtIyrs9jYOlevjLQ2NRicZ7ExE8uGYIY9dKkO1U/FOwiIwqIIFzrbMfZ5vx7GIwCKJ14/saYChE8Y2VTJfcVjkcuR7tpp1+imi2JfURm2MWMaORtDe9SYAs1R7JnCqFuJsQHISnCvJE3NEwzIkUkYsCcM5ReB3DwgcE9/t7V3dtjEhlE2DkcEgaugGE4YJMnFBWXVSfyhkQPcB6EaNRoHJi9zzgAAQABJREFUxmHXIgAyMVPAYICi2DdtA7Ww24pn8SYkIGkUZ4AQtmOb8XBc9sZym4na+I4rb7YpY0+jLt7G1XXWOeY8e3Ld04T52GnzMdSPw2T2wdeFAZGV9GVSdITNLp9q1YVaI2qYY+rccJjveuKIO9RGBRRhqLacMCgJa9uwnQO1FmkuB7SicgUghkiSniVIa3tXi7V2pawsOsZqRk6yUAUBegGa+RBAmJko1S2NlkpJAoeVQAl4HVZEpQrHQgIEVXAPeKkt+KP5hCwCF2KDvva1rzm12pF2Uu0pwbTYruNZ1A8Vn8UUONKiKPZKQXLlxelnLdiBrdc//dM/WWdnp/31X/+1U0uKRfG9HHWeX/ztYwW2/OvoM8RiLR0YJk4AIbeHGcUCzqJ+/mWXWJoE2a888bRVNtbZueNvcZ5xWVSAYcBKAUal0I+6i0jz1qecf6Sbwf4pAYhSOqGtm9bbg/f9DMCStRtuv81GoG5Xfh6N2anstLryH2JpX1G4AtcuORLd+svxHKBCaXEcetkvpn3nDLUhYAEccQt5UCpF90thuHzK8LuAIXdAjFihHJUXLBx9vvrqy2za9Ek2Y9p0jgOiUEMmub6IsiCA9MabrrXzzz+LJNljYb5gxWg1ne31VIHQgCEcCwKoIt2BAHLBZk5xvNwfSMWOut8sIG3bjm32+pLX7YrzL7aR02a5kBbgXq45YJDuN839UAeK+7UrQmBXzNUJqooHaKbMxpESqAawVcH1yhhXhNyREEjuj7JG2LgLyiZZ9Tk3W31jvU0dPdUJXfO3gNH7ZSNmkUfxbaveRlT6rqTFGitc2woD0YT3ajUXrOKaVdzXKPZvun9Kvk24N5fBUQBXNm55RdGvJtfj2JHW0dpjG/bssL1dfYA48nCSSqiju2CtHVuspavXJo8700bVj4FS5D5wo50tnuYUYE8MWqmUJDAcCZSA13CkdIrW0QIq9ZRc2f2ih5726SHmL7T+sffyyaPKPai9h/WAB/Z7aeQDqKsI7n/0R3901K4kmR2J3I6kI7qu7qmi8YvJUxgIFQEwgUGpQqUm9FWFOvbkk0/ay8SF+sQnPmE33HCDU10d6b1Xu0dUpC9icXaG4dpmcRfY0SKYxXgpPqLBrvjozbZ9x3Z74IlHbBMsz1VXXIFn4DiAGY88GBulookqbRChJRRYUzMwiK3SymXL7JGHH7Ld7R320Xs+ZbMvuoAL6ahAhKCPB4TEmTjGhD0qHHUAQ+yPNiVPGbyHhQzp6/spwCx+I8AD7plXBITkQQfLQt/zpMIRAlSsqRlTp9l0DPnzjD8tdSD3Nxol7Chqvhz39YyZ2DvhpZxBlZYjQXQeBjDPtuzB2Ci2rw9BLbdTwzig6LeqFEs9fQnbvHMHIRW6HaaS0b6GPXjx+85RNuXVqT+5QjgMxFF3VvCSWtHxbPKkdFdVBHyYMTwTp9c222nnjnRNy9ZK45KyMANjeUbTJMtfcJWTd32syvVb5xNn1cpgzSqQVTWvcrwWQ8hLf+FFAKkhsXncH6z5hBa5WdxJGLKKESMt2hiyNau225MrXrZe1KBzRo+3jYTCWLppLd6sKbuzkThiNXjL0j76ZvdbVhOuE+/3RrvRld5OJQmUgNepdLffx1j7iFou+55XX33VsR3yZlNEc1aW99Eap/BQ1GNezyr9pe4V/7P49QT5EFA5mjG8jvewfGZLrJaM45V7UyBM6kQHpgVgtLjyEnBQjk593nzzzXb33Xc7I3ulBxqoSjxuYxLjxbQJ0L+QgAgdycJmyJYqi5FTbES1XfnJW7H5ydmLTz1ju9dssPnnzbPJU6dYBfY+Uf7FsSlK9CZsz9ubbPO27bb2nbW2YsVrSt1od93zabv0WhZ1qfpEySrSOUVJt8WwyT7xgF+A9nlVHHjQ4q4d/j538nt604jEydCOBlr8BmygTUJk0HfiHFgUFWgO0NADKAiTk9LVx5he0elD1BFwS+bw4uyXnZKgHGQNeRsVzFUqRUWuL6Diw3CLI7qWoAuxxxw80jev6DxBMvlaBjCYDwHWhT1QhrpK+6GbV7N42uAfnAfs414JRKEahY2SmjOLVXwaeYtJwgKRG8kx4oBpznlZFbRffwgyToFghHsOXreKO5eJE5KCgGlKfS2FqSZCGCCnkQTlgurAOtdj3CGArEbLn49ut95yQo6onpMwirvJXvBGx07bke3Btq/J5Zd8DU/GnkTWprfvstNJJxVFtay4ZAJwsv/yfFC9+zT4oEt7SxLYL4ES8Novi9LWQRLQwvvNb37T7r33Xuvq6nLMyIvY+/zgBz/AXgS6/QiK+IKToQiEfJiKQkhcfPHFDnTNmTMHsojFp8h4CGSJCVPRpwCZwkMollsVaYG0APry0OcHoVIcUvaAC9C/1m238DuvPsaiaBEs1Y69G3/2NLt7xP9jM554zZa/+Ko99bvHCXJaQcLjStuxbRsBOXtt4YMPW3cuZa2wN0lUbVPOmmkLbr7WpsyawcIuhgmgoRQ7otQ0Z/kvr0CxXUpd5ICOZFH8LrkJxCq9j8CBuic4896L5p2uqRYUgoEucN0wi3yIoKzaD1ZhpHBgAIZ8TPko2QsCygM6xJIlsVnT9FXsrDyG8DruvO9oNo+jgdLdSIWax/i8EKi0bJp2uJzLaQlI06hcF7iaihwKkrBkUrHKO1G2brKpEhAVKRgs2gxIOu7C7qwD3zKAq75CL+NJIe8Ecc5wFiCvItCQsFiac+KzxLQz19Rn/gkYZVGHZgCQsgsNA4Il92SGcwBcEY71ci/SzNcUADJLtPp+gC8hT5ESKlkAKGfRJ08tK9WvQKd3d727k6FdSVu+pLthBHfS5jrqbyQsSJTzd8QD1oYcd+FN2wHQrWduxBi08LXut2fjxTVcKwjj/2fvPcDkuqp831W5Ore6lXO0JNuSbdmyhRMOWDbGNgaMwTBjhvDeZS5zmTcJeDPfN998d/hmYOYOPIZhhguYjC8zYAwGZ5xzlLNyzupWB3Wqrvh+/3XqSK12y5JsBYezpao6dc4+O6y9++x//dfaa0UpksBrSEAzJUqRBEaUwNp16+ymm27yHW4CYGK+brvtNnvwwQft2o98xBeUcCEesYDXODl0MRp6/Bq3RJfeoAQ0VgJXchEi1iscu5AJ0/eh55R3zBjcKFSTrknVrM/jCrq8PSxurHpaLrUrT0nsJOsvCyLKLGnhaOeYGRPtoqsvsxNPOck2r1wDu4VTzW2EesFJZwte7UugkdFjJ9j86WfYmHmTbRZgrbG1xcsTLyOgwpqsonyR9Q1+1BenIsWBTOoiE1jXFb6niLf5IogoDkASONCijNT8uFroQT4oyHslcKHDgEvSAp9ip2X77q32Xzf9xh5/uhVg1Q0hhwsFMUBej0sDgIRMnMlSD0L3Dxxrh6Tkhf2XjzlgpFTI2NPLVhFrUSpoNitgF6Yg1dBlDjD3a6w3DcCFii1HX8vIWd7akwA/qSHlWV8jIpcT3LzfrfqieZPHt1gn4XdyGKTn8JOWrynbQKoflgnfWMS8FBcpEAfXxR1ilQSagDOIIfRjxk4Ixzfa6EAHhT5pD+XDZA4IzJE5Tzgp7TOEz4WslGqRbHSriDyztEPcnwM8yYcaymxmKLA7tICMegBmfcTuFNptQ1aKDjAAw5Wnkj6AqqoX4NU/Jd2vQOwCc1GKJHAoEoiA16FI6R2YRw9JqaHkckDhYUTpP/DAAy4JBU0Wzf+6kj9Fgzs9fArMhYx4g1+KwYPsdZUb3XRIEtC4Dk/OerFYDgVTYb7wnL77Yj3C/cPLO/rf6QMLnU8bFket8+qVXrJlD6AOIECLNYtzogk3Ewtm2sT50yzfoyDS3bgE6A1AWn3WahsbrL4Z7/y4NSiwk05Lvtgq31FI2ZqV+q4jX1o5ofW+eioAfjRH8hGz5DJTE4WWdLOn4P7w22t9Ku6fd8ZvVgO0u9Fs/PgWwGXR7nnoTqt7AnBSxJkonvItJjcG6mxwWwCCOFaVnPQmqBg5hxAbFidCI9fKblPVSHtTNnnieH5gERKHC2xc5BrlDRlrlSGOKIU9VDrJLlHAlkBrW3c7YYFQSQusuVQESjkcci/fPKklKdg6KQDz1sPYACSJzXgfZgxta9vwbI/LCdSeMkEoJMSsMbYMqECl8G3QO7F6yMPP+UnvYSKfpQ0ZG8ygOu7bjT0WcRv5DofmgEusHLiSFgpwsauV83rqqAThN0Ex9VA+zOQeo19qUNqXx9K/wEDnhQY5jxtb2iUWMkhhGSohgMpBm8Lr0WckgZEkEAGvkaQSnfPFY+rUqSZ11COPPGLX4+dJzkQVFkZBs5XCxflwxaVHXPAgDx5XWiijdPwkEIKrkVrwesd4pLKO1DnNnQqLfohr5ARUDMa+FBxrAdcrjwpLrhES2EOla+oI/1NnjWLudE6e1FnExWQlWFiLLLLauehlC8twTbNT1lMOtqqVaMGFRyGDZ3J2iKxu3B/Ik7soS4u6GLmYo5F9LXytI3ezolr9z0K7GwmEXZ+yq6682KbAVA4SDDqbkRsGfJGxGxAURHFBn1VuCABCKBQ0grMwOkGhgpZKSK0E0MFIf6LccJwxExnJ4J5wP6geU3jhD8r1htievj22bNMaAl/vQKWbtZeXr7AVzz1vY+fOc6ejcQkgaPTQ5qiivSlZxOVHuckKmZLNbJhqF2Ag397Rbbvat+OAFrs0VIUFWLHBJFsasfeSz60g7SvbGUhOajzClKbceJEfi/jTYuukLRw72Rrwz5UiszgzN23QWDAg4eYBBjfYcMp5t9lz1TKqasa028EVeTlWzcHOWcrB7kxAWLIV06Vs+g2g71IFRymSwKFIIAJehyKld2geqZm++tWv2r/+6796+JhFixa5U83589kh9QZT8KAKHuhvsKjo9tchgTcjoDqcbgSKKC2kwWvvgj8EgGixlM1SH7ZBWRyKKtiyB4cGZcnJaFwG87yK+JnSzr8YzkNjqJXEZ4jNEviSkpDD/Rb5oJ0Ce7Axbh8XLLhAJFfFamn39lCAynE8Etx0yO9V03fyUxaNTWPDddrps+yUhTO9PUIM/bDR9dgzvZGxBBPSPhmJ00/hSFR1MWywpLYLIGfQN8GPrq5uu/O+e2x523ZXta14+SU7/YR5NpPQYkXkUKa/gbQO0E2KEpFUgwuJumyjLZxwon3m8o9ZjmgBLfxLY2uG8Rg2enizR8UnVaLAnNSj+xLAWAOjQRmSkjBjKeUFBOWwH9MGickNY4i3SN8A5gLg0owGoC0sMwBVGly120No0T7Z6bk7FQdSUkWivuY16OpbzQ7dz8ygWf4SAiTTsCZxMkqRBEaWQAS8RpZLdBYJ6IEuxuub3/ym+3Gq5wGrgMliCN5Q0u16Sr3BYt5QG97hN4eLtdiZkPEKzw0VTXhN53Rd30fKN/SeocdePvcJaA9NQ9mK8LyW7f0nRfB9eF4tnniqwhooyB5OJy2QXkZ1wVTdBRbcEh7qc8RglJJItk/yN5DAZgeUBGAQ4OJODOjzLPjaqZaCCVMdarM0aFUzK9W2N6ll8t2ltkntpaT8UtHJpYO+yKeYt516pD6U9k3fg37qjpGTlvWgNF3XHbQcAyW5fogTe1EAIYZn9hrKT2c1frBDQ5J6KrcLZVCf2qSkUhLlmmDsCNnjVA18UhymaBDgmQOMJuK9vDpot9xEoHbc7+9TtnBj7byzz7VXfvMLW7d5o13MLtGPfODDsFd4fne/FNSh+aQK1QUdSJBh4rBCvMMssQ3HpJoslZlmYye2wjCVrCHezHjWAHrjjK188+OXiwJqht5fLSfsU1isPhOUUaz0Y7A/aL3lXsYwY6MKScviLkQmDWIxNeQiHrU5Imicxi54qcGSllrvm018DAPgl6FPclHBpWAXKOMptkuqbISvW31jgTTEOo5SJIGDSSACXgeT0Dv8uhZZAS69wiSnp0c8VRevI15uVOBeCQiIyG5PjlLDOI0yoNfxcLcZDlqquxh1XYtRBo/3+tQ9hwK+iqhlCixg6TQ2PQI4rFRSx7iqZ9gU0lexS8NTMC206u2fcGbga55uEQEiHqLkjIvgF2bTYk7yUtOZNaNy0poYh9JxrRzH4jrUljIZPHg057KsnAodFKiVyO8rLfmwawpSYP+lYxmQdwBWstiFDeCssxaP5uk97PCDMdpVQzicFgzrUYeWcuziY4dclr6rDVqZxZT5wu3HnBIoqwIMAQOF3NGOwRTe1uX2IsH1JPVlkb0CLArOlQFLMWI4xgEXvmPPy66+kU/jt19CDopXKaCRYveiU0JkqIjpkr0WfUwSFzFRqkNfyninAHiccxDIvZJqE225fN6pNgVI9OQzT9kZp5xmi1um2D1dbb6bMob6Ub7g1kv9iu0c4QGsxGuQvgujxPCSn8CDvnZNag41E5qojn9qFNZjjJp2gfK84Ugck+TvjCHfhiaa86qkfARx4o6Stfo8k0sNlIwwYYEksC9D1apHFzMRaEfUAUqBA+VGVLD4xpB5fG2slnz0VmPOOCSRRQHnshBngHNYP+zjigDdJCUECYYUG7sB+sNoUF6UIgkcXAIR8Dq4jKIcR1ECerTLZiJ4OB7FiqKiXQIKeK3FcWCArfgsxLV1BJnGD9JIKQRXyicP6aEPL31/1cI+QgHa2Sf2KIdKTH6aUnIDwGono/PhrI8WeJX5qnngJ151loVPBVUrFSoghW3SzssSgE+Lu1wtCOQoazDXPGu1fiCLFtngCuUFqkHllauBIAX3VqGa53WigxLl6iCfh3kjawagkusZtEL/oKVqAR0qpA8brH7iGjZJvkAC+gfOIQmIqN59jJSu+01+XUeo1PSOh3qBJdFuJQBcRYblaq/LijIYl7Cl5NqbZLPm91XPCHDInZX8kKWEUtQJT+IBA0Cp9slpaVphCiUBb+y+0rVYNACuzpx/sp04JfADV8NO0ka5a8BQX97uBaHqee2U7ZnUuQAayUcgB/zCG19SvPgv+Wl0OPT+6qS6L5ssnTmcpDKCWSyAFdytc17x3oIkb80cqZPFrVEfz57wTk4BNjG6V19UPwWA4QCVKklfUDe6UKvfdU5XkKc2Agg4RimSwKFIIAJehyKlKM+RlUDwTNtbJr9r/REWPbb2iuSoHAhIyZZJu1Lll0tJvtoUt0/gKwQuOh+CLoEYARi9BNhk/yLgdShJhskCXWVcD2SzeFFnYS/AIIhRKAnwCIVVF6tg7F89A+R5PXQXEdaptnk0Bcrbl1hEpRPkmgzZ0wKHHMv26LU87e8P9bTjLWjD8B4KEoSAy1ELZePIgV16gC7UgLE+FnwMw7MCH3hYrxCKSNvpkuwAlGcLGZuJZUvQb6kovZ3e+KF9Vn/EdPkyDzwIAKDnYMGX2AWoygDaCuMhFlEyHgrfvEjd7wzaUPloVx85KUPyc9aaghXqRs77BwDGiqvYSK1pHLHKT1fQirBE7uPmktxl0JdGTA7EhBb43sDfbwqAFadxMYyrxgPe+vATtoP+x2GcMrRFauEK3ysSWDUNlf3+x8qwf9vDe17rc+gdQ4/33SNJ6aV3mETeK4wH4pDYA1qPD13PMNhEHvIUtFgljlxqkCt6jyRw6BKIgNehy+odm1MLshbN11rADlc4wx9h1Wfc4RYT5T8MCWgcBZqkVrzvvvscfL3rXe9ylyFDQVdYpDzUSzW5ZcsWD6g9ms0WmgMj5Q3vGfopYiXJTkJ0PphTAVxYgOOKMRjCm2GTQEs9a97eJOyQwkeV3BsMT8rmqslw4nhZqE3pY442x7BjaiBkTh6v6GW8qorpOdjCqRxpsRuU6SCrWrZAl04G/9REgA+Apw4HpbL9cYYGucRBMApBVIOaLIXvAtxU8Z2FnXwVYvuBQVDlCRjyGkpHqWVhP5COGBslxSwMUxFmRsbmFcakH2N7+aPqJ45gBfmISRSoC1PgUUrv+5KK6uWlc2oHzXFgJ3AxIKoH9V8MhCgXE4UcOwMpTmrOoYBIpSWoT0C4MEgewF8cf1n62ZRFrVvCs3sW87EmxroBv2A76HuSl1S4Kk+sWCBLlXQ8Eo3gv3yDSSUZ/NyjHT431HeecxIQ7a3hYJBcmg46FaVIAkdSAiM80o5k8VFZb2UJhAu1fHlt2LABP0Lj3bhezIcYkJAVef19ZLHSL04KUFk89/z49ZcX3XkwCWjc5Bbk61//ujtRPfvssx1IhWMdgqrwUxELFKlAYO3zn/+8O1QdnvdAdcrQvIIReBkDmSKAowZbq46OHtu4eRfOKFE/MtriHkJ8ISP1UHEW4hCFw5FjTiWd2wcEWDa5MXDToLMVwETSps+YYGPGN7tqtCDv56AX1XGoyQ3ltdiKBuFT9l5izpS0AMv0R6lCn9h452Xne3PWvb3DelZvsj3bOz0OpNRVndvwTVVbsYapre7nSlhLakLhnKrOUSUNm/SAY4CLp2pdar5uERDYk+u1jR278CAvpZ5C1ZCq2f0efwMw8LkXWOgceXASwUEZYGRWy0tMjlRnJeaEcqfo5+TGUTY6mQU8vjppp18JlkvgPQ4A1DyIyYif83m50QccyqlqFtuqLABNf9AePFyV8z+U46tLPoZnHPwLACIJebIHwCaSgEieQ9qQIF7SLzpYZIz3IWLueJWgj2HDo6reThKIgNfbaTSPQl+efvpp+9u//VtbvXq1jWVX0xe+8AV73xVXHLGagkdZ9EA7YgI9SEFaNAW8duzY4epF2XoJVEltFKobdRwmLa5r1qyxZ555xsSOKVC2WDCpJ33LfTXjSGyogwwAQmBXhHoRu6v773vU/v3bN9ju9n5AE+FdqMtBt6928rfFokidvnOW1bFUAjzBSHCKFyDKF3QAAAuiPLbL2D/QWJatvjZlf3j9tfbJT15j2TotrvxAgF3ye8MOHewzBHkBScNai3qWdksFKfVcZRCmhOkq56oDu7tt8/rN9sLDz9nGZ1+x9G72Wu7o8v6uWrHcVnxji8VmtNqUJSfZ/NMX2LS5s/GoD9WkHYCoC1nVwTsUJtzDsVgrAT8HaCH4UntRncrNhQKAP798uf3oll/alu5OHJhyI2DBnZeqk9WkvyapBYendmyrVMfoQSM4tUCRDO7RiIqNw56rDmbwynMvtA+e/x6rT7GRYkiZKkv1yKu91M2KjygQRk3u+yyPAZcsnXDhjjNazONRVwqIQXhZH3V4OHYqFLh7dcuGt/TofVeXytjlKcZnCWe0RbmtoN2K81nAoCvPfBt0sE8raav6JxCrTyEy/zFBIUP7IMnru3JEKZLAoUggAl6HIqV3aJ5du3bZX/3VX5niM06ZMoUAws/bF7/4RT+Wm4kjkfYtF0eitKiMQ5FAyFQKhOlYi3QBMCXDYgEZLbi6JiZj1KhRdu2119rjjz9uP/jBD2zx4sXOegp8KWkRFoumBflVOyO1yAo0sCyJd5JPpo2bNtmKlatt6uT5NmP6bBvIEVGP+2WflQQYpLCJKhQwIidvAMgI8cIuTIGfErsk04AE7ZbU0pdJZW1wIO+L/PadW+2ll56x9eu3sLKKH2Ip1Io5dIVUg18raTKKRqN0tVq7JAXwVE6Ffhaw3VJMSOGLja8st7tuutnWr9lk5VzZZrZMtFkzTrSOFYQkWrvO5p+80PawYW/twA77Nfkevvchu/DSi+3sd59n9WMISSQ507aY9IoCXl6n3vmqJlQBoPLorOyq8E5lW2G7Xly31jKto6x13Gjsy1DzKbD03j8kDijSx3jvOZUBJiKuIResBeBRC1snXCEv7fgttY7eHlu7cbNt2L4Zv2d4jee8jOKHJ41xyHbHAV9u94W+NdmgQmDhKgPYf9VZtobvSTqCcVceu649FFSGFWuSGo8Oj1D08KqO/Hf6CxZUyEafFx7TU5CQMS3ShwHU0t2lHnfgmhMqdbqTe/T3IAHTHbFigq8aIk/V+UXRhzXVqndHH+9QCfDXEaVIAq+WgB7c69evtxdeeMF9ed1www325S9/2eM1iv1YeMop/qDxB/yrb4/OvAUkEIKbkK3SrsXwnECXjpXOO+88u/TSS+03v/mN3XHHHXb99df7rkiNvRgrB3AAr5GSGBYtSsG7Fi4WqGSzXXzRUvvEH17hxuIFjK7TAJAUgZkLGGjn83JBIUZLgI31WwCI+IBog2DlUI/JeN3hHHY4g3h1r03Yb2+7x9avXUVFAElvSPCumg85iWpyFwrBXXLpEDoXLQ1QP2xXkkDJa5982W7839+3zW0bAKJn2VnnnGfTxk6zBlwRPP6L31kf4Gj+eUtszKI5tr2/3eZseNlefOQ5+9UPf2HbUEde+0cfs9rxrc5uOejyJoofBFzyLlHGYLwC0OU4z1V48pElIKgQR6e/60w7l3pb8etVy1/iXiBwgM6qih71jT5J1ZgW+CANUBemaPbky8/Zze03o3pkTHkVykXLYPc1kvTCv/lA0owX/rNSeLw3xmGgDINawW0EwaS1JbBUyIEx5RIV+QFutNO1Oq28/mP6RmfiMHuKelCo5GhTgQDpfbZm+2rrHxi08RMn41kCv2Y43MUxSICkfBrtk4Jm+YFkfaDzx7SPUWVvCQlEwOstMUzHvpFadOtwNSCVkpivn//8565yUkuam5u9QeED+Ni3LqrxSEggHD+xVrLjk3+vGnx1hUmslnZAivX66Ec/6sznT3/6Uzv//PNt+vTplhNbBUqQykmG+K+ZxBxVl3GxaklYkJbWZhgTXDIURb+wMINCxIw54KNNCvGTJLafbLy0uzEJC+EuD6BitIAm8cskkNZQhzF3nVgUuVpQPb5avmZzDnSxDPiSlk++nsoAEKUygEu2Plk2CWx6/GW7+d9/bKXdPfbx6z5iC5ecbqMIsg0dZdaF2ipLrD9UWHkBkVEZGz95kp03d4wtPOEUu+em2+2xhx51luia6z9mdVNGIRLAECt2BZDidSMBdzUhxkWrPE0I7czcNxnMn8BubU2tjR893iaRKSuQpoYeJO2hTPWtHnkSscfLlc+wfhgzldefHwR0YOdEYXCOlBYY7asZI6cgTy1ybxzYY5Xd221eS71NANg0A7gaGbNRUEx6WjSIaoJJS8CYBRTfobR45FrfyFkNqTYmyIWG1KPPrnvJbrr3Juvt77Vzz77A5s07mc0LYsFoH4IYvqP2jdQd3RtJIJRABLxCSUSfr5LA7Nmz7YMf/KB997vf9dBBYjbe//73+8LrxsevuuPwTkS/EA9PXkcrt1RHAl0CX88++6zt3LnT7flOOukka2xUEOWKLViwwK655hr74Q9/aL/85S/tT//0T13lJGZMKQRxw9sYYIeqnYyvtVI/Kj4iu/IGUE1l0Nuh4kmwWGdgkwSwYjBdRYzXBdCKpUClmUrLRF7qShyd1hC0mF11Je4TDTYAGyXw4kGp3eBLEE91aIn3Svc2Swvv3jPVgyq+ciamyBwX7yQYqJ6R3VOa9u1as8Pu+M/fWm5Xh33so9fZrMsWAA6h4artKAO6BgmyPYC/rVKau9EZulIKNm/y+Il25Uc/5H7NHnv0SRs7ebwt/fBVOBQNjNTFDHq9AD/5hVL4HTVPQEmfapEDUL7JRYZaJvCQQtVYU5R7DnGA+hd0KmQY1XhK9EJqUP0JSNSAgdQ8OVTNy6cWQtXftn5kuRqRQQudJA8HXYE8gncBQm2NGZ+ptfnMky2A9LGMS++K1ZbYzhzqHbCx1NVMvkaEXGB+xWDRjPBHxyNpjoo5VZDtAmOzbN0Ldvvjd9iqXevZLJCyW56805bntlh3LfMKIK9toBoLuujjcDzaHNX59pRABLzenuN6RHqlB/Hf/d3f2ZIlS+yVV17xXXBXYFjf0oKNyhFIwx/qR6DIqIjXKYHNmzfbz372M/vd736311+Xdjz+xV/8hc2cOdMBmAzr77rrLrv55ptt6dKldiLATKxY6Ak/tPFyEObrv8MOVi0t/H4iQDKwHykYK5FrJex+ciWM0lnguts6bcfOHdba0mpjxo1z0FKWKhNwlef+trY262FjwKjRo2zM6NEs5GwISDfgxZ3iHT0JnAjCkKrVaVcdVQWJc+7XywEKp7hHuRVSxkEL3+W2QUBFQEYG/ro1LR3nYMGW3f+YrXlphV153iU2+7QzUJuhQCP4oHu/l+EXfYnBopRh5EoEeta2xzw7Kwu4XKgMlq0l1WgXXP1e29G1yx648x6bc/IJNvvMhQ5sneWrtpOS1LS9STBLCWwE0JEosakigz+8YfxSuG5QGBz33cV9ujXoPu/8FzuoTQmJeBacihE9eRMwW4MqDNWfDOC1CcEN5um/716s1uOgjeMwiXH0XaJUEv74ShC0e8kJs2xCtsZmzp1rdTUN1nriyXZCss5G1zRZjJ2x7OgAdFIR9w0hP8Nij9GnZASwB0Tv6NxpDz/5qBUZp4kzJ1oim7YW3KXUjq63cmcHc5bxQ3iKWiAeVQBYDGQ4Ft5gCVnnoxRJ4DAlEAGvwxTYOym7FlCpmT7+8Y/v7bYe+nodiOHYm/EQDvY9xIJl4hBuibIcAQmI3VAK7bikMrznnnscdF199dW+c3E5u+f+5V/+xb72ta/ZV77yFVdBKjj6VVddZf/2b//mtn5/zoYLgS2pKpX0qTL1KdWju3pgrhRRMZVgsAS2fGccS5kvgGoDq7AM6rVj78mn1tlPb/yZXXLpu+3jf3iN5QsDXC+xkCtUUcwefWK5fe+7P7T/508/z87a8dh64WCB63Fsw+TvM47aMomNjpivIqBMaQ+2StsTnThLTxKcJmUNOTyrl2hbD3OORTPREMO4vGwdqAa7AVEtlFmfrXUnpXl2t2Xw55SGUdqxapM9cvvdNnHGRDv58nOsPDppPTGcibJ7T2FpagnCjVKUWIEwSVK7AkIqCpWEQftANml7RhWtFVeqY8uoHs9/t/38P//THr7rEZs6b47Fm9LSwnmb4YUsVodLUpqXhs0SZlU4nxwArhPbox4swwVgMoQMakUFWhxk72YNuwgBUHKGG2c8iqhuBZAy/HByh7UwmmvXrbPfd2y0PTBccTYkpJFVV0eH1eCJfvGiM5B/3Pqwc+oGcLQBOMYimzT+whKEXgIVO5DrA7ANIM+Y9Vs91xqor2PDGtvWuc3On3eSTVxyvmVzBRjTNovPbbX0mafjvD9n7dvW2Oq1bTZj1jzA2hgM3LWZQq8AtTjoZKzC7z5wR+NNjxnkI4ex41MNdu0ZS21HfZ/d9MKDVjtQsGvnXGKDTRn7/7puRugMJFMoL8TF/xJjgQ8PG8041QnMq71kUZHqhRZSvkYpksAhSSACXockpnduJj0MwwdjKIUj9YDc96DSoytKx0oCGj+plASS9Orq6vJNFFIrfuhDH7I5J5zgLJd2sQqQiQ0Tu5XE+F5M1/3332+33367if0866yzXEUZzhPZe8kGSWyp+KQ8ACgBUFC8Ri3fwdyRQgyABjgQhaDdlEkWM/n7amvrwddXry/O2s1YYJEewOdXLeWlU3W2cUs7rJcssIIkeyRpg8SiqE9MVuqE0aGPKQW/BuQVsTeS362WNLEIiae4+bHl1vb0GsvBxNRPxt3D0lOtaeFkGwD9pCljsIBtG/ZOCWzIFH8PS2zbxY6/PDv/Fp7zbmucMhEGhDpQWyWLCumjsDg8SkFJSRynZtkskMKDe6ySBrjBetGeuroay5YAhr15mz1ztp00cYbtXrfDOja325gM5QGsZHkUB7TGsig6xQ55L7W00wY5TeUoB6jSzso6bN+0aTCJXCsE+O4DEMlJq1SlA3iTdwAKGFOYoN6+fnvo2afsO0/93tq0szFHSchWLN5k1IQN7LKULV2Cc2VAY3txwDb05bEFY5MDzkYTeOTXRoNebKMkm7L12GhiMOb79ljf7q02tqXRxk6aYDWpWqt091kd9ScUCHvcKNwzMBdiALrNO6x361prnt4I8KljTtAvylQKnTP7l6P8Jue1SrXZBps1cZYl0l2WBYSlkVEzDN0AvuaYjeRQPs3TQHnr0Qb4fZEGiIGDg6brAab5x4dUrkHJfIlSJIGDSCACXgcRUHT56ElgH+N19OqISn61BELgrE+xX7Lp2rhxoy1cuNCmwmLJFkfASSpm2XPJBYSAl1RL8+bNc0bsG9/4ht10000mFkzhh6RylKoqzeKtTznZ7enZY2nUiWUMxysAhgoUgdwPuEsGmqUFy7kyJoI8uccxppdX+wpsgxiuMuF3RM4NAIKk+SniHV3LoNRmDky4J0wqS24mBgYHUA+VrDaTdUCnUMuzAA/u16ojby/c9IA9ceMdVt7SaTE8v+dQF459Zp6d++kP2LSLTgXIsFmAOjDV4k7UbzA+ecpc8/IrboM2fdYszuOxHZCmEEH7OsGyS5icumLSGga4rxdqBPO0NL7KGrABy9I368Foe8+gNdeMshMnz7R7H3vQtq7ZaOPnT3Zv9zWKeYjsBSYFJMFupIBdqQECNgIKpfZUP6UOTBMkOwfjV8oPOMuVlOwBm8l0Hf2NWQ8MloBBhvGZv+g0+8i0VmtH/bnsqadt5ep1tB3mjHGuydYRAB2gDGh9ZNkztrFtu9UPwmoxBinYvmRZGycSGJ0DvOKDsGQlm4w69awJY+x8VItTpk+iPYwvQIyGYHPXY3W1NB6QhlbPJo+bYLGuHkDaLlR5PRZrGQ14kxXesU+ab3pV6LuAcRrfZR7NUwZrB0r7ptmBcuj3g0+FA2aILkQSGCKBCHgNEUZ0eDwkENhdHI+a3+l1hkymjOqVJkyY4MBJ58VCNROPT0lATCpCBdhOA74uvPBCu+WWW+y2227zzRbnnHNOwKDB1uheZ78ABgJvUhVC5gCGsEVCJVguox6UUdbwxOJWYvErwhYpLE0tzIxC/6CB9B13Ch0EHGKxhIEBoIjZEqjYl1g4VRf1Vrhp1Zo1tmXbRtb+Psv2059eVJI7crb+zmetsHqbTarUWwM2Tx29XbbtoZfsOWDAri3brGc0aj0QwSDW+hWYrImNrTatptU6d+yyRqkgYUa2LV/pfq7qoD48zAxAMUm7kugZY239hBJCYbiuzfpa1ttAPe4JCPyXYuNAhk0A8e6cxfrpU45dmv15VHVbbf2Tr9jmbeshogQawWc1vNGdlNRcHBRhh3oAr90YfG/euc3Vu4qRWKCNcoCaBDRliJjYPdhru3ZstZ7ePe4fLQYbVsNuxXHNo23yifPtvPxUu/Oph6xrd6dNbmq2elS4uT7Uudq9hwquLLVs+07bvnsHIBLLcmzT3AAMpk7qRjeWy6hN/Ta1p8P2TJ9ip2DbFasB8AnwwgCW8/2wXbByApqoRePSAaNinoDPsY71G60XW6+mFkFbzh+HpPkpkESPkSzjBbCOwYYq3JMAJiPJefVRSRMsyOlfo7dIAkdIAhHwOkKCjIo5dAnowadfu64i0gIapWMugRAgqWKxXrLL6sdmR8yQnIUGLh8AOgAt5VUKj+ViQnnFdAlcKYW2XfJ+r40Y8vnVgZEyHAluGOpsImqdyy97L6CBxVzGMcOSbL2KMEYlwEZnV69t2LCZMjG6p/4E+aWu27mzHf9Kih8ZqEhp0N5SxKDINUUGiq2/f9C+853v2223/9pyPV3WjPovg7OqqdlxtiA51WbFm22UAloD0pIJwBSL74qHnrIb77vJlsV3414BFSnXtANvSss4u37pVWZte6xt23a79Vc3YyyPzRb2Z3XCFizVJcBiFuDVkMe+ameH5Xv67LF7HrL80w9bezpvnWwhrKOtKYDXKMBjso+dj9hCdfd229qXlttP7sDe6/nHGIO828F1Alikhk0DCCTzEsCrhC1ZemyTxWdOtsYx+ABDJikxhDA36wFj6zdstBVrV9qKNauso6vbBmCetGEhDSiaMWOGnX7GmbZ+90774Z2322xswj542WW2Y9tWu//Rx3DACiDGH1oe4NU0drSNJX+pADOF6jQBqIyJ8QJ4SdxlGLM6sYRcnzSqGdVkyjp37cTAH0Dd3W9p4jXGi/jB6uqw3vZaSEAgFvMpTX/LREkows4dz6TnjmZNnL65nSFyjqGPZVQAXuIyBbuq82rf9DqeTY7qfhtKIAJeb8NBfTN3Sb8zS3qg8wQs41BRHs8rPPikWnF10Ju58W+jtoUgyhkAsURVcOXx6lgoBcZkdB8CNH3mYaB2Y5B94403Wmdnp4ePkssJqRXlfNXD/CCjJ554wr7xjX/FVmu3Ikg7cTBz2nwbN34aJAoqQEBDWJ+LVACGOaHzfX297Jy8x9atX2Pd3W3ME+YKgMpQxnV2DmB0DpBjsRcIAAoEfAT3ByBe3qeqLAXs10BvH2wdKk8ml7ysBzsfYTawZ3KDKbIq3qHUgSnUmmjSYJG0MxGbLeqkSQCkfmyk+nBUmnLGq7V1tKVamjxAtZSSYueKsCUZgFc9wLETY/dBXCrUsTMzOwY9az3G2MRrTAOE4r2DqB1xmdHLzseeHupEvnUZ68ZIv1sGW3QiKd0cOkaJDXF4P9VXUKgVYNtSUkXKmawAGQ18AtXgbffdY2vXr/f7G1pbbMKMaZaCzeoHAHX09dijq1fZU6tW2q58zua0ttonr77GTj3hRHvw4fth9JoBqynrBkiK9WqEmZo+fx67/eR2oYi6ETArNg85FaivVKQPqbyNA3hNABDuofwtvR3kK1qSYOC1ALQ8Mst3Yicnf1geRJsPjNeLzJmGCXLUEXBJfHgKHfiG34/mZ3V2+C5FzRnRX0kxltgSJktBPxOiHXXRBa/WwJIpL6/g/v3brxxRiiRwOBKIgNfhSCvK+4YkoGeXknwURen4SUCLtoCVG9cDsurr6/H+Xmvbt293tWLYMjnOlcG6G8pzTz+MhVxJ3Hrrrfae97zH3vteGCwAjQCZkhZQ5Z88ebKdeeZia8OmR9vzBHSmTp4L6zXWdrPjTcvWUOCl9ohRKcE8NdZjqD22zpaceRqG3H3kY6F2tiVja1Zvx5lvJ+cLlKnQNboH9R2sDxWxLuofhuz1Wfvsf/uMnYS7hiKAIpODbepj3m3vt7V3PWdbcX6awMs8mMhVitsLvTZx4Wz71OJL7fLWnBUbMOqnTYjGxjW22NxxU23lHY9aAmBx0XsvszGzZ2C8BZDDX1cFA3bt0kvR9nhf0e7/6a+t5/EBW3T1ZTZh8TwbJBp1HzZRWdqVYkFPtGOvhuf9ZY89bqvuuc0mL5pnf/7hC+3dK15gB+IAalXtEgWo0Z80AEsAAFyHSyl2jBIDcU1/lz3y5OPudFZhnl5Z/or1de2x00462U48eYHNnjfXMo34ssd2STscX9m6zn74q1/YS88sk4hs9imLbO6MGTa6rtHOPuk0mzFqnE2bMNVe3LgW1o7dj5u24pGfccMJLMIEoCbwE4Z6l5v76UMZI/9mwgJNQoV72fzZtnTOXJs2CiYOu64MP6DKsI0C4XWtTdY0aSyAN1hiKj3sgMT1RZL5IbZu6BPAx5+qjkXSfJKiU3Ze7moE0D2hdTybFWSHV4/7D9zXaj5pTno+cuqQ472fOo5SJIE3IIEIeL0B4UW3vj4JhM+x4O6A2GeJidIxkoBAl5KzWRyPxifWtGnTnKlaRTD00047zUMCPfjgg+5OZBw+tWTMrUDpv/jFL9y56qc//Wkbg98jLbJyKeGMGGyMwJz8fwl89Q/04gl9AIyStabGcTZpwnh7+rHn9jJje7vLOiazrRp282k33mmLTrHP/ffrWd4KME5idwAhAJxbf/eY3ffwU+x0BBTAYmnOyL4+tLFPYGwuuywxZCedeIJNnwnzwxrqAbUHY9axapvd0WO28+Hl1gnr1E+w6gKG+JlJo+3May61+R+6AG/zADQCWStOIzbshNZhtmKX1fXKJlv77Arr7O6yiXW1kp7lceRaxv9TDFVjTLsYYYmKGJUPsGGwSJBua2THY7aIahImi4VcxvMFdjVqUd/cts3knmE8bZx33iI76fzFtB2DfYBqHe41UvpxovVdL5rQB1TYCdv08wfutKdwcuu7Url/6dnn27vPOtuaYbqaRuFfDyC8BwCnjQxtXZ32yKOP2kvsyDztlIWoa/P2/MoVxFx9wWac+x6bPma8zRkzATAVs9XauNALQyVVoIB0viuovEB/ClI10ghstRTAsYv4hi2DPZYfO8biCtnUiC2gdpCyEzIB+EqwUzLJK9s6FkHQX1gv/5ARP2421CFKOi7JWU8qF0wX+qqlnYtPPMPqemD3so3sDu0FZOoaFwV8JX9PnNt7HJ6LPiMJvD4JRMDr9cktuusNSCDO4szTzRfMpP/2ZcHlwS6v2lpvonRsJaAQUDKQf5RF+ktf+pJdcMEFtnLlSgdiH/jAB2z69Om2u73dfvzjH9umTZvcqeoZZ+BAFNAmdaTsunQsR6oCXgo1dfLJJ+OHC7sfbLwqsC8lmJPAG3qAJljGhiVxVYCUIsbZ+NOK4+2dzYwkzrIAioUYFCgodzkrFLoFCErzbAA6PMZXHV8WmUtaP+XOoI/zWcBM64wJ9t5PX2MvNz5oz91yn+WwpZp98lyb98Fzbfrli63YBItFe2W4XgQAJmg3HlUBOWmbMmcO/rR+by/BMM274F24FICJwidWBRWhKzwBXhWpztkOWU7BqYgxkjNV6ijCjPWLtsKNQxagthsD9hWo/8ZPHG8zZk+HeWGHIpcHFRwc+7IS9Um1mNLCr66J9QIgsm/QYygKeEqlKnnPmDAFwEadMmKvqoPViy3sTPz1nXfYI48/amfOnmYf++B11o1a8N++9x178IEH7YL5C1Ez4kYCdx/SMrfCdo1OZG3CrMm2AP9bjZSZ4UISw/qM+kZ/B2mH+peNFwgF1GezsDvL9uVsDyxm3agGS9RQM6CPcOvIhPYITePqIt/bb2072q1GzCqqzpBN8s4d67fqxBMwhX5zkDWxAcaLpiZgGktwiwL6TGheNK6a/1g3M6rv7S2BCHi9xcfXWQt+sSqJldDus6EpVOnIeNr9HHHxWFL7Q9sSHoO59iUe6Fq4gmfc/m3flyk6OhoS0DzQSwv4BRdcgPuHHrv77rtNQdCVPvWpT3nIKDlDlT+v3/72t6gQz/S4jYq5N4jqUepF+e6SMbriPKoszUPZe1UAQYO4UpBasAQTkmThltG4wNJ+ielbAeDkACZxVFlarwc4VvigimyuqKOCoXsCxkUgo4IRusCCn1dB1cWRarlf6kf23WHMHWwQUBDngmUodJDyRuP6YPJpc+35ex/ClKpoJ5x/hs1eusRyzbBcGMHLi1ORNvRzDwSWUA+xn1GfzpphU2bMsJcBXoteWG5zziJIPLZZNJxKmdH+idoTForNm/yAoBG8FBia2ykVWzBsv0CCturZF6wXA/iLzz/HWvAnNcjGgbiCgtPHOG10AakzEhSvCsZnArRS0NWmYZMAheobtBwG/lJ1Kri4NgRgZ4WMB7Cluu2mm10lefZZi+0DV33IJk+aZO24iDh9wUJbh9px5csrbN75F2Hw3u9ybsCwvJ6/xVljJ9m1Z11sE9gNWU/lcqehv1c58tBe1BxHSfrdiG+ump42a3/+Gdu6aYuNS0yzFtSXMQ2egAssp+SSZ27s6ui0Pvo+asJki9c0UKoGTJ07PgkJBzsb1U7agXSZS5Ip8w1Z+zNU7B4DqTmmySbTu3CeHZ9WR7W+nSQQAa+3wWjKFke7zCbxcB0OvNQ9qRgEwEKP4m+WLuvRq7WNtSJKx1ACDliEXEg61qIuO68Pf/jDdskll7ixvEC6mDDZd61bt86+9a1vOZP1uc99zlWNznQByEIVYzjv5Dw13CQRLFos2JxLxjO+4MZkxA6Y0X0a+zKDL4xCQzhH+CDAQQl3BMF6J46HhVB2VDriehnQ1TfA8g/IqHaB9VBIR+uj/FvBlgEgsrhv4Bt198J2yXkrwAUWLSaXE/p7wF9XHs/vZT7JTDDwLivUNoIV9DNAYEN1UqjWZsBULbJYct65tuYnN9rtd91uo2GRRk3MokoFjgAGpWJTGzHJR01IG6oLtc5mYN/yqGTradPmdSvskd/fZ1PGTbIz8JMWZ8HPCikCPLUrU/4kiGjo2AW6jMo5jzBSbDIAwzmzmEIealgOVW49zkiz3CcGMEb+OEKRy4Z+7L7OPX2xXfn+D7KpYTxgFC/8tRk7+8wltun5l2C9HrCLTl5ko6SeVRdxphrHAL4eR7D1ySwG9KigBbp4QcLh0gIP/8hB7QTpWYpxyKQzNnHKTFvTgV0YOz7xo2GNSXaJCmSSrxO3FVvb2q2P9kxDrVkzajQDDuxRR1TpcUmaKAGgFy8nFlaA1mNIeqMCebtqlfZpjgYpaPOBmq1pEqVIAocqgQh4Haqk3qT5pOL5T8KPPPfcc+wk+4bb2/iCV22vruvaP/zDP9g//uM/usPL490VB1veCD3khjyEo6fXMRsaqQf1CpOAlvx0SU2o+SOwLkDWwS7Gb3/72656/PznP2/nnXee36K8Altit+SOIARbQ3eoxckTx4dVkd1iCffsrt2SYtkC1kvvFQCJ9GyxRMGaR5Vs3iyM61tSloFVyXJ/P4xMCWOrDIGVG+tKtuDEiQC/kuUKOx18pRLNoAYBD9iiBKGHsNvS9sQS96ecsipYLeqyPKq4HGq+eL2WTsDRHtSWMHH51hortRJGqExMQS3BhP4RWEqKDeG/MEJRzkHryjb7sjPsvF1r7Lc3/cruuDFlS//wE9Y6Gfu33WwCQD0pp689Pb3WA9CSAhKKDRkm8eiesuauvO1av8Fu+fF/sdOw297/qY9a04mT8G4KiwQgLCCXPCrWIrLJgkRlZ4RYSQJf2gTAOeSQ7Mclwx52DQIq92BXNYpdm+pmDY3NMm7ye3YKxuJTrrsep6g11tBUbwUAlQBGkTEe2zrJdk2dZQP47+rIdRP6qBUSjjiY+MZoZ7dBdxbmEaTlTmK1u49UAYzqqIYysikANGAMgfBJvqkTrHbCFHv6lcft1mXP2uSx45zh7Nm0wXpfwmdXbYOdt2iJJVtGWQdybYARw0yMo6BfXsExetPIJ5Fji+pG5mInaxjnDHMzTR8LCsRO3+rYjAGiZpoAuJGnwikVAPMyGGznow9paCNIBfWxYLrGOg+7p7+mQGLHqENRNW9ZCUTA6y07dPsaLr9K3YQ/EaM1PBU5J8eYW7ZssR/96Ef293//977gDgVnw+852t/1ANQDixXYf1EKe0Xp2EhATJNYKc0VASupCeOwWkNBmPJIvah8L7/8sgfGXrBggTNiyqfr2p2mT2e6AoTw6g4wvlrjpP7SUuvLLecScRR6MC1attLECoxjN6SdfIsXn2KnLvwK4K8W435YLwBIClYlw6I3AMv17gvOIc9CS7AAlsuyLcvAWgFuuLeMqkxwxY9pl/w0KRhySoASbWCBBVZrJ8QUbQLwSfXOzkTLAnEELLRw+pTEqJ6SwhbrIEYoHiL8cZiw8993MTER99jdt95hG7sH7YPXXGsnTJ8Z9A9QlBaDhT2Ze9bHe34KEDiAf6uVjz5jv7rpl7ZzT5d99P++3k66eImDrrJ0WDSjTF+lzgv+goM/CCe8KFlJvsxqUX1lKV9tUggfxYkEKRJqCQDsf0TqAAbjtTBWjZNdHakxqhWLx1gr0PhkDOKvJt5mP64lmjjOI48ioFQhh+SbrJ/wSlLxCnjKjk17C/jvyXEgRzFCKUkf7CGfaH+esm599El7Ef9tY3G3ccG551p722574sGHbfqkyTb/pNNtQh0+v5B5TK48NBA+H4Jyj+W7+qApwHTxTQVaANUabxF9ick1CHOnGcDVRR4PZRUMh2fC962PExwnXeAC/6uEZaCO5HqUIgkcTAIR8DqYhN4C18VqhUmASg/boWkKYWA+85nPeHDj6667zk499dShl4/bsR52PN/4Yan3KB0LCWhuKCbjHIzFW1panJVDd64AAEAASURBVBURAFMKwXg4h7RbcdasWfbHf/zHNnv2bD9WIOYaXE8cThKAcHWi6vAXDALxD3MwC6zvuE5ApZXAPgwgVKNYgp5HALEEsNJ8lp8xAI12yhEOpyBVpPb5wWSVQA41tZSK+qgssKUCBfhEVzG7fI3Xd/+bgOUgz0jJfwhQqt+pLDqofsQAoFpgKzBA9VOn2qUfuYbrcbvl1ofshk3b7YKzltiiU0+35kZiQXI+Be1U6Oi2jrUbbPW6dfbsc8/a6udeYGdno33yTz5lp17ybppH+3CvIANvsWrOkFGpmC4BA+DJ3qTmFGm/7Ojcoay7sgB4cdcAKki1vdpchzOSlxXZoehy4GYVAPgtymYJVmf8nJl+bwVbsbw84POthF2bAGMSAMoWB8QlCKiW6Ob9k/OVnJZaU3UMEJpo/dad1g4TF0/3Ex98FGO703YQJihbs8e6AM3AGdrOxgU2DKSOo6oxlNNQUBv2Tr7kwoHHJdu+5HMn+BrMzn2XoqNIAq9HAhHwej1SexPeEy6aUv0oKcyLFlktnvLnc+2113psvZ/85Cd24oknHnfWKxRhMAFF10c0fSiTo/WpOSIWS+pEMZ9SL8odhNgtgffhgF155Rbis5/9LKCm7DsYFUoonGuH2s4A1OxbwIvYGylI8ugm7KwATzmcjgpQZJinOt/TJ9suVD54XRebIFus+oaE5QAqOWyRmvFTVa5kbJB8MqZXGKFSwRWENIkZxT1SlgFT+K7zQ1fR12i1sjMRwTLCKUHiU8yOdhLKtkrMUf3YVrvys5+2ExedbY/ecrfdf9dd9vjtd9mYZoJCA0K6errt1pt/hVNSdvyViFcIA3XmJefb+UsvsonzZ3kdUodWUJ8KJ+pvQISVqwNpbxYAgNaRRgRZBRJSMF15VIAFAFFRf+MgyqxUq8itj+sOMKtN1o1SFQ7vdpH2D9IPjZ9s2HLy8aDxhIUqM/5pVLGyjZNDWd+BKnkcJClLL5swM2PGWs/2XdacqbFemLhuxnIQ9xHJ+mbs7Bs94oD+xrXJIWjsIRR+kLqjy5EE3qoSiIDXW3XkhrRbD1Itmnppp9m3/v3f7QGMZ7WYauH867/+axuPge0nP/lJ+5//83/6TjX5WnozpOAXJICAxUMLXpSOrgRkiyXGavr06YCXQOD6VIDkoUlzSnnFcMnAXrsVZfel3YzhfBua/0DHDGuAKsLiAVYxGJlt23faU8+s0kVcJOA5HADgu3IxTNcOxjKskeC474h0sABIxJC9FpcFK3HSWQB8FPAhlSYcEXDN2toHAAuBOwtHXt4gZhf1ukJbDeFYi/9+aVi/lUeZBIjCFHc/VBj+U38aYBLDJi2BPOYvOcNmwgiuJ+zPqmUvWgd96unstmwtIGZsg01vnWLTTySI9Lw5NmH2dEvhpV79ihHvULsQS/Qj04SzUyoTtyRA4qAP0OWaQz6TnJA9u67LTUQG1aJAUTcG61u3brN+QJPbo6ndSvRTfXTWy08Eb+o+1nIO1OJsbpBaVaGIxGxpx2UXOyGhv7C/Qv1LIQH3FxY6pKARDqV6LKA+7qOcHWC5dtTEA4Ru2g6gnoquEjN8Wu68JoCwOhAjlHO8T8lth4i+/Xu9/7fj3cao/reHBCLg9fYYRwddAlr33Huv/frXv7Z//ud/dlXSF7/4RfvpT39qf/Znf2aXXnqpifGSsfRpqBtlfBvuRjsWYnAVxUgV6VnM405LrVQtUTp6EpDxu9t4VQGHQJRY0QMlgS4xY8on0CU7HYV5OhTwJa/ycieQUvkgCRE1YsyKOFW98+5b7cmnngLMDXq5Key25K9LgEHxHCvYHAkQpgAWimEoo/eSnLViEF/EBklMnXwxZdONTB3YFXyG7eltR7WFtbqoIpJU2OqZfpA4yKQNmu+QTQGwYKFV3wR4pKKki/uS0IuKYd0VYycXDkXKK6uM+hq8R2hnHAzO1NE2b+K5NvfCsyzX32f9nT2+K7S2sd4yDTgMhZ0DKfHSRgTuQc0mazTtnoxnsQVTpV5HwHzJX5YKduCl1kB3oSF0/12Sp1hA1f04Pteee+VF1Jq0DfXgXuBc7cNwuKDTA+xUlIF9GVWtfOnVYGdXxneYgFYJdw+D3b3WiE1dlu/Aa9VelaQfuhyDowDcSTzKpY2d2zt72Slaa120v4MA4GxtQIdcYwOAsj7GlSw4mmXjAB2Tt//jlUK5SL4aSx/m6kkPW0WP9RyVw1td9B+0NNbdd2igSMHs8sPoLZLA65LAgZ+4r6u46KbjJQGpghQz76GHHjIZQp9++unOVFx++eUe4uXz/+N/uKdx2evISebjxNO7+OKL93uYhm3Xw0YPn6ORpOKQcbQeXykWU3+WsShlcVbJMng0qvQyJR9f5I5aDW+NgiUDAa2hwOlAchlqOK85oe8Cbkr6ftBElrh2fwEO5M5AAOnkBSfa1VdfYTtxqKng1AFgANoIBAlAqGwVXC0feBKcEQUV1kkbND11TW4AvBzuamo+3S5Zeg7zHmbJqQvp6wBV3Kcltgx75EALIKCydOwMFnkqqMCCTXxqtBqwL4n9UWgkzU4Zscuw3YGUjLGdnRJwYxNAC69JeI9XO5WH/1rYgVvUxRHnHNJwKCzm39XZ8KVTvHQRjBUc6ztJhu4ZZDBt/CQ7j4DXuwiw3QfiKcFCChR6GUFWikUykteQpCry8i6P4OSvSmZWcl4sp6ECWfrra5o91xbMnoMxvnah7n+/ihJ49c0Y1WeD+oXuk82bFetXRykjyXGXQJwqBDEqAkB/DuDM1zSgWaBTfdTloelAc3Bontc6PqT5qAKo2OeCVL3+HT6UA4FxqafFHqZoZ0bjR1I4Kql5UcbbIOekbpYiN0qRBN6IBCLg9Uak9ya5NwRJYjLa2trcCFrnBDYmTpxoe1BLyI9QLQ/Oyy67zMO+fP/732eH2GL33zT0oSd1j37dKdDx+vXrWUOGPyLfYKd5nskmJ4En7u4nMqwx42zdmq32nzeu5Dw2wdV9XW+wlr23q2/q54yZM6kreJjuvfgOPQjHO/w8HDEczj0CUujVUKvhT0sLPOJfvPhkmztnGkyXDOR5/AwZErFOaL/2neO4ujzut1DLakvgPVjCq61n4RSb1gAbpULkE0xQSfNZDzkNvapyRom8gmI6EwTOrpah69V8fnnfaT8KmhrsxBXOwMsAdQWZQsZJINN5FGVWh6lD/zJa2aupwg8NP08T/EjZwn7rk+QgsHqs74KkKf4W50yaZp/60Ecsx3EBdCYwGCfzkKzkVOn7J9UzUAVMao/uo/dBuQIUoA/d09RQ7y4jdC1o3b6SHXRX2VE9I4qwZZKr/q72AnL+iNE2un82Fei9ro6BNgyo3pHSEX/OjFQJ5zQ6wdiPnEHzzZ+Beu4hNAewITMKYPX5ScckzyhFEni9EoiA1+uV3Jv0PoEtga5wgdT2//BYTZatjmLzPfvss9bV1eXAa2hXxGps3rrVDaqXL1/uZQ29fmSO9fit2EnZpXZlzf9rdz12v917/7f51XlkYVcoB20suOGGG45M06NSDlkCVaUaIBuIBSgSAEviOmLs+AZWfS3z1SR2RYs3/4acZYawcMMogWX2S1r0KkkucF5OQwUhlAJoAw/DTU6qslOvgOd89uppBfU8fpNyjvCDQtX4bjayihESSbU38T0EZV6/XxDdJUZrX/HyfC5j/KB7ABzAZMC4yVnE3tq9p1KVOvBTxbqoF3Xq3v0ACtfdTxpAp5Z75oyZ5LEb2ccJGBuZfxkODVQ0jiIQmUYlaIcco6ptAhNpPTOqz40SNnUOpAQQ1bYhSYBL+cQWyiWJu+sQQwcIDMGnVHghuBHDhU94t11Ly8m/ilQDRkghyB7h0kFP7T9zDpxdoHNYlzyz5CPha+xK2N95yCnkU+CZJCe5OVGQhFfqGcwBeLWfdKRSvJDoLZLAQSUQAa+DiuitkUHgSkCjoaHBOjGUFfulh6P8ewl8heolGd0r/Itsvibi6X4oKAt72oqbgU9/+tPuw0llHtFfozzhYqic4oRrqVs5x8ovAsCmn2hT3/VHPPdQB/HvSKWwb1dccYWrSSLGa59kwzENZbTvyshHyn+oeYeWIDWgYh9qt2ISBkguH7Rlz90+KCNfS4AVGXwHvqiCJTAsQ+yQmNChSYySAmgLqDhwqYIqAQmWTs7JPky8C0wOrFsF1RGwgO8URP1up1ZdOBUfVCmAChi9+zfeyO7ElKajXoAFb8fe5skjfQBk5H0/BBquflNtGJULPCXpm+SmPZbCiFr4BdUCriosOCjUW6J6yKFjV0eSRd8FhNL8PYv1EjflPrQoNS3gRTuGp+HwQuXJoJ7G7J9V5wSaKCOhMUZeaV5i2MI5Et4goCVVYwq7PwHXtH7U0SbJNC1g4i2Twk4iU8GSelCuy4JTe2UoFKs8yqYj71f1S3DqsN5156vmp3e1Ws/e0g5ch65o/kgtLoe1PuZCiqQUkyGH7GRf6HPYR8UvRW+RBA5bAhHwOmyRvfluCB84cgsgVxG/+c1vbHCQWGoYz0tlqJ2NenArtNCXv/xlO+GEE+xDH/pQ8Kt2hO7U4m5ALgQE3o584hclhSqsyvM/2Wo3v7DTzibu3UX/6xoYBjETR75GAc9QFXLkS39rlRgCKAHqMA1fYIef1/zSa2i+cM6FeUf6FKgpF1h4xY7g/V1LoDRVOnZj9/1u0lIf+gfbtzgmQFMBWBmaWcujXFmS1I+QQtHqzpyVZ/wY9lw0GfUj9zs5poUUkFIDIMIPlqCQ+pCuwboJ2ycVI7bYbZMoRtekKXTwo3qqGClQNQVftctQPxYEhNRivQI1lWCVgJfkxkluEqiUxJUnSPo70MXg3L7z4dXg/N4HNP2Kw8RUJEuM41MAADFmSeQ7tNTgbnrnFQffwvckbXC8E57gM1C1wmAJ+KCydI2ohMH/oHX7Stc4iu3q3t1h6zesd79k02bM9NIC5x1iANWe8KUeShaBuleyE2ws04jA1osaJBSSxrh6GJw4Eu/V+oKiqr1BLoiBuuSsVlLXa2hS+2C8HEgG59Uu2appMDVHhMmC+0IJBfmi90gChyqBvX/Xh3pDlO/NKQH/xcgT4QMf+IAHOpbDVLFf8jz+ta99zeqIxfeDH/6QLehbXe0mJ5qvtXiGLNmR7K0eriVWwQK7mzKEiIm7syLUEDyR0yyGqQrG9ntXuiNX82v188jV8uYvSXNELiFkKC43EQqKLTcjAkFaqIfLSXnFcMj9hK4pn3sf51gMqso70L2ShuIHptlJ58Gt3WU8J7knwU63oSBOeQVeZLYcpCEL2vB1kQxAK9sTyxrRbaxBNvuwSwVAQQcgq0CcQS2atQCSZupM9QkEEG5IzFcPKqOtbbZ7/VZ23+VsVLzW8qu2Wd8zYy07Dn9TzXXWgKuIMsAwQ1sqGIcP0qR+npLizwQo6njVUGQcA/1NKfgxrhG2mt16KdoDw0bT1WR5vw/cN4jdwvAfi7MkAHFodwTMgjT0rECIfppIIiRkWKTcQfojVV4aQ3o0gUZ1umTan3KkkqvYSigkSz3YrzVjTC6P/bIDqyb1jb5vHey1W59/3CZOnmIXTZtinbQ3541BxuRROCPXANPeAuC7DzDWz/kYsYIy+GIr5XutPdNl3YmcbSm0YZhfhjFjpyjsKFASlxc8I2AtE+VBzksWAraCcMGnbAOlYNWGgyBxTEzOZp4hnYxdgfvrcMg7NT3aWokRWpNnn2YFUI/vN3mszyWJ9ckcTvC8SRVxc4F+WbLNUlwd86gxUWetiXrbwU7ZLvqV5wLbGEBfBFmnwqxmQ4wfEqjNQcLsIQh2a4Y7QauNij4iCRxQAhHwOqBo3joXQvZCqgAtpN/85jddnajA2Yqvd8opp9jzzz9v3/ve9+wTn/iELT7zzFctsiP1dvhCPFKewzkn4OVl6iGt/zz8PGlR1zkepHvPHU7BUd5DloBYC/l6+9nPfuYxPL/whS/YzJl4MmfuDFXFChhpLMRw3Hvvvb7R4sorr/QA2QJbuhaCpwONmWCUwvGQfci4asyBHNWh39fw/cHHvvOvPhKPgpmz75bUCh9jNVU7k/zbw5UEgbjrQECV3YMslinLi6F5YYWteGSZrXn6RevctMt38Smu4s//9/et8LOYzT79ZDv93WfblHNOIfj1WNAD7cGmp1yLc1HQBtjOQYW3EiCh3XvO7EgO3kR1SDwKiTct5EkAgDM8fkrXBGGC3NVs+nhV8jKqZ3U/nfP+9eIBfuVLa+255zcAmlHf4g4iG+9ztk47RsWpOUzi78jHhvpR4HJOzDVQsCiOTuUN0hdJkfxl3HXANFcAhXX1STvv/JPxTcbOTLVWWavt0FgCs3U3iZiUMOo9ABMi7ABKKJUMIoWUNN77kmoPWoBQyKe+pABbffZ0+7P2fx691dZ1d1pzsoUdlgAhxlDBzfvjeUtTfhbAWUbeZQoPgBeVMOYCXs5c6ZnBKwVgbKhLWhsOa4sY+I2qbbI/X3qd1bTM9DBLUqWqB2oafBY1KOETjXv3JmQi2FghxhR+fZk72pDAPa5z5jt5tfvTPfZTiobTcSGXlH1ISXyLUiSBA0sgAl4Hls1b5kq48PlCyUIwCdutj3/84/6wFkOhXY3/9E//ZM3NzXb99dcf9375A4onoB6D4gOUNBEDw929v6/9fPR2ZCUgVYl2uD788MP22GOP2R/8wR848BqpFrfpYf7IRYk2J0h9/Sd/8icOKpRfAExjFqz8I5XAmO63CId5RjwZXjzoZzhD5IKixCIs5iiuxRj/VvXoB6WKSxSxVaLyzQCt2267xV546jkbVcnauSeebhPPPNdWPf+K9fT32klnnWY7Bjtt9eZ19j0cDzfdN8suv+pKO+usxZaAAUvTP0x+WIwDHkqNc1UZq77Camu5Vf0Z6hIE07sAgYIxq53aySfA4r8rOH69KYYasB+v+L+95U77wQ0/JUg4/U3VwWDyNyQmh+tlACdnqU0t0t+VXqgo6UCigg+02AAvwvoQ5xIezfNZrBbghGd5ZDahtdYaav+a8FAzHVjW0BH1QZsbhKkE4wRCRbKlKTqpV/Uap/alAyEQgVSM1QXQ0oDGXe0d9vxLqwBZBKvGFUeKqAQKpu5K2DixOBnTDONY0q5NypRsxVglpBKt1iHbQFmVyYlrd65AWXFiThJjdMNq++wFajXRD3AHoR2v3hux7Bog7tJolWFJyyVs2jiXh8XK2SDs3aB1JgHtjL1s9OTA1pPfF0i1ema/jzDbfiejL5EERpBABLxGEMpb7ZQWSNlj6VduyFSEqqAkdl+/+93vfJH91re+ZePGjTvu3UtoseaJznOV9mLvwwNQBsJ6NEYPr6M7PCFIF/OlpLlzoKQ5JDb1oosucie8N998s2mjwvTp032eST2pUDPHIwFvWIypn5d2Doq5qAEgpVglY6h/MoW4vXLv4/br7//ENu1px3nwe+3sU5cQMH46uqZY4Edsd8xOunKpndlSb7u3b7GnX37Wfv/k4/Zf3/mB9W3cbBe9/0pLjG4CaAAFAF6D1KmJ68CAOpv4VoL5kk1ZAK/4ThYBsDhUSBzZxrDF8qVaaikAw+tLOJJFZVuHc9M8LFwMdepl71lqC05caJUc6lQYJCGTEv1W+9RKtcLbERffBLjgXypDu/QdgFE15kJ2eM5HgfrAA0/ZMy/g0JbySgPIFESVoM9KYatlq6XC1V3vMcfOBHquA79phqgkHk+84K0AX1TsJ8Y0NdsZ+Bx8z6kXoRLED5rDOlSNSJvonf7P69LNjLU2YgQ8YtAGn70UVYCp6uddas2Xtm6wn//2N9YPYpQj1wI+AsWHlgFpul+KSkknaBWjA/BLuJxQkrIpoxDL4WiWkum4+helSAJHWgIR8DrSEj0O5c2dN8/j6NUOC16sRVZAbP78+fbv/Jq/8MILvXXh4nscmupVhku1f1YfbDzS9z7gj1e73gn1CkwphWyWGFGl0MYrBO86J3ZMNl4Kqi4V9X/8x3+4D7i//Mu/9HmleaQxlEG5O1vVTccsienQ4svqSDsEPLJ8y/ejggN87Vy+3n71g596bMD/6y/+jD4swv4KOx/svCzXh5f1hO3B1cQgzj0zgKTWk+bapfOn2wlnLLLf/fyXdvfNt1oGr6DnX/t+S05sZgcjIE9VqX9iYFis1XvhB7VDUlTYK113FR3ATMDHXSyQAdd1wUWhiNeRsKvHHQfuMVC/1eMV/z0XX2QXXfguYMUgTj2FaGiT6qFNDis0MGoPQKPiSAnoVcbrvZyPCUlxXjKTmnZwsGwdHT32Ip7w+wf0A07zIWik36pjvcQwIus8RQzQ8RxTqYDtnBhPivIkpSaN2D9pfJT4EFulnaOCgyWcr5aIw9la12TT6ycwDthjCRbREQGpVDkb2H5Jwg68yE+DpHpUuKMin6pPspfDXOCS9XNvW32vNQlQcpsAliQS6EK9E5Ys4WCEBgNnnSlNuNpYAF7WY2IvsfNiMPcA3NR/qTgPJR1arkMpKcrzdpdABLze4iMsb/UXX8RD+IILRgx8rYV0DrsY586dy0P4zfFo4HmoR6En2We86kFdvRZ9HHkJhDtVQ1CeghFVkhpRoCxkuXROPt/6AV76vPrqqz0Cwk033WRXXXWVzyfdE5bj2xW5JwRwul8pZGCDb0foXQsqi6WCv5cEBphDAlsxtiRmQDhrn37OfvW9H1lztsE+/Mk/spZzTyLQNm1FlZXMANjSceshslAPRtOVhpQV69jliIcEqZxmzJpt1330Ovvdj260B2+/21omT7CTr7zEN4CkuEeG+0UWZM3fIm4yUhnxYbBELM5F/tbk5iHF35nYLrl+UDgfh2YygjrEJNyieJb6DGpS23Rz3ApseBjE1itOv9PEfKxU9oC5sLWC4UvjsT+OMXmhIDs3ykCtJraLWD3kw25pcAwyw4hdNl6EbTKYoESiljyAmFIfBvxdqKEJ4YTfiYpUtgKa3C71nsBbjkYMArLz2FAN1iSth8/V3Ttta0cb7QOe6EXf/aV+c6yyy6iAwyTTAqkuBXHS7Awo4uW+KLBMBqkvpVpMAHLTYgeLzEfsz+I0QmXGBbb4J59aMdi4POcLqAoF4mIwgVnkXaDtiV7AKZrCWkqtUU2U67s2xWzRmWSBOS+6PWQgaZ7madw3+KCizifZtJFBZdnvbkH8Bwj1qz9lgTH+Kcm+y59fQme0IUjBteqX6COSwIgSOPSnwYi3RyePtwS0UCqennaehWzG0Db5A4sHhj7fLKlUVU/JK7QeYno8R+nYSEBzRHNBrkeUgu3xhH0BmEj9KL9vq1atsrVr18KCdPgOSLFe06dPd/C1efNmN8zXjkfFS8zl2AXHYqxjsWcCdipLLx27HRiLWsikveFP6pKDVLcxYtpoSS84xcQXqJTi7h57+o77bM0rK23pZZfbhJPmW3txAJCg3WmomnAnUWxIshOPtmcxnK/FtghbrgFYox523RUANKMmTralV33ADbQfo6zOtRuNTbiG6zmr5AEf2BApSPcAC/og7Eg/i36e+ITgG16AAvLKsauU5yUMs8uEmZFj1QPJwgdi7xuyAlRKTrzxn/7yEo7JZPhbryW+Kn7JBAL0ZyMVmZzSJpLaJaxx6AWoEKInLpcdACwYMb3UuDKG56UiOwXxZJrMSK3Whfx6wCDYVrHTLxHvt0wWcAo7l0ceOeTaz2c/n32sFN3I/fHVr9jvHn/Y2gsD9squTXbDXb+0ZzescGbPd7wivwqNjSnAJH/nklMegCqzf/9bRx4xKhDuCdTU7GREhtoYkQI0ZzCwr4WZq+Gl70Bq+kl56PwqMrYC3KXTSavNEEMU9as2VWhjDqewVIvb2HjWGpFNHepM2fhRE/0KODZa4zJVeQHtVxW6qnA5UweMYBamra4EOzpI2wC0Uicz1H6vA0yNjb6KKQsO+Qj++YXoLZLAQSQQMV4HEdBb4fLBQNXBrh/rPvqzigdv7DBYgGPdxrdjfeE8CD9DEKTvYrWWLVtm3/3ud23FihUmtfWcOXPsk5/8pPuGKwOkFGT997//vfuJe+9732tnnHGGDbBDUnZgKkMvBwwIL6xDoG0f33GkpMpCi11THvZBXsSzGE+jNHLWZOsLK20dOxhPOfkUm3HqQiuzOJehf+Is+CXUR45nABBSmZUFDlg8FXxaC6v7yNKPAgDOWNwknHHmu+zeB+6xlY89Y0vmTGHXHfCARdvBFNmKuKPACQogC9ADtqkB2MnY252BZdhBGE9aDk/ncVCBxz7U4j6CCLhjSFIOvfgD4VNgRUkMlgzABW4E4KTbK+EGoRRrdnWdMrz4wjp76ukX7IJ3n2OzZ02zImGZpBINiijYU08+bxs2rrPzLz6dsGITbDAPowNbJncuNJox025HOc4Qi4S81A7q1VXJR05vd3butoeeeMQ29XRZB0Bu/oKT7PSFi3z+iPX0nbFQQSXZcSlxcxWn+NfAEF6H6jUvyYuXGDDtzJRxvZqjPgqYyfsb2I9rAFvZX6Eebm/fbavbNuLuodsG8Cmi4N8TAEnTKnU2du4MQWrUkPwwYDPBID7+fXMBOxbzbD4oMyYVXHKIqQp3SsqJhVTBJRjCIoiwprkR9S30JmBPNrK1MGFJ/ahgvqUZV80lkVzByKgvQVIzoxRJ4FAkEAGvQ5FSlOcoScB/Rx6lsqNiD0cC69ats69//eu2ZcsWe9/73ucA6o477nDXJF/96letDqe6U6dONYVf+vKXv+zG9nLWKye9Alliy5zRYYESmyYbMrkzERsbgrDDac9r5VW8xQqsk8yVSgAOqf+I6oLhUcE2LF/jrNSZS862ZEujDQwOWAp6LFOMWyaH6g+/q2WoqjTMVRZEKDsg2VFnAGOUgvsAzLspLwOImApwq3/iMVv7IkCuu9dqxjRhM5ZwFZdYL/n7zfflrVlgAeDV+9xGa1+zyYHKqFkTrWn+VEBXgh2IBfxvUcnwlZomSzb7y0fLtxSXwTIu6CWwkgAk6q9FLKJYqzLtjXMuXsKzmIJ+833Zc5vtJz+51SZPnGfzUZkOSlcIkIAQopS8Pf74Srvn/rttxoypdsLs2YwxOxyBq6E6M2DZgkYKFoVJhKIYqiT1nT1vgfXs7rQf3/JLa25qtE9ccIU1jh4DYAvuc/9YyCiAXfugSPiXHqhQxSBxjXFUy1Q/ylHmD6AW9Z/OlkBCvQxqP4xeHTLMiM2jjz39XXb3svvttifvtbY0rF1TCmiVs9bdZVsybo69f9Z11geb11Vf5LNgPZUBN5SXFIFigGVBPIeUfFNEA5nd6yXGatB68e/WV1eGIc2h++RclvbwcpcSAOgGfpBoR6bSvt75V293cBS9RxJ4bQlEwOu15RNdjSTwtpeA1IKPPvqoSY0ohuvD11yDk9ui++z6yle+4q4nrsCHVwK14rnnnutMl8JOyR3F0qVLHQxI5ZiGNROIEAOmV1OT9v0dnQQfwV48gAgvMWrSnA609dgWdiNOnTzZ5p+ywBIN7ItDDVcLkNJOR/dummV3H8CrhYUd/5wwGUAPjLoTGHDJS/5uVIKu+AKANU8eb+MmTbYd7W3WtavDasY2u8NS2W3VZgRYgA1qyIZ+W/6L++2ZX99j/dvbnWGrmTHOTn7/BXbKFedZ07R6Mh2JBHiko8kE9IzUXLJxUlxFihZnJADW29fDdeCaTsIaCQ/JNkoArphPW0837GCyAblg1AZoK8EcVty5raz/sVcDRAoQycBd7hzUSSnmBIak6ZtY12jvW3y2g9amcaNt4dSZtglWTxssmAheT2BCUIVu3OhzgvuVpBoUc0YN/qlzgbcxwBfni4wTo6WbHPDEAawlxkUOTOXKIgZjNXX+NDuz8UzbjJr0hc6ttm1bp20DfE0udXNm0HYm+2x1osfu2fKsrWxbb7XYisWxZxuE8coLasGEyZFzHqZUOx3T9DlWzPPKWQ7Q9kTXWtuU7DE87No2nL1W8jnvFwZ7AF4kWQWMavvQpPkQpUgChyKBCHgdipTeAnmGq3jCJofnxUYMN3wO8xy3Tz3NSeGv4eBb9H4sJaD5IXXhmjVr3EZwyZIlsCssVDBYixYt8ugHTz31lBvUi92aMmWKR0d46aWXXOX4rne9y9VMYrhkwK7g63feeaf19fW5ulK2YEc6aeHLYgOUgwnpRc0k1dS8sRNtCUzPjq3bbExtnbV1ttvq5+FCGlM2vh+7JtifFIbbNdjsWBeqqB0dADD8Wq3bav1d7W7/lccB55raJIAuZa17sHvq6LZsXY0N7By07m27LNvSbFu68LQO4xSXDVRn3gZ27LYBmKb2u5dZceNOG43HdNmJbV22xm7bvctWb99s6Rkt2JMBEaUzk2U5ScBU6twW4qIqhX+nOo6jx5JaUUkMkjYPpLL15B/FMdcwahfbJUCTQFWYRHU2gIF6MtXLBpte1HF9smbCLYIgDAwZgEXwphKroaJW4g7Wo57k/koTsiMHgKlcBrni5ywJkkxTPnsQXpVSQLAagFrT6IyNv/R9zjjWZOusr9ztbZHrDG0qEC6RzVQA/FALEymB2AfuGR7fF5SS4XsN53HzANjy/NSGtzG0jahzAUgUJP7JdvR22GDfHkQ3aKMaa6y+Lm2Tp0+2xIQa69j2rK3f9BQ6XqD3+DrbygaB7ZVe21OH6w/YsP/z6J2WZAumgFcCID2Ar68C5cbT3dSDGlbsmkCnqFOGJybXNqhbB+qRfTMNog/d27dbZUDPTvqDn7DdXV0Qq2xMcNnuL6Lq42z/k9G3SAIjSCACXiMI5a12qq2tzb2QL1682J2kDm2/AJcWxO08QEaPHu0L6f6qjaG5j/1xaMNy7Gt+59UYLu76HOrHS6BJjJUM7+sJLRXODzFWY8eOtd27d7vqUCpE7aKVe4lzzjnHGS/ZfMmjvUJMKQSRfH0pQoLKVDlhnUda2nJLIFghE6ESC/7Y+mb7k8s/4Ybty/Hu3rv7F9bR048vJ8BRpsdG1zaibmQBzpUBbSnbjZ0QK7x971vfte4SHqAwwK5gdL8lJlcEWZuQS1ldDzXI5QGG6ff88Jf2dMdq25nrtJ19XYAVgAFMycyelJ09MMqmx1qsNtloXbSlnlA0J/Fav3a3PXbDr+0e22I78ztY6Pf/iSG7OqlwhyftIAyMysVCCcigFMMgfdrUBXxnd3JxBv67AFHlAfoPw4aiLJVqRea12G3VowprsFENqNRgxoBsMv9iHLSTEQCaCYBYP4C4Yl2UDdPHuEv5F8Nofzdg8le/Wma9Pas518N9Ynlk4E8O2J4CzJDG1nf6AUziMFAvy+9Vj1x0KFxTxe5/cZmlUTODVqwPNuyX//ULe+GWezB8h3HqzRHWqWjbEjttTWEzOxRz1phpAGJhjwW7tbvUaas61trDq56wdS+9YuWuXjZE8AzjnnJDwkZPGWfzUHH39A7YXfc+apPKTbZo4VLb8PTL+FUD1IHCsymozDqcoHZIr0zn5YxLKleYwLIArX4LMK6gp+ClD1TP/guQHa8gtOA+CS4JUIO4rQiw94rt0l5JBY6KWx5wJxWmGEGNlEz5oxRJ4FAkEAGvQ5HSmziPFrfly5fb3/zN37h3cXmnH57kuV5Br+Wl/GMf+5gvuuHiOjxv9P3tK4GQ9VQPRxp/sTACUFqIlQS0xMrIVkusiMCawJnCUk2cONHDUr344ot2ySWXOGDTvYqaMGPGDGe8tEDrvpHq8goO8W34/XJ4WcBASz6XYr0AKULhLJg422bCeq3f1m8TZs60GVNm2xzaU0QV15fugSmptwTMBYQGsfkq9tJzL8AMFW02i3gMwNWHe4U8DkanpnNWjz1YC9v4MnvKtm3TNuvqbLON27ba/euetm5AVw4v74oXCYphwU7YBXWn2Jh0o23HFUMxkQF8cA37pNEAIMttt+19u6wLQBGs7Pt3OgTA+58Nv7HYOxoIvg8O1FhL61T6xI4+2JsyYXJiCVoCwOrrxpYNJituDfbAg8/ZQK4XH2V9fqNiZsZxo7BixWp2GPYDokqoLLE9wzhf6tW0dkWCHvpzA3j5v9Vu+P5W6+h8mT50BxWTB17RwZZOCLKEEFIWWgPEuUyeuxj/DTBY2t367DOWhymM1TbDWPXZjoefsXs3bLEGAI+8/jMhrB85F8fDhJ0yDt9r/UCWiq3duMbufOJ+e2D9s7Y13mPzcH0xl7lWhIHaUe7h1WfPv/yM3bNuOY0t24zkKLviwvfZzNYZVn6pi8gFMJgALPdNB8Caf9HpNhZuLQ1okqPdHOC6gNF9LWDSDeqr/XBsBmBkcjN+Zls6dtvWjdssgX1gbEqtFbHxspW9AMm0jW0ah82gPMZpnyZJYJqyeQsEo3NRiiRwEAlEwOsgAnorXNbiJnWRFrqRkgJia4fad77zHd+ZJhYjSu88CUjVPFIS4BK4CV9JVmExW7L9EhMWsmCaX2I+BLbuuusuN7bXTkcZ0EulWE9QdgH7888/3+fjSHUd7rnhoEv3S43Vi1opgx8o4ixbDWqzMc3jfIF95eXV1jy61c677kqrxfFpGTcSCVmH8z8G8BLzUeros/ZvdVtXT6ed/QcfsOYZ/D0odAz5StiAJfrYpcg6W8Qf1FO/vM16Vi+3sy5ZYrNy77ZVbRtQNe5B3ZeE8WIh3kqMwOe6bNuuPnbRwegAahSQpwdw2JnI24TZM+xDs0+C5YG58T16+8ZAQezHjBnjcheDxAjQSFiZJKos3CqUS81cY18fjcnUpGx00wJ77JE91g6QEWDL4FJhgN186bTUdjWWRRWcyw/abXfebbfeeQvsVwcAQ9AI2ASLVyq34HcszpiiVwOMldwoHzYJAJaiPFmtFWHFRAklhVBhBAUoFK5ISXUOHQ8/RqRJxr+XuSLg5S4WALyxjIJew6wCqmpQKWYaCBMOq+SqRcrNNNbZ4CTtGqQffB/sH7CXl71g659fbScA6i9bNNPmT5lhs1vHu3qwr9JnG3I77DdP3WfLngUUAnCnL5hli6bOtZp0vS296EJLMm5j0mNszcAW2ClYwh5YV8B1DHCsuZ/UrkXGuA9WMnDC5RpGdjoibiFJHH7lkX9PL9fFcDG3ioDvWAFGkGgH+NcA5CMl+iUmMWAlBY6Rjw+rv0lUUYok8JoSiIDXa4rnrXFRDxV/GAxZWGXsGsQ+xC8ND8bPfe5zzngpfNBnPvMZz//W6F3UyqMtAS2gAl8CT2K3fC5Vv8uv1wk44NWiK4C/detWZ1Z37dplX/rSl1ztqPMCanq1trZ6WKrh8/GI9kELn7YxarHUqqkXWCXf0WvjTphhLy1faTtQk7XGGqycL8N2kREP9UlYooScdmLfswfbqD2o3Sq1uCwoYBPFAi1bqjILaxIHpJBf1tXVacvWv2KF5owtvPRsO3v6WMzDAFCwJinUcj2AuDHtsGI33m8P/+C32JX1YbguP1sp2wUASo7FEP0T19jYq8+wGmyTBKqGJrGHYgllcB4m4BDyZ8UXDKqgTgTAxfge47N3Twb/ane4Qf0gHt+1/CfiABhAQYl259nVWYsT1f/+3/7QLnnP6daHYbiSAyfa+u3/v73zAJPrqPL9mU7TPVmakTTKOVhZlmw5SrKcMw444oexMQ+/BR7wLRt434P9zO7H7r63LHyAeWCMAxgb1uCAbRmMjZMs2ZIchIIlW9FWTqPJ3dPh/f7Vc0et0Yw8kmZGM9It6U5331u3btW5dav+95xT//OjBfb6oiUodljFhxlNfk9BTJg4U6E1Q4EH6Lz4wnPt1JkTrKZ6K3XT0oUsINf99zb1F9dnOKrzV2Hy/D8AvZ3EgAwURq3v9HmWhrtrD6bCIWisrrviOruUGJkyNToyVLjUdgV326vrF9rTr7+ANi5lffOL7KzJswBbE6xiWD8rJoyTAnknWAFRQF0TmIjXAKq3bdhlg/tUsMow33Z8tMU2bl1vM0dPw+9rvBUmI8RYZBEEn4FQkf31VQAaoCki4EQ7mlwYIECVJ+4srpSAhOazG5xrAqXSfqUCyH89z4NAaDxssaqAFdWFMGlizhXwwmQt2WpFpw+51NP81FEJ+MCro5LqBfk02QlwSWOxbetW27Rpkw0fPtw5RE+aNMk5SD/44IN2wQUXOG2FmuTeWru5bW6QkskhZwTUWKg3cz91vwTkayTzoYJhr1q1ykaMGOH6kFY5CmDJoV4AQaBMjvMKsD137lzn2yXAJvJUmSSltdEmIKaUCyiOtlUuCHerkxWGJ6QXC5jo8YcGNGLyYzVcpKTAJkwZb28sXWJLli21CwZc5Bz/UUxB2slQh4+XnKgzML6nCgOO+DQJ2IhjgsJBCxMhZkvKikEjkMdKth0fbbYd+3fb9FnnYuLrgxIlZQVFxUAiNCMAq4ICWLwo95TLz7E0oYhee36hVRN6pwZer7LKPjb9ijk24bzZFsQUJ+DUOul5lfn34AT4w3xIjR2gFO2CcFmS9jYAIuvRbAsouAUQyoOfmUg/CzCHiX0rBfipHFwBWB5ktY2KLklbhKq4TkW/PtSDYnHwT7FEUStXBZzk+6TA4hn84QYPKbcrWYmppzOEtpBLcWrrOmZrnAXXARu8f4/dv+hl27m9yvLQvo3tP4CVgAlblF6JNi5s48eOtTNnnmqFmPiSmAObCIA9IFBuGzMsPHgLwA+IFpnH5JGngDNDWBEbMOdC9srtCgejtq1quy18d4m9CQ9Z//Jiu3T+eVa9bx8m1cW2ZsVKm1Q5Gib7YsuDLiQPIB2J51lFMgr1A8TSyZgVwlQv8cuxPg74El53DaRxGoa81rn96lcAZAelnIkWIA1WK5DfHNeeMmCc9cvvC4EvC1C0UlYCpYBsGV5JWfn4f30JtCcBH3i1J5letF8TnAZBb4CUGeg73/mOa4FMkP/4j//oQNett95qCvnym9/8xr761a+6wdsRHrbTVrdEvJ1jR7ubqYZZhL+MZvJvTbOkW7xMmoAy0vd3Efbq/liCRyuhrj1PcvY0FrqStKVaragVjOLteuCBB5z2S8ceeeQR5/wt0C5AJV/CRx991C3SkM+gAJkc6uULJmCm/udpWqUdyfUpU3lHlSinddLKPjyEsDGiwdLyO5ynMZai3TIbPm6UDcTU+OpzC+zcU2dZX4hEqyHajKEJkj1J/k0KlFwnAEAZIs7ERYz6s7qPlYGBOJ5jaK3idY22ARAawaQ4fvJ4/HoiFqPPipghBVM95O+cTz9mMg8M7mMTPnMxYK7AXvzV02hpUjblivNsxmcutLz+RWjUCB8UEZQ5NB1q/s22N/s8kF+mR4CRnMaliBEgkJO7wvAIjGFA41gUs7AAGuATIKVQRhDpw7APQSp1DLI/DWWGAtJD/24Bwup4SdQOgg36p2ckDuDUKsh8Vh8KdHnJG1u83zI7S4GHb701AJxELOp8pLhWAiCulZGgOTRfaEPF7E9dY03SrKJ5Qu77CXXUQP2aAHtp6pTPfc5Di6eVpyWEMVK8xFqO7a3ab6+/+oYtXvqmjR85AvqSeTZqyHCr6YOpeP1u27Rmg20Zt8kRxobQQBXnFaGPKrAiHOFvvfBaG182hsUURIAE9HHnMQdzv5wUJRmq2Nwg9VsBUYRAHdF2qXHkjahu5I/QUQoBX6PKR7NqttyR6crvzaG4Q7uoJyb/05dAmxLwgVebYumdOzWh1tXWumDGcqS/Hj6mxx9/3H784x/b7NmzbdTo0XbjjTe6CVWx92RCai9pIKqHEqD1gNte/o7u1wCvwUpvnikmwhB1TvEGXlursCJMDLytdmZS/aWVKGS1Xme3pTPr2d1lCRgpeeBaKxVvvvlmR4z67//+78yhABDuzd133+3MidJ8CbCLaFVBsk8//XT8gbJkqcrnydYB3OYXAYGKXJDXGW3UZCk+p33MeSo7jIYkBnDHasiy/4QNGj7ILphztj1230P2DrEWB9/+GYv0izgfaNVRjuiOgBX/pgKc4xUGKI++nqEPyhcpglYsjQ/UOy++Yiugxjh93jk2fvo0JmQmX14ShPcCgJgUPmFiSBcLerwoRKibEisfVimqJ8cVVYzfWGgg/F3yMXMgxqGmg0TgyeygnQJAaKg4CyAjoEW7aKf2hQEzYYCVyFOBXjritIv5IvkEdGYDYsfR8sHBBXVFUHGOKIFvgggk+YvJrshTiOkxhFktBShsUtRrZCgglwQkieTUvQEhL8lbSbLOTV7/0UufatuIY75SiLq5xRlO68nZ9CP5fTnuLmSouoTQYuWJRw0Q5iILcHmBISV5moW4ByGZ8JBt7b5NVrVlj40bONIuPu8iGzUMRn5WVvYpLrLpw6fYphWb7UNMkHMGn2WFrCpNssKyiHDprGG1sQNG2oyBU6wQk3OU34rzCGxm1Sn3i+upldqUEAf9St+QLN9pOjm1Q3EvHbyljviqoT6VVk40HC0SUbaWHyrDT74EDi8BH3gdXj694qg38elT4V4UY09Oz+IIuu666+zpp592PE1DIJYUQeaCBQuc5uJb3/qWa1/rQVW/F0Go+Xd/93fOr6PtCeLoRKOh3PlGsEx7UPV0FsffZM//6UX7/sqvMRgzLOpNs5OT5HDPPffYjBkzWgBCJ1+i1xTnaVi8hRjevY3hB3j11VfbKaecAiElK7oAZgMHDrRRrBCUE7hAl/qReL4E0ATM5HyvfF4ZnhBa96fWx718R/upHtLYDASkvdJ0HcBBO0LgZjlTnz73TEvv3mevPUeQ66ICm/HZyy3MqkbxTBkO2AbIL2Hy3w8vU6a+yaLEatRnhDiIAQDMkudfsD89/YyNGDHUzrxonoXKRIAqbRlXknmJGVrmp3xMkmkcshsBOVK8KYYkKh5youVhpaDLKvzEbgeUAB5uLu9Qw3lOmvNlQQkXZ7LPneGDaKskf9bsAbTQPNVDH5qoY0VjHVUUJxXaHZ3jgBamRVYG5gXrrLaeSJVocqJoDBPNjufitBI3h9qYe43mKhzy4e4xmbM1ymrhEADX1T4AllAM33XvW+CbQ39UFODioigC2pLcRxka4eIXxRdt0T80Y9Rbchs5YKB96sLLcMIP2LChwzgP06SxyhbQP3rQWBtRMcyacKRPYoYNYy5W/1bYJkeMC4IKA5ZFHxLFv09M9Snkks/viNqa21SuLf2hk5U7QDU5nkROaoPgpf4pzJm7hvpfcz4VQ5aOiE1Z/eRLQO9UfurtEsid6Hbv3u3eTjVZasAQ6JApSFxMSlruf/vtt9v3v/9956MjMNJW2rFjh61Zs8ad29bxo9mXM04xxBGgJTPQTsE0sa9+r32w7gMNe7lj2dFcos1zxGG2ffv2No+djDvVLzzgJROikjQXhfhpzZw502lHdVz+WwJX6gcyO6ofyUQtKgnt13F3LpOQ+qDKVfI+3Y8u+KNBqxCHemkmZH7TZCmi0Qwr5FI4mBcPKLcLbr2OmH677A9/esbW1O+wefPOt1GsLgSdQQKatBg8XfWsUmPpiUXzIWrCaX7Pxh32xoLXbeELL9kIzKiX3PJpKx5aCd4hRqBMkYCcEGZyMJXrqwXIro5vccBfGmd7EZ9G2CezINgCbY70JdBexNEiAQo0fXd2D0fnhdYSMInj+sxZp9h/v+t2GzN2iDMzyriG3ZRLSkhBm3/+2TZ4aJmdMn4oT1+jC14NSVa2Xop/hMP40XFRCVrpGgdStmdk5XRgL78xC7sA2qwAFf+YFg82gfkwSjqgmESWAm7AViyVCSvFRFwyeowzdUvTlEBDh3EcQJW20f1H21Xzr6aVLKCIFvMpkAT1Bd0wRJvh+CcnXGnuL1pK7k8ajZXunwOkuWCJ7547QrYXq9bi6Mqa0NUSYS3Hyi8g61rc3GZOYFdWzLmN9b/7EmhHAnra/HQCSMADX96EqklR+7zNmwz1W/44ognQKjbvvFwRKK/i9cmRuq3juXmP/LtGKM6CFHLzc0321o/jdul5F9s3/vZaBjlGYY1unZwEGEajufETUwn31usD6iMeeJJsxFYvDiQXQBoA4TnLC3QtX77cvvzlLzuqCO2XOUkTlWeq9PpXd8hYE2sJ/kKODFMzPDxTMsc14r8VLiI0DL5awT4xu/CLt5g9FrPFLy+yDUvet1mTT7WZM2ZbnwgO8jWAL7y3U9uqbNPmzbYGyog331lm2wg7dBqO4Jdedr71n44pvlhEmSmrA3gpYHNMtkRN6tRBq/Gc2VIwgZmXajCpA100C6uS+GbJkTEP4JWRDxQA45iSHo1Wz4ec9lPweck6OG7CSLYhvNAQn5DwN+LvymqxdOEQgHqaTZ0x0kpg8xfHV1NcHF5wyvPyw3IF+gYgQ0CNdrqkD5rQmUlabSFmBSQXEFWMxjjykp4QalZAGA0BnAl4yR/MGfz4nQHwasVnlLFLq0+bcFMQg/+UcdPcooiwTMQcJyfn6GyVLt8/xWFEV4WmKtscwTovKW/2F9Rt5CSxi8u5JHOvMylSJYfw2Z9HXZ32kr6G4FxfyOb2//oS6LgEfODVcVn12JyaSD3NRZ8+hBVh8lTIFjGP1+LzpVVm4vJSWrt2rd1777122223Oe1Ge40SBYWY8Ds/MWwxkAXQOgRWbjGmRCvvW2qnnzYNUxAThBtsu+CqDPjdCQ46vwWdV6LAllYhykwlUKqkPiNALidyB6w4JnClxRnKr5WwMlPnrlgUfYT6nmdu7HyQ3nabhWvy5VLEvCecIM0SPtnQLPEc8JmMYkbCV6ls7FC74HM32bhhk2zj4vds5aJ38PtaZANL+1s1VBF7G6vtse/9P9u0c7NlYgEbN/0UO//6T9v4qadYeQVExPhOpaIZq4dbAg53sS4QZJlrcj2n9XLmNCZggRZVhz4W1qYKerO7QgQJfIGMBAU6nrwCsmdQCv2XjQvp+dH3rFkPt0g5t+OQ3tgQhzpGICtLDRIExIh5XosKdGKA1ZIRHOsb0e7pWH40hmWUgnDUl8+XgyrKr4u5PwfXQXvbSg7S6DwaLX+vrMO+zs22twXqSEhSUwJYMmgI03wmsz85i7w4tjswg3O7zsxXNAFWOKbQbuY7Fn5BKBZJoN1rlAmQsuK0K8yYEVV/RYsnXzgBNg0jqkFLok3CwoJmTgnYfFTVUdJdhM4s23S+SwTCgMRXbylHWbVfzRAAwzFQpekXG0kyaP6a3eH/9SXQtgR84NW2XHrVXg9QaMKUw7xA08qVK00+Xe+99x4ml91uBZq0XD/84Q+df464vOSnc7jklXu4PEdyTIOU88nR6jLecb1VVjIPJJk8pC3IvnEfSal+3iORgOgZBLDuvPNOu+KKK2wizO3qNwpdI+Ckey4QJtOjfFlksv7KV77iAFf/AdAEkFdAyyU+lae7AFdLO3VN4ipqJpUehJ/OAbpQE7rmQ7RLeflZQFk+vNL63lhuEy89zU7f8JGtXr7CNm7YYHXbAP4wwEeG9bc5Q0/FDDnChkB7UMRvBcFWkhZNMRmL0LAQUtpN2npiQky6+NdbIygvCQrLEL+QK+OUT3giJuO4eLK4foLZvymGVgmHsDw0Zm7WVsGfkCiV9shbXqdo1S9aHuxxSeghgpld1jcGlQXXLyEuZLoIYlQApwBPPBHNQp28As4VRCBRdweA+CmaGRAm91BC0kGeR8BOBuAVwBE/CBttJkDoHo6noahQEQIwYZ5PyVgl6TQBJhdDUt/Z9uE31lhSDZt8NaZDwFRgD2CI+qf3kBftemoHqxoJswSHWk0mAbksIIdIAaBZK00WAQTzbEN6lytcPlROS8eFw5C5BgBeqr98rFzCcU6t1b0X7NGKSJ1TDcFqin1pkNQ6ZLSH86sBlXi7AdW416CtEKgZlzy3ktWhMFdytlh3X51Msr/dXxrc3BWa7wV7JRMnZUFDfkoo2vzkS+AIJHD4mfcICvKzHl82EDsPAAAzqElEQVQJaMLUBCpWeq1clA/XU0895ZzqNcGOHj3a0QWIQPVf//VfbSB+Ot0+YbYSkVuF5YZuRjPNmH7qUgnofgtQhdjGjx9vY5tXtUpz4vm3KE8uIJdGTE72LYlzvaRylDoboHvlt/vJRJcRkPFmPDcZKncWhAkltPQm0EMAbVaMINND+02wATNGOzN7Eid8tTMCh1mQ1YweL5Zjr6doAUqXmFmBcWxc010h+0eeSBkAiHO6BgwE0CoLwGh1pMxaYWZsF2gHjJAHeDuaJGghbZq0QZK1nM9DEaIJJHbAYfWK1dcQ4RAiWAXf1uPT8jxrLDjkeSIDwazlmp4h3qCc0ARYpBGDUN6Wr3iPfQ1owbLAWwXqegJfLbxWkol7OZIpUC9RMv5JUwRjfQg/uYzKx28rgykX0lcjdmQmU4hpMIY5kFWMupa6DKqkglTYAcc8HOPfW/Kebccfrx4OMizIyJn7yL8ILwARKCkOl7gF1CnPPubae+BkKyXYdwSsVkfUgShs/ipHvl1OHLoNAp1Sc+m8nNTq54Ejzd3gwA7/my+BY5eAD7yOXYbHvYSWAZeaaBIUlcSsWbNcYOwBaCnGM8HKuV7aLq1c09YysRyn2rupkbpKZe+Pbd13E7z7njsxe/vaqoX6kwescvuZ8nr72zqvy/dpEm0jHbobkABAyLYRQgAAUSjCsEdGOUrzx5WSEmjiWx5mLtfOnIJyvro8OkFnxZjAQ5wPt7mb0EPYzaICM4IfaFbAMJjPpTmSY31Hk54MQT1BG88hn32UJ36psrJiQEy1Pf6HR+2p5560KpVNoGvXoOZLuGfL7RHs4P7xV59FqQ/RpCnwNZoy9EBpTHZaeimm/TRAtE8ZQdJRpaXRNAW5lgCsMEqwRa3jUA4ly7go1REHJVtp0RKVhNaBud7FqhyAhhRAmGZhQrIScFbJtWKG9ReHd85Gu9aE/9ug0gqbMGC4fVSzw2q37LZ6+MeooANGzieLRutl0l2eK0rqzkeMthxI2s+9wOmuCKb9FFr9kmiZDa4Ybn2hl4giQ9jeHIB0GXW/20VZLof/x5dAl0vAB15dLuLuuYAmC2+TlmLatGmOf0kDl3xx5Nel1X3ShOl460m0e2rZxlUYVRnC/dRNEsgFXN4lncaL/tNe6jF9pb0KHma/wGGCVX9aOKBQOfKJBmM50KjVhwJe0iap+WlM4PpsXxIHX8gZ+Oi/EaETNCniAwvyKZ96URq4+Z3PLHJQqbmA4eCyDvxSHjRIbocAokoRxxarI9HyzYcJPxYN2b591Y6oNZiP3xNcEh4I1lUEs+RYnwUsriBnqAuHAEN60WFlX0arGAFdMivLzC8W/iKc7s8661TKE1iDOd61QGQVABdAqqPjoGy5xbv6sbJQhr9I3h5Mu6txytpkyRiM8RE0pMk66N7Xsvx0v4WKNgCoRmEKBO6hAYtyfbH2nTpkovW56U7HVJ9P4Okm5zOF3ERtwXFNTgcga1Yial3rxC3GvIkfnsyzfC/KEMSaskaWjnDfWRvh7om7A66fe2W1Lsn/7UugeyTgA6/ukXOXXUUDriZGASxtSt5E6R0Tt9fDDz9sf//3f39Y0tQuq+QnFOy/gH6CgDrx8OG0W514mR5TVAYAEsTfSrxPTWhU9GyECWOTwjQYB2jJMTvJxkzttDsyKXY0ZURACiBRrGnN52mQDt5EYCV8oOTozz4nb2cP62ipyufVQlBBwK35XADRxIkjbcLEUcAPHUM3VoivJOz5uSCrvecpT45paMhcxVyRAChMo0nkIPeveBOaLsizpPFSkolTplT9zV5PMIvrcjFd3Zs88gE6kSa40JqKADiF1L4MPzFdp8SCyVJ0a6WUAIEx9yBMXnGhpQm5VAzYGl8xAoDHfohhpXMEHrvNu6Yg2Ce9mKl29UC5OsybMcyeYcpwPGW0V99Dkj/3N9NMVZErK7XTT74EulsC3rPT3df1r9eJEhA310033eTi7bVVrI7/5Cc/4W32LOcY7QGztvJ25z5vPvE+u/PaJ+u1PI2X59PlaUrakoeOKb8XbD0XtHn7c/3B2iqjJ+yTL5IYRkX3oKSVdNrSgCMdknVLMEOAqaNJOp/aOOF1wji3y5+LMkQC2gCIS2nFHlQH7hqYywJolMR43rHnjoKcloua5DwYATnsU5bASUQoSQf5z6W4ak5GNSB7SN9yEm76FO0woNdMEIiAqU6QhqwAFlhxYYlOwVWBe6+j0ozliXCLz+ylALMckC5M+UKw9vdNj7GNIqeNFFlJhpA+8b04Wg1C2zUI2o4hMOuXQqtBeU3Ig3MKAGggLBbUECMzD8d+wTj2a2Wzwvu4gnVz+Np8UX1pMwkGSj8WSwG0kE0Srq8YWkPRTTitJGfpfqm4jLSc+uInXwLHUQI+8DqOwu+MS4tHScDqm9/8JgOaG6UOKba8vNwugsleE2fHBv9DiujCHRo2W00cXXi1k7loASlpeqQZTfDdA036VL/IBWH6LuoIfapfCXzJkVpJ5+f2I/VBD8hlc/Swv26epZ81gwzVLqTQO3xmnxgy0H4RoNLcLNj4hCbIR7sWfyLFGhXoKmZCT3J+CllGi0tYDRmBIJ8VdziSRylU11J4rFwZt3uJNh4HMS3IrJhNWQQpWJQGbOSlicPYfERN1XfX5OZ9LR9qLHXMZs7mkI9lPkHDm6EJ8EVO8OIsQzuIQ3wArg4XhDyLIrPqJ9ojSgZHG8GpRazqHBUps3X19CmcuIZECm1Lpopln0krhiutAq6wYkAWLB8Wknc9Cj2nfaOWEey+kRCaOLRuLYhPwCurLuQGeS1raUWbX8LUWRQfKseBODXSlUHfpY15WXTt2tlmAf5OXwLdKAHvSe7GS/qX6kwJaMLL1US0V3ZPAl1aci7zgDyGA1qOL92/m5Q0M/ipqyQgsCT/Pk3+ohYRsPKoIVoDAuX1AJl8BOULpN/adJ5HNyHQJdLVngy8BO0FLZoRh/um9h3c2zo2wbuTvT/QFYQLWKknzRGanAyaFq1sFAuVgmsHAXoK61MYBhwJvArVdSRlK5uTU+eBKgSaWpJgF7hEMQ1btSSbJTevzkYGAiAtZWfBW1Ymygs5Q/MxcWFlmohJCELKQEwar8b0CKjKQ+Pl4kjqecWRLQ2odKtkE1U2KFwF+KojAHee9UnusUSw1kYVJq1/uNryE7ssXD/E0g1Ja6yibEyAGWggcA4jP7EDKkBr8uvS9VW2quM2/uh3R5KX3zPrutPYqU9utDRearHugXrDwfe+Ixfw8/gS6DwJ+MCr82R53ErK1T60V4mO5Gnv3M7erzHSDYh8ONDlfmiE7OAgq/P9dFQS2L9/v4tYUFZW5jRXAlRK4vZymq0ccOCRpSqPjimPl1chg3SmaBh6Ut9yFcz5own2SAa5jk7IylcKXUEAjY6AVz6+UwVwbRXCzVAEpijLi8KQT3zAJkAqYYwyorqX1sV1/pwKtvUVX6RsxtzMud+9k8gXqAJ8KRj24ROwhvecvvwRI5mSrsEmtKUVB6qYLuF+8zWOWztxHHd9tNtehnR2+7q9Fkyw2pJVmgFMq/BnNG9p24UNc91GTIv7IGwGkC1u/MAakk1WuLPS6naFbcGet+29/HXQPCQsXS/tKAC+EPhTErBJp0+0+VfMxjmf2ujaCNbrgmLlb7EPU7X2kkYNJzKd2wwu1TphOSm9BLrUNPF+sfeI+gMn+MmXQKdL4EjGpE6/uF/gySeBAy/tDLwaV50Ict/ZNThqmPRTZ0pA4Egs9Pfdd59t2bLFvvCFL9iECRPcilcBKh3P1ch437VfbPZNhJd67bXXXBB28cJVVlZm4zVqssSvxmkS9L0Hpg5aq46g5vRP2loIRQIe3RbfU2171my3ulWbrQLwFaxqsH3LPhDDqZX1B+yUkg/tl/zinKb3sFfKQoQsMMp9DjzZZp+YbBGUJgJRB7y8420V3mxCRcPsHi1XhJdf1/Cuwz5ApGBKGF+rDH5de7ftt1cWLLaa7QkbPmBcFm/pEk7blQVf+0NRGxAcaf0qx1tVOmGJalzyAeuVxYOhsMDnbUeT7aqtsb5BabYI08QNqUNm63d+iI9cwOZeMttCBVlOMHBdi5IrgFNeHoG+O5J4Lzjw2uZMyvjxsUdgTiBMR/WZKz232//jS+A4SMAHXsdB6CfbJTV0ysFZ4TcyDMTpDKFmeGOWoyuc1wQgJgQIY34iL26FmCFErBrAy4RAIZzpTRAnm9Q6r70eKJLJUJEMlixZYtdee+1BGi4BrFzfLQe4AGSK5ykzos5944037MEHH3T57rrrLmemdGCCc3tyOgD2P7mWuZYtr1UOljT/yLYXrQ879/11rb358uv27nurLPp+lQ3fnrQhONFv2b3Hnv7Zw1a7IGaTifd46qyZNuS6ORaEBsLpXlRgTuH66kGf7AFBBj01AkE66uXQZw584KRMutwFnubAYVP2Fknv5SVBEF0jC0uye72KYRYVcz3qIq1pDCUiNnvKNLvhystZBUrd8KPKsMLSCQHhNhJFoBETo8IpNcW0wjDJwoOUFXBuCWqnAsyUUfy98hULknITlLth21574IlHrb4+68wvZSBkECxMoLV8d60EdOUR0/WTk7RYBzRZMqsKYmkhgv55mi6Voxb6k54k4afjKQG/Dx5P6R/Dtb3JtLWm4hiK7NJTA1qRxWwVxKyR2FhtH66stdUvxS0WKLLqFQHb+vguq5jFSqQRBQAwJpx0jJVJDKAaQ/3UKRLwwJX8uoqKWN6PBkZgS6AqySZQIR8wmRVlXpQjvpjddUzga/bs2fbQQw/Z448/bvPmzXPUJF4sx3zy9dSUC6YOW0fan5eO0//QYtFecU3JaTsAOIhiUgxBxh5kdWG8ttpee3qBPfXYY5bG6XzwgKE24ZyZ1h+m9rcXLraygaNs9qkTbOWWD2wJIYpeWvy6TX13iV1zy81WPnwo6ASfqcKwNeHU3gjrfJIXjXyejyge+zBDwPgAQFNAyDbTwTob9/wf0Sgu6EFyz5VOFMRp3ud2ckA/C4mRiAmxMR7FbDjEon3724DTiq02s9fS0WKCVIflomUFoaQVhPdBHwENRaI/iwrQaLE/xUtUyrZaSTH0pfiLJWqLMV9GibnYYH1oQsM7/ViFOMxi1QWWTwDsTChBecBN6CBUgSDSF+hLiwKjpX58bSflahIlIQFWD2ZmW+ca7M729rdTlL/bl0CXS+CIHtkur41/gQ5LQAPu66+/7ibPc8899yBtRetClFfM9QqcrfiN+t19CZMik1mASaX6o6S9eP+79t7TOGQTd64iv9DKAlHbsS1gP/+H7awGa7BZ15bY/M8Ps8gA3lcBZb4bbOfeKYEt+WcJbKkfyMwo8CWAJUdpJUcfoWOAMB0TAJMv16RJk+xTn/qU03q98MILNnLkSOdo7znsd2+/6ly5ZEtjigZwZgBD8prSJuNgIXIJNnCMeDaNm3fZAoDnCy+9ZJVjh9v8c8+zKRNnWGFpmX24fLXtWL3EBk8eaaffcrVNTzTY+g1rbNHSRbbs9SVWhb/UDTfeYMMICJ+pB9hyL1JFcE4JaAD2xDMF0uCiWvYneJCFDNm6tfP3mB/lg4Gcu4rqElEsVa2ChQYjXUg/IF8hmj440RoAo0lMkQE0UnEZ9PDrCohqQnUGOIq2Iy9CmKZ8qDZ49kWzEWalZyY/aA0igiWD4lsGm2IWTcrnTCZFxafEvEl7uDxaKU/X10E5tBLPMYulVXn+T18CnSmBNp66zizeL6srJfDkk0/aE0880aFLPPvss3bbbbfZ5s2b3YDaoZOOIRNDK2OwVhJpyX3K1i/cbw/cudA+eCFjc24YZHf/fIpd8A9DLF6wzz79v/vbl38xxOZeXm7Ln9hoP/v8Ytu2DMMDvitJWMdBAtREm5+OVQLSdkmb5TnOC2wJMHlaL4+zS1ouz/FeeQSu5JB/1VVXOfD++9//3tavX++CaOt8actOiCR5ALayfzGP8ysEGhAVRe22Hfbso4/Zn/74Z5uJ9u8Lf3O3nX3hXCsd1A9WeVYxIttoIQSegI4Aq0ajhN+ZNHuW3XrnZ+3GW2+1DZs22AMP3G/b1n6Aq1PWLy5I35Zuy70BCy0IdfSAFKDNAlBi4tdLk0Ig8TgjCwAXKzgLwEPAcvi5oIyNF1kkUWaBBGCJYwqjGUni65YsQ6M9CBeDcrRdcGqpHOTpHOFVHG3VGEGjD2qx96tnSOKgqvk/fAl0igR84NUpYjw+hWhilPaiI+mcc85xGq/HMI90h2aiCbCFXoshNWFb3thvj3z5r1ZZ3tc++4PJdvodAyw2rsjCJUxqOHWE+wYtNrHMZn9ppN1177lWgjnnl19+w7Yv2w3eSojSkeHZH4Y7cp8/KY80WAII2rykcDqeg70AmaOHQMOlJE2Xjmm/trFjx9o111xjGzZsMAF/7XMBpgFfvT6pDWwCXqKEkKlLm7Q56ep6e/3ZP9rrr75u8+bMtRs/+1mrGNKPRYIaQhWqhl4aTFlNst6qm/BywpSYyU9jRmy0vIKQnXXpfPvMf/us7du1x37/8CNWvQUNLxqhsIAM/xz4cOoevjtRHt/+Lpwls2cQfywtyJRPmwGq0nUN/MY0Sh0zrOCs3VflHO/DjRHDPx7A1Uhg6yaL0ZZ0TdA2rayxqi1EE0KSMbRoAeIpZn2wKM9PvgROUgn4wKuX33hNpG0lmQm0Kelz1KhRjt1e/jmrV69uOdbWuZ2xD3ICTAf4yWwJ2p++u9FGjim3C74zxkpHathlRFfSBKOJDm1Chrdheefmjw3aVf97pg2IFdkfv7vZ0vuSWHhwxG/x2HBn+n+OUgICXALeHvCSGXHf3r22fft2x+0lzZdA1SOPPOLCTC3HGV8aL/UzcXiVovW65JJLbPTo0fbMM884Z335f3UHmD/KJh/Raepnglv6l883sVkFYS/dsHqtLXltoY0dNcYuu/paKyoscrEFpc1NqX86NQ+6K9jSDQb4PF4exAOaApA1YHJsqk/YzHlz7dJLL7d1lPXaghcs05jAWV2M9DwDAl06weOhOqJad35mafyUBLi0YU0kQZvBQpggKxPjOMzv39tgb7z6qj3721dt69oG16eiON2HWTzThF/cWy+vsz/8drF9vG4f5LFov5sgVc3oRTFbtko8kA7ed/CvA7n8b74ETgQJ+MCrF99FTXYeuFIzvMlP+/RdTtJK+q2J84YbbnD7HnzwQaepyD3XZezEP3l42GrAXvrUOtuzJW3nf62/lfbl3R6zRKZ5cslaL6gbo6xqmmCCSyeiVjKo1C7++hTb9uFOW/HiTsKL0DY38HdiBU/Sorw+IoClJCLVv/zlL/b0008TKLnAdu3aZT/4wQ/sRz/6kQsz9W//9m+2bevWlj4kbdiIESPssssus63sl8mxtrYWXx6My81A3xOt9mlVpHdMn9KQ6bMzNl1Pm1e+V7ZXD+94Rz9TgP8UJKgpnL1lFgvQMQOIqamqzpa/sdSRpM45e44VEQkC1JXVwfLSEIAmQS8Pij+YwodJKaO4kNQtIBOkFiwQ2ycSitmZ5+ITNgbH+4VLbPeHH+HnBKjhmrAzOP+uJr6nWYDS0Tp3RT7JoYm2KKVUF+65G0mI65jm/ikYeJiHu29J1AqjMVu6cBVAcpXFdzVgixTzfcY+/nCLPfP4QnzZ8mzQAMyQANBMpg5wJvm0epjRoKXVT1gtSdHWJGd7d/Xs2NUVbexomc3VOOQj93yvL2tfR5LyeX1V5+p7R8/tSPl+np4vAR949fx71G4NvYdfGTTBLV++vMVx+te//rV96UtfsoULF7qBUIPh0KFD7XOf+5w99dRTtmrVqhZg1u4FjuGAgtTW795vy/+w3U45o9QqxpXyxovJRjMMzsOxDBNTHEMkA3EQkBhisA+6gSvAcnSz8tNKbfCkSlv55HaL78+aLY+hOv6pSEDgW4O8ALmnKa2urrZ3333XgSeZFNesWWNLly61uXPnOn8uUU+or0jbpaTzotGoXUwIqlNOOcX+/Oc/u37nQgo1+47J/O2ZwAX0pBHTNUNo21SO+81+RVM42s0r0yvXfXplcy3vxUP729uUJ3dzmjsgRtbMqJiBHJc5bctu27BirQ2uGGCjTpno9mU4N4nGKgQ9AlGmLQNJaoiXjRhnBx0ZFdfFjBjE7ymilxAAmFBFcUGxTZ041ep37rX1b75H3CEm3TigFbDBYUCHQjrJxx9wijy7f6MuVCBN5O+0iF/RQkcBV87rHVOjwgSF0eiFeElSfznz7LNs9oyZ9s6ipbb6jTU0IGLVVY322ouLWbzZZHPPnWFDB/KyBStEPiGP6HmAqtb6LNrOi0CCBTeN0E6kdG3an0zIz5Df3SAHjY8d9VPUuKt+o6S66WVEm6snsvOAWLuf5NVz2FBf7zY9U7q28vsAzIn1hP+THU1P+GaemA30Hn61bi/moocffti+9a1vuYnw/vvvt/Hjx9u//Mu/ONLMyoEDnRCuv/5655D/y1/+0k2c8s/RhNNWyi2/rePt7uPFL4835apNSdu5odrm3joCKgkmFHqbPvPRJCgaXDpUz8QL8zYFpcJ6629yzsx63c1jefmoM8vtz/dtsertjdavD0F1Dxmw263BQQeSDHRK7bXzoMwn8A8BENE+5L5hiw5ix44dNmjQINdygXcBq+uuu845z+scTQwyTSqvaCg0wQjEX3TRRfbDH/7QacumTp3qjglwKb8mZSVNJNonDZv2q0/pPnR0knOFtPFHZalslavy9V11VH29pN9qr9rTui/rfG2tUwCNUyPaniTs6kVRmKhYvVe1c7c11dbZyMnjLVY5wGmm8tDsFIWL0PAUAMTq6FzQTUSiUE5gnsSxPAyrvUXRdNGno/ImR9tl0qQVFtqgceOsb7TEPn5/vQM0sWKPTR5LJX5fPSKFIX7FPy0cbrAE4KdeGrAI8qVN6LygmMCkyGdhnz528ZWn2e4PdtlLf3zDBg2rtPUffWTL3/3ALr/80zZ2/AAwG5Ql6ST55VfYFi8XfYLFBvkEegwDUEUogcAk0h6ZvL6kz9z+1uHK0i/1fDhtMM+SypHJX2XlNb/gdLgsP2OvlEAP7dq9UpbHtdKbNm2yqqoqN8lIo3X22Wcz8F1u3/72t1veojQ5KWD217/+dcdcLnPR3HnzDqq3N5n913/9l4ky4Ej5mTSZKWj35+/+vDXuZCl+IwPxK0224/1tTLgsEmdezGMySxPRdu82aAwSg23FM1VWurQJtuwkS88VvJnj5KtfB2CqStjGlTvsR7/9gX28eTuT64GJ9aCKt/ND7RHdxk033eQDr+aJwtN6SWT6rjBCAi/6FMHqgAEDHHfXr371K5s8ebJjuPcAlTfRCMzI1+uVV16x559/3vU3/dYEEmJSEZh79NFHnT+htFwCSN51VYbuy7EkDzTJVKpN5alcN3nRTv3WddV/ZUL1Jktd07u2V4ZXD70OyJE8iUkNRZWVFRbbpMFjrGg/dcdHKy+Rtm2QpQYLoobyVjZCQBhgicxB+Keq124hLiGrFavo78vX4VRPX8U5qolRtgF29yKCQQf3A2R2VVkZVCrxfTW2hBWSK7ast92JGmtIEVLHAUoBwmOTj9emo/nMyrLOzp52rvVLzQEqAQpiNBiajTjavTjAAWYN9xqUwkxYMaDQLr3+bHvk4Sft0YdfBKQlbNjQsXbu+ROsoEwvW4BxXrjicH9J26W/ByXulfZsA+B+sGmV1e0nviN8X268AIB1ZfL6jTS/+/bta3k50DV1zOsruXXw+o3Ak/pWLBZr4b/Lzdfed++afQCtI0eOdGXoZUbPlJ9ODgl0ba8+OWR4XFvpDQwaDGpqamCCrjeBME2CP/3pT+3UU091QEiVdG9W5Js1a5abUH/2s5/Zaaed5jQV3sQkTYQm4F/84hfO9+doGtefifvsc8+xUemJTLYJW/PuFrQBvCdjusHqwjCuReX4ddWWWLipwla9vAHuJEAWjlxa86RhmHViFquV+bHJ3lm5177/vf+0alaWHU16//33HQjt25e3+JM46d5mJ/YsSJEoCtHAVFRU2LJly+zUGTOcyVEA6Xv/+Z/O3+uLX/yi6z/igIs0a7E0SWglpOQpkC0+Ocn4ggsucPvVl6Q5+8lPfuL6osCPzvH6amfegtwyvT7cunwPLLber9+tzxeeEggQx1YU361pg8fbecOnW2JftS1+daG9+toiS0ITUcuSv0x9rRXlx6yQuIzxvfUW0yfmx3d2vWWL/vKaBUsjEI8W247aPVYVA3hFYlayr85KMC3GG2qsuKbc3vzhT+0PH75p+1P4R+nazZgEER5UN3ewm/44OQKoXh271u64eLSF0XI1YDYUqI5DmBoHOoVY1ijzqLRhUQDvmKlD7IwzZtmDj75kI8eOttvuuMSBLgvDOhvhdYqXqmQSHRlA9BDgRWOr9tfYQ7+43x781RPOzy4ssIYwDjVLdo0Q9GLQXh/N7SO5V/eAvjSr2trLl3uO913nilNRESAUgsu9HLDPTyeHBHzgdYLc54kTJ7oHX47RWpUmUFVSUmLf/OY3nRbAGxTkU6MBRhOpjreerHS8L1qxf/qnf3JkmYebtNoSnSb2fuUVdvqsKVbzNhNYNG7Xf3WKVc4QUzoKApxy5aqrjvfxWyyt/84Ku+F/nWpFkyBLxTwp3iD5keAeY9v+uN8e++kqO2vuePvxmHtt7579ri1tXbe9faqPZwZrL8/JtF/3W/fUA2DqA/PmzbPvfve79rff+IZ769+5c6dbtfi1r33NgSnFafTexmW21SSjPiTfsEWLFjmN2HnnnedIWOOYI6VpkulS+5RHSWBOyTP9qYxjSerPKlOO/dJWaOJUUvtUNyVdS8BSGokOJYEeTI0hNLNhtA+FmAtPHznJxsUqbcPe5TZm1FgbMHYcmil8dKQAaog7s3kIz64mfJMSe2ps44rVVtav3PqNG2GBQq2QpI74Me4ti7KKMW7lDWh5AXHr1ryP2S7fKqGd6P9xqTWBu+pkao8qsDZAhWu0fjY71IZOyQTqAzBVDCy0gUPLYPFHpmxBOMqCuABIHyeNtBbFhLWKE4trkODXTaj2guFKq6ktsOo6TM2ArJRV87JVA61GAQIrZ3Uj+ZvvT0tVuWdpXrq2bdtu69biJ+agb1smyZYzTogv6rvSDHt9WYTFfjo5JOADrxPgPuvBFbnlV77yFbvnnnuclkErGPV72LBhLW9iyqdJV75gUqv/x3/8h5uYcgd4fZez+1mYKs8444yjkk62vIRlhqK3Kjb7aHu1VfSHRJGxtAngFUKLFWS5WJpwIim0CsF+IUtUYhZKxhioswNuGJvPNrQDZQOjNmR0Xxt31k3URXqyI08CArltPPISTowznCM79z8XTAuUzJ8/32k5pSFVhIMLL7zQvYnPnDnTgReBmlDzeXIIVjm7ySdTpLSjd999twO32i8GfIEqsdzLv1D9zJtYJEWZZ0TGeqzAS+BKwEsmUPnKaPOSrqdNYFH3Xp/6fbikniVAsTMB8Sn174NZMJ8wQSWZmK17bYl9+Ne3rd+ZY232VZc5gvZ6WNjj9GXIOSxfYIqT1y5baUtrP7Qhp42xs2+90hKY50Q1Uc98uhVn8WHBsFVsbbKalZstsXe3ZYb0sSu+cL2dG/+CVTVUw5uVwhwZciAEZHy46nbZsWz0AmlG62xEvxFm2/FZS+9AW1eC7Z/2AhYthL9XME7bqWucwF5o+dasXmFvvvOsXXjxbNuyHTPzb39m35hyhxVVFFqiHjAehc8ssAU1N2UzKEhjStBHpMd9wVRbWlpsd9xxl00/42Krr6m1RMMupyULAIK7OmlskLVAfVn9RL8P11+8Y54ZW8+Q+vWRjDHq/zLpyyIhbZeXvOt7v/3PE1MCXd+rT0y59ZhWeYOAVsSIJPXSSy91GgA52cuE5GkadFxOzVqx9sgjjzgfL02s7SXl1UR6dAnXeTRX0cFm46b3tzUv1dqp1zDAxkJWkADY8TWMySLK9wj+NIrfGON7PsSLGoq1Yiq+J23vv7LLJp9RbgX9YAWDF0kDvYwPR5qOZEA80rJ7U36PpV51lky0CYRJw3nllVe6FY0CKjIvatWizNbSJgm4COBoclGSCejll1+2t956y+bMmeOoJTQJqS/qfCV9amLR1pXJ6/+Hu0ZH7z/GQytlwxXf+moBCCZB2FCtbnClBUvy7eNtmy3eVIv2JsRG/EFeDqIZYhPi+5WXlmwIEJ2WdocQWcQ5zIPTKgmLfRP+jLzyMLknrR8rAmtq99rWnVts3LTh1m/MEAsWD3fPhGhTREzaE1KGVccB/NXW4raQl6nnZYxagW3zqGBxjAUatCgNpUYYDdbu7fX23HOvWSma7quuOss+3LzFHnrsSXv26bfsihvnWUFxf/rPPpbTNLjg2igCs0kcMQLEbGEWMkyfNtmmTJ2eXRWolzNkJu13dyT1I61MzALPw19Rqz6VWj9Phz/r0KN69vSceP1TdfC+H5rb33MiScAHXr34brZ+SKWZ+IgVRQJceqh//vOf27p169zEKO1VPZOneJk0GWrVmgfG2hNB6/Lby9fW/iDoKoAvzOmfHWgPfWmpffCHCpt4SzkDNsArmY+2AJ+IZk4fxYFzK/DxAeNdGhNPoy177CPbWbPfrr5+kvMxcV75HGM6a+ty/r5jlID6jt769fbu+cIJeAm4a3LQZCPwpbfzFStWOG2X9t9yyy2uP+l8AbPWQKj172OsZrunCwy2Tt6LQ0frIFBP6Gqn8UXH53yRFNqnfMQQqxg8yNZCtbF3224bMmqUNeAYX8qLRD7PGTZCZ6KM1qasX13ABsBdFdYGcCgipE4p7PZhysljZWSamI8b319te7EtDj9tKkCGK4pKQmY5gT3ATCr/0La0blvX/qYeUDqI0DhPpkFkAUR3lxTRsWgiGonBWBIiWDaLDp5bsNjWflBrd/2P26wcM2sQ+okpk+faH//4VzTdw3CyHw+dRhRNJxQRefsAcmpf83OsD1c0dAxArSRLGQPIAj2a+8frIhm6Rx4eoHINPcyfjoCzw5zeckhAT8+UxlmN19ICytrgpxNfAj7w6uX3OHdS0eQnBnI5PL8Ko7QoJqTJUDzHGThO/+53v3M+Nz/DpNTVmogAzrmZZJ4NO7OPzbx2mD33i7etpN90G3g+y8vh8tI7o1aPZQd0qfZhRmfVUyHL1997Yq+99MvddtbnJ1jl9JjzR2JYahmre/kt61HVV//RhCMzi/qOQLv6hpzjFd9Tx7VPwbFFJaE8WvEqvq877rjDziBmoadVbathxwLe2yqvvX2dMWFp/i8U5xZfUFjxhy9RQMCgchs9a5q999Aqe/vFV21w5TArQsOlPsy7QlZLoZPxgwKrsOKRnRSi3u0mVcBKnxr8t3C+3776PXt3+TLrgw9YxfRxFsdyp0LCTLhhPQ8UKk1PN+INKnBwUrvy0OrBbcD956XIAS+1SabigDWy+rIA0ClfrddefssWLnnd5l92tk0/e4g14utVUhGzeReOtTdXLrMXX1toQ8aW2cBhouGAEwzzq2I/StmlB1paRtdWyRq55Ql8Avo0HqCiB4zoRnR9EnDvDEDlgf1PqrFM5eobnl+XzuuuZ+WT6uYf73oJ0Nv91Fsl4D2oHvjytBKlpaVu5eKdd97pnOiliVBw7Pvuu89uJViv/Ld0rnd+V7Rfw3WQCSVJKJV5/3OMTZ03wH55zypb+tP1OBlnrJCBO4CppinQiJMxxJOF+dbAAqhXfrDR/vB/N9pZN/exc+4axvEoPi96P+iet96ukEVvKFNv3tJ4yWSoSUFgXX4o06ZNs5UrV9qCBQvcb5mqBeDlw6Wg6wU4ryu/3ta9ftgb2tteHaP02XzAl7OCoXlJYyrMwNA++ezTbNzkifb2ojds88uvczxk9dBK1GM6bKT/JokanYgFbD9+/Pvp1ym2JJv8u+rovvm4Lsa37rA3XnrRanCiP+vKCyzSr9TRVgjkqYfj/qTllPw5vn1dk4J0fwJGeVrlotrJk55qidVfS5Nhh7At67fa228us1Fji+38KyewMrnGQkXQQBQnbOT4Urvqmqm2q2q1LX7nNcyuDWiuWUEAs7/oZFxbKV+Bsh3aJJRQGvOiWxYh7Q9bljmme2Qh4CP3io5suXk9oOVpywTgOrI5M2Xz9VSGzvEJVOlqJ0nS8+6nXiIBaSVyVyJ6wEkPrVIMM9A///M/O3NRZWWlmyy1qkxLluUIrZVs0lJ4vjpd2exMHjMQMwoLzy1dHrIL7pltpQNX2Vu//siWPb/Lpp/WB6fcYgabqL3//B7b+9uNMHnXOqLGeX8zxs753HAL4XzvVAqqaPe8+HalSHpU2U7TRb/Rp/qFtFb6rlWA+hwzZozJB1DarsWLFztqiY8//tgeeOAB58h+++232/ARI9yqQs9RXv1R5/bWJDAgjYtQl3SyCfyLMvhpZTCt9cHUeNE1V9vTP77f/vzUM5YfK7TIJdMsWipCWXF84QKF9qqa/PtDsJfDedUUAZDhhJ8KoFH8eKstfeJZW71mlc0871ybOOcMfL8wrSEvyS3CZxhfxyzoEtg5fkm3MAlNRAT1XZJFATBBUC3gGJ8BgGkEolMQmBVHCuyaKy6xsvI4AcP1gNayqhEgDq9aiBWQ51882UZOiPFSJTMjYaVYaIBNlXN5rilXz7Sjj5GaTzEv+XD9Rz/VjdB2BdAiuoz87Ukpt5874CSwyH08kuSBLZ3nneuN6UdSjp+390nAB1696J5pNVjug3nzzTc7jZZCsXgDwVhYsfUQP/nkk47YUk7SWrIsn65rrrnGBjYz2Hd9sxmEmsehCG/NkeIAmq9xNumyIbb2z7ts7eL9tnfDRzjSN9mbf9pplcOCNv/GwTbs4jKrGBNBY6D37gNldH19T/wreCsBtQJQZmklgS4lmRc//elPu0+R7IqVXpQjIuPdvXu3nX/++aYA63KoF3i/AnJeJfVJJWkKvD7odvTKP+qwbJr0+XDRgPiiOIxBANS4GVPssus+ZS/9+gn7zUMP2MT4xcRenGNlxf1AJFqVG7BiVjiWwq4aieRbBD/G+h07bdOGtbb88Rftw5WrbNo5p9u82661PK32Y5mvTHrQBQM0HOrDlqeLN/f94yRDSUGmvgz3NJlCE4VGMyywRdUURskBMXyx+vfFLF3an521dABx7AGqAGhioRf5aWlJOdxwHOcEBQtXHEu5IKD+Yoyi7YEIi3CIbwn8wl1QV0XoMrdSA23gUKdwk2x6UGrdzzUme6bu1sfaqrY3hnvnKI/2deTctsrz9/U+CfjAqxfds9Z8RFqKrJT7wGoClMpaE6li6cknR0l5O7Ks3mXu5D+MKQws0EsU4Hw8rcj6TwrZrDsHWBwbTJJYeCEoJaLFODMX416Lrwf6AgZ4vWbrzV/TgJ+ORQLeQC9neAFvhfvxViF6TvHFxcX2mc98xvUlgSmBdUUukAnyBgCZeOJefPFFB8AEvKRd1TFpu3L737HUs0ec29zdsnO91iLSA2ljOp6CYytiUy+ew2fMXvrdU7boF49a1QvLbOq006z/8FEW2rzNRjWGrXxnne19fTk+lrvsg3eX2jur3rM0KwHPuuICO/PaK6yQsDr1aMlSaIQjaHvkDSbwJS6rFvaE44g1nNIP9V/aaaJYqYq7AHAIFwH813CQT0AF4/oUvF0hViMnAVDpAHQK0oo5iWWBo557pQwrQC2TBegWZoEBhxsaNSgAONFqZTX2egGQ9k/gDGf+49h+V+nD/PGep7ayHO5YW/m9fSfUM+Q1yv9sVwK8aPWw14l2q+ofaEsCbd0+7XNqbMxHShoMcpctt1VO1+/Lalb0RuzqzMiqQMNis89jAM7wqdGWX81VUf7sAN71dTs5riBAvpyQQIpsIBoIrVAUeBKglxlbIEr7FHrq3nvvdX42V199tTM3CrRrsYbyjGRVn7Qg0pZ5wKs7zNfdcZfEsK45XyFxHOzC3Jjm5UDEvjCguH4qvq1dq9fbhmdesXWL37btrHQsCBfwshCyfXv2WmlZKZorqCVS9da3X5kNGzvCKuefZiPnnGYRjlXH6/BrDPMilA/IyJoXBb54CtwWBqhgfOqO5rZ7jWQacyFB7Fe99LHd++3HodYI2ZSZY/BZ22GNQTjHODOSLLD8eAmywtzqASv3+PIcI0Q92/xtaQkwyzLRDbxcEWXj45G29J1Vdsbckfb1711ogUoCRpMzk+xjMRjuQ5gy5WaWiaAb6MEgrF0B9sADRwsKe2BTen2VfI1Xr7+FhzZAD5jU2AGc6pV6xgPXPJEwFmfr0wyx3ECtZeuupq6+2T/H188lpyInzFeZoOUUP2HCBNcmmRyl+VKgdGm85OeleyNGbTna6/ORRx5xzvPz5893YM1pygBccqYXmBfAd7fuBJCSoH6T8ynSXC9+OaA/OwPODqb4jfzQvqJ8K502zk7vO9Amnn2m7dmwxfbs2GNbNm618L4q6DjKrE+/PtZ/aKWVDx9kfccMtVT/IgiDI4TcQVoEzNYivjxAHhRfvItktUtJro1SyYq5hgbm44k3QtQpQ1ikPoQ8Goe/38bVW1hk8YElY7stFYOPi3pHEyVsjVBEyH9LgYAAkdJYAR9Vf5kc2ZHtH64xAUuEII/FvFiY7GfDhwy10WNGEk4MrjMAqMKJCYC6/kT5fvIlcKJKwNd49fI725bGq5c3ya9+F0pAYCuJf5e0X9JSaTm7VmR5fF0yPep7bhge9TFpwqQZEzAT+NKqMyWtztL5+pSZuzcnzfX1AAd9IhXIfQECsNdnsL1p9Z1AWQOApAFtjLQ3pRCsFoCgko2cgQN+fX0jmkAYwEL4MGE+j7A4RM7pwYKwNaLVrQNc6GUI1y/8wVLEeITfC00aajT8zTNWB9Kr4drlmXxIXAVBjleS5q3aEjVxi+zva1Xv1Fkd35sAYiAms4ImQhpB/slqgkgDMAu5pADiziAp8yQALA95iQoCcbmUBefIKkSQcBY3RpNQ1eITVziMIOZTMV9Gd2DGpNXJcitsChN/nOuwWtTXeHVeH+gZL+Cd157eXJIPvHrz3aPuPvDq5Tewm6uv/uI4hHKAkvZJcyWNmECXkkCZwJmXBNaUz+Md8vafSKux1FppumT8k8bGM5dpnyYt5+8NUGpqBprS8YhaVDoa/RVAO6CnkvoGuYqTCjwqkyxejgCaLBIRIMmXdk3AS2eRR0ZO8VoRUAnYlYUq7mC3/1F/IKQX4CecZnWy1HCAxQxASgsNXLuotnBYlv6CfR1VUKtZoqRQ0vmclwLhpghDJLJaS8u/SwsOyKO8yN1PnSMBH3h1jhw7oxQfeHWGFI9jGT7wOo7CP8kv7Q3kJ1If1DTfDAs65e7mlpf7va3CP+l4W+d01z6B0hycyHdJSY7x7dUge/zQo94Jam02eXrSg9p/0A8vp/95LBLwntdjKcM/t3Mk4AOvzpGjX4ovgS6RwIkEarpEQH6hXS+B9jDUsV75UAx2rCX65x9GAj7wOoxwuvmQ71zfzQL3L+dLwJeAL4FeJYEDyqnOrXZXldu5tfRL8yXQ6RLwtLydXrBfoC8BXwK+BHwJ+BLwJeBLwJfAwRLwNV4Hy8P/5UugR0nANw/0qNvhV8aXgC8BXwLHLIH/DzcApHtkJBtIAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "1439e5e6-af49-4b7a-95ba-ac7cc75a31e7", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "### Step 1: Generate Quantum Circuits and Operators\n", + "\n", + "We next examine the case where a long-range CNOT gate is implemented using measurement-based CNOT with feed-forward (Dynamic Circuits). In the figure below on the left is a circuit for a long-range CNOT gate spanning a 1D chain of n-qubits subject to nearest-neighbor connections only. On the right is an equivalent implementable with local CNOT gates, measurement-based CNOT with feed-forward (Dynamic Circuits).\n", + "\n", + "![image.png](attachment:1d5e0458-5431-44b6-9bcd-13d142c7b7c4.png)\n", + "\n", + "The circuit on the right can be implemented as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5c864fcf-0b77-44df-9750-0cd510640305", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "def CNOT_dyn(qc: QuantumCircuit, \n", + " control_qubit: int, \n", + " target_qubit: int, \n", + " c1: Optional[ClassicalRegister]=None, \n", + " c2: Optional[ClassicalRegister]=None,\n", + " add_barriers: Optional[bool]=True) -> QuantumCircuit:\n", + " \"\"\"Generate a CNOT gate bewteen data qubit control_qubit and data qubit target_qubit using Bell Pairs.\n", + "\n", + " Post processing is used to enable the CNOT gate via the provided classicial registers c1 and c2\n", + "\n", + " Assumes that the long-range CNOT gate will be spanning a 1D chain of n-qubits subject to nearest-neighbor \n", + " connections only with the chain starting at the control qubit and finishing at the target qubit.\n", + "\n", + " Assumes that control_qubit < target_qubit (as integers) and that the provided circuit qc has |0> set\n", + " qubits control_qubit+1, ..., target_qubit-1\n", + "\n", + " n = target_qubit - control_qubit - 1 : Number of qubits between the target and control qubits\n", + " k = int(n/2) : Number of Bell pairs created\n", + "\n", + " Args:\n", + " qc (QuantumCicruit) : A Quantum Circuit to add the long range localized unitary CNOT\n", + " control_qubit (int) : The qubit used as the control.\n", + " target_qubi (int) : The qubit targeted by the gate.\n", + "\n", + " Optional Args:\n", + " c1 (ClassicialRegister) : Default = None. Required if n > 1. Register requires k bits\n", + " c2 (ClassicalRegister) : Default = None. Required if n > 0. Register requires n - k bits\n", + " add_barriers (bool) : Default = True. Include barriers before and after long range CNOT\n", + "\n", + " Note: This approached uses two if_test statements. A better (more performant) approach is\n", + " to have the parity values combined into a single classicial register and then use a switch\n", + " statement. This was done in the associated paper my modifying the qasm file directly. The ability\n", + " to use a switch statement via Qiakit in this way is a future release capability.\n", + "\n", + " Returns:\n", + " QuantumCircuit\n", + " \"\"\"\n", + " assert target_qubit > control_qubit\n", + " n = target_qubit - control_qubit - 1\n", + " t = int(n/2)\n", + "\n", + " if add_barriers is True:\n", + " qc.barrier()\n", + " \n", + " # Deteremine where to start the bell pairs and \n", + " # add an extra CNOT when n is odd\n", + " if n%2 == 0:\n", + " x0 = 1\n", + " else:\n", + " x0 = 2\n", + " qc.cx(0,1)\n", + "\n", + " # Create t Bell pairs\n", + " for i in range(t):\n", + " qc.h(x0+2*i) \n", + " qc.cx(x0+2*i,x0+2*i+1)\n", + " \n", + " # Entangle Bell pairs and data qubits and measure\n", + " for i in range(t+1):\n", + " qc.cx(x0-1+2*i,x0+2*i)\n", + "\n", + " for i in range(1,t+x0):\n", + " if (i==1):\n", + " qc.h(2*i+1-x0)\n", + " qc.measure(2*i+1-x0, c2[i-1])\n", + " parity_control = expr.lift(c2[i-1])\n", + " else:\n", + " qc.h(2*i+1-x0)\n", + " qc.measure(2*i+1-x0, c2[i-1])\n", + " parity_control = expr.bit_xor(c2[i-1], parity_control)\n", + " \n", + " for i in range(t):\n", + " if (i==0):\n", + " qc.measure(2*i+x0, c1[i])\n", + " parity_target = expr.lift(c1[i])\n", + " else:\n", + " qc.measure(2*i+x0, c1[i])\n", + " parity_target = expr.bit_xor(c1[i], parity_target)\n", + "\n", + " if (n>0):\n", + " with qc.if_test(parity_control):\n", + " qc.z(0)\n", + "\n", + " if (n>1):\n", + " with qc.if_test(parity_target):\n", + " qc.x(-1)\n", + "\n", + " if add_barriers is True:\n", + " qc.barrier()\n", + " return qc" + ] + }, + { + "cell_type": "markdown", + "id": "d278d6c6-b46b-4be7-8419-942f92f9a63d", + "metadata": { + "hidden": true + }, + "source": [ + "#### Prepare circuits for Monte Carlo Certification\n", + "\n", + "We utilize the methods `prep_P_ij_conj` and `meas_P_kl` to prepare the circuits for Monte Carlo state certification." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4486c01c-c3ca-47e2-a11f-58134d86806b", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "def build_circuits_dyn(n : int, samples: List[int]) -> List[QuantumCircuit]:\n", + " \"\"\"\n", + " \"\"\"\n", + " assert n >= 0, \"Error: n needs to be a non-negative integer\"\n", + " circuits_all = []\n", + "\n", + " qr = QuantumRegister(n+2, name=\"q\") # Circuit with n qubits between control and target\n", + " cr = ClassicalRegister(2, name=\"cr\") # Classicial register for measuring long range CNOT\n", + " \n", + " k = int(n/2) # Number of Bell States to be used\n", + " c1 = ClassicalRegister(k, name=\"c1\") # Classicial register needed for post processing\n", + " c2 = ClassicalRegister(n-k, name=\"c2\") # Classicial register needed for post processing\n", + "\n", + " # 16 Paulis with non-zero expectation value to prepare and measure\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " \n", + " for sample in samples:\n", + " P_prep = P_lkji[sample][0:2]\n", + " P_meas = P_lkji[sample][2:4]\n", + " if n > 1:\n", + " circuits = [QuantumCircuit(qr, cr, c1, c2, name=\"CNOT\") for i in range(4)] \n", + " elif n == 1:\n", + " circuits = [QuantumCircuit(qr, cr, c2, name=\"CNOT\") for i in range(4)] \n", + " elif n == 0:\n", + " circuits = [QuantumCircuit(qr, cr, name=\"CNOT\") for i in range(4)]\n", + " circuits = prep_P_ij_conj(circuits, P_prep) # Prepare control and target qubits\n", + " # in eignestates of P_i^* and P_j^* respectively\n", + " circuits = [CNOT_dyn(qc=circuit, \n", + " control_qubit=0, \n", + " target_qubit=n + 1, \n", + " c1=c1, \n", + " c2=c2) for circuit in circuits] # Add long range CNOT\n", + " circuits = meas_P_kl(circuits, P_meas) # Prepare circuits to measure the control and target\n", + " # qubits in P_k and P_l bases respectively\n", + " circuits_all += circuits\n", + " return circuits_all" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f9277469-cc4e-464c-b803-e11f6ad3603a", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "# View an example circuit with Monte Carlo Prep\n", + "\n", + "n_qubits = 4\n", + "sample = range(16) \n", + "example_post_proc_circuits = build_circuits_dyn(n_qubits, sample)\n", + "example_post_proc_circuits[16].draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "af0f0abe-06e7-40fe-ba3b-847a81b5d61e", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "### Step 2: Optimize the Problem for Quantum Execution\n", + "\n", + "For this experiment the curcuits and operators are already as required" + ] + }, + { + "cell_type": "markdown", + "id": "210a251f-a4b0-43f1-b081-67da215719bb", + "metadata": {}, + "source": [ + "### Step 3: Execute the Circuit \n", + "#### Check Parameters and Submit Jobs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d6f5219b-b10d-4f46-bdfb-1fe539496f9b", + "metadata": {}, + "outputs": [], + "source": [ + "# Set local parameters and submit circuits\n", + "\n", + "SAMPLES_DYN = SAMPLES\n", + "OPTIMIZATION_LEVEL_DYN = OPTIMIZATION_LEVEL\n", + "SHOTS_DYN = SHOTS\n", + "MIN_NUMBER_QUBITS_DYN = MIN_NUMBER_QUBITS\n", + "MAX_NUMBER_QUBITS_DYN = MAX_NUMBER_QUBITS\n", + "DURATIONS_DYN = DURATIONS\n", + "DD_SEQUENCE_DYN = DD_SEQUENCE\n", + "NUM_CIRCUITS_PER_JOB_DYN = 16\n", + "USE_DYNAMIC_DECOUPLING_DYN = USE_DYNAMIC_DECOUPLING" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5b85cae8-a2e3-40cd-a1ea-65a59e7e810e", + "metadata": {}, + "outputs": [], + "source": [ + "job_ids_dyn = submit_circuits(MIN_NUMBER_QUBITS_DYN, \n", + " MAX_NUMBER_QUBITS_DYN,\n", + " NUM_CIRCUITS_PER_JOB_DYN,\n", + " QUBIT_LINE, \n", + " COUPLING_MAP_1D,\n", + " SAMPLES_DYN,\n", + " OPTIMIZATION_LEVEL_DYN,\n", + " backend,\n", + " SHOTS_DYN,\n", + " build_circuits_dyn, \n", + " durations=DURATIONS_DYN)" + ] + }, + { + "cell_type": "markdown", + "id": "17635f2f-99bd-473a-99a9-d1489601ab0d", + "metadata": {}, + "source": [ + "Check that all jobs have completed before proceeding to analzing/processing of results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5435e3c2-9e5e-4dda-8b92-1a16e00b2164", + "metadata": {}, + "outputs": [], + "source": [ + "check_jobs(job_ids_dyn)" + ] + }, + { + "cell_type": "markdown", + "id": "71b07f0f-201f-4eef-87ed-9a22ebada0e3", + "metadata": {}, + "source": [ + "### Step 4: Analyze/Process the Results\n", + "\n", + "Some processing of the counts is required in the dynamic circuit experiment." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "97f52ad7-094e-43e1-ae3d-1dee8d7297b9", + "metadata": {}, + "outputs": [], + "source": [ + "def post_process_dyn(count, i, p, q, samples):\n", + " return marginal_counts(count, indices=range(2))" + ] + }, + { + "cell_type": "markdown", + "id": "db59bac0-a297-4f8c-91b2-119922562949", + "metadata": {}, + "source": [ + "#### Calculate Fidelities" + ] + }, + { + "cell_type": "markdown", + "id": "617171e6-e8fe-4334-b364-486db80e6e69", + "metadata": {}, + "source": [ + "Now calculate the average gate fedilities and associated standard deviations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d573b3d2-dd00-4fea-a099-b6cf30e0644c", + "metadata": {}, + "outputs": [], + "source": [ + "avg_gate_fidelities_dyn, avg_gate_stds_dyn, all_counts_dyn = cal_average_fidelities(job_ids_dyn,\n", + " MIN_NUMBER_QUBITS_DYN,\n", + " MAX_NUMBER_QUBITS_DYN,\n", + " SAMPLES_DYN,\n", + " SHOTS_DYN,\n", + " NUM_CIRCUITS_PER_JOB_DYN,\n", + " post_process=post_process_dyn)" + ] + }, + { + "cell_type": "markdown", + "id": "47e3dafd-2d65-44d1-ad12-90f164fa7029", + "metadata": { + "hidden": true + }, + "source": [ + "#### Save Data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e694a6eb-08b5-4585-ba08-f93182a429a5", + "metadata": {}, + "outputs": [], + "source": [ + "file_name_dyn, file_name_std_dyn = save_data('dyn',\n", + " avg_gate_fidelities_dyn,\n", + " avg_gate_stds_dyn,\n", + " MIN_NUMBER_QUBITS_DYN,\n", + " MAX_NUMBER_QUBITS_DYN,\n", + " OPTIMIZATION_LEVEL_DYN,\n", + " USE_DYNAMIC_DECOUPLING_DYN,\n", + " backend)" + ] + }, + { + "cell_type": "markdown", + "id": "982f8e1b-5cd8-440f-af89-8b81eed1a15d", + "metadata": {}, + "source": [ + "## Plot the Results" + ] + }, + { + "cell_type": "markdown", + "id": "ce078bf5-326b-445f-9dfc-c0257e0f3e3f", + "metadata": {}, + "source": [ + "#### Set and Load Experimental Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4961942c-c704-4133-812e-dd2a6d5d228d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Set which experiments to plot\n", + "plot_uni = True\n", + "plot_postproc = True\n", + "plot_dyn = True" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8b9075d6-19b4-4a46-934a-0fcfee93ee3d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Load the data for the plots \n", + "plots = {\"uni\": plot_uni, \"postproc\": plot_postproc, \"dyn\": plot_dyn}\n", + "\n", + "try:\n", + " file_name_uni\n", + "except NameError as e:\n", + " file_name_uni = \"\"\n", + "try:\n", + " file_name_postproc\n", + "except NameError as e:\n", + " file_name_postproc = \"\"\n", + "try:\n", + " file_name_dyn\n", + "except NameError as e:\n", + " file_name_dyn = \"\"\n", + " \n", + "files = {\"uni\":file_name_uni, \"postproc\":file_name_postproc, \"dyn\":file_name_dyn}\n", + "proc_fids = {\"uni\":[], \"postproc\":[], \"dyn\":[]}\n", + "\n", + "for key in plots:\n", + " if plots[key] is True:\n", + " try:\n", + " with open(files[key], \"rb\") as read_file:\n", + " proc_fids[key] = pickle.load(read_file)\n", + " except FileNotFoundError as e:\n", + " print(f\"Warning: {key} file {files[key]} failed to load.\") \n", + " plots[key] = False \n", + " \n", + "try:\n", + " file_name_std_uni\n", + "except NameError as e:\n", + " file_name_std_uni = \"\"\n", + "try:\n", + " file_name_std_postproc\n", + "except NameError as e:\n", + " file_name_std_postproc = \"\"\n", + "try:\n", + " file_name_std_dyn\n", + "except NameError as e:\n", + " file_name_std_dyn = \"\"\n", + "\n", + "files_stds = {\"uni\":file_name_std_uni, \"postproc\":file_name_std_postproc, \"dyn\":file_name_std_dyn}\n", + "proc_stds = {\"uni\":[],\"postproc\":[], \"dyn\":[]}\n", + "\n", + "for key in plots:\n", + " if plots[key] is True:\n", + " try:\n", + " with open(files_stds[key], \"rb\") as read_file:\n", + " proc_stds[key] = pickle.load(read_file)\n", + " except FileNotFoundError as e:\n", + " print(f\"Warning: {key} file {files[key]} failed to load.\") \n", + " plots[key] = False " + ] + }, + { + "cell_type": "markdown", + "id": "c62db8dd-b2ee-4a0f-a869-05d23197c1f2", + "metadata": {}, + "source": [ + "#### Plot the data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a992694d-d71d-4d21-a5f3-0f5f7f9ffdd6", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "from matplotlib import rc\n", + "\n", + "fig, ax = plt.subplots(figsize=(6, 4))\n", + "plt.rc('xtick', labelsize=12) \n", + "plt.rc('ytick', labelsize=12) \n", + "\n", + "# Unitary CNOT data\n", + "if plots[\"uni\"] is True:\n", + " gatefid_uni= proc_fids[\"uni\"]\n", + " std_uni = proc_stds[\"uni\"]\n", + " plt.plot(range(MIN_NUMBER_QUBITS_UNI, MAX_NUMBER_QUBITS_UNI+1), gatefid_uni,'k-',color='c')\n", + " plt.fill_between(range(MIN_NUMBER_QUBITS_UNI, MAX_NUMBER_QUBITS_UNI+1), \n", + " y1=gatefid_uni-2*np.array(std_uni), \n", + " y2=gatefid_uni+2*np.array(std_uni),\n", + " alpha=0.5, edgecolor='c', facecolor='c', label='Unitary', linewidth=1)\n", + "\n", + "# Post Proc CNOT data\n", + "if plots[\"postproc\"] is True:\n", + " gatefid_post= proc_fids[\"postproc\"]\n", + " std_post = proc_stds[\"postproc\"]\n", + " \n", + " plt.plot(range(MIN_NUMBER_QUBITS_POSTPROC, MAX_NUMBER_QUBITS_POSTPROC+1), gatefid_post,'k-')\n", + " plt.fill_between(range(MIN_NUMBER_QUBITS_POSTPROC, MAX_NUMBER_QUBITS_POSTPROC+1), \n", + " y1=gatefid_post-2*np.array(std_post), \n", + " y2=gatefid_post+2*np.array(std_post),\n", + " alpha=0.3, edgecolor='k', facecolor='k', label='Post-processing', linewidth=1)\n", + "\n", + "# Dynamic Circuit CNOT data\n", + "if plots[\"dyn\"] is True:\n", + " gatefid_dyn= proc_fids[\"dyn\"]\n", + " std_dyn = proc_stds[\"dyn\"]\n", + " \n", + " plt.plot(np.arange(MIN_NUMBER_QUBITS_DYN, MAX_NUMBER_QUBITS_DYN + 1), proc_fids[\"dyn\"],'m-')\n", + " plt.fill_between(np.arange(MIN_NUMBER_QUBITS_DYN, MAX_NUMBER_QUBITS_DYN + 1), \n", + " y1=gatefid_dyn-2*np.array(std_dyn), \n", + " y2=gatefid_dyn+2*np.array(std_dyn),\n", + " alpha=0.3, edgecolor='m', facecolor='m', label='Dynamic', linewidth=1)\n", + "\n", + "plt.axhline(y=1/4, color='g', linestyle='--', label = 'Random gate')\n", + "plt.yscale(\"log\")\n", + "plt.legend()\n", + "plt.xlabel(\"Number of qubits between control and target\")\n", + "plt.ylabel(\"Teleported gate fidelity\")\n", + "plt.ylim(0,1)\n", + "plt.xlim(0,101)\n", + "yticks = [0.25,0.5, 1]\n", + "ax.set_yticks(yticks)\n", + "from matplotlib import ticker\n", + "formatter = ticker.ScalarFormatter(useMathText=False)\n", + "formatter.set_scientific(False)\n", + "ax.set_yticks([0.2,0.3,0.4,0.5, 0.6, 1.0])\n", + "ax.set_yticklabels([r'$0.2$', '$0.3$', r'$0.4$',r'$0.5$',r'$0.6$',r'$1.0$'], \n", + " fontsize=12, font='Palatino')\n", + "plt.grid(which='major', axis='both',color='gray', linestyle=':', linewidth=0.6)\n", + "plt.ticklabel_format(style='plain', axis='x')\n", + "\n", + "# If you would like to save the figure as an image then uncomment the following lines\n", + "\n", + "#plot_includes = \"uni\"*plot_uni + \"postproc\"*plot_postproc + \"dyn\"*plot_dyn\n", + "#pdf_filename = plot_includes\n", + "#plt.savefig('./exp_cnot.pdf', format='pdf', bbox_inches=\"tight\", dpi=1200)" + ] + }, + { + "cell_type": "markdown", + "id": "0c1ffc24", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "### Data from Paper\n", + "\n", + "The results from the paper are likely to vary from the results of the paper due to different calibrations, and or machines used. The code presented above also uses a slightly different method to calculate parities then was used in the paper as well as some other differences to make the notebook cleaner and more accessible to a wider audience." + ] + }, + { + "attachments": { + "6b35f96a-af69-439b-ac65-a8b167e2e510.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAFMCAYAAAB1Zu6mAAABX2lDQ1BJQ0MgUHJvZmlsZQAAKJFtkD9IAnEUx7+KYKT0h6SiGtyzkjuh2SwqcLgswRqC87w0OPXH3VU4ZUNjW1u0NNXS2BRBQ3sguBY01FRDZEN/fr2fV5xW78fj++HLe+/3eIA3qDJm+AAUS7aZmp0KZ5ZXwv57BDAML0KYVDWLxRUlSSX40fZo1OERWhsTs7jRd3i0sz03+Fh92s3Y6t/6tujM6ZZG+k4pacy0AU+UWNmymeAqccikpYj3BecdPhacdfi8WbOUShBfE/doBTVHfEscybb4+RYuGhva9w5i+6BeSi+S9lOOYBozSNILI40YZEiIYoFu9H9PrNmTQBkMFZhYRx4F2NQdJ4fBgE48jxI0jCNCLOZJkMWtf9/Q9VY3gYk6fXXgesYncPECdN+53mgW6KUdLk+Zarr39jR81posOTx0BQQqnD8MAF3PwMcZ5681zt9OAH8HsHfzBRMZZOwMsqaiAAAAOGVYSWZNTQAqAAAACAABh2kABAAAAAEAAAAaAAAAAAACoAIABAAAAAEAAAIRoAMABAAAAAEAAAFMAAAAAKNQAmcAAEAASURBVHgB7J0HmF3Fke9rcs6jnEYZCUQSKAACIQQi2ERjgrENNjg9A35v7V0M9i5+9rLrb9cf+7wP/IyxccaAySIIITJCCQkRhEBZGo2k0eSc59WvRy2Oru7M3Llz7ujemS44umfO6VOnu7pP97+rqqvjOpXEkZOAk4CTgJOAk4CTgJNAHyUQ38f0LrmTgJOAk4CTgJOAk4CTgJGAAxGuITgJOAk4CTgJOAk4CYQlAQciwhKbe8hJwEnAScBJwEnAScCBCNcGnAScBJwEnAScBJwEwpJAYlhPReCh9vZ2aWpqkubmZmlra5OEhARJS0uT9PT0Ht+GX2hra6vU19ebXxKnpKSYZ5OTk3t81t10EnAScBJwEnAScBIIXwJRAyJKSkpk6dKlsnz5ctmyZYuMHTtWrrrqKrn55pt7LB2gY/369fKrX/3K/AIcFi1aJFdffbXMmzevx2fdTScBJwEnAScBJwEngfAlEDUgIj4+XjIzM+XMM880v42NjVJXV9drydatW2fAR1xcnNxxxx3S0NBgwMTDDz8s48aNk5EjRxqtRq+MXAInAScBJwEnAScBJ4E+SSBqQER2drbMnj1bAAOJiYmyefPmXguC2WPjxo3y8ccfy5VXXimf//znjTmktrZWABdr166VJUuWGNNGr8xcAicBJwEnAScBJwEngT5JIGpARFZWlsycOdNk/t1335WkpKReC4IfRHFxsfGFACzAIzc3V2bMmCE7duwwIOLcc8/tFkRUV1fL/v375eDBg+Zd+GSgEQHEdHR0GEDjzQQABx8MDs45wk1necDfnnv5Bb7Lm86e80t+vXmy92z+7L3AdJY/6S2RNtR0PA958865l+w977Xu3mv5kdabD++zgfy86ew9+ATWSSTSefNLHrt7b7B05MdLNu9cs+c8500XjD/pbTrvc4Hl7y1dIA/SB/LjWmDbCEzHMxw9peMZKFg6m4+uFF3/etPZ692l4zrEM5z3ls6mtfk1Dx/6x/Kw17z5sPfgHyjrcNLZd3THj+tQb++16ULl500H7574k9bmz57bv4O9tzd+9l3wsudefpx7eQSms/ds3Vke3nScQ9wLTGf5d6Xo+jcS6byy8fIPfK9NR3vCH3Du3LnGt8+bLlrPowZEhCOgsrIyY/LIyMgwZgvLIz8/X3JycmTPnj2Cw2Z3tGvXLnnuuefk1VdfNUnwxcApc/jw4YedO7lBxUKAC/jZiqbi0YbQQDm36WgEnNt03Mf5kzTexmzPbTru2/xaHrbh8X7SWR68FyJPpOEe/CBvOvhxH1DGdf4mHQfnlh/3OALTkQ/7Lsvf5tG8TP+BB/kIlo7nIXhDoaQjv/i2wM+Wn3fwN3ngHH62XN503PemI40tF/nmnDTkizqx/Gw68kcaDlsub91RBvh45W7TtbS0HJanTdeX8sPXlhf+3r+DlZ93wN/ml3PKY8vFOffgGZjO8uPX3rPvhi/PWdkgT8hbZu5BVk78bfNr0/G35eFNxzlHYFuzPODLubdO7LnNr80T6SDeRTnsOenIh60T7z17Th7g211b6y4dz/FejlDaWnfpyJ/Ngy2Xt63ZMtt09r3ecgUrP+kg0nn5Wdl4y2XTUQ7exz3ywt+B6fjbyhPeNp2VhS0L6Tjn4Jz73nzwHg6u2zKSDn7UI2R52HRcgx9peM6bjjTB2hppbZ66a2uWn80v5fLyIx/B2po3HTz4O1g6nrd5hy/58KbjGrLhOnww4ZOXZcuWHTGmGSZR+k9MgwicKqHU1NQjxEunQKXgV0EldUfHHXecTJgwQb7+9a+bJHfeeadMmzZNvvrVrx5+joq1PLznPBD4t32P9zrnUHc87DP8Bj7nfYb73r+7O+8pXU/3vPxCSVdeXm46X7Q/UDh5Nw9284+XXyB/7yM9pfPe854H8vPe856Hm86bv8BzL3/OISt7ZEq7xbTXUzovz57SBd6z7+H57u5xHbJp+5vOMPP8E8ivu3d5HjF57S5dID+bb9Jzj4kGMmVSYe9xvTt+9jlv2mDnkU5nMnjoH28Ze3qv95lg6bgWrCxe/j3JhsHtwIEDkpeXZ/rcwOe6493de7nupZ74ka47/va6lxfngfy4ZtMG3gt2PRgPb7pQ+XWXjutembIacdWqVXLfffcdBnCkiXaKaRBB5wCBjr0E0gOZolXoiQAbHJaoRAbFESNG2EvutxsJWKBmQUQ3ydzlPkjAybQPwgoxKX0Eh2unIQqsh2R2to/JOHDi1sNj7lYPEgiUKVp0q73o4bGouhXTwaZsY2ZFRlVVlUF1SLempsaohTBL9KVCWhV4tCnadtS7BNDyBIK33p9yKXqSgJNpT9IJ756TaXhyC/YUs3D6WquOD5bGXeubBAaDTKMKRCBQa5vi3P7NbzACRAAUeAZnTBwjWZmxc+dOqaiokBNOOMHMQoI9G+xavWo06vRocUAimHiOuGbr6YiL7o9+ScDJtF/iC/qwk2lQsYR9EQDRXX8cNtMh/mCsyzRqzBk4l+BUwlFZWWl+0S7s3bvXxI0ghgSqH/wgUE9ieuAXv4ZNmzbJI488IsOGDRNWXBB8ihnIOeec06tJw9t+qxWE7NQVH7v1HVOUv6PuJYBdtC9anu45uTtWAk6mVhL+/Q6ETOmXhsLACiCjj6XfddqI/rVR64zKL+bzWDYPRQ2IYCXFX/7yF3Ow5BJVOR6vgIMvfelL5iAmBCspTjnlFPniF78orMo466yzTG0+8MADcu2115pnTj/9dOMcidMkPEImBTIP79snTbpq4yF1sKSCHQWXABofG148eAp3ta8ScDLtq8R6Tx9JmQIcGExx3uQ9Q2FgpYxMHnBMdBSeBPB9QovOAaE1Z5wCnMUi9WGEjWzxMEtcccUVBiB4P0aEW1RUZMwWp512mowfP954B1unSTzZ58+fL4WFhUaDYZEd0Sr7BCAongKXWtV+vKZA4g7ds+POMWMk99ASnciWPva425gasZfz6M2xk6n/dRNJmTIzB0CgiWBAsH2S/6WIDo6AJiZ3DHZughV+naAlp12iaWfVEH/ThmKVogZEYK7Ah4GjOyIN4MBLoGIABEe/iYrUTmHf9u3y9/Q0OUGXjs7R1RpjFDlmqFYi3qHvwyIGvMUqcj5ciCg7cTL1v0IiKVMGVTQQmEwYDLwrvfwvybHnaDUv9LkORIRfH7QTtA84qdJ28vPyY7rtRA2ICL9K/HsSFV2qroOO37pFSiaMl9+qP8aWnGyZrv4ReYq+0/SYnZEpWXxEQxxQpCSnSEJiVyAV/2pgaHNyMvW//iMpUzuoMigMdgBBzdA/2sP/mho6HPF/AIih1TFjTlrX37EqAQciPDWH+aNAA/6k7ymWg1rJq8oOylsHS8Us+tS/h6km5C/TphvtRI6mHcq0/8B+s007Dq6O/JGAk6k/cvRyGQiZMhAMBQI04diO2abPpuKhIKAQy+htL5gxdu/ebcz01kciRDZRk8x5DnqqAoTYqCqm8bpC5NdFE+WsESMlO0edX9LSicMrFRp/4su6MdhqVWEOdUpXmQx2G/BA17GTqf8SdzL1V6bOqdJfeQIosjKzYto0PLSn0wHtAZUkzlKVJSXSvGGD/EhXfjSoCaNZr21SYPGQbta1u65WHiktlUzVRJxxKORzAJsh8addYjskCjtAhXQy9V/QAy3TOp1Z/lm1l582t0iDztwjQRgRxyUlytUFhTI5IOR/sPdhf1++fLlxPP/Wt751OMl7770nH3zwgfHnOP/887vdqBDnUXZK3rp1q3F+Z9NDNj/ED6RInd4dhS8BQASrDBMTYncojt2ch19v3T7JzBpnwSo1abz/zjvy+UWLjNc1aryTtaJB4T/XD2lFeZlM1Y93mh6Fmn4oUlNzk2g4sKFY9IiV2cnUf9EOtEybtK94sbpGynQpZCRpozJfkJ0TEohgJcBm1aDu01VnXirVyRAxdoj9wG7H3RF9IoDBbgcAL3Y/njhxYlgggv6Uwzlndu3l0dDYIBmZGZKi/8UiORDhqTXsfMTYp4GD0LH/cQ5anKiA4SZdhvqOBsJ6S5H5qwokpusy0Mt0VchQdLLEKQhQ5cg/CTiZ+idLy2mgZdqu/cV+1UbkqPkzL0LfR4u+4yPtmwAsfhAyIuIvKwVYXs+qAQb4yZMnC3s5WBBBQEAAyfvvvy+ffPKJoJFI1z4QMEEfyQZyaD0g+tJJkyaZ53mGOED0p5xDpOcdPAtA4R0EGWQnZZ6z10ziQf4PckEDHqvkQISn5mjYoG2cXWj0RL+0HxGuUwXa0O/RBv4/W5rllcoq9ZNIkAW6PjxfP5ihBiRwAnLOVZ7G48Opk6kPQgxg4WQaIJAgf7LX0L/8y7+Y5fMACqIEQ5g+MHMQRZitqVesWCF33HGHARGrV6+WtWvXCr/f+c53DCB48803zS6U9J+Agv/xP74rCxcu1J0/98tvfvMb06eyJBbgwQSE+Ai844wzzjAAhmCCP/vZz+RHP/qRiRcEkBjsBJAiPEEs+5c5EBHQSovUxscH8Pzzz8vKlSvNtswjR440qRIVZEzTD+ACdbg8oIj9vZpq+V8a3fK/9BmAxFCipsYmSU7R+Blq5nHkjwScTP2Ro5eLk6lXGj2fMxu+8sorZcaMGQIgeOqpp2SaRu4tKCgwDzLw0xcSJZjf6dOnm/RobwEaJ598stx+++1Gk7F06VLZsGG99p8aZ0eD9gEs0Fz8wz/8gwENbCmOn8Zrr71mNA+8oER90dD8Tp06dcjsukp56+vqjT9KrC4THlojX8/fkLmLKg213mOPPWY+IrQTJ510kowaNcogxmT9kK5U5LhNHYt+p41+rarw6g5FthxK2gjseM4nIoQG1YckTqZ9EFaISZ1Mu0wHcYIutWdiHyIAxMSJk4wW9uGHHzbaAu9T9IesYmPygJbH+klgymDSxb5FaDZ26eQKmjlzpgERTMzgTf9KX0oQMEwbP/nJT0zUT6I3btcgf/PmzTN7JQ0VfwmAW6066+fmdYXA9so6Vs6HPIjAy5h1upgvQMJFqlUACaNiQl2H+o1Q2zgfsRfH5ZddLuPVN2KOqtrerK6S/fr8Cv0ALlK0PlJXdwwVMsuSkoemU2mk6tjJ1H/JOpmKpKakquU1/qi9PfB/QEOAJoFBm60HMCEwI2Yiha3euwUBtYMJEyARSO+oIzq+Emgr8KUANLCaw/pAcH306NEGfPAuQAj+EJg26Htx1MSMcs0118T0ZlSBcuntb2SRl5tn5NVb2mi9P+RBBDZAljBt27bNAAY+ID6CSy+9VNasWWMQNR7MfFCg57FjxsqCBQvkFP3wFuuH9mv1m/iTejnP1EBUQwlEsHSOjsGRfxJwMvVPlpaTk6lIekZXTBf6MDQGAASzlF0dGZlEoYFgMON75heMAFBA1e4lrpHGfvdeZ8BVq1aZZ9gYcdasWUaLCzDwpgFYwB/iFyCB5oHlozhqYjaZPXv2kIj+aeWKTFmZEcv+ZUM+2BQfFKDg29/+trHxUZmo4P7t3/5NfvzjH8vNN98sl1xyibEN4nn8yquvSKmuAz9eB9GzdYlVe1y8vKrX96pqri3go7MNZTD+Hig9IJVVlYOxaMesTE6m/ot+oGXKHB1ozfBLfxCJgxUgvONofYBeDEI47eEgDmFyYGknWtcdO3YYEMF+RaHY4wEVTLoAZhAmCA67usAOhPB//fXXhd2YeyL4LFmyRD788EOjjUAzgVYkmKajJz6xfM868bMiJlZpyGsiglWcQYeKks877zzjRMSH8sILL8hdd90lBGjh7yRF0sP1IzhR0fOHqsnYUFsjx6s2gn02hgLR6TCzcOSfBJxM/ZOl5TTQMjXO12rm+6CpWXbrkshIEO+YpN9e1qFZfSjvIA4Epon77rvP/KIhwGyLxpVNDa12oTde9I34iKGd/eMf/ygvv/yy3HLLLTJnzhx5TZ0kv/e97xlNB6aL3voHO2GzGyjOnTu3t9cPuvvI0+6lEauFcyCim5pD3Ya9joPdQ6dMmWochLDboZFo0w5ikjoY3axeyndVlMsjCiTGK/AYKiACmfTWSXQjWne5Gwk4mXYjmH5cHmiZZqq6/zZ1HKxs75DWCGkm0UBka/9EwLtQiUH9oosuMtpWwARaBbQTY8eONQ6Sd955p/FZwPeL7xo/sP/4j/8wuyrTB/LsaaedZuz3OFRee+21ZoJFWsAIgyFmEbQPXCMNSzhZmYGZ4itf+YoBKuTDEnlgVQf5gceJJ55obw2ZX8YZZBXLfakDESE0Vyp42LBCY+Z49dVXjZ8EQGKYOiItUD+JFN1HYouqo7bpUp26gjYTEjsEtjGdBBUmnYBb4ulfNTqZ+idLy2mgZZqsg+kpGZn29VHzy2wXYMARjIjV4CX8vxZpxF5LgDHMDZgz6A9ZacHhJS9A8F7nHJOJl4jBgzbjrbfeMn3I8ccff9jk4k032M/pQzFlANRilYa8T0SoFQeaRmUHarY2PDqMEarWP0ERfbaGuv30402yUj8Mljh5HYpCfUcspWOWQYfiyD8JOJn6J0vLycnUSsKfX/o1Br7+Eqs20OriUImGAxMJ2oyhRsgTEMG4EqvkNBEh1hyqP2x2OCnhF8FqDhp/lqov/0FVgP+89Fl5Tp2WKnVTnH++/nqDvHESArWHam8MMStRkWwohaUdKIE7mfovaSdTf2WKH4Mfgz3xJb7whS+Yw98cxhY3zBmMLS5iZWzVW1i5Rd1UVFRkgqtgymCplAnvquj5eEWT2evelVZ1LFqtttCbNBIb9r2rrrpKFi5caFSIfnx4YWU8Qg+BnPkAHPknASdT/2RpOTmZWkn48+uHFsKfnAweLuxJEsuaa6eJCLEtWkdLnIfYrIawrZgt8P5e8dxzUqobx3QqyOhQR6UmXTq1XrUVqOuefPJJE6QKAMLSUdR2OC/FunaC9eU0fGZ6jvyRgJOpP3L0cnEy9Uqj/+dMnGK97+q/FPzjQB/KOILW2i6d9Y/7wHByIKIPcgYwYMLAJ4I11tjz8D5+9tlnpU4bQrr6TLSeMV8SFGAsLiuXbboTKGnZERQPXJZSEVyFtdHEmY9l7QSaGeThyD8JOJn6J0vLycnUSsKfXyZTsdxv+SMF/7ggTwCEjbHhH+eB4+RARB9kzaCJXwQb0xDn/e233zbLmgiPna9hsjt0mdIu9VhuOWGWfFEdMffoDnebNBQsceTRSrCpDR7J2L+mTJliGk8fXh9VSUHNsdzwo0qYhzLjZOp/rTiZ+idTwANaCAci/JUpK9xiuS91IKIP7QEQccopp5gY82gYXnnlFRMvnuBTRL0sU1NHqTaIDlX1l6nJ4rIbbpDrdCnkvn37DHh48MEHjSmEGPPElYdXrBKhwpnlxaoKLhrl7mTqf60MtEzxGbA27kj5DzCIc+C0HYpfEvv/4BtiB3+e4bvl+b6QLZu3XH3l0Zf3Hcu0mBlsPdLvR8qEg3mI8YF4HbGq2XUgog8tlY8Q1EiFAyJYpcE1Nq4555xzZLTGfZ+mncj9atr4gWoeRuqHuljXV7NzHVvnDhs2XH74wztk3bp18uKLL8a0ScOpNfvQcEJM6mQaoqD6kGygZUpcCmLJEPqZ80gQAxrm0TPPPNP0K7294wc/+IGZvOC/RH9FPIfvfOc7cuqpp/YZSPC83WsIMMHkaTASQbPYVAwt8uc///nD25X7XVbkGevaHQci+tgq6JSmTZsmq9VUwe6fmCbwc8Bpcrp+nOUKIDriE6RUw2CX61roFgURqYr4s7Ky1anyRLP0Ew0GfhIgUJY6RQrl9rFofUoe61HW+lTYAUrsZOq/oAdapnZmyUw2UjNLBm82tyIGRijEajJWi7E5Fo6mjz322OEgT4FBoHrix4CH2p2VaWz5TRn9AhHwguhfo4EItgXIoq/HET5SRHkJ++2WeEZKwlHKl+hqOFSiiSAI1dlnny3jx42XQlXvT9DlOjO0AW6prpL3VY14koKImXo9Pj7O+ECcddZZ8umnnxqnzBUrVphloJgFYo1coCn/a8zJNPZlygCPBiKSpj6ACiZUO/D2JjUGf3ywcOgmUiQAoLi4WHbu3Gk0q+zACbggHYMmwIJBFD8uVqKheYAwgVxwwQVmAvWaLmdH3Y92A00rO3faTb5sfpgsAWAYKAEeyIZdOglxTVvfuHGj2TmZ0Ne8e5SGCycKJr5jmGB4jn6WSRoRM5ErO37iV2YBFCZhysbz9KvchzcaY/I15/Q5JjurVq8ysX0I7AQQYqdm8ky54Ycs4IGTIyvoeC8r8Cg7fbwNjEWeKBPvx1EeWU2YMMGUDd84zNS8gwih8CPKJ/lDWx2MkAmBt2JxDLDlcZoIK4k+/E6fPl0AEjRYPrr58+dLQWGBaTRjtPFcpsj1PgURr+gul7O0UU7Wa/WKtMv0o8PkMV7VZFueeUaefvpps8kXDY7GGUvkls75X1tOpk6m/kvgaI4MWAzcAIlK3Q78Ge2LGDwZzHAYZxBm4GYnTsJSkxYAwcA8b958M6CiCSEdplkGSwbKQHr++efNZMnO5HkXz1188cVm0GRVG0H7AB+kYdDGDPScLpmnP8SPg+uco/H45JNPzYZf+JTRZ7JVKrswM8izTJLneB5ww7NTJk+R0aNGm3exgSIgg7Iz629vazcgAyBD+SmLNRMx4JOOHU8/+ugjA2549vHHHzfPIgfKAoAClGHexvxh32H7c54FuJG+OxABEIQH8o9V/zIHIgJbfgh/Y1M8e/7Z0lHXrvtnDJOJY4okNbmrUU9QJ5zrVT310M4dsqamVt7Vxn2qNqJP9ANdrsCiIC1VWjVmRLI2GhrwDkXAoH6QdiwR+Y2UujaW5OBnXp1M/ZRmFy8n0y45MItn4EMjwCCMNgB7P7Pq008/Xb797W+bAZ2dOf/+97+b2TiDIhMk9tAo0j6LgRlHSjbjYqBmFv2zn/2sx0ojDaYU+AM47r33XuPPwQ7JDKDM9G+//XbjU8ZMHn6XXHKJ8UNgYAZoPPDAA8YJ/amnnjSDNZEuL7/8chPsD40AwIG+lHL9/Oc/N+YB8g4IeHHZi0a7AXhZqIH/7EZgjQ2NkpGZYUw7gKT//u//NsABMEG/BqAJJDRAaDF++tOfGmBFvtAmkxc0M2gzAA1XX321ASzXa+RiqzEJ5GX/BiABhGK5L3UgwtZmX37VfDd9f5GkfbhAkoYlS/vyemmdlyZx49XjOU2dnrQRxqsPhCho+N3uXfL3kr3Sog2wUT+aBEXtrTnZ0qRqu1SNbPngn/8s//O735UT1aciliguDs1JXCxlOerz6mTqfxU5mYoZ/B9++GGzJJ1Bi9n94sWLjakCvywGPmbPmBJwAMdfC9BBYD2cRImHw1biaCfQGqB5CJUAK8TWYZDElMGsvF43KkTlzzXu4RfG4IwmrqSkxOSNfOArANABSDCAc46JYqGCAQjNARoDQARmF8zL3/jGNwwvzCHcw0RC3tGyoKlAY8EeSAAn3ok2ASBz1113mfLhrNrdJmVoPHgOWeFrA0AFOACocLQHaJE/7pN/5ImGoTfqizx743Us7jsQEYbUO+oUkddqA65IlZaSFinZt0vKnj8gKcNSJXV0mnRMSpPvjMySP3TUy1ZplioNha0tXiQ5RfRrEG3ZikKmSYfGmXhJ7ZHF8+fJZG3QM7TBzdeGebJ+aMn6sUcz1dXVGvVbdnbvH0k0lyOa8uZk6n9tOJl2Dbb4YuFYycCL5pPBHbCApoDBkIEMNT/30RAwEDKjZiDEgRxHcmbdX/va1wwACKwpYuds2LDB3GMAZTCHAAqo6eEPT0BMR2fXJl6cMxiThvu8F20HQIMBnryQJ7QD5JPB2gIH+3548AzvAACw1QDggfQ8ixkBzTH5AQzh24CmZc2aNWbfDrQswwqHyfYd22WLRh0GjJx//vnG18G+w/6SJ0AB7+TclEXzzLusH4wtC/d5P2l6IsqMfwtlRj6xSEMeRIB+9+zZYw5QOf4OvVFcYrxkzMqWggtGSO0HVdJW0SqNm+qkoa1WEjISJGFUiswvSpKapDb5NEOkeViCJE/IkGGTcyQjLV5KFWF/WFUtH6o/RYk69ZQoil2rCL9Il4C+m5EuU/Ujv6qgUKbph5GoH1c0Eh/IYF0jfqzk7WTqv+SdTFVfqH2Idaz0SphZON8wvl04EjIjZwbPYMagjIaAQR7V/htvvCFPPPGE8Zmw2ggGdUuo5OHBjJ8ZO4M9hEkCEEKEXrQMAALqhMEWIh35g7jO+xjsATZWM2H9Ingv+WOwxyets0OBRVurGdhJg48Hmg1AjB3YARicY1LBdwHemDnQsACsyFfqnFSZPGWy4YuJAodJfN0CiXx6QQF8OSgDGg/Kh7mId9aoKRsTSjBfES9f+AF6rLy892LlfMiDCBo16jAcZ3BwoVH0RvEKFLLPLJCU8emStaZSmnY1SHNxkzSVNErTwSZp1r8zNrfL55RVpS68qBvTJukndMjEpngpGJEhu1JS5eXsyZI09xzZtPF9adv8idROKJKNen1jTbVoS5RGdfy5Vj+M6drAUnpBs73lNxL3afigbUf+ScDJ1D9ZWk4DLVMGGgZIBhIG1EgQs1cGf++AFs57WDnAaoLX1J4PaGAQZOBmAGVQw8+Ad/AuAAezer55BnqABrN6NBSABtT8xMoJJPpWNBQAgM2bN5sZN4O0BRHe9JgvTpt9mnHoxE+B/hhHTwZ7AAZLLnFWJMZOtU7C0GgAHsgbZgSADlGEARHIKF5NruQ5Lb2rbIAeyoNmwmoUdqo5gi0MKBNAiDwgCwBKqERZMNWQV0wqPL9//wEDoEw+eui/aS8ApljuS4f8KEDDYYkmB4081MqMS42XlCm6f4T6QXRUt0rrwRZp2dsozTv12FYvjQokGvXvlLJGaf1I13O/3ygNDx+U9rwUGTY1S64/JVvmzlgit2U9JlUffCrtM0+S9pNnq7mjVWqbGuTftGGXK8D5vqLniQzYh9B6qA070ulQwfGx0Ek78kcCTqb+yNHLZaBlyiDFwMYstDenOm8++3LOO/oSW4BBKpiqnEGZSdQvf/lL+fGPf2wGWJwaMWMAgF5++WXB2REZwgMfCQZLBmYGc8wbd9xxh1lhdt1115llk4HlYIBlcF2u/l/4Ndxyyy1yxhlnGLMH/Qf5ojwQQODGG2+Ue/7tHhMNmL4Y/wUCY6Huv/TSywwPVkk8+uijRoOBeeXCCy806dB6oEkACDE4s/zypptuksamRvnDH/5gHC+ZJAIgeA4ws2zZMnOPuuIejqRoJ3C6BLjwXgAV5aCv4xfeEHlHLqRj9QjmIfix2gOTEQcAK5jsDQP9B5CBBgigBu9YpDgVXOiQKxZL2Ic833rrrSZoFJ7EIZNKz6DWdlVttXVKR3OHtNe0SvvBVmneqxqKXaqd2N7Qpa3Yp8GnKlrMLKVD4VtzQptsrdwi77V+LKMWTJdTr10s7WeOkq8d3CPlisKz1XHxPEXG/6wzhuO1MSdFEZAAvdMJgPod+SMBJ1N/5OjlEkmZMrNFtY6anAEDojvFaRBNRCSJgZfvL5RJD9oABihm214ir4AFQAIDPMSgycDIwMlqDu7b2TQDHQMpgyJlxLQAkQ8GZu576fvf/77JHxEfbSwFtAbwgCfaBjsT51nyA6jhvciPe9bEQTnb1besvr7OPGfzi9zJMwR4gCe8eZYyc59ztBrw5h3Ijuvkm3LgbMl1yAID8gM/6pi0/AI0eIb8wxO5wRNQBQEcrbwwkRMplJUnLGllsuolCzJpO942RIyMe+65R1glAxiNBRrymoh+V5KC0rgE/UePOAWS8bo6IyErQToL1e5XpA3upDZpr1JNxQHVVBxQU0exgordCi5US9FU2iQTmsdKZp1+uB9nSv7vykVeaJS74lpld3KHbM5qk73DS+Xe8S3ytamj5cRJuZKbo0FMeF83ZD8GbtPQI0Ug7FA6sEi9fzDydTL1v1YHWqZ8c3ZQ87804XG0g1zg0+SVQZEjGCG7QGJwB2AwsHL0RgzkmDIYLAOJ614iP4CG7iYmCQldg3937wWgcASj7mTQUzm8vChHYL0GgjKWlbJKA8ABuGA1C46pgLLuCFlS3p60Fd09Gy3XHYjwuyYAFep4GaeSxXcisSBZOsd2Surkdmlv0KNSAYWCh5aSZuNDkb4nWz595WXZWrJdxteVy8zdx8kCteUdTOyQKWkdsjujUVpyWqR6dKuUjKmQ+txUSUxVz+W0REnM0iNXj7wkScxPltaMdlm9fo3sVDsfy5RQywXrCPwoMh+JI38l4GTqrzzh5mTqn0yZoFitRCgTFJZWMvhGqg/yr2T+cAKo0O8CtJhg0f/idxKoofG+DZnalR3e67F07kBEpGvLgArVUuiAH69H0ogUSZmaIZ3NCiiq2yWvYrjsqPiTrKpcJSckTZcZGi8irSNDxtS3y4j6VjlJtRhlB9vk4NYyqWk7KPlqB8lP1GVTWQAHtaONVI3HmFRJHpcqzXlt8vYzb8jKd1fKcbNmSNJV8SZoTHquev/mqiNWitoefdJOoMpkBtPdrCDSYh2M/J1M/a9VJ1N/ZWo1EaFwxb9iKFE45QWUEfALLUesaiMciDgGrRxzRFy6ggo9knQ56CmLZ8u6HetlXcUHsmRRuZyjDkyJ9QnqrNksuw/Uy0fayJ5vr5NCBROn7Rc5uaJdCqrapXN/nXR+qLY8DUMBom3taJPJraMko32BlO+rkFUb35CkszS865lTJOuMfLOaJEHf6QfR6JllOPJPAk6m/snScnIytZLw55cZdihaCH/eNvi54J+B2aQnbUW0S8GfESXaSxnl+cOzl6VSTz35pDy/9kU554pzJSsnTzrVWTNTNRY5NaNlx6498lpVmbzd2CynNabI7TX5clydOjKVa5z4yhapK6uTPSXFsn3PLilMLJAxcQomqtOl7ZUm2fHOp5I9XZdo3TBW8j8/UuKTu9Zw90csAAjnE9EfCR79rJPp0TLp7xUn0/5K8MjnHYA4Uh79/cv6gdgVKv3ldyyedyDiWEg94J0EKmFXuXSd3X+4+SMpr6uQ7GE5ZqafoOaLcWqK+GbeBGnenygvlx2UtQ1t8qvkdvm/oxQUNGukt9o2qft4q6x84l15dffrcvnxn5OCvELZdmC3rP1onZyQOFNOajxedJ2omlE6peALoyQ+SYFEP/wu8WjGnNGT01BAMd2fvUjAybQXAYVx28k0DKH18AjmjFge8Hoo2jG5hTmD1SiYMnAqjUVyICIKao3GQxhagrwQmIWQrHj+EjEuTrcQT1HNweyCbLkhoV2qO1rlWfWNWJ1WL9tHx0lumq7s6IiXhpY2WVX7rhSn7ZeMBbky4aSpIiUp0vb8elm2+hWJr4uTxPe0utXsEZeiz10wXBIyw1dNon7Ds9iRfxJwMvVPlpaTk6mVhD+/BHBSY6w/zBwXIwG0ZbEMzByIiJKGTLhtor6x9e5LL71k9rrH29eqDwnHcrq6PxxXVi7P60Y0jaNGyjPqKzFSfSqK1K52sK5MPt25xawtLpozWWaed6IU1U+RtmGd8k8f/5Osan5XcptzJeujTOl4sF2XoSZK5uxcXdmhwVMUqPSVWCvtzBl9lVrP6Z1Me5ZPOHcHXKYa6bCtrFU6WtRRqQ9RD/tUNpy1k3T/Bl2VFYezdC/E7pbESQBQ4TtFn2InKYHxC3piBXhg4mD7pJ7ShnuPmTmxHggfjZYzVmIlhFtewAPljOW+1IGIcGvf5+eI1gaIoNN75513TEhZ1hh7VVwbNaRq8UMPSZqCiNqvfkXuzciUM9QpJ0UDpmzbts0EPyGiHBoMTA04lS2+YLHM+ussWashbMdkjZZZmTOl+sMq6fzXLTLmjqmSs0Dj3GdoM+gjjuBDJ2+8w5E/EnAy9UeOXi4DLVOCzdW+qfsnHGjuAhLezPh0DuhntVXWokJJHtv7pk1333232ViKfsEu0SRa5RVXXCELFy48oo/pKYsaTk/aO9olXuM1REobgbmEUNxMpNjvgkBNg5moDwCeM2cM5loeoLLZoCMEKHlNY9kTQnWmLvecOHGiyQEzCIKZvK3x4RuIyf/MsyIKJD7SvTZqtmw1MduZaRDqlSAuVj0GmGC/ezbB+SRrh2w+bqfMTp4htbtqpeT/bNNlpq1ScIX6SKT0zTRBZDb7jgES0aB/jZOp/1U84DJVBQSxYOLTNeicagoiQmg7KnRjqVZ9WQhEv0BYasJHWxv8QzoZIXw0PiOEuQ6ViBQZyVkzeWVzraKiopDBTah5j8Z09OtEzbQROKMxj73lyWkiepPQAN5nFzxmB5g0CH8KIABEEDCHWPVsiFOtoVbTVQVWp1oJOWO+PFJQKMMVcDTqBmKYP9BmeFWUaAsWL14sbNW7fdt22Zy4VS6+VdH9A2oS2dMgpY/u1c6oUwqvHt0FJELUSPCuSHYmAyj2qHmVk6n/VTHgMiUMvq6qikvWubo6MkeCOjVCtQm13xWpOaRXsIyQQEgMWkRIvOyyy+RJXQ2G1nPJkiVy//33m/0nCJDEJARwcd9995moi0wWrKaTfR4IB00Ya/bAYNIDsZcFEx8GRPoFrnMf7QebUv3qV78ywZfYKZngSlbzysSIPS/QurKBFw7maCLYSAsTL5tv4XjIDqK7MONq6GnyT9pTTjkl5peZM3kkmieTvVil3g1qsVqyGMw3gz8bzrAxDB8S29aijmU2tXTpUrNdOaDitJNOklT9yOP0Q/tYtxJfp+mIxc5zbD3rNTHwQdN5gO5Rg245uE3qjmuSwi+NlrQpGdK4tU5KHy+W0ieLpU33/Ah19zpCu6J6dOSfBJxM/ZOl5eRkaiXR9Ys/A6pztswmkmRx8V6zbTXbfa9bt87saMmkhcGeDbYYwBnkWYLO9tmYWwEZ9E3cR7MBMQjCj5Vm9D/0V+xbgvzZHRTAwi/2f3jyLLtxkpZnmSSxCyf82OuDvOzUyLuAFt7LRmAMuOzAyXsGixYUUIe8rRy7aim2/nUgIorqCy9dZk5z5841AzS7ivKxAhBA7IAJdpljQ5tpOhNIXLNW5J2VUq9pmrUhjlEVIB8YfLzEBwdPQMbOXTtl1QdrJOvyQsm7ZLg0D9d9OtbvkuJfb5Oy1/dLS1lzSECCzWcAOI78k4CTqX+ytJycTK0kjvxFMwEg6AJZrUZbydbeTF6QGYM6m2oxaNuotKT/0pe+JLfddpvpS0iD5oGBEE0CmgcOfBnWr19vdu9Ea8EACXjBX+vmm282u37yXvq266+/3phZcPQEOAQSeQKQkI8bbrhB2NTrq1/9qtlRFNNHrBOyAaShnYlVciAiymoOVI6qka1+UQM+/fTTZhbAB8c1VHjEpL/6qqskQ0FF3EvLRXd9kST94HN1mWiK/sYHWXrJVucnqQYDQPLEk09IfYvuNHheouw4aZ+837RJqjZXyaa73pXKlaXSoSG31YeqRyKfXqfPHhO7myFJwMk0JDH1KZGTaXBxMXgx+OvYrpqJNKF/YFJQXFxszAavvPKKAQRMaiAGeUwdAAsACAeaAUI2M5NGW/Dzn/9cvve978lPf/pTo3VA8wAgYRLDc0xk0GKgcUVjCvCgflDnA1DsrqDeHGNWQaNxwQUXGC0H99Cuwi+Sq0S8eYjkOWVwqzMiKeEhyJuB+cwzzzQ2w1WrVhkNBKo8i+QxS/Dx8dGxb/1HCi4aVE77VcuwVG2I56vN8Cz9MPMDUDofLvZGNBXsNIffxTNPPyOr31gl6fWpUp5QIYvLzpED/3eXxNfHSeFV6iOR2r2zJWpI5xPhbwN1MvVXnnBzMg0uU0wGrAqgvyks7DIPEKsGzcHy5cvNBObGG280/gdoJ+h/mPkDHLyEjwIaBPoo/CD+/d//3fBAY0B6HAZ5luf4tcTfVpPAdQANx1AjABaaHiuLWCy/00REWa3xQdHxsQSLgR8NBAGocFDiGg5N2DRR7335y1+WiQoe4rURtqmzUYmCh3/XVRiPqHpsu2opvMRHCwDBFsps4xe/+IW8+dabkpytW++ePlp2T9wnrzevlJ2f7FJny2Ip+9te6WjsXiNBB4Qq05F/EnAy9U+WlpOTqZVE1y8aCGb3OFoDJDA9MBmwJk+0AWgh0Hri6E1fA9EvceAH5R3sAQnEdEAbgZYBnwiuwRvzqzdtVw66/rX8+LUULC0aB/q8119/3fAkLXlAaxIsveUVK7/Uh5VfrOQ5MJ9udUagRKLgbz4svJIBD2gN+HvWrFlGA4EmAUINyBpqVH3Z6oC0T/0hdqYkyzuqPsSBMkvXco9OHi6pinQtMdNApUgH8vHHHxuVIu+ZOWOmVB6okBfuXypJDbq1+Ps629BJAcs+8y7SyJbZ2kwCAlLR6Xg7APsO9xu+BJxMw5ddd08OuEx1TGR5Z6fGi2iPlOMx32aqfn+6kV8oxECFj8Lvfvc7M8CjPfhUV3NhUjjvvPMOs2CSwfJyJgdcR82O/LwU+M0DQDBHkJagVgzwDIpWA+F9NpxzQMn5559vVquxJJX+D1MKeSe/sTyDt/II1O7Y67Hy60BElNYU/gtoHgiBzYeCicNqIcgyHy/miSsuv0ImbdsqHyuoWFtQKBsrymVlRaWcrIGozsnNk3GqrrRE9Dc0ERdeeKGxVeIExVIpllJhu3zqhadl1bb1ktage2Js0siWv9bAMlkJkjUnT5IK1VnTAyQwpwyGD9jKJhp+nUz9r4WBlinLOlOKdOO78hazdNr/EilHHdcB9vEZR5oWunsX8Wa8qx8YtJiULFq0yPhJ2efQfDJAo+XknvV5QsPAkkz8InDaBkgAHNAGoClg9Rf9FWYNDtLxPAM9kx0Gfkwd1uHby88OoPRtABBAC/k4TncyBkCggaW/QrPBMtNNuhqNd9vAWTbvsfpLeQFgsdyXDnkQgUqMxgty5ogWovMj5gOOkCD7s848y6gLA/OHo+W48eNksc42mvWDu2xLpxQrkChpbpItOuPwggg+fpyj7tc125tUEzFeTSHDFVjwcaO25GP94x//KBmN6TI5dZIkbIuX3T/5RMb/aLrknFtoQmVrqDpDsexNHCjDaPnbydT/mhhomRKGOnNBvv8F6QfHn/zkJz0+bftAlnVi6mCyQd9jtRBMPDhIh9kCIp6Nl2655RbhCEaYRVi6bsnys3/zyyoNS/RRHJZw7sTHYjASMkUzBJCIVRryIIIBGqcgEDSmAxBwtJANYY3JgplAmnpRB1J6RrqMSR1jFlM0Kki4U9H7LxvqZYOqJJdrh7BIZwVeatc0LaqdyNbNvrLU98IiYPwwbrrpJhMe970170tefK7cPuMWqfu0Xor/z9auyJZfUGdLVdVCOGDxATjyTwJOpv7J0nJyMrWS6P4X34Vly5bJI488Yhy2L7300sMAIvApJlrOoTpQKuH/bX1U0N7EKg15EAECJDIk6jH8BKx6LRoqlIG9qKjIODllZql9Uv0cAonZgp0xxOugfq6qFx9OTJJtjQ2yo6kxMLlsVBXkPep8qTuIy4/HjZe5qCc1FeVGfYiPBI6Xr+15W9q0w5jaVCQnb50ldX/U6JaVB2Xa106QxMwkkyfXmRwl3n5dwJnNybRfIjzqYSfTo0Ry1AUmEsz8WSWABtSG2g9MiCYTraXtbwLvu7/7LgH6XcxHmH1ilYY8iECNTxAmDmx30fSB8NGSP+sh3VsjS9D04zR9enKSNNV3Sr0GdGlXYMF1qF5BwSeqQXjqwH61q8bL9VreExWoZGhDhhjAsGXu2bNHnn/+eVlZv1b2Je6X5sYWmfbBJBnf1io52Tky4rJxXRvxKA9H/kmAWV40tT//SnbsODmZ9i57vvsinaxw9ERoHu1B3+So/xJAnrRRNBKxSkMeRMRqxQXLN581qzFSUlIlQX/bWnUplDbQLO0kGO73t7Z0aScUXKh3lOxSW1yp2jgnelAwMxJMPDTqnbrqo6mxST4p2yFJ5UmS8UmGpP56u6TlpUn5qBrJHq9bi6vmw5E/EmA5IjMSJ1N/5AkXJ1P/ZAkn6/zoL9ehy41+ltDefZksRpu0HIiIthrxIT/5DEQKHBoUIBSrvXOaahviFTRs1fN3VRNhSBHwWjVtnKbXvCAC9RrR61gOSthtOuEtn26RbS9/KmXvlcsVuy6WXXdvlqRvZEv88DyzFJQtgulcIJ53s2kjij7/g1rZmTP6LLYeH3Ay7VE8fb7pNBB9FlmPDyBPVsHEcp/ZbxABkkIQrnH12FYG9OYcBREfasyIgxqP/fXaGpmgfyfp4P5eU7OsIECU1pfqJWWFBpaZr9qIJbqkyks0apZR4RWNqq1lcYv8Rv9buuVpSWtNlfNLz5Gcv3RKa0q+dFzbJi0JbSYYDKo5lnWx9NS1B69EQzvHuQoQ5sg/CTiZ+idLvmlAbiwPeP5Jwx9OyBK/Hbuc1h+uA8ulXyCCWep//ud/mtCoqMFZ2WCDIQ1sMdzbvBI4QUHDhOQUeUE1DX/X+A9XFw6TdB2cGlTrUNegzpbqeCkd7VLX0qp7aLRImw7+iQCLQ0RnwQyOw9L0E6bLWzPy5aU1r8rJo2dJUmmSVD5zQKPSNUrxjDK59957zfIv4lng3c0yLgckrPRC++V7ojOJZSer0Eo6cKmcTP2TNZMENI581w7s+iNXa87Asd/b3/rDfWC49AtEgKIIDEKgopUrV8rGjRsNqmImioev3aRlYIri3mIlMFmdK0epF3WtahE+qdeNtvTjP6hgoVpjR2gYPRH1mTB2CPWNqFM/iSrtGAo9gMHy8f4SsOaUM06VlatXysq0dXJe0gJJ25EmJY/tk9VF78v6teulua3ZtAXW5tPRENAmRcGMjS3h5efOj5YAnbQjfyXgZCpmEz82w7IO2qzAmDd3nowZO8Z38xmgjb028KtiYmk38PK3Vv3hxpbkxMVg8GaFxLGiWG+j/QIRLI/89re/bcADm0Wx6yRrjlkqSAQzYhvYqGPMsNzMdGCa6TD9KHIURKjANWpeq7SqyWm7AohiNWck6bUsBRnZWh+lGpRqv15jn43eQERRUZHRLmTkZaoZ5E058YRZkl+aL2Ufl0nlR6VSlDxOOsfESUV1pTz77LNGK3HjV2+UKVOnSKZGz3RAove6H+joir3nKPZTOJmKCSC3a9cuEyYaTQKDZ2dHpyw8d6HRIvellpk49tSPw5vN/YiQCYCIZhCxW5e6E/6bpa3HCkQgSxypY9kXql8gAgGgeiW6GSGa2Rf97bfflnvuuUf+9Kc/Gds4URCvvPJKYyuPVXVNXz6yaEiLE2WCAokEBRKd2mlU67Gqtk62KpDIVbPGfAV/p6uz5V8VhX+s8STeUbPHnF5WWTCLIfIcG/YAGA98sVKyC8qlc2unLGlbKKPyR0j2pcNkdfFaefGlZfLnP//ZRGL75je+aTQSSbrs1FHPEsD/xKmJe5ZRX+86mXYt3b7qqqvkhz/8oQEQd9xxh6x8Z6UUDis08XGM35NqKu2MmDZo40EAOrjPwX0iVnKPSSEDH9dI06qTFc6ZRJLWEte8/BkzeM6OBTaiKOlQ7UPwtu/kb4BLd5NQ0vFufuFNWnjxDg7vu+Fly0banbr6jECDROhcsGDBEc9QJpsf8goveEeCeBd5jlXqF4ig0AiaSI9vvvmmifrIcpUlS5aYveipMLQTP/7xj+XXv/6185cYwFYyLjVFpivAK1WgsF39Fl5RJ8rN2gHMVDBwncaHmKL3lmuY2zWACL13u2qPeiNAxGWXXSarV6+WpS88J3G60CO/JktuSL1ajq+cLuObJ8qMc4+T0aomZbOfp59+2nQ6N9xwg9mjgw/RUfcSQLXKzBkzoCN/JOBkeqQc+QYxTWJyIJon5gf66N/+9rcGYDBQnqBaxptv/rrZE4NJIX07+1YAEJgo8jwTw4ULF5prxJRB+3jgwAETvpmZvR2A4f/OO+/IQw89ZPbaoH2zcSB+UwzO+NQR9hkNBiH+GTO+9a1vyQcffGA29OIeG2394Ac/MBqDI0sjJg0bCjKxgTeryngnk9dzzz03aNm+/vWvq+ZhlLz00kvy8ssvG1BEn0bfRrA93r106VKTH0AI+b3gggsM78D39/dv5ETZ0erHqi9Uv3p1KostpUFSeJiy2xrqK1RDmDEsIkRtFCkU199KHKzPF6kvwiwFCku1gT6nPivbaqqlWeNGZGtjJcDUaJ1NZOjRVF8nterD0KSNOUU7kBqty2cqKmS9Xl+ggaUuUp+XNL0OsXHO/Pnzzexl2/Zt6l6hES3zJ0vNjEYZ+fEIaVnZJCOy8uVzsy80H8Tvf/97s2qD9kGHBbhkFsMswNHREkC+doZ29F13JRwJDLRMq5tr5T9W/VZqWmqPyu6swily1rjTZHrBZClrqJRfrvujpqs7Kt2pI46TM8fOlqLc8bK/rlT+34a/SW3LoaXZmjonJUt+MPdmNUn2bb8F+mNm7czAceQbOXKk+R5ZiQXQ5zsFCBCxlhDY3/3ud813u337dgMAvvSlL5lJAZMD/N8Y3BkDSMsePgy2+F4899xzpv+nYO+++67pA9jkjzSffPKJMSG88MIL8rnPfc68r0L7G+4x6LNzMRNONge8/PLLTeC7FStWyJYtW4zjPlF8IcpCfgEv9C3kDRDB32zWBXikrwlWtkcffcSY4YlUzLsBPYAi/PjYiZRtBrgHqGhQnzK2IQfYs0kYPP0kQBNjpvVX8ZP3QPHqF4ggk1Qk0R5Rc4MCrQ0MxxoEjnMNFKsoy2Q+Bv8Zn5IiMxVEPK7g4BXd1bNUPwZ8JNIUXIzReiGORKZqJZLjE6RJnSsPqJZijD7zjIKO3+wrkU1q4tij4OIc/XgsiLAmDcxXxNoHGI4/uUjGXTxJho8fIQ2rahVI1MvI3EK5cvHl0tbSJk8985RxurUb97BrKDZAByqPblRoNGNYq3l0gaLgykDLtEmdi5dtf1NKG8qPKn2jAoZp+UUKvCepQ3ODvKjpDjZUHJWus6NVpudPlPHZY6S6qVZe3PamlDVWHk43IqNAbj3ty5ItoYEIZrsMzr/77e+ksqrSDOSAhiL1c7LqfWb8DLxoGgAZ/NoNtejH6eOZjTN4v/rqq8Zxkskhmmf6evb5wSSAVpqdh+33jc8BoOS2224zY8E03bPnL3/5i9FaAyIgJqA8z4ouxglAyLXXXmveBz9ABHlit1ALIigTYAGAM2PGDDPgMzkBpLC7KNRb2QAF+O0xZjHBgf7+978f3imUfopgex9v/liGDR9m5ENe/STkOdBt1M/8w6tfIIJZEw6UoEYamZdQkbHcExCBasnRwEpghNbNRF2FQQiobWquYFVGZlq6DE/RzbcU/aILGK+ofph2EFUKINbph1evH+bvdSbyZrl2bKrGeyepRpr1mpf4yPn4UT3yAZx17lly6sWnS8ZJSVLSslOq12hn90KFjB5fJF+//mvm0aeffdo4W/Fxs5qHNgP6d3SkBOjEkW+W7pPiyB8JDLRMkxOSZPao46WyqeaoAkwv0O20U7ONJi4tMUVmjzxeqlRzEUhTFGhkq7YhPi5etYVphl9182cai7zUHEmKD93HiAEXx8oVr6wwq6eYfQMMWDlVq30DfbU1PZIWUMB1ziG+WQZP2iY+DPbbpQ9Ac4FGA40P90nLoA7AgCwfNA2YUggDwPOE1rfEYG5n42ixGbzRlDD7xxfCrgC0ExGew8zAuwEKvJu0ACE0CJheoJ7KxvPBiJ1MAT28i3MInwnKiBbHb0LG1AeyS1UTdCxSWCCCwYPCs7QTW5oVshUA92mUqLusJsLec78DI4FM/bhytaOQBK1i3fMCuHucNtJ5qvKz5oSFCiI2qTZigwakelg7jmFq8thepQCipVm9mRJ0ZYc6TOnH1qHP4qwJoTJE9UdI7WZNh0PtyLEjRcaKjChVJ6wGdeRcXSEl926JyS0VAABAAElEQVSXSfeeIN+86RuSkZUhv/nNb+SNN94wzpl0Cnzsjo6UACI+JOYjb7i/wpbAQMuUAf7/Xfi/e83vqMzh8uuLftpruolq0njgop/1mq6nBAzeOFb+4z/+o+zdu1duvfVWo6Kn32Zm/7e//c0M/Nddd50ZjPEHuP/++w+zRKtg/Zno2/nbjgGcMxZw2GsM0JxDViPBAAwPNNfcs30QabgOGOCafZf3Pudenjxj03IOP/s+0pEXCO1Fb2UjnX2Wc96PtvQrX/mKWRjANfjxPm+euO4XDXQb9Svflk9YIAIEiNoIuxhobfny5QbpwpQKARFSgTjgODqGEtCPU3sJEQUHgIKp6RlymvpEWDpZ701SELG8vExeUvVlooKNOv3IFf7rV6qdg/5dqh8/2os0WvohSlBei85bZP7KzvpMo5C1sECBSIt0VLdLzeZq2XPPpzLitiK56rIrTUfxr//6r0YjccUVVxjTF7MMR59JgE6dztSRfxJwMv1MlgyQaBS+853vyIMPPmgcCJkE4DCJ1pjvkZ2McYQMRgyiaDAsMGD2D79f/epXZhzAN4GxAWdMfOIg+AISGCMwh+DAiAkEX4X+EN/JRPVhAJzgh4H5hby99tpr5hzeAIqeymb9EOwKEZ6x4f7hg6mDMqPFQVOANsJvQjbIwubFb/4DwS8sEIGqx3rTUkk0ClRQlqhgnGzmzp1rL7nfYyCBQm2gCxQ0rFFNQ3OiOvBoJ4GvhCXiSaCtaNMPpVZXaSjkRtUgExRcZOn5XlWvb9COYYwCjTRNd5gUT/Dxpqq5JDWNwFVdlJCVKNlnF0p7Y4e0/lqDW31QJclPHJCcy4fJ7JNny5w5c0wHtW7dOrPklw/W0WcSQLNHR+7A1Wcy6e+Zk+lnEmRAZLDCpwltA1oJBjBWJDBo4n+AphEzQDBigsh3z8wcIMHAihkbh8gXX3zR+EpwH+2GnbWfftrpOoepkccff9xoP3DExHzBM/0h3s+KhkW66/D69evl7rvvNnnHNICZnQOTSE9lAyQAaohrgamVtJhdKB9AatOmTSaLlBufiUiACIAOAAhzDoAiFimsXAMYqAAqEgFjtrAOlQgBREhDoRIdHTsJjNRGeUF2lmw8EC/N+lFl6H4auZ6GymqMHB20ctQ2Wt2g3t+a5vScXJmt9Vun2qRtOqi9pEDidLVhsprDS3xobLxlOwt7L3lMquSeq0CirEVK/rJLqt4qk4TsRBl1xjC57POXmnXZLMfCzEVkUzursc8P5V9UvW51hr8twMlU5JJLLjFmRCTL94YPAZM8JoCAAPa7sQABzQ0+S0wMARTM9iEGbIh0hLZnwEPbAC/MmwzkAAQABD5yvAdemC7bNcQ+TljM+HGO5NvnYLK5ePFik460tH0GapwqrY8dYwg+dfQVNg8mI/oPz/MugBErKsgbIAJe+F3wa51BATf87S0bmhRWm1EW3k15WUVCGThHBvDk70hu52CBmS1XrP2GBSIQLBWCwGkkCDxw9oRqC3THPUfHRgJEoTxHl2ku1Q6gUsHCSNUcABy8NFnr55TcHHlDV2gUarprVP04Wz+alZoIp8rXdVbyDUwcAUS9AhYDKS5ed6WbkC7DbhgrzXsapfyNUql4tVTykofJ2eecJePGjDOmMCLa4c3NBkmOuiTQnUydfMKXgJOpGPt+oAQvuuiiIy5156OEkyQHRL9vtcxe8I+GkaM7YuDmCEZf/OIXj7jM5PP2228/fA0wwfLN7ghtCPkDZKBB2blzpzFJoGFh8Kdc3ZUNngsXLjSHlz8mmoHy5WMSBjiKVS0EcgsLRKCOxoOVdbx/+MMfjGnDWwn2/JprrpHARmLvud/ISyBLkfpsReT/S7VGdQoITg4C6M7X+/Xto+T91jZZoueLdFCfpsh+n2oicE8q00BVzapyCyQ6kUAthE0Tl6gbeI1KlXH/NFXa1NGy/PWDUrnsoGSm5MrcE0+XF15/0agKCXjDsi5HXRLoSaZORuFJwMk0PLnFylMsJ8WJH1MMdV1UVGS0E7Hkjwcw664vjYV6CAtEYMtG7QTKx+sXtVgwsgg22D13bWAkkKpId1GuqhTV9JChDpGBlKEN+Cw1edw7bqzMSE2TSaqxSNNr6Zg9EnUZ2SFvZwCFV4eBrZn69/rCeHmjkUhUIDHyxgnSqarMytcOStsTZXLVRZfK+xveN+vWiRbH+vBY/oC8Ze7veW8y7S//ofi8k6m/tY55iEEvWogAh/PmzTOmEvoRzBKYWGLFLIhZGJ8ITDKx6lwZFogAQKDyQZ2Nkw6CCEaok0IlHExYn0wIUxxasJ+BKs877zwTyCqY6tzyxsmTtc4EQSEACYgUUwvxDFCPxbKqyJYx3F+WZuYd8oOwyzS9vLg2KilZlqgGIlNBRqrKDrAQzzPasDXailmxQUTLdL1nCZtjT3WCDTQuKU7jR2RL4SUjpaOuTSpWl0n226mi4alkTd0GM3vAmxvTWDR1TLaMA/3bq0wHOkOD4H0DIVPU/EOF6EujCfRTvxyxSoxVdmVMrJYhLBBBFDLCg/ZG2MGIZBkKMfgzMyVOu7UREY2MgCYImX0bgg1aOPMQje2JJ54wA5F9lkHJG5wklDwM1jQJChR6IoBDavyR/g2YQqaqpmGHOlzuZzWOzkDSPT4QoaqJE3KTJGtevrQriGg52CwNWxpkdvKJUtxcIls+3WJiR2Cfpd6iqXPqSV6RuheqTCP1/sHIN5Iypb3afoa+Jlj/NNhkqtESBluRBrw8aO6ZNNuJE200liksEEEcczZd6Y1Qd4cCIkDyeNc+/PDDJqIZgT6YnbJs6L777pOzzz7bqM3RfgQS0ckIYsRa3jvvvNOsFKFyiFVB5cR6BQWWd6D+Znno2apJKik7KJsbGkwIbMJlW8JpFqem7swZNh2/rNjIWagrNiraZO+fdsgpNSfIjpZd8sqet0zcfeoVExlOuqj0hqrmqC8y9crXnXcvgUjKFBAB+EVrilMfzuWDGQjTT1NWTAV2AOxe8u5OoASsxqpB+1O09/SfXGMizFg5pMwZ2KG83rgIwgrIO2izhCYUYokLAUPQbvzoRz8yAwqmEOzlaDMIXkK41GAggqVFmD9YFoQJgwGIPPDu3uxiVCQ2PlAhxK8tC7+2Q7Bl42/vOc94/+7uPDCd/dvL33vOfe/f3Z37kc7y8Oada9kqwxO1kT+uZV6pHeR8bfhztcOESEudIV9ryiKPgTz42+Y9SYFE/vWjpHmXfkCvdBogcbCxTJ5fttzU/Re+8AWzTpslZdg0qUcvb/tey8++i7oOJZ33Oe85fL1/e8+5Fyp/P9IhU1tu8mHL6M2T99zmPVi6nu4F40F6b30Fnlt+/UlnefiR32A8gpXLytSmD1aucOuO5+iT0KJiluNd4ZaR58LNB8/2p1zIzcrHK0PvOe/gbzQuAAgLIrzPec/VBeuIJeDee97z7vLufXd35zZPPfEI+i5ja+2SmeURLF1P97x56ks66phvnD6OlWn0XQAz79gDv1iisDQRzD5BTpZYm4vZAQExkNPQEErgsk+bPvAXJMaaXNSBmC1AaBBAAp8GomOyZDSQqAC7CQuajBtvvNGk4xmADuuX4WkrPPB5orNhQiHYCMR7GMRseZgZU+G8m0aGdgS/DSqdBkD5CNiCTQ4UCcIElGB+IWY/z9FYKA+x4pEZaUmHSot7dhbDddIhR9vI0KbAI0djN/D+Go08iUzgQz6QMfE5SMdMiHphYMeZjPyQDtnyjjGjx0iDBpTiXmZGpqRnpJtykp507FZXV18nY8fo0kxNf7BCw2DrO+NVxtv0Xdu0rAcPdSLwpPyUlRUW8CAfdKQQeezo6NRVO11rtqkn5NHZ2inDbxkpVXXVMu71sbKoeoG0JLXKax+8LQ9WPWjMUjhJsbwKXxtkQV6Y7SEboqPyXjowZMi9oqIi0waQJ+9FBtSJlQXXScv69ArdiKxRZQAvZE98f8qOrBgAkCGx+5m9Infql3XqtC0rT8qCD87IESPN+5EZ5ec50pE33g1RRwwy1BP8uIc/EfmjPqlzvhkcqygX9U4eyDNtjW+CfFlATPl5hnxRJvjCnzqlDVAm7rFyijpGbvVqjuJ75B7PUDbeRXngR3r+5h48OKdeqS/KgXwOHCg13xB5Qn7wIB+Uh3cjT9IhF96FLOBFOyEPvIt7fIvUEWVEHizfo6x8bzxPOSkzfEnHPfIBP/jyLnhQZmSmw5pJ1677wpg6UdkiE97LN2+f41nkzDVbJ8iffFCfRROKpEQ3nUPWvJd30K/w/bN/BXlt0SXQ9A20cdod+SUtkx/OKSdl5qBcvIf823Lx/ZMmOTnFlKWurtYEeqJ8yB4ZUS40qratUQ+UhXgMpLFtkr/RwNLuqCPKYuMj8Az1Q1uirfFeyk198Yvc6J8g+HGNNs63xrO2HfI39YEsSIecyB/1gzy5R9uh/JSLcpJHZFiQX2D6EtvWaB+0ecpFPkiHbJAvvKgHykE65Gv7P1tm3gUhC2TOuygv+bX9H3Lskm+yaQtWhlznXYwr1A3thHTwKdc+7nD/p3kiv7QZ6pe2Bg/ySJlpPzxDfskHsuX9pLOyJu/UBekg2gDfDNfIB7+0DdKRD2RKW4cnMua9Xe3aPB4z/4QFIhAoB4Vmq1cGYQYTdmhjaQ2VgSmCj4445L0RfDhoRDRMeEP2I4EfFRZINDIaIJ0h2giCqlDxnLN9K42NYCPwDUZ8jOSPfEPs78D7aQTcs3mBJw2Av+mM6ag4pwGQjnzSkEhHw+CXe3wYpOMe6fjlo+Qa5SEdB/njOvf5oCk/abhGXuh4wPVs0GLfxcdPnigj6SwPnrVp4Me5eZdGlkxMSjR87X3Skk/SEX2S/BKBMik5SSbokah5TCrVTjOuTeI0P3x8lI938iHBh48EHuSBToY8cV1/9F1d+bKyQ8YZqRky9obJGq9C63l5nFzYtEiS85JlfcX7JkocfCk7a7vp0Cw/8siHyz3KTnmpB97Fh845acgHMuSX8pFXysXfeXm5et61Jtum43nyb8sFX/5G7lY2vNee27LAN0XrIy09zbyH+3RoVv6UFd7ws7zJN9eQE0QeuMazlIuOm1/KQ7ugs+dZWxbaEOek5z554Zc2SR3zLDIwbVJX1vCuZK0DZEM6nqVcpIMHcrLv5h71yz3eadPDb7juYGhlnqztgjKRzpaHNBzwss/ybtLY/HKPg+scpq1pnniOv/klLbKxfHkP+TWy9vAib8iGdDxn5UA6Ky8rX+oDvgxeEO/ieYhfnk3QaK7IkGe5Tz55zpaRb4J7vMu2NZtn2gb8SU8dIGvKxn3bJuFj2wW829s1omtrvpE3ZeQ5rnPOBIhzWy6+AWQATwZo7vE36SxPysJ9niefPMM90jFoQeQReXHNlp90XOM5+CILWxbScM51BnHuUSYGQOoIeXGPNFYWpOP9PJup3xn5peyUxR6kJ51tr6RHplwnjZUVv5SJdNyDeM7ysXXNL+koC+koN+3YpuOceuCXg3ZAfjnst0taeFsQSXrS2fyQF9smuUd+7ftJxz3+Jr2VE/m1dcI12/64Rh4pN3ngHn+Td+qGPMYahQUibCFBeGzbipBBUjhCWmHj7IjAQwERlh8CDUbwDEbw56Dy6DgBETQmDvarf+mll8z7+UiCER8Chw0sgp8HFctHYD80nvM+bxu05UfZg1Hgdd7THdF4LAU+Z6/zS0O15E3HuZeHN7/ecpB3Lw/vPQkQEelAyPEKLnSJhnQoAInX96RrxwEB3uDHB2UJ2XkpQ7UdlrzvzT+9UOJrtK5rtQN/UweWFJV5Woqsqd9gACDAhJDpRNLzPucts+XLLx+ml7qTdWD+uksXWMfeMvIer6y97w1M5827Nx3t00u2vmjHnNOhQYH59daXfYZ0gXLxlktbMkmCUuBz3kTeMnrTce69582HN3/w8pbfe897Htgmve/y5ieQn5WRTePNU+B7yaO9Zn/tc/bXdvL2b28e7TV+A9tad/kNTOetEy+/UNta4Hv629a8eeA8UJ7e8ts6ZpClTZLWyjEwX5Zv4PXuyk96b90FPmf58Wvfybk3fzzj5WHzG5gu3LYWWEfwteTNU+D36r3nPfe2NWRKfikPabzp7Dui/bdfIIJBhsBTd9xxh0GnmANAVTQYBnfuh0IIEEFadSDPgnJ5npkpQg+sIPhSuTQgZlSowZmdwAfNAqaKV155xSDZUPLg0hwtAZZ/5mjDLmtuknpt7JWqNh51CEQg554++KO5fXYlPkP32DhTZ9ktHdKyt0mm7tAZSKHOgBM75fXKlcYHBnMGgy2R52hT4RAgF7UnakU+TtolnQ1tqTtgGs57/HqmPzL1Kw+DjY+TqX81ynfITBmw68gfCQwGmYbXOx+SHx0xA4nt5NEkoH4CDED2+qHk3f6AbFGRAR6wU2OmgBez3Z0axtSGMA1kQAcBcGCw4Vme4eAcdRFAxFH4EkjW+j1NB9087TwqFETsa+lyHIMj9d6fziSxQNWaZxXI6K9PUHOGbgxWPkbmxc2W43OPkz2795iVOps3bzb2zHBLgD34scceM1sf/+IXvzDLhzF90T5pH9FG/ZVptJUnGvLjZOpfLdDf0+e6ftXJ1CuBfkFKZnSzZs0ymyqxFwIzP3wRli1bZgAEzmyhEIMRDi2YFR555BGjMkSljZYDswjhs9E2BCMcOVnVQZAqZq+ACp774IMPzAqSnlRRwfi5a59JwIAIncGvUzD2SWOTBoiqk1MP2eyY4dOheNWInz0Z2llioQKJ84fJaNVG7H9qr0w9MEkuiF8oFVkVsvmjzbLsxWUGXLJdcTgECKEtrl271rSHFStWGBsxm/Zcf/31xlzSHyAUTp56esYPmfbEfyjeczL1r9aZnOG3Q7/v+lV/5DoYZJpwt1K44gCRMrijOcDhBs0B5gfMEwsXLjTbqobiKALCpVFi52PwX7lypTFF4PkLMMDXAVU027ayhS2erXjbMgDAn2cxX+DgyUCBlzxOnYTkBpyEipzxowC88E5HuHLqlt+q2XmrvEK2qHd6robFvvSQDwS2PLMVuNZ1uERo7PhU9YkYoaaMqjbpLFOnrCrdya9zhGS1ZEpNJStJ1BFTQ3KnZKUe1myhRbCmLtoIHyJtIRAQ2PZAejboQUuGlzgdIW2CbX+ZqUYL+SHTaClLtOTDydTfmkCe9LnBzMv+vmnocPPKFE08ARevuOKKfk3QBlJ6vmgiGMQxSdjlWUW67A7v+kDnn54KhgYB4MEqDVZ6MEhgxmDbWTygabR0+DRgQIq1aXOPNAwkAAkGDIAD8SXYojxwYOkpD+7ekRJIVHDHZlxZ6r1eqSaAA1o3lhIT1NEyoV/WMMMqLkmjZU7LlAINjW027lqdKLn7cqWwLF92Fu+Rppdq5d2G1RJfpEtRR+tKlewUqamvNUvyME2wFI/6B/jRXixh1gLQAmzxZCcOBWkBFjgA86F++ctfNh9qqGY3yztSv37JNFL5i0W+Tqb+1lqSrvqxfa+/nIcut1iXaVgggs6bw0sM3ByW0AZg3mDVRCjEzBAggZq5OyL4FIeXaNBoJa677jrvZXfugwQIlz1SAWKqAjh1NpE2nYXU6Ww+Q2f9xJxI7exaFtrfV8UlaOS/eXmSkKVLHUemSu36Kon/WJfPHhwhZR+qaUO1U2Vq4kiamSrNw9s1bsUO2bxjs5Qe1G3G1azCGmzApBdENKn5pbqqK0YG1y+++GIDUAGjPAOQoA0DdDHLRAP5KdNoKE805MHJ1L9aAJiz3D4j87PVZP5xH5qcBoNMwwIRzz77rDzwwAOm1tEAQAzmdkZnr33zm9+Ub33rW+a++yc2JcAKjUSNUxGvpocaXaWxSU1XJ6s2CIBo69uPksWlxEva8bo2e5guQ52RKVkf5cial9dI2+Z2mVynmq3a42T328Wyovktea91g5QnV0p2frbRQLGXC2YNL+1X81qpCUgkxkQFyMABl2AuaKzYrA1fGm9wM+/zx+Lcb5keizJE2zudTP2rEQY8gpfZ/t0/zkOX02CQaVgg4sILLzRBpfByJ6gUvzg4cvDRoirGLBGqY+XQbUKxUfKFuTmys7ZGPlAAcdf+ffLXiZPMrD9UX5NQSxmXrIGyVBORkKvaj5lZMuf4M6VkVbEcWFsiFVurJLsySy5PuEgulvOkMb1JynOr5L+rH5CKsnKp1GiUmLIssNm7t9iY1zB9ASDsddooMSjwf8HpEr8I7kcDERjI5jMa8jMY8uBk6l8tYhpmjxvnVOlk6pVAWCCCThfTA2rhP/zhD0ZVPH/+fKMaxnlt0qRJ5johQR3FvgQu1LDbH6qT4/vqX/Cx1vlWrf8RdfWSp2aAvvi99CoJjSmGj0SCHvFpat5KHyGp43SJ6Sm6P8HGfXJw7X7pLO6QzKoMSWxRp97q4XJT0nWyvWK3JGzrkPrdGvp2fI7gsIlmgrDb+Oqw74p1BMNxliBWxB5h9QYxJGiz0eA7Y8M6+yrTXoU+uBM4mfpXv4B0NHksx4/FoEj+ScI/ToNBpmGBCJAoB6sycFajQdGwiNKGqouDCJY4tTmKfQlM0VUZJ2jdjqxIkSqt89/rao1LVeN0mvqxRIqMk6XGj8jJUfPGaDVvTMqRzGnZUru5WmS3hoLep+GDD7TJ7NaTZETLcMlblymlfy2WtpN0X4Pjdf+M7cWm/QF2WZlhQYLVTDCjYjdaVmvQTqNh4LbxVSIl06HI18nUv1pnwKNfD4y46t8bhh6nwSDTsECErWo65iJdiUFnzMoJgASzup0aIIp7PYU6tTzcb/RLIEFn9rN05n6WbqzzqJoJHtD9NAAVp2kdR5rQKrAio3DmCMmfXijVu6uktbhJgYQC1U01smtFsWTs0T0TPtBgWLt3SeOkGsm/aIRUbdBNcxTDDptQKCOGd+1HYvNKO0VzxnJi9lnBWfcIEGGjrwePtm7Z+P4LwHGqYn/F6mTqnzwxtREXxgJy/zgPXU6DQab9GgVYbnnbbbfJf/3Xf8mf/vQn4w+BgyWq4ltvvVUWLFgwdFvHICv52VqnVern8nfd7bBDV0NUZGZJrWoigocAi0zh4/V9eRN1B8KJIh2NugnanExpS14vj/31WSkq1xUYLedL50bdPXRjhWS3pcrk5PEyKmWUpMenSVznZ4iAjbLOO+88eeihh8ymXywPZTkwxMyAddtx+h8blg2kjwLfk99+JpGpidjh6mTqX13Zvt2aBv3jPHQ5IVNMrrEs036BCBAp9uWf/OQnZktUnCkRCmYNZnt8wI4GhwRY7jlafSAWDhsubx/YL4+V7JVxOnOepB8AKzgGmuJTdYfOsZly6pVz5bcr/ijrGjbKhGkT5IpRl0jNR9Uy68AMmdgyXtI26N4fd++SpK/rRmozdfvqrK4AZeyvQqA0gqQRfAoNGgCCFRtsKocWbdGiRYfBxUCUD3szpsFoWXI6EGWO9DucTP2TMGZqfI1YMh3Lg55/Euk/J2SKSTWWZRoWiGBPAtYL40D5zjvvmJUY1hcCEAG4IGAUAIPDUexLAJgwRUHDNzXux3sV5bJdfSI2aUCw/TprH63+MQNOtLPUJBkzaaxkFWbLrj27pHRUpeReN1JK36ySFU++JekHUmV2zUlS+VaZtNa2SsHiEZKt+3WkTu7aPpiAZLRf2jNmDZaKPvroo8bMgQMmPj95efkKNoYPiIYA8ODMGf62JCdT/+Q5GFTv/knDH06DQaZhgQg82jlYPkXn250DJZoIByL8aWzRwCVfAzWdqWaN6Xq8rwh6a0uziRtxTECECgTAysydAV+S4qQyvlo6ZybIwZIqWZm4TkbkFMpxE6brSo4kqVldKe1VrdK8r1Fyzx4mSVMTZMFZC4zmgb1WAMG05Y0bN5pzAlixlTwzhAsuuMD4TETaFszsLtLviIZ2NJB5cDL1V9r4vg2kic/f3Ecnt1iXaVggArMFszSIBoW3brAZVH82Z4rO6h7auSLIdaZqmRYXDpP9Wv92U67FWv/HigASLDnGga6iqlLK6ytlZ80eqWivkoJJBZK+OEdGxI2R8hWlUr+9XppLmqR5pwKJK4bL3MmnySM5n23YhkmDVRvwwzmYoFTsAkrUVTaHo51HsgO15sBjJcvB+F4nU/9qlcBIrHbBXO3IHwkMBpmGBSLYk8Duk0EHi2Makf8cDX4JpCtovEaXTb6uQafe0A5l1SEweSxLTlAznHmJW1JcXCzbtm0zzpGjp42VqZceLyPGFEmGLvtkCWjV+kopXbZPat+rltE3jZeRiarF0F3BO9UfglUaOAMTV4I9Np588kmzGRxtG60aO9ZG0l/BAvNjKcvB9m4nU/9qlAEPDd0RK5n8Yz8kOSHTaFliHm4FhAUisCETqIc1w9iQmbk5EBFuFcTWc2zKNVFn/eks79SBt1N9IvgQ0AgcK8I3hxUX+DSw7Te/EM6ROXk5kpCpzpRnF0iCbj2etuygVLxcKnW7amXPb7bLJRmLZdSckVI9ql5OmXeqsE04Jgy7DwyrjtgZll1h6TzRVESKAOTOnOGvdKlHt+LFH5kiR76DSAJpf3IaO1ysTNGkxiqFBSJQ6xJk6vvf/76ZsQEmvBtt2UHlc5/7nHA4GjwSACqkaWfCag1ABCaAGvUnyFJQ0f89PcOTU1FRkVlpgW/Dhx9+KLt27TIDB0un8Jlgg6/EbN0F9ARdnaGRMJNHpUilmjdq0EY0DJf07DmSMD5JJk2crqHaJ0pGTqZZlbF48WIDltesWSOrVq0ymohIggiclbGPcjjyRwLM8pxM/ZEl/TpaaICuW53hn0yJqkpQvFiVaVgggjX1qLXee+89s8aVzhp1ciC5zjBQIoPjbwMk4nUw1qBMzQoiDqo2IkOBxbFY6olEWaqJJgJAw6oglm1i4qBdehE+Gom0GVmSmJskyYUpklSgx3tVkl6RLknbkiVzdbJ0prZIx8w23dwry/hBXHrppbJhwwYDTFguGEly0RX9l66TqX8yZQk0QJfvypE/ErARK2NZpmGBCGzGHAAJOu8rr7xSZsyY4Y9UHZeYkMAonS3nJyZInQIIlnuO1b8xdRwLQtuA6QLnXkxtzD7xYeDDDHT4ZZOv5HFpklCQLEljNELk8FSpWlkm9TvrpfRve6V1d5PkXzxSMk/NkeG66oOgVL/85S9NIDU2l4skAbpjdTYSSbn0h7eTaX+kd+SzmCwxZTjz0JFy6c9fyJSJTizLNCwQYYWG9uGuu+6yf7rfISSB2eqhvUFVm/taW2RVXa3M07ZwLK16+CsAGggWBQEqaJ9BfTU0lDZaiYw5uqpITRupRelS8dx+qVhTLvtfLJGGLXVS+LlRknfpCMnJzpGM9Axp0m3Q0XREkiK9+iOSeY9W3k6m/tUMAx1BBJ2G2cnUK4FjZcb25sGdx6AE8tQPJrOpUfaoJuIxBRONquo8lkSsCO/W8zhHYmfsiQAYSaNSJfeCYTLylgky5ppxkqlRMBv3N8q+R/fI3l9sk9oXNIpkgobN1v8Ih008iUgRZhi3862/0nUy9U+egOjdu3cfXt7vH+ehywmZoj2N5VVE/dJEDN2qdyWfqGrNkap+b1EbaUVTs7Sr09WxJPwi8BwHGDBTKlJnSxOEqpdMsfV44vAUyTg11/hKJI7QnUrfLpf6rXVSuVq3CdcdQ8dXj5K6tjppaW4x2ohIqR4xvbjVGb1UWB9vO5n2UWA9JB8MqvceindMbtn+KlJ9ykAUyhcQweyMoC44ifRnvwy8f1s0lDJRA1nrb23bJ554ohkUuuO9b98+efvtt00UTXhAdMaouC+++GK3JCkCLWmY2vFyUtSAUd9glnk2axsASJhVG/o+zku0LnNUBYrTpb0egawYliwzBjjwUdJOABXBnH2DvZ9txxMLkiQ+U1dv5KjnOf4SCiRq31cNy6e1Mqf1FI0j0SkZ+1KkeXeDJBclSVyiKvF8dgFhwHM+EcFqKPxrTqbhyy7wSb4t5xMRKJX+/T0YZNovEAFowLmSAD9sYkTnPXfuXBPVDE92IlZiQwuVUO188skn8vjjjxvbNo5sOM0ROfCaa66R6dOnB+1kd+zYYZzfCDaEDZSZKMeECROMY5xb1xxqDfQhHWp9DTylaE06tN6q9Bh1CEQ0a7vYqwDiea2POdomjtM6zNZ0kSR8IGzQKcwY+Ef0yXarHWR8aoKkTNOdNHN09YZqJFJ09Ubcm3Eyc5e2u5ZEGbWpQGpeLZeUhUmSNDpV4tMTVAb+IQnafyzPSCJZv+HydjINV3LBn8OkR7/vyD8JxLpM+9WzozVg/fyDDz5oNi0i2h9R/3ZqyGC2WT711FPluuuuC1naLB+6//77zVrkr3zlK3LOOefIu+++K9/73vdMACDU08wwgxGA5eqrr5bLLrvsCNt4sLTuWv8lgJaoSQe9+JRk6VCwd0A7l4nauaQqsABA/PlgqfxCweXto0ZLjgKISIMIPJwJLER4atoCQIJZaF+JmUHSyFTJOluBxNg06RwRJ2t/t17Glo2W/Pez5GDVXpG9bZJ/2UhJmaqAQx00/dJIIFM6aBcRsK+11n16J9PuZdPXO7TNyspKo+Fjcueo/xIYDDLtl2MlQab+/Oc/myWeaAqY8WNGIIIg5g20FKESJhECmRBueM6cOTJ//nxj0waIAE62b98uW7ZsCZWdSxdhCQDm5uvy3vmpadKqdfeRhr8m6BS0Vc/v371H6hUUvqqBVN7X8NgDQSwzvvvuu2XJkiUGUPTHvyA+LV5SJmdI5kUFsu/Ecvlr4pPyVtNqadhXL/ueKpaS/94u1S8cMOaNznZ//EGQKZo0R/5JwMnUP1miJUPb5wCEk6lXAv3SROB/ADIlWiVe5YAAZnLMCrnXF7UXoAOTCMCD3UHhiX2YzV6ISQGI6CnYD6aPpUuXyvr1600YbiILnn322VKkdvLuBhM0Jmg6iHII4YuBcx55wDSCeYZn4U1Z6OC5h/qJe+SPPUT4qFCdkw4whC0eb1v+Jv/cI8Inv8ySuQ4P7vFLWsuD9/KxwgOZkDYjI9PIs76+zgA1+JAP8sSslXSWB/ll9kUaDoAeGiPMSqRD25OmAz91VFNbY8qXqr4NvKdRV1sM0821WnTZJumYyVNO6pWNp3iG/MKTd2cqv7F6vKvnL2m+pyuPCn3nu1qeA5pGOhRc6Ds2aL2eqtfQUqBNoozICdAJX/hb/wWCA3GP+ke2qKNJR15snfAMZaFc+ELQBskXcgPAssMs7Q++pCEt8UxqamrNeYpqT3ifrRN48x5kiJzIA/JIStRdNQsSpXm47vAZ/6nkaACq00acIh2lHVK+ukwaa5skcfcByTgjV0bMHC2lNQclPiH+cCdLHWFWQVbwJN+YXSgXRJ1zjfzTFviGKDsyp175m3zZdki5aD+0O/IHX8pBfVBGeFAWvhPqGLmRrrWt9XB7oozwIx384MXfPG95kAd42jZJ/viuaf+kgQf5IO+0E9oZbYN2R37RApEOHrbuuMe7SMfz5Is6IR33uA7PYG0NfvDlXfBApjZPPIcc4IFsbd7JL3WJvxT5hAfXbJ3QPsgHvwANZME7kFtiUqKRPXKJj4s/LMNRI0dJRWWFaWu8l8PWCW2PstDeutpajTlHNvChrSEL8t/a2qbtocF8C7buqA/KxWoSznnOloW8Iy8OnufvkpIS8+3CE6Jc1A/P0NbID/LgvZSbuuQ38FvjGm2tokJ3uTVtL8M8a781b/9H+9q7d68pN3kgL4H9HzJkWTR5oD+xbZJ0lMv2f8iJe3y3pPW2NerL9n/c4xnItidkE6z/s/KlLfAu6odneBdtgV/u2W+juqYr+ibpkC3vIh15sv0feeQ7JE+ks+3QtrW6uvpDss4zbZL25K0T6tTb1mgb3v4P+WOOR4tKuXhXrFG/QASCRZgU3HbkNBY0BgiOjydUooLhQcPkOQQK8TEgeLZppkEEI/Iwb94800ioFBoAIZBZOnPzzTebTiIYkIA3jc1WOml4noN7lM/+bc/5tefc8/7NOeUOvB7Iz/tMYNpg90ij/x+RJ9JBXfe68tHdOWUx79EO0cv/8Lna9Q+fU6bu0nnKS10Uah6mpqdJS3WVrNe/q/UjK9UP8UX9ONUT0fhMVGrHuluv7ddObJLet3nmfYH55R7Xu5Oh9xlTnkMysHmn7RDTAd8ZPn6bhvtdvKnXz+rPPmfTWTnZvwEECUkJkjc6X5pTWqRqeJ20nxonOQfypOXTJqn9UIFcebU0lzVLZkOadOQrkClMNe+1ZYHXYX6HymzzY+/Z99KJ2bT2eXvPXrfPeHnYcvBr09nzuEN1a5/z8uPcprM8bDp73fKz1wP/9j7nPbfpLB/vPXtuy2jTBP5tedh3B6bruk6Z1aHXtnGVgTedHXi742HamtqjbJ6Ql32v5WPvYbay5957Xt7e6zYt923+unh/9vf/Z+/Ng+M+rnvfAwxmBsBgBwFwFcFVJLXvqyVKXiTbkq9tyY63FyfXde377KSc5P7hl3quynuVl8qLk3LZsSt2ylnkxH7xIu+2bC2USO3UQi0URUoixX3BvmMADJb3/fSwyZ/GA2AwA4AYaFoazmDm9+tf9+nuc759tg5eM9lzg99zfSqd/N9cF7zWf/bfB//+/XuKtO7Ozp+3tveswpp1D8/0dfr++rr939n0K7UO/vZzlPama1PwnnTPnmk7qM/Xybunk6+b73ybAK/B+vnseZe/L1iH/y14Hd8BZgFwXOuvdw/Ok39yAhEwbXwgQMWcVwA6fOyxx2znzp0OZbOrz7QwIBDSC/LgfXwHsfk9XeHwrz/6oz9yaI4JDrLjBMbvf//77kAlQAmIMLWg8eB15513up8AHaBNBBAvX4L3esDhf/Mo2f/t31O/5zm+BOv23/n34H2pICyo6g7+FryHevyuns/BZ4H2a2rPqssrKgMgLyVreXXNWXpxX7CwC2FHUi1an9DOY1y7vXZ2cfV1tlfRGo+2DDsAYWH5JEircVzC+Ih2zDfoPgo7v2AJ0jf4PeAxWIJ9Dn6fGsp5QfUFwZ/PfGZsg4VcEulKsL8scK5j3Icr5VR2UchW3NhsvY92WNeuThs5qqgkaSS6+lqt7j1NFqurspLSqHxFQpOaJoLnzPB8P16ACNoIfSmpc22y/qeOfzBfhmayq4t/Uu9Pve/MhfoQ9MsIXhf8zPXBsQvWDw2DdQTnYfBzah2p9fO7L8H5n0obNhK+BNvEzhKa+rYE6wh+Tp1rfkx8nf49da5N1l6/CfL3TTbXUvuRep3vV+pzUq8L9sU/k3d/kJz/Lkgb/x3vaPSCJTiW/nt24fQfWvnfU9vlr41VJLUH/u/gmkodf38N78H6/DP878E+Bn/jHj++XBscu+CzaEOwjtQ2+ufwHrwu2HZ+8+sz9bpUvhasI/g5ONegKWPEuNCnycaHZy3UchZiZtFCOv3Zz37WCSoQKkDi61//uquJVNhoBzItAAUWO4wUwvrikRq/AxDSFSaK332yeDF/3HrrrbZ+/XpnokB9VCizSwGYyVKpQSsEJC0kLCqAd0r5IrqkBdIgmlRJFhJIKdK4bdd3/193lwOCM20F3gaz43Ew0ycnr2dnAFMCMA8kBq2/ashq3ttoS+5ebo3vWWblq5WcqmXITv36hLX8+xHrebDNRg7FbTwxcw92aJqPTCQ7ys7PXQWazh6d2YGzYUsVqrP3hLdfTYuBpjlpIjBBcMIhYGHr1q1nzAlMskPyNwBUrFu3LqOZASL3x4lj08V2B0MFUOAPAWAJos2MKtVFgJBCmX0KoH1yzAQQgV1WNt4fdrRbZ1znS0jzUCOzwv+1fIX9u+yLL0k7MaxXqz4v0fWZ5ozAUbND96BUbE7RIsx+j9LXiOrRgwgAbr/8UorLS6z8ihrllQi5/BKRxyM6EVQmvZdlLx9I2NBx2YJvrrPSi2SWq1O2ywzDQD1NgzuV9K0qfJspBQo0zZRS018HL/b2++Buf/o7C1dMRoHFQNOcNBEw1Z///OfOpoMKlZ0/oAF1LSaN3bt3T0a73/seTQMg4ZJLLnE5InByxNfi9ddfd3VhDkhnHsEJBj+Mffv2OS0GJg/MEjhMkqIVB8ugSuv3Hlz4IisKMF5OwGp3skV+EWGBtZc1XgcFJqoEFC6Pldu7BQIbtIu3kpDARdyelUYikQGoG9c17RrXrytE9H8JjN6j8SX3xLmAg/QRMIsmwjsVcrR4qFKas/MrrfrWBlty51Kru6nBShvLLH5MTqUPnLA37nnVnv/uTus/IL+JeHozXCrhPU1Tvy/8nT0FCjTNnnapd6KVK9AzlSq5/b0YaJqVJgItAV7POFA+9dRTDjzg9Uph5w+6QojPRO0FMRH2d999t8s98ctf/tKeffZZ5/2MXRNwge0I72XqRk25ceNGZ+JA4/Hb3/7W2bGY5IAPbPaEh3JseQFE5DbR092N6QnzUp3ofbVskock6Lvl4SyvI1svTdStGssV+v0mAcOjAg/H9dvPZFa6XqCCKI3JCkChT0Dwuxrn70nb8frIsHUm6u0PZPPeII3HfJ8UyrwERDCv0LzhqOcLQCK6ThEWSjoVqlICKiWp6nmpy3qP9lrv4702dDBhnWXLrei6Jitbo2iGKjnuTqGV8DT19XstGm0olOwokErT7Gop3AUFmIfwdFTwhTI7FICm+HTkM02zAhGENb344osOQGB6IOEUQpsC44PZ4puAoJ9JYYLiS4F2Yfv27c6fgTo+9alPOUAAGEC7wG8ACJyB+B3GjsYCYMPzcWIBdOAw2dzc7HaRM2lH4drpKQCdeXEc+BVaBD/XYhiUtqAkErUV+vsWhXmVCSx8rEYgQqDuOwKZv+3ssP9TNlVSYU9m0ugRAH1S1/6/AobtcmokyuNUv+5VHSs0pyp173yK1KA5g3mJNiJYyHLpjhZXuuwSJZ6akOLl+LaTdnJ3izXGl1j7z09YiGCVG+Xgt1khwzXybFeabedIPJrUUIQjMgmpeJry2YctwmRYS7wKZeYUCNJ05ncX7kilAPQslNmlAGs9n0tWIALkhHcwzow7duxwZgaEOsWjVc67SPUgno5Q3AtQICyTV7qCZuErX/nKW3664YYbjFehzB8F0PYwD6rlq3JxWbmFNXYafKuRQNwof4hLBAjDAhFoD1bo96LikI3KpHFYr1qZBoJgwIEC7heDekYOuv9D0TVdgwrn1T3YMF7TPf+gePcPKmohpjonAyBz0XtABHMSTQQaNgByanFnb9QqBv4ddTovpMUe2vW4vTC4yz5pd1v5i8qF0Vtkoy0jViPTR8V1dRaqk5Om+tfTncy/sXzFclflGZpK8wFYQePGczHjBaN7Up9f+HtyCgRpOvlVhV8yoQDCDtMx6z41qiST+wvX/D4FFgNNswIRhLjg6EgUBKmp8WUITioYL2pE7MiFsjgpgAaI8cU0sUpjHSKcUzqCzQIQN8JkAhqDTZor10owPtveZp/V2SjMlZW6Z5Ne60n8pGsrFOHRpp3+DuUKaVNCn3EleqrUdaMKEY2TxEfaiGdlRqvSXMM5cz4Lqka0ZIDcdCDCtUUYqFiHch0ePW4HE0dsV+Jl6x3os881fNrspDQLO8Yt0T5iibZhC18Rs3/66T/bic6TLjsr6dpZL56maPcIlSYFPKCZVO44Wxa0ETMfdU/Tmd9ZuCOVAqwDTMpBXp96TeHvmVFgMdA0KxDB7ogXjA8kRapq/CPIE8FuzZd3v/vd9q53vcv/WXhfRBRAtY9QRStQL6H+BTm+/lgAYIt27ZcKRBSjWThdrhKIeJ+A51NKQrVfmgYiOQ6KIb2qOVSrV0QAIqK/B8dGrUVaB04ArZCz5jXyn4hrPu3TvOqXyeqb2gWt1Pf4YQTr98+Zq3f6yVwHHNNvVLp893tFX7157E071dViiUjCjoZO2MNFj1t9Q71VJaqs+8UuG+yU4+WeLtu+42E73HfMHS9+5ZVXOgdg6qYcwpn0nntc9lV20mj00EbwChYADYnVvKYkbZuCN6T5TF9Yw9xL/xZb8fN0sfXrXPSHucKcY74UyuxQYDHQNCsQ4cmHL8L999/vTvF84YUXXLrdiy66yIUBASb4XCiLkwI+ZTC9Q+vwIWkmuiVEN8l00SyBGyznyZ7/LmkQnhtssue7uq1NaZj7xYj6xZAOOx8DBLLsFjAnCbMImgq9bquusXIJtkcEMu49dtQeF0jZJzCyRamJAR/zWdACIGgxM8BEJ3OEIgQOx+OaulqLhpUCfPhlu331uy1apDNGDkno7+2z7mPtFjpq1jPcbaybx7Y/5vx7AAS9Pb0ubJqj7Sk4DRNGjbmQqCffDp5DBBOOxuREAWjMZIdIFBOgn+egVSSyaqbmx/mkf7bPCs7TbOso3JekAAIPB/pCeOfszYjFQNOcODEhnj/+8Y+dMySLFYfGv/iLv3CqWI70Dmb2mj2yF2paCBRg1+p3rmgjcHp8n4R+UyRpngi2kYiKC6Wd+PKq8+weAYAXhofsxPCI9QpEDApQTMjBMCQthPN1kFYjIqFGxMfWqkpbp3M9yLn4s1MnbUzz7XlpM7bItHCFrsEPA/gxHwUBTX8BEQBkPgd3/jADvj+msFTWBTlPiOrAr6GtXmdPNOvMhyXlFn9C5wScKrUrxy+14YkRO3m41R687wG79sprLFpRai/vftm2bdvmdnyYMgALnO1CFBQnlCLocWz+3e9+Z//1X//lbNRoBW+//XYHMvyYTEUTQBB1UOc//MM/OA3HJz7xCdfmYJ98HfQt3ff+94X8Dj0yoclC7sNCahvgOV/nwkKiY7AtrN98pmlOIALmgnqLQ49gnJx9Qb4Ioin+/M//3EVSBIlV+Lx4KICQ9BMfJXiNFsKtApGTlQoxHwQ/DpevSYP1uHbB2/V6SZ/JHVElZl+pF/EKGMQ+29DotBrc1yABHpNA7pfg+4HCRCul6VgmsLJcgAOAQjvmGkwAIljszHdU5KnZUxHM+DKgGaA9PmcKWoTd8X122crLbeOatTagkNVX7ttnl4cvtvMj623H6FP22HNP27O/espuvvtWOyTQgHDHkRJT4MMPP+ySrZF3haRuhDv/5Cc/ceYOQqDRTPzoRz9y+VkA7ZhdpisAISKqAPxEO5GQibp92vng/RPjyXTzwTM4gr8v9M/BebrQ27rQ28f8h9cXQNnsjRQ0xUyZzzTNCUTALHGu4x0VF8z13nvvdYdywZhI9FQoi5MCJPRCsM4kuyKCvkRAYT0gQPPmnQIGJyWUD0iocZT4bgFR5tJ/ExjZJLCBKYNyqT5/TTvw/yUzQa98Ku5ROPE2+Qqsk1bjnfLBuFovDvfCQXOuSlATwTxP3Z3zHeYFZ8pQ+4lOuvHGG+3f/u3f7LU3XrOTt7Za09pldl/vNvvdwP32iZq77NKiC+zWwRtt5ehye+HXu2z3G0pQ9eYuB1Cuv/56Z8IAnKDh2L9/v1tbhDJzLgwn3pLYDQ3gnj17XE4VgMd0GWIBQdz/7W9/2wEe/Ckwo3DaI6rq1Kyw7cpC+vLLLzu/C0wqwTMA5orWs1lvNvN0Np+/mOpiHh44cMA5VzJvCiV3CiwGmuYEImCsH/rQh9yBSqhuYWjsjhAEMFHUr4WyOCnAGPOaaeEOIjp4ob1YLo3COgEAnDFPSRBTNp8GBN55sl7X3VBZZc0yl+yVOaNVQo8MmIf0/X6dyfGrikq7RYL7ds3B8zUn5yIElLC2s5qIs87DrsH6B+EMiEAgI8g3b97stHLshDEdnGg7aXUNdfb460/ZQCxukQ1Rq69YYo2tClk9ELIlp+psZ9cuG0wM2MqlK+z8dRvdGkKjgXAnM+yTTz7pTBs4WzY3NzttB34NDzzwgDMh8lxyp9DWdAXgQz2YQfC18D5LpJUnzwuvIIgAqKAJ+d73vufytHz84x93/hPQIV9KtvM0X/o33+3MZs3Pdxvz7Xn5TtOcuAGq0/e85z1OC4E6BtUqL9SlJHvyuSPybVAL7Z2eAoQ8RlxY5/TXTnYFwj4m7QEvfCpId03x4MHfh+/DUv1+lwTkD5R86oDAKiaQDu2MOqSd2KVzOY4q4qNFphFMKphNACiYOmar0F+EJ87Ew/LpQCAHCzsKfBfQSAAcMOvhsLhlyxaXS4Wj7AHZB48dtLXNa3US6GprrFtmY28krGuo2+yE2caetVYuEBSTL8iG2Fpb3XSehSsiTrijgSAKCpMhvhJXXXWVAxnYqHHO3Lt3rwPwhF0DYFIZEyCH6zB90BacNKmDjQBmGEAFz7jwwgvPdAtw8dBDDzkfDZ7LpgCQkk++TrMxT88Q5G3+gTlVKcAeVvh1ocwOBRYDTXMCETBSAAM7FgoE8Sd3AirYQXENWop8tvnMznRZXLUUF8mxcIoUztn0NhU8BOsgydRnFAHSMZqwsHb7LRLWXSMJ52w5qs8vScgdkZB+UQdkfappqd0o89oKmUwium82itdE4PuDtiEIIvw6wOTAGuBIYAQtfhOsB/winnvuOefbANjYuGmjNd+83pbUr7B4U6+Vj7fZ/gcO2qaBDXZBySYrHgtZc9cKi3SFrKyy1K64/Ao7dvsxO6TQT9TIV199tREWirYPHwlSvj/66KPOiRPQsnr16jN5Leg7z8RcgWll165dTtsAgADoY49Fw4H5EWdozCd+rQIiMGXQP86mQcuItgNthb9mNmg7l3XMxTydy/Yu9LrduM8eNl/o3Z2X9uU7TXMCEahS//qv/9o4ahvm6QtMB6bLbgwmiuc4WovgNf7awnt+UqBDKawZ4/myjaK1WCqh/L9JaK6TVuJJCfKXdWJor+ZVm7QQQwIQXfKXeECaggf6B+wrmnt/IEG+SteenZnZ09rtaPV8QATmCRzMvFofIc1aQBADmBHs0IU5T/jlD37wAyeo0dIhgK+44gpbvX611a7SdSuqrUhncDx2+Cmz/S12Xv9yazq5xKK7BMJr2q3onUW2qnmlvfe973VaEDQd+D6gjSBjLH//4R/+obNVe20FZ8agBfTJ3mgb4OHXv/61AxcAjcsuu8yBEfyWSCCEKYO08dTnnUb5G8dLxpk6HnnkEfdM7kHLkg9lvudpPtAk2zYCME8qSipaGs3IgTfb57yd7oOmp1pO5TVNcwIRqFJRb+LVze4H+633/AZdob5ll8MO5/Of/3whvngRrQ522l5IzWe3yEOxSudzvE/CuEehoUekCXtQPgLbZNbYK2BhMjVYf5997cRx5aMYtf8ugY6TZq4FQQoowB8BEMHi9wVnSvwhmO/s1NFEcD3rg3WBeYN7WRPs/NEAADbQ5JTUhq1eB3R9eOJue+03eyz8qkLoOoqsa0+3jY+O2/jIhFUqnXbTyka77bbbZYrY4zQQzc3Nrj4E/jXXXOPqRCOIxuNXv/qVyySLWQMwg/mCUE5MMYB6QAwAhLZyPyCCd7QVmC3I8gh4OCTNB8AfEwcOioAkQlYBKfni73Su5qmfG4vpnfkLv2cuF8rsUACawi/ymaY5gQjAA4xl69atTr3KLovv2CX98Ic/dMwT7312QJOdhTE7Q1GoZb4pgBANqvTn6/kc6sVLEMbGIhO2Wrv7VRKA5KF4SAL+EWnFumTSOCFT2s+kg+AI8U8LSFyID4fuy7YACtAk4FvA+QFBEAGwQO3P3Ef7hr+Bj1riHoQ16wCAjUBGi4Fmg8K5G5HaqK29br0NjQoArUhYxRulNrCnz/r2Yw5UDq7hMYvdUGNr1kp7cX2NLWlY4kAKAp4XkVFkhyVHBSCCE3ABNgACfkeDAJAAVKCh4B1tAv4QFIANdQBCyEtRpxNT8e84JBCBxgHAAPAhsRwaDXwzACEwPupfyOVczdOFTJNc2lagZy7US39vvtM0ZxCBypMEODAmdjMIFhgmHuCEg8FAYWjnQuCkH7LCLtuhkQAAQABJREFUt7NBAXbd53JMEV04TpK5skaCjiiPZgls8kf8SurBkzJt7AdI6MIigYcv6jqOJs8WSHhNBEAA810QRDC/EbqYN5qlIWAnHxSuhGtiLiCHBL4MmDuCWhw0EmVLdJjZ+XVWXG1WuSqqs0hCOla82wYPDdjEmDQSiXGrsQZbdcFyC5UqrDoAiHgW2giEPs8ACHizC+0lBBTQAoBJgph1rg1+HgAs2A15Hwh8LXbv3u02CPTF+04Q3ocDJ3kstmrjAJAI9sPXt5Dez/U8XUi0yLUtrHf8gebLhJlre/Ph/sVA05xABKoYmAzMBfUsoAH7MDsamCyMCybDNVxbKIuLAucSRAQpCaAgU+Y7Nde2aHdNAOYvT56w4wI6RwUkvq+5d4s0CdUS8nVZzkMPIvAZCIJiaIC/AGfHsGvHdJGaS4F8EQh6hDu+CGgAgiDD9yVSoeimDRGrPK/SaShCkZB17eq0AQGJsbjMJ8NSS4xNWNkWnSq6REeKR86uKZ67VYKdk0Hv++19DhDQTkwYPAtggPbhwgsvcuaL4HoEROBn8eKLLzpzBQd+4V/B/ZddepnbIKCN4KRcwBCgBEdO7kGDkdoXeAAaG3gAmhjAVeo1vs/z8b5Q5ul89HWun1Gg5exTON9pmhOIgGlipvja175m//Iv/+KYpzdx8D27LpgHqtZ8tvnM/rTJ/xqxo59LwZCOgmgm0Ej8pdr2hoTYidFTNiEhmujts1ekmbhEQILDu7IpHkQwv9mNeU0Ef3unyubTWghvqvDPYZ3gh4CwRgvhHTL97/7d07R4Qrkj5GyJT0VxabF1PtNh/W/22WjPqE0kdGBWfMzKL6+28PKz5gTGYq0yYhJyHSoJOW0B/gsD6jdhn+94xztcXoiVK1fIFPJWHxHvt0FfADq8CPmkjyt0/coVK936/eAHP+h8JX7xi18Yr9tuu+3MRsH3gXfABz4VaAE8TehzELgEr5/Lz56mc/mMt0vdzEdMcbwXyuxQYDHQNDuOepp+mC8IFcNpC+0DIZ0QBUbJzsgnrsG84e2vs0P6Qi3nmgKYsQCGaJkWUiFMFK3EF9SuktGE/U45EAYTI/Yj+QfcJE1Zc5ZOYQAB+ssuG1OB3z2QYwEzAjtvH9qZDjCjnWDXzvqYDHydoekStb0ubLGtddI2yO8hXGwlZSXW+1qvtW9rdaaNCWkmABKRdckjyhmDquoq27xls4UjYSfc8c2gXTjD8cJXiTakFoQ7fhBoExH+JK/CLMI6xhzJb1zDZ0wbOEsTzgpIoT4/BwAdAAj4Ab4ZaCFoA34imFvQhtCOuSr4gKApgv6+n2dousDm6VzRYC7rBWQy1xlT1kOh5E6BxUDTnEAEzBD7GLs0QAP2V75jggVVmOmYau7kL9RwLimAwPCC9Fy2I/XZmDYimoPXa14eHq6z4xL4r8iHYf/ggFJsD+u4ce3is9hJBTURQRCBkyWRC8x7b8pI5ycwmfYh2P4zNFUnAA7hhqiVX6XzSGS2KArrS20AB94YsO6nO2xiBD8JhVIrgiO6NuauB6AAVtA8ANoBNQhR1ijZKYlUSNcO2s61CAeAAVkq2RBg/miWdqVMx69zDXUSmUGEBwfvPfjgg067wmaBeqELGgocORE2gAh8K9DMEL3CIV/vf//73ffBfuf6GbqhHSKZFv4qjBX9wVcLcw7tKJTZoQBCbyGu+9np3bmp5cy6PzePz/mpOYEI/3R2KSxcXoXy9qAAggFN1EItjfKP2FpVbYeVzXK3jh8fFMA9LoHSLU1CNiCCvgKGmesIJs9ICfdEC4egIsSZHTDXZFNSaUrkRnhFqZUDKvS5GB8IuUXEDw9az64uFwI6IYfLiQlFeKwqtVAs5DQdtMFHTwBwEPAAAvoAGEhXUPvT/h07djgnUdqCEOYVBB7Uc91117n02STRwnyCOYRnIsBJq02oKIAEDSSaCaJGOHIccINfBQI+WKAljNQL/ODzgtel+8x9mJM41RTwwnjQFp6B6p13nos2Zbp6Mb8AntDe0P7prk/XnsX8HXMHQFqgy+yNMjT1m+7Zq3V+a5oVEDG/TS48bSFQgN32QmcmOFliwviOkuMMSPC/LkBxvHrElmexM2WXD1BAEKNx8yACFTpCE0aAsILJZlvS0bQolAQSRVFpIwQkeO/c0WYDB/qt+5lOd+Tp+NC4VVxfa9E15RaqSJpLaCsCH3CACSbV2TO1jThJ0n4KYADhixnCmyr89Zg4uA7AgUkDTQPJq6AHESo+IyYRKWg/8MkAQBDRga/FIWkoUkEE9ESjAy09IPHPm+qdZxJeC5j5x3/8R9ceQAWbGUAQmhPML5yGCj2gBXM2FUhxD2YpnGNpI3+jMUHDwrhPVWgDwIMdOnODV7pnTFVHvvwG3aBjtiA5X/o5n+1cDDQtgIj5nDGL6Fkw3YWufQpLI9AopnexDu56buiUPS5mf41U7ldlKei9kEfoIWgQIAg+BCD+BAhHmGy2ZTKaEgKKaSN0g3wTBCKK5SeBVoIQ0NbtioQakYqZ12idi9woLk0KPr/LyaQ9+CoADNC2YJZA4AIs0oEPrsWpknBPAAJhowjSf/3Xf3VCHYdq/C/woYBOCGLSZpN0Dl8J/COCBf8LclCgCfjABz5wxp8heE26z/g/YH750pe+5OoHNCH4qQda4t8BMOC5mHU+8YlPaowa3wIMaB/Xc6YILyLNaHuzzDhE0qDVmKww/gA0QAz9h2bch9mIPqeClcnqyZfvAUpolehjLvM8X/o7H+2EpkQ8AZ7zlaZZgQiYJq/pCrsWXoWy+CiAcGHXtdDLWgn1/yG1+t62Vjug9NiHpZEYkuDgFNGZFr/TBEQgwPwuFHU6gjVXteSUNJUVokiRGmWXKtNlidqu9odKS5xZo+M5ZdBUZssJXoNyuLxUJpWYlrbuybSwu0SLgvkCgQtT43M6EyXC8s4777Tvf//7TqigfUC4IEwxAwA+MKfgP4EwveTiS84kvDokTQSC12uxEL6cyfHVr37V3YejNs+eTgMA/TGd/PM//7MDC5hYMJVgtsAcARACnDz99NMOGNxzzz3Gs0kRDtijv2hJiELhlFLaAPCgbYSwch4JYGCqXBg847777nOHlHEfmhtow304keIjs5j8waAZmql8FXaZroX5vA6aIiPzmaZZgQjiybdt2+aYKIsHdS67NFC7/5uFREgYNtNCWXwUYJeVDzstQjqvrKxwgKdLgqd1KG6tej9P4GKmJRVEYMNHnY4wYgeMwJ1O+E31zOloikaC0M/oJvkegRHkbKlz0Kz35W7rU+TGeGLMxpTdksRU5RcrEqRaSalkAsmk8GyE3t133+1MDySPQ2Ck6w+CEaCAoET44kcBAIEWAAd28vyOdsaDE3avaCPYdeEnAb34jZ0/2gzMCOzKMKUAAiaL5gK4AeLQGnAmCfdjNgF8wIx5Ju0DpNAHgBnghuvInAtAgk/RL29GwQzDdRxsxrMBReTBwEwDKAEYpCuAiJ/+9KdOuwKooV76BZBibpAfBDrMtEAH6oOX0k54K+8LYb0xZguhHTOl6UK+Pt9pmhWIgFniNMVCIQUuKAoUzndMfpgEqB+Hs0JZnBRg7POhkKGyQUeWr9QRxr3dOulTh3a9KvV1riACYYPAw5yBYEPY5AoiMqKpMEFJnTRAGwUgTjtbAi569/ba4MEBByDwkcABs2yToqRSklJNNWZoU9Aw0B9yWiBY0xWECH0l/wtJqTBr4IMADTCJsHsHgMAcKVxPfQhzhDj3kDcDUIapYefOnU5gQkte0CEdiEC4AlQIQf3P//xPl1ALbQkAAtMJ/IfNC8LcAz6EOt9hRsH0AUDwTJt+UuBdtBtHTIABWlb8PQhl5TfqSG0PZhAiQqgTTZTfQMH3yPwJmAF8ZOKgSb/oM1oZ6sS8wt8eRHitDc+Ev/LiHvpO/bn44dB/6OC1N4wV/DydBoXrAMy5Po9nFkqSAtCU8c5nmmYFIlAd8oKJkpP/rrvusptuuskxESY+qs1vfetbZ1SWhQmz+CgAE4Op5UOJhort5rpaa+3vs9dk0nhGjPo2CYbM9uhne+iZK4IORs6umjXA9whNGK8XnGfvyvzTTGhaUhO24vOV2TKqHSoaCflI9O7usYE3dQjZkISjwj+J3Ci7sMrCjYrKUMjodAVzDLt3BGGzNAf8PVmhr/hFoPZHaCLocGJk541wS2WKaAv4nl0/Jgb+hlcgrAES7LYRopggEMoI7mCBNmg8cdD8u7/7O2d6wAcC7QHv1I0GBCAEgJgYp/8TFhqVX0x9owM2mDEwX1CXL4ADsnECmAAbzOnh4RH7j//4rtOyAC4wr0CP4A4coQvYANSgwaE/0AsfDPoHYIIevCYDY7SBeUQ9+G/4Q86IMAFE0BaEDO3lOr4D5CB0eD4Oo4wBGpPUwr1cQ5uhbbp5SZ3UBXChDdAXegCceKUrjBltKpTZo0C+0zQrEOHJ5wEDi4RdCAVmwqJjYrLAZlpSJ2hw4WZSl79/pvdlUnfhmrMUYAeUjjGdvWLhfIoVh+wzSuD0nATUo5qXz0hYjYkRkuFyJsWDCNTgMGgPImC87Dr9jnEmdQavnSlNixXSWXp+hfwfiNyQj4QARfeuTuve121jAzhaSghh2iAp1fLkYVvB56V+ZjzRKGCmoC1oGyYr9JWdO0KW3T2gAu0CAg0AkEoLhCnXYrpA8/DpT3/aCU20EghHBDz0RAh7n4zgswEWmFD/8i//0oVx3nzzzU5Ao/Xwp5ICHlj3AAi0MYnjcVsyUmPLVy61TRdsctoQng9Y8XyCZ2AqoN28qqqqXWrwRx/d4QQ713uQgjD2hTpoKzyQ8Yf/AaCgG4cS0gd8K+jTVCACEEq/HnrooTMACpBK/dCFucZ7OoDJb2t0eFo6EAE44NnQBNoyrqkF0MDBceTXwNREu6Enzq3pQAR04nlBOqTWWfh7ZhSAps0CqPlM05xABIyCScXRw5guWGxMeNSAqL08sMiErCxGdiHf+c53nOoRxM2uCC0H4WIw8KkKi4w2/O3f/q3bHb7vfe+zT33qU1PdUvgtBwrghIbgYPe20AtgYa0YfSyqI4wFIuKao0fFgFdpTs0ESNBfBAZznPmJxs3b92G+qYJzpnTJhqaEgAIQKq4zp20gw2XopZANHNHBXY9rF4uPBCGgV5vLOcH1UxUPDibbvabei8CBLghNtDEAhXTgg106WgJ+QxsA3fClAEQgeIno4PRRfCPgA8ECrfE9+Pa3v+2EKn5WhJlyDxEUADiEJWeLDCn0tfcpAalHO2zgmNKTN01Y0x0rrem2lY5X1dfV25COiwcEshOH79AmeBXvMHW0Gh/+8IedwyVaErQKJNgKmmjYJHkQwaYJjQi8EMGMRoFoE0wdjz32mBPMqXOD56OVwamT/Bbc4wEJ7QB4QFf6xb28AwSgIwAIh04PNoK04jP0AsBAM8w8mJ0ABfTNF9qGYyrgBfAAv6ZNgBr6j2aZ5wc3Y/BY5jygZCotlX9G4X16CiwGmuYEIpjseDvjaIlZg4lLYeKhZmORZ1qYnEx6FiYhYCwYkDRncjBp2fUwqScrIG+OH8c+yyJLZUST3Vf4PjsKwIBLSs7uzLKrZX7uQmwSjbFGDLixr9dOyrnyN9rt/TcJDlJkk+EyWIje4AhxlLYsEIAG4aJRzT9ABMwWIYgKGmHC/ERA5qqZyYqmajqmDJJSxdRgZ9qQrwTmi/iJQet+VieOSq3PwV2xq2p13obi/E+HgAb77D+zdqdaZ/46/84uGPU76xZhCqhMt6tCgCHsUf0DFLgetT/ACeHLmt++fburC+EIc/VCD6DBtWwSAA1sLvCDwISwvFEaoF6Fuz7SZv2v9Njg6302+OaADR+LK2Jl3MZOjFtfRadVLqm0ypvrHRAYG5cDqupH5c+L9iKo/fhVVVUamxA0LPhSwFPgJwANfw2aAkwx3Ee/8flAYCOAAQCYePidXT6mAgAI/eF5AA36Q3ZP3mkLfUHQYwby4MH3n9/hafwNmEADwXVeS8FvQWEPL4WWgDJMPNAdnw1vrmHu/uxnP3OmKEADbeM62gvtcULle+a0bwPjzXNGRhKuD3785+Kd/tI3399g3+bieeeyzvmi6Vz2MScQgXYAD2QmNElnWCw4FLEYUF/i6JRJYWGxO2HSv/Od77SPfOQjbsGSfveb3/ymW8gsYCZ1ugKKhimBrrkuHRNLd1/hu+wpUF4ek3ZIu788Kjdqbr7a020v6qTLH0ootIlZXS0gvE7goEIgoVd/n0yM2JsCCXGpxOldWEKVRcKR4x1iolGBCHaMzHVALrs+5jwvL2CyJUkuNAUYRFbJZAGAkLahWKYNe0HuERKmPc91yrQhHwG5sMSukGljZZkVl5/dlWbbXu5jvQHwEaYIUUDWZHRobm52AADhjC8FqbAREAhgTCiAMTYDCDKAGnVRULkj4Ni0YLqAt1ywerPVd1dbfI+ykQo09D/bJQDRb2NDAh+KYClfF7Niha5wcNngi/3WVdsmjU2pRTfK2TRS4trrKk/zD30BqBBpAoBBS4BGAk2r5y3wnEPyHUHgo0mB1wEemAcIZUAOwpzNFREs+C9QLwKayA80CXyPYCfPBposhD31BYUmn7mP5wIgePFsnsHc86YOrvEFrRBaDngi16IdgrYACejqw1L5DbrDr6mPAmCCF9NOol2CIIJxhdd7GgBGAIT0Gd7sx8u3Y6bvCFTGH80PbfPAB61HLFahZyejrIL0mekzFtr1qTRdaO3LpD1nZ14mV6dcg/Bn0NEawCBAs2gfmNjsTvCJgMlMV0CdTHwm7t///d87ZM+EZJdDnewGWNDpQAQTj3uxK7LLYZFhP82keIblr2dRgILZESZ3hcnsdnxHYfHwPf1m0TIBWJQsND77HQPX8ZkX1/E7feQaPnO/r4P2I5SC9bFIfB1cFwoxTEkHK/8s2sG99JdreBa/cS/18SzfJn6PRqLGDozfuI4XdaReR33YlBOjibdcR73c458VDidpAyPz7aU+CnVSeBb9oJ20jwLwhGZ859vLfZ4Jch2/Mf7QzF9Hndznr6MdvGC63M9nruF3v4uhXf7ZPPc6vZ5T/55T3x5vb7PHNXdv0a7zlopKW6Z2HtC8fUFnbDyn546KBtX0Q3WocmvWfeswhah+nsXOlHnHs2GstJd572lLX1P7T3ugL+2jpPYfmtJe6vFzLbX/3EM/PZ38POFvPoeWKqxzImrhkTKrDNfYWEinjr4h4fqE6Ko+jSS0i726zqKryi1RlJwn0Iz76RefPc38s/y4Uj/XcK1vO31EACHg8YVgjOgn1/Eb9fE3n1m/rGmu+clPfuLAAusb4YwgxqcAIQbvYC3ST+5DIKKxWFJTb2vqV9vFNTpI7HC59T0rx8bHO2zw2IAlSkYtqqPUS5vLrGx9uZWuLRcADFv8fp2X8vqAFT/ZbpFlEYtVjFnZUvkHCGjRD0q6OUn70Q7gyAkQQKMAEPBzivYBIuF91UpmBm0YN+6jPswbaGhpO+ZeBPmgMqYiwH/xy1844UufyW0B+GIOQVNoQ7/5zIv5DbiAtghTroMm3/3udx2wQtjCx6AzbWDsAGHQkIL2BtCy+jxpiWTK6RaIxiyECQOeyumuPrIEMAjwATSxIWNs/FhSF+1h48B8oK9sHO+9917X/ve+971OC8P1tAPa8qJd3JcJ//N1fuMb33AAifnSLLkCyFm9uln8fbkDNqw1Pw7QCh4U5EP8xnN5UaAJdPRz0tOWfnA/L36jvZ6fQmO+py9+/nNf6nXc4/vsr+M+CnXwG4U28Dl1rvGbX/eMPa98KzmBCDqMOo5IDCbU1q1bnaczqrx7lNyFSfrxj398WpqwINnZMYCoA5kkFBgTqkImNAslXaEN7BK8zZRrWbyZFBgW92G/pKDCg8mxCFlIIHEmEapLJg+LHlUkE9YnCAG1swOBmaDaZiKB+gFQ3OcZLAAJJsC1XEcd/MbC4VqYBP1lETP52dlwHa86Lf4JbSNpHwueehBiTFKAE4wEGlI37YWB0B6u4x6e1axFyHXtHdIWyXksVhFzjBmac11/n2zJUvWvaV4jn4FkmBt10E+EJQsIBgYzoE7oTjtZFNRBO2CqLBauG5fAgvGz8Flo0JQCo/L2X/pCHdQPzSj0AxqyE8RcwPO4jrZwHzs37vE0ZBcLQ6SPnr6HtEOEFrSL7xkHmPi42rNWjPwygbLHBCREeHtENHktpOybauMbutaUIludcMChhyQMoqcaYePqf2+XaKnP0J1xgkEzL2hfRGGk7JahPzszGAZjBCOk/wBV2s38pn3QiTGHrtANOvNO3cwLBAf103/6TF+gB/fAEOk/11I/4836oA7odKDjgFVuqLAQ3TAJ4mJpIZ4bspYHT9jx/uPWNLzCqi+pt5Zwh6uL+qmPOvgM/ZmT9IM5CX2LRAvm/8BAvxsj2kF/WLee7ow38wKmz1xjnlAHbWLd0G7q4G/6yn3Qgz4wTtyHwIZujDXtoX40EX29fbal6Xxrbllmg79ps67D8iHoF6OX2SbUIDZ2YciqNyrRVKny1ox1aRwGbN3l661/cNjiqqfoTbMjPzloibKj1nzrejmjhlw/GJsN6zfYkaNHbERRGZUClbST9jVLgGFqYWcMr2Ae0Q/WLOuetvE7Y8j48qLNzDXmL9oFtC5oVFkThMPTP+YGv+PvxTygQCdAC32HLvyNMGJcAFe883zGHNrDIxkn1hVzkTYxZ6C/9ythXrI+4Y/bHt5m/Ro7TM60CW0O19N2eA199msd0IFDKQCDsWEsmef8Dn+lL8xNABFghrXPd5iamKdNjU2urT29Pe4e5hBtYtxpO31hvKmP+e35H/P7r/7qr9yz+Z77mB+AGdY5z4Cm0Le4OKR1pXNwVCd9guczH+kTbWANMZcZX2jM/TyTMYP/UVdLa4u7ls+0Cd6DvIGWnofSRvrKWHAd9OU3xgT6d3R0ujW/cuVb+R9j6uc8z+daaA1g9PyP+qgXmjIf6C/ty7eSE4hgwXxfWetwQkL4ekaJoGASMOkzKRCYxcGE8MiN+5gUfofHZEhX0FKwKLBhMuFA/pkWBu4LX/jCGQdMnDJZwGhPeOf5tMdrUxAQLDYmhf+NNjM5mAxc53/jftrMPfzGs3jnWgQci5I6uJ5F7OugPooXRtThr2NR+OuYcP46mIWvg/ZSv38Wv/EsNBEAh7r6OlcH9fhJ7NpeW+c0FSxAGCl94Xue7UEd91AXAh8B4a7VQuCZtLdZTJfCApckFpM4ax/3NISpsVCT1yUT18AwuZ9CH6EJfyNU+Bzss6c719EWxoMFzWffXhiNv4fvoSHPhdndKeZSLGaxT4KxQ0x/XNqZNqn6dS6miK7lQNt1rTolPwLNOc1LCxVbq9rRKVqMAzL0/RsCAr1iPLVqO22hD9AXWrTq9xfFeF8Sbe7WPFh5mqnRP2jG+qDQFwpjxGfazLsHg9DJzyfqZcx9vzw9uZ7v6SefoQFrUfsrm1g2ZnUNAgjlXRavkEpfZ20Uvawdog1Zkdbc6muVUXFlhYVLk8DH18EzYcL+WW+da5XTzjX6yPyHAfs6/FxDSKK+RzAzj1CnY6KAhmw6cETkGpjp5k2breXAKavvq7FbBq63m968ziInimxIwqCsrkyZOWNWulrrT4BgPCrt1aqYlaySz8dy+Tgol0ZprNTWlG+0/kS7jcS1Y5ePSPWOmJWtCVnscoV0rk3OtYh218G5Bq1pL+/MLdYkAgEhw3XwNXgWL/oIUGZu0VdoyJxk7HBOxKSA8yJ8kkLfEeDUQ/2AEDQx8C7ozPeMIXXxO3MXejJH+MxvCEPmEOAKoQatm7X2WDOMHc+Hn9I2fE3Y6MEj2cggAPmeNYKzKIKfPlIv9QM4MLMEBR3XU7iGtgIot8vnAu0v64rxeuihbQ4gAjx4PjykaWmTaxP34QjLO/1Kx/8AGdQJGPCaKegMQMLxFE0QfWTDAahlvnAPm1ciS5gvjJOnJ33iOb6wsaUfHrSGI2FHN3KsQDMK9THu8FLqp72sKc//oA8yDtrRR+5jHTJOb+V/SQ0atMZEz1j4ec5Y+nXt5wvrlWfSftZdvpWcQAREZfAYGAYcNAdBIToE5vdMCoPFi0UZLCxIBsAzx+BvfObZTDreP/OZz7iFRj2ZFgaNF+iVgiBgYHkeL1+8gONvfg+W4HVTfc9zMimT1Zd671TXBdsbvE4KUseQfF3B3ywpw/1PblH4P1L7zPcwMhaEX2B8l3odv/sSbBMLMFiCvwU/p14XbG/wOhhZsExGa9q3XG3aqrH93zU/vyOc0CbNREJAokTgoRZhot/7xSQxOER0Dcdp8fuRwbj1S9tgIc0Nzeu92in3CiggPOrEcGhPSIzpSa2D+zUfn9ROHh+Kk3rW3WI0l0tA4FdBCdKMv31f+B6a+X6n0nOy/ge/pz7f/wkJ1pILkp79A2WikXhl355eG9orh8vxDqubCFlZRLkt1kQsHHsrDanHl9T6/fe8+7bzearr/G/sbG+99Vbna8DucMvmLW79UQ8CFibedqzNDm57wy4+oGivp7rtHaeutmixQGVohdUu1UFjciKNVMs/YIm0YPJziOjvknpFMegVqhVorxSoP+08GltaaZGbZeIa0emcPzhmw6/EbeDRHiut1tonPXhZcj17mtMPiu8XQAfhA49BWCLk2ZnzmUJ/vGYgyHuoD78INBoIOsaEXSjCnznDffBNBCMCBCAA78ykABy4n/kBsPHgxt/L76xPBNztt9/u+CpAAhDBWsGPDcAGvWmPB4nc79uH8MYfBKEMX6TAz7mWZF+APf4GpNC/l156UZqUC12dCHA/3u5G/ePnpP87+A49n356p/OTYf4DbKANGgG0WwhjtBQIeUAEgII2QVs0MdAaGnI9gMJrhwFe1MdYcg1jh8AeUsK5DRs3uL5AK+qlP/QXupADCTr4Ap3ZNAFEAFe33HKLk1eMt58nXBtcr2yiAT9oa+gfddMPzFfIG+jDJpxx4h1TI98F6/PPX+jvZyVlFi2FiCwgJjEqKUAAhGKyAiJYGJkUJhjXMglAeixaCMpAUB+LISiQfJ1MFlRZoH2QNo5a2DBRK9MeBhCGlcog/P2F9+wpwNhkyvSyf8rs30mkxRox0o9J8B8bTdjDxV02oHlbqflWKoZTESq2JgEKIjbYn8QFIAY0l+v097jm6KDmKszzhIRIQgxoQEz1iL7Hl+Ko/v6VmN4j7W32phhDsZjPSYFgIj16dM91um6ZnjFZmW2a4mDpMlZK5U+0BmdvFKl/fXt6rO/V3tPOlhNWJU1MVI6IOCTOdWGnRYgmaxft3Lr1SWdMIilWhpbZlvBGGzjab+FHJ+zUk0dltmizYpmJY0vKrXKtHFg3SpUvfwcHGKoF6KRxIOLE9VPAITWEdWR0xMJrolb+zlIbemPAunbK3+JJqaDrdU9d2PU79Z4gDQARCDT4CoKANgMoELLwpGaBAK9lCd7HZ4TF1q1bnQBkk8UOFnMOwg2ehqDyWqfUe6f6G2FFu3g+wg1AgymEwsYLoQQvhTeTSAtezNxiw8XzATcIanbEQQDB/YAGzAdodNHy4uPGmMHr2dAhSH/zm984Hk/74a/0n7rJ/wF94N+0DRoxzqwXvvfaLZ4TLAAcTMoABfqBpgaTBe0GRHhzJ++YFqgXYQ4gor2AMtrAJpZrGB/kBu+0mxd1IZcADNyP6RYgBhABQKBVAZAg8Gkn9PW0of30j34j69AqILPSySTfL8AJc4ZnMh7UjQaF9gHeGBvaBIhAVjFuzCW+y7eSE9eAiExGBuKQ1LssFGxp5IlAHcQkzaQwAUCSCHtshiwwvkOFCCBgIbDwUgvPA2ww8NjmKF7tSJsYaFBlAUSkUi73v1kkQeSde43zVwPhnuu06//ckgYb0eLdLwYrVy05JMrxUL9dEiu31dI69Oq3XWIARWIiazSXSjQvj0hFOqrvh7XwhaLsmOblg2JmPWLkJLF6Xam142K2pNse0X1tmps/Vr3t+m5Ufi131sinQUIg3Z5zLmiKuraE3fkl2nVzAmhYzxag6NnVqVNAlbJbwlsNsyq9lepMjuLynFjCtIPIOkYwwTvYdS2tabLRkyM2rMRQxU8m7IaBq2xkcMhWHG+yrvJue2Vor+0r2m+XN19qF9x4kcWWa3cpABBeU2rhZaXJ80EEliYrjqbSNsQuqLHGu1e4aJXBI2Lqj7XpZFSZPZQWPKTsn9ApXUFAoV7HJIEgwUQBj0EgIGQQdpNtlhBe3Punf/qnboMDT0SI88492YJw6kXIwdcQTghWXwAL8EM2dNAagY7TI8KJz7zgpwAa+GxqQVvCbpxweXb81M138Fm/MWPDxthhhmJnDQ0AMgAP6MT1PI+dOC8KycXQigS1cAhOhD1noDz77DNOqFMfQpY2IrwRwm6eSODTN0AJm0Y2mzwXbRZaCWjJC6EMwEBY017GnxfCnzYybsgGfoeGyBtADHQEePkxBSDRD+rkPkAOMgY5BThhHKcCEbSd59B27oEe+D7QftoNMAVAUgd8FKABPfBNy7eSE8dgIXz+8593E45BZcC/8pWvOMHNQT6ojjIpTFAGhYnD5IXoDDBImInMIuS71AJAALUyuXwh/pnBQqX2J3/yJ2dUcf73wvvsUIDxgZnla0HTcJXm70fEYL4lRvZMfNCuUTKqv9A8u1YAloO7JFdtQAt7rxb4Ds3vh8UI+iU48I8QpzZxZOsTc3tezPp5MRpthXSHfFxUb1lpmR1WnXzXPzhh2/Q9guqisnJbLwBD6GhqmUuaAiBKL5Yjl7JbFksjEVJuiY4dbdb5gk4AJSHVyJjVFgvIX1w1qUBNbW+2f8NYWbdQYHjPgLX+4rC1/PCYDXbKuXJ8ub1ZdMgO1B+2dVett3/64b/byqrldv2q663uyiY5hDZaWIJf8ZsZPd7TNKRnVm6tt8a9/XbiZ0ddTomwTjqNrlCirutl1z5t/kit1KvA2YXjL4CwAUTwQnjBt1LNacE6+A1exGu2itdEACLguwhiX2gfAhPhB4hASLHrBUgAaNiFwzf5jWtSC3wWwcw9CDwEITt8nonW98c//rF7JnUQgQKQoB2ABQ44YwNJ3ThnAipoC3UiK7y/hH8ughPHdu6BToCX5uZmBzIRsDwTrQDtwf8DLQL0BtjRL4S+py/X8BlfG+pHQ0E7mGsUwAXyhHYCGgAiAC0ABqCOhIaMLwAEnxDMbGua5TRbEnJ+DdwHbXkGIAKZM5WJBhCBFoVrvDYHuQQAQ5tDu3gu7UTu0R+ARnAsU8dmof6dE4hgABg0HHRA6BCWAWTCMFkPSTsBmsukgM5wciS51Je//GU3wKib/uzP/syp1xgMYsuZcCBVnykPAAKC84VnM6m5nkWez4LO92khvoPyWVC88rUwV8kdUa45dFJz+WLNmdXqTwWaAv0GRIoJKF3I93KofI+u/Z3sqv+3QMCwGNhEVMKMlzQMNiAAIZ7cXKUIGdVRovu2KvTvKdUxLBvskHwqukoHrUfCaDKF5VzTlD5FFNqJo2hRmV6RIut6QpkdyW55f4tNDI1bLRqJCwQ2BDrmrEjzkdiryIufnrSenYp4OSabsDQitRfX2Y6BJ+y3RxVJ0DNgN7XeYPGxIVuysdFW3Ljaaq9qtJKKzAEE7T9D0zqNSVXYau9SJMhJjcVj7danQ8ui97UmnTAVzULERmqBnyAEEWoIBQQIO1PqRaDBY7ygSr13rv5GuMIb4XOAGTQPviCEABa0CSDg+R/th28ibNHy+u/9fcF37kOwoeZHeFMfGmG0zAhZzCEIXbQZ7NypC5ACzycChSycAA8AGMIUIMGOH0Di+TMCE00yob60HxMKWm18LILtg7+jMeF72k9djAEvns0zGB/4PfN7q8xHgB/ayzjxHAoygvEieydOngh0fsPMQl8BHIwl7QdMPPf8c0kHyrJS9x11IugBI4Ap2gKd0hXADRocaIBJC8AMQEL7wMaaecS48c7Gm7ai+eA6+gu48u1OV/9C+y4nEAFB8T4layUDEywgTMwZmYIIJg5E/OM//mOncgIlgkIZZI9KARoILSYNxGbSsKB4+QJCZkCoj2sKZW4oAGCcihHNzVNnv1acHa8UMxoWMKgT48Vnwu/PeA/p75jmF6/6krAd0byCYY2o/2ViKmORqA3L9FGie5vF1IvlXHme3q+tiNnF0kZw//PWZd1iLIO6h2PIObdDk/f3OjMfNC0SOAjLGTEmEwDOh2S77FHUxvCpIWvf3upOAa0dVeIgnckRktA9Q4zfa+3MvxhXSGZcfgk929ut52Ulh3qlT+BBURVNZVYqcBOVo2RFZ5UN9Y3IcfU1Gz8kOmkJb7hA0Qvnr5IzZdSt+Zk8OUhTzDjRtYpQur3JEr06bVjZPDufUmi5HDPxFyldo+iaFPAEb0G4oElACGK3RyWOoGAnyW/zzWfgezwXIYqQTgURCGf4JPzTr1HaiADPpMBfcR5EoPoIDMAJ/B4ejdBF6CPAPe8FWAA48BthcwkfRmNA+xCSODyymwcQQEt8OfChIHQWOlIfL34DANFHCu/8zYv2I7jpF4IWoQ4d6Ku/nt/pK98D9AAP/MbLC3fa4rUUmHeoD3lBHhDGGMAAyFi7dp2A0VHnOMrvXHdIG2NABjSerNA26oAOtAM64UcBiAF80GfmEOPGtWgn+Js6AYbQdNGDCJApSMujU4R7cCIDAFAdQZBMC5OdgQVJTlZQx/GaqtAWXoUytxRAkLKI873AqmoyBJuYIGJiZuUCHD1iUI0xZdLTnMXE0aM6YmJmNVJ/vkPM7oNiZhw33icm2qL10D2iExNHE3K+HE6CiDSEmy+aomXAn6AYbYROAC0WkOje2WlDpxRHv63VaUpqJWjLtigBUm0SrKdpbmZfCQdMDI9bXNkkB/b0Wt9zUrfrXItEf0LOjYruWVNusTUy/2yUY6f+Xt+zyRrb5A+x73Hbc0JHjFcoqmHDemtUuKAXFJk9OHnVW2iqwQY4VVxdY8MtOj9Dr/43+qxLKbPDDbJNy3cirGyeqY6WCBB23fA7dqEICIoXPucCRLD2PChAECEs4aFeE0G/2fl6IZ+kRmb/IugBAWzeUL0DVjALIeTZGAIk2Kjxuy8IyOuvv0G7a5xOj7prABHwdH4DYABIqJfdOT4JmD9oO+p+6mTDybMmK/QPmcIL4JGuMEd4JrQBwCCMgyCCttQqnH39uvUuHw708QABQAHAQEOAoN+27SEHIBDuyB38ORh7gCRaBl93ajuQhYANTGDMEV60F3oB0AAW1IF5BKDB8wFf3AOIYdzyqWS1VUeVBFLD+xS1DIjVLywIC/pncCYb6HwiUKGt6SnAIs2GQaWvLX++pc8waBjTKjGGS8SURsV0d4oZENB8U0WlnCdr7CJdM6Fr7tI1D4vhHNGrX4z+gNbGZAaN+aQp4KGEnf+1OhJdIIKdeLdU/P06Srz9V3LUG1OCqjGdAHqpdtrZaCQEHsaVgnq0fcSGjsatU6aL7ifabahFDpSKAqlYp7MsVHdUh4cRaRGV8I5uiNn54wr53K0d7G/G3M4MDSdMFcabTUlH05KmqFXLDyLRqhMyjysiTGduRJoUJlorwVyliA+9Bwu7W4QcQg++xyYKQYYwROjlvA4U3kdacofe8PWQYtUBJhDuFMX3DaGFMGJHzg6fv/mNHXA2AIc+ITRRweM7gOnEC3meA5ig78F+I+AxR9CG55571q0RrqMeQAm+bt6vYc2aNU6NjxMmApTrUPMDVGar0B5ewQJN6NuK5UoMpZ0/5pfy8jI3vxD00BwNDH3Gp4MXm2UiRmgfoIRxB6hBY/5OR1+viUAWAqToPwV68RlaAii8RgLtRHNzs6MPzrtu7IMNX+CfswIRMFGIg32Nz6BTkDoFAvAdhMo3RLXAx2pBNQ/E7OfBgmrYHDcGpgEjYp43aufyPjFq1kK9GAs8n9DRTdqx8Dt/V+v6j0oIdSh735Oy574s/whSaiMoUsu801QNLK5Qf65RcjLlVihRZEbRb2Xvf73bWn52wsb6lLZX/8Wul229RAyZDmVYACDx/QIk3z1mLb8+YSM9CrWsCFvVJoVpXquEZ9r1l2j3z1HmpZxnISBBqZ9IqpehMRpN1NsIMeZaNiUdTRmb0vVKKvfuRhs+MGgtD8k3Q6aNcI0iRtSO0NVvjdbwO3N2/2gj2GGyE0cYombPtYwPCmx1KY29/EJCGo+iimSei1SNSOpz2HEzHxFabNxoHwIOQc+Om11vqiBNrWOyvxHuX/rSl5xGGT8EhCd9ZTyam5vTgrqammrJgvO0sWxxwAAQw7gxfvhQkCIbR3naiQofAY0/Hap+1lAQlEzWrly/Z+xJLrZmTbN7pdaHpgRtE8IcR07mIbINgIRGAm0F9ABIQvN0IAKAwaaafiIbuSdYAFqAK77H+RSzDgXQxsYb8JJPJSsQQUchKpMDx0oOzQI0UBgkJq5PnJNPxCi0NXMKsLhYDG+3AtNgR8M7u7EGrQWiLf7n6V1UvRhtsdZAsKwTncgPQaTHQTF45cBMW84VTTFnIFSLBBSKEWD3lVjfGz3WoTDIMZkiGiTc0FiQGXK6qAh2X4NP6+yGB1rltCnNg0I3i+SsWXd1vZWvjlmkQcmhlNcB5018EVxyqEBkBPzDq33Rcvr8AtkK68loivYF/4j6jyx3bRw4qLTHLwhIYNZQyGd0vYBiSXIcEYQIT8CE17jCAxEQ6YRI2sFN/VI4ciw+aoMvyMSjvBVDbw5aSIeiRRrIeaHEZdL+hAB2AjaORqI9jp8kx3L5Pk7TCUEFiMBfgXmJihzbP21mfULPbAr9AiTRX7RAfAYUoMafDNDB95EJtyp3RJD/s5n86Ec/6pJU4RjPTp+xhZ44TCKkg6aRbNo7W/cAzDCv3Hzzze7MEwQ7AIcXJiPefdQJYI35lVoYC3wcoAG0S8cnGReehZaDuQ0wxYcDM0++laxABJ3mBRJDpQOxmBDZot58I1qhvfLgP70zebvRAkYN04NJACKqxQjKxTzLpwBUDVor1SEdciUBO0R0ht7TlXNGUzE0dsBRJXECUJBLovghJaVS9ELXM0oIjqo9IdPGlTXJpE5pwivRWgzroK+uRxT18KJO1tSR3GOD4xY7T2BTjpNl5+kloR2VD0TJUuV5aFR6apk1vKAO0gOfJrIqwqzZrCBgshWGk9JUshWwEJNJZckdS230J8dt+ITOsXmqwyJqG4m3ShojLqcGfM0DCZg84+eBzkx5HpkJxwd01PXhQevdocRXOmGV00dHuxPOrBSSnwonrJbEdGqnAARZOdHSENZKvg/aRYgu+TxiAwoVHhfg6+6znlPdVl9d53bJCKRcQQT0RgBCf/oLf0c7gbZgMuDEPYAaXsHCfZgD8HlAM4SfBXQDmOCQCfDIFiQGnzMbn+kf65tjFNCEodHxJjXkXXNzszNpoUVBI5EuQgMQB0gCYMAvUunh2wkdARLemZTnoe0AaGU7333d8/meFYjwDWQi8EIdA+GYaEGVFDYuVGqFsvgoAArPp4k+WyPAfL7tttvcfPfq2unqrhKzKA/JHAB4EOierJxTmiJUlTeh+DSQIPyTSIXeF7usUydgSj5YvYBE7KpaCwsE+ORMDjwcHLT+l5QFc5eiUAQiXArfagloOUzGNuhAK2XDDEsgcwR5+LT2wd+fjhYw8fe///1OtcvndLu9dPel+24qmgJgwhLSNe/SQXj4bTyicEk5WnbvaLeSJp34qfM1XCZMRbLA8GkLdmyYPbwOITsTEIHZYkSamcE9fdaro8t79JyRTp3aKe1PdKXOYpAfypgARkJ+JIlT8iUpUqIzjQMaihC+GgIQIYGLkjKlR64XMD1SZjVDimZp1ynIzxy1hmFlDz7epbwf0hwVieaD8vLXZ4tq8NIAv3T08t+xthHsCE0+0082jNCTHflMCrSDXqQBIM8EjosAcLTX+ENAx4XES/CPQAOB1oUXZntkGaABMwSg6pCcIAEK0CdYPBBAI+TDaScDEf4+6AnQAvihtclFg+TrnM/3nEEEKJLQHXYN2AmDqhvsYAUQMZ/DOX/PAjQupIU/Xz1nPpN5D4YCiGCnO12JigmHi523HAHrNi4mhC5CrP0tJZWmXIf05rrUa99y4yz+QRhkRNqCagEIckkUS9ACItoebrFx+TmMSytReUOdlQgk4DQZl/ahU34UXQ+32VCnjjCX30PlBnnHb9EJkqvlNKnrooq8iOgzKvrp7Px0BUaKwEG48Hk6JjxV91NpmnotDqZR5YiofVejJTpGrOvxduuSfwRaiJDaXk5iLrWbNiD0duzY4UwHCBrAzbRrQEM4IfAF2Bo6oJNyH+t0tCLtOMK9fFm5VV1c41J5TySUMbVl2BJtwzbSoZf8SBIDo5boHraJtiEjsyimshAgolJ5IEYrbNPAOmvTOSjtv1O65/06tfKAwgqHdU5Lv059OaBDwkZ1n5xGMYVkQvtU+gQ3hQg7hGo2pgfWyR133OGc8QERrB38D1atXPUWmZH6/HPxN+CJ8QXgoDnBhIHGgP4DJPkdMw8gIrXgD0HgAfOO+YsmYiotC3Vyj6cp82naOZX60HP8d04gggmGugdCUVCj8fIFVFYoi5MCOAUFGczi7GX6XrErY+cwHYPwdzumoHs4IXRCTGNE4ACAQA6JYAnSFJAxiPe3rgnr3tRrg/fNxWdySVTL8TCssykY59ZtElIK/xzrlTmmTybMy5SW/ltHrP0JHY0tAReWoK27SCpv7d7RaES0sy7dXOEiLnCinOlOGJ8DhAyCeia7/VRaBGma+pv/G40EYZ+jCG/ly+iSb0SPknBF6LvMPGWnDzEjJTNRBtiu2Zky/tMxfABEQsCg72EBsV/IgXO3zhgaSFhpjY7eFn1LBdjwRdGkcKakqOgeVfgtbSpCg6DfxnoSSgs+ZMPH4jZ8UonLRO/eg71WPVZpH5p4nwCp5tPT49a2r8U2ta23ppIltqpNSbWe0NHhe5XK+RqlWifvh84ayaUwD9AgYL6eaWFzyXjiRInPAO/4Q5QqmdN0NJzps2bjekADoBFtAuPMHOQdUxuaFQAE8wCtRLD9OLZi6uR6NhzTzV8vQ7Oh6Wz0czbqyGlWoX75xCc+4RAagIEXBAV18g6jLZTFSQHQM4whnyd/tiMDg2CXAaPJdJdchDlDL0BEv8AB/hGpwKBPu7we1d0ilfHzyoC5c1AnMeqeW/ScrVXV1qgd0HwWVOjll1VbAxoJOfmRJrtXh3cNHtfhYlKxI9DCpSVWf80SK18r26+yQpZuKHfRFslzLeTzoJ38TAEEfYS5wl9yARDUk+k8xT8jdlWN1ck0gDZgQH2MPt/lzB3O4XFd8pjpT37yky5rY3Nzsxv7oADheb5woFhC9Bl8vse6HmzTOSVK6KWQUsBWzZV1VnGRTCEu4Zd8UdYovLVZfVUbxgXQSMo1Jh+JUZk6xjqTPBU/DQBdxUVVNqH7Jop0HsvxNnt85xN28I1DdlmZkhkNN9kVoYudxij2ZsxO9By1mi21NkaobfeIlQnUuTwY4s3ZFAQmUQnM+al215PVDa0+97nPOX8X7l+5Irs8FpPVP5vfM+/gb7STuUjhMxoDAC7OrIAIzDtB7TshtvhLcA8ajOn4Y640nc0+Z1tXTiCChzIxSCKCxy0qHIgPeCC9KJ7VhbI4KcAiersWmIm35WYKItBCiLM4Bj8gEIG+zrufASiOiRndIzXvnsSI9QmEn9Dfx2Q+WKZntSZ0euLwiL2rqlIpuOWcqDWWnRiY2Yih/sb5sPzC5DkLAAfSRcd1gBXahQqZAcqaBBokAEvXKxpgdblLYoUjYLbqc99C+Ipn3v67bN4znaf0lWiRyuvqbFj+EYnfnLT+13TAn0wanPYJHcrqSp2DIPwNQfJ7AAfThfwa0GgM7u51fg99z3fLz0Ip0TEDycRDhEq0UeGSohEhrt5PBJrh/zBRJ72CAMhEXEBTPhQT8pEYP/0Zn4pxmTfwm8DXQZk27GSFgMT4TpuoKLILV4zarr0vWn1RnV1Vd5m0GybNR5eycyoiSOYU7i/rH3PmKpfWfIZgIhdzhh87dvLQzjnkK0fDZCDMX38u3xnf4BjTVgADWiiSRWHSRKsSBBH4QqClAAB7LcZUfZgNmk5V/3z8lhOIADRwuhlxtXiuQkyIgjoH2yEDQLhMoSw+CrBIgotn8fVw8h75XcZMGGCZAESlIjQmEnGFegpECDj4Qujn92VH/Z5OAN2vNaUtT/InAY9xqU7b9N0bep0UwLhjdMyuqFDq5pL50Uo4IKHdc/nlSvbEzlm29f4XdcCTWshuuhTgIBV8ZIV2bTrMCvX/vCAcT7xp3mcyT4l4KFVoZ8275Wh5OG69EsB9SkQVVvIpoiPKFMnR1NDoBB/1BguCH+3B8NEhG1B0So+iPPpf6ZU/w6julZOpolTKNyqslcgPnCQFGqLSbkA7wJl3NC0qFWXR3nANDwCYqG4AwBgAQuYkzBtjAgM1Tbpid7GdKGmx10oOWKy60rZPPGlbKs+3qzdcqYigaoXq9tngQSVGAohIwzGu+9CSRM4rd+2YiZ8E/ByVPur8bAugGyE8pwWanV5fnq6z9TzWPtEUh+RYiSYi1UcEEIHPB3Tiuuk0EdAUUJoLTWerb9nWk/1s0BNBYT/60Y/srrvuch7r2MswaeDB/I1vfMOFvxRARLZDs7DvQ50/GzvFhd3LyVs3EwBBLfWoN8V821EJCwgEQQTmjW9KBXoSIK7fowIVEiOWkCaijzBq3dcxmrDjAhFHhobt/wgtF5CQkJnhTnLy3kzzi+Qa6aIBEoQZVlxQ5ZwqEYTY2om4IMJgpjSZ5qmz8vOM5qn6ieah4vJaq79tyBI90igo8qTnmS53/HhI5oSa+hqd8yGH0XCSdaJ5QGswcmrY4kRdPN6hzJwdipiQ47GcVMsV1lpzaY0LbaVDhGhiuijdrHBJfXYDPVVP1SaiZEK8RHtfCLvF7FHzUr2FH41Yd6LHTvW26MCyuJXXllvD5iaBDP1WFbGul5XF8tCAjep67kvIRFJ59bhAjLJt1sjkpHZmUhB4+Jics82D1gZn3bnjdQEJ+kwkkByMkt8zFnzmXf0EgTFv0bq4PuJnMsMolVS6IOzXrFnjHERxoMQHAudfX9BOYNLA1MncQ2s5VYGmaGbOGU2nalyGv+UEIkB7aCOIygBAUCAaCTRAYEEnywzbU7gsTyiQTBlbfmbc86TZ56yZdQIRy8SAWgQQ2gS0h/R+psAQ0UDIbLFCu5KNdbVWJubSIrDxquLGu2U6GtN7p95/IcflO5QBc6PWF4eHzWcplrBB8ODvMNaXcGmz+W4haR5S6THjeYoJR8K66l1LnDPjaO9J+YDo0LAnO5xjYvVtDVa9SiGJOEOS80E7+7hMF4RrdunVu7fHRhNjVr220mquk6/IpgpnephQzoyyCxXuKr8E8mTkKsxwvHR5LpYo42dlqXUX9VprtNOKpCmq2VivE08l7E3aEpk0SmSK6X5ep3sq78eITC0NtzY64FMujUbZJfLrWTp9hBF0hZ+TsZPICh9NkErvufrbgQPMPDLjjMf1rhNnJ3SEPaYd50NyWsuCtmZctDZFuqDKKZZGx4UYS1NGmndnZssBfAMiMFMg39C4k9XSJ1qk7+R54AXQyERrcy5pOltjlRMXYidKiCdHxrILIYYWUMGZGjg0FRwrZ2uYFl49IOfpUPbCa/W5axG5IshmiQbitfigbR1LHl7EfmkUQCFNA8J4TOChR8Lp+JiYoa49X6aLuDzYTylddmu/Tr0UkNgjJsXJo9mACPwv9JjkKwtmivCDEZPwyAlSKlvAJZt5ioo/rDM9qrO0o2cAAEAASURBVLbWuzwOHNDV85rO1xB4wqwhZudMAaTM7peWouepTut7DdOFnOxqZTNXCGzpqpjSiCsaRzvi8DI5IG+ptDChlnJQzRVABMmNWYUIAI69bm1rdXy4oqnSYltqZN5QTo+VEpy7FE4qTh9W23qUy6P1sVarlgPp2KBMIxK+5dIsRU7nBwnWnfoZHo/wnG3VO2esYK5JAgNAQvJv5wOCGUaviSGtFGkYXJixrh/DAVUvZ+JRH3gfFaBw7+oX15Yo3LhM5raRk3Joxa9F2juAF+PoQngFFtFUuMWQ2tlJ/k6CiPOdbMNsgW+EL2jmMXHwDsgCREynrZ0rmvo2zcd7TiCCCYy3MnnG77vvvjPqTDQUhEORsKNQFicFYFwFEJH52FYIHNQJSCS0Nl4VIOiVCYMyLADRLs3EGEBCv1+r8wfe39ik0z4xXQy595OWUPifhJeAm8mccb/O4dgsdekFWn/TmTQAKYSKcpLom6pvr14J6YRX6vhyDgnjpFG0Hqmpul3j0v2Deh3wkaNaOF3Vc/FdVvOU7ilzJ4K/WhEV5G3oko8DAphdPceXw+P6dsn3Qcm4hiWkQhJGVRfVWLmcTUuVuhr/ihIlhHL+IjJ/hHXol3NmnGW60T82a2SBRL2OerysUv5K1RKUEpxFEdKZK1mVzDS0Ec1RnyJsBnSuCeaNUflY2HBSoxJZK58WXTeZnwTjjpo+ZxChSelyZ/QoB4ZCahOtikLR0exk8gTU4O9xBhz4z/iESPMwLu3cuMJm8etw48BnTBd6FU0kzRW0H5NGQj4q8RY5AQsARqtlepNDa1RjgR8P/QQMAyqc46wABeYl8oYAEicr9H1Nc/LsEBwoARI4iQIW+Iwpg8+YKABcmYCIWaHpZA2eh+9zAhGg/K1btzp7zu7dux0RESyYNwAROJYUyuKkgF84i7N3s9+rSjGWJIgw2ys/h97T5oy43o+dPh68XBqIS0rL7C5l92sViDgogb9bu5o39RmHy90SXMf1/qq0fHsGB+QnUWNNU9hcASgHdP1L0nzs0/s+3QeAEY+1dYoAeVV1r9f7+WJ2a7SW0ZRMzj5nnybzUWMu87REPhCkxU60jbiU2P1vyufhhW73mV38gJJHjer8i9JlZRZTiCv+Dy6bp8Jy8R2JKNW3S7Klzw54zUGHARAIITS/FHITsLlzUUMShs4HQ5EzRH4AYnDqJLS0/0CfDUuAYxpg518pMIFGAGdPl6UTM1WagvrdOy2m+XnKrxDszkFUwp3cGcOH4hbf26ezSwaT0SOABNrDO2YLAQXMEhPCOc6cofk/oWYVSWrh40B/ipXBM0yqdr1CEYEk3qPSAOlZo9JOjChRV6IjYYPtcnolJFnPCu/vs0ilnGXlMBvBKVhnueDvAm2gF6G2SW2btEYyGwULIK2mtsZqaxQ6K/AAaED7Ds1PKiU6fyMXcR5lDDIZ91EB/GxpGmzbufqcE4jwjSYnOsiLCA2QFwSdb5uZb0vhfX4ogFcySBvnoUKZngJJEBHSceETdlgOkoOnQQThnocVvomZYYlMGDX6m7M4miXced0o+p4UiHhBQuJ+Caf/kBZiYCRhx/Q3ZpGmcHr6o4EAePxQu9OfdnXaYdUxoBfMCjNIj/wvnlUeiiVarzdI7fpeqV+vlUDit7eyzen7tpCvyGWesqMlBLNKYZ8JOU6SkZMdPCGb2vRK0BQnTyW9slZ+BVF39HuRhFxU4KFUvhCEcGbqtJgtDQERnN/gzzEiN0Gq9gWVvTsXRaYUk58fjpoApF4lvho8NujMME7oykcCbUCpfDc4iMy1PTAZiLxDXc8zWfsZFQFj5wQqHwb8aEYUPhvf12+DAg9xmYPib+oY877TqbSlpSnCuqB5Du2d34fOcQnJaZcTZt3Jr0pkRjIzvnPmCQl8DipzB5Mh8NFy0DDhD/wnOJMk/saAcywd7hiyfh20NvG6nEorpJlYJQfXTmmJTigkGVCisGXGEZ8f0p5DIwcmBErQUDhAoTYCJOrqk0c8dGh9tba06iC+JXbsyFHr6uyyWJnSVzcpB8ZYsQNori1ad7zjR+PaePpvAhE6DrdbRZnCpTOlaUaEn7+LcgIRoNLXX3/dvvrVr7rTPJnIEBhb0Be/+EWXHpiMloWy+CgA4yqYMzIfV6+JcHco6kLS3H0ETCDgAREN7CpTGElYu0lMDqu0q7k8Vm4/105nQAl/cLh8Qq+blIQqtVAzfhbflp38XqlcWwQ4JgRc/DO7VGeXtA7RWIWtlTr8AdVzXGs5LgDzQW0GUpNgpdafT3/nOk8RLJz2WavskiPHhqz9KamvtcOtkONkvRwUS2UCcPZ5CUm0EOVXVgt4kIUyIH3nkGDwWn8IFPwYQcR37IaDBf+VyFL5M3DceVWv00ZwFkdEvhwdT7RZi9JmL7mhISl4u3Q65bU1FpGQDZo22CCyw06tO/ic1M9oFEbROuwfdMBhcI9OLX1VYadHBywxmLCQQELFeTIBSSOAWQFzEUey8+4ifgR4PCVZMqQGJ+QVDQVmDQdQ5EiJBsMVveFzguaFgiagfEuFMpJWS9OibLEK3e17ucf6BQY75Ww68bx8VkjVfp78SASeuHdMZpaJPTKPCMgQgRRRMrCIwpf5TJsoaHxIqnjsyDF75tGd1rxqtb26a491tHZYbazWNtXqjI1jOFD3uec6fw+AlPPvwCk0qXEZkxNumUBeaJXQZ72rOu/+yQlE4IX69a9/3SXeIXMlEwxkdeDAAZcnggn9sY99LO+IUmjw9BTw2Umnv7JwBRSIiQFXa5fvBLnyROiDIww5Ig4JfGPWXadt7DIxvXQFZkieiY8pT8G9uv6QtAzP9vXbKQEQTgkNCn5CRr+lkNHtAhEd0hhNiDGGBBaWR5XKWu3o0P0nh5RQqa/XXpA2Y0QJrHSVa9GwOPWdMqdU6Lr0LUnXuoX73WzMU3ajUWkWat7Z4AQd9qCIfBxCci4d7RpV7gcEjUwInA8iARgUvHNNGbQCHG7lCwACvptWja4BxQRQepGEpYRhMTk9EJTyD+hUWGrXi51S/49YFREOMimUXaj03MqbwdkhTAa0WGwU0XRMVSZGBRxkQhjRSaXDh6Rt2D9ggwIO/TL/YF6YkA8x2U3rrl2SzKIpMOMyujqUoJq1FsYBC71jEuro7pLfeXAAsCuu00uaIPdZQhjtCse7k2cDDYpz+lUdaCJGZMZI6ITWIoH3sPxVam9VhM2tS5xJJa4cGuQE6T+kw7ZO9LtzSUrrS61ceTSI6rCyIhvfN2ZDrw84UwlzgQbVndDhcsOK0Gg5YY//cLt1NJ5ve97Ybf2tvba0Ya1VHyy1+FDvWZ8IFtOZBcVA6H8cb8eLbFihxOOiWb6WnEAENqGjR4/aBz7wAeOwLSY0361evdodyoXqq1AWJwXIBJjPdrz5HhUcICPS0klVJw6pnQhqXjWiR59fEWNOiK9gzqjS35MVzBwflabgaTlwHRUAOCa/iJekZbiZnB2nwUendqNPyORxL+Fn+r0mGrGlMi9G5UgZkZp4WM+tVT1RAZp+AZBOgZFxXUfY6TO6d0ROl7TrHbKzL5f2YzrHzcnaulC+n415ilahRPkUOF8DATnWJUdXolP0wtwR8Y6TThiekRTzQoJUEIF/xJRCHnW8wANHsiN02VmHJIwpfdISDJ2IuzTZCaXcdn4JcnSMCkjgGDquucHGkWekFkcXoiXkPzKiOoaPKOW3TBYD8r3A5yEBzQSSyxW1EhXNoopUicgnAZME9MWXwYEAaRBcuwAFgAH3Ek1lTiiWNsX9zTV8f/pa7ncghHckGqYQrQdMNCG0G4qoGdVZLqQQH1U7xuibtAIlcjhF61Guk2bJ6gnYIJJj6GTchmT6CB9WxlIddBYV4IkqDBbgWDKSzPuwuel8O3/ZBjt66qg99vwTtrdsn6Kn2qxYThtNJQ1WOhRV5lKZh5Sb1vFJLSowkvtHS9x/HpW8HBjsk4Yif8+ZyglEYLpA+wBYAEyAiAERnHwGGsaTlWQcXIftnPdCWRwUwGkoZy/txUGKjHqBaCnCYC5tAnZRzA2YMIicODI85EI7G7TDq05RQwcr5yCuy3TNCr1KBR5OyDHyZ1p750mtWiWAQOTHnv4B+4+TJ+yVnm4HHBoEIOrkrFki4cFibxDjJDqjU2uzUxoMNCStAhJxOXe2SEPylLzfE2pbqwDFNdrV4ni5RNdmHL0RbPAC+Dxb89SZA/B1aI85u74GU5EXnBUi3wccJyXUzkVB8wDfxdQA7yUZVDohn9o2gESE8zpcqG4y50RIfejbJ4dLhX/2DnQ7bQSqfRwvJ4Z1CFVT2Knwz/BxzWOEMZEVoxLQIzogbEj+B4OqY4jPAhNEgKAlwP+gTOaUMr0DSPBpoOCv4ZwZcWp0ocPSKnBWC9oF/BAcWAA8ABC0ik6D5dT+pPsbjVCRdvvs+PFPwalzVCe14t8ypndyTJTImRSTCK/EyuS5KRxwBg0AHCPHZIqJxRUWKiAh4IM/Bv4wtTqC/arRS220WEnG+nXcQ3+xNSjdeHW0yjbFz7eR10XDkm4XMcJ5OQAa5xuh9+Tn5Dt+JmNR+Sr1gzDys+QEIhAiOPI8+uijRlIX8kSg7nr66afdhAa1kjMC29GNN97o3vOTTIVWp1JgRpkAU29+u/4NiJbgVtYel2wKYU1oZ1waAeltrV4e35VTqIoBIlEJiy0C5C9obR2QBuEHcppsjoSdmWJA9b6gjHk/kZd4RNc1qa5KgRKMJ2Wqf5WuI79El4DCLt07IYZcKTA4oeyLrdIsjcjBs0sOlw8KZJBm+5bBKrtdz7pSgmqpritV+8+NqMx+wszaPEV+IQyVobNEKnHwIKmjnWDLvnk53wlvBTSwaSM/AT5o3kdiusoxbaBJcUe0R7qdc2GJQiH7dvdY7xs9ltipnTS+B4RXCkyQsbROczRSFD4TjjkqzcOQHE3jr8ksICfJQWXGjMt5clTOvwjvcuXbqFgv7YjCZQmnnMAfSBOySHOJbJmlG6TlIPX3HGtxABSAFRetohBPQkkJLx05orZK+4CWJSKQQAhoheT5mNKVD70pPw5F5Ay2ytwhU0yfknXp3DOnqUOTcMnEZruwYqONltMhASK0H/qveKDYhl4WPYoUMQPoYeHyxjvFf8dHWILaVTyabyvL9cT9kxOIwJGH+GS0DYeUS/yRRx5xlXo1N4dygVqJ3LjssssKIOIs3fP+E8ltYFwkGyuUDCkA8xDwluOQc2LE/wDThonhYuaIax2NSHMgffSUFX5S6+mknCsPyKTR09tnX5bAd/pRrccJ1Y03wyox+7iAxGqdsfFeHdx1e3WNi/bApMJzX5Em4z/b2+y38plYrXGsEkg4oO/iqleqRTssp8ufa2cL2LhYv39x6TLbpHc0F/lUZnue4rFfIjW8K14onEOCoLZH2+I1vTj8ZaKJONNkhKuEe8WN9TakzJsI22JpAqJyEm17pMU6H2+zUUVtsHseaovbqdWdtqr5PCvridiQnBNHDitiRZoHNBhD7XGXDCoSi1jdJfVWdZUAhzJFIkBJDAXgwP+CMNKowEOJNBLOf2S+6ajnOUAhcBxdE0smqMKMoQPXEicEKJTYqljHsFfISbbyuhoHmABI8QNKHS4w5UJMpdEbGtWx8dLYdA+IbtL0RaJKJlek6KqKmDWvWZE0t2CCcWYWtCpJbQpaLacl0ffK1GGHuo7aWIN4QZ6WnEAEE/dv/uZvpk1vjRc/1xbK4qEA4PCMWnPxdGtOe4I5olq7/j55kxMJQXjniAS/y1YpAV2m39A0TFeI1mjQCYhOq0GOCSIvfBFIKRJzHBBTu0HXfFBgYqt2quSA8Kd/RiV4tgisfEEAcEtPr0te1SHtxDKZPVirBwQsRmVi6RUgOVgatWHV/SMBnM9IQJFuO5/KnMzT+RZ60xAcEMFGjc1bhcAff8+oqD/4JOA8io+Ei0DQHFl6xwrr2tmpSAYJ1wGdt3FxlY3IIbdvf7sNniiyAQndwSOKspAjZokOi6vaoFNKpakpVTQLx6cDcMZwjpTvApErkWaZ1aTFcYmeMKMIsLhd+owaO4sX83hAlEw7xasV9orfhwATYMc5YwpYYOYQKk/m/JCWwoVoql8UxVdY7UiDLelXavoeHbzV2e7MlDVLSi22SX4jXKZr3eWnP/Pdmb/188SozIxxrVmt13wtOYEI7HCcmYH54vDhw06Vdvvtt7vMaeQVZ2IXEk7l69SYut3sdgohnlPTKPXXmEDEGjH4PWL2g/I/IFNlJ+mu2YSICdcoXDOGJmKaglnhBl37fgn1+xWXvkbgo1ycCfNEPy8BgRtUz0dq6+x6OTvjIAlD9wXFKRqFdQINZXouv+9WlMaryhuxVyrxOkVrdMvEMqJXv/4+KrDzC9m/b9SYrxSAwcEzX8rbYZ5iUv7oRz9qL730kvNRy8pXSdPDOTlKUOKHUFwedjtzlGX9r8rh8pRSOj/TaXZw3LqG2vEIlplj3CV2quY01+WKThFACBOaqegJZhsmChe2qTMrcG7kTBJ3Yim+DQulqClOK0DEh14TAhS0E0Axep78JmTWwI9iTEepu9BShL2mv6CB3vSftAqEqZaVRa2CwIJxmX209s4uNxk4WN9k02Sh63b+5N29yRJSFVZejuKkw2by2/z6NycQQaau7du32759+4yMlQCK2267zflDPPHEE8bZ8QUQkV8TItPW4sQFiCyUzCngQIQE/GviKp3yPTgiLcIpvTuGIloSF4GjVSblcmkbPqAENy/KFEImTE6QJqfECgn4Sv39BwIQN4ipNQIgJqmQyAu0GmS93CINw8ulg/a0tBCvy6/peYGHHr0mtPPsF7h4TWBjt8wdF+q6NbLD50t5O8xTnNvvuOMOl7+hoVFhqJjMsizFchyMKGcBabtR2zunR2kNil8ptoEjCgTukFkirFBJmXTKN5Zb+TKFQspB0zmXnnZ89Jkx0T6QuIkICXdGRZZtms/bMDm4FOEKa8VXwzmNtsgZU+nPOeqdrJ5JFKBWCQ0IQshhWQ6nE2VWM1F3Zv0WwRsdejjbevwpXNF78qNyUQBKFEaKtiNfS/azTT0mfOp73/ue3XzzzdbQ0OBSryJYsMtxHHhB3Z2v02L6dvfKdg7inpH9dfpqF/UVZWIY7PoJxzymXT4ZJU/JFMG+vkJOj4PK+zAodXQmNCU3xKXynXiHXj0CdGx9iNDYIFBABsqbpakoyxDkYeZYL3DQLHDwDgGPHRrbiKI79uv+Lr36E106X2HYntP3V6ju1XpGvkRrvB3mKeuQsHo0Ek7zIj+YXAohlgCAUEWtDRAlod12WEK1RKaOriPdVrFCZ4ps1pHoRHfIbIHzpTu7QvM7xPHw8nkIy2HTaR0wWeRjUbPxZXA+MPKDiahPaCPGFR7qojmkmXNIAMyvj+NEXwg0OKBweh9AGDffOSyhj+56d5372v2TGEtIbioSJKI1nKclJxDBrolFesEFF7juo5GgACR4BVWo7ofCP4uGAvi4hJV7oFAyp0CpXLEbxeBlDVaCKeXbj0ecSSOq72+SaWGtAES5TAmZFIDIBRL8/8/KlY431Wj3iYkCbURS4zpz5o1mYolAzodlhmyWL8T35AfxU4EHeYzp4K+4Paz8E5dp3G8U0MgXB8u3wzxls0YWSY4aiGn+lMi8lXPR9MEcEbuq2mWPdP4L7JjfFbWqCp36OVbiHA45PAsfijL5U5DZM6RQyoV+PHw2tMFnpFhgwnhNVwAMZ8pb/jjzrf8wpmiV5W06HbVmejOmv2ehvec02wAJTF7COn1mOCI2yFjJ3zN28Flo1Cm0ZxoKTL1Aprn5bfczO/6l0iCwOdun9TEiTUSxNBJhSf0rldK6Vju+5HYlM9Jw+iY+ChQAANqBmUOHtz6L+1nXm5X//48bkqDnn+TfdEqgh+RURHC8LjPHZdJITFc4AIzTQ3fJRLJH92zUkeZoSBpFg/kti3+ewoevvfZal2hqNjXAxTrUyp27oYgN2/v/t3cm0HUUV94v27Ita9+87xvGxmYxZokBY/YlELYQCJkQJiELZJIJJzNZmfnm5MyXzHxMSCYJOVkGQshAYICEEGBMAsQYx2CDN7zviyxLtmQtlmTZsmx//1+JtltPT/KT1Lbfk26d86T3uqurq/5V3fdf99661dtVb9zrmvZrlYUCVPkdShU7I22QtBYsU1QeHymyq4Pw5A6OxO+WaLta5Gvxo/W9GJqoL46TrfWFyXOkSySCJX7Y4pYuXeqdK9nB7Ac/+IEPPIUvxNSpU5OnpVaTSBFg10D631LiCKRLOCNAEfbVItsbFJehjxwr00QGxkoT0UvC9kA/1kIkliiHlRYnIqFpmESd8nu5RplLfqD+3qs6r5YnOn4TZ8mMwv3jJcJurxNpWKRr3pPJc4vyY7aZILX7Xs28blFwJDQnUKYTnXrKOIU4JBofokOYq4sxS/Qdnu7S+xzWfheK9Jij1QeD8o45SypIVCqvLugQHhFnZkUN8ZQIGkbMj1RMXSIRNBpHytdee82NkFoV1SF7rHOcrcBPP/30VMTE6pwAAjhvRTnjSeCWKZ8FTYQnEWpJk4RpFUsztbRyoAQ2Pg6ZEAzlSZbEKpBJepZvk3njWT3XmxTIapNIwUKRAo7FRrJkUoX24V2df0U+FW8o/yr5eTRKU0mUP/b5OKgpF/tyXKGVHhCJEx1W28ZpNKMJx0g2oco6QyaTAq3GyNdyUB2z1HUEWOWWTM99R1vUKRKB+YIPCUeem266yc2aNcuHv8YXgqhpmDI6sttbRytu+U8tAhBG+tpS4ghAIor0wvD7XChCHkGntJRJS8zSvEAtwqat5yaZEnXGZHKRdm2tEoFgW/LVIgnL9JmpZz9DYyAwwkAgMHU8qSBWc6prXImWjfbSb/w0CPNdJZaxoFeNa9DsK0flEgmzEDLahkYjChxsnEaBYnMZveW4O3DkYK+B7K1ljZa6jgDkgVAIqWz67xSJ2LJli1/WGQthEKmS8yQ0EaaNiEWpe/wmSinmjFRVwZ2KXmDWnSWhSchf77JNoClpJHp/sLtmbUWFYv1ryVySqTXRHHxRK67WKsR2qXZh3CmTxu8q93hywXJPfDOaRAxKtWT1P3aWuNcUu6Ksvk5aliZtFaLQ+Ap4tVtkol6fvYqAuUgrUf5fWan7xtBhJ9xJ08ZpdCMdR/oy7Q7LJNFixESDa3fAtFMkgsBSb7311nFRZOmRkYjjwpSSGRj8fCx1AgE24fpAC4EjJTsQZktQs5dGMmIK+cGfAa1jL2kjyhWb4o/SNBTLFHOljl0sjQKbf/1aJo/XtcNohcjCEWZYOjdF1zVo9UklY0W7lCqClWvUiq41gu3l6iqXp3ZfoNUeJyrZOI0OWSaJxN0IJovRldxzS+oOmHaKRLDR1vFU2Xh4jx07tueOjm7e8ualcyfby74bgIrqniV4mrVrcTnroaWZUMAaCd0smTOScYanGvslnTfLIXKPdgl9Z0+FK9O+HfNFCHbKrPmmTBuHpXVYKu3ELhGIQzLJDNXqjpFaJkrbWBl4lcxfG9Tu5dqX47Cuq6zf5+ap7ThvEko7XxqLE5FsnEaHaqB6NzO1YRpGoFNP7rhx4xwfWBS+ESzprJAqlnXK06ZNc3V6qbA9OB6nlgwBQyAGAflFeHOGZue9JTz7aTMfSHeyp2u1PHNzXq1bL1NFpYjAXvk8LJNGZZk0C2gZWK7KVuaZeu4Hy0SD3wO7Gp6n+BcXalOihTJ91Eh7sVUOlwe1vHWj2o2T5jnSVuBfYckQMARSD4FOkYigmcSEYKfOV1991S1ZssSNHz/eB55iqSfmDogGqzQSSRASYkuUSx3KsizUkNiGCzT7gYy05b1KsCvuRwhuyiAf+ZmBGIlJBPnO5amqqvI+EYZxx/CDLAxQwKk+UvETo44VEMSOwDkx2TEdpnpO13N1psjDfD13/fbLwZoNwBSZL02xLth2fJwmEoVqX7Al2HlaCvo5+VMQqXOQgpNV6hl/Qp/90mTUi3QQQ+JNPefnKF86WpmOwXnc3MmO6XEbkEQZeCez+g5NhGkjoumY7oBpl0gE61u///3ve+0Dwr5GMwzMHIRfXbRokScDiZIICElJSYn77ne/6958800fUpvtw++991539dVXtxmT4I033nCPPvqo33wGIgF5mD17trvjjjvclVdeGU1PWymtEIA8pLJHcasGnaQDGIBOl0CtFHmo1neWd85SlEFWQYj1JjWmrKJA2F+rlRoEyxqTle332agUkchXO6bLtwGShK9EoX5fod+f1b4OLOVkRcpZ0jh8RNe+p/fGCpk92OBrmxwtFzRkuGv17E7VeVZyRJlsnEaHJhM0Mw9FhycldQdMO0UiYE8k/qMFmDx5sn954HDJS4S12R1Vz2ISefzxxz3x+OY3v+kH67Jly9yPfvQjH4OCe+CoGZswn3zlK19pXnakQc7Mg7gVzz77rPfJIKZ8Vzakib2f/W5GAEyP5xdjWLVGAGE6SiRimWbukAgELMIV4XkoBTBFo3BVbp62MT/s3hYZKJB2gjYMUP13yukuWxqW62WaYA8OAlLl0iadI6F1maa2fkbE4lsygzZKG7FPZGStNI/Pyc9iTP/hvqwoaYSNUw99ZH+YOLSlFY7sJj2soFTHtFMkYsGCBW7Xrl1+4y3IAqotHML4jvcu24DzP1HhTd7i4mKHVuGee+5xl112mY++RplsM75w4UK/qVc8EsHOoWz+lakXFkJtx44dbt68eW779u2+TIJgJVqPHjZ2u9RcNl/D3JR9Aj3ru1TBJL0YgYpZgGWRemC0SZaWQOr5YdV9KmAKEZiofr9Da9vPFiFYLw3CZhGCWmkSB2npJoToTGlWxqlNkItwDAi+E2zrMmkLr5NG4nVdt1tajF0aS/OU/2qRCTYVy9F1URGJVMA0SYdqq2phLkb7zLvWUjQIdAdMO0UiVq1a5XfpvOqqq9yMGTPc5s2bHccgFq+88op3tCQEK1qARBIPOteyBhnzB+uQISas7mCJKNuMX3zxxXG3FSdWAWYMyAZEhHLQakA4GOztaURYQw7ZwIxCgoCw8oTy8MugDrBufDVIwb0gPZyDtOBECpOEqJAP7Qz5UNXyG0HLOR4+/nMdx4My+M/voAzuyz25DhMP57iGhBMrxIpPA8vo9FDTTvJxv4DRko+6kY/v3CNLzm3k2689EPrJNs0mPbSTe5GP+/BB/Uv+oAzqwb3AkfrTPs7x4TuaH8qgHvQjifKoG+VznO/Uj0T55ONa8nEtv8GMRD7yozYFW+pCPu5NPrCgLtSVcyw7pH60jXxgEPQJZZOHvJCd/bLhNxFmWmXRrqBPgnZxb8ZMgAUYUn/8bgI8qRtt5/ghqe3JSxAeriMfdaMOJOpFu7iGfH4s6ne27pOm9uuA6yWHxDRd16B7kZ860A6u4zc40WbawtigbOpCezlHPurD7/BYoww+HAeDYDxRPuXRZsqjLH6Tjw/fKZd83CvAXZVVmwf4djSpLWN0bpQwHK/vm3SfWv0erHZKJ6lNxjROdH21xnxQBmOBe1Fevup7tfBZqet2K2rnPp1br7wvyR+qXMs+h8kpM0vlsfAzTXXKh6iCoa4DhwAbMKaN4NvWWGMs0BauAf+gT7iW41zLGAKLw9KuUB79yVgDs/BYY0xyHJwCfIM+oV4Bhs1jbf/RfGDKWOMaMAjGJM8CdWBsgAt1ZAzxnU/QD7FjkutwXOee4bHGmOQaPyZ1jt/cNxiT/A8/a+QjkY/jXEtdg7EWfKdd4ET9wTN45mlL8KxRX8qjjAFaccP3RvVteEySh/pSHhhQfoBFME6oB/UMxivlkI/EOKcOlEN/UyfqTnngGOBLvmCscZzz9An/uY73H3kbtKkcbeV7UEbw/iMf96EejBnqxG/aR/n0SfCdMgIMqSflkbiO49QzGGvUI8CafJSBGwBji3I4l2qpUySChgMQH4jEU0895R0rAf7HP/6xH7if/vSnE44REQxMBgvbiAeDhg5A04B/BWW3lXDGhLzMnTvXrxLhOurF7qJBh8a7FsKBA+j8+fP9acjHzJkz/QuFc6w2YeAEnY7GA/MNg4hz1JN8DAwGG/kYjEQg4+HlBQOZ4uVAPv7zwiIfZXCO/+TlOOdpC/fkHPjWaykcA4x4Agw2Bjn5IEA8gIOlGiYfLx/K4FpeMOThw3H/QAxL8/mq9JKGUGRowyfawsOboeV41LVOXvcjho/wdSIfbaIerLzhoQRXHgbKDB4i6gvG3JfyeGCazx3Ry6bS9yf1pI0kyiQfx8hHuZQBZiTGAhjSTl5W3I98tAUMwYJraDPtok7kA0e+0xdBn1AvjoM3fQUuXDdAG0FxP5zEKJc6cU/axXijDsE14BM4k1E+Y59yBg8a7MsGM/JQBu2gbtSdRB8VFRX5a8CXl0Se+muA6pCm9vukl+Qh4VGn67iWNnFdMNZ4idJm7kG76GPaQnlgSPnUh+voK+oBGacO9HO9fA7AEJ8l2k7bKC/Ak7IYy7SX83wHC/oLLMlHuyAR1KlBTpWUQT2ob4byna88QT80qF6NKpOygvFKnegj7kW+fbpmis6zpfhmkTraUiXs/6T2rNZ4H6jjg3TvYbprhtp1mvbh6atzBzT+B+hcgfqurHy3nFEVAVT5cqW28H0ibMGE+waCk99gQ3s4FvQJ45R2+HEozQljEqzBrK80KrQZLOgz6heMw/BYY1wGfcL45z60m/YGfQJ+lMMYou1gQFncm2sYc1zDcX6Tj+u5LmjLkCFDfB7qwTjgHPkY38FYo/70D20gH2WRl2eXdtOXtCX8rJGvWTj29bjQ74wNyg2eNb4zNhj3jCH6HHwpmzoz1ijb96vyHVQMEZ4t2sezwZgM6ku7GDeUF4xXsAi//2gXdT/2/qv3deJZ4b7Bu4B+oL7h9x/1oF6c417UKXj/0Q5w5hx9DG6MBfo6qDv1wJ+Pdwb9RxnUg3xgRz7wpR70SfCd+qbJmTj8/qO+wXMMdpTNmAML8lH34P1HP4MD+cAt1VIvNYyQ9x1KDz/8sHvxxRfdLbfc4oEBTEAAGAYlHcYAQyCzs9zxEtqA3/3ud+5Xv/qVX+lBB5HwsXjhhRf8sQcffNCXF68smsC9qce6deu8kyWD6fbbb/cDkjrFS3Ra8OH8Aw884DcN+8IXvuDbFXsdv2Ph4ndsvuBe4XPh78H5k/W/xb3p7fhwxG1zvDpSHiYrHrJA+CeKTZT5qAcPN//DqUV7dSJePupB34f7LvY6yuxIvuPVg/IaVdelelF8dc1qt0D7Slwj0vxbadty9MyUSiMWYJooTpQZm+K1IzYPvxPNF+/ato4lWib5ntXL+Rdq8xvyh2DroUv03GPm2ad+qZZWoJb+1XH6eLCE10hhlKv/9TpfKw3OAPlfXCjB8RlhiJko3JfUj99oFwNMORavfolgzXWpNtYSaVeAE+0Lp3g4Iex4JzPRC8hLvHxHywm9a9rNd/SCE/Olxb1DdYq9W4t8sSdDv+Pl6yzWyC0wReZBKpjUfu9733NPPPGEJ4Wh2ybt105pIgAxYNN8J4WBBZiAXSXScpgcDBemGJTHdZQBY4WQcL6tRAdCXChn0qRJvlOWL1/u5syZ41dowP7iJV4KfIIUfKc8PvFS7PHY3+FrwufC38N5Tsb3FveO3yxfjRb52qkY+SBs4B2+Jvydy2N/B0XGHo/9nWi+4Lrg//Gui80X9Hdb1wXHE80XW37sb8rjgWMvigGMZ8VJSNO4zWb8x8E09vrY30H9Yv9HnS+2/PZ+d+Te54kA/EUz0zc0S2uUxuRdzUJ7C5dDwqJJQap6C5+J0pIV6FhfjdsyjTk+PLE8njsJ1qV3xiWaORKwKt7Kjthx2lb9Yo+39but4wEmwfngf3A80TGUaL7Y8mN/B/eNPR77uyP5eDfzPg6/69sqz5cbete0my+oxAn63+LeoTrF3q5FvtiTod9t5Ys9Hvs7KCL2OJqPYEITey64Jpn/d4pEINRHjRp13CWUqIYSSbBa1GiAiQqI2S2aBEgF6jKYL7OJ4yU6AJUThAM13tq1a93s2bOPd5md7wQC+doPAb8KSx1DAOfCQhGHywtl5tAYZ+8JolWSehqmrPRAk7BEz/67aB+YkOi/LHdKh1yfxiOuROrx6v79XL7eOflSGePYCYYgltbrkEJwN7o3ZRLANNIXYhaTAkwpskFls0U5q2OIkBl2+oy5zH7GQYD36qCBx8zNcbLYoQ4i0B0w7ZQUYNaP+uWCCy7oIGTxs6PGwbYFecD/ARsipAIzB+YJthvnWGxCG4LNC80HtmE6BHsT12H7QyuRiswutp3J+LuXligath3vGSZCqOwvkn35kGbaOVqdEaSehimEYIae/Sv1bK/Ts4xvQx8FrtJUV1xCPhDSOpTLOW+X/CaK9P1AP0XDhCgAokwZ+0Umqnsfdm9Jk3GdyiDWRqw2AkxRW5Trepakvi57NrEq2EGU1SOWOoYAmhI9+R27yHK3i0CqY9qppwgBjxNPVAnhz1LMSy65xMd4QDOBQ8u7777rnVg+9KEPeZKAQwsOKmgbIBVoKlauXOlKS0s9YUB7gXPk4sWLvbll+vTp3swRVT2tnGMIoOmhHyCAljqOALPwKVLVB1oISuiJmI6RBoENuP6s57pIAqq/hD5iCt+Ravk9HMSpcZ8ch/WsV8ghz9sxRAogEXKzl6Nlujus36t1jpgUBTHEAEz3a9KzVmP1Ye0w+h7OicJ6sI4ZiejYuMW8vLN0pxvVd5TrJ+2Qpa4j0B0w7RSJuOGGG7xNvOsQHithwoQJ7v777/dOJThR4sFLIKm///u/96ssEFZPP/20d7I877zz3N133+0vXrNmjXfIRPuArQ5tBg6dn/nMZ7xTZ6yN8dgd7VtXEGBFB2YtS51DYKRIBE6CRxCIH6SeiCmahUky6VyqicPL0irivcRLCRKBbwTmjkZ502+UqXOrPn7TMjldOmkn8Ic4KC1kucjEa3tr3Hj5RcSSCPyh/qhyn6god8ulndSV7k1pNIhHcYaIhZk0Phh8CfxD85itKKX4QlmKBoHugGmnRgMz0LADZBRwokUgrsS3v/1tv7wGRxM0EphNAsfIK664whEKO1h6xn1vvvlmTxbwp6BOmFrQlGDeMAIRRc/ELyNdyyTB2lLnEOinWXe+PuHUEzGFQg3VOPqINIt7pXnQI+wyhUs/Cax9+vGWNAe5+j5BRGM8flFk0KdOebdLe1Gm2B9V7AgqR8yrcvd7f4cMTB5KvA+eF9H4Hy01xhfiMHhrNr2GjcPkyHlpY64baUTYY5XIH96nmVmZRiISASvBPN0B006RiBMhnGFkOE8S7KmthAkl1oxCYCo+lk4uAmiK6K9gqdfJvXvq3y1wDgy3pKdiijZimjQDn5IpA5cICESaPjhCDtLkYlFdratTYK8s5cv6gHhlH1Y8FGkhSvVpVNCgjSIiy0Q4TtOYhBiUyAfiMTlp/0kfCARbko9TPIjtKouNv1aLgCzPqY+ERByG2CjFajUO6XiV6rdNE5w6kZfTNfkaqFl8bL7wGEjm70zs8EFjUmdayGh6qjtg2ikSEQ18VkoqI8Dg52MpOgR6KqYQBlZLXJTdcjvwJglhtBSZOv+OYmuUy4SxX8fQf0E08mSWKEo/6CpECPZq6SGOkwOVf7g+b0vY/WhXmavVdRkiEAMlwPNEMIoxgyjv2rp6N1/5Z0trCYk5ZlRKvD8Z/TUiCe+LUBPbokCOsgO1ggTfjAaRhh0iK2tEYFbrU6Pfl4vYXCjtKiQn2E/koNpTpnw75UDaKAaFrwYmmWzVyW/Klnh1TkpOe+ajhznVMTUSEf2Y6BElYlIyc0a0XW2YtsQTcoGfw90SqgO1nPglRREsOdjkDkjwsuFXnoQ2Atk7XCqc+3siDmgnMFnM1yotxSX3QayGSAMxVCSil7QYo7U0eaeCW21R/gUiGJtFKCbrXOyqjpY1af0LAoF2ASLyX/K1qBAJOE11OVNljVPYZ1aDLFL5S0QwqkUw8H2BLOzTNdfKdDNYGhb8PoqlpZinev9Vm5HVKd85quvpavM4EZ7hygOhCAhH61p0/gjkpVZ1QdsDIcsQNpAWH7QrTrHoWoSs66u4Hk0iOBA8+iecyHNQ5UH0MEmdiHqH79cdvqPVZxFBKr9LjUR0h5F4Ctqwv0FBZzRzstUZ0YFvmMbHskiz81sLCt2FcrBcLdPFeq3WWKXZ/UoRgS1couOuplobedW7cn3k9d1ckJwAJyo/i8MxJXxGflKc+bp8IhZIcJfL/PEX/Udgx4sx0VxI/L/7JSzRMnxRETEPiKwMk2DdKP+MRXouEK2YOPDlyEHQSlAU6FMsEvG0yA3ai0/KNLtJBOJXIiAQDfLnKA/nCYg+RG2+UgL784qRE7uRWfwadewohOYV+Yq8KwyIsXGJtEBThBGkJZYcUPIBtXeH6jtXK+HGqq5T1N6hIjnhBIGAFKGZuVSTjFy1wYhEGKHW39FC1EsrhlO1S1E/dSMRrfvVjiSAwD69iC1Fi4BhGh9PhDIzZTb8KpLgOk/koF6z6A3SIszRqoz/rtjj9ur4YWkpEMAZWvY5WD4WjbpmhMbplTIhzFYcGlaBeOGu2b42dnDbdO432iPmcpk02HWU+B2J+CtAINAy/JtCdpdXNu9hUy+BWYgWQloEzCeVIgplql+1iAabvqHpaNT9K1Q3NBArdQ6/jQOKh4HsYKlvHhu5STgzoye0N/EvDh457O5VgCd8Q+IJd2VNOFEumodFaE/kK/KOCMQR/R5zoNH9VXhAIMbpPqel93fDZCoiKFp/1XuryNoi5V2uMO0ZCv73oq6ZIfxvkkYFzQv+bPh+vKm+eEHaopUiErvVthsUCwVtSjiBPxoQNBncj2t7csL5t1Z+Onn5reMgpQouRiJSpaeSrJ5EAkxlFVySwemrY5i23SsI93Q+ErZBwn8Awb9XAuw5ffalNbqBCt5VKMF1SOfOlNC+TjPii6UuxiwSXDtbL+xivbhXigisk2D8ucJt45NBWbn6sPz2ImkB8iTQY2fSCD8cOJ/XBmBvKwbFAc3ojygfS00PSzj31u++8ovYJyFare+QAUXB86YVlqQ2cayhr1un++3TNRkqL020gValk0/15oNPBJq++apfjkjJDWrDGLWno0QCoY2/xl4J7lLdGy3BH7UJ1XyRp3IJe+2J6+rU3r4iUcNlMqpRvdnevb/ujyMrAgLNyUYRiTVsBqg+OCTTTbli9oD7NcKJMO4QngXClKW4CMYXdR7SRzty9CFxfKXuP0/5KnTtTBG9c6VFwoeko+3yBXaDP5gzUj0KqJGIbjAQT0UT+sgezZbJlqJDwDDtGJYIn3PQOEhI4ivxvoR0plZ44FyJxuImaRjOlZAcFSIQ3OEaHV9VpRmzBF+DhNpzMiGwLBQCwT4dOGYyYydGBUHB0CIwi8efYa3u8YLIw5zyClcrU0mGZuw5Wu7cS7Er6iRot4pgYL5gGSp7oozQ9ul9lEfqCFej8/WqZ5U+jmdHefbq05w0I+c7x3X/YfoM0ZbVWk/pXpZApn6XKSPBufpSfjsJ0wOagVIRAvYa4Tuaka0iBwvV5nelMTgg04tu6A6obQj0LGlE9h7q5+p1P/YtQfPjtScqq17nqxu1s6U0FtWqR6bKZPa8R2QCjQN+KW+KkJWofelqAuRj66EDbr5MRWwLT0wOWok55GVpKv6iOuzV/UpUh50Ka8552kV/9jS9BJoY4m6ciBWP7QyRSE8ZiYgUzp5TWBBdkZghlqJBwDDtOI5oEGZpNox549ciA9sk7BD8d8uHgpUXZdohkXPZElRBmiz782kycWRJSNcp/y4JV67po7IaZD5YLMGIqWG/vl+ak+tXTDCbxwfiKWkgXpUfw2YJzTQJ26G69zBFb0Sslx/Q6g8d137Yim0+wI3GvCEnSxwW0QhsOTjA7RRpqZffhA+aJY0FJMF/qJw0BUdUHyLx7tQHDcFo3X+r7v282gaxuUptoq6YPZi9I3QR0CwnxVkSZ8+dKgefEVaoLNN/tBDUHy1DuYgPq1MG6N5p0hQQAfSIzDq10jKspV5qS4FMLlP1P0NanRpdBz7lqncvCf4sLbVtkA9IvcpCk1Kh//iZNOjeh/Qdp1b8S6ZIwzBPzqJoi7xJQ/f5gwjE7+SHwcqVQpW9WGUuxdwkf4yr1a5z1Cf4f/QkIkHEytKyUjcibYTfL0pQplwyEpFyXZYcFSY4mEWui7YvDNPO4cmOqDfK/o5AhDDgIIiGAlNEPEwJ9HWmtAwXyazxqmz8TsKuVLcuU/5eEmJ9IMa9Mt0vd5drlUWTmyXhhlD+hfwI1irvXgk/OU+43hJ+gyQk10p4ssIBf4LJcoQMkg55gXhIZAQ/gKEqe5SEZW99vNZBobvDArOZDMhnQTP2Us3Wa3WfVSIETkSClRG7pAHBEZTAXFeqjCG6H21BE1OlOpQo75+ltZgnIrNNv1nBMlSajf69+rhN9QdcBQSH8uTzMDVXK0REFLj//pxsBfXa5/ajRdE9q/T/r1QeTYgIg1+CqHamZ+e52arXYpk9dqo9B1Vete5PW/Ct8AkyI3K1QiRhsLQL+F0QhTRdmst/273L7RaRcNLaDBLJOic3x/ugvCTNyHq1+WOq80cLC1uEgm8utPv+DeIjsfVDqiYjEanac6e43rYcMfoOMEw7hymCEBU/mgdm5OHlhW1hepZIxrVarbFCwqtQQm+bhOVeCTFWdhyWcNwq8nBQef4g/4GXJJh36nipjjdoJo+4LJA243SZKqolED8mgYwD5DrN5Mk3VEI2TQQBzUGVhC2z+REiELXKSxRO6nhEle4l1sCKjBwJ+nQIhQR3Hwn8M6UJGKs6lUmIb0LwQ3KkxegjwbtHef5bWon/FZkYIxKBIynmCO7Fp1H3I42S0GYp7GKtZMFks1/kgWWm/aU5mZEpkqTyS1WfA6o3WpKzZJLpL3JRp7IwMZRJIyJHD+/PMVQ4jJIzapbaQN3HKsx4lv7vloaiWh/KQoPB7qhZqsNq+XGAYT+1a63Ob9C9uc+emr3uMCRGefZIq7FYDqdoWgarrsQA+R8RDHxOPiJCiCmIfm0rUWc0LJhrMNOgfTkkncz5crodK/JyvOvbKvdkH8eMwT5QkN1UTUYiUrXnTnG9ia5I1DozZ0TXEYZp57FE4BRK8MSmtjBFzX6mVO6TpWWolIp+TC/NyiXcaiVAN2ts75N9f5cEX7mEKd4DDSIb+DXI5uEGywwwREK3SWJupq6/SU6PrGLwu4RKuO9UviM610+VYqnm1RLCU5T/oBwliQWByWGv/mMK2CXhVykCU6EPmhRECVE58evIUIjp/hLEGzSbP6B6lKvcfRLgByVwRopgYJ7A4RQzBloMPmgl0MZgamjkGtW7Sfct0DU4Zg4QUcBnA3+HaSJCI3QcAbxaZoVDKiC3nxwqdWxok0wdHxCSHNUlU9juV5n9hE1m31y3T/cvEPFhFUc/zaLR4GBaStP9wWtbdY2rFoHxYbx0frvKb5Kw74uZhH5S2RX6rap5U1Ou2tVb7XlOREJVczOl5cHRlXgbaFh2yES0X5lpa736pVL36cd3ESHIBG3GcXOJ7jlRbaRtE9VeVphAKhNZdaNqn/SElocooET/TVUi0fqpO+kw2g1TEYGDerjNnBFtzxmm0eJJaW1hip8CM9arNRNG/c9SS1ZR9Neseq+kWJMEGeGxWXWB0O0tIVUgwUnI54G6Llez534iFLeKQEwXSfCCX8IRE8pcqfyhEWMkYC8UEbhMAnG4ruGcF/ISHATFYha9SYJ0swQ94bsRhmgCcIxUFBYfqnu4TCsHdP86mVNqVZ/ShiaXpuvy+2urdNUXDQwmDb+KREJ0r2b0ZSJClcrbS8QkU3XMyUh3Q+WbwaoV/BfQgsxQuddIg0JgK8Jyv1KT5n0+WImBaWZE/zS/GkZWGy+8IT/66s5SGX1EnEolnInIuU/36CUyAYHBL+SI6jJEZUJeauWI2Vf1HiCsmvC30P9BwqpQuBzRdbt0nz1qf4WuHn54gEtT2bXqh99J+1MqLQjOnbsgEeAjElEisler33zQZOTpevxS8MGA5OAYu0112qB7rtdnotrM0lhW2bBChA3v+I/jZxBcS1X2AbJYdgtB4TireDyenAwlT2DURyRICQYI8kHI4uX3GRP4wxhN5aiVRiIS6GTL0hoB9sywJZ6tcenKEcO0K+jFv7Y9TAmWdJtU5wiZtzXbJxgUAvl0CfxqCckymRHqWMUg4ZIpoTtZZCBHwqpWAhUScqN8CS7SJ1uCGgF7moQnQqtIefh9pgQmO4UiZIJE+XyYtY/V7PND8s2ANOyRIGGXUnwvlmq2v0V1QWPRR9IZR9BqCd4SCdxyZvTK55dSYkZQWX7qzi00K8dhk7DgOF72kxAdqud0jGb/EAPMKphTrpAG5s7CIjdJ9aUuOGpCJl7Rss/X9jYv0zyociAENAQzTJrYxLkiRDfKZDROZqDdugeRNufoU6F6IoTBqdmy38vl6r6Nh2pchepLIlpoZlaebzPC/qAIRb4wXiWNRY1MRCWQJ9VhqjBbpXau9qtHdKHKREhBGNBG7BE+zveJtBEULBz9klgIntoxSOU2qKy3ag+6V2VWYVkwK3ZG6DzmHwJrQegG6zr6gOQ1Q2oD/cryXvIQ4CzoN8xXrMwhQNdG1Y0EeUP7xDhA0wHe5AdnNCh8EtF+YMJiw0jepRAxzDQfeJf4+6TCHyMRqdBLSVjHJj2oqewMlISQSltumEbdL+1hyoxzrATX30qY3yEhsV3C+W0tXXxJM+FdjYfdWBwas6UR0It+rIQLRoNizZBZFTFd/hAfLxooDcSxfTcQGgimuxSNkoRATUSQIIiGIth0j/NEKj4hQUJMBwJaEdNhsQQna6AmqK6E6MbvYpUicx7EZ0GCz3+k4ve+CfJdGK72EIIbvwDuj5p/u8YWAa0+Lvv7x0UCCiS0gtgM5OE3xOJiESXMMoQY5751KneMVnJco+P3yOmxUc6dCM+JqgtxIIhfAaFpXkbaTISWy6TA0tUq5fF1E7b9RSrY7r1S39dKU0IaLsE7UyTu3fo6ETYtGRUhWSiCMFnHhsivBP+IMmkftki7wl4nh3QfeXBq4xQZfQZkN28HL5yc7ld3pN6tUJn4GBwRYTiiPDnCYKL+D9Z9IAE4eb4hTCEmEC90CmhP4F/cq0H9O1KY3aI2ESEVMkE6oGvBhKXAc1UGR4N+RfCTBukeI4UhG8DNEBGaKd8THH6P0cfmfPH+oomgj4j4ySoalt0G5cbLn2zHjEQkW4+kSH3q9TChgoNFW4oGAcM0GhzDpRwPU4QIAoGgSAhpZqDTJIjnSIi+IcGBo2KGzhfrRc8yxikSErMk6C+RkEArEQiT4J4IjWAGGxxL5D/XoRKHeCDc8VXg2ZqmOjEzJ0z3Cgn1XaoPs9yLVIejazsQikHSOcgRannKQzhu0wwercs1IkX4b4QJRHCZr7euYTnmVR9Eolyt+2JuwWGSjcPQ2GxWPfJVr96qF/cZqHM4XHIf1P3M6rmGzc/6HEl3ddLS9FXhQySQCbzVT1qB67NyRbb6uD9LC4FvCJoWYkRsY4WIyNF6EZWtqjukrVFNY6ktDp1ywvIxPwrkP7FD/hF9de8RqlcfndslQrVFfXRYhMP7rkibUyctyFrVcbM+h1SPQ6r/IdUFB1OpRppXlGCOEVE5Is0LGoA9aH2kedkkU8zNwoF+mKOQ6v8r59rlMslgcqLug1VevvxV0Dkh+ImXsUEkZ57u+apI0XnCCTKCJopxQqKXGE84wEKj0DpAIDaovQt0fLXq+U5pqasSftQlVZKRiFTpqSSXdqxBAAAuIElEQVSrJ17vqeoIlGRQHq2OYXoUisi+JIopZIAlkekSGmgTAufGhZq5lkkIF2k2jkA4W58pEqA+rgTC6AQkSkU7wYe6sJRztD5nikSwI+gmfTAhQDioZ0AYwlVBAGMmKZFQRRBeJQJBkC1U+e3VGvPGQH0ISQ3xoL0QLBw9cTwtkJYgeO4pB8LD+SBhyiHWw0cPFrgXKqvczl6Nvn7eSVJ1Zj8QYkLkSAhnSpC/KuFMOUNkrsEsUC3BjEaoDtIgLQ/1KdJ/dkjlvn24Tve7VPWBAO5S3zCLHy3tQ67q5+NviBQgrH3ocZEE7yCqfF5yBxVt8V81oC91TaNIwHpdQ4CtncKOEOarRQg2a9JUozKIzFEtInSIuupDyzHl1InUYA45pHPVqmdjZpMrV3kXSivBap2Dag6OsXwgWxAISAVxIqpFJGo0zjbo2FaRnyG0Q99TJRmJSJWeSrJ6YsMzc0a0nWKYRosnpXUUUwQaM+xpevmjlSB6JRtljZZfwYVaPkhcCIT7yUpoE6gHH/wWztYs9V0JnKUQCQkf1PTV+iAEqVV4BntYM3i0DtdKaBNXYrx8JBJN3JeVDXyCdFjHwBPzTlsJMobG4jqFxcfBc77MQwjORtVlsuqPMyfqfsgHjo5oJxZLQPO/SESgIFtz+377pdnQHYQz4beLRCwG6j9LVht0nAiZRCOlFq9JW0RI7kMS4iNUN3kmuF5aWMK26jnCpb/u7TUTaCjCwhkhTTtEEnCoPSzhj3moSmURynybri3V9/3SShyBgOja/iI9uX16eY1UhfJ67QhUgHL4kBqbV8bsUF5IBKtvilQ+jrZ7VBd2dIWIfJDbE7O+6scykYcyaUP2655Dg7KaS0z6v0Yikr6LkrOCVbLV4qluu3hG1z+GaXRYBiV1BVNm4rfID4CZbnuCM7jXif7PDP9cqe/PknYAJ1DIxDv6rBHJ8bNgCShkLwIaopObpvpDIPJypVVotu93pY7MmndrnxE0AizvbitBJCBbN0udj7niJZkDCqRBuFtYotlAk0Ai1PXntDHaL1Um27LvkxDNlTDHuRIzgZelNEiJOByVEuhslPZhaTNulkYEooPfwvN6F83X9ZhScGzkOoR0ocjHoDRpXsQq8E6AZHEO/kAAsGbC1SzOQa5B5a9oSPPROfG/aMDfAvIgLPuKgBUovsZ44bhbx3aLEOzX/XxhkErVm/IaRe6Iy1Eqp9zJaQVut8qo0nkcPLNUn9Hqw2YTWLPfw2GVc1jmj/XCCz+SfjKjpFoyEpFqPZYk9cWBKRlerEkCRyTVMEwjgbFFIVFgmmzjHAfJ0fLNYOOr6yWomeGypHG9hBe+Bfg1DNM5YmGw50ZnfDRagPjBD3BA+5goHjhf4lcwTj4MuTIHXSATaEAgKBISgFnoi4ryeYGIA34or0uzgDAukvkC8xKJOBf4goxR3htEiG5Um8GARKhs9kmBWL2m6/dLEGNewO8ADc0uNBBKhap3roQ45IRdWNF8KD6nNy0ExGu07pkn3OqUl11ZnTQkCuDgTlO9RyoAWLOj5BGnmJrudN0znDBOEJV0g+q1VfU+qHas0g6vE1XX0fKxQetCam5R85WYNei7xfq5TxomfD4UyKP5ZAr9NRKRQp2VTFXN50HWC8tSdAgYptFhGZTUXTFFhDKjTZNwwm8AE8JUCdJAC8EKCpYhNovaAI2u/YeQDZbmgMBIiSTqx2qSUQr+RARPfDfCQpQy+M1ST5a6suT1apEOtirfJLU+gp4resuEMFzmpBtkIpmpfAjzIAVEBHMN8TogIP4jAc31LMvcLAGNLwmxJgiohZYEsoWDJJucQWQgXAj6ZSJiL0pzshTThYhDrs5xD4JbseeHFA4+0ij3gJxRE3QH+DhgthijctLU5o06d0jake1yHt2tlSV9dNwvR6XuKgsTyxERHEwoEJ4jIkNjVf9CEQ4tYk2pZFIgpboreSqL1zsqTUwalqJBwDCNBsdwKd0dU4QwKvx+Eoonep0UZh2iK2LOwDcikURgJz7tJYgPphocNNm9lNUgBOJiVQbeAwjuARLq+ITg4NlsDjhWIu0P/EaOHZWchkiImECupmNWwHSgY2hDIDSYF3JlZoGAcW/qQfmQiRHSnCzRO44oF5m6/wSZMSA5EA6EPmURqpuImZSFVohlwKT3RESe0n3QelQqaihmGG2bqo9O6h7HnCYJlqU9V1RehghLtu7RpPOx7fOFJvEfIxGhztnfdMCt2L3O/WH9a6GjYsrpOW507jB9Rki1dsi9W7rC7a6vaJGHH4UD8twY5RueM9QdaGp0S8pWyb7mQ6K0yDswo8CNzR3uhmQNcvsONrhlu9e4in1VLfLwY3BmoRubN8INzChUtLo61W29gq1oA5uYNDRroBunfAUD8hXLvsatrNjoqhpqYnJpXXb2YDc+f6TWT+e4ParXmj2blX9vq3wjVf8J+aNcZr8Mt6u+3K3fs03bGNe2yLdTS5EmDRrnzs88WxHp0t3OujK3sarY7T2gddgxaWzeSDexYLRmRn1d8d4St6W6RO1Bmdgyjdc9TysY6x+irTXFbltNqXZZbA5WE845sWCMm1Q41tuqN1ZtVZm7PI7hPHyfVDjOna7PwcNS9+7Z5Erqyl3DweZgMUHePnoBTNI9J+pz8NBBt6Zigyut36MQvzzxxxLRCanb+PzR8p066FaWr3W71Wf0czilyw59muo3Nm+Uz7d812oF3Kn238P5MvumuwnKN0ZjqvFQo1usMbVqy3rXu28fVyh7b5By+mW68cJuVM4wrVeXHXzncvVFnR+HQR7+56Vnu/G65wjGnvK9vWOJMN6nlyZzpmOpcICCBSnfMI0F2vjXHe9pR0bFR9RLL5wGZeSrDSP9GCXfm9sXtcKE/EOyijSWm8dovcby/B2LhUlL7Mg3PHuQb2u+npFa1f+dnctaYUe+Uao/zxpjtEZj892yFXHzjc0b7jFhjFYK3yVlq1thTHn96nq50waNdZk5mXrGKt1yPd/0X2yizxj3fXunacxX+GeI8RCbJheNdyOyh3iVfmndLrd2zxaNGznvxaSpAyf65w2hVVJb5jZUbYub76xBp6svBvkxur2mxG3Ws9Gk8RqbzhkyxQ3T+4K+aH42yuLmmzF0mgJMDVSf7nObdM8dtbvldNgcZTFc5gXDz3ZDMov0vNa6DZVb/JhvkU/CDO0B5Q1WPvpild4/i9e97wr3FMkXisgVyEQRGD0b5w6Z6t9TVXr/8AztadA+GaGxR74M+SecPXiKK9L7jz5bVb5e24trn40W+XpLmA5w04VL4YAClVPl3t+9VmO5wS0K5eutuuX1z3JnDDxN770837fL9KztEz7hsUy+wgE57syiiS4/p0Dv4z1ucdly7Wmi7dFDY76PHCwHqZxJhePdZfK5ONxY497cstgHwWITs+EiMDkiI0XyjchV/fOzR7jaXjluXU2ZW7truZ4/Rdz8ILZFb5GING0137dfnhuUPlCGjnTXoHdPRcXaZi2EsPAOnSJOvfvIaVZbsBf2ypd5BSfZRk9yEjUZhfv0VH03EhFCHkE5d+089/Kfl4WOOjd98CR35+Tr9NIarhf0AfezJU+5uXqpxqYLhk11d53xYb0UhviH85ElT7r5xVi8WqZLRpzj/uaMG91APZwM6h+/9xv3dknLe3LF5aPPd5+aepMrGHWBK9lb6n747q89gWlZmnPXjpvp7jnzFndu/7P1EtrmfrDoV/6lGpvvxgmz3WfOus1N0YO3pmK9+/6ix/VSXR+bzd026Sr32bM/5oXI8l2rVL+n3KqKTS3yoYa764wb3NihEjSZA92inUvdL5Y9p5fq1hb5+PGpqTe7+6bf5XLSs9z87Qvdr1e+qJdqcat89551u/u7GX/jX+RvbH3LPbV6jgjHzlb57ldZ4/Lu9i/eORvfcM+vf91tF5GITV857x5PIhok3P6wfo57aeNbIhItyV+6HuIvn3e3JxH7mva7Z1f/0f1p20JXVt+S/OX3z3RfPPeTnkRA/J5c8bybW7xUBKElWRuSkefun/4JTyJ4kT+27Gn3dulKrf2ubVG9MTmD3OfPucsLVojSz5b8xi3csVohfRuk9Tw2cztdpO+z59zpBWadiNd/LnzUrZTg4mUZTmcPHO8+fdbHPIlASD/0zi88xgdiBOEFEkZ/e9ZHPYnYK2L6r/MfEXYSSKEXNOXOGnm2+9S0Wz2J4Ln4p3k/lHDdE76l/371mAvc36h/C0bmi1Ttcf/05g/0vyV2ZPzIhFkaLx9x04dMczs0lr+tfPGI8+2TrnR3TrnRTZYQRgh+a+7DcYnzJ/WcfWzyh90YEZ3V5RvcN5UPARab7hh7lRus4Er56oulGsvfevM/4xLnvzv34+7WSdeIvGSL4Cxx//rXn3uyFlveP17wt+6m0670Y3Te9nf0DD2hZ701IX7woi+4Gydc7snen7fMcz9d8j9xifP/nfUVd72eSyYJr2x43T2mZyMecf6Py7/urhs/y09efr/uf91vV/9JRKG14vuRa/6PhPlF2ixst3tm1R/cCxvniWC3JM606dEPf9eTCAjOEyueda9uWaRIj8fGFBqADM3Gf3rtdzyJKN670/3q/Wfca5sXa7bc5IM6UQ5CukjP9cNX/ZMnEdtrdrifvvdrt6hsrd6Vx0gYhGS4JkX/fsU3PInYUl3sfrDwv9wKTWQaQySsr4T5hLxh7juXflXCP9+PgX9f8FO3Ue8BomgGCeIyTROEb1/8JU8iIELfmfefrkRjNDyW++v5Pn/I6e4fP/QFTQZz9X7a7P5p7ve1b0dL8gL5v1TE6svnf9pNFYHJPbDL1az7jauTCWSXZP48Cf55uvkAEaFrxp7vvjD9bjdDxORQ1Sr3vUU/Dqrl/+OXUXWkj+tTdKY7Z/z1bnDWUD07la5i+/PNWghIxAfpcJ9+rrJoupwzRrg0mWwyhS17lURphgrudaL+G4k4UchauYaAIXDSEAi9l1vek/f1sXd2y3P2yxBoAwGEOH4lxMyQ5G8jV/zDrMQYJi1DkXxBakQoestccTTFDlQVjdmlVP4WV0ibMV6+HW+FNCRHr0viL72k+ukYQkncmK5W7fP3f8HljSp0t3zy9hZFZUllOkgqrEHSHLA0aEPl1rizmRzNVgfJ9FAoVXCT2PXGqu2tzAAUnCs1HCrCfKmWUYdvFiuPZwZARY3KMVeq3X1NDW5rG2aAApVDvux+WWLO9TID7Iw7m8Hcgqozo+8Af79izULq45gLBqr+Q6U6TRfrxjxSIpVo7KynuLjYjSoc7s4aO0XqzH5e7VgqlV28WQ9tRZ3dR6riCs1Wy6QNCM96ArCpGyYXVHmolHeLvceaFciLKn6EPgxdVMrlUo3GmhXINyJniFc9o6bdUVuqOta0UmVjfxwuzRH3xVSFuaVKqtvw7Iiy2OiHPOCCunmbZlzVms1gKgknZkjDsgZrBj/Q59tcvd3PVCk7nJj5oJ5mTFHGJo2p1ZvXSwXa1w38IGwy+TP69vf3xKTVbJbZ7M0PYRUw+bLUp9wTVTH51sqkFavaJV+OxjL5MH2hrl8l1TPmj9i3AGMUU0V+ep7HbIVUz/HU+5j66N9cjVX6YJXuGy8fZhTyZck80yCNDzPCeGYAxt4gzVgz+mb4sbleuMRT72PqwyyYLlNanWbxmNLi5WvcU+/H6YihI/yzuKV6h/K17AtwYXyCXZq24q46sNc/Qy3U+2RSGqkxVSTsGKOo5Itrd8U1F2CSYSaN1z6mQ0xp8crDXMlzSZ3QSpZp3B8KC53m20oDNsoVaCbdePig10Yws40dA2TF1MeM+4AwLq3freetJm4+TH30HVq1nXoPVEpTFlseWgbMPHnKh1Zta2WxW7p2pRs8ZLDLliNgkDABTZDJLVdaHLRlaC326r0SFi3g1V/5xqkdaHswZ6K1qIsxpZFvgJ6NMbmYXbP8ewrzTYPGVmx5WTIJjpIpLVtjCrPMZr1vD2jsx+ZjzI+UOZCxh1ZtY6VMS8oXTrwHGPOYAzM19jDzMvbiYVKgsY62mfco74p1Gsutkso70ifD/bbusFuyX/4dum9Gwy7vdxGwWpaVHlRgrL4Vte6MiWe660eMcm7pUveTh77vnnjiiRbvgVblJ9EBIxGhzvjSl77kpkyZ4u67777QUfsaD4Hy8nLvYGVhr+Oh07ljhmnncGvvKsO0PXQ6do44EWVlZT5qpTlUHx+7JpFBIp6+pdUmSxTOm9geROlMlzOlD5ylpavpmpRO1d4f14wa5aYrjsb6d95x3/3ud1OKRJg54/hjwXLEQQDvbFviGQeYLhwyTLsAXhuXGqZtANOJw16boFUILPW0dHwEiGVxvjQ2rPggcNlfRCbYWI04FURFHaLt1kfp3DSZMc7KzvJLT1t7qB3/Pqc6h5GIU90DKXp/lnqxXtwiVkbXgYZpdFgGJRmmARJd/8+Ge3v27PFLu9uLWNn1O3WfEojVwRbxhOqGUDwr/LYpGia7fV6mmBdsO79z61aXLa1EqrruGInoPuP1pLYE1SYvFUvRIWCYRodlUJJhGiDR9f/4GrC1etjnoOul9owS0DxAHL42dKj20WiO1kl8C8JeH0pxTI1E9IwxHHkrcf4zc0a0sBqm0eJJaYZpdJgS8nrEiBEWYK4TkKJlIPIlGLKSIdA69OoGmJpxqxMDwi5RrHcFVNlPvHdLkSFgmEYG5dGCDNOjUHT5CxoIzEMHFU3SUucRCAgEJXQHTI1EdH4s9OgreTkfkG3PUnQIGKbRYRmUZJgGSHT9P+bLOq02wKRhKRoEugOmZs6IZiz0uFJwqCSGvqXoEDBMo8MyKMkwDZDo+n9WZWTLGTDRfTO6fsfuX0J3wNQ0Ed1/nJ6QFtrSuehhNUwN0+gRiK5ElniyIsuWeBqmYQSMRITRsO8JI1BdXe1VmwlfYBmPi4BhelyIOpzBMO0wZG1ewEqXiooKM2O2iVDHT3QHTI1EdLzf7QohQMQ6M2dEOxQM02jxpDTDNDpM0UBkaCdLW5VlmIYRMBIRRsO+J4wABMJsownDlVBGwzQhmDqUyTDtEFztZvb7WmjywDJFS9Eg0B0wNRIRzVjocaXU19fbEs+Ie90wjRhQFWeYRocpKwlqampsiWd0kPqAfamOqa3OiHBA9KSiiBFhDlbR9rhhGi2elGaYRocpMQ1YMosd31I0CHQHTI1ERDMWelwpw4YNM7VmxL1umEYMqIozTKPDFF+IsWPHWsTK6CD1/iWpjqmZMyIcED2pKGYkFrEy2h43TKPFk9IM0+gwxZxRq50oLWKlYRpGwEhEGA37njACvEwaGhoSzm8Zj4+AYXp8jDqawzDtKGJt54dEVFVVGYloG6IOn+kOmBqJ6HC32wUgwNI52w442rFgmEaLp43TaPHEBypL21nbEs/ocO0OmJpPRHTjoUeVRDhhe5lE2+WGabR4UpphGh2mLEfMzc215z46SF13wNQ0EREOiJ5UVGVlpbeP9qQ2n+i2GqbRI2yYRocpqvddu3ZZxMroIPVLPFMdUyMREQ6InlQUQXxMExFtjxum0eJJaYZptJhiwrSl3YZpGAEjEWE07HvCCPAysYiVCcOVUEbDNCGYOpTJMO0QXO1m7g7RFdtt4Ck42R0wNRJxCgZOd7jlgQMHzEs74o40TCMGVMUZptFhSmAkVmRZsCnDNIyAkYgwGvY9YQQsnHDCUCWc0TBNGKqEMxqmCUN13IyQiFQP0XzcRp7kDN0BU1udcZIHTXe53ZAhQyxiZcSdaZhGDKiKM0yjw5SNt0aPHu1XvERXas8uqTtgapqInj2GO916olVa5LpOwxf3QsM0LixdOmiYdgm+FhcH+zw0NTW1OG4/Oo9Ad8DUSETn+79HX1lXV2cRKyMeAYZpxICqOMM0OkxZ4lldXW2Th+gg9Us8Ux1TIxERDoieVJQtnYu+tw1TwzR6BKIrkZUE6enpZsaMDlIfbCrVMTWfiAgHRE8qKi8vz14mEXe4YRoxoCrOMI0OU+JDDBw40MLdRwepj7mR6piaJiLCAdGTiqqoqHB79+7tSU0+4W01TKOH2DCNDlPMGaWlpWbGjA5Sb85IdUyNREQ4IHpSUXgVW+S6aHvcMI0WT0ozTKPFlCi1mDUsRYdAqmOaVOYMPFXx/N2wYYPbsWOHZ7zsbDhhwgQ3dOhQv3NkuOsCZrx169ajDj9EqBs2bJgbNWqUy8/PD2e37xEiQL9YxMoIAVVRhmm0eFKaYRodppCHjIwMC3cfHaSekKU6pklFIoiEBnl48skn3VtvveXYPKegoMB9+MMfdrfeeqsbN25cCzs8+d999133zDPPuM2bN7t9+/a5nJwcd/755/trZs+ebQM+wgEfLorlnaaJCCPS9e+GadcxjC3BMI1FpGu/wZPJm6XoEEh1TJOKRLAc6yc/+YkrKytzn/rUp9zMmTPd8uXL3Xe+8x03aNAgr1koKio62nsMZljcrFmz3IMPPuidflatWuV+85vfuF/84hdu8uTJFmzmKFrRfqmtrfXhb3FcsxQNAoZpNDiGSzFMw2h07Tvv26qqKj9R61pJdnWAQHfANGlIBGDiqDd37lx3++23u0suucRHR2P5y1lnneU2btzoNm3a5MIkAnX6ueee68444wxXWFjovYb5vXDhQrdo0aKj+bGLWooWATyKzZxhmEaLQPSl2TiNDlPeo8OHD29lVo7uDj2vpO6AadKQCDbKYV/18vJyN3bsWDdy5EhPCiAHkATMHGgowgl1OufDibX2+FagIoKAtOcEVFJS4tBcrF+/3hexcuVKhze3bTATRjT+d0xHPAD4oFiKBgHDNBocw6UYpmE0uvad9yraYvxMcAa01HUEYjHFLM/+JBxPlZQ0IwESsWfPHj848WtgoJIQVMS/x9kS1WR7CeDff/99t3PnTk8ucK7k+rZScM/i4mKfBQdOZtfB77aus+POvfPOO34N/umnn25wRISAYRoRkKFiDNMQGF38SghxNMVnn322fyd3sTi7XAjEYooMu/DCCx2T4VRJSUMiMGegPQC8sOAPoqShHWhPQ8A5tAjPPvusJxuXX375cQc6jpp8Pv7xj6dKfyVNPR944AHvc/K5z30uaeqU6hUxTKPvQcM0OkzREqO1vffee725ObqSe25J3QHTpIkTEajG2a8+vMEL5AKVJOqztmzwsDf8KR566CHvB4E/xW233dZzR6a13BAwBAwBQ8AQOAkIJI0mAvMF8R0gBGgUMF1kZ2d77QNxILKysrz6PB4m2JGefvppz5IhD2ghWLVhyRAwBAwBQ8AQMAROHAJJo4lA00BMCGzsq1ev9g6PEAkIwnvvvecJBnvZx6a1a9e6l156yS1dutRdd9117tJLL/UexO05VMaWYb87jsBpp53mce74lXZFWwgYpm0h0/njhmnnsYu9ElMz/hC2rDsWmc7/7g6Y9vkXpc5DEN2VCH0+OJps2bLF7d6926/GgBxs377dB48688wzvWlj2bJlXlPB6ozXXnvN/fa3v/VOmQSZwrMVJ0xWcmD+yMzMtKBI0XXT0ZLAdsSIERYV9CgiXf9imHYdw9gSDNNYRDr/m/czGmNWz/FetdR1BLoDpr1kPkiatST4P7CE6LHHHnNz5szxm70MHjzYB5664oorvKMkBOKRRx7xyz7xfXjllVfc448/7n0m8KugU0hoND772c86olay1NOSIWAIGAKGgCFgCESLQFKRCJoGp8G5srGx0ftDoG2A/aL24TtOl2FHS/KRPyAPATyYR7iOmUjsuSCP/TcEDAFDwBAwBAyBziOQdCSi802xKw0BQ8AQMAQMAUPgZCKQNKszTmaj7V6JIRCYl+bPn+9YIYPWB43QlClTfChyVsxs27bNzVUAGpxgWREzffp0f458ltpGAI0bodnx+SHqKpvMgTe/2S8GjRshm9kXhlDDaOEsxUcALAkc9/bbb3t/qPr6eq+FZJUWe+4Q2wBc0WCy4mu2TJxjxoyxqIvx4fRHedYZh0T0xc+MyLTspAymJMzKNk49FHH/4Nv3xhtv+PEIlpMmTXIf+chHfF7GKti1NSa5lg0oWVSAlp3nH9M974NwDKW4Nz4FB41EnALQU+WWvJx5IbNvCR8SQb1YEYNjFatp2EUVEsHLmQHPA0LEUR4aS20jQFRVXhT49OCgis8PGEPY1q1b54XgkiVLXG5uridnseHd2y65550hSB1CbcGCBd6PCvMlhLa6utoLQMgFL2zMm5Bdxi5+UuBuqTUCPONstPX73//ex9+BwILx4sWL/XYEkAoigdo4bY1dcAS8eE9CFpiAMdkKSAS/2xqTEAUWErz88st+kQF9wW/+c30yhi5ImtUZAfj2P7kQgEXzsr366qvdLbfc4qZOnep+/vOfe3bM4Gamct555zkiAzLAYc/E+ZgxY0ZyNSSJasMLAcdhSEOgYbj22mt9rBNePnfddZePosoMmoh2kDL2krHUGgGILkLt4Ycf9svAP/axj7m7777baxvy8/M9SSOc/pVXXuk+//nPe6LLEnIIxcSJE1sXaEe8xhGh98Mf/tARkfa+++7z2P71r3/1msg///nPHj8bp20PFogsZPWCCy7wZIAJ1vXXX+8veP755/1zHW9MMmlgIrFixQp3//33u5tuuslP5J588kl/PWUmm4+f6UjbHgc9/gwCDm0DocHZPRVVGhoH9iRB2EEgEHI8DMzsIBM4srKRmaX4CEAgIFnMjCFdxMknIQwhDaiN2bWW/+DKUmdmLpbiIwCeaBx46bIiiw/jlnGIuW3NmjVe8DE2GaOGaXwc4x0FWyYRPOuY1/gPMYNg2DiNh9ixY5hzp02b5k1AYBVOvB85H29MQnjRQGLGZGUiH8wZaNB4b9AfyZbMnJFsPZJk9QlmylQLUwU7rQaqOV7K2O8Y6AHhgCXzUrcUHwHs8r/+9a89McPGDEmAQLC0GezAlBcML3DOk58XiKX4CDD+ILJg9uqrr/pZHC9aNtP76Ec/6iorK70mDTLMGMVHglkheFuKjwBYEj34hhtu8DF4GK+QMjRi4EqwKRun8bELH2WFYDjsQHCO9yPEIN6YZDxDFhinaMsYs/xHQ4GJibEdS0qCck/Vf9NEnCrkU+y+CDVMFajiYNhoJ3iRcJyXDgIwWE4b3vskxZp5QquL4MKOjBkIVTpBe0iQCGZ5YBi8dPjOywJ8Dc+2uwV8wJUZHJihJYPUYo9+8803fdA5rg7GJpjiwMp1luIjwHgEIyYNPOfMmIn8CWYQNsajjdP42CVylGedFG9MgntAFIIJHP95x3I8GcetkYhEer2H5+GlgvYBmyhC8Oabb/YCkBcyLxNeNuRhkJN4OCy1RoCZBM5pCDxMF3xHtYl2h/+c5yUBlnyYlYAvMxpL8RHgBct4Q1tzxhln+I33sCPjoAaJAFMSYxNMGavgaZjGx5OjaGogujt27HDXXHON93e6/fbbvSnz/fff9zNlG6dt43e8M8H7Md6YZDzzXuXZDwgD/xm3wfv2eOWf7PP2djrZiKfg/XBcI7w4SxJxDpo5c6a352NzRtVWWlrqVcYIR5g0dlNLrRHgRUA4dlZmPK4oq7xEwJaXNt7YHOflwW/IQ0lJiXfOQo1sKT4CvFhR/aJ9wPmUsccYnDx5sidmjE9+MzYhFoxVNGiMXUvxEUCzw9YB+Oww9sALEwb+JjgDQ9hsnMbHLpGjmDHaGpOMV8Yz7wneAxAI/rNLNWMbjUSyJdNEJFuPJFl9mL2xNwkzEGJA3HrrrZ44UE02ROPFjLc2ApLlnghGVnBYao0A5ouvfvWrfukcpOHRRx91X/7yl/0a8AcffNDboHk5syyM/xA38B2jmAaW4iPArI7lr5AIXrTYmwNHS3xK2E8nGJv8Z6wapvGxDI5CzBBYaMsgX5gvwpji+GvjNECr4//RmLU1JhnLbHI2b948r6FES4lGCId2nNuTkURYxMqOj4EecwUvj02bNrlvfetbfmYCacDmTCKuATM/zr/wwgueWEAgWNKEtgIHLEvtI7BVqy5ef/11r3ZnOR0bz/3pT3/yKw14kYPnJz7xCfehD33ItDvtQMlMDadK1t4H5gs0OXfeeafX5GCGW7hwoVcHk5elygTvwXnQUmsEsNkzE/7Rj37k8cTXhMkEAoz9iNBUBMsQbZy2xo8jYIS2kZUWQVApdphmp2kILxOueGMSElFcXOx+/OMfe1LMOxjNxcUXX+wD0iVjnAgzZ8QfA3ZUCPDygAET5AQv97AKGO9iCAWDnpcODw2qOHZaDYiGgdg+Asz2zj33XD8zBjsCdEEcmCnz8gBbZn14ZltqGwEE2UUXXeT9HBB+EAhmbcFSWezMYAiBYAyjnUBlbCk+Amh3EHS33XabN1/wbGPSQLODgyWqeHxKbJzGx4+j4DN+/Hjvr4NpDRKGaYj3JhpJ8Iw3JrmOuDz4neGHxpiF7LIUnHGejMk0EcnYK1YnQ8AQMAQMAUMgBRAwn4gU6CSroiFgCBgChoAhkIwIGIlIxl6xOhkChoAhYAgYAimAgJGIFOgkq6IhYAgYAoaAIZCMCBiJSMZesToZAoaAIWAIGAIpgICRiBToJKuiIWAIGAKGgCGQjAjYEs9k7BWrU49AgOBI9fX1PpYBSw9ZikgQGj4sr+UY/6NMRBtkuRnLxU7FkjEi8BGoiGWDtI2tjflElQL8wDLetsncn3uzjJFldiylZckiv1kaaskQMAQ6hkCff1Hq2CWW2xAwBKJAgIAy//zP/+xJA/E1EOoEpiGaJXtpsL486gh17MhIoBvKZc36yU5s4DRnzhzHa+ePf/yjjy0SZYRTQrNT7lYF8mKTszB+kAXinRApFAJH+wnjTGRG1vAnYyCfk90/dj9DoKMImCaio4hZfkMgIgQIJMPOqH/5y1+OhhMncBfaCWbGaAyiTmwtzoegVl1NzOqZ8XdEW0IwqLfeestHNWUvhilTpnS1Gi2up13gR/CuWPyoJ2SBQD5oedBIrFmzxkddhVAQoMqSIWAIdAwBIxEdw8tyGwKRIYAARpgRmZIZdLyZMKGcIRZjtH9GEAn0mWee8dEDZ8yY4UPkollAYEJKKJOIeITKZROliooKn/eyyy7zApTKExqakLvsh4LQZU8UhDn1oAzOsYsjQpaoemgKOM8sftWqVT6SHpH1+H3jjTf67aLDoKAFWLFihc+HiYBw6WwnjXBnZ03aRD2pI1tNxyY0A8uWLfOhl8GHexG1j2iJXPPkk0/6sNVoGiAybFxGmYSyJmEuoQ5PPPGEPw9BQNPDvTiHlofoixC1F1980d8HYkV4cfJANgiVjWmEBO5XX321z98RwuQvtj+GQDdHwEhEN+9ga17yIoBAQjhefvnlfg8NwuSicg8nBDoCDmEckIjnnnvOnXPOOX7r67Vr17pf/vKXfodFSAi7gi5YsMCfZ/MkhCmhyyEI7GtC2r17tycSCGg2VkI7wH0JwU1+9kVA3Q/BoI6E3x0yZIjfAZM9KtgPAAIT+HQE9YXIcA2bB0ECICTUm+/4J2CuoU7UkXuyoyZEJZwgJrR57ty5Pj/XrV692ocER7tAGY899pgPWw2x4n7UGWIFeSJBViBBEAY+YES5YM29MXdAnMCQDY4gVbQRfKkve5iwTTv3gsCQICuQDkuGgCHQEgEjES3xsF+GwElFgD0KZs2a5QUjggzB3pGE8Ecgf/GLX3TXXnutJxAPPPCAF5j33HOPF5BvvPGG39iLvSRICF5m9V/72te8IP/617/uBTd7IbBzKIKX3VoRqu+884575JFH3JVXXumJBkIYwf6lL33J76+A0A0SdYGgsFMm2ov77rvPz+bZufS9997z9bvmmmu838f999/vBTlbTIcTWgKEPgThG9/4hic5tA2yk2hCg0Ab/uEf/sETqJ/97GdeA0IbgoQmhPbdcccdnqR8+tOfdtOmTfP1fOqpp/x+MWhP0HyQF98K00IE6Nl/Q+AYAkYijmFh3wyBk44AQhhBhYBbt25dC0fARCrDTBlCgMoejQMkJDAfIKARfJSPaYPZNAmVPbNwZtZcx4Y/nOP+aDHYmRWzA+fRJiCU2Y6YDcPYuAq/AshPmEBQLmYXTBGc4x7UhzxoWtAWoHmIZ7Lh2iBxb0gK2yFzfzQobJ1M2YkmrgnwoK7UBYdO2oe2p71EfsgF2g5MN7Nnz/aEiDpZMgQMgdYIGIlojYkdMQROKgII1ptuusn99Kc/9QIboReozpkFQwQCJ0H+I/ADswfnUPNDJvgezJoRehxDiHMsLIQ5Hqxa4HxABljuyPfbb7/dC25ICPejXLZ2x/eA6ygvuCYWqKCMoD5ci1kgqHds/tjfXM81Qf24F1iE28sxEmXyCbeN49SNe5KPsgIcwI387SXIB9uvo7VBw/OHP/zBm2fuvfdeT6Daand7Zdo5Q6A7I2Akojv3rrUtJRBAyKFNYAaPvwHCLjA9BH4L2PQRsNjrMSkEQpUGBsIy3NhA0AbHwsKTWTk+A9yHuBH4BKBlwNkQLUZg7qBOCGj8FiAlXEe5sWUH90DAUga+EuTFpEBZrICAKEFKuGd7CU0HZAXNBXnRhJSUlBz1TYAUUA73oO5oSTB/hIkE9YUAcH8ICHUBM/w6wiSAdnCeawN8IC/0A9oM6hH4lRQXF/tj4evba4edMwR6CgJGInpKT1s7kxYBBCOBj1gdgDkAtXtAInAWRIji6IcgRrB1xD8gXqO5HmfFuXJexIcBAYrTIar+Cy+80L3yyiverIEJA+KCoJ45c2YL4hKvXAQspgDMJwjd119/3RMBCAH+GphN8PtoL02aNMnHbqB+XM/9qQcEgISQxxRDmfh6cE9iPZAvSJAH7s8KC86TF+IBQQo7coI5pAWCAb4kyudarqNfwBxfkbaIU3BP+28I9FQEjET01J63dp9yBPAZQOAGCUHNSgZmzmggEGKsmMBP4Pe//70XdPxGIKI5QLAhCCkjUP/zn1l0oM5HGKJFCPJTLip7VjA89NBDfuXHnXfe6S666CIvqPFfQGizCoN6MFMfOXKkF9xoTKhzWGAHdec/9aFuLPtk6eTDDz/s63X++ef7JZ7cF7+IcP3C1/MdEgFpghh873vf8wIcHBDkJEw3mFtwlmQVCOQC8kOMB9pO3oBwEFgLwoR/BbEhqBuECCzABP8HAnqh1Xn66ac9zmhf8IVYvny5byd1vfTSS/0SUbCwZAgYAi0R6KVZSPtGwpb57ZchYAhEhACCHFU6wo2EMOMYgg5hySyYx5OZNWp9EoIMEwHn+XA95xCKgWo+MD/wmzLJzwcCQFmB+h5zAeVTTrCckd8sKaUOXItQhohwbVAWeSAjbSXuxX34z/XUg7ZAQrh3uH6cj03cmzZBViAmLGHl+2w5OUK0+A5O/KdufGgLdaJuXM9v6suH+0O2aCPHuT/HaDfnMY0E+agj5QYYcX+uo/7x6hpbd/ttCPQ0BIxE9LQet/YaAimGwA9/+ENPbNAIoDGxZAgYAsmDgJkzkqcvrCaGgCEQBwF8RdBq4G9hyRAwBJILAdNEJFd/WG0MAUPAEDAEDIGUQaB5wXXKVNcqaggYAoaAIWAIGALJgoCRiGTpCauHIWAIGAKGgCGQYggYiUixDrPqGgKGgCFgCBgCyYKAkYhk6QmrhyFgCBgChoAhkGIIGIlIsQ6z6hoChoAhYAgYAsmCgJGIZOkJq4chYAgYAoaAIZBiCBiJSLEOs+oaAoaAIWAIGALJgoCRiGTpCauHIWAIGAKGgCGQYgj8fwo/zLOsIGbYAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "8a3adfa1-7fa1-4632-be7f-a316c26c844d", + "metadata": { + "hidden": true + }, + "source": [ + "### Plot from Paper\n", + "\n", + "![image.png](attachment:6b35f96a-af69-439b-ac65-a8b167e2e510.png)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/notebooks/longrangecnot/LongRangeCNOTgates.ipynb b/docs/notebooks/longrangecnot/LongRangeCNOTgates.ipynb new file mode 100644 index 0000000..0abb429 --- /dev/null +++ b/docs/notebooks/longrangecnot/LongRangeCNOTgates.ipynb @@ -0,0 +1,2172 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ba4719fa", + "metadata": { + "heading_collapsed": true, + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "\n", + "**Drew Vandeth** \n", + "Senior Research Scientist @ IBM Quantum \n", + "\n", + "- **Co-authors**: *Mirko Amico, Elisa Bäumer*\n", + "- **Collaborators**: *Pedro Rivero, Nate Earnest-Noble*\n", + "# Efficient Long-Range Entanglement using Dynamic Circuits\n", + "\n", + "## Background\n", + "This notebook shows how to use dynamic circuits to create long range entanglement between two unconnected qubits at utility scales. It uses the ideas and results from [1] by Elisa Bäumer et. al to entangle faraway qubits with fixed depth circuits by using mid-circuit measurement and feedforward. In particular, this notebook compares three different approaches, across different qubit distances: a unitary-based implementation swapping the qubits to the middle, a measurement-based implementation with post-processing, and a measurement-based implementation with dynamic circuits." + ] + }, + { + "cell_type": "markdown", + "id": "1f0b8be3", + "metadata": {}, + "source": [ + "## Requirements\n", + "\n", + "Before starting this tutorial, ensure that you have the following installed:\n", + "\n", + "- Qiskit SDK 1.0 or later, with visualization support ( pip install 'qiskit[visualization]' )\n", + "- Qiskit Runtime ( pip install qiskit-ibm-runtime ) 0.22 or later" + ] + }, + { + "cell_type": "markdown", + "id": "6f0c85a6-8b59-4543-8e9f-788eaeef886a", + "metadata": { + "hidden": true + }, + "source": [ + "## Setup\n", + "\n", + "All imports needed for this notebook are include here:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9d02f8a1-3069-4507-91ed-73b7f6610f39", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "import os\n", + "from typing import Any, List, Dict, Union, Optional, Callable, Tuple\n", + "\n", + "import random\n", + "from IPython.display import clear_output, display\n", + "\n", + "import numpy as np\n", + "from numpy import pi\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import pickle\n", + "\n", + "# Importing standard Qiskit libraries\n", + "from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile\n", + "from qiskit.visualization import *\n", + "\n", + "from qiskit_ibm_runtime import QiskitRuntimeService\n", + "\n", + "from qiskit.circuit import Gate\n", + "from qiskit.circuit.library import XGate\n", + "\n", + "from qiskit.providers.backend import BackendV2 as Backend\n", + "from qiskit.transpiler import CouplingMap, InstructionDurations\n", + "from qiskit.transpiler.passmanager import PassManager\n", + "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", + "from qiskit_ibm_provider.transpiler.passes.scheduling import DynamicCircuitInstructionDurations\n", + "from qiskit_ibm_provider.transpiler.passes.scheduling import ALAPScheduleAnalysis\n", + "from qiskit_ibm_provider.transpiler.passes.scheduling import PadDynamicalDecoupling\n", + "from qiskit_ibm_runtime import QiskitRuntimeService, Options\n", + "from qiskit_ibm_runtime import Batch, SamplerV2 as Sampler\n", + " \n", + "from qiskit.circuit.classical import expr\n", + "\n", + "from qiskit.quantum_info import Pauli, PauliList\n", + "from qiskit.result import marginal_counts\n", + "from qiskit.visualization.timeline import draw\n", + "\n", + "%matplotlib inline\n", + "\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "22aae92a-2df7-4725-9eba-f41a783c2974", + "metadata": { + "hidden": true + }, + "source": [ + "In order to run this notebook you will need an account on the [IBM Quantum Platform](https://quantum-computing.ibm.com/). More details on how to initialize your account can be found at [qiskit Runtime](https://www.ibm.com/quantum/qiskit-runtime)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "7e5f25ed-a6f8-4bc4-b1f6-814278bc3a8e", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "service = QiskitRuntimeService()\n" + ] + }, + { + "cell_type": "markdown", + "id": "c75dbecb-c273-4955-991e-557f9b5a41df", + "metadata": { + "hidden": true + }, + "source": [ + "## Step 1: Map classical inputs to a quantum problem\n", + "\n", + "In this notebook we will run a gate teleportation circuit in three different setups, where we always assume we have a line of n qubits (for varying n with n-2 empty ancillas in the middle and a CNOT that we’d like to apply between the two ends):\n", + "\n", + "- Unitary-based implementation swapping the qubits to the middle\n", + "- Measurement-based implementation with post-processing\n", + "- Measurement-based implementation with dynamic circuits\n", + "\n", + "For each implementation we measure the average gate fidelity to allow us to compare between the different implementations. For details on how the average gate fedility is calculated see the Appendix." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "28f3fa83-e6da-4a76-ab86-09142557bc1b", + "metadata": {}, + "source": [ + "### Experimental Setup\n", + "\n", + "The experiments in this notebook use a predefined 1-D line of qubits with a coupling map that ensures that no shortcuts can be taken." + ] + }, + { + "attachments": { + "b9ee6c9b-35d7-4e8c-a647-645f67052425.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAIHCAYAAABDviL+AAAKq2lDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLSHSCb0J0gkgJYQWiiAdbIQkQCghBIKCDZHFFVhRRETAhq5SFFwLIGtFFNui2PuCLArKuliwofIucAjuvvPeO2/OmTNfJvPPzP+f+98zFwCKIlcsToUVAUgTZUlCfT0Z0TGxDPwggAAVIMAG6HJ5mWJWSEggQGXa/l3e30GjUblpMZHr3///r6LEF2TyAIBCUI7nZ/LSUD6K6gueWJIFALIL9esvzRJPcCfKNAnaIMr3JjhxiocnOH6SMWAyJjyUjTINAAKZy5UkAkBmoH5GNi8RzUP2QNlKxBeKUBaj7JaWls5H+RDKJmgM6iNP5GfGf5cn8W8542U5udxEGU/tZVIIXsJMcSo35/88jv8taanS6RpGqJKTJH6hqFVGz+xeSnqAjEXx84KnWcifjJ/kJKlfxDTzMtmx08znegXI1qbOC5zmBKEPR5YnixM+zYJM77BplqSHymolSNisaeZKZupKUyJk/iQBR5Y/Nyk8apqzhZHzpjkzJSxgJoYt80ukobL+BSJfz5m6PrK9p2V+t18hR7Y2KyncT7Z37kz/AhFrJmdmtKw3vsDLeyYmQhYvzvKU1RKnhsjiBam+Mn9mdphsbRb6QM6sDZGdYTLXP2SaARukg1RUJYABAtFfXgBkCZZlTWyEnS7OkQgTk7IYLPSGCRgcEc9yNsPGysYOgIn7OvU4vKVP3kOIfnnGt1YXANec8fHxEzO+gOsAHDkJAOnBjM94AAD5ywBc3MqTSrKnfJN3CQtIQAHQgBrQBvrABFig7wQH4AI8gDfwB8EgHMSAxYAHkkAa2vlSsAKsAYWgGGwEW0AV2An2gDpwEBwGreAEOAsugCvgOrgNHoJeMABeghHwHoxBEISHKBAVUoN0IEPIHLKBmJAb5A0FQqFQDBQHJUIiSAqtgNZCxVAZVAXthuqhX6Dj0FnoEtQD3Yf6oCHoDfQZRmAyTIO1YCN4DsyEWXAAHA4vghPhDDgXLoA3wJVwLXwAboHPwlfg23Av/BIeRQAih9ARXcQCYSJsJBiJRRIQCbIKKUIqkFqkCWlHupCbSC8yjHzC4DBUDANjgXHB+GEiMDxMBmYVpgRThanDtGA6MTcxfZgRzDcsBauJNcc6YznYaGwidim2EFuB3Yc9hj2PvY0dwL7H4XB0nDHOEeeHi8El45bjSnDbcc24M7geXD9uFI/Hq+HN8a74YDwXn4UvxG/DH8Cfxt/AD+A/EuQIOgQbgg8hliAi5BMqCA2EU4QbhOeEMaIi0ZDoTAwm8ok5xFLiXmI78RpxgDhGUiIZk1xJ4aRk0hpSJamJdJ70iPRWTk5OT85Jbr6cUC5PrlLukNxFuT65T2RlshmZTV5IlpI3kPeTz5Dvk99SKBQjigcllpJF2UCpp5yjPKF8lKfKW8pz5Pnyq+Wr5Vvkb8i/UiAqGCqwFBYr5CpUKBxRuKYwrEhUNFJkK3IVVylWKx5XvKs4qkRVslYKVkpTKlFqULqkNKiMVzZS9lbmKxco71E+p9xPRaj6VDaVR11L3Us9Tx2g4WjGNA4tmVZMO0jrpo2oKKvYqUSqLFOpVjmp0ktH6EZ0Dj2VXko/TL9D/zxLaxZrlmDW+llNs27M+qCqoeqhKlAtUm1Wva36WY2h5q2WorZJrVXtsTpG3Ux9vvpS9R3q59WHNWgaLho8jSKNwxoPNGFNM81QzeWaezSvao5qaWv5aom1tmmd0xrWpmt7aCdrl2uf0h7Soeq46Qh1ynVO67xgqDBYjFRGJaOTMaKrqeunK9XdrdutO6ZnrBehl6/XrPdYn6TP1E/QL9fv0B8x0DEIMlhh0GjwwJBoyDRMMtxq2GX4wcjYKMponVGr0aCxqjHHONe40fiRCcXE3STDpNbklinOlGmaYrrd9LoZbGZvlmRWbXbNHDZ3MBeabzfvmY2d7TRbNLt29l0LsgXLItui0aLPkm4ZaJlv2Wr5ao7BnNg5m+Z0zflmZW+VarXX6qG1srW/db51u/UbGzMbnk21zS1biq2P7WrbNtvXduZ2ArsddvfsqfZB9uvsO+y/Ojg6SByaHIYcDRzjHGsc7zJpzBBmCfOiE9bJ02m10wmnT84OzlnOh53/crFwSXFpcBmcazxXMHfv3H5XPVeu627XXjeGW5zbLrded113rnut+1MPfQ++xz6P5yxTVjLrAOuVp5WnxPOY5we2M3sl+4wX4uXrVeTV7a3sHeFd5f3ER88n0afRZ8TX3ne57xk/rF+A3ya/uxwtDo9Tzxnxd/Rf6d8ZQA4IC6gKeBpoFigJbA+Cg/yDNgc9mmc4TzSvNRgEc4I3Bz8OMQ7JCPl1Pm5+yPzq+c9CrUNXhHaFUcOWhDWEvQ/3DC8NfxhhEiGN6IhUiFwYWR/5IcorqiyqN3pO9MroKzHqMcKYtlh8bGTsvtjRBd4LtiwYWGi/sHDhnUXGi5YturRYfXHq4pNLFJZwlxyJw8ZFxTXEfeEGc2u5o/Gc+Jr4ER6bt5X3ku/BL+cPCVwFZYLnCa4JZQmDia6JmxOHktyTKpKGhWxhlfB1sl/yzuQPKcEp+1PGU6NSm9MIaXFpx0XKohRRZ7p2+rL0HrG5uFDcm+GcsSVjRBIg2ZcJZS7KbMuioYPRVamJ9AdpX7ZbdnX2x6WRS48sU1omWnY1xyxnfc7zXJ/cn5djlvOWd6zQXbFmRd9K1srdq6BV8as6VuuvLlg9kOebV7eGtCZlzW/5Vvll+e/WRq1tL9AqyCvo/8H3h8ZC+UJJ4d11Lut2/oj5Ufhj93rb9dvWfyviF10utiquKP5Swiu5/JP1T5U/jW9I2NBd6lC6YyNuo2jjnU3um+rKlMpyy/o3B21uKWeUF5W/27Jky6UKu4qdW0lbpVt7KwMr27YZbNu47UtVUtXtas/q5hrNmvU1H7bzt9/Y4bGjaafWzuKdn3cJd93b7bu7pdaotmIPbk/2nmd7I/d2/cz8uX6f+r7ifV/3i/b31oXWddY71tc3aDaUNsKN0sahAwsPXD/odbCtyaJpdzO9ufgQOCQ99OKXuF/uHA443HGEeaTpqOHRmmPUY0UtUEtOy0hrUmtvW0xbz3H/4x3tLu3HfrX8df8J3RPVJ1VOlp4inSo4NX469/ToGfGZ4bOJZ/s7lnQ8PBd97lbn/M7u8wHnL17wuXCui9V1+qLrxROXnC8dv8y83HrF4UrLVfurx36z/+1Yt0N3yzXHa23Xna6398ztOXXD/cbZm143L9zi3Lpye97tnjsRd+7dXXi39x7/3uD91PuvH2Q/GHuY9wj7qOix4uOKJ5pPan83/b2516H3ZJ9X39WnYU8f9vP6X/6R+ceXgYJnlGcVz3We1w/aDJ4Y8hm6/mLBi4GX4pdjw4V/Kv1Z88rk1dG/PP66OhI9MvBa8nr8Tclbtbf739m96xgNGX3yPu392Ieij2of6z4xP3V9jvr8fGzpF/yXyq+mX9u/BXx7NJ42Pi7mSriTowCCKpyQAMCb/QBQYgCgojMEacHUPD0p0NQ3wCSB/8RTM/ekOADQhJqJsYh9BoBDqBrloblROzEShXsA2NZWptOz7+ScPiE49Itll9cE3d+8KA/8Q6Zm+O/6/qcFE1ntwD/tvwDerQhu+FcH2AAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAACWKADAAQAAAABAAACBwAAAAA2F/i4AABAAElEQVR4AeydB4AlVZX+T73YcaZnpif25MgMw5BFJYiKYMAsGDBgXMWArK7rillxRd1V0b+K6yqYBRWMGMAIkoQhDDA55xw6vlD1/323XnW/7n493dNhZlbrzrx+9apu+O6555x77rmhvNkLFgV22OCZeSkzxQpyfNrDjxW5X1X6ZPlOcr9AJP+wuY3Mw0QJI2V3wwjobhiJd8wxQjcwBkEb3x2QwzPPqy7hzOhnCWM/zTIShFQbWqkdhc21tTDS/hEdE2AUMwT5kUDQf57iRaMdfcp3GKGjCUsajKIjvJjgWnzo2prLox08lU9D+mpnyYsw0u6m9q02LyF5UT3EC7p/tEN3me7CKHkRtip48niUadGR0E1ejheZ7ii1dSjTrp2dzBxHMu2XMFok0/Cik5fjT6YDZNo7TmW6qw+kvxP9jH7wOJPpEKPkJZJp6Ubx4vHST0fygn6UrnQ6R/aEMB5LmQbOMAbvsAaWOgr18/mHHQ0sM5/+dyKf0dxUJ9dKH7Gb5yvNClyn9LyONBJgJTwKQQ2izjb/mLMNLL2Y70Y+9RROwxUP8dkFvmWuP7PUiUAnjcN4FPCpCCnaYgv9/Qr61bR56UUhxkQtDzEEigfpZ3dQhxUW8NNLL+EP2I+aESMGR1EU94FjHRjH0pazkMVxFiRQwuAIigd4vg1Ia6EqbZyaRxoZCDJuSD/iAX5TWxfA4G+DRk1gmAodx4TYZVgX9/J8M3TcQhtP4vmUEr6jZMQ4oymJXbUGihyEzaAhGLxkA9SRLLVBxz2w6zo+e7g/M6T1UZWXUKYDZFos5iHTXhJaJUeBUTINn4IxyC+HX9vBF8m0FOFRCuJFJ9PIrGx+ZNpLjQcefKfgN4MNmc7zHHmxFDIvo/qoyXQkL8KxEmwYpOkTwDqOvqEWzRfKtBW3M5ZaieEFndMn8wesR1umC3uRl/VgBBsybZJtGajC4e8HP/KUW8e9UWCcA0DJtAbKRyPQuOpjClvBuJ3LJjB2yXRAe3rSSch0gEx7icng5yNZdw0/0hhdw1EIOPOr+G6GF2fzEwzqA4Xdx4hBXqywFpz7kCVoLJ101GUarPlHwATM9ALoqH66XKZ3Q8PHoSftnlqAvND3aPB3tIKTaQac9NOy8bxOmVY/HaBz1E8L4zKuw+eWYBDq2vpogRz+cvo2sESQ/Goagoo3XG7emDMsMWohsjkdpRw2XFCgw2hHiTSjRPY/YsG+35q1YYxlloBUmk8dm1p8JAL5wuBB7iG+JoDvEkuMORUdDHNVT+WejBfaJ0+H0bYFnbwCfbIUjD81y22FCU/hKcw2YoYgDO96hyQYH7ZE9WJLjn22pcacbMnaefym401J0cFcuYPI6UYrHFxuhX1/x875JgpHSnshzzvIZ6SCFAhM7Psh49eeY4mxT7dkw0nI31zsQuiaVGdXxGjYjz293vyDj5u/7z5o+UM66CaElY5vRIVAGDGsiq0osFWWGP1c2vpsvheDcTaPxkFmFF2xYH4HAtqK8XJgGRjvsuDgr8A/j+c1JYwjxYu0Dxhdpx9ssXTDy61q7FmWGb3IUjUzMbTGWCKB4VXssGL7Tsu3rLaOfY9abu8fLd/8V2yDE5EzjBvXsY0kxiztjJGfaIUPX2+ZsWdYuv4ES1bPAGM97ZkwH5kutm+zQvMqy+172PJ7fwtvPkL1MBCcPI+8TBsybemJ8OLLLNFwmiXqFyAvdL5lMu1Lpg8h0/uW8rmZeu0AIzLtDBjJ3kiEnjK9BHvlIifTKSfTk+kTqhFp5Cl3yIptGzplurDvW8h0LXXAYD2KMp2oOxeM51uqYQlj3zk4WiYi8vBqsQjGfYjVeiseeBy9c68V9t8ED2DgpBpL8jISNFSeXTJtRWR61POwSc7GZpFMMyjJNloimQJjHplmQNKyFozLGD/dxVj01+A/ejJtMuSRaa/hFfQvTwLrIvOcTDcgs+h2ZDpApn1k2t//qPnIdNByJ+0sox9ZPgoybfknKKsdfG/gQz+NTCdq6KfT9NOMooJ8m/ntW8G4Cll5mM9t9IkYOkdLphlcBnn66cwUS495CXrnVHhxAXqnCd1X65jMp58utm22AjKd37sUfryZMdbOoyDTI8XjYb4VDCwpeDrdAobSmFdbYspLGZidRUUbUBx6RkfgjBIpmwTmk4QFhcKI00dQi9tpvO3X4PWYS8dG5zzsHo6SkhMW/1Hzxr+TAcXzEdDTEDxGjw6jcCqeQnjtCWORzgOFXNz6Cwt2fRH4CIEeD7shKJrIcMGAC5ZbevIHLTP5OZYafaIzWLowyggVAH245ivAkMnvuc9yW35ihT3fRkjUsWlEGdWHy2EJwijDZb+zA5NN77DUxGfi+EN50f5BSBiuVW6I0XMYGZ+370Lv3GnFLd+34NCvQmN1pIws57XaiBd+riWnvMGSE85HCU8DVgJk5bzYRUe1td+6yYo7/wzGb5q142FNzRBxh4VyvTKRcYUCSdc/12qmXmY1489BecjwlHQIo0JER1ETXkTx5pvXWOv2O6x1y5dhlSIsM6aEUXUZzqD8aFNkOjPuNVaFTGeR6URmdEWZFtZQXvKWP/iYtW29zTq2fYI8GPmOpEyrysVllpjwLifTKQZMh5dpBieFFpRxKNP+ruvAh0y7MNyGoORFhjwDHm8l8vxBy0qmR2EcJzPoO7W16BzKNBP/4bWHvOQOINP3WruT6e+MvEzLk5JOWabpCuzUCyxVPwfM6COHUcSJeFEopXfA2LbTcrvvtNym71mx+TbSy1gdOXmx/HoGwgstPfVyS49/WqdMd+9fRMOIpj7G4CYr7GRQgkwH7WthaemBkcSIUTDqYks2vYpJEQZ1VeUyLRpGdBRKeBGZ9g+tssKOO8zf+iV4BezyXjuMqsdwBuUX9tPe2NdZqol+euyZyLT6aZVTrhvDa492lkFYPPAYEwG3mb/9kwDH8+q8v+pjhhOjQOCq0pe/zDIT323ZKRdbpkEyrQGvytLHge26Vj/NbFhu74PWvvXnltv5ZfrMk4iqeMMt02Q5wqGHgVXWaNM+asnpr8EShonxYGhUFoaIIOXIQmJ5uPQCpsKKO35v/uoPYxfA/G7KUJ4ixRmOALOIg4LHLDHr/1m66cWMeMZTbrk3qifGUtlY8x7M5Of2WGHLreavfS+wpvMRA0b1GypGynaKuAVG8iw79xOWnXQR13UYoeWGUl8YMVoZGRUZobdv+L7lN1yNHMkjKObqmWawWIUR46qw3az6BEvPez9K7hx3L6Ctw3IqlRXRMUkH7KGIV1t+7dcRVIxV5xEcZmUnjPJmjLnU0nPfja46FQrQVv1iVDvLACPq/oessPqLeFh/AMZTqdowewTB6IOxZtK7rH7uWyxTNw/2pOR+5UVsh7ygfNt33WUHVl5rhRY8RempJYzDJS/KJzSuqqd/3GpnvhrjbyrwaOc+MUZli46S6WZr2367tay6Gg8XhuCIyDTyF6yy1Owv0uki05nGI5LpAO9lfsstzNS8C8LiJRoRmW5GjpNWPe8aZPoCR4cjkunWzda24buW24huTA33wEkyLQ/lZoyVJVY9/98t0/hU7mH89ysvsAjzNk6mMRDa1l5v+e1fIukIGFnCmFuKMfBKdOOVeNYoQ8Fh1EVfegeeRC9KT8ug7lj9BQbLeNxGAqPWSsrjMulKZgTfQhc2tyTT0o0KfWOU7pZMFxmA5ld9mhmd5bQ1U/DDamRJPqFF4RH66GssPeNVzsN7RDJdOIT6/53l13yIfKhPEk/SsDpD1E9LptdbzZz/tqqpL2IcwpKTgfTTshWYlfA7dlnb5lvgx7fDnwxktKZh2PpptePIh+SYxvEf7SqGERqjXG/mf7EE503OnRwU1WmKoVQ5BX33/LgH1B0DgvVNyVELLKg5kem4P5Efc9TqKCsyZSndgL8oV5YvXqHk/O9YetolNARuUDeqFKYo9IFPGMCoDiKJN8my4Nz9XRJpPr08fZTPYL5hfBaTGiPImoVfZKR7UThCkDerWxl9YYQpUTYe00oppuos0cQU/418TwEMz4YjyAAs7DarPckyCxFQFLEb9UjJdZKhJ77OByEOphUT1UzjMPXgF5kWOXAzbdHEs0gJDRGoeCaPh7LxdZY54Wra6yTkFf4aKEbwiec0QEiQ1m+DD5t/B0bRcfgwaoq6dur7rWH+uy1dO7NMgUT0OgwdXaeStHTdbLxfiy3HFLHPyNxz6weHqa2de/5hlNznrW72GxHPCVS/P5kuazsn01nw4dKvXYT7/g/wDunFQ8Mq02tZGvJNJ9Oqv0baIS/2RccIY0mmGcAknEwvNH/3jTzUWqMozlC/JdOsR0tXW82iL1jVpAvD+h+hTGuqOI1MB94UvNM3YgOKF4epnWmPoLATD/SpVrsImR73lEHLdGq0ZDqLAfNjDMrhlWmt/UuNfyPjuv9AdeNtdDINDTp1Y3/ygiqsnY4+WMI0Vwseo9vBiAEzbHRE7xQessTUqy0zD09qzQx4UfKidooYqj+MSYwypmPrT2RK83GzjvXoHa01Gqa21npOGVezr7PMrNcj03IwHKFM44lWP214Ef29v0cnoFuHVaaprm2y2hO+YTXTXub63LCf1v2+6KhnCiWZTte7ZRZe5kTL7/4m95m6jpK6eMf/ny4DS2uuYCwPz5WMK9P8rRrNjQQHWCsJSWlUnKybZUEVHc6eH0GF2mGiBMxfhLHmfI31zS8DG78loA7jQIoAn8NIB8vIPCFvQ2o6GL/hDBkyH0gmh4kjOskbthEF8hXcos+CHjCLaHKkGKmXx9ohZ6z6DVbY+30UyVTyHipGjSxo1/RojKtrWZ9xBvAw/sTUnUqOn4cNJTqSLkE+iVEn0P+wgPHgL4bHyNJ0hgzAUediXH2IdpofKhDhGyjGKB50TODh9DAQ/IObUHaraKI6ajdEZQfvaVqwauIV1rDgKktWTS4ZBWp/8cEAgsMY8keqpgkDbZ517L0Tlm6lmtBgqAaMvAXIdPWMT2BcvSE03NjZOFiZTmEIJqpmoey+AzamPoYlSIYfsdTcr+K5einY6Dw6ZXogdCzxhFbGItPJ+vnw4DTz9/zvMMq0ythutQu/bFmm0Z03f5AyjfsQ0TsBXhmFJ+YHtMlwyXQHfN7IoO7TrHM5HZkudbiRHPTbViU6SqaZZkqy3tZvb2ePEGuehmNQ4mR6F/k+A934Qdppbql/KZXbLz4iRHUpyXSCtvYPbmC6cA1tPjwyLc9VYuI78Oq/u+RgkKE/OJlO1LAWuGYua57+TF2Vz/DItPrp5PRPWWbm5XjHMNwGLdMeZJuNo2Emg5JvgY/1rMMSJNOPWs28r7Fk4sVhvQcj0xqAMuOU1rKVxDSmsL8JLw6jwT8sdT18JqGBJaXG7jAb8zIUXchYXcZV7wy0ds/xOt+9QtRp8EAL7YKAkeTuG2CEIRLGeTQwAKf8u6Wx2p1L03kzKoGgbN2u/CgELwVJ48kQ9PN0RFrgOVQDxnW6j1h21metapo6CwA4RdwbiB5FdKSL7R1cWows1pUJY7F5H4sUWTypHZKDNg6EQ6Pxxy09/zrWZzwdeDCxC70xRvgclFKsbl96IGWXbkCRzECRrMSA2UoRzLEPGqMMQIzmpI9H49PhtGAvT0E3FK6ZhbVvOhZRlnhuqvAG7v4NSwaJqa0slVN0z7zSL9JqV2Wq5lRrWPhB54HSAnYtEu8ZRKKen+5xSnTHEE+hkBNsGmjf+TV0OruAhhLk0WCTSnrcK6x+/pW45xnloogrYYyKEc6KQQ80UOArhffA98diZOGBGSaZTjZ9gJH45VIYsA382AOIfpbzYo/HIWSHMZLpmfQ51H//jwE8RAOmJNPVs5FpdRaO20SL3sSKcCpK76dKyl0MQSfTLOYuNGsB9z2wojq2wRr8Kgm+859gWhCPxsTzaWfkxyHojSLC6KAQq1fQA2fANNAcMxjY4YFhAwGWNVErSlivLHrfkEwziGPhehUe86SmBd3gvQuf2rcS0SridRiR6Wo24WSnsh70l+RPGUOSaQ3q9ptXdzqb8D6ACptJU0WDkRBanxiB7p51VrxUL2QmWUu/h0wXd16PTMvTNlgaij7qp1djB70S79qVzqDuMq54TLHdcXQC6iY/DoEil2Q6Ic+7z/Qda36H3k/Tl2rgOfWDVjvrtdS5Gn7qkmkVq0/PoFvC7p5Fzx3GUKZT6gM7EjTRT4aud3oWPoK/xZVhmyfYVj6FXTtMqZQzVnnZqneGP3nktw15SdFSyVLy8nguT4gq4iZZf2T1FyBQLdyGid0HRhGzDPgjo4BCM5PZef9CHFcopD46XTWSMLJWzn264yr7pcYjDw/jIDX5BVjxs0p5UtaAcUV1UL2EsRVj6GksftW0YHfGKivZ0Uz4WqAhS1qMpVqVdAs3aR6EPFk92TKM7r1Ec9hWKmvQGHebWxQ5/lzki4IlZBVKT/OIjUbWrIEwWIWxYgCjOu6kppCmvJwoG8iTyIPF6DqLFSx0fg3etTPJGxCHCYIlHuyvf1Knk9QOmwmXUbHlSgVGtVvUhgP9Jp2Uub/Baqa8wjKj5F2DjyoYV4It+1ptnIN99WEte4VABWgHNUU1a+Gy415PnnjwHA0Hi5Hk8Eu1NqmwW0cy3RdGiYLatwC+IngrBicvgIevq+HvVD3GOTs7h4RRMp1lukcynWYg1odMS1ZEw3bkRTR0R4dBK3FutxDJNPpBesKy00p5DlZeoD16K1n/DGT6QuiJkeH4UQzXPYgHtQ5XelFY3e/uUcJfkhfJNB7LqiamTryDYUUGKy9KB6+k4JkMvOPE2f3pXbiTYWjZCkbJ9mFlGp5OMYWUaUKm/fVgVFcxWDoK43I20VzmPOahhzLEJ30tXePktwfv6VmiRNN22l14FdUFXVAJ6YjUxFeTfgU3hG+w8qIMN1hi8iucLnMeQPGTcuXLlQ0+8WJ5SEIWR0fo2Z0hSeRk2sO+Og+d+1owDl2mDZlOIdMJ+oTyftrhkEAIXw/ByEhdgU+6XPrI0VuVKMm0+ukU/G115xFxqDKNBzQ7h400L0Cm8XKXybQwSkaEoTyIyqJxB20s+VEctb2rRkmmE8h0ddOL8K4y8HQKQKmO/5ByDJl7xGzc5W63oOvQ+sJOjR/FTlo4hujw8b17zKbRL9XxkVOgWyh1vJ6OI5jyWgsefy0eBI1cthBN3NhXId1ygUfZm6PzjHLsLprxMXdURMhY3dOreDWKOonH2vnBjOdk5I0m7js4ZQdD4GpOTnwTeuRq0rHuqbApZL6+U5Y9cSXDIXRiHSstPef9znNXPrIoi+xqvRYebgPbeTijtmAzreb3dLyq2qnfK1AnGQdpdn3lxr6V0RrejZSmGDg3Rgqv3yA6iaNpJM4wCzhzJt10CUbqWJevE7IeeYjBHwLXDLzP8+j37qGda2D88WTRZ7ORJjXhmezQvJCjEh6jMnRGOh9mwBhpOA83v0ehHlMU7DgJ5LXsb+El5T6K9z0LtumqpejVoz5kyB1owPrAFPnmt19PJBJx5hPbIHkGM1dI1SsbNw0F3cCUrHkGC9sv4Dqir767B+Foodgasq9VEQrclJHQK0iR4LnTOp26qS+3jp3for0mQEO8B+5gSLV175r1ykcYXTuvoMN9E8bak2hn7vWG53KTzIg0j8GD8yF9NTzolFyF+M7glzGNp62q6XV26LHLOcrjyGXa1YNppwCZTs38RNihlXkLetZpM/AbYYUx0DAP1m3wIsMXncbWW5NEBgzT1smJb7HC+g/h5VhMRGS6EhF6FuZ+i87QWzKdW2XZeawBdBsDujwa5clEqn082keyU9CNB2Cth7GbTkAE1Kn0CiRQm0imk2PfyGz4/yLTC8K2HrC8SIei5NTWnE8nQ0jrNp33qmQYROWqNjICtqEXC1RrCRg3wParYf/5OA0rc5UMfs8tc8hteTprGNegKmgAfy9kFC/2F0QVybTkmSUinLWWmfI8rrtkWjFk6C1tC29PI9sGbuq+PjKonyCLc9BBBdr9Hoo+Rc5xFxTDhyUzlp7yfHbFfYWK0Ag+FQtQXkci0/Ig6jyrmgsx1p5BvcMS9KWaCscq2lTknkh7NlI0cNyzg9B0g+SZZzP5quVZJz1LMi1dm2q6lHb+NjoIpV/cSUywDpQfnUxPggjL2TX/1lI/LdqGZQnjgRIOnXc6lfujIhyAWXrAbBLCsohq/m0f2KnLAo3/BbTUT8tbmZpyOSc+sJSgig0Yxa08FI+R0UCCiIZH2+9YZtWzr2EANp/kEE75k14Yd0PizRBuGixQAx2dI4T7Oe4thRfVH9agxx8HoxYVjRKrOIyeMybToxdaZtIV1rbuIxiYp/GQSh/ngS1CIGSYoHOu3FEMbnFwd6KKT+StWkbD/PCNKTt7SQovVmC79wf2tutzth9lkpHsKa/yIOOILcwJRkJFpgvFhV712XxL64hFu5fDjV5BO1uMXX+ClRh9MoqIoxjcItvuadVRyDBYAd/+4PUpu/CstK3cWLSnfCZni2E6ldYTnisMc1p5Jlh86suA0Fb5apjDpXAx+vkjHOSc20bdECSYQCd164wwMVd5kJW+F3xvOithb3oBc8vQrDrr2R33F+zKHxVsJlxY7AWSRMKYZtH72NPd0iTLNrGh5kSyVq36C8pQONgJ2r4OG+Y8vGxz+E1hmooT/LIgRbwcjN9+bcqefnrKjcZl+H39Zzm75i++nQLnq5PrHhAAMCY4Nysx5ilsp/4dTf1sijiVaBLS/gJ8gtIOJPltLGxvuBgBmkqiXsTollEVuJbCez+CJ88H6+duytkX7/JtAR2bNsb0CvBjAs+B1/Bspo/+gDSjSLT2cACKhBpi8KmB0ATUr2rs5ay7wgAKNUC3osSLLVRlOgrjY2/O2PgxnrW0BZalrZetKtoV1xdsOnTs1dYOM4ve61n0Pup8y3MGkFd3FnlT7gDlxXV+THVYEQNLHjvX6VZWlMJJs9m99EfffXXKnrQkaT/8bd6+Qzs3Rgq4W834IV5MVoFvofOsBjpEt/ocHoiRKhG9Zwb6TcPl8aRStjZJ6Dy4oCBlrDzCIGw5bjUwQvrpazI2b2rCDrYy5ULSBnqxPz9csJd/r2BL+K3d8K4ZosTCyFZwl7eTaXqW6gU87cW4UYoe36W6dGyDD6fgyVkIULR9gUYtw6hEkuk96PmLT/XszRdnrLbGcwO9x9YU7dqf5O0A/Ck5764bBRh50aJ31kAWtV4sOw3dcxL3ByYvkUyzxYp1TedjpM4WGtL3lmkNOlbBtlecnbC3vCjstVII+s//krd33lq00+DF3vJSwlg1EZV4tuXb/gwNL6QIIjuMPD9sEC8Ij2T6EdriOU72ooYSGaWvH4F233tNyp53TtrWbS3alV/J2S5oViXdSFF3Ij9N4znTHbz3PVawS28o2GK1Ke0u3lV+MvgT6Az/ABhrMPhlZQwIoyogmUYA2n6D7nqzW0oQ7phnfRIYczTHKqLc9s606/cewOJ7+pfydgpFHIQ/J4317OuvQHYWpuzX9+Ttsh/Ck8qStI4nSzKd5KiMImeSBXmsnU6Z7l9eyAa9Q2WdTLO5i/V1CfqCcI0ddCHCbvT1lLFmN70pYyfMSNrv7s3bJeiYJ3FvNfT98kuT9oLz0q7PzkDHb/06Zx++3beTo3Z3Ml1N/0rfVYXAsU5wcDK9y4lJBplOuH46lBdh3ER3+Iy5nn3wdRkbNzphP/xdzq74Mf0zxdVjNN/+5rQtms1ZgbTpoZbAPvuDnN23OrA62NV3My1hP51mc0OH2r+zffunoVr5WAUMLFqH05oT9QthCNecvbBkad+H9wR2zfOSduGT03bzHXlbsdW3916asU+9Km0XfTpnp0zwrK2nbiA7jdR0YKXVnY8dV7Cqkz6J8sOcdqNqlddHEN1Kj9tXfY3dfgcYCE1Xhp33o5QS1iTxH6X837wrbactSNohOrQpjQAnOEbXZaW2EEYaS4fHWRXGX8M5HFh/BZHVipLgw2BUhq7TbbWOxz5uKX86RgYjSqfkuqfTL322kuT805J0uGY30Jm95OyUvfjpGXtktW/X0rGdRV8goe4dWKPDNJwGkSmmcrPTXwopetOiVzoq72nLa9tWa3vo7SiipzpjLcTYPbbwaaQ4A8GbiOJ4eGXRbvt70d7xwrS946UZu3NFh23cHVg9fWrvqaTQANGOvcIW2mP2Wy094TzkoHen1L1UfjmMGXbcPGH5pZwh1XAGGQDCadDudIzSVqHEljLSef/TE/Y0jKtRdLpTxnnOO6TOuXdbc1P5sc7HG30mxzfcwBqv77jDDSt5RKNyOr+FkQMaCzs47PCx33Cei4wzGsMxV2csdyF+lCw00Nk2MeR9gI7h9vuKNhFDaztujkaUcy/jSikFEV7UmrbM6LM5C+YODjH/OJ28pvi6GyDdS+z6peMp8htvMW/d7W6KpwK8zsiQ0FaigG9mQPLUk1P2XRTvLff4NgmFp1FlxUDlJNMyLlNMneHPsuyJH4cpSdSfTLtGkSAW2cL+VQv2ttEcM0Iaqs3Kgn7KKJFKmkwHq8HSD/9csHlTEvaul2XhQXBAywx6p7WnvCgxbe3yzj6J6ZnzePHA27ipGpPp4YLaWVvtdRbPYx/GD8JuMOkvV7feCVWbNdDqsgvSNqrOs+tuRhfOSdjLLsjYinW+XXVrwc4GY3tPjMoKKCk8bXK2eFMusfT0FwO7L8KXlS2MkunWLazJfguDurPhGZ1p1tu4kizII3nGZLO3vDBje/f7dtOfCvY0LNOXPCNtyzf49p2lgc1FJUv2uwcAot9S8HoOfZ+adQUenrOhDX2GmPxwwWFEpjkgNP/Q08iDAbzW2NEubtBMWXtIf/tVaVtMx9qKvp42MYkHA8MGwiylbX95JYY1bq2v3tJhjfWevfzCjH12W2BX/axoZ9Ix54RB+aErpDOKB77N+qnvOUNhwDLNbrrCzr84mZbucoMosItuHdCtYbTZA1dkbEIDcgV5p02ixSGLNt2N4tmNV7FrnsjN7YFNl3uLeqlL6AyCqP4Fo8hrOBu9cxcy/QlnuB+RTG/4iQUb7qCf1kAh5OEUxe1qxcM3z7NPvhFPHvTgFBGbNoEH+QBd6LnZpnNPS9kT64r2cw3k4YHXPy9j37u/nQEcEkF8KEiWeM/pu7z6i5gNrrXMiR/modpLjMvzPoOwUB6HdudWfsUSB9ANtTNcnZVMGOUtfR3G/TuwF9g34QYhU8bxgDnB1rxnp0/zbMyohN2BYbhhR2BXviJrb8UB8c0Pddg5k9DpKsLR0cc5MINdpMyUtOBR1QJ/h69PcMf8AQYWNWYhqOc8TCJUd4KKh6VbjNH32aembCkW/L98Ds7DyJ0yOs/II4UQoOQgImsYK47UtGbKq1lggaY91MHxuoYBMZcTYnleOKU5Ow9DjY4G5q8UOsB4MvywZVeAAumw0+Yn7KIz2FVEZOkNjZb6DBIodoF5WdbTtG2iImgbL1QGfabRA6dEIKEI1MwUZuOz8QJiITkl2Z0pVbxGifOh0Zd+nrfH0S4b1gTWgWJ5Mh7BCfLpdkiwu6frLJ+0bldKchGDQiwLt3tE7XW4ioUYLUWPbjsZGvyVUx9ej+2IZkAx9RQc5aQOLUvzXvTf/GEkYTj0LntGyqqrUSJUgAFQH0Wi9FnP5HG6ug7I9zTa1xy8prf6qhNPXVCb8roR88mckbbHbjqPUVS4u1EFdg8aWbYqe5rpNc9O29+XF2wcAlqvarqheO80YQ5SxozU2D0qR5RjVr06xJCBgWDEG8sx52h24LJIOTSwqGwPBaTSZWDJEN1/0Le/r0AxoITvXQlvPu7b0yZyhljFZiOlOgzaNqWdk+uvISc4WF5VFdofRuHAG60TuhOJ2QxEp5ewqTCh6gppsl0GG8mbesFT0vbzP+dtI4OouSi03zJyXEzTqcPtnkrpQ4wJpj0SNWDc+WPKhPCi40CMQEbjHl4NvV1B8paoYqqwgkzLuBLGVjqQb/8mb2u2BPaj3/t25cuYDsGT9ddHIDCMwN+KQXmGMs1OYZWlox/krXR8XzFJeFNY9GYAJ9NLWbP3MkblmhbuLS9K4JpEHRXtu+dAYJ9b6tu/IZbPp4NzzyonIyXtBC3VRp4327UZrqhShhWZI8Snv05e4EV2NgbN91pi+hXQn7QVMMpQWAXLvhh9mMUovfZ/8vajWxnMPcm3NR9J2ZmLEnbd39lM4wbXXUWEV+BAppPiddgvEO9HB2f2x4sOo2SaPJC1BDLtPCNak0O95QWfyOPdewP78B0dduaChD0fL0uB+M5DzuBkJsb0Hffn7aN42WwbU5tzknbBWSjQ32Ggc0uOHdcuJZlWOc5JoPV8A5XpNDwhXSWdpTdDUF+dYyWMbWCcB83WbArs3d/osA++JGWzwKQOBVVts8D/wONFu+Z3BfvYxSmbpAG92rtbkLwAFp3r1c7HlfNpsqYOTu8MQDdK3hJkikwbut+tkS5jD9SLm0pb+oRv77wlb3f8K/VR4L6MJxk0b/1Kh92N+jeM0xOnFuwlT0vbNNhl7XaMHeKorjLs1XclmL0p7Pktt5htQu8E7vgGMBwuOJnmTRv0nUlkWjuqHY+W0qjFs5Tz5/sK9gVo9dMPVPGYSkCWBuyIhzcEdvoHAQo5nr04YW+kTyyrYlfJpFHeiex0drf+kft4fPvUAF3JjuVVaGDxXiWPU52hSjcsoj3s5nRNI/bGeJTuZhSdFjbV0Lnt3+tbLUx21iSzP6CcJ6KXXP9WngtE8ejgkzphtp1dTdptpZHWANbWhFNseXYP7KKFGi2TrqFhIg7uwqq2kjKWTL3xmzQnhsEzT0GRc2sU+FFFhw/KkxG4l2YnRQsncruFecIoKT5MUkEQHG2Tbb/PMhl2d+DlCFjl2pf+SSOD26mO1htsQA88/6nyZvkwWdHmYpBrhxvi161Y1c+drM1rBTLsREngZk5Dv0ALT93Dw2GE/oFcr2y5xmuWzrIAmO3ses9cJZBSyOpbzgDbx64MvYH1TJh//IZ2e4DRxVmwSQd1puTuQe3Mv5R7jRLCzQnbSdGxv3ZWLkobpFiPgUcDUqazvFqGYaAUXSU6YuvbffuZ1vqXlI3G0fW+H+Xtxn+RYoFQ4gX9qRAk1FronZRxQPMmKS8JL2pNVXeKV0zsOqEEr3RQk2ez9aE/xOXZFV8lq/3oH5yd3ciikssvTlstikTK7rzf5e1rvynaBORJfU/P4AwDRtVZpo+yxM/QqXlaDD4gjLQAIwkvv58p5CnkAUM5tCqle2FpfjLDbydM96webM88M2kvPj9l+w8FtuiWnH2PqdYmkvf2aigrynAYG9jK/6hlxP/C1x9GQVCvqN4sx6Cpeg4yrbcviKIK3TE6JqPqX/lj0ZrQLTbb7LUY1Fu2F+1T3DsLu1PeXj3qFcjTwwIPJNOsH0o5fJIXyjqsTINBMJxMPwoN34xMZ1mXDZAK6VSbOQD4xi9z9qm3Zm3rtVkbXZewR1cV7No7CvbURrLCmhZP9AzuRH8wZrUeLZJpDTIOOxokF+hvvhbLt5mHAZpFXjJ43YTReYfKClJWi9DR9zE1/Tbczh97bdomMjC+GENF01vb8EhPQhehEcpShZdOXrhMwkeSLsm06DhgeSHXgjDS3Nkq9A5t7zpW8pKnRSR+xfU8BMNFp3PQqe7zJ49xetFUriHaLvqYJvqbLRA6j+U1GovglGr4j85YutQXLdAVbv0ZWTmZRl4GjBE6JqiXap9Gd6k9I4zjqfT6nYFdeh1A+V93mViAmJRZD7at6PHLhJ9OT4MpT1h4Ln5UXfTLBe67pTLonSQynUKmNZvTL0ZlgAL0xMvINCvwnbw4vlHGKJAF6L8/LQ/sG38FIPKQpbNr0eCRtNLlzcBrI+mT0Tf3wIvPwJvVDM/cvhGHBGkRn1IIMWq9mPoyNY5zHKivrsT4nclUkJwMFMQOcq+eN6ro9TclJ4OM5TnYCjegT9btKNrz8JymNWeoUMKoTRdvODVhr3lOitmnlHXgsvrczXnWCnpl9gRpoGOC2S9PAxGnM0r5hLkdl39hE5FY1onAqkXDoF+7Ybed6uFK9fAhpJ+CYiiMVr5y8v8hKWxYt62k3RolLv+WhLupFMpAKHSd4OM7JVLKuDx+dK1HCKS+Ag33neIBroyKMpxRdPfNo6kTMQL3IoxgFbZ9YMP2D+vQVb1uydwPKX4fjNoCRBq4pJTocBhVN+KpfvC30o3lOi+h0M8KQUxfTXQtOP3cpUk7D0X3g98W7dvLkjYD3l7WxfFdqaGVHOc+ZR0qCqceCR/Xjo5dUXtdKa1GZaqTBE/phFe/+0Ip8OC4b3XCWnEzP3Wxx9RwlX3mkZzdq3qKXXrS0uFQnjxUHLfrSGUJbF/U4JELxIkwCaOunZ9dBVHH8qCf0O65p3l23pMy9uO/FO3xJ1i3xKKNglxblPU4f1t1WQmjyxtczTwXVvGJo0WPcvS4PKh+jieIR/06wJchL5/69Wxt5biFItY2e3b3E56tZhrm76t8++gb0vaCC7J25R9z8uBLd/YysgLKSZHvTsragyJ0GFXuQOioDFVpyQp8MpV8ZKhqDYOeREE86LJDD06fnmY3q2c3/TGwVaxA/RhrIV54QbV97G4NhFRPcuS7PMjZIYzrRTe1NdchXylWeUn6XRb0SHKmgYssN/GI6O94vkchUTLSTMCo1yL8Fy3wbPo05OX3JMilbBXJ97q0UeTybxKqPJXh5rMpx7WfE57yiN2vHR+L3sSXvoJHJnKNGPSqmchdBexNsNEFT0oz3ZGwOxHgqeOZZp+StktONbvuXt9m0B+09MCp2iZkcIBptxbsOFgq14Hujqnnr05eBCODJtVrHBg5PxyMSt8VFLWWTnfpFrOf3BnYZc9K2VWv5BBkDAKxycObE8Z2GTxwOLh7YiQxE4TWTt4ccxfS0vGi0Hcvp6vE6CqSaYhTkula8snziTCqqidMZs0nUfMYiJpP2s3ztfCwhgZyweRZ+7HF8TPFy+IizkNOXhk8k74dRk7B462kC/Ub37o+EpkWj7i+CQxKq5fYq36qJj9nNmFo7ZBIYUhIx/D8AR7p2Wzwr8VALPDMd+593x7jkZqlM7j2Ur60r2ghvePoWCqnM2KPC4pyOMQc4hHpflc30rsQYpRjds40s3WaxlFQOqIqyAjVgPQeDMVfvTdjU8Yn7MN44+qVhZKrjgquSbnh5JPfahzHi3y7DBWpQtBj95wLN3jRGwHg61Co3RM5XZrQNY3MdClLV6bSgU3FVkOW/c2BPbKStkwUbcm8pL3wrKS9eiXT69St20BU6SKMh8NFtOMhwO2SNCx4jZRlGUIYtY347cygxabi9lcXcoA55tatGavj+wWpvGEQ24JM0tp3pGzqrpy9gQbj6KLQsOSZq3tESRRPkDhgwfiJeAwOwp9IvEblhyUQpBch2YlS1Co4hmqeXrwZufld46ugskCSJNbwXgyyUc10LvtT9mqmQKsloAQ1ZshIuigFYVQ5LLINMgctGIX3JDgAPjJyHqwwbRS927erH4JDnfzGE1GY+yl/Tx8FhSkFO4eFvgiL/fVwz0N3sT7nO3l7K9rCDRYcyG6l8EMYKSe/1wq1tEw1JwX7+6G1sCnBYTCq9TiVOcCiKE6Hp/1d0BELVG5wV1aFtNxSB7zqtsB+vdnsI/+WtmeyCPX9Y9pt2wbfqnDP9F4qoszw3rFlnCNV0B8cXeBj2mrhumtHHvcVJJjEC3gJcTADjOw+9Ir7EEQsqUhTlNKKx3bhoXzP+Rmrz6GAN3fYZ5+PUxWP3OJRTCHNzVsLyrBTBqMyXVtxH94L2Jnno5A8XpDq8d42N03eo5woWfhN3VQ9H0OVegWMBKtoZ/feLw3DO+lfag8waiju4dW95et0AijVfbDFPdOTdu5TUnb1pJztYNohjRh0rXsspVVuBRaksqU7D8aER+LD0VG4XNLOC/NZ/e/V5i2TR16k6HqMQp3ogLENmkygzVY/zCj4eznXVPfOTdniE+iEx3dYK6TRtH+JdOSlEJajPiMPvxfHz0VeDoKxJNOV5DJMGGbkeIHR8ah6Mm/BYwlGzqPrc0RK3eRt3MO04NvYuNK6NWl//1W7vQXvy+HlBZnOU6d0swX1eCYk0wHdnusERLCyEJFOt8plegIHq3oMH51MK1J5RPEPsow+nDgjYefOydofWVP5P98q2AQ65I//W9YuOcm3nXfnbSzWmVgilDddKJAXXtugwGu7aKuANksg050RD0tHcpMehDdY9okuYCjsZFo6S3n3qJ+io0IfuDWwDX8Lsbzw2SztmJW0cds77E0YMSk6cOcUUPLOoMzgeQ79LTiZxkPmeJFyXBE9yulMx4Uyo08JEm0WwMdJTpl3soYnPUwcpk0iPovoQeua4YF9bKDKt9vJ9CUFjBZ/d9bmpIro8IIxVrG6toy1bvPsde0dGA3Il1hb5SD70jtFyvEozxMd1daHlekSRh/dWJLpBG3hcQCsc61FNKRcedV3whfZg2zYwsB6BVPco9C9oo5m73aAvwb8WUYel6IPGvRM1XNt4f6AkTVztJNo4WS6iA7uTzc6XgwzCrS9l6nMhA5ghiblMp0g3iE8cWsK8gaLJpSNzLjZCPDdj6v61ndn7OlnpO1z32u3L/zZt9PRYe086wwUI4+V3u3JmQ0hdscQyrAzVoULPSxlhHcp4BU8Pjg1qA/vh+a0xjjajVmkb1YKh5F76kf2cf/BjYH9dA2gWeh23yezdtZJMijk5Qu5JUyFHaFlCNrxCTn6AaYIxzx4s+fPR7pYJHjS9eHrB2Dmepjr7wjWD3K32LNzX2cUy1ELuPXlZXcGdCT8ahStNVBl1ZqOdPruGdQAMpn1kWElEleKx+1uIYqHlneNqLSOst1iVfwB07vGcV4NxYjyKo+tewrCIowqR/kPFiOM7/Lpr264OnGTyoYrMImeYv2QgxDBIZfKQRGEUUFlVaqTe9jjj+KpXkdGf9euJC2y4EDXerfi4YPKUYiESxj7S+MS8EdphU84IYwLfafVgNcX77HXV9h8jFav1Nayi3sH5a/8hgtjOY9EeUeldv8dykeIUezhZKgbXbrHDzFG7dUfT5Wnja5FRwVh7JuGiuG8wyRLlPZMi44KES3dj4p/FC/CWE6LipHLbkYYe8p0dL8sao9L5+zCoAnpebh6RXkNVKaj+FGB0W9hrER/PVcAA0pGtBLdZPAlWavobAvWkSQ1TyyYUXSXpucfPRxOmY6w9ywn/B0IJ1VypyWAV7ZtqLsrx+8CL4zKW/Q4HO3L81H8SjLdG2MgNwX/O/lOP7nX+ZucXBxhj6aYOotSfgojq3d6YQwLdX8P9yyMJoyiW188Fcbq/TdKV1mm6UkYIjXbOm+xnV77PlvzsVG2Zx87CK/usCWs9dT6u+9dnmYGImXX/rDDPvHLos1k04jsFDbzlViTMlBKQW6vdTz+Mfij2bKnfRmoDIK0XiTq73uD447SShl3WMcyjlzhfaqjTr6OtVJTeSS9UOIVvtYju6dN9uy776+2ux4s2Au/kLMTwfKqsxM2nc0DH/tJwThL1H73H1nWkOLA+UCHPRUI4bKjEGOxdb0dXPZ++k0O6E1NKJVREdhxcRMPFiOh/ErWHq3CDbAYwJ5tLilm7Fn+MeJ3QkIF4V/+doWS/up2r+tp2VXEHIoZXZc97vdS6dRQEqABBul+Qv/YwnhduIaCUYWWCo6y7eNbm+tUpVSD1hpxPXCgpRwHS8eBp3MDGDCKRWQYDByiYqq9oo6jBHlAX0rbf7poV79bWkMS6QAnzypDRfcbhopxgHQULsmJPkoCe6jkgQXFHDhP9c6zfzo6TGDs9EgqCcUeGcYB0qIbQJWghhq4TLvNa+Dr8g50y7DCjwiXyoquK0Tr85bS9UN/ta9sDrLXoF12gpKwESts9z7zrvRgsBiPIB0TFqqReFKGvtM9laBUvKf2GgBP9UorovSTTqAIiumCiqJaDp+uFUpN0RknvFv2V0+OIsaykh02fveNLYqsGKWKRLeO6LsHHRltFDpS1oh3/N7XJmxcXZFjTJhG/a8q+z278n71SGAX4jXvwAv37DNT9hI2pWl2/ra7C/aJ3/u2CD51m1m0hq9jJ2cYPgjdJ7MT+achQzvl1Q9Ap3yJ076VNZnLOKZnk6Wqpzkek6HUTF93+hw2WDw37Xb21zPweDJuygc/m7Wb/8DJAgzuLmaDwynzmZCmzbW54cZfsD9ZPKrmFMn4yNhW3n4r70tO4FIdCLZ+oI/0YwwsaqRFfvuYJ5h8MctbMnZjx01WH2yzscE+1h40uNr5bpljD/aJGP+wKLFiu7kUBpSoR45l5brh68CVco+M+viJOd+tsYaKUQqvhyD0LFkypmLU8R42lCLJkugmvkeKsYyGKs+5UYSznxAlE97oulcSYaGXcRZOeaShYCSteLOvjhE8nR0tUctL7QWv84Ywqjcsjz1UjGpn4SzPs7PA7rcVRcX1ETVMFdGxLA+XqPx3f9flBYiOkpfDNGB59PLrPos5RjKtNhemAWE8ijKtNi1v1wif7lUMeoDgD1mmlXlUGJcDkelyfVOWVDl1D8IY8WJ5xD4r1T15568eaR1G8WKFoKzLoytKv8UdA5muAP3wtyI6lsfqt2LlkbkuJwxpSzKtfbQ+OyGz+7fZ9F//P9vHWsVfz3iz+WNGud2PB9i08on/7bCxHGNTw0BZBqv05nrOC5qsAUFUCvf8lo2cu3w/3s2FHFvxxujJgL+9qtnMKmy0/MHVHHD8FJdOqLUBbe8hpgGX+bY849ueQywxYmGY1gFuY23YDXf7tnlHh51+AlOAjFC++bPAbn7EtzOZrdUieRewtDQdnD+4is1a69jteDoV6bbSrRTx+PryZi9YzGQ3u7V4U3xy8desmcMJ7zr0IRsX3OOmBgsYCiwhZH4Z4vfV2VWsk0gLdXhJI4d3cF3OIBUTDOAmXKB1OcWNxJX7UR3bYIKwkJdzd5NHcgY/ae3hwuizgloYnTGocgYTShhltHhs80pCR6ecBpNXzzSSJhbY6FR9J6g9nx/hb3UUCQxxdrmEdT7C9H1FL7I+J2BBFUb/kIPWnCVwKet09OEK0lY68ZiBiJtzGSr/iI56+W9iDAjV/sMQxD86xVzKaMj8AyYNRJLTwcjWoGHBOFwyHdGKzkyDG2EcUZkuyWdU7JF8j6hMby7x4pEAKo9bqlenTE8hv8HqsPJ8S9c6xdznoznKoQYn0xNp6/FDzakrvfjbR6Z91uwNl27kjQAjIdMeax/z3jQ+nLGlNc1sH0zg9rnC+7r9ONdgjQ1FG8+U9RNUxc2zSTRKaqVutGez8F4VNQ3LPHHAWsjcE9eYv+tGLKIF1F196xG2O3wdFHZwIsVTrH7xtUyR48ViLjLB8iGdxfYIZ5u5blur7rVxjXvzWUs5ju5NGPeXlifUMwW8eDRRolZxOqeKo3XW2sFH32OFQ7yTWMdcSI6O84AmksJEWbY9aMXtv2FrxkLmQUdzMF4DtODEZvbg7UucbA+k3sU167COhOgyMA7cyZG3v4PBaM2odQdFFPLSq01qTjPj9RJuasEtJjhCJojKVufomIhG2ke9W+4vYYQegw5gYWOA1T+TQ+XeyXUniwwuR2F0C0/wMO7+CTsP1vFb83XcH3QQRozUhhe5LbXdFnQOKk9hlICiNHf/EKmQYoKthoLRtQ04x70c23IuZMQ4GoqSV346w4rt+rbzR/ARbeyM38HSUTSEbzh7KNH4VvoKlLxb7A6PDjJoMt4puualvI3kFvAN1eAvtXNmFhj/PZRxKeGh0FF1g27B/r+wr+P2krwMlobKLJJpDqGUTKtDczID9kEFsEimMQ6CvbexlfSBEsYhyjR6xxv1LGT6HW4UPShoUSJ40dNutOIhZJppmI71YByqTJM5C6+9MS9G95yKDA6HvNAWHTvAKJlmE8OQZFq8GMqcx8vHrWZ2SV4G284iJm2t0/XbVjMGQ6YjnaFHgwrCqAHOGLa7vQ3xmwBkfh9Jf9erXLU1S2wOMe22/1ayGgaZ1iaBLJsvGt9n7cmxdgIvVp5RuI1dmJw1OZqdjPwby4G3kzBqpkJyneV1Ggvaex7fIc+QmxpUE6ATivsexO79KmNZ+Een7w9SrD0WyOf3/sQ6dr3AamZc6srVsRfVGE06NFTqxzWV6Mp/nWcmW+tEyB4uhw+L1v0wdMl0OwfCFvb9EjJiA7gNUFGc4/dbPSFgIWiGU2y3f9Jyo0+hobRvkBYgaNffPqzkV2bO5RcKOpps1sOKAYKIgtp+1LzObO1KOt6H+U0n5NJXTDSAmyhO974o8l7yKjrfM/gdtYK45EiCMBJfJ7Hte4jjrJeCdXVJGauOgw3UWS/pHdcExstQdnP4DUYHbxAYlVCGwI47MPHvgnxSnGDusu2PEKgwkL64hn2zMOmiV7IjkdGfO0xuEMaBkxSlo47bbuYlUhiqbIigYUofvo44CKPouMJs7gV8LsGWxjh3xsFgMILFGan4zrdhRK+m400yQnO8KCYYTBAOPsF6s8UvYU/+k6k3mJ3hdqTtTFZuhEa7dMA7G3/Bvv8/gXEeD6DrYDWdw0f6FKPxk1/B9P95IT6X35FiLJOX5rXING2z+1EwwjtDlmnaRacdnoxMj4UnhyLToGEIz3wEHdpKPpz2zFwCN0XHwQbxIoOHxumh3qmbzW/ycyQcBB2VUAtTtv0emb4T8qFvnLEPnw4qCINkehWH650ZynQNPepQZFr4NIDYehMy/UvwzaAM4RsKRtERvpl3ITL9MvqbGrKL6n6EFZe8lAaetu0eZBq9M2wyTX4nItPTnxLS1RmGR9rOJHUyTZ3bdyHTGFdb/gLGOTwQLw5W79DOGoCktsOLL0emn2I/4Pfcwjc4omOC82Kp31bTb6cJJ1GSQnR6Q/ir6y+Tbs4ALB5aboX1XwLfXPLPd0UYzBW2hJdeZG0b/ptXfs3lVVDwJINPGVk5HTXRR+gyqMojlOhEW+d2/83aN/wX64FPBGNHeaTj+hoOUFBFIHYw1fx1X0BIZ9KpMa0nJkF42QzPdc7O4fAGNrZzr4+gDpegQwiD1jXI/Cc5XOXbGBqncFcNx6hosEFZa69x4RFeOPivllr0X+7dhO6dTK6jPwyu8jJLcTWy8A88bIUV/wa0e9kDTIcm5hqyW3g6pyv/wJIrPMsu/DAn785EpjCMFAbqPXAYkRA6i8LuO3Hdvokd3RCAAwWd4htgVcNCe/5V4pM46wBm5Zyr9Lwr8cA0IrdtYcQBY8QIl5IDa2Hbr7DZ6CCrTwAzo0opgcFidO1M3QMwbnovzcHCxxmvJV8pZNGRZwPN2yli8OAtKG74jvmb/pV2Jl+lZ4v8gPMJKdP112FE2fmzOcviMl7k7PGm9+eTn+6h3QaKUe2swMnhAd6C5lVf4tiTz+BZlLwon9JzxTnS4DBSRzyK3vLLeeH0DZZuPBd8tM2RdBqdGJEXXPQtyz+Bi/57JYzDJdP3cxjSv1rayTQDPbWzk4EBNnQprpPp/Q9Zfvl7qDeDprpZ5KNO/EiJ1zP+TLwQ37XUioRVnfBBWBEZH4RM63wgGVeFnX+19uWvhwXhzSxzIUPGqAouYSD2GQ765cT2ue9Epjlg9YhlGqZB53gMFHJbf2G51a9GphdyT3JOXzBYOjpeLMn0xqssxeFM6RmvQX/obQ1HINNOHKR3dNQK02Prv22FTejvOuquc2WGRaanmq15Jf4BDiR2L6fGDEGmXdv1ZIsKv2VIODLhMZdMF1Z/0QJ0bdgHDpdM77PaFRfanem7LVunWSX1q444FRBVuOXkBZKpD2xdb7lVn+cd2feia2eGvFghycBv0Q7wi8/hMxNhIAAAQABJREFU4M0r/9PqF32C95aeCA3RFYOQac2O5A88ai0rP0X3zGCMQ9ER7oHDOcYxkZwoiDD1WNybIYS8TXJbhyFquhZWx7W60Vb0RN88LUXQFAetZn7zShjrOjrxGxip0Fk4ISpPM8hrzblrvVTrchTyRzAOPsjb6E8jM3biOaXMpePunpqghJHbOlEXQFbc/yCbJ/8TA/Ah7L65XRhLdRkkQpKBMX0KrvXvW2p5lVXPe7d7h6B4y53LoIwPi5GHelUHdc3v+JO1rfgwjEXiVEMJI8+HhFGJhfFkRqifxRRIWWY2LznVrg8ZRs5AOBxG0tPGeuFvwFqzwtZf8145lFyAV0jtH7nVh4JROGSkJBdzet5VnGFE9ae/kuzpNGQEO08RUSpqfCKrbGHk9TsBLwrPb/yR+euvJBPyU0O4gQNxFG+woWSMB94CO7D8KhsNptqm50EXXskCLzpFW7GdKRAMIUT2mGCUFZC5g2v+11p5jYandnE0HAq4UqUkLwneZZA/aAce/w+rP+ETlh1/LveqwjKcwlNcB7SUSF+iUeknSthjuiF/cAUG4Bd57/p3wDicMk17JjFUmx/DEESm51/Nm4Ek01rwCn5HKGHpA6NuM6CjQkxzPIBMX8MA5zH4e1aJjjyK6sLl4EJJpnfxrjvWA9bMv9LJtLYMhtNI5Org9YWRyQ8n02xl3/FHa13xIcQMuurcQacbSTckjErMB94J4CHejmfVs96ETE+F1ejUI69gpcFTxItOpjH0GYx0bPmVta/CSPUYMDnPrAyDIWIsl+m1V/ImCgag05lC0qvFdGaAG5SJfj1pyC3VTVXUAIbOO+Bcso4NP8DAuirUEZLnYZRp89FlKzEEoV1qynMplvOdHC8CwsHribGET1DRgTLGfF4bk1/7DZZzfTbUta6dFWGIwck0fUF+J97Fa4GKLPK6JWekHzbrLoxhPw3Z8VzlVn2B88a+RTuQj/IejgDdvNR4jlK4yw498VGrW/Af7t2tOlLCtbXKOBwd9cz100Xex3qftaz4JPvwtO5qcgljT/oPB+iRySM5pnH8R5V1CDmwNjw4b5o0kbMs2bbput8Dtj+5xL6ePdOmcAdRIJQaSwIL08uT4TElqHegFffcjefqGqbefo5xdeLwNZorVyjpfPU+rPb1rNP+IyfrNrKEASFNj3IYXDSHD4wKEUYpOBg/YCtqYecdVlh5NYbaStKp0cJahQmG4y8nKqemsBzrbl6C/gRlTAAjB5hmaoET2bSiYYQRxhMdhREa+2x37dj8M5QchoumBd17xoRxOBmLshNgPPBjXia/F9crGHldkl5zEI7WVFYJo1PMOm9KGOWhKuDNWG/5Dd+1wtoriMeoz3UgJUXMnaEHlCbtZQlenr3324yIGLlmJ4IPjHqtkTBF9HOGAr91z/GiDL128zEK8ut4UfimD0NDPFcuyHhT3YYalIdG03RKQZbZva/TaTZw/gt0xPubwLgLMRKtsxPjWh1ZJC+FZutgivrAys/jubouNK6G6rnqVi1hhBd5aWtAWbldP+Y3r+uoQmbAGA42SrSIaBnJizoK2jvI76Nuf7NmlFx+/21gXER9hkkRd2KlrZ1Mr2H92Z+R6fEofF5nNACZFq8G7TtZP3o7Mv0BPOerkTcmR0ZEppuQlb9a4cBK6DAeeWkAo17dQcfvQmWZdtM2vA+xffOt1rbqvbQFfKN1rw7jcPBiREi8J7x2p7j/ZhYE87ok5EUYu2Ra8SKMlEtbC7v0jgeWYss61Op3rWPtO3hGp60Bkwy0YZEXld0l0/6eG3V0ksOo17QlUkzliveiEMm0ynZ6BzljiYiMgo41X7PC5o+GMu2SDK9Mh/XGu7P7emxTFpCjGz3xYgpDXhghoQsRxpLh5/Q3B20W9y1l0PlfvKfzK2BkwORkupRmyF+qcNGqUhNt+6EVdumoVptd38huO3iKR5r2uyP7XFvKeq9JGJ1QPMRc6l/0Mnj10wVkOr/y4+j/31M3DOlhlxfx+DgMzZUMyv4KHcYzDmKdmNM7lfpAgS/xIjLt8/7h9u2/ZzBytds16FHfUO+o/v93Qg8Di0VxNFCXgQVdqOxeRlv/0zbKJnF8cx7PhaYApXxd4B1JesljkWMeihtvMH8t7mlNqCY1AzzchotKFIFhm0Sts4b9HV/DvbmDe+roUPxOaVQjDBp5gxEmCzgBXa7Q4t77rbj2y+Zv+BD3R5MHHrthZX6y6wzCyEti8zssv40yeRFdwDsBxcjyWsgD5BSbMDK68dnFUWR9S37XXda++lrLb/1v8E+jPvK4DaeS6wTIhTBOwdBcZgU6eD8nTwAQaTdnCPISVRnOwiuDRS5v/9Aq4t6BArka1/d3YBC559Umw6XkHAT+KM+SJhPGQ7ezCPNH6HumCoVboyRNRzo6IrDwKYek0NluBSNrCrb9EkOfjkKbLFIYBQ4f6Vy+fA1LCHnR0cebxGjr+9a++25YTnRUWTJuODRP8qKOjH8ydAptmy134DFr3nSTHVzxOn5vh1/nEF/tHGlvLoclhG3jucPMqjCyvoWhtJKc1WFp6kOdsl7sGsk0Xhnei1do3cj7ZR+y1vXftJbV7wI3CtMpuZGQaVUUesno4IA4yXSxeZfDKHkRf+kl3d1leg9G/gYGdPfhKfgSuufDxGfghQdRvDEyQe2JF5V3ruW2S6bRN50yzUnsTl5Cw1SdgXZmFZhWze2601pX/afltn2R9NOpzsjKtIe8+K2PWH47Mp3HcHEs1SXTCa2PdfLC2xM6tjPlu5r6/B5v+dV0vN+FziMp05ILgjAe/A2OmJ/ivBJGgaTdWPAf6sYQY+Bkehvr7JejE39uHSvfxgaLe5HphcSXzlF+4vHhCqFMA4JsJ2Hwf8/8PfciKxpYhuU5eXF6hzgqu8AbQPBCF/cvs/ymH1px9evpSHeDcTbPR0JePKtCbrcXUnZp4wSbXVeLgYUcA0XHNtxhZ9pSvKOTU5wez2BOQQMlH5kuItP59f9LP/jukHxaRzmi8oI8cqJ/bttXMeChidbXVpRpjpugny4ycO/Yfb+1rrnO2jd+lPgYuG7H8kj1gRQxgoFjGhY58RNbKeyF0e85eYmNzWScVVyFMK45tNvOXHafLRn3PGupmY9uptK0pub4AwwXa1nKGoW/hB2eG+GKEfUZ6SDPD6MsvUInv5l5bnYj1T+FnWczUBIoa4KO/g/aNjBtcA+CeR/R6aw7O4qSsI8oTAkh3r3CKkjSzBTy0+kDTmcnRBMyHCqWAAH1tWbt4J/oNBgdZ+hsXUch4RzuDrdCZaVM1FGwI0WlJUZfbB7rGrzsZDBqFIuRyim/fusqRjy3oEx43VEWo0UGjoTlaGCUYCrkHnFQE6PYBVm7mJnsSfAd9NXUJp2F37IMY+zWUK9l8VpJ64yYAgkhhX+l3WS00LF2PI7dV2vphpfxDvH5kEnygjeIdTvFjm1WaH7Ucvt/4fqURIYRrt47cxQxig/93GqwzYMfn8F2anYlMUIHCBjx/NFZFNj5VDjwB/gQw0bbtl3ncjRlmkMP81uQ5zOZ5USmqzBM9CoOERv8kmmf05zduT3pJkRsAhjFi0dJpvFEB7nHKa7DkqPOQ1xPZUpuZqdM++rQWlbgcbnTybaXmRsakEdLXuQp5x17Qe4hNSsrDJ7PyRonhTLt5JZjpF2HthLD4MfwbGtJpiOv1dHQO8KIQd/xqFQkTsyXM25eiP5rRKYlS6wvwkj1W54A403O/vKyMv5o5qMpL5reQ6atCi/W6JewFHgeGMeAA53JgCBApgNkOjjAhgAFTaG79/iMnLyMZtp+aWub/XjBfLtg4kTeGVvgQH4N4Xx7/8asfSs53xZnG1gMIplm4Ek/7bc8SB94J7DpG1PzACqjZeQwihRhCPvpoLAdvbwNeTmLSZkns1JBMo2jhKCBZxGZLh5k1ufQ39GZU2EIGX9HS6ZDpMP9dwAGVtLWNDdjYG2wkxrmW/Ohv5nXvoGKAwWhsNEvckqGbQNu9IFEcPMoCGc5Jdy0G4pBxzgUWJ8Fz7gBEXHUv7IkAay4QeX10ojiqAgnRXUGQDiMEIzFmc7YUj8Q9QXwn7m3hM8AYxX4RMOjwfidALkQRmjo5sn3Qsf1YZ+qphQNJSNMx7IoIYzndnJEFeD5UQkCIaOOuYW6RZAJgWXKxuky0bD+HB4z5XuIaVnXiYiOxwIjHiwUQ1BA8WL8R8tDHInhRS85E3YYCzaIeyzkRQIhOsorWdxAW2OwRGRy7SyMc5EbvLxSwk5ejq1MO/sugiBWPS5kWjSEx1i/6EtuD5YMe6ime1792bxCdT2i3A5gCHxM9A4YxXi8qzAoCgs/y2RanZhb2yLZPyYyrcaUvEAfdmsGOleuHKOTl6aws5XXzWGMGIG6HJUgoQhl2gpbwLcnlJcSHUNenAlGybTaWUbByGLs28BK2PvXF+xbO//AEQ7bjZUVLNUB/ugXwwNtLK3ZVKYbRxYjJXcPZf10EPXTwkdQ0zq1dEz7aQdlWP/IROoniKlRENkm1ghfYxmd5SGl4jwDfGXqrLDhp+YvfzPbrc8g7lFuNKF3iouOQA2oxXpYA527PhweWVzqKGCwYxKgiRM6BA9F7GWFUZoD5aLgejdh1OdYYpRBAiZ5z5KnciXFwm9HQ7VrREdoeUyCpJFP7jFLzvkaI6ETICtGdYSR9WMBUwmFv5/LKFJrH44BLzoFqzZkNIm31EtPC/GJrs6gUh3EixiJxwQfxbp2BCNazUvPgVZMXzoNJ0ildo7iKPqxCD1k2uslL9DxWMu0MLWzOH/GOy0781L48otq9pCGGPhaslB4+D0YXn+CxhgJRz1I74jPAMV75bzUqVyXZNrx4vEg08JI/+Iw4rnS7EKE0fGi5EV6B93pfvPzqAfxWijTlp5KWzJD4nR3pBuPB5kW4ykw7X/CNWYLOMOStmfi0N3V2qf8uu9boGUTOgX9WOieMpl2i+qRn5COgiMais7Hsp92pBrWPwMwsErlOWXM4l0OYnM7U9RwMLzHPK/mzcX7clAe26AGkpFAkO44LoOUBR+F4xKjFJ7wHa8YcXmL11i4bdqBxDo6N13teJFOjQXw7rlY8ZjSV3TUSFYdA1/HZZC8SLEd7xiPU5mmk3W8pkFTuoFXkMCTruNFL2qwp0N3nU4UjY+lbhQvHs8yLeEQRg3c9CEclzIjjMe7TIMRY4pTccHKmkFHS+5pgb6bHeGGBlPHlL7/F/ppEW7oYeAGlqxL1rloAXQoCKUezOc7MhiGjifOIabAwCggntO6K63TcGqEtRxFFAdb0kOlMrBs4lgxBYZOAfFhyIuhIQUval2d7rmerKQrh15QnENMgX4oAK85vkMvYrBGutHz8ba6wZSSH1Prqh/8/1iPj8DAUsVpvMg1qmu1k/v9j0WUuDb/VyigjqvEk/Ci82TF/Ph/pfH+gXCW6cWI/zr15D9QNeOq/B+hQMiP4YwS186e4jsOR50CDPnjEFMgpkBMgZgCMQViCsQUiCkwnBSIDazhpGacV0yBmAIxBWIKxBSIKRBTAArEBlbMBjEFYgrEFIgpEFMgpkBMgWGmQGxgDTNB4+xiCsQUiCkQUyCmQEyBmAKxgRXzQEyBmAIxBWIKxBSIKRBTYJgpEBtYw0zQOLuYAjEFYgrEFIgpEFMgpsDgDCy37dP9gYLRd0zMmAJHmwLivYj/yq+PNo64vJgCZfznWDLiy5gyMQWOAQW6sV8Zbx4DKP/MRR7BOVjRORrhGRvh+VdquNLvf2YqxnU/BhSI+JAxgjtzSGOFiEePAZy4yH9iCojvxI8RL+pn2fU/MWXiqh8DCkRnsAUlHRm9eig6o+0YQPpnLfIIDCwpDP7zZt1Ap2ir8Zz3QFnoOg4xBY4GBcKziaUr9Ob48D1lIS/y4hLuxbx4NFohLiOkgLgt5DkNNrv0otepH2X4i0/jEFPg6FAg1Is+fMlbLUp8GOrGLn//0UESlzIAAwvl4PE67txuK6z5unW07eAFp3toKRRKindw1c22oHWDeVUzuadXQ8QhpsDIUcB1Zpn5ltv0Yws2/cT8lg28IgdFkkxaoma6c2Z56RP4TjgWHTkkcc7/9BSQvquaZcW9f7Fi+yYLmtfwKj1eXCzrPzvWvOpJ5uV3877WJkx/GWBxiCkwUhSI+CtpxXVfN9u/3Vrye63DvaO1yhJ1cy3RsprXBs+in8ZJMlIw4ny7UWAABhbKQoqk/a9muw5YIj2Pl+yiPNSBFVos2Hs7xtdDvAPzENYyI7jUBOLr7ehxE3ajdPxjaBTwePO6pS3f8aBjrao9P7RM1SJLZSZbIpHmFYR5K7Q+armOJ6w9v85xXzp7GmXq3ZnwZRxiCgwbBdCJHi+4L+ziVZibLHVwh6U6TrNkdiZGlV6y6/M6uJ1W2H0X9tbDBmvybDGnDjJQjV5GP2xY4oxiCkQUgC/xlib3/9pGFZtsQtVYXp2dsGKxxXL7f2tt7Q9YW0ebpTPTLZUazwA07qcjyo3Udz8GFu7toAODCqt3yU8sM2qm+VVNGFm14MHpWMzxeKcVWzeaf3ClFXb92nwa18ueyHNeLunejK5Gj0NMgcFTwPPSVizso9/aaGMn/YuNHn+21dbPsWz1VEtnx7DcBWPf9zG+9uNh3WQth9bYgd13277tX+XZVEumGlEmucEDiFPGFHAUYNDooTLhNR9DPzvmuVYz/n2WHb3A0rUzLJWdYIlUGl4LMLxardC21XIt66x93yPWsuN6K3Zsw8Y6BZ2KxRUPQGOeGgoFnP9C089R/6pvfQo2ftHn7VnVc21MpoqVPJ4V8jnr6Nhlbc0b7OCB5bZzx69s/97fWgajX46SuJ+GBCMUKhhYUYNRIl4D87czKnuGWeOLLYmxlVDDanrQPa42r2amJWtnWdB4rqUmXoCR9ULLb/wMjgO8XimN5tSxleXpUsZ/YgoMkAJMTxfwkNY1vNAmzfqyjR53umWrNPpi0iX6uCUuSTxaEzC6JhLnTBs36QI7OPm5tn39t+zQvp9a0nVssZE1QKrH0XpRQMZVBq/VfgaYSRu78GtWO+F8y9ROxzMlPRlOAgZ8KyTSoy2babCqhhOtbuLTrW7yRXZo863WvPVa1CreLLfgWJ7VWDc6gsV/joAC4kW6bhnqcoB0BvFewrL18yyTGI1+zMOWHkZ/jdWkZlhd/UxrnHiOTZzyLNu5/U+2Ye21VlA3nVLcuJ/uJOMwXvQwsBD2XtMpukfDFWkJTRU6xVBSCrjCFdwX95N1czC2plmSBu5YdQ1rEh41S08mgkZscYgpcIQUKBlXjVPebdPm/YtV1891nqpCIR+yocuuq4MKYESxqj7pzDhrbHqO1Y6eZ5tXzbBdWz5vqTTeA4uNrCNshTi6KAAv+vltlqlbbOMWXG01jU929wIfflIv5diwixelFCNeZIGq1Yx7Eh3fbEvz2b/q7fiv5sPD8vKHOjQmckyBgVMgyZKIg8wsNbLudBEKjzXRMrhKXtHAL+C5kvEug0tfMv6DkE3pp2vRozPrptuoUXNtxeOftJaW5ZZOTyJa3E+HBBu+v/IPdgUMKOcxrDSqku4oN65cKnezdJ8bReZ0sZhTjedYdtGnWQBPh1bYywMpkjjEFDgCCpSMqwlT32czF77Hqlmk6Rc6UALwaCcflnVoLuuQH/Vc8XwWHFdj9M8g/YRp/4Gr/CF4lXUwcYgpcCQUwBAK0GOZuiU2/sRPMy14LvylJRLyHsBznfxYnmm5btSarDY8CQ3WMONVNvaEG9CTj5f6v548XJ5HfB1ToCcFpNtgHX+9TVjyMcs2XgxvbiJSma+kD34M9SbdNHwr/m2ceJ4tOvlaq61bhPG1r2Tw9ywv/j0UCnQZWHQ8QXGFVc24kjVU82nBZvKV8Jes4EpGV8+SnXXGiIxRXWr0yZZd8CF204wmC0Z48Xule1Ir/t0HBdyaq/wGGzvh9TZt/hVM/U10SiG0/gfaIREPfpRRlmFtzLR5b7WxE9/EguP1KJJ0HyXHt2MK9KQAfOQXmWKut3ELP2xVY06hcyutoQpHoz0TVPgd8qI8C+K9UVNfYGPmfAV9uwwejQ3+CgSLb/VBAQ9+8QvLbNqCr9hpUy9ExVURU4vVB6oXiSm+xUorwtcNY0+1BYs+ggeriqWF8qYOPJ8+IMa3yygQGlgyrljnkpzwdqua+iJoXEMDaCqlZH+J5lw6w7gscXSp+ymeJ1zblBoIJZQac4ZlZv4H9tUTJI47tYhe8ffhKIBR5LdiFE23pnlvZ01VE8aVpgRLrAp7saa9xGtd+YjrdD9Z9gnZUbto8patmWJT570NY20O/WUL/Bh7VbuoF1/1SQH0lp9/3Bpmf8Bqxp6JcaXBokKo5yJ+C3+FT6K/uqfnoV5UErwPdGpeImujp73Eaia9i7HoUu5noyTxd0yBPingwScdHUttYtNVNmn6i+EjNlQ4fuzet/bsp52+FB+WfTyY0m3GgB/HjT/LZs37gOXzj8Gi3fPqE0z8YEAUgOSoAY2s0mNYLvUCthOP53crt0tzulIKms5tDayjwhStGpNjiGw3Sdo7n3NTC7PoxFK405NjX85U4e5SngPCFUf6p6UABlZxlY2f+hqrG70IY0vGlbqqUEHIPd7cBjsyO6PrKBRhtxbu78PxGn0KYkEiKL2OcagddQL5Xkaeq0kc5hmlj79jCvSiADowKOyx6nGXWi2Lg51R7piO09hgHw0qm3EeHED3RbwW5aHnMqz2YssfIk6Jhd1FwHrWZHac1Tc9n8Xwk9C3UpxkFoeYAn1SQAPPnGWzU23K1OczAB1Lv0vH6waeZYqQS5aodgaxayt68SB6UZ9DfPTbLRuEKWVkia8nMF04dtxLuL8XXo0Hn50EHOJFQp6lIL/MkmNeYamxp4cWsXMhKmeNuAIOJzM7rcmz8cz2FcvaUkpDDZXBy72E54316IroufKAIRLs7EpNvoQyNE8cW8dDbK9/8OQ6HDTPsQrTbdzkC2E/jPySFQWrWSsdVRvKY+Zkz5omsDumrE/KwqMzuH/q/NJngWd11eX8KsZMk++zWOw+h2zLPLT/4FSNqzdYCjAdk9tkdVMu4UzlyehCmK9kKalv23jIbPJYsxOmelYN/0W6UVH0fBuG15Lpni1EN+b53RmI4GNkVY85DePtEuyrZSGvd0aIL2IKdKeAPEv53GM2rvFSN61XhH+igWe3mOjEmlr6bW5KdaawlaahF0+c59liPov4TJvkWQ260dlW4kX4uqp6ik1uupRzBDeSMp627kbTIfxgiMaR+jRCAmH32M6p84RkWCmof8tt8m36K1J251v43OvbhZ8v2JljzDqIVk1j3oOS+cllKXvuOWn72Z0Fe+ONeZuPsvHJwjmxMLSSdbM4SfY0jCx5xmQdq4w4xBToQQF4JShus4YJlzI1OKGkAWAZeElsOarO7G2vTNuTTkvZtp2+ferLOdu5N/SsvuCpCXvpczKcDsIZRCUWvvGmnP3lgcDGYPjLw0WG7oiH0eOeY3t3fB/+nhoyaQ8Y8c+YAvIoBX4Lu/5O4vy/2fCgjH/oAi/Krm+Gn656ftJe+VwGjdz7xs05+/xtvp3IBEAOO6yDuB+4JGnnPyllt/21YPffWrQp8G9khIkXE6laq2YNTOtOMpSydHpXhcQhpkA5BeRpKnKcglnDuFMYILKEp8AAUYoxClwG+cDSYzw7/6KkPXArfAhLnTTXsze8OuMMfvElL7yw2mrPfntH3m7+VdFGSzfKEZZMWf3ouVZfvxAd2ub4Pe6nI+IO/hutQUOlF3O0wgJaqKzBlCeynqz3bN9W35qxjcZybTSiQpaGumef2dufnLDTF6csk/KsgfNHW8r1gxpdaw7wYiVGPQWmWEFLauoxDjEFKlFAbvA9Vo+xn0hi7Mv4d6P90GB/31vSNmdWwtZvLGJscSwIPZ06PXm1Jo8P3d1f+XbOPnN9zr7xg5yt2RRYLWtAncFF56X8lG/dmFO5hys8npap1AjxPVGAgWBQWGmZ0ee4A0Slx2T/aFpwPTvk3/nCpF367LStWl80jsVyndZurCc9X8c0zDt4fjYDgRt/lrf3/7BgU9WRletGKVf+Z+rns4B+CbzJnLczsGLyxxToTgEZ977fxrTg6VY/al5Jn3WP0/kLHq1C50kvanapqspzBv+Pbsnb9Tfk7LEn2LABv26iT5fBFnqxpCOLxJ2AkXUu6Vahd4kUhyFTAAOLeRdOuvaqp5GZxmZdWkCDqnR9wnY+VLT12xB/Peae1hZ00HhjGJFd8eK0LV9btAdX4PLO8qDcFS6FQQsmWN/lVc/AO6FRmjKJQ0yBnhTQWwblNUApcHBtIoEPW8wW9kNWhTJ46LGifeTzHfbAo3rheGQ48c0P8d4hrPumiZ499dSEbdkR2JZd8C8Ohi6OxsAiX+WvckJehEfjEFOgBwUw3zGwMJ6qZmAAjYHfxDBMp8BMDXjoN28L7Lrv5OwLPyq4tanix1FJz/ZgXL3oZM8uOjttT6AXRzMQeMczkraZ+701H0fa8DYCLzURJpZ3v3eMHrDin/+UFNDgsBmDaKJVs+lHoUun9SaIxgLiRxlaazf6dtNP8/bgo7796X5mo6YmbA9e/7/cG1gNfBxmpPzhdd6KUV0zgyMvGbHGBlZvwg7iDj0a7sBEPUYQ7idH7e4djvQKnmzLRMuneIyzyh6hkT79vKSNGeXZVd9nITIN6tbE9Gx5MvCSGZSIFmhRRLlbcxCA4yT/2BSQYkhl6uBJWJMfYifxldzb37rVtz88GtgoeVIVSl8600WGVNOkpL0Ir8ILLkzbJ9+TtdMXenaQRcbydCkoP40G05yyfVgNFUaP//4zUwA+ke5LpNGNyS4r3RlYdFw/uNO3j/yyaE0sl4j0npZMrIffFs5I2LjRni2ZH3q53nt5xt73kqStOIDB380xEFiS6R7p3yAgYRxiClSkgAygg6xNHeWOU+hXeaEXnR6F1/btZ6ZpqW8dTFS99FlJmzQxYX++q8Bi+bArjrprxU+yKzFFPy0/SOzdr9gQR3zTvfkm7KnUW0Xk7p6PG7xxy/VneBIO4M1+zryEXfTUtP3m7oI9cZ2PAea5uVxrRmmUGrh7LtEvl0v0I/6OKTAgCsgun876lskY9OGUHx0bKcWxo3F2PfiYb7/7c94+eV3OPve1DhSRZ899OsyKklH82K4fEJnjSD0pUEFdaapvKjb6mXhLI14UfylqFparZ0CqXYU33Za3l3+o3ZavYe3q2Sl72hwMfnZwRQZ/V1FKWVn3dsWJr/65KRDyx0C5xBn9EEzTgGPg1T0HAnvymUn66MD+dn/RspHDpCdRK/B7zyjx74FTIOHxGofAP8ROFo2goi6rLAMILgNLisQpExTEMrzZb39hyqZPSNh0dij84q6sTW707KQ5SfsCC94fJKt0yWugni1gi3xQ4KbLnoziEFOgDwqooyrkWuC5cP1VeTQdE7KP40LEhxpxdbCgvR1jX7sFf3+Pbx+4Pm8bmLr50M99W70O78KkhFWhSMIF7uoANRL0WWPAIppYkZSTNr7uSQH4RDN2fr7Z7fgr5xexjnYF7kYX6pWr8moV6Lh2sbL9EN9VGc927PbtVw/4dgebLH6Lx0BrBmewb2M//OqMfddTYqDl25z+9TzNIMQhpkAlCsjzPgrj6BBnVYVr9Q6nvqQf24imb/HaATainXFiwubNTti9fy/aLtZOy4PVueOfIhWvyHFNhUKz88iiZSsBie8dIQVSek8Wb2hmKdYWJm05k6VckygzFEYK5aDFwgW2Bk6byXEN3H6QxXI6oD2Dhey5hlTnxeiMhnK6Q2l1xVyun9tN/hvCh3HDOcrEf3pSQNOBMqo4T611PcrhTCLAXKUg3qqlD1rMtnd5CDRlPYWjGjQi27jL7F2vStq4hoRdf1PePndp0ubOYifNIwV3tMNonZsrpiRz32+39pYNrvNExXCzi1ujsuLvmAKOF2G/QtsmTv/fx7R1IzykBaahnkv/f/bOA8Cuovr/5/Vt2fTedtOTDSEJvUrvIEhTaVJFBBUUFRRELDTBhhIC8kNAUVGQLk16kZYC6X3T+2az7dX7/3znvrf7NiRhQzbBv7xJ3r5328yZM6fNOWfmcm0Y4rJ714Az4jviWd27f8AWQIvLV3vWo2vQTtonaLxu1449MGyr1no2jUUX3ZgMSPFJzIrik03LkKMsI3SbOxeUWoHyNocBGVgd2N9qlTU1LmclNJb6lgrirLgkYIPZOiTABEB7U67f6NmX8F51ILXiP++lnQEF+eUV1R9ii4a1yN7FzuvlvCp5dxR+fjIMYGBhyqamWmbjLHyJ41rpG+W5JZmJ9dmHJZxdsbXYX+OF78fs5ckpu/B+rCuWHrvXDM4we/eRgNtU77K72MZhUMBt4yDdFWDJghdfbZnat8nDGk79PFcoBQxsFgNa5dfF6momW6bfseQcdPKVGjlWUj1HfS5ku48JkTgcdPu7XMzy4+qlGfvt/Ulbt96zQ/cP2U/6BE3KbmN9xh57gVwDaFjCRMpMQkSzwLqaSQgZEpddrZsFpHDys44B5FQgPMIStW/xitVVJLv3RHT5yqkW78ABYwJ2yuER6wKtib4OR0aOHRGyPz+VtL++nrY9d03ZF4+J2jEHetaJe+5jNeHM5YS5yzVRFXJ5jgcTG2dbmrdoBEJjOCcDrlAKGGiNAbf6mcU5ifg7VrdxDvtg7dr6huxRAO9GCrnXf0DQrr40Yu+849nfHk/bIPZh26UqZO9PSdv0OR7yU96qliqcY4RtGpoaV1ld7RsYWCOQuwU93YKhT/4LA4tkTvg6tX6SRfp8HkZnui/LSH85H+4YtBVz0vaNW9PWPRN3ym0Rs7Fx7LdRhNGlkuppdsMDSbcMeTzGVZMMK/8SA8U7j+rwSGz8DysJd6NSzOpCKWBgcxhwYZketmHNvyzRdDEvamYXRykdiAk7yd4k5DJvgWeNEJjChVqh1UhYRpHnB/+Vsckz4lbFRqParfiDORmMLFzh7JnX7AqH1hNNa6j/WcieWaBi34VSwMBmMaAQYRkG1rsWR37FOlY5OpQyKsZ7OmOhZ395EiLkuAY664BnKszqn7nLCFuzMPuqCUnbe1jKLQL6EJqdTei6D55X37hSg0qdaLSmdUwm0GUh7e9QUGqbHYnCSX9yqG0XatZNYSf344gUSSL6etrhRz+RkyKhv7BVTV3HlG1Yy8pAPK0yph74a5K9Awlf40/Je8o9Kl0t72z9xvm2oXYKG5XujmgkD6hQthsDehcEM7Uqy6x72FI1vIew++dANiPiY51reKNYMfhwTcYGMuNfhEzpQ7iwGx+MZVd06ztL/OT2chSajqkEqcF7vPBepVaw61mkNyd5uFAKGNgiBhQijOIKn2prVzxv/YYM4k5HTe6JOdWeTZ5NyBrZokRh5WBpVZaUWxdmZfOWevbBfAwuHtE5hRFFhn7hJLS+dvmL7Ig8A4VW8BjkMFP43hIGeBNFtLfVLXvYSrruzm7uvVw+aRgCW0YeyxToTaUUJdakSSrE1pP5aTlKLIGX6yGWwsc51w2ZWI68bCZFzgXDEatfPdka1z7CNhAYbwXjakuDUDgPBvSGi0h0lK1d/TBG1nHWk/cH6i0rmxblDS5ARr5HHLpXzGPvLBwerCCcOktb2WS3rcl7TA6QEHo63rjMli99mLey9KExHiiUdsEAogEriXfheImlllz+pGU67sLMDe2EO9z5sCUMUFRGeLAvoZpu/CTtpcUrwLHGq2tWgPhjzhn5v7mSWvOmZdbcx0vjFX5E6hRKAQNbwwD7fQSDQ2z1kvutS8+DrLTjSLcvizYcVR6gEtrzi2hPOS2iO12TYaUC2bbQaE6hbZhJvQ9A3xhu2ldENxVKAQNbwoCbfPa0xjUPWMOa46283+edXFO4uYhVqhWd/AdFRblpgGSjPvIcDOjYct3lXekQmgsEw4QFa2zjsicsHV+I+C3IRh9Thb9bxoD28IsRxpuOIfQk+aYjMczRxs4Ln6M+/+kSJpvsWGPFyEXRoiaceguGxF1rkSfPmJ7N2JpVb2C8PYhBNpZ7CgbWlsdh265g71IwfAKRsZZeeZs1wfS+IYSEyM25GBjZYXI1JvlsxnDOM7p0MyXI9vzk0iQX3IzvfDhVFbxXPmIKf7eKAVzVwVApM6pZtmTuBEJ6q9wMS4JEdCcazP80Ky4q1e/ctRyNuvwFZmhJ6lk6byL18t7NEHuyKf5dKAUMfBwGMLKC5KTUzL3ZmtYrV0qzTcgHTaVwnz6iudzvnAIT/eXO6bqTirrI+nlS26126eNWv/xWjKuxXCxMPD9uGArXRXNxEtzH2fIlN9nKJY9zrDC29HTrfCknBxFvOVoU7nQu/5gjh9IQuVc1a9+3+XNu4hU8I7mnoKcdYtrpj29gucrYLDQ4zJoW/Bpv1mwEASavrKrm4g9I8+HmfrgRJHlTxtXGadY0+0ZWDy6mLnyTrera3MOFcwUM+BjwX/g8iHDeHbZkzl2E9NZidEFDjr7aQIeuGvwM3B/iOT2/ZO4fbM2y2wkN6kXPBSFSoLW2YgAZSNg6GV9ua2b+zOI105x8cz6r1hpr6xXK0xAM4enitWPLnrb1c67gWKHBAi1uHXGFq/kYkOwKhqqsesZ5Nm3ZC8gyeZtk9LdVLkqM6l62EmWysGH9hzZr2k8tHl+D7b9t9eTDVfi9eQzkGVggnTd2e2kyNF0+QM7tmP3WmGxWwXFB5/XR7I4gcGr9Oxaffo1lNryC94oM+EJ+weaxXzi7FQwkmVHtaisW/diqZ/6G5cPVeBJ4IwDJnU5AbIUWdV33hbg/3lht1bN+Z8sX/sjVt+lsbysAFC4VMJDFgLxY3S2+4Q1bPe0H1riOBTvEXZw3Kyf7NqvgsnKRWoJh9htM19uG6n/YmumXcncvaFTil3sKpYCBNmNAK1lFN/1s8dTrLcGCoEB4AMd5XiwnGzet0J9w+pPOCHXwjuHVb9n0qT+wWlbKhnldXmHl4KY42/5j+RfzCszuVifkjCtd0gyOAZXxpJccqbi4r35wH/dL2EhMZBqXsKXWG5ZcdCte71XYa/25tzBDE6YK5ZNgIOWMopWLbyD3YJH1rjiXF0GPIU+gC8Ig4wwttyAjW7WMKqf4oNdEfB3bMUy15QvutZo1f8ozrgoK7ZOMxGf+GXkOIv3YVmGSrZr6detU+W0r6b6fRUr6gRrkYJYemw0mclscPUKLGVYLNq6fiefqcatd/CNodBQfkmRaTWQ/8xguIKBNGNA+bDL4WWFdt8jS9ejlDhhYSnnIqm2FDZ3x3izqRItBvPl6/VjGGuurybl63RbOvYVX6NTw1ov+nC/o6Tahfxtv2sTA0tPNo+IPWrArYb7pZrVPW6aMgYj1xnAqZSxxdqfjGFJrnGGV3jjP0quetvS6h7g+Cs+VEvAKg7aN41G4vRUGRIt4sqJjbePaF6127Z+ta58rrFO3faykrMKivPg0Eu2I8GAxLEInmVhnCVbDNNQtYCuGt2ztMgx9PAV6vrAyphViCwefBAPIswByLZ1M2uoPz7birqdYac+jLVY+hJc297dwrBvzTT8dQm/GSMZXWpJNbRtrPrT6Zfeyael0UlOhRXkbXA5g/kT2kwBUeOaziQEZ9BhUQVb9aKPwVoX3DtYvtFTxYCYEuiYDP87WIavZYHkJ3qo5tnLFU7ZujVYMVuG50mS1oKdbobAdDzZjYOXXLu8VgxQnJ2vyLy3e6SBrjA4lJaEr5hWhGjZt9OILLdM0he2tFiF8ML5i2uuKpM1CWDAfkYXf24MB8gxCke4YS71t9eLbbM0SY6+W8RhYI3kDfG/c3UUkccZRaMswsGZYQ/37CA0yE4rGQ6cpfitPoVAKGGgHDCDXnDegaDfysV5nheHf8WJVYGCNsVCsAs+CXtzMgozkWjYonW3JhpdYMYiai1UVVgu2A/oLVWQx4GxzRZRyDhF962SIEPTV9ppV2JBYV6Rf0G2uHG9aYA0NU60Ogz8a6WtF0K+S5gthwSw+d9DXxxhYapWBI8nTYvuZV76XZXiNiW1g63a5xEPlFugwGunBdwpXpVudVdhIdAeN1We6Wl8QpC2K0QQRWrLD/rwtIGGZmnchRVbBspAiWDrcgpwP8343945NCZBmAfSZRl+h8+2KASaebJgciPQi7FJmmZI9LF7Uh82UP2RJYS0tBZlo9kU27oVcZKFFcJ2v+zTxLJQCBnYYBmRkkQNdykrDdQuspH66NSmthzdihDpUYXqVWUkaXc4CNq+w4fcOG4X8ittgYJF/JcEQ7WGRYZdZVKsLsy5FeQkCkWJLLXzIMqseYCMi3h9XECL5+C38blcMyFzCsE/MtNKKP1qI3bW9FAa9Jm4QYyBcYukN06xhxW/Mi27+dRLtCk6hss82BghNW9McC1Z+38KVXySaze7XjhZBi1ZkMRFIvD+fe6biTu3/2cZVofc7GAMiPJW0hQZfZja4zErR05hTEo3o6RJLzr/fMux1ZezUXph3OmTt8D9tMLByMChcyCrDIO97cOE/BtSNnKrwk9xzQ5x7ovBdwED7Y0B0p/8Y/toQVytqtAgDj6q2A/HcIo32b7VQYwEDm8WAnAayqkil8LSjo2gR6lSCuz8RhS6d1VWQjsJUoexoDDAJVcQpUIp6TjEdlbyU7kY2uheOqf0CLe7oUcjVvw0Glr/M0xlXenmWdoCVgeX5yq0wZDmUFr53OAZEbI72cH+7ZGEECMd6n5YTJjscgEIDBQzkY0D0twktyu4XjTaX/N/NJws/ChhoZwzk9LIWUuTraV9G+o0VaLGdkb7F6rbBwMrVwQC67fWzJlX+79wthe8CBnYKBkSDuY9+tfzeKc0XGilgwGEAumuWg/qtk+5PAT8FDHw6GMinRwdBgR4/jYGQP7tQChj4/xQDhZnY/6cDVwC7gIECBgoY+J/HQMHA+p8f4kIHCxgoYKCAgQIGChgoYGBnY6BgYO1sjBfaK2CggIECBgoYKGCggIH/eQwUDKz/+SEudLCAgQIGChgoYKCAgQIGdjYGCgbWzsZ4ob0CBgoYKGCggIECBgoY+J/HQMHA+p8f4v/lDhZWxvwvj26hbwUMFDBQwMD/zxjYxm0aWLXl9h/Krd7KHmvnx0IpYGCnY0B0l6O97D5tzcc7HZhCg59ZDOTJQUeO/AlAj59ZfBQ6/qljYFM9XaDGT2VItsHAYpchdicOBMPOxmreaDTIjsWclzAp+BM+lTH87DXqiA3nq3bLhh5ztBhwtFhwyn72COLT67FvREkuIgObaVEkKbkoWpRULEjHT2+EPmstQ2uiO73GKaeRZWy1ko0FTb2zqGIbDCzERKYJ42o979ji9fDNgqMDF3jDvIPYFzc7C/iPtpNVurwSIOA2WgM0t5ty3i7LH31op54JhUK8IJYPr3gJ6jUvwJfhk0qneet52jIZdtz9tIsMab1WQUoiV/S6Bd5z5XZL/1RnQxIgQlsSsqvlUwdcUmSc93g9hN4y0Fw+TXoESIc/4VB0yZejRR+P/g70zYB+Sj9y/KJv4ZCSg9G9Duu/gBYd7oRD0aMvZXwY/xt4Wq/EEcpS0GE97yLUi57dQGNs8S5CT3IyVz5NWgSGZloUHjl24OTT4qcMn4DKwZijRaEuK3d8fvkvgvG/mad5ByZKJUt/ucHugFM14Q+7w6mQ+2mVnNz5b+TpHE4EGx83zsIhxeENnsm9PcQ/u9W/bTCwqJD3bFl8iaWm/8wSdTPMGj9AqDTxasIBZuX78sb4GrPikdmGt9rejrkIIgIWwzhp4PVfc+l/EwQGOLTmjPlQBIN+CAYNCtgQek557BhQtlRrJBKxKJ/ajRtt0dxZH7ktUNbZhg7oZ8UlxdbUFLf0p2BoBfQOKxRZOrUeY2++6UXsAkNKRLZgKNyTTy+O5cXkBeBC8k4tIvSgBaKjLDHvTounNppX9zp23waA62iBsn0Y5068WHeUzxxunHe2UAZG3vvlmDC1ElJb0YImH3xgHAS8wOmINF8J7yxkSsAJRtpOVgOqJk3ZtgWjky3D+ebF7qZXbiR3FmAt7TjhBozi6dRcxtjnaXcD4FuoCPkHHoMlHECLTui1PL5TfqnNopHmrXrSEjVvmG14E1QtBrfIm6JdzMqQifHlZuEBgJND8E6BrKURx9MgLI2MTs33wcixhPRHqBefnll+EU/nLrZUsWN/iV8kd2g5tYYP+ANVsvOdPe1ocQA809UHwxmtOxvGHL/AC5vhad8uHAwexdMy/D8Nns7hJGje7BvMVn9oyeSHloB3A6K/8n3g9bWOXh2MPjZ37l/nVdNL0BvB4xzAiPs2C1A4mzoEL4cq4GneMev0NLjc2QXehWGBDd2Snu2jSqybld0W6go++3AMjG3QgW0wsKgZY8qSb1sw1d8infazQI/jHEa8ZL1lmhZBTwtxamF4hbCSI0O4XwJZUO3o4jOnl1pn6cQii5QNs2jnMyxcPICX2Us5BCyTrLNU02JLbHzdkhvftWC0PwjqlmWCHFHuODjlpYphWM1cVI0dsNaqxu9hF1x4ifXr1886dCjFiMnY+vU1Nm/hfPvrE0+Z1a61gUOGWUlxiSWSeGmcR2HHwefX7KSYJeKTwQt6odMhVlx2gsViPfEs8xJbFEkysc6aGuZaXc3fLI4cjhZVYXTx8u+dpnxFqox30/vmAW4m0QvdOtqCHb8B3SGg08zO4hg0DR8ipKdbQOQXG5NFXL5XK3tqR3yJOfGgecCo19gHO56CrBiK/ujCASGkFAIlscK8emCsfcFXIJGxQCJBsjOEifhFMGK0NH5ogZLuFuxyLMZAJTB2zPI0s9/4UsvUv2eZjW87pRGIVO50nrb0WnBVzTtrR1gIng4WScmKpwEFr2WmqRr4XgeX7wI7CgTB5yu2Hc/TDKaPx+QChDCGSyQGDJ0t0PNLRKxLgSODCFwPjmdzHVpswoCNDeMxFIjjl50Bo8/TlpjsGyvlh4LL44FTBhWGKzztwdNe4xxo8e8WkE0QGw2M8NnO4mkpXA8Z3TTJOQsi5cdZqPSLyOhuHCNbMknLxFdbumGGJTc8KZB5n/uu4B787axJcjNPvwfuaLrjqfD0EH7n8XQcnm6YCh5f9Hk6Ck8L2J3C0+KIXIG/pXfRh9blAPB4goWwXORd9ZoWosP5OD0N7JGB2XHeeXraZEAzAQmUjrJA57OY48HTEfiF4qGnPdkSTJg9ZE8gCnwh4NxpBrXP015yHsNWa8EOe1u47BJg7IPcKYGHxNMb4Jf5XH6a8V6H3BwOQcrQkr0DTW6mSGttucis9OqpCKLe4wcWK2amI+JHoKh4hLS8ZA0MstLS9Ysw7p+29Oq7QMxQPmp4Byo2TRtwr2QSk6yoy4lW2vtnVlQ+1MJFeFliXdFnftcy6RS6d52lGldYfOM8q1v2D2ta9w8MsFFwC3XsQCaIhMPWhDUyd8aHduZZ59nxxx1vFQMrrEePHtalcxcrKoo4T259XYOtWbvGLvnqJTZjxnS7+7577d03XrXhVWOcJ2uHhg0RIBk8Vp5XbT37fce69DwYL1o/DKgeFkHpBkMBJ6BTySYMsFUWb7jEatdPsZVLfmfxxmkWjkAb8nJsgcC4sJ1FQoOx1Mw2uI4JzvXw3d4YB30Qtj2gxTKEGjDiEpcgyTgjazn6+S1LL7+G4e3E4zDrzoAxMQUlBQ0O/aUFO41jkoMRGOvuGFS2oQe9eoSRPPgl07DEMmteBsZbmL3JQOjMDWLUHVHE/KJ18ITCDZYdYJFBV1qofCSGCx7JWDfGGZ4WjApTyzgQT9dVW2rVU5ZZfTc4xECQJ9vhcUfAqDqBUYIMng51PtHCvW9gzjYYHGLoRzVz1OySW1Io3sRaN9ZpeDq1/CFLr/8ntFC1w3na0SIzcC+Ngdr9fAv1OMaCpRWgpidKoRNjKTwLRozp+BpkI8q3doZllt9ntvFV5CeeLccrO1KxgSd5JQ0DtQ/j3O1z8Es/xhkYI+XAiNKFJLyUjOnVwPh1y6yfbJllv7NAfC7Kd+fwtJdchAiusdLKn1isKwqtpDeyu4c/OfZjr26CnG5ahfz+psXXvGVNS69F7HehH/3VgSwu+WrXIn5B90nuiKdRpOEBv7Zg510Z5xxPo9+c3BG9oniRjY6nV79o6RW3gmNkjjxaO4yn1WGfp/ULYPwv9FlgCHIvWmHSPyoeoYhMwudpr36hpeFpW32Pz9NBeHqH6+k0eJyE0XeyRXrdiPGCgSpajDGOGNIORnjay/J0pnYucvEhs5pHocWdwNMy9NM+T4d7XGiRHkdjXA1ENopf4GlSesSyGbzo4ul049cwsqZbctm9OLregO81kRc/08/mcVCvOBo0fJSoqfn0OmYUb+062rpEo5bEVVDkLbH5kS/a7mXn29400Og8KjyipyCwgIvBiRhpAuWWXPsuhvKvmQFPBTkojnZ3l9IwUwmPsGQQz1CnQT+w0h4HWqSkL7AQupIHQbFS1yvBKDAJK8mDwPlk4xJrWPWa1cy7wdLJBoT2jlFsCgfOX7bMdhk2zK68/Du29x57Wa9eCq8FLJXC6GvOtyLbKRR0eVmRcAiDLGGLqhfZ0888ZVd+72obWNkfT1IMdy+uXgmd9izgMYXCLe98svUb/FUr7zLGohjQZIX5xoCIxo2z0ChEKm9MIcQGa0CxrVj8T1tZ/WMIsMoJbZ9R2wtGNSy6grhTUy3Y/WImXWfCnBgFkY6MJcTsxrkFRsGnjxKMM8w2MrUziYD9CQPh9wgTMYEYgPubqZ2f21UEo5iP7/Q0C/b9oYX7nYTCRYA4T4Zy1gRfaxj9BGhm7hIoNVMttXCieTV/B0ZmvnKNt2sBNs3CFWILLEJR3GDR3kfiTKkAVfCR4sCCTwOt7ojGHA5RwhzKQEite8cS8LTXMI1+9eO+9jYEBSPuAXg6EIlapPJqi3RnBl6MUcBYNsPoZE8ejI6nUR4Yq8nVrwLjz5ilA5vCxO0Oo9oFj6klZvKcVnwDQ38PZ6A6RIFDf6zVF+4Vx4geBSM5qxkpthXPmLf4+8BWCdlg0DoY24tf1KaK8DjZrNOpFhp4ITp+DKiVd0+rbHM8w21qNjvOMDAGI5OTjSi2ZQ+btww8wtP+TeKZ9oJRFOXztJecakW9LrHSAWdYpHyE42mA2AK/iK99nk5irNYvut+aVt7JcOwgnpbC1WQoM81Cfa+1cN8TmZQMBoRS8LglGJED8E5GRrXj6TvN2/BIVu60P790hHcnbVxtfx853A7rNcAaUmkLMkxAYFeX/tr+ECi3MXgA0RoOLo21/6EL8HR67duWXvQrs4ZZwEjIa4fxC4Z+pMTClVdZqPv+8HRf4Mjjacc8kAVwtvALOEZPp1a/YmnH09BguCMwSja2Fy2qTYpsCQz9UNlYi1V80yJdd3MTOl1qkd0tPO14Rgv9yEdPw9OJZf+yRDU8HRgMaX+Up0Odu3W/TpX5YAetMRO3C3r3tmI8QBmYIWx1tj443CaGxlhfBiGVU/LN/UQ4OyGN5Rwut3D5MNJhxhNmhdDqnuccg+cUm1rZ3uILYi+5yiKlg6x71a3Woc/RRIg602EMK8Hhawm/Q3kw+tcy7t6iTqMsWr6bxTd8SPhwAeNdznNSMu1TZFzNnDbNTjj2OLvxJzfYgfsfaKWlpYTW4s5QynmkZDAJnQoDyuBKJHxG7NG9h40ds6vtvtt4e/qFF/AUNVpxcTE8357CLoJxNcW697vcBo/6PsbVOIynGB4ziFgKV254x5z5OMFjCJ6l9GLFfXhmLF6u4bZhzZ+4STNjhEy7GTASxHJvf4BR8HMcQ5dhXI1wbSsc6LezKYzALdgRLAEUWLB0AJ6Q8VBED1d9RjgAAEAASURBVPPWA2OQ8Ei7FhlXjIk310JDJli08isYLgM5FnhbgVHjyCdAzkGobBDert1gckIiEsgh8Ut70SKAuNkZngqM99iIOyzW/2RmjuBBcIMnH9gsUvL4pZmn8XiExNPwS6ZhFQ7tfwNj73aEkaqccbUSL8swUpputWivI1GeTHzSwOdoPosPwbcpjOBK4Zpwx1HgcjwzyynMMhe1O087GJMfmMmzNgIvarf9aYOQpWAULnNj1gwfp3QOfhHQ8rYGO+1iXjFjXfM8zxFnl0B2z7V6SA9+woIBmJxigd5XWGT49zCuxtE0bTTDuCm/cJyjA+gkAE+HOo+1jLyV6+4DBsYAXm9FI58QMv+xFp4urbzRyodeinE13LXhiafFu/ny2z0kHMrY8Xk6XDqQNJDduNLNEuv/jMxpT54Wfnye9rwFeKLvxBEETxcP9MFqC08zsQp1gKeB0UtiSGx4dAfwdMSK0ktsRfE4O63PnjYovApDivEDenzU9kL4cJuEt7kneRKZnL52tJiVO+jpIHgPlKOn65djZL20A3gaWiRfLVA60iIjb8FzdQQ83Qly24Sngbml5PjFw2PdhRQLQoll4yyzgQlDgomN09PitXbiFxlXiakW7naylYz8McG5/WgDI1pycas8zXV0kzzrkc5joI/dLLX+GfgMXt+Ep/MMLIDG9R2Pdrfze3bHwBLry8CqxcCqsonR8dYPQwn12oIP94tjDaKzFNR5LOkiXL0ddyF2jheh/h14tBPnxTzbW2Q5biTHqtK673KTlXTdy7cyJcSchS7YNoVPbWbh07cT2MzzUL6xDlUYWVOQdcuBEZevY27d/8mL3LILli1zxtWPr7nOqkaOsngi4bxWysfyjaqPwph/Xt6qMOGQoUOGWtXw4fbEc8+QU5RBRyq5XEJgOwsz8RSCuEe/K6xyxBVWVNoftMgg0KoohKBjyo/CKDzmvGgZiDBEflZZRxgII6uGMFLAumef3U743ONiUIi/4haLDroA/SaFi1LSGAlGjaX7uJuzf7LnHPxiVoRypIOjRS/Q0zLr7ufR9jJgsm15syw09B6L9j8F5iLHRnh0l7YCY45fskIvqJC2lK8Eci1GVrvBKGUBb4TTGFe/QcgdDp6ASwKkGQYBu2nhXO56VtCEirM8XbceQ4ucmSAzynbhaQmaWoyrIRhXN1q4657ALEWwLTzNvSBdobpgWRW5jhLIKzmlkGY78ItCRenF2BsnWWTENSjQET4O3UQki6uP0KJwmrvGT+GcmW+ow1AXcvLWE6bJ6Dp1twuM4heMqz7fwTC4HBncFzSKp+GD3Fi2BUbkYAie9jCyvHX/x7Pkq7ZbYRIBT5cNus06DDoPJYpeyPL0luWOj0Nf7vg8HcToj6JfPORNYt0D7cjTWZ715lhk2B8s2u9kxgwawunQGofA1Kpkx1l4Fk1Av8ojCwpGhsCr/Sf1tJfcEU8nrCi0wVZU3Wmnlw+0QalHLBkgOoLudQZW9CjfwGLsmX5kIc2HUXoa7Y5BHSzfBUfIaowsIk7txdMyylMb8PQOt+ioGyyMp9d5T6V720SLwOomJkR2FH6HpzM17zF5AM724mnxHQt8wt1OtZIRP4AvMfSbnQtZXDXjLn+wc9eEQvF0xPF0sHgYXsHHOUe9eZOSPAMLBs3MtODQX9g5pQErziyE/0uzBtYomxgetwUDK69xIU9AicCU14FbNb2BgUuu4TSu6+0SJKqX/oQarRueq5Ju+0DLIpScws2DY2s/HYw8AyMorBgpqbSGNRJ2EIXA344iAyqBMTVowEA8Vz+3URhXTU1Nrka3JUMb65YwkZcLc8YGDRpkA/r0tT/cdYf17N3HnW9jNZu/jcHPpNZax67H2yA8V0XkMmU0q8iN3eaf+shZJ/DAocKypeWDud7Tatbch9HVl98al+0oGIBeCsOl97csNvhrGEkocwdjzmhpS90MpvoEjQTCKI0Ow+AfPGK1MIFWTknxbFeBntNTLVRxG5HwL0KYHDsB8slgVNgzCJNn6ta5VboW6NAOMMLs3jSLDr3DhQV99pPCFYxtLDm6cDxNUnzZENJ7JiFAgVMhs3bgaQulMK4wpMnDcUJrO3g6pFwjPA6pNYyzCb7tLeBKi3wQoOER10FHIxAdMlwoDjf+z4/96+6V3MEQLKs0L9LPvLUTqKM3j24vLTLOGZSPDMDh33UTXGdc5cbuY4HL3qD7ZSBgCAbLh5AfyoRp/f0ctxdPz7Divt+x8iFfhXSIGmwnT0fhadmQSoAPaCXk9uJROko8XflLi/Q/nX5LJ8oo+AT8wnNB5bBCL86AaZpOPXhHtpdfZOzD0yXD/2jLex5tp6erbVD6OQws8lFzBlb4yM0YWHlEkKMLeDqgPFZSGjIb3vWNou02+EVDtAWY8lw548oZS9LTXGtrcfeKXzzzeXoAOatMPk2Tpu0t6HqvET4ciXElnh7GuENIanNbYRS/gHlFIoglE9a8E7pp4WmfcnAje4SLwn2utqLeR3A/2HFKMosQfXEqLFmT1zfBEgXWIj4xPooB+wU7GiEULh9lscorUJZzs3Xmrn+Cb2DMJD60jhVXW2n3/ag/a1zRORXBJlhaYPDb0HGE87qmb/9u/6/CiiXMmDtWfhf8krTqrGP/uU/yV6HBRXNn2Xev+I7tMnoXFxJUPTJG5HmS0ZT75Ne/uWt6JgV8clgddcSRdvUPrrMZH0y2ohgu/09c6LeMomCD9R96SdZzlTOuwB04JJLkPqSFtSoaa11rdZ6TGTEps7zeA061Tt2/wmpD8nScMd3q8W04oJE0qzhK9iDkplluF45bYIwAl+hNH415fsm/1gynAOf5ICGn6MBzUb77c1zDoFDBJy0uF2e2WwkT7n8qSMH76QSxT1eiNXmABSNrBJp5RqCITz7CL1yQQgwWs0q38mJ0sDwy+mzSwW2BN8vToT4/tIh4WnVlhYHg2JRv8/lavwW3YNW3X3yeDpVXAeO3AG8Op7fTgIHfPPguWvE9ch80YVKf1TpGSB6uBKtgzhWNew6HRRLk6prjbPKMqCOCoRYd+D1Xtz/jzT35Cb6RhR59DVV+kwhFFfXLuBIwCNUsHBprwbhpyY13i9zkOTcGRAZ6Hs6qwx/gaZtCVdvD0wAhWgni4YZ2gkX9fc9VFmFqW/DpIzypCMPuPLgTHnMfd13PiZZZHRXuh1e205lUPxsYt2Os4TWttgyX7m9llV9xvJjP04JF+NOnmW8dpD6cH7kmGMXTyIYyZESoZE/qrwVGKvikRTIrOd0CXc7FuKLfypFrA0+rOcGXw2Gz/gFGx9Ml/RmXS4CtgTt9ZfxJQXR0Ar0E+vyInTXE06In8UzrfrtMDS7lin6Kl0UD+s6Shn8Zela0KTTw8uw4S/dvRxFPsz1EaOB38UYTYcrT0zl+Ea6EszwQXYM5PLbApzt8ng4RvgsNuJrw/4c8uD38oqboY3outsnl8PRIhiVrXOkKtCgc6ZPjFz2hIvg/ck3AZnlaua3h3lc5WyoHIy3xFKHBQNEIQghHWyLcgfsb6YQQDStSgTxhttqzNUUeK8ykVN1TLk3nnfVci3MiErBRZQAgo18cnP2Eu+xm4R4XY9n9BR6t4IIwuylqOb21AhHJ6xLtdKSV9jyI52EG57Yl5MZzQsqKOrO1cbN+TBJKxRvQshBC7p/NAsYVKc8qogEbwMTJHzYhRh2JWBlJ8vUrjrNE7VS6jUJ3fd8aQJtco54IYZhZJKefdc75tteeCl36BpU8V/odiYTdPlhqPAOCtNeViq5p49GiGH3iWjrtNRtmQWZOyWTCykrL7Jgjj7a/PfKw1TfUU1expT2NT1uL+iqDlBAvDNqn4jrrQHxb+VQOGVyRYKhn2GvqOQCmDsUBKweXbqzBIylitgo80g0rJxImY0zFGY9SakXdWIV4stWue5R6Cc0pFp2jIf/Wj/mbhVECI7OAVKTvY2RVQostxlWYWxYwzjX1GreAG+tuwJJkrGPAM30juzg0+NeGMM6loJRhz8KIQCZ/I9T3y5accyHwjeECsyEnlLmpTUUwAp8SQhXu6XMyntruoNaHUWQdoqrJ2G/WxA9IfVCHQAsc4HCS+CXJNTpT1dFvXjj2+RQYCc8E+1xKMvSPQPZYbqZj2wQjjzgcsoCjeBfH00FyhTxCMR705BQA+HpXMCYEh1lVecCNK6TnivipFvKcB64Hgt9ODKW7lL0e6bK7pXpcxIrhv20XTyMUCI0eTUI7q9zktYSnBaOMuiRonkSUwREgsmVX8S1wia+XQaPLpa+gU6ezigI2jusuHOIM/pirM7nyKJZ9z6CPnXl4W/glW7cmmWzFEKCvSmhXc0IETiiJO6sDRws36ATngWE0MIjedChaDfJjyhoOkIlVOCRztCiBGkDOBpG36TWPwlx0Rsu9twlGGnA8DUKSky3Q/8d4nQjtOX7xYUDc2SqqXlkniNh+BdldAU9rnJdwvobx9TvFtwgDdhgm3hYxyoBR3hg0ntmAN1BtSbF9Yp5ehPeKRSDkKObztMZ6OXDMyfLtGODrCBzClXC4irGe6fjdbDTwd9JcRt0BRtUTLq20kr5n2cY5XwXw7eBpKVnyb0J9voB6EU/7SleoaM3TARvMWJZkZUuM6838Dn0O7wgvMd7CsZ7VJrQhZG269zcss/h6LItdAV46kI/PVXy3oYinWYhgJeMwro50sDaH0Td5fKP4Bl3sDC3gEI4nr+Oc9DREMboTVblnHIAOjGDXPSzd7TyU6D+h1wFc/WR6Wjwd6MR2G90PpI8yBnye1lhuwBFcvREY+G8gbjR41E/hSbQ6STKJbgq/sWZ2FYxyChSxYvcgS688HEU1B+KgE9vEL9TtGJgE+uR8Vgp+zSLYJg4AgUQzgnElKK4WvfG7NzqwT5ZfZGxtBP6ZtYLYrA+0qGv5PB0kty3W5xh4+hHox7ehyIxjhsYsMtz9ChJF8bqQqOXi4U6zQsQI4ViPgF1WFbKNq4L21mIsYTqfZISkK765R9AqegZsDQ2/NDtjqxjcUvDqZRlAs4xIz2MttQJ3OKEAY68l9RP4215ig0HKIivpcSW5U2JQET89pkjgqtPHjgpany4Bm7PMs3krMARhgAZuk91y0YFB68Z4LF1t9u9pGclCH4AsjBHqLOlxrDWtfQKjDCHSxAC2sQjdjkA6kftRs84+f/znrWePni402GJcRa2urtYWLVrojCdt09C7d1/XQpicrYaGBps1e6Y1Yjz16tWHa31c0rtuUB3K4RqNR+yk4463W27+mY2q6s3y0OVtRqKDUeiKstqPr24kHIYQ8GmEiAv1ca4WgVvZJ2DHDfdHZm61Z7MWeFaCsKtFAJJjb0ftG2CVo9nshWzXylCq367wrRUXnbvtYaUdj7aN654m7YdlweB/mwZaMic8FDh3wSgXgwJ0dhapnPvJ0OzpQwK215CQNSAs3p7v2VtLPOsHjO8zgT1rFIq2MmT1GDfPzsjYQoRKZ/G4ECBOgtbDrE5LVY+DgLHG5Fn1JY1uaFuhPjQuViazlVwOIP0XLpTjOI3PBbsiPAaEbC3C5BV4Yg5KtgtkVc2j3zkgaH27BmxljWd/mUoeBLZZCfyUEYdLkLCXXAQBmpCBJQMY3tQEiattKupqIEpSf3oVOGQWqTwQZ0j7hot4oga0fnufoA2Eb5etISl2VsbWMcYdgFFFgnA4PP+FcQGbt8qzmSs9J3z8TmIcoHjD8HR6xUR4mg5k90/zn27j36Ih8HQ1gu57bjGCr3R9GNfTfgmK/ppD4VsU1vwVGXt+FhMWmioCxkOggeG9tPoWXcBnBYLo8ekZK6VfMtBUl4zpcPfjSYT+F2TEoDUx1ttShPAYHis2sQ33PI4+o3RTII+BliCeC79UdTM7/4AQsiZg05Zk7InZnnUGBk1CGrl1PuN25eeCVoPx8PgMz7qIFgWDg1GKl/yXLseYt/xmGB2aSqzaFgh5htujo33lAM2IdmRIOxi59AHK4vD+ATtsJB4kCOO9hRn7NzzdCfgOrQzYmH6+F05djUNqC9Z6NnkxEzx+y94ST4fwBmY6HIEQeBngWeTANd3f5sL4eNrkOTbOih1Po2+Q375XH0MPnj54aMC+MThkjfDt+/D0B0vBFTy9Ajo4gLG+aECQxTfwOLDPQL7LE+NkjzqFfCzSBHkRdJ6iMryNzhZsI4CqwjncA2wZ0PEoeFqGtIxJvw0WfNs0Di+EF6r6w9MY1C+Lp9eadQdGyaSLuDa8dwiD27OH4ek68C4YncGPgtLiLxlF6SXXk0tLhfJaOkJoK5Dcp4Up6RUW6EW+EHTjG1cMZH4R80MTVWNxPCxhTKFRj+MPaPLSvTAMe4Vs2XrPbnk/Y6jzLC3SUfEL9Yd6Hc8WDvfA070/OU+nyGvqcRW26gDGAYaF1sUvKxnLqu7gEX4pRQFPh1+enevJDnS6ZBp4PA+52b0sYG/AOKsQz3pOXfL5BU9baQVG1gkM8WWM/2BgnKerbS/U5/Z6g6cjPdleBdskNzkGHY7e9h6IrYN+kQNhMvzyBrquC2iezZiOh0XP/VzIyZxJnH8BeuyDfeEmplmelrwNwdPJZbchM8Yyf5VQR8mHO42FQbnbaSNBwlhRcQJE9D0ibL++IGivTQrbvTcmbS8MmXX0/PazI3bg+LCtWJuxHkiW45ak7cq7E7ZByNEACjtwQqhsALHofRAErF7ofyEVIyXd7Ms1s5U/ggOP2frXLVy33Io6DgPXgMyeGY7BuKrUqR+cGLYvHYsnCovzn/9O2pcnJO2A7gEnjH9yQcRGDwvZKmDsDoxVrybtp39NY4FmEQOMMiiLWCkVIZE3U8IyzQHfcu1mh3cr8OkSXgHWcNSufMbG7BazgQMGUh+GKZyrbxlQq1attFtvu8neefcd69qlq7311pv22KNP2vjxu1tjY4M9+OADNvHuiVY1qsqWLF1sv7jllzZu13FuDy3VobBiUVGR7crKQpV0+efxxIxl6NpoHWi2xGtlUiv/bh3ZKC9W0pNaBJ8bHmc07QdTnn0aO1BzTmMnApt4f9Jen5yxERUB+zI43mVUmP26MnbbxIQtwLCR8eobL35/Q2wE2QkBtZHVPdaTXBASl9u2EakGgcq0Yd/KiazAQaEpNJi1LMRoC1FY1x8asgtOiFgdzNgZz9BptRm74s6EPTHHs9tODNnZx0ZtdU3GejLOp6zL2IW/jtsKjCx5NCWgAQai78zmmoeQsoJHlVm/xRAmbbQE3TYgDfOA8WZg3AtEIR5UJ//krYAfbeLJYTvxoIitBY7e3eCJRWm78I6ETQWOxy6J2AFjfX7p3TVoByH5zv9DknxHug++qcofF/abC3Q+lW0RFlqg703wYUcutn2sM6ykC6y7g1Vk0Es2N0zjKnQauLjrzIjtOyZkazDy+vUI2v7vpey8/0sarTi3+Hzk4sRTw3bo7hF7GH455e6kjUOZCAKBqLpCGDDBMpRRkH3x+l/kt+Ma4IatFh4GX97616iHfc3If3BbMeAVDKLVNXHr39Xshq9EebNByDbgfendDWPguaSd/5eU7QeQ3/5y1Cp6B23Z6gxe1oB9MC9tt6E0dsvOKN2YsCAkjLxIFkFHZXtZYMC3aVfQOyRvFUI3GBgB3mqMs1ipBVAWucfkDaiDFo8YHLCfAmMXvH9x8HU+9Njvr3H72UsZG0XtWu/w6JciNm5EyB54JmkrpqatezO/qHnohjBUgG0UvFUcskdQoJzx2oZxViKxt+IhnjsNZ6zP06DWeSxWYmd9jcnvlV+iUYoM0TOhsevuSdjdb6Vt4iVRGw9si1ZqVAPWv3vQlsLb5/4mYfUIdxmNadE2NB6A1r2NtNNbPD0YGNHYH1vAMzztsYBIPB3rylYHSmqXvgFGGXDrwOOlh4XszOPgaYyBTuDwJAyYaybG7dV5nl1+dMjOQq5rwhRBCJxOlb96MGHPYcTIq+o4gvpC7KcU63qYNa7+O/rlemcstJWn5WXx2EDZWyWe3oP+8raPPJ7GnrO7TwnbCQdG4Bd0IXg6ej48PcHn6Qmnhuz0w6O2EsNFMumwvdN2NvwuO1cTAF8+sioOng52OtltPxDoezOyo3ybxtqrxTGxbgI8jXHleBrkabBzRT+B1cOl8s0LY9Z/ctguvC/lIjgTvhCyLxwSdXpaMmmPUUk77c6k7crkRU5sVxgULRJJs2pPK5nF09rGxRca2Xu2+OU3nln/qgXq69H1wwCNzjNC8obKGz0I4+rXl8acndDQ6Nl58M0dj8Ttqn9lbDyoeOD0sB25L6sjmYTc+re4XfdcxnaFh+Tsd0XCEZ4OoqcDMYSR3trR+Ttc0g25m/xbN/tX8Mibtvop6AODF5vEESI3i6drQedBQwL286+y+pxj0ehZ0NyN9zfZba95dj7G3w++gmccmwh1bF9B7vzigbjd9krGxiCTFEURHOLpMCtxU6u4EdrEWoESIuzKXTYUwoIDfbtWdztej6AIVsxKmXJvi+UPpS/1ADMIXjlsr7D9Z2rKDrsmYT/9Usi+fkrMDhgZtF+9jJDBzadFMjICNPsLle1mSRRoeNBZ0DQPu1m1WuGm5iJE6Zhv99P/HZ/ObDy1e9Z7RU84rfDfghqEyJFBO/mIiL3+fsp2Hx22ImgCeWfLsTi/tF/QRg8N2Z+fSNhdz2fssqNCdsJhEftwbsaefJc1KOhHKV5tABkpGcAmpWMsjss5MuRc2sgSl0DIwbTpt2DEDxsh/j973jv21SP7Wne2WNA+VzKMcqWpqcGGDxtul379W1zvZrf98habOHGC3XHHnTZz5nS7/fbfYmQ9ZMOGDbM//flemzDh93bzTSTys7VDWlMoirZxGDxoiI1BQdewHL186Hmcc6MKeGorhzt3e/aP8MgHRpGyblp5v5WxNDdMPlL+lg96shRinjU3bU/+W9tFmF37raideHTYHno5bj9EyHWHMZ9/OWljmPrIBe4Ljk3awq1cRt4dq4Nx8hxikT5HQkNUloeLFlzmPSuBhnGfZgPT5LJrCZOxoV8IgJzC9kPSClvJe/HKpJT99LGU7TsgYLdeUmQXHxW2J15LWEfG8rm3kvath1N20e5B+/YXY3bKniH71j9Stht0CxVSn/LFSmDSXdnI7lZyEo9ltsFy6mYYt45HwZha/iwfhLH6Ke+vg9GnIylQD1fb468k7Px/pu0GZjvfPD1mF30uY5dirC5elrHbZ8btmifT9sQVUTsGgTKOvryFt9C5mwWiYMT9HeiwOytwp7D316kIvkoayMej4MyV7LhrnFWwjBPz72UrAHgEnnbujSxtJBiXbuCpkZn2n54GV8Dx4Blh+/zBUTt7ctr+8CZvFYDcrj8iaEMG+p5AeYJVdbZ2N3w5ng7C06nkBosOOhueLne87ljE/wMwWdgcYNlKZEkSB0hMW2aB5Fh/pitiynYpjtbsivBavSFjz/wtZT95I2OvfCOKgojYP15DDiGuOjLLfeKVpJ09MWm7VwYMb72NwcMqd70rHGvj2SA8rVmkx5YukaHncskXei0w5uDL+xYo8LQ2hE3UvEW/Bjr5lfNq6M4G8NgFPM5bmrFfPZSyexZ4Nu27MfvK0VH743+a7EMM14fOjtqQ/kG79Hdxe+y1jI0FTibxeYWa+C+5mwbeYGfk26BzgDufp/Nub/6p57L8UrfAkivuhhbHO5naPOHiFkU5FMqfhOye+Aw8DT7+fGWRXXhs2O7mOMW0+8k3knbmA0k7eGDQ/nBJzJYuz9h7eI/GIp7jDgwqgcYDrLbWXC7U81CXz9dmfgnDL2vfs/TSH7EdA/txOZ72DTrRlHhaKaWvIbt//XjK9qgI2k8ujtk58PRfvha3Y3+m15+ZHf2TuA1Cid3znSKM/qD9+t207SddpIGE/1RvBJnRsOKX5I2dAE/viqGR4xfdR2M5AtsUj8CYXPoMERafpx2NSAfymNIiHE/zzGMvJ+wCePrmQ0J22Wkxu2D/tF3+z5SdcEDE3sZtff59STukb8BuAf7rTgjbWf+XsrHAnHAgwtPI3CBbnaSaZvs8XVIB6PkwNgPW8kNIomhj2MS8e+BpPFMkpPvM6F9rvplDhsqasAgXzUnZobuFbK9ncG7Az8djHL74bspOxyi85fOaiMbs6/tmbOI7TJ6hEadhnJ5WwvvuwNVkkSxP+xEEB0VzU/6PbPv6crPDBDy9BLyvd3zn6FiopyBurCvjpXF+B+/f/+Exn/rDIjsJuK56Km6n7h2yI/aJ2GPIzYPGRawjjhIB1azWVInqgoYD2gYnuicrC4fC0+f7F4SnbFuth1onuabLOGYybIqewAgMsxm0S+0QUXOLSJ1b3OTyX68lsQ0ythigH/1ukZ3I+N72fNx6dQranOq03ftMytYjg+68LGbH7hO2n78Ux8GSa5x6iERI7mrTYy/VJAOL/KtQP5Ij+/jAuqb4SRHcITpbMy9jTRLYko3ApMRSGTAzF+AV6oIyOyFke44M2er1GZuM8dIPoSyZ6aAXA2BQBYoryOO6HcF1G9KEUZX7MA8w3d26OKxwivyrOvYZilYyUyH04W7S7AplgVCdg3K68a64PYd7/qmfh1yNErRqX9am+jAPontvsmdThmbstGPNhvQL2uJX09YLI1CKVzOWUBFGYNEgZmozQAzTKTc2vjBoDVf+EZUzcEG2jrAFL1r/fl+3zp06O2MoZ2DJMOrXt7+dQ26Wcq2Kia92Zhf3Fcvx1jCy1dXVdvznP89qwcFWVha1vffax+66625buXIFBtdwFJi8df4A9u7V23r1GGeL1ldbR+08m3JAAlDLAOdD5/+mEZnoKMJMzQdWNKQCA6sMvgH/1Cv8yCh96e2MPYeCVax58XqUCF4iIVvK7vlXUrYQHA4i3LDLKB/HXNqkcIbZYBFJnUHQ5jWucmPsBN1W4VM1InFCO3EaJlSlmRQEyfNQMjDqam/G8ufPpq2Guis5cRca5GfIJ0dnKIRrEX5LpcF4ZD4hrRT3ONtUgDajhwPq1SabBv16cV4VQlxPu26r/a0Xv8euX6AuSD89zYowiGB793gJbX71H6IZCiQxaX4G97dy8XiWMfj6Q2nnZr4cIV3RJ2izFqdtCeHtljAm9YgoeDWD9tNK185GQsN4MbwpMrBaOuKaaP3H76ibODYs5lYUGsuwc0XjLC+GvMtfZGaLcwi/vce4svCCi7q+njHfb6DZ2cdE7Y3JKRuGgVCieDpdakahfgFjUDxdVEnOxvXw9E3ggvHSpCnvzlzbLd804gAE33WzEHKVzGPwu6txitCk9IJZyz076a6UjeS3LfTczBvHu9WD914YV5phdseL/hhG6mo8Htc/mrIOPIuzOFeV+6G6A7Th0ZYLH8l95zxELb1xDbf6Ay7gaRdCrn3MrO+1Tjm6caFvgrEb1Tw/3bN7pyRthGBc4LnQUT9wVc1wXbp3EEMgbG8w+TzzwJAdTPrC5RizI6nWoS/bnugmgNwNBPFKNFQDGjtFO/IRPrYOoxOEKAyrnWPBQRXQl2Sqr5VURQUw3oVxetOrGRsOac/Cw1JHqNKhGrk3AcNeE2VbY7bP3gFSKAL2+/d5Ui4DyQUugSw3XkFWZjpxDU+LDreNp5mZw2theFp5NLkQpuovAx+/x9iTwVoC6K8wA5A3UCxgwDONCd8+TCgv3j/kJlCaT36Agu7strfwwVOHAmwXE5LiRXY4GSLGbzNP01fJKolDFpk087RC9uCtCJRc+HfRNYU0hMkL2KwannYw4uGQl2oNNLjkPc/uW+vZj5FBQ+EbH9HybQuXVCJPoHTghg9wruF5jLFzueTbVuWOsAQcSgKDPgIhoivsJO9K9pJ/kP3riw7rgVNkNnrxtYWefZtJXiPNPIAM78K4XvkMOvBwzw7Cg/27F9NMcFhMlUtP0GrtogqU+53gb+O28bTX4PIdA7FBbkLiIwiSBE7x9HT0x5MYosdXBe02DGh5K9/8ALwwflOwGa78bZP9cU7GplWhTyWKHaG25gGwjswQTw+kLbyOCgnnJk3C0xYLQLAIxJJ1rCLHyznwF84myefpcnTgv2d59n+T0nYm3qpv7ht29sOUWXjhkDmPE8n52etpG4bwQSpbE64/NxeiCy0t+4PibCle3aXX7oTdS5uDpQhMGNSpspbbBa8IiVXurjEn46lDCWhKkn3+naRd8eUi++4ZAVzlQbsPa/RpBnUPhB+84hfHAISeUBqOiN1ZtcGHAd9yyV2HQJMYgaUkXLI3lGamKsK/kpgnLfBsAYS/fwV0SOf9q/An1+YQxtJgXXFG1PbZJW174H3BXrFq8kr6Sh/kbuYp7enkNhxNzXL1O6t8M/jwL2b/6nmsd9ED2QRWXl5uRcURcqnidK2lb74CI6TGdO0//3nPvnPl5fbcsy9i6ERsxYoV1rEDm3RyuzxHsoDlXdKmpPl1yAjs0KGEdxR2sg0rlcPgt80TrvUt/qE+1aPnmZhYiH2h3KsyWhEGYwq+lMOyENxcQ1i1G3lCf3086ZI530WZrEcxjx3h92mzLXJSE5lQWEoMaFyyhgPyY8ZZ93KfmwVBNOAgAC0GNJbiziz5ipykNBg2e4u8oRcv16aoZr/7V8oGI4w7wcQVfF7H/XzBUVH31MvkYSlR0VXDcyIa4UJ7Y7lpm7SZ2tXdDqG6aQvFgcJ9zojg9rAgobSA6LoxHl5RDvwk3N7X4sVYSdjl5y+lXWJpESxw5SkROwil0R0X+S0Pxm3yarNxnXIeA9UHjCJahR+lADluG4xZXItmEdyBYOcsjMJcS9EkaW/gWMMcYr9dCAsfH7XJCJFb3/Pvu/w4Zno0+WVm5FOuBeEqratwfVZagcbJeB+pjz4M5LbgUXimfr1P0GLswwO9+F4bwe8uWRQY96P7r6ObLzw2aEfsF3HeyZfneXbW7gEWi0CLeKalOPoQslHu4CG/xJuFXAL1FNXFxE60qM1AE8vd2SzTZK/7pz7yV+iGJpzOSRDucLSIR0tK2wfRDXkHYNgHEnhzpdlPzwvbeCaYE/7JgCFzRvYLWWfcaqMr2RKF8Tuua4j80ISdfmfKxnXGg9iMT8FIJUHCmE7ZCjTRI0Bsreiy4xd+gAMjn9LnaXfBPalfveHp4RgAb9L9+7+OF5rQ+S8eilsMpToZT1VYN5FKceLBEZu1MG2/eDNtYwnHxmELV3Sd4vDIbyVsN+PwY/kFZAFjQAqEQQmK53hGSlJGR67IWJX98CIG4OsXxXj/Kobrs0mrqkT+vJK2A3YL2/knRnnDhAyulE3AaBzKkObLbrXj3gGpwac95eHRWBbWXEub+Vb/gCmQDXkGIugATonlciCKDsTTMjCnwKfXwNNLCU3fCGzii5WEU79wUNQeupEQMbgUPb76IXhiFYSq0aeZp4UDjZfOOvx9HIyCRh/akvJ1PA3CHEPqfF7hMIPhF4XWyvC23PoiMABbT+S4dKYMAi0e6A7LSgZ0oE+qxoGhatRp8TRyxyOPypW24lH3qaN4fQPFwx1N65Vbgl1Q6pLyTMfh4fsuYfM9R4RtLekdE15MMnEO2H/I+1uAGNm9Nwarhk4PfKRQEzAqiqANfr2m1cAuHKuF3OcjD/knVF+uo9IvhIED2lOSBWQ6r6dVSuCVU9FxV58VtRHMQGfjsfrVy2kbBcohPzu4c8BeZPJ380maIIfsmTc1mMCQq8DVAkSSi0GIlO1d6E62R/lU5W5s+aNLzX0GUcpBOBRD+gwU2SSE8w//ELdH/p2wY3DzfZuEciELvLUurv78U6pxK5/c/Xw73LQCwq9HTNYRQqnq2lKTa5bznejj+4s8m/A35YR5TghrhluDx+BdLOXOEFsLk+p5wQJzNqObY51yf/Rjyx93m57GMHIzGz2WV2TcKIdq9uxZdsmlF9hNN/7Cxo/bnTs4T/Z4Wl6UbD8VcpKAl7dr0yJPiEIVbpVPG2FrVYeQsxk86h5dWo4D6Vy8kYceyOz7nZS9itJVkrvCbx1LW/AlD4I+zahSBdmSw4V/uGWctcan7s4+uQUY1Z5Cj28xW/wjBuB4PGkPQXPPzEdwwABBHn8d4/Ah8pz22SVst6NIHkchu9Abz7Uq+YMkfLjSVlgFoEruuZYjhTya4A2imPYMcCjf4e4nyb/ZAD+gkLUl2v3Ppuy6ezGs5qTtnKMjdthAFojI8M1V21x1rv62wpW7z4dHtOzGOm+QdIc8lKsxroowAH/31ajjgd9jSBu5Tl/Fk7Efxt+jhN9smla+ZoFC6Qn/OYhyLfj1cwQOff7JwbCFb1dBrhZVmPvdXKNrIwrpzwRnJw5D2J1J6GpVxn7zZMqGYEjPYzXzfYQ3f3wPYaMLG+3vzyds7LCwXbZHVu5InLniA6weaNLiF9prhkE/Nv9xfRFs7uHso3lfeqqIdt5cS4rC54J24eej9u6MtP0Gj4D22i3DgFHC801/BsbzmwjPJO1z4yN2QlXAloJ70Ylfcg3wXE4BbAGmLcHqD68g+mjBvrI315jdeFrIjifU8S9C6HfC08Pg6U58lH51SgXJz3j035nOAZOonK5sVZuqd6Dm4NWJj/voFp8uhH6md62q1IG6LC/AW7T7t/MjNgZr8GFyaCcthvwwCK5gMqKcvF/9JW6385Hxcgu5OtXoNUHSUnKw5M7oWCV3fivfDsaWW3NP5p7WWMmQnwIcz5G3JiNVPL0RmIehe370QMLem4G3F+OhDA+mDMTJ6Bfpv5a6dKAPnW0NeEvDW4VV0FA0IXRFlbTU7k5xGIRf46vStlr5p0dFLDw4wAIlnzOVV6uFQjnS0yIlf0zd03lwoQNVtas+92Mr3833qT6MDfooXZZfdOjO0Obv/pm0G/7UhAMB3DG+ddIvyMbdmGMIJBXHCgicj6CKa46inPxWW9mKXeX6s7WPaqY41GWf88+4v7IFNLFbjqH/C/L8fv9w3OXU3UROrezlYvD34iqz7xF9uOTkmL3wdsK+gRd4727YzLlhydXn+i96l7c9IPO8lvgkbqBWGM/eDUAy8GWQulAH+QWLGLS9EX4Kwd35RNzuejRtp92KZgHI4/YmERqDJsZo4m/CkMcqZXYWJiEzWjwAAR/BGgxynlyerX3Ig4hCDlECyzGSGEPEdgO8O1CKiPlk80dejnXAU4PgErOm1Fm8a3FgViLkgy8RZ/523A6+IcFqPLz5S9P2+ELgY1B9AwuggSfDTDyTXIv7kQRjF8YA25I2+r2VDyiEd0CEjbV169ezIpANzJyP08efiCBGUt6cObPt+1ddaeecdb5d/NWvs0oKryH39ezZ0+bOn+s8VnqHdlNTo7tWVqYwnowtn8z0XVNTa7W8f6pzMauFmmHcOnwOdrEVeFdkNsmLr/3X3WTHly+1oNWfp5PP9nnySGRc/ZQkSI2nFKtWDq7GME04t6hnDRgESkp1LtJcNaqEvqYSuGH12+2M3wbYHG6BjxF1e8/AcF4cF7oTRqoI+PiScTUJEr37jIgdjSF/P0Lusj8g2LhfML6D4n3wYq7h7biJxMQf/Z2QDKTdlE/8VOQEADgwcE1MmIrbNs4+HoFRHgfay9BPV3wQHV3KuGIxmz12UcR2GRyym/8Ut1seYwbEI/XQYz1tPrHAszsIFd7/QhKvoVbDEZIF1dlhdj/cqj9euGzA73Ci8dsKDTZfEw51n8uHWskMTTBmAeSXlMUavOo4Wu3ui6POcL5qQpP9mfCwHj3l4LBL2t4Xz9Yb98esD96M3YeF7A9fCdu7jH8JVqx4WsrD8bTyr4rZyd/x9MfwM3BFxNN86xMjLzOifA34LkznmU+6TzFtLMKIPmAQhsH5rL4lfnT+bSQ9g7dOMdGXR94GngzyJATzs+SWBJA1ffEMreValN+uLsGIlyzChqhqK9euYNiq3MnCpz7Fitm6hjBcGPklW9PJM+AspY1JeAcuZlXt95mRz5ifsoN+gYzLLkGP0od1zNCfx/g3jP63kNCaqPTFgbEeBSwYI1xCBFmYMYqyOi+KF+rj4Gp1XbKRhNooNBJJrgNGtkrJg7FEMKIsfnpC0Bnyz76ZtC/+NmkDgT/ItRBys5aQ4XlHhph0Zux6DP+xGIdphGKunxHuI3sTGDc65RMllMG+1dsAp2AscrmTQcL/IQwEfCTUIL0AHLQ1A5zdQx7goXuG7c9PJuxrhK9506gd0QcPHB6hV99L2rXk4n3n6qTNwct2AIuq+pcSdMNbozogAVdvkFB6FBw7nDgY26BjRJMab/oloz6c2Oj3nXqFgyK+0xjKJI3Yk/B0VWXQbrqvyW6Fp4eyZVEprrdpCzK2Pzliu57RZItXpAkXZuwpQl/DGWDXT9dX6malXgSejiKDo+TEIo23AY/AiPcrymqIMPzi6IZ+OwHtvrN/4G9FKZ7GSB3Sj1A14bgPFwInXvzhvYI2H1pUbp703hI866qIv9mCbCRvzeOl0IGi8QhVjVRb5I4ykPiAR4v2RAEz63BebZ6l767oC2t/Enrk6ZmeXXdpyl5nFrpnFYvkWK1cjS5ZgqjSqleldsThEYMuEsjuZrmouiS/sQF4Lw3yG4tMercNOtqXj8ADTweK+lFHTTZULRh9KGEddD/5gOiYpz7w7NKLks6ruz8TzhHw2KukU3ybFeBXnR2DJlN2zC+SNhRB2Eq/uNoEI5VgU8m2AouKi69kK6zFrHToq2bcbdl7QTgr2HoQAyc8m8Y3f8phWhbt2Wx0VBiT75yjimxBQ8rOIKG4tAOJYCvBUFHIFlMPUVz6H7YkL5es2zgTH9x+9AasaT8Pl2CW11ZLq61/QeQWAy5eTjmqaSUhqy4QiJ9ErhCRZmK7DWR/q66E0CDeHuSEXXhwEEPHs6XA2A3Py1GslvgZDAL4NuGRlO2Pq09ElisyXgRjumkuS3UP4DQaj5iyDIatFi5rYYBW29iI8TZ//mxbu26t9e3dl5kM2pYSIQw4b94cwoLfsoEDK+yggw6xlatWOINKSeuVFZX2pz/db186/Qwby8rB+x94wA45+GC3VYPqcG5Q6te3VhguWfGBlff/OsYN9TtLfqsQ+n2QhYwxF+q4nzXWzSGvqxZvMEnJuJ5Vr/KtTjsiaGecHLVqVo2+xCqjI8kjUTh1KnHpfiznH8lsaFBF0MrLgjZmBKsuYxlbDsPK2KJqioyXlDXVzWdZNkdR3LjaX02LKPJpanPgCn8aENy2Jk+Z9jlJ76lKuBtBzCV0mN19JsmjeE1fmpS0Z5hxfxODcC2M+QAryP76tYiddiiuepJR3yNM8w0UxxLodBax/5YCoMCUqZ/n2iFeqsaAUWP1MbToYIR25ebnMa9+Aau3RojCwaE/FI2cf+zsiB21V8QefCFhM2DKbx0Tsg+rCVXiqr/85Ii9wVT4IZJ0TzuAVW6As5zJQHdpCVeAVYKK/IcM42TlwgE3OVpkMD4ORtUBPRpvUbDMbF5pI57uzTnNpIiU0c1ewPHLC4tsNOP5G5J06+DPS47A07HAs7++jDJh1WNpjHeSYqxU9iW5lvGdsZQ6o7wCiurJtHA8HW9abvE68fTu1A/cbeJpjQV1aa7Khpi29hmLwXcl2u0a2ikCSK1+O4rJ200XRa0zntOf/y1pg/qGbdwws3sRfEcRRvjw6qi9TMLs4x9k7PIvR5hgBezv0+ggST3zJKBFMwjfeuRFogEYux4FPkSHjJ9TKVsZa/VFsVl9s4GlqY/KgysCj4SHo8CYgF/Oxrj60bkYgPz+NZ6rM8biMWD857+esQ+XBVlME7Krjo/ZX/twjdWtcwgt3DGPvhOHh1wZSurXWPOiakvOBr8aM5CdL5i4bbNFsLnNaFXfbigj8Qvyim0aJF9jEGScqn6IcXUZK4NnLPLsd2+ZnXdQxO1v9nc8uxJx/QcSthkVxQDM2IplIUsRal0jFOUXbrW6hT7pEVox7e/TnJydf+MmvwWjZDxKTZOZ8o1zrVe3vThW+J4cPmhyPpcnnhW2kw4PMZ7kgILqbx8ZYQsTeHo+xgBvXth3fMy+djR78p0UsGFDIlbNFjzTUmHDXnAGTEbCB3iWgQN5Q9zmTxmEgsZbvLO1IvmpWaLC8SIJeFr70JGJ6kdguJQC9ke/ErFD8JDe/3wawzpkXz02ZLPg7ZeWYQSqTYbxzmtCtve4MGH/JNsGhawrOUayYRgQ6kau8SJz2zgLmtqXYxpD7jCj93/rtq0VzVjZm8sSH0AvS6HFfjYwoIEKQdHqo2vIfclIOOJzrGJmwixv77srOc3lsw5DJpFcfhcTVOVi/vm1tNujDzuVIhgxB+NryUeDljqM9et0cidbt27bXOFRyUBHUCzG8WpeBfUrEOVDVKvbgPV9cHXn2WHbH/zc/gjJ8GNDtj+G8oJlaZuHw2YwE75dKrXvIqlG4G0oIfbT9mGSwrVqdLi87qpLuiqD3PHi6OnyE1t0i+PZzQGXPedoEVyL/zsciFycA8msI5+rJxX7PP02E6bHCKP36xmyWx5K2LCDw1Y1OGzTkYcz8QJfdXDIrmV15lzyZv/4asq+QaSuHhKbjq4hI8jJVyCkjQwsUk1TuLuwrTCwUGK8ly5dOzO7r08LoAE0WxJi6bNvCms9bplI3H53ZsBeZ1Zx719T9vYrETuYTPr7zmGvCIyYOewx9dpjcTsXPtT4Oxce9XvxBRgh0zkJIc++hgYY4RxRtDS3mV8ALGKMQ8mRNRZrnGXRDrxjC0EnvkrQsf7s5XLqMRF2EY85T0t/BPDVCD6tMrrvOViFJr/BkvPeLEf/7Z8SNoW+95OxmKMb0RaMmKxfZMnGV/CURC0+6cosLBrWjyskCSIsh0bm26MvLLBLLl5lFQMG4C1DyCOM5aVauHCBLapejGeqzH78k+ts7Zo1eBE62O2/nWAjR1bZXx/8h13/kx85Y2zw4KH2jcu+5UKESpAXUQkHqkdesDkzzEaWPG5N6/8DfsVkbSnMMEgMCqfqbSMro1KJM3l/YGfwqEHyR2LooKBLCi9htnPe6RFyvQK2ilynl99P2Em7Bu0QDALJI9HqkQfBLHuSEPiXpH0wF8NWRhGJp/gXrJYXaEseeAvvscTSh/nRRhilbFDSAebYad475fU7iVg2OREwQIq6eyI4RmDgaa+cgT2ZSZ4TdRsnTp6dJoEzYQM4pxn5SGLnt5wXYqsJcjYWEr5m9Z4WFIWgZXn9tIAhU/Mu7Qyw9JzfWFpuvTbRIrcJRmY/jtGVrOre7UdSJj3XMt+RKCglr2+sy9gehDv2ZBm8Nnd8+vWkXYSX9wLk/hfIdzmc1bddmIz8DS/Wwws9G4OQdvQoWsTgyeAZ8ja8iQ7l5eDTf8ZJeLStMIq3eGeX0J5mUhPhTQWiYnmd5sAv56Lwh3TEy4gA/tL4jJ21p7YzCdjDTyXsITxrKxlLGdZvL8CLRNKbEnhf/0fSLqikPg2lCAB4MvB0xvF0pyxP04Bria+tFu5zPI2iiK60YONs0hX60D32heKSPNGHMYZ9SQrURPhbB2Vc/o3sjl4geSbhl8YVUTtj35CdNE60F7eHnk5YBfkSuyKcnZddHUapZZAXGdqwpneJOV7lw95WGN19i6logwXoayCGIEGRKzyvfbqOrUDmMHkIoqFuPUH7xRGOwT1QWg2ML3n2zhBWPo4P2TFVeEOQnY8+GbdTWATUgYRZeYmELcvgOW/8ECMJQb/hKaT1O9vALwhAKWgms5aYbAFehqskbWbE8AyTW8bqkIFRK2rC48Nk6F72OCgtYSsG4oLR3yeYaBGCPTLMu/zi9iJRiDO64KnSckaNb3PRMYuMGqdgIQ0gpngfRvGj2wAjsGH4eaxCDDVOsmjyMIYFekHRSfQcCN3t3heDqy5ko7ux/cuX5W0J2vTZKat5O2kv/ytoXzqJVXknI/6xURIbG+3pfyTsC3Em/XgVnGjBI+nhGUo0TbZ0h9EWqL6dDQ/h6W2ROzJ+1D/exxdMYwSiFsXT0i9dmWSM6YEO2xCwI4Z4duQwbCTG+t+swOw0K2Vl2LT7HRiyU/fE6H8uaVOfZssTQtnaMNoV8Km8IS+xmOECj4yFzbsJ+sTwbCtPS+5oj7SSHsQrP8Tzh2cVWlyAkV2q5HLnjve7HCWEGYEP7nmOCQiGdCluzTseTtjFJ0Xt1e/FWFkasAeB8zVIW5v3oqZ4UDAi3+O0Uf8K1kKlJaZezQVRaT49cLjZ4qgZPoOnE69gOy7yXz/DPEoGXA/geQvj7mDmAt/7EluTZG+f8BjGKLmAX9kzaN85jTw7xlg5WLvhNa9CH/3z5ZRd+UjaxnX1I1IymFW3Jd7nNVNdLVE3LwtNW2EkItSwEOpbi6G2iiBLb5G3I/le0OK7M9nqha2Ifnpe1I2xvJF3PAqPkddbiV0h1oiCz+vYJkawap/D3z+ctOdneNYLuSnvm/qWrmVRTZLZQojV8INGjPU8GDTc7QIrGf1Ta2B10OP1N1uXzFTUZRmEhrdIvAwgejjMAImvlVCXQqCEILYICbv6nULBhTnmoU0KLecGS96CVky8ya2bO5SCEZE5gmxduVb8FIVX2iMdv2+3B/ezIQizGJ41be5XhyDELrHuMME6BPcahEpXGDNH+y1NpWzt7AlWM5eNGYu0vBIrxheBLbds9hd9ldWBMC/lvUYfTJli99xzv512yukwGBIkW5RjlWTJZopvR688pghzcVEHl+guQ2fDhhr2xGqyLl06k69V0rzVg4xU5WPVs7/ItddfaxMn3G4jq4ZZHMXkZkYfywCCEVj0brtwBUJjqo3e8xnr2vMg5zUQJKpC+WkiboUyZJyIZCUk1uHt1LkOjLvyCxQG03YdurcGAlOOhEI0chEnGpfbtHe+bg31k1DoCJX0om2AEdxos0Ul/BLjje32JB630Qw5q22AUaPOUDuvT29gccmQnFOuyzLGVXaFQsI9MAxz5NVIlcsJH/so4pvZdBoDMP7eiTyAEM4gWDMoYMYvexPfWyrCExWG+vPNmJdUWWzcBCYpfdx5wSgDAXnvXqfQCxhVxDM1MOiCDYQCwdUJA0mE7cxqJGY+b601Fz5saZFagDG1+hVLvn843DwGrl1E/Ty8LTCyWat7vUv3i6149PU8WkZ4IcOCsagd4lXbNRuuJaGTxGCtash6TMTTojUtLsjBncaYFe8HsM78BQctkPIgB7pX+EUTiWC2pTie1qjqQX3nFU4JHkVwJV+Ebt2Wgf50PonRFyMfhwiZxfFSasC12vmjMIBwEYbo33kp89r4uJ/qmnslR7aPm8AomBw5iBYRTzkY09JYNJdizCMYU4K/CVdGEBxq+7+PwqjO0X8n6encthQRl4ORNl2RjMz95pe6TfVhPAPiHQ2Zjh2MHGpcM/CPHnHk5erY9I/q00cwSnbDA27cN71vC8eOgNRx9VO4zI25f7/rNj+Fq2ZyAm7pF71QRDQpo0FwJ9mHSnlGzjbxH+ev6lTdORhFizpua1HnMXaaDR7Vp09LEc2pGw5GbldL0ofac0olSKhftJmCLsM4GlzxL/m/XX10Klev45dWN2Tv29IX9zp+yQ7iJrSop5jOu08Az8ZVZbfYvYlOtit7NCShkQWgZCROhbHkiWnT4DdW4zFC/CkS19xT7ksufsgy08/BaJfcwUCQp3mT8VJbmy9UFh5JXvc0Cw2+2aJDLuY2BUk5TSOzGEscknYO3mmR7b8XIFuoXonl2pWgHzaEIkGr0dmlnOuEjlmNDl/Nc3reQQr9JebcbukFP0TuVtEB9HTumm7ZYuEmpwOhw/BwYJxixbv82WJM4kUrORgno0cqMZQOG0IOJXC8Uo2BykXNYTR6SiuSXFc+mxYOpJnIrMLuaYQ+FHaXjeIxOa7/4Ie8C/VuhmysBQYNZ4oFIgIYVEVVj1uy99H27IbvW1fvZWsK8LJm3KX5BCvaFYJRczYGAABAAElEQVSEdxGdY2Jad3ykhtVJ90c/csVhIXvAQ9tcVGGu0ty3XwkkzT5Uy+1Psavt+qL9bBcs+wY8Hho0IUJFCNAgaROzVsYVndEqpsaaqbby/XPdnlPyINAb99y2/JGHRJuGDqocZBN/dwderEq8LX4+lrxP+ji8uUpVPwxJwpg2EdW1MEaUVgLJMMvfR0vXS9jW+rkXnrXjjjvWhlfx2gUGN6NQ0DYVH2+Z1HLr3OMkGzrmJxh3nRhaqBzAZA9C3w4/GmPdDTiOqJTXluQ2HUv/yuWs6yI41yceDIK3pQsftAXTv4J7eFcu6I5txSPP6H9qqoX7/8Riwy4XFHzEBBjxWRi1CkuyTS0o+VDLvZM6x0fXsjaDEemyMmD0C7AgfOKz8VpV/wCC2B4YqSs9xUJD77bowDPBIYBRhD/BoPbrs998WQdgLBWuOL8aYUeqhlVy3AHFnJXRepob6Aiz6fi0H5m3Bu9fuLeqpWwrHmkV5jde3h4d/YgV4WlrxMCfhfF2Wmqx3dJ4nRVzPa3l7g6LtCA0b1Mz+Tfr4W0t9Dfbdsv3JnVwi2gxVxyMNCWac4qZa0KZk0N59+Xub+mQYM2Ht+WOrf/Kr1TwbqZwi8Y9V9w8kKaaYeSaEynckH9f7n6fvlXB9sCoZ1VHHiAtDYh9WrXtYNT1bLMO1i086lej8c3e/InxuHUY3ThnYXAyReOsZoE9y15bwWMOd6pAD21r0XO5/uWPeet6pOtypRW/ZB8RLebTa+5e/1sw5sr2wKg6sojKVifjKswuaxGvlive/2PvPADsqMr2/87cspttaZu26b2RhIDSkSoCAnZAVEQQPkVUPttnQUFQsX1+FgQrYkWKBbEAKioqIDVAEkp6JXXTs+XeO/P/PWfu7N7dbMJutoQ/zEnu3rkzZ86885y3nfc0+2j5j+0HrLs1ByEhnuls3y5s4FL847Honf7oHTlXLolgWioB3aO5pz5AFG8xv/Ey9queKVTeKH3l2Tk/YlHU2cgpS48Aluyv7MYyHBelMdCgqKQgVfR+C7TJtqjNJ9qkPwdwXc5NAI0+4+TyWx6z3JNvQ0fyEvtppx12hZ0shjrTKmd/MxoWxRhL0Yjv7sZ9rUVHK040GBoxy06fS6fL/mh1hBg7Nail1/WthoDPmmpNa++2hgVnQh9OKm8nlnCcLOZpXvsbt/rzQ2XHW0Vhso0M1lhdQPee1rhxBpN7AKBFUfAwx886x2H0RwdKWOQ23OZycL6ES12+rvzhTeKKd1JIWJOWR8gaMClaEYN52X48hpdyNMZPrAAo3dnWueIqlRQw3mXn2j/S4iQ8zHYOrjXeFZKKeeWgVDMw/b5777F7/nyPveud7yIqlHYOk5yk0ohWXLy6mvRR5TSrX6aYXLcgx7qvH7MP17Em1u2//hVn1DVKd6b6vPYLR1qyqeFWz8rKWzaeZkPr2KbD4QhmAo0EhC4JL+GnulafvUKiMZ5RjuiaBo2naMLv3rHENqz+JUCP5J0Qc9fSjXN25RtHNDWNXSF+yn53x7Mb++G8arQshWgQXXBjS2pDI3TSMGuTImeLXIy3ytc/Trk/53gqeaiwNvzZ5rZ9/3DNfdYGWnOLFQYfSThcESMtq+GbljBRIlDqkuiVmIgOQa3tNYbwW3S3ca74rXrPbXqQXeO/CwazyCRZUc79SC6CmLPsmlttHitUfyW1wV616xfUd6Ub8K0FUUPGw0SIqr46eEbMBC2XekOmVbgepC99C0AUivSNfnIYJ0ej6NSHutbHkS2AXdIv0ejOctz+O8rV9b8iJKZRBBUrWadER0nag0auOY3nSNENEOtkI6YtJj7+XVJYpw91bymNRXB0/95ojK/p+h6PjmlUJqVepFHPVyrB0ZGjP3qsrhfhbsWRc05+3Rn9IMU0lp6LrnT+b4xj8Q4n5+LF4u8iHfrVwmL6IZZQnpgEnXOpl+WFh8r+ZRh1uNY/yJb644lRN9smHJxhEBgjIT3D6kF2EB+9YewguF8KuRMZKmz4C2PE7kbRH+x+F1+g619a64zu4PzzrJheNR5sWHKHRrzWm5RTOrGooEVHbI/loAwtUerSnTV8lEeRIkX11Q1cWHunGyPmdcNOUyS81p9hKHda8/rXWfnYc6k7re0YoI+j6JT2X1VSdUb2g1ugEVjb2B6XJyKSIlg2qGEtPtSvUduMvFIXC3IesYxCv9m5Vth8o6VWTrGzJ1xCeGKg3dJwk03NX00k63gGJeLWdZT0gDYJphLH+aOhSp5wLyXRU1jmKoB13OmTfh9dpXJW9uRznWtDpk6otoFwx9o/2Y5VnybMK8bayzt28hXkJE2ZMcs+cNVVNm7ceDv5xJOhh2gTjlLsNO2tqPbXdU82m2Vz5932y1t+aTfdyFY6DIJvKG4Svbdy9n1eKCjaNNlWPvclxjHUWc2gQ6CP2SMOIGmJKJXi5e4qPRHnkXOFkc4xOHL1kh/azm13MbZrLmV1B0fYWoY/v95yS2hhlF1DV9ZE6lpDl6nfmMB233vUcXxdTpRaaDtpoVEeHgySMgIYWh3aOGunv2Ug07U0s/5s+WU/NG/qhyGZveqgkbbWXosRjbHSa83ESf47Ad02z/JLWQTPm1S8vLe3bb17r0fItELUqU0/pm/yGBs9YpTNKvyKNR+RcwyHsOwXLuMvfed7o7nl8bFMjwHL9i7sXino+oWiTKNFAUTO3z5SC23FPNJhzNoxFk2Ous32cW93LgXgFaykBPjqhTZc34NG5MKjr4atSPbRJ9cd6qJ7A7qUg9Ucw4thiefSUcl70EiIQV31KT5OR3Z0U3fP8dACchisLdZVq97Zo+T29ElYVNc+GKY1nGAf9+5RWBdOSG+IvmAjjyix/nsrog2dSLnTO7KBchV6KaGHgoBJIoU/2iOZO+wNZWfxXHpReNxg+JPBPS3oxI5CKyUiGOxwLvIb/m7BiqtpSTMkozt6UYUjw9I7hTWftjw7KKRHMRxDIVMai9I5e+q/iKI96VNZ0IgDSN8FjsvvqY5rXNndtdPiH6203rTsc7goo9kY/njqWXioZ6hjfnJX9ad9Uj07e7XDmlbczCTKH0Fja6CGLsIZJbeheOmeGTzxOttC18f5ts4ObV5CP260cGP7stv+VisYCPE2oZYVU//Fquj/BtzIh2ubtzu/AACA/IqDWHftFFrhlQzO3Gn/yE61exkfM5DKkLe81wQgEY1528G2J5sXXgao/TFqKCMpzW4mjZdqaGhg8GONfePL/2vHHnOsc7ByOF+KPr1QEob6aN0sbQJ98603s8XOJTbtoNlErmBSMV03k7Z4yefWWfWAI23izCtZmI5NZwntuvpzUYQXekAU8VDkKte0yVYt/qGtoV88ncFJ1QysnkiKTDbTDceu51m6ClOV45FRytb7d4ZGl0+yTcuCgZHNi/6P4Vbf7n4Lrc274QTk5pk/5rOWmXAxclYb0ejYbx88GJfhaFTEjkjntgWWe+Zqhlv9C0WH8eiuois+owZpmJfL2k+mH2tnDtzpVs3WyAjmB9oTmXNtO/uDai6SlN+eCayh0bUgJRvb/skKyvf3kkyjmPux+vyAUzBK/ZyzGjU6OqKrlNKIRjnRmuEWbr0H/+xJaNS4n+7LSumTVCde1dE0r4/lNLLs6kj0dYJG0aJBZSwFY1v+gJisIPoA//QYjdAgZc+XV/Nq+sYZUayGgIuCvrDeiegQjTipTSuhkWiBpsM7/d1TOIpGtDM4eANey7Yn01C5OHRFOWiDdUc/3PvxLtR1uGsh+1n+kVeW0yonsidppJ4zNKAGnEGgASdJMyedznmhehYZMrjQI9x2PIwd/AvnVCmduLejd+7wnHBEF5aNg8YziZpX2nyrs/9JT7AjsH8sELBvNIS3o5F27Kb7rfDMR+FHnHI34WdvLlCHhOzlpGSDcrwdDHn6JtsrvQZ6wCQezLaXu9qcdjiyrAIyllt3F0PCLuWynH7l6om6Fj1MqmJl/Irp17oJfo4P1R/dqbqCBpGBDdSiyU0rb2Y/+fdR7Qw90RTdYmrn/cD86dm2eclleMW77cox59PJeDqEqDAYZ5+JN5cDIRA34lg9h5JjphWdndzVE5UWP1zPQKj6IZhTj2FxmWPpF6qyV7DU7gAqA5VSwl6qjdLK0GBPDC7LFOxY+wfb8tzHIudKzOYUUfyM/f/WQPZKxkzVs1zDZR+53K696ho76YSTGEfVj6UZmp2zta/S5aCVEblat369/fLWX9rHPna5i4rl6ajuCedKz1b3XRojvn3r32zRUzkbN+1/3CbNPt1oWiOrPWZtfgOn9mqTs9iwazmRqx/ZupVfoLy2jLWvd+zUNRkzWkLBhhvo92Z8waT30xicGdHmBmWU1mv7Eql3LfkAJ7hB7UuuoyFKpMlFKXvIAXSPpCzeO1h5JYP9Gywz/kJ01Djwhd/34Kc9edHTMhHky296wPKLvkSDRM7VBM71II2udbXTvIYF5g0ah8JiUVsXEm+yn2SPtp/6dFjKEHeoVIoyLcdWMr3oCUbsI9NaDqBXZBrdMQWZHoFMlxP9jqdWtq/eNr9V1+gETTnccDd651EG4i1D78jBeiGd1aagF/iBjijsYAAL7z7lONZ/wdFCuSIw3LcPXtQlNd7Ux9C4mQF4vzVb/B/Kgl7nGPQ0jThFQ0ebTTqeHdFp8OjZnaGxaHDdshGrHjBb8SCvhQyJbff1frrc6aTC+ATbGdU8AxrBkc17XYoHWu2rLNGoxIx3W77UbDU0+i2dSdG1bv+FPledi8wmHMKgJWisGBmd20Om2z+Me2UDZSvrH2O2IHRugB9TA8mITuixpGcgs+kNZhOPAkvkpYxB7Wy1tJVntHWvhLl7oeLT+S2nAH1V2Ph3ZlJ/OnKu3IbyyF9U4cW8+/vF+2uMVFBp+Wffx6t/iU6D03FaWeFMuqQNPR09g0Yn6w1qvarmNXdaYcnlZKqDNN67x3AEP/SYlqfavfDDVj75SssOPc45/6F8mDY0tseQy9Ai/V1oYMklnKvm5R+D5llcoNyS1C6CpSsqTJGsJ6yy9l1WVfcmJna9ktkbgCPP16VYKShvNCtAg6UD9vHLrfsz4cFPQd8AihnD9Z5krOjp1B4VhZAyw6p85IescuSZ7FSOMS52X0RkRm1y/Y1th/b6asRA7KB/eOeaL1AMG/Y650qg6F16JgmnLOtfNbB098oVK+3qK6+0U05+jc2YPsN1+7nxWEBJQJIHir7ok4KWLcwmfOzxR92Yqxt/cIOLXMm5UpdhzyaQoQWdzzO3LFtjw8de5mYWVlRPgCLNSIlTfASNOgWtzY2bbCtjhdatutm2bb6tZyNX8WPjb7Xy88+h5F5JuPlCSw85hoGJo7gqAEWR6NMn4sVorCA96g2rmY33byus/hGtXRRxZirZJNy9kUQjU+X7v4keqvMsNfgI7DuOC/UbrSIe111Eo+NHlHBh11LGPqDkVn+7qORoNTsaHdI9QmgND5vHUtQ/nTTRzqwbbrvZ8kUzPtPhDvty9XX2c7qDJquV2FLjUmIkkaCxE9uftsL6u13I38JByLSw7x2Z1uJ89FWYP/wjKOQz3HhQTxGVPfROK43OUGx9gjEff7Bg3VeR6bEoThndGHMOeyxh4POrwaaeoYafoyftFKJF09EhGBOxo3tO/FwUsKtGzB0zi4Itj9DFcRuO6k0RL8rx7S0ac0/yjCHmjWLow9AToi52EeNoFJX6iLhYN0IjU/SDzQ9YsOanONG/J9KLA+QMWvRWZO6hJDp4Hms6paoOZzk0ItRDjyFwhhOj5B7XSmOp/i6wZljzxn9a46rrkR2WWlGXlsO4N2ikHpsXEmk7y/xR55vvZBr5hMDYvrTHUeNRA5YOCDbcSw/tZ3H6cXYzs7mnl+RFgQbWUPOHXGi5urOtiQ3DU1pkWHzldGPMi1FdO6xwHiKZJtK79vPkA3cnY3IqHJh890SiThTFk+McLDR/xCcthZOV6j/LOTF6QoRjTCPyopP8aSvTX4YNZ3JeMt+zdponUS6NXNfYYaHaUR+z7IiT8buIrIp2x1b64w74hgY3NhT7yNp4+fpHrGnNb2ggf5/sCjCIvjgvh6QOHKzogkLsYfN8wMhZqvb9lh54CMEodqFmkTNfi0shsG7jTxbzK7Bwo7o48pvuIup2P5ECmEqEyMvu0Uor0ua+qAnAKTSxxASbNFfUnm3lA2ezTtYkftfBaChmUsCGkDmWD2hmc8iGLU9Z48ZfsaO5NppVP6mYKq5gl73H/iCGzAxM07j27Zn5T9isQw6z17/2DDvooFnMNJxoI4YPt8rKChwnVqHftt1Wr15li1mQ9FGcq+uv+6aja+bsuSyLoPFRbSutx4iERg8MFbXKoUyqB5xqA4ecSJfhdKug/zxbPpgGGa0dMMo3bWePxZW2iw2It7Ho65aNP4CMoThXrEvWrTFXnXgbOVmKHuSXEIU5G4f/aBqu0xgONA5eY889HFPN5NMqxMHu5W4dkqD+3xi1W+Dfia6lwsVOPKgbWdQlxQzNMFyHMr6I7uvDoHEK3V5j6DrE4KMgQqKsIV2qwe5lFmx7GoP2N7oQ/gQbY8ycke5pJUeAwDlYDUUHq67oYGnWUbN9bueJ9g2mZB9aUWc5yTSy6saRIdPBrsVMaFwIjX/imDW5JNNOefS2TMNvTY8Tup+Eo/pmSzMTKVU1CRzrgCiWadb+QaYLyHSeGcCFzbcz9XoxKksyrXruPXlR41M4sVCQhZVHUten4VjPdE6MV84uEIpqIa9aRT9oXE1UcjFdWazbU48TLeiEY6/KC+8uo6FINDJt/YkcDD4eXsQRRKb9ssHwGtflDDQz64xFEcMdLEq75SHWFiLK6w3nFUf0Mo2CUFGUSKYzg85lbdyjLItMp5Fpn/G/TqaZOVRgQcjCruXWTNSqafO/LVd/K/RNBOdqaOwLmV4DN21A57w7CjRUs9eek2me30amlyLTzyAv9yLTd/WqTINeMckGwm/NjxNsZIP4wZegd1gaoGoyNMpOV0I7eZiAEzStp6GJ84edDjfRtbr7P30k03KM4DdotPKp5tcSsGFIil8pmR6BY6IGFP+1PmHjWreJc4BMBzTcrXEpkTmisM5O96JMO2dKjQwmulUfQ3fha9A7rN1WNRFejGRa9jxk9w7XcEdeNKOxsOlb8DDdmFkc/b3I9N4dLFWhKk/KgrEwimZ72UPAaiTH/fnBCfowwzw7rDexuCTbNXis3upaj+5hvQVIkbfiLxk2BmkXmhc4vZEuO5zvuqJRhbkIRweMNyo0PeA27PRpmXnqPtgLIHGxPfWt6FR5WRlb3OywVUsXOf182KGjbfjQyXQb1uDcFLi2mRXUn7CF8+k2IE2byVgUHLMmnKu+SWptlxHNohVbWGXZslEMVp+C81TL+QpYi1YP4zHyLJbX1MgCm1RtVsYMxyt0zN8XVIoBNZtkOXUHr5WhRDLjwJNWpXhA9ck2DWFuGWNIwNkbCK+OhzCclhcM7fcQ/RJUjTWQMlEqJ2ScGYWoQIsMigZI5zdyHfpYGNKtqZVmXIHjxd5x9Dt2sDR127NrnvmXfXPbMptZfqQ1qqvQjZPQNhLPQSeGBRt94GSaSQ05IghA6pUdQT0PB0ccVVIUvV4HbA9GNDoHte9kGopEFE7/dnBaTB0PwhDMhEbq0m3ySl0W6KzJraWeH5WYkAfHSq3w3nYKHEL6o9Y2NDJZxA14z4xGaKdAoxysioiOwhboW4W8zI/u0uBcRVtcwzg61at/XRepZHoJz9zm9LeXZrFQxtJqm5FQkx3YeDgoLHAjTyTTXp/LNM6BsJRMU+1WJpmGPifT0H4AZHqPOnF2GibD6ZcIW/YV0IiTnKIXSTynle1zG6LrRFONdfJcN3+f22lF3HD6pSbLjoRGZJohRM5TcLL0PLz4H+qc6wxCd4PH+8hOu8p1Ms0iz2rIS++kqWdhpYkpEBVqdfaCfB38HuD2snP4A1PsQ6b37WBRLCXwHyaTVWXlt5C1NmjqcB7DZYMAiEqUwCqPkOkrY8bTWpOUiWgkigHDh5pFw7KKnOCDk+AziJ3B8EgFp0S3NF7fphRjv9gEwvI1Z9mufgfZ+i3LaVjAcFRQdeUA9oAbYv3qf8+KzKwoj1csx6uvkwa/S0LdrEKEMggxElrkksm/nl/LOiXVQNjP6ZnIsXKi0bdkOj6T0miMFEeIkTAUiPbY8TB0MnBMFXZ13GfOXykERXnRKa2UKOXm5AV62WWN5ht0ikYaL31gzPbqYCED1yzdbt+sPMVmMrOykfEOipR6wq5yLK1wFOHm36AMiWj0mZITaHFqlWlCfkW9szG66NH9xeD8SO8cOJl21kwyIz5zW59IVur5SDvX8hGNtNCdEpbeORDyEsm0GqGEB6ATmTbRST17craq+UheSE5eDgSNyAINYa/uImjCaSGS4ewI+tpT1yFdYeGaH0YOwwHhxdgGCiPJNJE3J9PobyfTA6Eb/dNHMq2q2jOJRnCU5ZfTxxAAQlVkUyuJepaT4Gyg+FUeTN/bFwiAjshOO3lxvoRoFO2xvMiXOIAy7Rol8F/tW1ibeypRvxWO/xyN6i0hAhw+fwfOKnlcr8O+cZT0vUBC4JyHBghEfjyPVpoN48NvpzCoUFXqAWH8mPT4+YwpkAPglodAMF2SwtB1gOirllnxyaVfhYC5WrvWMkbnUBs06QIbxCBDIaikzaIDHIbGLQ8gv//Ee5/M2X1XnLuxh/9Ea1dpjA4Lo7JXYcpwBlrqmUimq2e6LHv4uV0qLnaaJIRpFBtOfimNB54XY3kRWSgTRQxw8ltpFC8qj5TzgUooOs32ZDFCG38uC/6xsbi6lFyCNrobckt/zroz1/MKow4Qra0yLSdFkVQ30NXRyDVx4QGW6chBlpwiySmcZhdhGxPR5uiDRtfo1PcBSk7nychS5zQ0XVSjRKYjeemrSHlHGIAd8hDmljJ59lTIm4WaxolxTikOP11IBYZ2NC+/Ar0+t6MC+uCceK2IkZNpybMivqU2UHkOpEzHz4cmOcxasuRFbKejxhEyY7LTkg/Rr+8Da6dd6IruVH/g4XSAnAMvqmFcTHKoWDezmZ02rIHItMZ7voCd7oSDFZcev3z8+8X4rUqSwut756SzaGjhtDx7foV5HAQpESUXxkXJuMga5x3DuSsH6I+6/vToFy+OkdMsQ/tiTnISXqw0yrBRv45ExrC5Ctc5jJrq3snRiwHbRO/0TC28iHmxqAYlK6F2FwgwS0UHy/1+0fCiauJFjKNjlP9P5MU5Ui9i+0KDUyoxJDAS2Wl+6NjpSehWA78TqQsOVidKS7J0EgEJgQyvIgk6LmoYHSYpQaBPERDTdfTpUyKSh72cEWij9/Qj1o36bnPx5YxS8u59jkCpXtTDu86LsvBJ6nME5FDFzbaSh3dwquRqcpgg0AsIlDJdzJel53rhkUmRCQKlCLRht5gHlaH0uPSG5DhBoC8QiBkz/u76MxMHq+uYJXckCCQIJAgkCCQIJAgkCOwTgcTB2ic8ycUEgQSBBIEEgQSBBIEEga4jkDhYXccsuSNBIEEgQSBBIEEgQSBBYJ8IJA7WPuFJLiYIJAgkCCQIJAgkCCQIdB2BxMHqOmbJHQkCCQIJAgkCCQIJAgkC+0QgcbD2CU9yMUEgQSBBIEEgQSBBIEGg6wgk62B1HbMeuKO41kso/7ZkrY2uL7PRA7QkRby8ESjyn1tAT0hoIcWYJ1/eyCRv30cIwG5uIrxb2VG8Jx6UbtQ6WMlaWH1UC8lj2iAAH7pFovUtnlSKj/W7c0s3JA6WA64v/hQrRCvAasn9lLYd8qk7Vs7WuYC9ytzK7lIonau8vqA6ecZLFYGikoAXvRR7mMGD2pjcbYeUYosfty/lS/Xdk/d6USGAunM2zPEiexGKuOJK7p4vXuSTpASBvkQA/Se9GOLoR3qxaKfdTtVaxb1zq9AnDlZfVZq8YflN7BoeNq5mayttrquHs0UOzpZLboNnbbzqLkTnkr8JAj2OQNG5Ep81rocXN7EzTrSPWijDlmEPyvxOt4NT1IrrcQKSAhMEigjAg2pkErAKm7ewT/Fy9iVko2KnLDmfqXbndT3Ri0XIkq/eQ0B2WrxY2GlBw5qinS7aY+x0tF+vnCsapZ2w096EqTOKd/cezUnJGC21whSlyg6iWvje9qDbb9fpEfbl9Gpebda0WTXLDykdVWJSNQnvdA+BGhymeQ0N9tNJE+3Mujrbnddm3p6lYcmrn1tu39qdtWkN99ruXTxHwVN8fa//YeiYrHm5LSgb+NZtsJ3wYvdqIrm7YwSwZk434uCXj2K/5MfMdmxye2S7YEH1MPPKZtMQWAMvwpyOF8WoSUoQ6GkE2tppGehw23+wyzxHDr72m686xbzmjfChAiYvbKeTCFZP19Ee5SmcSEXk5rmIlVd1lqWqDzFv1HvRK+wmTkWFzfUW7nrOguDfFu54kN4ZdhhPDeY+KZJEmewBaXKiRxDw0miM/gdZzZhzrDIzCIXBps/sFp/fvcKatj9mzQ3/ci6+nzmI50nDyOlPUoJATyCAMTN0Y4j1ap5Pw7PWvH5HmD/kVPPLRxDRIloQNBHtX2vBzgVkexhDt5Xo6jT4VNGDpAHaE7WQlBEjULTTzdhpWNPPvp6gx1zzRl+KPY7t9Gbs9LMWbMNO73wI+z2ajAMpYO92OnGwYnx741stswJRKW+N+SM/ZalhrzG/33D0w+Co0nzFIuVjEdHKbaNxdiE9iEutsOaXFmz5OfYOZeKjTFyrTQopSQkC+4OAeKeUf8R3u6xs8mdtQtlEq8HRD9xYF/FiYAHdgwWc/lzDh233uj/brrWfp3EA36Zqi7y4PzQk9yQICAFFQmXM4Mf8U2b9XmGpCd+31KBDUXU0KjMD0Y0Mk1BXNV2HYb4R9UcDtOl9Vqh/xAqrv0c0a55ZeiZlyLDJ0SrlbX4mKUGgKwg4O03U1Ks3f/SV2OmTcfJlp2l04lx5sZ0uYKfzDO1pvgg7vdjya24223oL7DwdOx1H+tvyYuJgdaUiupQXwHNPmDfgHEtPuNRS/WeiOPpTAkqD7r8wyKMbpGxIUiYoFr+s1vyKiSibgy2/8bVWWPolWnc4aGkUT9isjC578idBoGsIKPpU5LX4RiKnfuUEy/goESIFQV78RYLFPL/CMhXVlqkcZ+UDZljl8JNt65Lv0IP9C1ptc8iEoklSgkCXEYAHNXlCui942vwx11hm1JtpdI7CSPWDRaUX+cS8qPLJr4iWkcevnmKpIcdafvWtFqy+CqM2IyrPKC/RjWCQpK4hIHsKP8pOD3qbZca/x/yaGbBcDeex0xoTDa+Gbez0IOz0EHTnJDqZDrX8hjOssOzz2Gmiq2miWe3sdOJgda1GOpm76FwN/6BlJ11GZYxzDlU8kDjSBbJkJQ5TSEUyPsYZuOwQy456o+UrRlnumc+a7SKEnhm+R+V1kpgk28sWAc18QcQL20Cgg67mAmMM4m6/Ul4kb1hQfg0+rrR+g4+0dL+RtmXRcKJZX6OxljhZL1uW6taLE7mSc2WrLTX5RpyrN+BYVaIbFRloKOrDdnrRGTquy3Ax0j1VNcn8yR+wHOO1Cksuo6zxnFdErAP+7hatyc0vfQTQjfknzB/xEctMfC/BjdGRg19o5NXFh0KgHT86Ow0/oi+97FDLjn5z0U5fadawGCdrSBs7raZtknoUAVXafCrtA5ad8mEqbSzGinEGbvB6XFmu5to9teSavGa859SgIyw7He+4cmpkJBXKTFKCQGcRwLkKcs+ZDSbkPfC12KAdKAYZoziJD/fBi25qFxEFHLEMymfQ1P+2ypH/TUPgCe5LeDFGMfnuDAJFPguftdSk6ywz+i1EoIhaFWevynnqmBdVtnRjZKrEiyhVy4w5m3Kuh6efLT68Iz4uXkq+EgT2QAD9FTtXky+HFXGuFDl1dhpecw3Ojngq5kW+aRhoSEV68FGWmf4FJmmMhZ+386TWuFXiYO0BfHdOAGewjVlYr8Mjfp/rx3UKwRmxjiprL89ylUs4nQpMDZxrmUmfoqVHuFIzFzo0iHspJzn9MkZACiA036c1NpXW2YCjEf6V4NEq/J1jJSkU1sdi/EG6fJgNnPReKxvwFn4zw9CNpXkZQ5y8ehcQgO8KNDzHXGuZka+Dp/itaFbRcep0QdKN7r4sEbDXU97nXIO2DV93urAk48sTAUVS680beI5lJvwXXX5DXSNy707VXlAq2mkN90kPeqVlJmOnfSKxmO7YTicO1l6w27/TacZXrbD0eCqtYgL+kMLaGCcKy1KnleiUSr7LS4MIpde4XtZyTQ5Z1A+cqj2aQfIfIEpOV6HHVOUkJQi8EALwSQC/lI++1qz2CHLv6Zxr7GYVPOeL1dqlFNfKuaZvl4pOVqZivPVHKZmt5CNm7eBmd0PyJ0GgiIDrpt7IrKzXE7k6hyAqkSuNb4GnxD39inqxgu9MzG+cF1/qnNObxW+dc2u1ycmiezEz5q1m1YrOMlY1cfiLgCdfe0dAHIfeCldhpxlz5XqYIjute1rsNPzWaotbS5NPFfOp86McBxft9JBXmV/3QSZlMHmjaKcpJkk9goCmDjPF06/7sKUGzHED2eVZacqn1hyaxxg428EJ1W+5ZwcxHk4mTyaq5RrHVuXZnP4U5bKSmaiVx8raaWY2BBuOYwYNhi2laaOaPZOkBIEOENByC0SYMtXHWsWIV2OpEHNn0Fq8d8eHmzeaPQaTHs84d5dF/EpxaYzclt1c2xba7BrPBmv8cfExmqBRNnCWVY74mO1c/WVafwdzEQWVpASBDhGQDhNjrUU3nktUfxgqja4VLJWcJXpY7NF1XGdYi3TjwP6ejWL1EI0r3gFbzd/CASMsinbMRg3zbABtzAInPJwsv2yEpUaeZ4Vn/gATo1TjjB3Skpx82SOgYTay0yM/zsSzg2BNWeFIvzk7rcD8TngOXrR+ns0aIF6Lrsv5L+DXP7KW65Vcw07nXVbxuOx0uaWHv9qCjXfAsyjXVEVpfwGlJKkbCGDUADsz5GS3DIOmFyv8rUpbzuEHD/fs8GlpS2HjnlwW2I8fDmwA+Vfzueww346ZGTXdHlsc2Jf/E9hsZiqr8lwEDEWSqp5qPmNpghWfpuLmciFxsLpRWS/xW7We1TIrH3w+TtZUrBiMpKZXMemQiYN2zvlpOziftr88kLfV9fj2GC5d28Sio8dM8ez901I2H1598NnQMvLN3I2MDWT6cr9hJ9rOVV/mZMS3cdnJd4JAWwTgjxBvvd+xjFV5JY66fhfousbOYayy8NyX3pC2iXWe7aR35S9PFuwP8Nsw7OCskZ59+NSUDaLRGbPwrx8o2MNrQhtAezbQMg7wZLr2cCv0O5ICMWoeirOlOdCWkuRXgoD0lex0asiJzIjuH427goek3lZgp//7KN8Om+o7/nx8SWSn8fmtjDbqRti4vNrshgvStnxDaDc8ENhYDSMssdOa6eoPPNGCNYzJSh2cOFg9wnIaOEzEwKs5ybyKkci3Q9xSVMxWDNkZ0z376Pll1shxQG2cfmzGKiqa7FO/Ktj7jk/ZFRdkbTtes247jWv9q7j2x8Dm0iBrcn4UFwiz+yz1EGTitYgoPFEkPVJ9L61C4AtmuvgsHFo2YBY+Przp+LHkLZWFEOnIkb4ddbBvU0ak7TM/iRx2tzgxxu0ijN5cGgR/fjBnd8/P21AVE3Mc5WWZ4ZodcIrldi2m5VbJxcThL0E4OYwR0Birwioah+dh0Jj+rogB/KeukwVEqG54Xcre+uqsLVkd2Ljh8OPclG39XpP9ntEQl56esovOyNjSNYHlcMbEyn9fULCNy80G4ZjJ6XKRA8r1B52AUfs/Cp7MySgqwUGSEgRaEXB2eivjUU+ja7AO3hED4QfBj5twrt54kGcfeUfWduFIKbp66jEeDYAm+9Y/AqtFvU2jEXDN2zM2vNa3H/yOiT/k4X9J0qztDOXPtmA9oS81JEquJof7jYAiBkvNq5pN1ysD5mRsQF4KQN0tu3eiSG5ttkmfabQpH2u0DZtDO/EQVEyZZ5s5/g7XpvxPo039QpOLFJwwh2ubMGKltUNZWreIqYkUDAd0dXDofr9bcuP/VwjAF2HQwKKNky1bPRFebKsC3Ltgf9J0/V356Sa7+/7Q5s5I2yS6XmTEnqQr+4OnpWzwQN/qt4duDJYzZDEIFKeweoq1YDJVdIXD96io+GrynSDQDgHxY7N51TNRYPT9ycFCOebQZxMJNj21KLBP39Bkh76/0T71o0YbPsi3Ew6Cn+pDq8UfW/58YLOubLRD+Bx8dZPdvzi0SRSTdz6UmJGuGcr1qw/iWEs9lCrNdqQkP1/mCGBXC9jpSuw0SyG57sGindZ4021MAPz2L7HFn260SZ9qtHqGSJx0aNq2YM4Xk+9T52QsS+Nzyucb7VqCIyOIoqpZGblpglZHdH1X4eSnsdVhYxLBEizdTygEBN4rq6OVRgyxqEQEdyUV8p+Vod2xNLRPHUdX4JyUldP6+stDio/TIlse2sOMQfjEMSk78dCU7dgd2r3zqLZaz5pVe8VEfIvyhxDIqqXeFnOWcVhJShDYAwEZnV1ElabhBA3d46o7gQ3K7wrtggvTdhDR1Ufn52wB3S5p+O2UiURcT0jbnX/L2yHTfKtgHMLOEj6UAhF/p4gapFgA0rUlNOarVct0/Mzk7MsQAXgFfvHQjVpM1EtlccgJ46urmVQJH17/AGMAx4T2tQtSdvIrM7Z6Q2B3P8YNOFfV8F4l41XvuixrQwf49rt/5e3//lGw0ejPFnYT4zH2xWOdNqldzJt7ZkkO96zkT4IAXKjgPr3IRK/oHoyi7tEkNE2k+NeK0H6DPf7Mq3w7Gjtdhu3+2yPcQLDj029K2eEzUvafBXm775KsrYJPP/frPNuJESchX9wIFV96ZcPgSRYHz21MIlg9wnZubArAMjsmXla/tNwaKuA1owlBnpS2k1Aiu+me+e2CwKZwvgx9cPps315/YtqOm5uxnYx/+Q3jEKbR66JWXmvCwWKwO32QMAYhMRm6JCUIdIQALXnXqk+zYXOrKWrNCesEDaEdfliGSJXZQwsD243dW0yY/KKzMraVltu7f5K38ixjXzBajW6QQevt8qY8Yug+u8tHvTEJL5agkxy2Q8AZHe176XRWq1JzM1RRaSfP8e0tdBPOnJCyp1cU7B6cfUX3pScrGeOiMVgD+HzovKy972jf5qP+WqP75IX9vDS8mKQEgX0hIDstdkFv+WK+dq3CGpyss8Z69qaTMnbCoRnbTrDjj0+jAEkjB+Psow/rBvvoRbMzGcrzxbdlbBF6ExYuSehG8aKL1jYlDlYJMt04jITcuccclvo+qkMNVl/L7IQPfrfZLr+ugenvnn3lrVl7jsgAjTT7+1OBve/6ZruCEPmgAZ594S0Ze2ZjaP3a9LyIOShILrhCX0lKENgbAowDCMUn8o5KmTHOz+kMEYHvfL/J5i00u/D1GZs6wuwDx/p2CK20uxlILBbLoDkUEh8Ik4qtWxO/xYrFrnCOWi8lRwkCHSHg9FbbC42w2QRs0W8fCuxtX2m0G+9sYuhExq59jXoEQrvlvoJdcWOTHXZFk034ZKM9vzGwM47GCsKbBe4tBsIoFH50vN62/ORXgkBbBCI9pa7Bdr6Vi0DpnAavX0qX9UdvaHQR1M/TLajUn1mDmxkn/bEfNNuh5zbZ7/6Rs8MPStu5MzxbQVDELS/iisdOixcdvzNuui0Bya/9QoCaUdd/2LyFNfAIA5QYtRxYT6SnZhtK4V+rCIlfUbCFSws2Y4JvdSiXEUyRL6O375EloX359oItXxfYYE1bIL/raWwhiGhCbjvnGCTjET9PjFoLMslBKQJIuUf4s7CVDZvhl9JLxWMpEp8IwSN3Bfbb+/Ju0Ob00cxyJZKaZeTmyUcQSfhSmTs/e3LKrj0vbYsZn9BmTSz4PND+W9jCsL226uCZyamXKwLoRtmcxk38Uf8MP0jqUtF6gBOYE/QI3Sz3LQjt4u8zOYPLr5zKBc7toBv7u0+FVlXBSaJa21jmph982yZRnlv2QXu2ukvi+I64vs1dyY+XIwKy09JX2OnQbc3U6v6IHycMZ3ka7O6/V5l94xN5W7SyYLMn4dArG3a8sSm0JVpqiVOr17OCO2VpdiGBrig5/sNOU745O82yDS9HnHv+nWlO0ecaai8iBN1zexrl6P7zbCGDNa99R8YOmZq2H/6+2erOSdkRs9N2/5N5W8tY9evenrbp41J20x9yNplpyTM5vvt+FoXhf2sLTceMwtq9kvNriuFHajxJCQLtEZCzQzdykF9rud0rWBUPC9Yuia8KaIWzLkzZq5gtuHpdwZYxDnDNXQX7z5OBVdEtswPefM/ZGdvIOkR/fajg1iaKxhmoMZGyHAYzt3sRCquW0uH/JCUI7IGALA8fNT6ZbRoGR8KbdM8wKKsxR7cf7YBv/leZbYLHfnFvzs49nmgBef/NTEFjhuFldFffQEP0e7/L2RHTUzZjYsq++1suoBsZdmVuu0zdwKSfcBe8yKGzhHvQkZxIEBACstODsKOLcLI2sSYb4/aINMlOP844q69emMEWp+G3Zpt4XsrmTk/bffNoFMBX81cEdtaJnn2ViNYDswt2/hlZW7isYD9exFqB8LFbUgkPH/cKP2A5J56H18vZiaV2yFV6dJK6g4CUCIPmGv9ifu05dL+ORs4jD6mM7sAGWmJzJ/r2CpTElNEpNyX5i7fnbWm92RAqbzZjD15J18yEkSl7cnHerr49R9chLTOuSUUpebje+fV/sXDjTTDJKM5Q8UlKENgDATlAZawmvMDSVYdZ9aC5tph21JsLq21y7h7LeUyU8FECDLoa/e7XWS5baT9Dofx1PuvrETV4YFnoZmrdwUDjU2Z5jlc/dmfBpjLr0DlYYnXGAjbteM52LP84ZY2DgsTB2qMakhNFBNSsp6nPSJX0kOM5rMKoBayS7dkynPiRRPHnErE6DN1YS7f1XQ/m7fLfF2wCUfxGxgkejN48fGbKRg317f6n8vYFrg1VkdKNakzg7If5bZZf8SOcMkX3k3WwQCdJe0NAdrrpUUvVss2SGp/FHQXS8GOORufBRVs8aVTKFq0K7JpbIlv8GxasHA+vHsragAdPStkmWO0bv8nZuvVMxiDqFTU+YT/4Mr/uLjYW+CWNTya9TZg6I7bheyMpOd8ZBDya/Q1U3NQbLDPu7dzBjAX+ao2NtfQa1lN5R43xbBcNsCeolCn08pWhd1Zg1LYTejyWLprNHC8k0j0Zj1hL9kcVw1/N0mqut+b5V1i4+SYuzuEiBSUpQaAjBBiDFTQvYKHR82zMnM/bPWWj7OaG++20hg/bbm8GrSz2zrId9q3h19nVm4fYkakcM1tpfcGr4lfxnbpq1jG2QIOJB2Czomnx8cMKtm35zVa/4BIWKz6UG2DcJCUIdIiA84TgkdWWmfsnAgjwixqfrrXPWlh0PRuG6yS6Z/66gWMGDc9iyIRWF5Fu1Grux9CeXLaDXsJtZjPRm5Fe1MOkGzMsQfiw5R4/juNpKjY6r68kJQi0RwA7HWKn09N/YNkx58JBBDLII723HH7bCf8dS3xkCzZ7Pvw4DX6Lh0YsQB9Wowunc+6h50MWGfWcc6U5QK4U1qoMmzZY81P/Y+GWO1Cek9GzSeoZBEJqpmy6Fdb+gFVi2Tuwerp5hUba9oy1olLGMN14A12zMlwHM3NL8SeFFbUSrE9FramnjadrONi6FnvETofQSstvfsCCLT9i/Y6D0StSUElKENgLAoS9/cxB1rTlJ9a48XQz9n8rNUvuLnhvN+tcTceZZ2ERtzWTAgItfMe5WviWU63OFZEHL11uzTueZRX3HxBin04G+D5JCQJ7RYChDD5df/ldll97B9uTzOB3NMBUxk3bgqmrbwnGjDHD7BIQzZ4WL45zutHseXRjDX7aEPK2zqwmgwbUsOZbfs1v4UN1LypSJu2ZpASBvSCAvvLKpllhzQ+sMOQYtrOcCANGdnp8kd/Wwm/agUV2WpZWvKg0B8dfDc16GgVziLAqbi99SVanKDWzOr/pfgu23YzfH9lp2DZJPYOAFAnaYfejKJLfU2nMJWaDN4/aUSVIMZSjA7IoEe0zGFeMvF85WhVcS5dcczTJoKFxAsbSFNbcQlmMlncmjxuSlCCwVwTgD43Zg192r/qZ2a7VWC55SzTLSpK2bRInxQqk5JI7bMNlygQ/h/mdtmP17wmnP0Q4HH6P1mlof2vyO0GgFQHNNvWnMLzh51agoehp8+dikl7UUIgq+Vx8xw6UjFasG/sVfSfpzYgno78e/TGFTf+i3B9TPoYy6aqOYU2+94qA7HQ5Y/YedHY6LBCWKtrpUn7LFG1xqW50vAmPalFS2eyWxqhreJZZsGsZdpquQSMcq8Xf4NbEwdprRezHBUWWMiyTv/qTVN4fAVqVKSumZUKjCmmplJLi42ullakphFqvI2TQfG75jRZuvY2yR1JWEr0qgS453BsC8IkPv+S24OzTnRc24WQx/qqNQ1RUEuK/jpLOu2vOuZKqCGzH2j/ZzpX/Q9mzuZhECzrCLTnXHgHpQaxSwOSIJV+1wvancM7pF3QKTw2BSDe20X/FIsR/0pmt1xxHuvsL25505VlIGNZFr6Jr7Z+e/E4QaIMAutGTnV75CcZL3c0l+MYtA7BvO60yWng1LrBopwO6BnPLfmDhdqKpaRysom5MHKwYqB77Rpl40y2/+EOWe/5PEdBSLk5DdEYBkIe8kXO1yZqX3YjDdi2VppBj0h3TY9X0cijIhcPpkll6vQUbbieK1Sr4nX598aL4l+jAzufvsq3PfoTxMXQNushVZ/i5009KMr6UEVDDMEWfy07GSz37RZys+XQ3KwJKrMrpxk68vMvnu6h+YdtT1vwsenHXPMql7zBpeHYCwCRLhID0luz0RMsv+njkZLntBrpop3HMtKhowCbjuaXft2DtV4t2unV8dOJg9TjPKRyu1lp/yz/zHsutvJl44janFPhT8rTIkWrreKFsCJ9rxfZg11JrXvR1C1Z8isjVHO5LIlcl4CWHnURA3ShYICKha+AtHZc4RfE6IDJc8cddj/Mw8F28CP9uX3GL1S98L2voVbY4XJ0kIcmWIAACcqRoIGYmEI3/o+WevsLyG//lTrsdKnTdJfFe+48uRLyoru/8hvu4/5MsLvhnyhtHdhm0+H7lTVKCwAshIDuNg1/IYKcvxU7fip3eEdlpN+s1vr+9biyel51mbGGwY7HlnvtfK6y8Cl4kCKL1RUoSnkCSehYBKRK6Ttw2IsOssPgSBr3Ns3Td62jAMYNG2+nI4LUYOykGPGFCjYzWQgetZwujf+AN30a48c5ipcm5io1ez1KblPbSRiBaBBQe8xQtaJ8C8xmY6TGFXn9bEryoFl5Q2G27Nz1mO9fcYY0brmOMDDMQ3cAtdQ2W5G+5MTlIENgXAvCMc7ImW7jjccsteK8VRryLHpVT2SB3oluKhh0xYS3xlvRd9O0xhkvrFRW2P8vyQkyBf/5GjCFrPGQYd+Wi+gkv7gv15FpHCIgXsavOTqetsOhC1gZ9f9FOz0XPMWa1xU4X76cR6ta5cnb6ecttkJ2+BSfrT9Gg9nbOle5KHKwidj37pcrDCClilTrYwvXXW67+Tsv3P8V8nCw3w7Afa2RozyIqLcztJGK1HIdqAVOOH2RuMv24GiiXmcv1pFuwZ+vm5Vha5DC1vjnGiwUfm1f+xFaVz7FhVWMtyDKXELYN8s3YrrXMFHzaGusfY2mhe6yQW8GYq4O5DE+7sQWJQWvFMjnqGgLSjei0NOMBC81WYC21YP3v0IvHmj9gjnlVk9hlYHA0poo1irQCvBYpDbbOYxY1A9obGCSfpts7TZ7Eueoa9Enudgi0t9Pfiuz0gFfDi7LT05jhXwev0TiVnW7ewfqBywmYLIAXmdW/83foxJE4V3u308k6WO0g75Wfih4EhA4LizFifKtxJptXmlp6D1E8LFCmUHg8UK40W3KcINAVBGqIBsxraLCfTppoZ9bV2e58ngCBxzRkz65++n77Vv0Sm0HPIUuxOQdLPYVuEUf5UCGbRacmRaH0ZN21rsCe5O0UAjAe61hpWycLlkV8R8+NVF+ctB6WG1khfelPQDfG463aK9D4juQ7QWA/EXB2Gue/sASma5ZPFU0GLC1Odlr86TGjPzWCb364RmdpptbjJILVikXvHck4adaMdigd9lFWez+a5RzWUYGFSJlkKli/oZrxVj/i/DNRrWpqc5ISBHoFgajl5pUzE3DmF1mvjSVF1OUihcJsLK/fcBa0fdDCdV+M+DaJovZKLSSF4iSJt5zTNNS8CdcwfHUA3v4mx4tyrvzyIUT46y1c8kny1UT5E+ASBHoDAWen6RoksmrDP8miuIexePjz8BxDd6QbM8xWxVYHK37Iri1ywsS/+7bTiYPVGxXVUZla+6WZZUerpllm1OuoFxSLxhq4msMtZsG85jW/5nstimQKJey74jp6RHIuQaBzCMB34i+2LbG6ky2TqWaxR3Vpix+1PEi55bRR9AqyaeG2xMHqHKxJrv1AINKBYX6DpWuPsNSA2ejGRniR6FaRFwtbnrDcM/V0DY7dj/KTWxIEuoAAdtr5/NUzLDMGO50vtdPowsI2a17NgPgCjQBf/LhvO504WF3AvntZ5QJLZzBgs5Cn4jRwnRNKzhPGa3aDiwmZuxiku5L8SRDoJQTEjCgHHP2A/dtCOViOH+FTzVhVa67Inr1EQFJsgkALAvLtxYvSi9KPLY1P8WIgI9eSNTlIEOhVBBwvMqRHzlWrnZb95qPolhtf3TnXqXO5evV1Xo6FF7WFq0lVHL/dYANhIQOXpASBvkKAdYVkvRwvig95bnzcVyQkz0kQEALiO8d77gd/Yl3I+SQlCPQpAjEvxt88vIU/xY8xb+6bKOKwSTowCCRK48Dgnjw1QSBB4MWNQKwb9R0fv7gpTqh7KSLQfd5LHKyXIl8k75QgkCCQIJAgkCCQIHBAEUgcrAMKf/LwBIEEgQSBBIEEgQSBlyICiYP1UqzV5J0SBBIEEgQSBBIEEgQOKAKJg3VA4U8eniCQIJAgkCCQIJAg8FJEIHGwXoq1mrxTgkCCQIJAgkCCQILAAUUgcbAOKPzJwxMEEgQSBBIEEgQSBF6KCCTrYB2AWg3dRoRaZj+eBqo1Nfi4pTXicweAsOSRLz8EtA2E+NEtciveEx/yO2LGlx8eyRsfOATY1SIU78W8qF0uEl48cPXxsn5yzHuxnZZx1rnidyeXD0kcrD5jIowXdeP5afNTGQ757baDcCdZrVirFyugGK+o3WeEJQ96WSIgRQG/pcrYGqcfrMeq7lpID4PmpVALbMKrHHK5kpQg0NsIOLuVyrIXYZZ2J3zZslUOvOhnne7sbRqS8hMEhIDjRT+DHmT/YGMbO6cXOXS7jsOLBk/uY4NnMrSkTjpYUrNiem0lLSdAHyWpYLV2Uc6upaHjA5WKQuloE52xaRCNpfQdIBq1LYnqpWk92xnN55sd5B1mkKeK9KE/0B5c7BbvcOWrz5Mw4+McvbiuYxzb17NwPRBJ9JTWtXjxxUxjjKOwiuUFLN0mofp9IHDUM8EtZBuSHc9GEqy9MZVQJl7ZQPhzQyTuL7CZaXRTb/1V3cZ1/SKUaffapfSJ3lJejOtZsnMg6lkEih4+bXR3KY2luvFA0Khn0tykesNdK6yAdQvZBzNOXrbGgl0rI/Idp8ZX+vpbmLWva9Eg+kt1Y/Q+utL3KaYx1jniR6X2NIreA5VEUymOMS+KxlJePEA0qoHp7PQGK2x9Cl7cBnxFWtijNdrWTls3sfFzmjCg1AAAQABJREFUJ2TamzB1ht5sL0kvr8oiS7AVm7Aq4qX43bkc2eKBYDacH/E+egDVZ6lYYTIEYT119Hyr7RINxVfwUsOgsZYTeh+9QPwSHPZ6imlUxdAlEyzCsPFQtjVy9FFvVjWYw0G8AxiqhvucRuECWNrpMlgNjrsivipyR6vPNR4c2STYEa563gf7cLXnkipSOIrG3dC3BDpRxiWs1mJDUpPIVkFe0aZ67kManaWArmAntC1r5UWRAOkRjuUYjLH4Mmoh6ULJS/CrJ1MNDtO8hgb76aSJdmZdne3O53muZ2k+1zy70L655Vmb0bzTGoDUkSIRrobO9GSgkyIUc4q+AyEvPDfczOPXteIIJZAeiXFKOmcwnwMh07G8EHEO1kEjugeIXOtXNBZF3lKjYVs1mnRCGPYljjGNkumV0Njw4pXpAH2TomIbF5vtAiaxnMiXqimbZF4BOfFjoyYM+1CmW2zgTnBc5miLbW6rTEObP4qK732Z5uXbpZjZwAU7bYXVUT3HrCa9Iyx9ZMXHDh4Q+xLTSMUGm5Dn9VEdx9UY05gaAX3YwQMm09AZEujw0eH55yI7TTvUmbt+fFcNxYSjIE3OlkAVo8YvwWG7JEvecVIlqNsqWMr1neiIs80feLmlKmH2rADwIWCnBbtXWbD9CfTLH9gj9mkIm8hHUiGqejk5GvFSCs/wzArzB50DnYdyOB4aUWq8d5jbDo3LLNj2uAVbbiMvHmlqKvkRhE6G+br3FlisEI1RQHFkxpk38HRL1XwU+z+OiJZwoiKbN1u4cxE0Pmy29Zecoyb98Xyog16nEc6WAgnw+KQ8yg7GZl1qXvVMbOsoeAhaoCFo2shrLLJwy7/Ntv+e+sdZlYFzhgM+cRzIV6+konAGMrZrzCpfhQyeZ17VNGgcAStSl2wIGzRiiHc+g5/9D5T03yFtJDSiVJxRkyDoXXsjScAkShLKtRjZTVZW81qrGHSJZaumWKq8FhrTiFOj5RvWWNP2BbZ78585fgx8cbScAd63oPY81WjfftNxpt5q6ZoplkWmPRRGmN+BvKyAF+chL380L/csGE4COgxIn8k0DkGB5/ooskFvIagrmR5H+02OCijntuFjL7dw26Nm9beRF97tU5mmrgM80kAyja6phRdr5pjfb0wk01jfsLkeGpeA4X/Mtt0C1eDnj+XTlzJNJChYji2Yi7y8H3k5CBrrwAqZRreHzRuJDj2HvCDTO9DffSbTkhdn8am7TdCyFniOt9SgY6FxBjJdh1yUYYQxdI1rUU0LwfE+ZJpPCpmWo9DrzmqrTDudI0e/5gxs4CWIwmT8qCHISxoacVobV2MDF4Djn82a5kGfdDe8+wLGlwzdTy12egllNZgNONe8AYdZqmJiGzsdNiDT259EXtDdueXgeIBkOtUfXnyLpfrDk7LTmRrXYAqIFIWy01sfxcYgLwXkKzUNHNU9LPvS2wk7TaPYAnDMgN2g05yd9ivQz5lqHNaCs9MBdjrc+hC651YIwn6/gEx3EMGCsTxeqoAn7DdYasj5lql7HY4VyiNVhfPLR5WKrQoDlHQAg8nRat5i+Q33WX7NjwmCPEVeHK2Wlm9vGDYAIVplmQHYeWgcfirKA+9cNKakzBBgyQghjpDKClHCYeMGy627h9tugslocaZQNr1mNPTO4JRfhoKban7dOy019DjH9F4a4ZOSw0nVBt0hDBQSMbKiw1pYe6eFG6AxpB5SRAfVldPjSeBIyZEKOMaVJ+CPnI8/clhkyFTPvmhURfOf3cWtQFQmvws+XEwjCcNWfxPXR4M1eIdc73EHhgc7BYLzESw06/8WGonnIZyzOA2GjkacK0cjzo1oBMMwj1O9bQE0/hzjhiD40/nEhq2neVE0Mm5ECiFcYRVDLrD+o96CgzWJR1bDhsIRXtVjCW/IaATgWECh7Nr8sG1f9VNr3nE373MQGZR41x7EMYpgNRYjWCOKEawUnLnTPpe9yr6RGWtzMWbNij6LRmQ6RKYdjjgJ+Q3/wL78GMMBj6QmkEHKDrnvQRoprJhimR5o3nDkZfhrMLaRTGMxqOaIX0OFLYW3+LGRLvd1d1somc6js9QC7hWZlrz4fOAjRU/LZyLTyMsQZLoM55R6RgHxaZVpFwV2DusqK6y9A5kGx5CWb5/INPJS+Wrk5e04Lq9EpgdENLpuDipar9Mi0+hvJ9O34iTcRNWO4z2IAPeqTMNHwdM4z+dYCpn2+9Ogw9g6/S2j2kam0d3CcdtTVlj1cwu33w59M/hIx4sfxbg9mSKZVv2ZraHBST2PRPdUEVxQoxj74jkauYxMxzZQjn9h80PIy09wBv9GPvSOSz0r08VCeW3JyxZwaDZv6AWw/pk4LaMdjc4GFu10LNPC0JDpAjIdrL0JmX4OGsdTnDAUQ/RGEo1rsdODzB9xgaWHn0JsA5mW7kam+eOqTw6MkxfJdMMGyz//JwLDyEteAZHelmloUACkfDb1/E5LD6EBn8XuurpmfKrC0cAjO23YP/kS6rbOI9MBMu2FvEdqABn2tIHtHCxKUYgzt4iWxFGWnfhhy9QeHgmbsJdiU2xUTOUSjK2Hxx8cgcKu5da8/Ec4MV+FwNnkkjLWpweTHMDcPLzMt1l2wmUY3JnQiOISXaJRz4tpdP0JEY3qGpERLmx/2nJLv02kkgrMHEx+AdOTCVykjPNPYSgut/S4C/FBJoITzObwE33CpIhjTKMUhhIGLl//MHr8a7Qs/w6NU8nakzSqnjEUYupwoXmjPmfp0W910SB3vk09xzS21rMHtmKy/Ia/W7D0iwjqGuqaaJa6F3tM2YlGCSdKzt9l3rirLF2HAkFQnVDuQaN4MeZHcNT13BbLyVld/lneVYYNp6wDIYDo/UyisYxgwHrLlA23QZM+YVXDcVTTGApwcI6A48mY/yMancA6oS1YvvF527riFj6f4D2nI0o96wjW+HQR7m7GwRpLF+HIEgdrh32+8nr7OtGAudRbU7GaRXeLPDsacxjfZZZbcSNODPzoZFoy1nLDfmLX/rZIpm3wO/DjLjO/RgaUcy34dSzTrs6R6WD7Qissvc5s8097Uabhq/yTyPSHijI9HqxeQKaLBsTJtIzvkv+lQ+Cf0DiFd+tpeZFMYwTCp80f/QV6J8/FmCGXkvU95EUs2irTZHBOTGHDveAomV5PXQ/h9J5Go33Ndf635IU6laFPNZo/7koa72eCBcbM8VpRLzrdLf6K5CWiM5bpeifTwbIroS1ydqIGKHl7JIlG2cDnifCOwv/4uKWHHh/pDumXNvpbD2xLo4ezEiDTuZU3W7jqCni4lxxBZwOfIap2AvLyIXz2V0IjDr5Sm7rWCdFYUtfY6WDXUiss/6GF677e6zLt1b7TMhPehxONflNj9AVlGloZj1ygkZxHpsP6n0cy3aM2ULjwHGGDnfZHfASZfhd2ehyn9iHTDkd4UYlGXn7zfyzvZPpBaJwI9m1lOjWwdshVLrMUpqs0WhUD32Dl0zFogw7jkhgboVW0yqWYoYrf7hzXZKwh1id0mh54CKUNo9vwZ9QrAt6TylgV1DwPp/ZyK5sC89dMi4p3LZkOaBSALhWFl/dJVdThcB6CLqKsbb/mFevIEd9bzL7fX3oemKnSxl4L5jCWug4kmA6j4nOcMxBjqHvA32HMdSpYFe0RRg120yrf9ZcijdRDy/vsN4ERfU5RLKFH97uWGXc+tqy2hEZo0XPa0Kjn6R1EPx8cWr8Gx69qNi1KohtNS6BRXTgRHyj3/ifxIkZBUQpmFaWmft3SI18ftcBbcNwXjUUHgJZmasBBFvabSVj3H9SJnDUpoZ6iMWtBbr1lK2fY0IO+hHN1IpDRtSEF53DaF43CEciyA6zfwDmWykyzhs0/gwuINLhIje7tbgqtjLLWNW2yNw4ZY1OrKi3HuDU1NHwaFfdlXmP/YazaCJ5acIoj5kc9V3Ud4eSXDwVHeNGGEr5H2fkjuN4T9MXvV3Su6j5s6SkfxQ9Wg0Ik6PkRTm34sUUGRCMf3tHvN5KuEWQ6B99s+w3A0pXk6jl+Rne+JZ+SaZyrsV+yzKRLed7oEnkp0thGXnQPSbygd3AyPR6ZORiZ3lyMcEjv9LRMLzd/0vctPfYdyDRdaZ2SF9HP4F4n03S7V87CYZ2PTK/gtdVYiPiAg24kKlSGiwizZSssPe3/kOnXUb6i35T/gvIiGkhFmfaIIAZb/wZpjfAjDpHjkyLmLuP+/BGNcgDXOb2Wnob+HnpCdK4LNPrqVRlAw51xjCE2kH47yoB/ekRmRCPv2/yE2WC696deib09NCq/xU6TZ6/6O6pLv4yxRMh0GKL3t/yiF2Saus49QZT3o5ad8hF6TKdErx/Lg6se6iuWGSfT0C1+dfwmOz3K/AGH4j8zHGnbb8GzN2T6KUuN+4plJ70XmR4VPb9U78T06TumscUGYpuqJuA4SqY3INP/hD+JzpXIS6uD5Zh/HQrgRJyrz1i6P553oK6pksriV8epCJQuQpzCk4oqheEg+s6lkHvIgRGNOQAZ9l6cq4/gsI9ENmlhqZ/NvbxA2FsqBaiA8hnoaAya6BLZcQfA9FTlSYmgiMdcw/AM+usVaiyAY1xRjs6OaIwxFJ0wGYzmlw+nPqYxBoHKa0Cg1LXgFElH93f2nMpXC2EBivgGIldn8xOnwy0TUUpDR+WVXheNIUIwBmU0FQfmEeoGw+EcGAlJdxLKSILo74ycK7qK3JphOtcVHJ2w+hjsiRaWjWe89O8oBwPcE8oOB1BRvAzj1IbOvNYqBh9OlUl56d1LceoIh/i6sus9s1befxqRr3G2e9MPMXQS0h5IGIuy3JO2rvYCe2PdCTbVf4LOM7raKDpysE7DwarCwQpQCTpbmtrRmKkqyvQAnCwp5B6U6Ty8PewynKsPwfMlMt2i1ErpKj2OaUT+wdHXOLIaDG8TmO6grnus4RTJtD/mC7TEL8ZPwGB2SqahteUdJC84Mci0Vz2dqCBGvAEnRl0LPSXToWSaBtOoNztnqcsy7eQlpHHHuJPKKTgwDyHT9dR1OTRKx3YnSaZxJhl24pyrYa/mN/XXJZnm+bFM0wUfyfQdnMMp6hGZpp6RaaNBnMG5UoAhlF7cL5kucw3Q0B+Dk3Uj791zMs04HHy219KxcQW6bRo0YgPb2On2shzXWywveiUkXjIteQlwojX2t8dkmvpApr3hH8S5uhz2QVd0yk7H9In+okzT/a7u46CRd9zxR+RFjbvu2hfhUZRpGkzZCRfhvBEckL/TFfsiOrCBfj/JNHZ6+2rGDBJVdI2SiMaig4XBVfgNBVU27WpL49lGgOhF9elCEoEIkpdm0Hn1JCLjjQw8vr8HFAkCGmyn6/JIaPwkhh2Dqanlanl3iUboE40Ijk9o2scDLThglsNgim50R5FAo8aF1b6NVu4HncKPcBSNXUnCPKJRY1A8BtoF9WCYJ6KjyE63aOR+xlx5oz5jmbEXRO8cO1ddIdFhDlYoPLU0wgxxkM1EA9UfLfL3O+lm1TXGYsJXo1auW5AVhnXGqgsFu/yikYhN1XgmxdG9WP8TypGy6049QyO3+1691U7/KhNLXlVUxKKtiy/v5EXRgzTjtibDllXWuOVWfivy2x1FEsl0OUsurJv+RXsTs1+mNP3Cch4DiCm31cGq3IuDpXcppqK8SKa9amjcDR/uehAAuukcyChq0kn1cThXH3cD2bst0zRovErqevuqKALjdVemJS+MwxlCN8dkBoqrO8sZi/2VaRxBKWSMeLDlX8h0AyzTAzKdX0i3ILp77DvbOldxHXbmu0Ve4A/G8lgWmd50O7xOlKmLbN32cZFMh8Ezlp6ITNedVRS/bso09Rx6A3H4b4K+7vaURDJt/nZ48UuWrj22KNPSE118+aJMq+GUwgaGhX5EYIiq+kMpq5syLWeKMUzpadfQ4JlVtIGibz9oRO97acaTOZnGsdxFI9nH2eqObnQ9D1tp6Jxg2anIdL+x3bfTGuMomd62FJnGuXQzm7uhvx2Nqxm3dqFlJxONlkwLV+dL8PqdTkXM1bhjspUhM8Hmfxb1A7oNHCMt4boGn7XMyHcTbqQv1z0sgjlFjgrkvx/5+/GtmbSO5fjWb10r/bjrIhTnR2HIDAJvKbpmHB5dZILSF1X0qrCc8i52XQixIlaxmXY0MuykJcX0V5TQ7y5Co8pIMTYqM+Ziyl6hklru6/qBHkqZ3kan5NzYhxJFXMbzK4WV6OATkxjTr2uV8bX4or6pi9TAgxmAfgnK+FlupHWw3wmg1EdcfggDS8/Fa6+mfFpoTrG2FlpepDU+Ixqz3BrTqHeJkghk7AatUI1T8IaCY55Wuepqf5MzuutpoTGYXYpYg4pdqzUGheI563gOOhxbFZ8lPqgiu+hvTQ5EfjKwewTl9T+Pul5DIW0ytWbvzBHvF/CelcMvxrk6DvJipVlCI4dl0JIpeYxgzvI7/og3XeKCol8aKD1gzNmWqaDlrKnCRfEs5uraF3wSMgPQG/VBM7ogI5mO6sVRCXCSk0pOpcUWxdJ1HGOr7xZZcvLSjEyj3MeezwWilS650orHXf3i4cidP+bdOMBTShRxVI5oUp1WQ0eax8Q06qqOxYeq71gnSUGGzCb1qybjbFxMeSuo5+7IS/Hd/C2WkuOiwbklMi06lGI6hJXo0l3iQdEmmdG35MfRr4uUkWIYhV93MRGinpBpeAWeSY06Gx7CGdqLTKs+2yfhKhpbMHTUQ6kaTpLpYRf1kEyvYQbe29w4SskiRPIRGFHSkeiTbnQ48bsUw1Ic3X3SCRjKNBOwrOatYIrO6KZMS3d5w97NxIXjnTxGlLTS6OQFGlXfMY2SadlBpxv5Vj27pAuqB3RsahT0MTs7Gp8TZyjm68qXZBob4I+6mLbNwfC3nILWAkST6lH8JrmJaYzpln2J69rdVbSBHuP0UmMucLYr0jklhbYW38kjRfZXoCMk03IusTd6DnfHchJjFevpmG6db7GPMQlFGhWpS425hPKWUV6kxzpJULtsFOwe2OB8Ez87rIhjVC+iKaZP36I5TsLR6UbOq3pbkop0dvoV2Gn0Tu4ZMkR6J+1aT/kNeJynYCRPcGAofBhSgoRvBb5RfT0UKT/8MmGwZ/2JGO8mmvbEOs6Dn6tkPRBiBg/wbDRBDHU5eDBYir7XdN1Vllv2CRzPQ8ikt1Pmzibl567mx2B8nKtBr4BxJZxRSaLxcRrBtp18wp2vabWeZQQCP7fQQFy5mZP6wWfMQM8GQL+WVdEpbc2QGjiXxsWlzK64Hlz2l0ZKa3oMY/FZF7Z14fBiLajq5m3kTyMPVYUhBTM0PIJbJJBP7eRYNEKzPjOgX7cyWkYEctJzMxCDDWcyQPZh8oxw5/jThRRhZs3zzR//PVoWdInGIdFiKXqSIJy3iT+Mep4yLKKjDBqf3M65reTQy1R4NhunXwOjyQGNxfEbI85g1vVv4ROYRrOqdK1LCRrVZRCup8eW6cYa0K4ZlG24mQJ57mNr3cNtxhDP9Xj3g66neWzTRs5XezZNwZWWx4tGIpaMd/JHnkPXx0/5DYZOCPRCXUl0KTNFP1U2zWpGnoVOL4fktk6qyM1x6s/Phzapn2cToIWhT9G5TRHdsi+HIyv9CbDomt4xpD4yFSOtBod/08KLMOhzuaCLXaWRexhH4tUw1XjICSqcYlT/UTkqUadyyO4uaHy2v9lYqkt0PAsvNm3jQFn5mgK+kiVdiyaJSKanWqHucxasuAIN1A15QaZt6HswvIyzcF1FIixKPM4y0PgsdZoDs8qhno1DbnO6QHI8Wc/BjtBqkJeR4Fgq0/6gQy0Y8h6zjd9ByISjEgV2OulB5JdMj/2ccwDbOy4xjfO2kBX9M2a4ZzUIkHooF8r/3EUOPZLfNsizWeCcQ+g1SUQAy4EJ1p9GvieQaZy3LtFH9thJkUxP+CEyXcepPeVFauVx6Z/m0KYi0zLC4gZh+Dz6ccOG0LJgOAW9nXckK4Mc/nJ6ZM6y/MY7+E3UUjMLu8yLkmmEwTYj02fzngiD+y1gShLPfdTJtGczhzjWs8elh6TXlTX+INszwFH2SeVIR6RxYPJbb+Y3EaL9kmmeUYDxy2ahWs/AH2AcpXAs1gdXHWZNvMaCNfxC/80aGGEltn1sPefi7NB3UE0RR9FIOdK1KZyiwnOX8IyDKU1pf2R6LeNyzzRfM1f55waL6xkk0ShbuBWZXkB9GnZuJjKt803QtlB0KytfY6jraoZxubou4pjSUJQRVzMw/zPQuP8yLTvtDyMqpPFd8JCSaHB2WvIq3VKkQ6sRTcGfkIO6DbqfEt2CBRs5E73jSOOnClAjNjX4lVbABwg3fr97Mt0IjROupYeNMXLixSKGIsvVJazeQmOVZ9OpazWKG/Bn5xftziToa3W0uROZVi9EetgJzCw8BZleyEvDm+6NWFgyNfC/iOaMc4KlB8oDXolyO2eOZ2cembEqwNgMOL+4r2B3PBPaiWPNrjo7Y7X96XAAAIGwCwfib09yfV5og8o4D8A+Ux3Tg4+w/CryaKXy5oWRrtfbdDJ5LDSn8lODjyEUx0DbPBwjGiljEWB86njfjjs4ZWUot1VU0vf+nLfnqczdXD9uimdnH5O2AQC1Cfp/dX/B/vYcQ/ClkIUiTqBfzsD8wUfRCLqe30wJblrUScqibK5+stMtBLN07dFYBpSIC/37jl/WQO6X3+jbIVMYuEeep1cG9pW7ClZB3T4J/Zcd5tuZh0f0L14b2Of+VLAyoNKOJc7JEo7Ujc86McH2OyGcFkHz2q7RKMZlIHVYNoJymLYtx4B1mdS6iJOcq0Xg/LW3pGwkjP/l3+atkSxPbjX7GBiffEjKsmR6YEHBPvHnwGZj8NDZJAl7ga7nqRb0J6LDOCJGU+MbtW1hxc/p8JtyXE9JahxNiFcjoLNVLPXBR9/FxDqt1sRzf3RJxmH7odvzNgqa5lHvFx/j2xuOyNgzqwO7/u9E1SI2Eeu4JCxTAxnAW3kqzPE0OK7oUNcXs+/5JRp5FibdylmHS+OmIiXXmlW8IOdqOA7079+asbU4fN+jPmtooAwgYHgHMjMUbHcjK3/4V8EeQJak7CIZgkLqpYKlMlJldLtquQRaQ1LipRi0Pq2DI9FIHYfB8zRGmI3nZBrQHJNG+XVIoMeGTTa77aK0PfV0wb77z9AGg+u75/p21lFpK4emDTSsvvGnvNXjQFTw3o5G5EXT6TOS6dWUp4hoI2sAxSB3QNIep3i+V8bDSd6goyxdPrhFpp2gc14KeRGvf/Ehnp1+WMZ+/++83fZkaOMwGuLYh3FgvnCGb9PHpeyPDxfsr/ND6x/jiFHzKDM/+EiU8XcgnKnfkuku0OjgYiC1lH2KclK8cyQvEBZJpWsrPQKNnz3Ft7mT03bTXXl7ZEVo44eaXX56yibX+Q6zMur+IWTmynsCm1WJalAJMuB0/WcGHs0Qij/BizRqNXOvC8kFbLIzMIhEFWl4+nSdOJ4pyrQo1fDU5+Cfb5ydsmEY3a/fkbed0FxFfT4Ehm+f69m5yNK9jxfsZw8GNkb0CSdu9GC8EMOb638Myv9X0MjaXpDdmRShRDE8xy3vUXkKapGlGPhZKjPCWe2TZurux5ewVhxe8jW/Llg5930TPTR9bISh6q6ZZy9YWbBf/BNj6/SCCCWCzkSWXNWJWMDlyMtSJ9Px88nwgsn5ZF41zss7LKPB2OhblayylRS52IUqG1Vr9qW3p20lgYWr/lCwidiQfIXZje9O2/gRnjWR529PFOxmcKylzh11anym+1mAw58vU6uaTLKB1EmXaESmmfKHvBxjacbIRc6+qGulcSO6+siJZu+4MG0PLgjsB/8ObCA4jsZh/fL5GRtU49l2nP7v/qVgDy8PbSjyXlAr38k0jc/ao9zwLk96p/nprsk0lDiZhhx/8NHOpoZ56f/ITj9DkV99XcpmT6A+qbsUcrWGoMKNf83bfWvMXjfZs2+8K7LTq9CZn/1d3tKoFm1w4pxpOarYaR8foLDh+9AsO71YAHQuQZcTC+QllEwPOpJ6qYJXmiBR9gu7Qknff2faxg6LeM7Z6lXob2h8Alk5fAz68m0ZK0D/D+/N2/INOF6y0aoClRHb6YHHQN49nKzFwZIHlyFECJNGqov+dzCXkRhGS+Ftp2Zs9FDfnllWsBNQdMM5/vXXmm0S3699VcbmL8nblh1R5OqEqRgUXOiVDxZc5TVTjiJEGnPgV59hAeMhUhO+iRGBMyGmVOnz8HbJUe3Yp7DmN+bV/5pW5ITobShXNCqKduRos/NOy7gWxtoNgb3++KxV4Uy9/js5e/1Yz669GMmlqCcW5e2oOWmbOCZly25osm04DXHLXAh5lO1VoFBrTmLg9w9gfqnxiIZ2hLX+FLIKYRIeLCzjngIzmdSKVLQAwNVS3ATTnzULJ++UrG3eEiKEoZ1/GtLH2iWX3pS39xzt22cuyIJhaEtxrl53XNZqqnJ29o15g9ziAhIRHZ6mrnPOq7sUTxmFgmBEhpcH7S2JRjzrsGkzU8S/Ql/2qxAEDFoJ/ipd4dDHYOwrT0vZ5WeX4a2H9pN7C/YHWj7vP8G3/z63zFatL9gOBPS/3lgGkzXZFXcW7GBaQ41UpXtnrffETK5w87dZBu0GIhNzkWDYtqjw90ai41D2Zwx2Lrdg0YedEnHrzTgco7tEo0Lfj6LcvosgXnB6Foc5sHfiYG3GSf3+uzJ26tFpq63xbdzogn3r3wXL6NHc4wRAxUjZ0YXiIQBh4+MMoP8FDsh4TsNI1Nc+k+6lZVvY+qSFSy6xfoqk6n1FY1QJ7nY5Bs9Sl1delLHjkZenlxTsY7flbQbRqi+g5KZNSNnDT+XtkBlpmz4pZR/4cpNtgBdlUFSS6iXFOKJ+g860XSwMmJ1xZ7G+VNf7olEIkXjhwvq/s87NJ93gUIe9A6DkXli7sDuwd7y9ysZCQzbbz9bfnrNt8OlNb8hYNYr3GRTLacd7Nmp0mR35eRQlOEavyXPUkqgYx+cMMMDCzMKJwTF8YU9QNEqueNOVvyQ0/kcqdRr38fKl7ybhxgGdi/x+GMwmYJeWbkrb5vuoa5wERa2OnuPbO9+QtjqiBasaQvv+I9Rhud6xiIMIZtFKzeSyQa+l2X5u67NL6ouT7RL3u25qBHfxtyB1PH1AY6N3dt6CnkFCSRtR3Xce7tv735a2gaiZe+b7tvJRGh7Q9qZT07aRRt6zq4kOEcVsyBR4JQyb3jNmSD0HebEVlDXqcrzyV3ONet4nfVzWOyLT1riR1tpnKOMknKzhnAdbzTBz95NHCggjds2bUvY+HKzdFP3Fe32bv5NrVMF/4wRejLyvw3g8sjFnGzKhbXD0FZ+hcrTG3YCjzdZ932zqD8ESmZZ37upR+faWRCN6joUZbSHY04BXi94B5+qasuX9qa7RKT98a9rOP9m3tdvM3nUb/AZLnIouZ+MBW7A8tHLq9qQj0FMLzT7+F65ni/eLjgwMIgx2Xk34/zbqfWInaQQEzUCsfwQv9BJoPJLfvK/eO5YZ0ajfOH5fPy9rp/L685YRcflFsz0Gjfe9J2sHTTL766NEq3GyLqdduA6P8ccPUTb17jxsyUsZdqHmHHhmntmcu+BVvDXpb1dXfO01CSPqeu09Zqs/yRAHCIi7k9w9RRykg7F7d16QsTljcPzSoV2LTG+c7dktl2LDB4f24EJsytS0fWFkyt7+zSZjAwdLw4KBnCzpt34jsIMnc3KYpcZ/G9UhL5H3KJXNPeiM8NGG8YVVvzJvO+POKicAH+dFGvmlE/WsU49M22ACMvPw+LPALt28C1Y6hAbJ1e/KWv9Kzx57Lm+vIaAjZ/D0r+ds7kAcH0hwBVGmZu0VysfBh2cxPvcNRfQiGvYgLT4hWlgCSYvCFpZ+1/yQmX/4JJHupmjoy4GfAhpnHJuxHeiTJTTSIxpDm0+g6fKjPbv0zVkbOpDIM/n/trBg87CNI7hHtRgl0UFQhbFxAT6VZJkmQyP1NQY9CVM6oSk4wIV5Bfm/++uc3Y2y3QDD3Pq10I5/RdpOwCPeiLNw72N5+9DPcrb0CSJbn5UjFtjP/1Gwqehc1wrSU1VxWvW2kuny2x/GkYNBNLOuM8zlKrbAOmV/oIzpbuCl43uKVWta3m0jL3/tTc32MyIBxgvffx0h5PFwjZejO9Csrta3r9/SZB99a86+eXtobzkpY8OovHV0O8j7VA2JGTTtWs9wUQ4ZTw2kUzOjWIUcdJBEBIWw3lJh8S4ctFlEqAHH3RfRqJbiapyCj17XZLfNg1PIvugb/exgDJttz9sxM1F8MNlJX22y1f8I7csfKthFry+z8x8q2K3gOqWa4sVgPMqDcenjoowaFy51tr0DqtqeUlREzssSyzf9mxmYzDBShM3dzMuTFK2sp4UxZxSt2VcTAVrlYntWix9sRIZOf2XKNm4N7LAvodgWhvbHr5m98YSM/S8ttUZoFwQBGNKpjBNMFEscx2ywFGuouWjjPjEkr3iE5RikVQtNaykDw6hF6EpoVDj20W0406/w7VSiVE/h8Es3z+C21WA8faJv9z6Ud8Jx3CGEailNsHFbMamiOUO5XvUMC5avd3hGNPJeL+QEijOEI0seSKLKiNZ5GFwXYi6+n8ZbLcGoXvbqlM2cnLJnlxesAUehmvPig/vn0bolIvQNWuBffENg7z03a3Mmenb7/aH10+sjdC4SyIrlZdUH2Y4NOKlEyTzGMrhZay+Eo94UUIItj/M+/bEVE12Z4p0o/T/2zgPAr6rK/+dXJ5n0kF5IJSFAQghSFBGxYRexd7Gsi2tZd9VduyJ2lMW/vYBl1RUbSlOqgCBFIAkQ0nshfSZlyq+89/98z3tv5pdJMiXJpOC7yW9+7/fKveedfs89994CMENsumDZgf1s4A1XY1D72slPVuzhoYHlGzPW/ydZ27EusFE4+1uJZJ2AQpkrB1ThYGcXVUYdIQwzLTaY/Z7gmjDe1lDc3v6+uO946hwzG16+hbrv51FoEytyNROgQPrszNqgX+VsE8btAqK+jwwA7h28H85/38as5a/iGm1eALyPENLIAqNDICWh9yzsNDsFfaNQZv1j1OovsD+gas5znxydqTK20gO/B0aEoSOMKKH+G+jt/ihnGxkvvwRn+h2D0CvLgfE7OQswJGNxsDQJ72XQ95U4BdrUwcFIYOwLP512ITqxAYM8nza6g0O9H0xV5P1OngxPw7/lX8KXnPN6o/fU32qOyOTinDV+J2vNOKY/24R+59Wk84aszVmf/8vY7nsrdgVV5DF+bfA5JmN8DVmPFXw58PHt4yIS8PgaR/suMYz5TWazeb/CBpT1T3iM5/wd+dZ/bgtwBoY/hAO9ELztCGyu8IxZqvtB1lowdONWwZvAtpUe59ht0LoErQPRWrgSHHyPpJ3jXgydV9IW1rxL3c1jek58OwzY+vF+dY8TBft+BJ+qTd4xvm3kHejBuzM2ZDsw9Mc2wFbj7yjYrmtDG/tXoqbj4MnT8vaJtVX7d5R2VvKcwCh+msAnOJ62FkMz2uw2jPDyGPhj2CuB8V54cRHPgiNHoOCkICM5PJnR1+VtE7Jz6pOBPTQM7t3aYkP/Md2+0vA8+9p3cbCembObL+1j//78vL3r6rKdSge5lXeV3smQM23YMGteTqT/VPCIAe3STgs54jvWrVrze7ehGV/ugPNxcV8AGWjGVnz3upJd+gdwhzPoChr9+Fmc/GF0nP77h632898E9ql3Bfa+19XZe86q2s8fDmxqf1hbr6um3E4ThSLsqEWxXcMnuEga3OubB2WktBh6ZRu67wzgHMY7U6nTGdg4PAGTs4k0mM9fU7Lf0q4bDxkZ5Pz0E3O2BZ/n67/Dl3hVwXOxtnLL6D3akg3EwZLezR9Pe9uwQyjKTI4sfRr0N4gfUL0Kyf6csPxnCIE/izDyTMLgt9xXtlvXIG/9Q/vwT8oGfWzLSRl7GgAsWhnY3+GbOdAFelO4yEto1W2fqrnuNvQWGka9BCnt5O3iNvf8EjZhLKxZuHsFwQKiQ0UUeo0CkkHbiiz9jcjLFQwXnDUzb1PHZ+1nN1I3/29fHto98yr26mcXbPrfCONPz9l98ys+xHnaQG6phZH8nEyRKeJiXmbrRWP83XGwJGgMQbDUQ3YIESKmvkY5YhKuSB8t3AzfMjypyMuZOFT16Oprfi9hg7AYi+Eoj1cQOv32k1WbjJAqNDmAHlsLhI1tDjWhqJlNYbmJPLQePDaDWuFHrYDn/RUxEbeEZZTxToQIx0cRRIVGk8rRb7aSXIc/XCyHgZA3IdFLiAp61cjcIBzSZThdnnTF79UI7+ng+jzyYu5chnLhVoV9Q3oJCuMy9oqC3EIbpagdGeTOijM6PQxtrNkEexAFVO8pGZJxHEinA9sHLizYWiKV9y6s2oVn563CqxOwsnf+v5Itgt7feQ9phWK7fbXHy2kLDs34oDMDg2t/TSp2XHQGY1Ibw568l94vr/d0R4Mv2pO8yFGehBi95oKCPUwPR7kPUxgm0tPq9fyUiOBx0LUeZaN8HUVQ11OdbFZbAcZsntwXYCQKHuFEeCQSGEVV2+7scKBWyFvQHlpN6wAIB1BKRHc5Phj2CB/mA/2lOeidtN54q8vhwP45G0LvUbivMrw/CBi1xV8ZB7qM4zB+eC2AqlC1AnwdIW4ho3QNp2CAbhfaKoC/Qh3P4VxpKEFA1hbBTIepzFCHLg0lMjkMuCTXQnuwgrW75kMPQBk6IL4mHmkrXNDYTz0wapuTll9xxbHRdsc+DwSGbpPuUVK7SngXMKpyXawpgmMRMD6IjoPAI4lSZshbCBlaraxELpCbLMPBqk9w1nR140o4qVmO9SijYBly/QDnO7RR09yeh3oWRqqH4cIdkOEWLosGHZ4HxirwtRIlypO2MXYQJ/ivovMKRk2hE2oihXC7V6EdbX3WT8b2IWC8jSbgB3+hvW5uP+FCCG9oy5h6ng1xzrT90b4KIFfuinitCIzjBwMPzVbuD6wfUaCsjAxVlf8WeCTL+WAPWlMpQ7hWpK3qnTyIUXDrSCWdFuFKMA6O328pz87lnM7XFP3E4SszxFvFsPUFpgHwo2AsXUs6BzDPGIWjjfyU/lS1IVyTnLfTW3Bwv7Zvo1Nm5Zu4kQr3q6hq2vZDntc+uvW8XwB8Su3YB4whzkH52kheBvXL2pBBrNO3YiEh3kvstDNfZvaMsr301AC9k7E+igBSbfSmOpadZnV1llQIN18BL4BD7efaTQcro5ffDX3r0TsKoLg+iPKoqqB4PCiW3nsRAZo3EeTYQRT1W9eW7af3hzYO3Ml5+esqZIahwkXIvYYQZ04gleIe+Ja8NpFbnQKvmxnrhk/g9kF6KG6rI9bafwt/4KWM77HzNiZjvQL1JVxGMi0cyF8ZjLz2h7bvuyBvX3t7zpatq9pXfle2VZsy9vU/ErHaWrGLZkjHRjVL2joWOdTuS/luDesN28oy+whq1iMItFJTlNg1APmfNinrQxvKJVhLD0JUEVDH8W73k+D3/16ft5HHZe2LP28xaOoX2+RPSBEjaTgFRKv4mKdXolr2V9QIL6N/MoI0nsEohDgdUetCOB46MMwAVydOIeeB4T+94GpgVLb/bh7TkNwwFN80xvIlrGuJXCnCuuebAiPw+dYwGtJy2IRFobAzGHWZ+/R+ejeMdwZL27FjMgBYxuOhn0TUajLh2a04M8voBck7veOxwF5+XmhfeGedXfyiwE4GzrU4jI+C18kovchRpW5B7Cu945yKobxdwbjnm+jOPUsMn05KgWooR/D6c8ScuDwXWXorQx1nzcrbd/De12/jNmi/W04I9C9CukpMO/FzFmOiqJdwvztiB25UARbirB5V10/nxJr2dW6fJaK1XxLPEymKit4t46MB83BQP//SvB0/Omv/8vVWO+cktiQB14sJ504Dnn4iFfpLcKvsm2oxrjRErXaAVxEdd6YdJzq3r0JtYja9j/iZW7JJQ/HtcqAeha4/em3B8fXpn1XsU2+k/8L5teieU3BYjseRXocP+fqZWXvxeUThiHA8uIKlRaGzszV1+RvzjJysjGCUDHQLj4KKTwZEOH8QqYMWIuEY8j6uz0+3efXzbWR2o72+9btWVARgFEMC4EsK0P0HjjMowqS3KJ0utCi3ZO9CO95J4krm+OjGvW/azxneUtbc4aTTICBifvQH9CoqYtWxfEC74HO54tgLJGQJr+ga8CtA0E50xyInuODrVcFP2Qm1N3gV+/3j7VOHZlOrZHAGnQbRz+hcdOwwYNtlP5VW4TCiX7TKRkkwUU3yqF+LHqv5m8CIMfM9KWsudXkIDTSTTELpyxQI8OTdOYzxKJr69n2cUqK2qzXg1aolYmsN8Tv7Qwa3VdyyZ+Eh6WCiom0VJTTa88Y9f/k9yfuJmBDMgdoHjOI1YNIVdUxUWIHB9V8CmyFDrg957eTd/EY9JQbwtAdVFDvG0cVO/iZwJO+HbtU7dix6D8kG1TqMPOZ45LT2dxYOmwWz2Gx8Da/ugSNucnnhW7RKmGKPezo2XPubBiSoIub+5IX22+SFW8X+4XH11qdhq71gx+123/FNNuG5z7ACY19zVzJZBXuo27wILJSYJ/jrpJAuGB35XQCZ3CdvnaWOpHdCwUqhWv8ovWMnyqgvzuh89N452JpL31FnP13VItPuOJTeUTQtz70KMmgWtng1al1/ZadzEYxsat3mRyQ9Bu7YZ9G78R7SxdL7GomI7LRfcPhkcUTCFvyFIg7ovEVVO+/0vH354ow9j5GbsYjZRPDVD/iFElkB7zpHYNU0yxXZL3V+8K2oSlGLVhBC8qq64XFRJQ1Uqo7t58gheS8Rl19gMN75kjp7fEWL3fIEDoAUC/WcRVRmJUMK1ywL7QR+J8bCq9KLiQPlLYI0vY3/9oO4sX1+caO/Ai6THAuYM5oOr0q8Go8KbAFGEeaSHzMDq2/ZfvkvRfuP19TZN+e22JtI2JXT8N1rS/ZREo2/8/IcOWVFW72x1b5Gb8ijWBJWkOX7AWq4VD0Mh40LgrvTopeJ7nN5cRg5145Gf3ozr76TobaXfbNkM1ESV723zj71uqJdt7pkvwSPdd9vZWw/ZzsJl44bVrCNxB7vWkSUCAeMVJm4UKkUiEymGvN2dUkwdmhQp9tK8h7cJzsmo+HvBaPoHtXPpf98VdG0vNFPafc/lORMD2fSeO5YRmCDJiUEjnA0nJ6TgtlJVXFnkzMqXAFGQeTF2+FX24nkQodv3Zfg2mGMhFN3iSWVYKrZT29/ccFWbQjseno7bx2bBUby2yZlbTEz4eTw1aJBHTQJKWDWFEFOkSKgHb2Jh4kTOKOr+/krGEEWVeh1AmU6xkXtbMZJfcOsrD2XPIN7H6kwqYIJcswc64s8vIxemQBZvZ3o7iQmD3ywzjZB40/+sGwEj3yoO5EZQejowHAqGVM/BKNyHDLK5dhvEVQCjm8Jr7rcyFwFBA7Fsj9MJOHX5RH2leOJoK0hH4+oag6kBS3Uy+0FZkZF7XIeRSJZrTJcU8WBLTJM6LhVE20HAlwGk6LNerskst8Z/1H9WE8Nz4QNfGqoJNDRdInDJJQHRNEU4c8RFRCMCc+qsioyI/WQA37nb4dRVyiq3zfdpf6AF+4xjAirSkiPw70jASf88ldiBJsKdyEyoX4Z/Suio8BIcyE99AJRBN1b3UmkiHcq0ENuQ59XzB9F2YRHLctBEnN0Q3Kxs2+9qJ4Fj2IuDA4V7PGAYHRc0ayGXCX6eeATjMEuaEuTxaHAyP8KKQAqOaIFXmqrUpRNawSGO6OPK/Lots7/CldyHDEUmgwhPCZFzXBZpx1swciQgnBXgP9cDcf3VpB3DbOKxuKHfRaNiij/LETINHztiN7nnXueVIWCT8+HKEB/Nr5FMHLZI3sxPqoYYMEreZEaLqOPctC5IEPJveWNDA2KH4XH+BmvTYzi8gJPOi+KOGqgO4WK3EsGCYpWOmH1rM7zJX6TdxCfqkpe6OVm6tnGq98Aa12wxLKPzLUpa2625vOfsIYhQ+32RwM68DhYCYw8G9lp4OK9ImWgl09u4Nw+i65zn8OizjW+hNupCBh/nPrE3l/6v5I9TvBg6e3kh32CEbA31dmbx2TIVYwiVsMgH3EFhlZ5JarcKd5Af6n2qEj+FbXmZXEy2/0I3aH29lekQ6lUoEIbH7WQwnU9CfQc9sXsr8JGf/yqkt20mrDT3aFd8/3Qnn8WI3ewx3rEy5eVUB0U2SUFfoWqPYt4VAQRfQt0fSQ8bOwckASd05grRQ/LeJ7MMMZIdMxPH6dBQnn3zgrshc/E8DJFccOjIWE98k2eliPClfPIRxMhyiLDRpqm3FZ4CQ0LhqWNhMPOkfSAG4Z/OC+vsvOi63is/cYzTLiEOhqRIXqTSGGOZxuB8ZyJRGFAzv+SG2S3kZD23Kq9blrezqF3NgZYdjeF5D4B0ELyxIZX7eJXmM3CKNtfmGVGZEtbh0hSVHdYQsH1mwp84ESKL9Gg+wFSRPO941iszfq/EGWxEdCaeB6lwrNyYXbCCy85MeM5TjcAw91/IcL2qsBmTM7ZGOAGTLsJXF7NxIH3fSJHNCtjN/8DAgFidQ/0gEeGtKy6GkpfJE3pwYr9gNZ22hlLHjs7ghv/w5YnAQ3OlXZACMXI4znfF+YejFK46QN1PuPyOMbIL35pweYhEA1Ej6YTIbQccK1k3Bn6byYCdwPScBLPCYXO37xzoCE0bjUtDke7jqMu6CyhyRARyijEL9SxgW+UeE6Uiqp2Qb7Tif4oZ24i4eTHPlpnw6HdkP5Z++hrCnbFH8r2O3BoG3A/4QmF8R9v5EEiSjM0RJMUwYGlC8CBInOZIju5q7cV8hJdwMhNvBc8oWFq0aYVY9Fvor+3WlAUYARRSh2fylD0dz6UcxjlmP4nswm/fU3ZZo43+/wlRfL/Ajvv0lbniTMxuko0bSvAEeBcVcCB9LHoJnlR6VJeRAf1Qlkt3KrLkekGHJMhzkdD3FK0QGNycY5/tjUPQKnhhfaF5gEEbJBhQPDlJOxYikOA4zJkZs4GjiTPiaR8iUK7NuEtpUBKiwUVuHwRX3oJAdBVEYZgOmYe+iKjmrauRPnkWarIo3PyGCyhXI5VPcNaJeDZzdBwli6h8pKdXFTVD+dPk4q3rydXE/vvvOcgcDFgSKB1EecGITNP5yyES9rxe/b3h2f1ws0PR/cXz+BR0SB+P74KWu5A9k7wxnhswqlqYvhcQ3FyphoYxpYvf5xmOIPnjfSKPWQgMLwIRhhVqz+z6bbVPYuzcRvxHfv9kvxqaQHBqMhXcRa3tlXsZJEu9nkYVFnEqaoDp7vQ0U04BQNn0EFBhtbcX/EdqUaeyfA+vLOZ6IL0/x5QVHBOy0uB7xQ+Y7goZuhGEU9U0AfN80DSWN6RZ11C+KIBOVFFbEzCOoKvAJyNmwNG7zGK4E62avi55Knyexe5WJ53vQdwgoMT5XW0tR5efFrEQD2BscSzLQsAZiq8gn1J3p5qxZpF5NoLX32QH+X+bocX1fkYfkbeGhhKanwcvOF0jWaijfhxM7SWo9UOKjxfWsEL7QDGc2kH4d6vtxg11/6XhluX8X6rAWZGxM9JzVSrhcML6EfxooIk9fBehfSR0vrt1q8RGWVKcDhgoJUbz7NBg3N2K+ymZW5moRvlLzqUEKHNTvd7EX0TbJrbaXRwZ7rRG9WLAki/E6DZBreltcOEcuIGID5DVeUmmhsBvHqE83KmNoBL5UqfSYf+x38ObMJ5WSvjbD8KvYeA/8gJxNZKN6LTzO30NPgGReAeE5XEJNLbdCyRncYW4XtY/2cAH5mbvpRQJMB6VG1oJGEQ7fEmZrCr6MxpqmbkC0S1YE/GSrXC/g3QfhP2bwAwa+02PR+BAB3wpXwTbqJYOFg0wtL7QdMKz9DXbRo2WoYz/2oe/shb6+y1zD5YQrLhq59TtIUrq3b7YpLoAGReC/kmz877zLI/zMNpEGEFUVtRq8qt2YKuexznCEdp10p2KwHLCIAiCPsuSSWRwfJ8HKaNBs1rPfdFhNH6Uat44Y+ckrM3XlC0l5Eb1vpmswsZenng8Yrdgw2duZxZZi/N2NX/Wmc3z2H8+ZyiNaKT7nisaqNgSE8eBwANwVSb14EYOK/v89BbMLNraqG6FsYELkGt8/H7qStIgmDY9BjvupmewyR/P60zswDF8MpnFuzc2Xn73R0lG/3BrJ09q2B/upuhODpaw2G8EQjIv1+et3e/ss5zxi69iega0Q8Z7baCMxQ0rYT6q7zuYAcKz7v5uqMWxuSJGljpyQetwNX3PKcD3VU4XEl+aC+Yth+3Xnxlq43BqZJCO5fI31vA6f+Sy3bzgsDOGEO4FEVyw3sKtg1n63yOf0RU0HC+6jA0zQ6naKV8OeBCcVplB7pkMWRmJf89BDTGWwKmYEc4A4QlbIEvmF0T7FpgueBcOLwvjBsw/T5jKxnaff2XWmwkSlgzT97KOPmzsc1XMlPm7ytD+9Tzswy/Zm3WlCxOWM6ueXve1iIAP2dZkV2QJ48k06+jKfLrdi2E7QdB783AuAgYqVAGS/T00hGfnBfTyaLKivN+rTsXW58hMmpSZuTYoi/vf4LkzK+02kBu05DBJa+Ohs6v/FXZtmDrf/GZOhvLFOAHHy/bd4gGF8nXWQCP3vwP8iIQUrWfgVZVthwqgYNM/TnwPFOz1SNUdNRhdABr/gjmGpzyvK8pFaJEmpYzKjORajGs3HZiIbAfrhluNxz3AR8eQtXbt95RtJ0kP591Wat9/AU5+9eXFWwFeU9rcQLfyky4dZDk5AUsyKtX92aoSF5P02pma/yn08imnxfhxo1aR9zVgKpD5wUQtmYtVuoevNEPo9VO5f0iXpQDMhtcajhVOaD9kY0r31W0B1n+5aKrKnbecShrRWCoAt/Yrvpg0R5eGNiLv8/NKPAIFTGMjRj2x36LZn+J2eTnchEai46dFq7L4kuml90HXHzPfANe3gSngTfALefQFxgBL+7U5UkZ+zTTt69hAsP7f8rEH5J2P8rvuejELeio1z03Z/eQL/aixUQsgREVJFIDDu1sup11UL5AAvQVKPXn04YLU6cQ+sPynJo3MsXud8x+eyYh3negFHH+hUchgf/PwanTmoWb6WRexESVi6HnF68q25XLq/ZFEsY/8CroOzfwGczTcWJ+j6y8lVlcg4ARMY9gRO/YGnC48HJyMV5Lt/1McIO8OKI7A5Pn5A3tWgQNPg1Bvw4N3sU5AJIxhic18eNc6KxUg3XkiH2E3MVzT4lSAJagXtagHz//8qx9gE7U5T8v2+VMdHD8taGINiQTWlZg3fcZi/8ezPpOGGQa57oJo4x0w995P2gw45fQ4JUOm78Z1Y8H3FOBEVG1dTj5VzDyMFopJ3SQNHqz+I10SOGFP95csVNI75g2O2tX3Vi19zNrvR4b2SR+QyZZzI1ZqV+m9/I4ML6PZ/EyFNbsEo/cIj5h1MXWwCOzbsNoPCuis2QJXEzvbzYNGJUdIJn+/jsLpCJk7G+fX2AfyF8CDAQNGL8uDq7YilVVu+zOik3BGRSnJEU2UBN4Quy0EcQIdq9CDOjo7tdO815tBRoIEAILYeu9BAHXYusRVJ5V6sQuaDkDX+Ljb6mzraTv3M+yMK9/btHW4UgvIXq1dDsBHej/YWbpnTimYm9jhvhi4Lz6gcDm4AQSZI8KdYWy0/gCGSYBhTsJuviVWljie/2LB7yg+yXTCn70Od7fUT5Jtp7jOFizCRhfODVr/wU934gMrAG2C5hMtZhlQe7Ejrz9pIydz5ChZkGOxRl863MLdva0qt36UGB3ryANCV7wJS9wz+RLubPP0h9M+4LLS2N503YAAEAASURBVKvpTD7GxpbPcXBK4Gr2IBKxHwls4siSPZ1hthGEkhetJKv/lrLNZ0hmAhWeNQyC4sn98saSPYhHfAbyvUf0ivfWxrUBiiDY8QcYZaZVHjwDLMXv3d2vAvsalpdgeAGc9UT0vKZunoIT8sM7qiS5lm3GJCIg1Pd3ktq/fUPFxnP8x0Us/kdO0QtQLufPKVgDQx6/vLlqVz3MFHDeL5mdJyENlDTXPJe8l7KVn7y8PY+oOzCq4fwpYBgHq/mj7snDBeSEZ2wqvZ9vXlf2hcrOOhlBQ+BuvKdsX2E9GnwBfw/luQn+vz5Ytlf9hCn9GBW9X3tRA3jGjQudj8O1P7Dyqg93G0ahO6NwiCcI3IwQ/AtRAFawjdcTEz7XbcGe4DA9ifYP88wiG1K2u3Cujse5+cIdAYn4JXvmLNbHGp61a24p2WdZS+WkPZgf50Xh4YZHgIvkyqWftOrC1d1RH/6aDmNuBPf3J8r/d2B7MxEmYEYZS48oB2wpxn4B0ZaNOAQTR1W9l3Pr8tC247yMI6p2CjhUxHLuwqpNAM5+fUiQzBHZoHK43IUsLONgUT8LdkGu9+AcPentd/dPhj0rQ7YOad7+sA0adyGIxYiAQMHYgr5chhxo9HAVcMxmTZwRQwL72yo6JEQTHl9SjXtrRD8YV1QPScme6pQIPhXlGFSZ7dK87RbLcqH8yEtAgZvk6IYu/goOy9GTRHsGjQvwAs5ve0LtyZl6eBsznmhT8xbuuD+0ZmC1xqr9haT26cOA9QSc1VEsTokj+K3ryzYJnsWmOB7Fv+4EokTLu66lLZzMB/B0qaJHpYC8sHJ2lmn8ucFs+eGdBYwEMO6CFx+ELJ73x3DRrfdho4msGFHTTcCxFDyr8yG7pWvzibhZA0uGDElkWjDSaUIBB2UMxlYeevKrPQLPGTc/EyQ+avnmf2cYKFLGIrRwvGEDwVya3YLda9otGEN7iAk0VgjtJtaUmj6CWbd0/rQm1l0PluzK6yo2Gdwh2hEevQHou2NehLp136HCD/UMRhne3HTe/QYrlN6JPzM0wqMAhB7L1kRtKQdwbB9m4w0MbN7Cik1levjHcQIGF6t2NjCOA2/X31myK1h76MQinSae9ai0HFIclXLD/QxXA/lSHOqFvHhPSg4jkZ0I7e6yYvW1HNcBG3gCRo30PLacQ+pbDYvfO5ZlbHZl7ZHlFdc7m4BlOMk7f76rZJffXrY5gKDp9G0FfHoYrNJIxOsujsfjcL6Jl8Zi96TkxwEXIwLbH7DimBeDOsl0rHfw3eYuAc2cWQUe7/4H60cRSLAN6G9syBd+xqjICwr2nFnCeWC/xdH6FBH1WX0EgKJK1EOHJGjdBK2vBzbe/5HzqL72RXRvF6WA06jXZemWwvBzOOR5/YZEmhv0EDKjaBATGO2vOCZrdrK/KTJhiuCLmPzPEvG/7hdle4RTpwMfPk1UHI90zDS6setGHCvs9AORne0CqrbLmDrkUXb6cbelWrxb1eottT7dLUtD++2tZXsetvhZBBuWoHx+8peKLYJUjcjRl37eam/DwX4enfd5iyr2FRLgp9BBiCJsVCJYZaflA7QstXDTnwhafqmt/W4dAKMh0wEyHTR/iFHhSdRLBJfT44DxWvydU8aX7YwZrBlHTvl9jzHjG5kwfJxhRNFPJMe7gk5+kGilRlNOxt48QrBpA+dQ77Fc48w1onPKq+nwzLbM5BNnIeUbGIZ+hvWZeTlBg/EQJBIAAT1/G39QGn3orbUwRqlkbXlr1Okv/ehWvnEQTscWChl6h6joBqjPC7SuuMpKS/8d73EOv5Gqnhb1yltZt2j0B9mH8GPI1GCvV63JmD2BF+zJYry0cXwCTKUxVRFl/k6+CTe6hVCCO577bHocOgX780eh0R3WuvCrLAfxdTzv0+K6ewik4t2+QuzlVlBPDcOrvJksimQ3r7yK9Wi0uq53GzCqM3AIYj3ojLhQOgFKzxzOF7eJOb3oQALast7Kj/0X3HgL9JjADbx4jwr1yCK1zLXsyf/ra4g408Z1aFhAtNO3ehwr6ApNQ/Eqv0hofbSBP4JFeG2JVqJvhwCDhqNe3bGAPT7fDXJ5GV9Phvt7XHgGRzU36xai9c+CF8UvggxYoi+HaR3KTutfnYxTr9OPAa/WRxLLeRFwDN1MOy56J4DnRmDccjezz57HSQy8CNDjAtcQBcsydDdmzo9ZbBSl4gnAUV3Cn4q+N2E0diJKU2BXRbnmwQObIW493o18GvXitfDkKGRHP1UyXGtc80fb+ChbBfWR4yLx72GR1i2vIV+X/cBmfhWZximMYRR4CYzC51zRFesxG+MlB3Gh5B15NhSO1lCaAM+2LYTqUEqmS6zn+GPWVcPgHpBMR7QwZDoz5kOWZ8+yDEuPeOQNago+wak/cgQfB6b+RAMmAZfkViR20uka+keR/+ngkdn7PCLnCpkuN7ILzZcxhP/Du0im2/lIVXerJDI95RtWmPROKhfzi7HaYRQcMvoLgWMcdB6Cbfbf5A05DiU84Fg7YEgnRY6L5IVIJU5q5dGPklZzJy+BkT9QmW6da7mTfolMv4I62t8skRfhUykfKzDE05EXjVDIGLtMC8HyJ+DVE4ExGRZRRS7TdLzL83l3zSqrHcptb6brI+mNgA78qbcxtf6Z0LmdFgmM+l6HM7MFmZ4JjLIvOudyjWGZST5qpLNrmxOtC4xC3mmV+S/gAWQ64pzam7pxTEPqxOCgFmf9EFt4EqSIYORKm7wwOm1zpWeQ6VNjGLXO4UaF++jsu1CX6eihc2ql1nlk7e/ZAvYt8MRsUEsFPYXTZZqo0iB2XDnly/iDY8BjVE8tjMLZfDoijLXalX0X2lt3/5s1Z6Z4a3Xhavt+32/bx/JTbA6dYeI5wAHsbqdxpJf9yMKVHwHGOZzW+/ewJHZ6zIetcOJHkWkMresv+IqqnJYSAC3RgG4ZRa9NvoSg0I4CW6S/ecSw2VPQO5KXaOiN86q73GClhV+0cMM3Y5nW+/ewxDKdm3olMn2x15vItFCxQHZY8qAPMjwFmejPsfOmZFolQRsHY6G1ZL7Ke0mmw+Y1Vnr0w8j0vdCASUSTp5/EFVYAZon74rQfW93EN9FeOwNoKE4Ny0DIa1PURy+dFA2DSeVEyi05y7eUBeMKVUKizY9cyE3CnB6sebjm9i4PFSmoPILBuIl1UZ8Pj0IRMR1F09x9mQCq1lCLoj+RIgNmbtFdUnqCX4KbDA0Kxgy5TOVNf7XSvOejeaSI0UQHXNTSJqq5nrQP6tJaAMAoAevDJcEgZSenRT3wWkwIj7pP5/cs3IXzUmZhxmDR23gJMb/C3wdSaEBDHn3ZLX72D01rikR7q3G+pghG4U3RyARGh497pCuF9nY4dYeAx09f/D9stfAJiCAlcgACKhgwjr7s/3GvsiKKhNABdQkp7TCqRSk7JbYneBS8Otd+V8SnUSRQQFNvdTc7BX0S4f4FN0+m3gMQUIeR9bBKc23wxM/bsOkf4gx1x4ZXl5MiOgseyY6K4BWNBX9SxLcuTyBWOWsVjO76h95jJQ3vuUGLH04e6O43Cb+S6fz0q6044Q2w+l6M5XCIroInkV8lcgomyY9kSeclM45XlxeGbRvm4Ru9ApIP4Uk9rc8BFHVCkOncrJt9m66OOwskNQom4XBvA4tcdbwWy3Rl4+1WffQC5PtgZFpvzSezHZn+E7kusyBWu95J4NNdgkO8FhmESCdJBUpelGNXq5P8OaJP5dW/QqYvPkiZFgHxSvqyp+rs72F4xwEEOkyMVlP2KdPAJf9KtJZj1S7voqfmSBElXvINZPozBynTUrzw87A3W/Hkz3cu04CdDAkJCsm1nIZ2fRO/lBCrCB5LMpQe+xj5878H0bz7gXRIVKUMb5nO5/gvWmHaB2OWFgTteEzgASSHUVcEm2CUbtfxHrpRMCqPqXm1leb+C5GQ1cCMR3HA8hLJdO7En7IY9ushnHRsO3z88JqH4D3fh3d/RWmhvb2lCwdLTErOcdD4CCtUvJQKRlAL5w60xDJdOPVWRsTOQ76xN7Gdlv6DYpEvwUGiW4RXDcHqIznfS15imS4/eauVH1V+2MHKNA1md1vxtGuRaZxppQPEMEofComSiQQOybRo69e4LIwLZn30DpHMRw5WaeX/WmXxu4ivyE63sJ7YsOGflZT50EwzeVg4Bln2Q3PiIaR62NFNw3p5VVpb/Don1WhbEdEYfw8J3bauwCtuuAkIR3J5byXf9kxXB1IYVBuUdgD0HF5g2B4wCi6FKeU81cIo+GQg5APoWuJ4uXPF+HvAmG5p2TcRAvZ58qgLNx1wkcCvoWrW/SJE6omCbtgY7wYGwaf2ZSg6ljY4ay8IjziAwc4FVl3+NermIl4ytdTe1YNjGtZMm9b7CPlP9KEZHyL2+topKPAcZzU1J/Cp5T2u6WYcg+rWe1m884v8kICq7OMlowtd/OU5Je023WFhn5n0JmfEVam+CEb91a8EDv0WXvVbuE0+gjm6U0NPJENvuNHCtZcC7yQ9EV/TPT0tVMy89/Kuh1hwdI7VDZgIzamvg1GTfm3jN5rQsWDSd/LhEBD566GDsjWs/rXtevLb2I7xekIXdUfPi8t0P/h6Feg8nSjWaKpDIdfAKLwl8OhYRTj0VjmRyJJfcxjp5NCLLC//IZHUW8Ej4daDlOkMiAhZ5jnDiuYa4qqNnjtANTAlMCbn9Z3AG8FIh8lleg3ycqVlmCgQRV30RgdSQIaivuXl0JeFWyXTicNfg0fVLDhEqQRGxyu/1bL4Ude8CI959A4dz+oyhi3Z9sodBb8zuamH3y7T9yLTk5FpnEDpCOmOGhjVvmCsLYIxwV/Ha20yveIy6hkVP9ahgtrKOj3mOa011XQnnmgi06pLnwhj+qtftXDonOSk9hynKJzUu+E1Vp683oK1nz80Mp1hiLVpHnmLs6PhI+nuGhwm8AhvOlZJYNa3rFsbrC4vpK3QGZYjHW7+PjDiAB6UvMhOI9Mtik7vX6ZZW5b5Pnl7YbjFZlduZK1AJhzRct4a7aHCS+w21udgJUDnS59Aw4hDZfkPyFe4M5bpA5UXGsFRUc5oWG6G5JJpOmHxiFhCS+FKMpG04njlnHCXXNO3F/ExgZqwaZVVll2BZ7sFuhPObns6vq/bX9TsMk3+VjgIXwJnzSelYVyh9b7kVvAJHsGnj2BPjnU+A4wK1FQbHwXGr/D+yJ+cf56KHCw9rmm4rYyfsjR6btAs7DCxL2cw7mtjJx13UZyx6A0QCSqt+TUTH/4byiL0vspEF892elmIHkyC2q14nP0jGH1Rzz2FoNMqkovA6DMZFXKEsYKN36QDMw2Y1SM4mAKMWgBn5+9ZWuJ4nIOT4TeMUgdl160WhEcYK6DXU1kCYzVch4uPgB5o1KWtUdEaZ7fxd+xLeDKz2HlvRXd6DKNYS4/KWOAALkYRt6wG5oGclao5mILRUS5W470M/Z5CEGsi8Kk9fcTu3S3x/RqO2fJ3C5Z8HJ5GONuGerpbT8f71FshisXQcmnncutDZCNfjwPT1nvuAYx6LyklHKKdG26ybUv+A5xOpUGpH8F/oIVn1WFgSDhgQ0lt35Btk+kewKfmBaOMtvJxFHVRlFL5Se7xHyh8ei6Sadt9M1EzZnSSi6W9SyO903MYJdOBjMUyjNmmbyMvJwD7oZBpaLsDeclNBI8nHaRMAyNOb4XIkO34C3gcA4wo94Mqoo9k+jo6JTNYIoD3Vo/yAGVaeVLKya0uwXEhNcFnvB0KmQ77MnRyn2lXj1y/CRFfHaBM+xDrlnuAEZkOGR2R0TxgoyvkC4foalb6DnavRHfPijolbbTpAT+6vMjABnTqbrBgxYfA4fSDhC+BUTL9D0SRvfkk094p2dMG8ha2AXy8MOjEwUIuyugwjWiUV/+Cjuen4cVTePJgeVEyjVO16y+w32DvxLcFGmqcVb1Nl0V4xL6ErIheXv5d8q6+h0yjGw+RTIc7fku+MZ0SZNpp32N54Q2A0W0gDmB5yeXI9O3gER8g5pvYwdKrQiSSjMOdf4Z42rj3REYOcbLUaJui3x+TgYikEM1Ag1jrmt8QGboEZXQyzK86DkVh6YPsGJZ8ATFEiXIDTiQAg0HvEYxEM/JE10pbrXXl1Szv/2kQcirAHawiTt5PgkoC+baf4mRNcAdGm322G1/d1xUeIxgDZmpVlv0/GOs7xKExaAc1fJnAp285MPSEtt2EkzWZ5MfJnIJubQpqf/Dp2YTWOAU8oyHgymKG8mQsPDesxD2dPa86uirwi5JhMZbhjkcY/piKrzCBh1RvwkudtRHDKMeRyFB1699xAD9DBwJjkR9EHaJ1Z89zucsCLzL9v9L0D1bJ3mR9+k+zvKJE3nTcfqdtRPfIUGTY1mnHhptty0LG7uVoyJlpe88uAenkBsk0hnfnTUR+yQeUvPjsHuGwKxiT62BKMl1tsvLa3xB1uQScoogPoUwbMm2Nv+HdB1sGvaP8th7LtJwrZLq64sdk+n4OXuwFmd7+E48SZXFg1GPtqUxruEgzgStLrySi8QNgRDceSplmckm4/c+MZSDTAyZBo1qZFpvsj+cTWqMX4D05V5XFX0SmbwXG42MY9/dsJ+y3xyXJNDhjNl1AorbVn4BMU7fDJH5U6ayNGEaXaSINOFeVxZ9GpolS5uAXdww6e94b6OKP5AX90PwPOvLMukamtetDe+dOj++vjQSH3CKZxsBWnrwJB/CjnMDhOGgHUG2rCEZ14nHcWJXTZboPkd8aGwgXdOJgvdhuYwXX0eQvlEmZKBMECVe8jzrlXCV08IYO4g8wItNhw6+JQA51O+1L8NTA2DUewbOcK2Z6l1f8kE4dzv6hlmlWjg23/QSZnoK/cwLt9Vym5Uto1mBpCekxm3+EncZZc5mO+KTGwdIJEMM4drjjOpYq2OI5Oj60IOZo8z5hJHmWiYLWeTG97iEsFrRsMDkulRUktWdpzJ8T4aIGD4Jq8aPyGHGytpOTVKoQLcSJ0caZGt31tmLYEhi92XYYtU6IlmFoXfotQsuXxUQ7WK+941upPZzVbVfTGWf7AWYrZNiKBwR1AqOu6SNck/3QMJde7tfI/EMRMxvh0CliwQo95MDwFWz9He0NcRg9euAwJu+T0JrfjkfBJzzzQaF5wvjiS2NFTA/Nc8P8xqSCA/xWHVIkKM7SBozGXfQ02EkdWrsQuIMYV53QWT+d/sI98ClESzJ65ckbLVj8SRTxWnibIa0a5o9rOMAvwcjivPRWyrvvs5bGRYzmjmEBQraiwfGM0jpVtXBY04TLCw40MPqMQZzIxtXX2NbF/4WOZCaT1mDz3s+hwKPalUyPxYH5E3m823BWx9MzR0G7E5e0kdA5BtRhFJ0xFJJphtErK6+yqma5eYdJz9W+VM37HdAhdcnJ2k50TFOYobNvN9FNmdZQUchsxApD/aaZRa6Ie0GmbTgyfRXRNtYmq09kWniK8dHGi7yPozaWace1ZPoRDO7XLNzy496TaRbpCbf9kXSEIT7M5dGDWplugxFCtcGod2BiAB2PNpne+VfwiNE55DKNA1Naa8G2u6kfmZaTJcPWXZnG0ddQf3XJJ5DpJ+FtBQEORYdJjCuEwDfqlDTdS17SEpzVMegd5Ec5wHGejvO+s38sAy4vkW6UvFh5G5kiv6Yz8mFuRYf5+4kfHeFq6CBLLNNszxbs3u522te+i+20O1jIThTBuokhQvQ7LeZtuz1UfIXdxszOUURRm5HpkNnoUYdJIMXvc5DQRY9Tl5ysbb9kVQ9sdv3EaFSsmzItOx2wFI5kOlj3lV6QaeBzezscG/hjdK/2bp1E504d8G7ItOOatdDY97W8+CvI9NXI9GmgsMTz7XSucbASrEbEC5tIettyFwqPvQrrBmOvYgZTGFXHini4oeV+IlbqPZafvAVP7utWVXheQwjeDtdrGkxaObhvOVnMjNqBoG2dz1ANhq4OJpIic8PFljXA6IZOSJTBAsYQgSyt+yOhPBDScA0wzgIMMf6hZCy9GZ6L2tVwYQOOYAM5HCERH4dRggiccnAUGXA8CkYIg0MQKNSoYZjlGIrdD8JYJ8ZEU72Hqogw0AVaZhS2J9oW7NhExA0Dr8U3HXbBxnVgjCIqegYY6fUEOxe5wQ1WfJFTm8DjeGBs5Xo7Yx08pDGMcrJQquEWcLJrO21h3Fi+wRe/kyNDL8fprF4jjqmGsUISXwOWUagorLzmUp6HX/M4uB2Y/9DACO+hkKvkRTRtvs7KLbtY+BZhJcIhJZFBMWcTHMphca+2xYeymrbci2N1JZsrfwHUHe88e2idq+QNobWcrKaHUCZ3I6st4BB5iWVa22Mk8sIBeOJ+yQvRhvKTN7PG5OVEUb9LHciLk5jrh5TWghPaIdO283r48VHQQISwjtwRLXYlvDkv7kumN1h17bUWkPtgDb+PYOxtmZYj2LgSkHGS2Y9R+X3usO5PphlyqiDTVZfph5BpdUakiA9lieVFMLBwrnrm1Z2bwR207SDTrnekg7wgL5LpHU9EMr0SXkSXO7/0ikzLgUGmtfj0Vsl0A7/7owb7Ayvy0lGmxRfAEbL+nDYxryz7NtGMyziHU6ZoUy/JtDtZLF8UbCHHC5nOINMetRSthdPYvkheEpnWLLfKlr8hL0QoN6C/MxOBET16SDtMTjT+IIOSl6YHkel7kGn2KtV+uujDIvp7A3lFLwwbbXb5DzhYwxzGPJHyh4LZdtumf9jwpZdZafMPY5mW/estmR6DTP8RO70AJ4YoepudlkwLj7IvfNrsNDaQIE2FWZeVpbLTf0ReZgLfobbTkpfITmc04iSZbljJGVauwt+plWmHkWiw2xw5826nV7JU0i9worGBTURkPcVob5mOZhHS1F5F4WWUrAWLIcJJDKuez3jqHCIdDNcoGgNCtGp5yDBWdQfj9dv/xvFtVINTkacH4EwlwvViUa+CVejDYCU8fwaLJz4bmTvVIx2+cjlNu7HFaQlYdLC67U56PfcD+wSYk7DtIVdyHd9VRASP1Y18byB6cL5lhp7ri6RlmcnHmJIgBAzegVljWkMqbLgdBfc4CvsEYKznMgTttSL6YFD1qa7ku4mRwwvY6PccwuMziHSw6bLCtAiGLxa7aynw4fQ1QufqKmCcwUcKRDDqXXujCMbYGFQX0t5ApvI+j3ydswiPz2AYG14TDCRwawX4YNcTCMsDCPXNnNvJq+GgepGA9iKMyIu2SAirC7C1E6zv4OdZ36FPs2L/E4h0H+cKxFdobybCy6SFJpRiieH4kKXrs7mJwCYF1xtKjmqT4jINjatLYMtTSNp+tieiZvpNRjljrFymcayQ6VAyrShD8x08zTCJy7ToLHr0YnGZxpEO4a/imUx/fzYJvafSAyZSrfwsijaiDZpXkqM3j6jXncg09D6cMi08VoieGJ++z0GmnwkvzgRGnOR8PZ0pyQsyzaK7IbOzwu3gUOtx5ZBpJegeNpleAYwtpDNegG58BnqH/DENeSHTynNTmoQif2EDQ2KatKCVwnMnASPydthk+gnaw3kZ8HwC6WeTrjDNZVqdOpcnl+mFOFf3IdO3APduYJwuNqD0vkz7xJAAGJHRzCBoPfhMYJyKvCDTOFtapFgTpLQ4csBEH9t9E3DhQOYm8H2YZJoOqAXItNJIBj/bBiAv8/qfbFcUt9vb7Vtsrjbchyzr2C3jeyvX2cfX3GYzi6Ntt/L2iFpCbD69WGplug69jUxnleetSHWbTO9E76x0Ox1s+ysy/Q/4YiJ4HAx4ezsuhxZa7ILLNDbaNgLXc91OZweeQnRwHDZQdjqS6WD3MhyxWKYrC4BxGh+u70em9+9g+RtgeBW6xWPDqkKGTShcDkUTnD+3e9TtSAoI1SrBWeFSd664fjiK97hpU4KnvbxCfbc3rEOP4Gf6cYDzp8RfRTraEpLb7+21I/UWFZqXwQ/X8QGBAiFuEOiBSR+YKTuC74igkYDGN/XqF407jCiEoJHPWlqLAGyD0YEUjMOBEVp7T1kKRIxwOEoMo2bCBeRmZREGbIeCag4CbOrrDmE7MuEY/giXGMLD4ei3vT5AwI8hUTS0LW1vjkbT267HB3oVdonNOIzI2GGFMZZpTe3XnmjsBSjWTMjrEOqHlGIGPGovvyMq09DZ94jjqx19EcBHhUzvAJYtkBC9I90okVABfb4dk8mIgcO2GcrJDbqpN0ssLx6NPAZkWvsUatHfhMgJahLGzOIYMtR1pGRakfFEph20WjjbYBwPfOqoHCGZlg20HSwztcnmbzT7xolmF0+72JorJZdvd7CWL7WPb9hqM/v0sd2+zEOC6F7+dvtCGzV2et96R5FMZOaI2mlkOlzPJ7LTCWZE8siXEB9iB7thp+PQQFJFx2+UgdeIFas/gyH5D2E8aEZrUKnQ41UYv7qJKfWrPoHDNQegZPUOY3FHCQ5XzzAzhfbF7QnHJ0dCTfLhnTwP4XDCGPe0FBoPZ8TwEQ7fA4QEPn1D2MNaaNM9cCBSj4FpvFHZB4zunOJU7cdj7z2wYxg1RF3dZLlpv6KnOxZUNQCL/4cXB9ObZNunhf/CeyAAhx1G4YUpu1ImeQwCjl47BkVXUVzflMTJP+wwysBLrvuAo+M5phfZgRMjGIGzjdYxzIL7cJRambaptCi8dYRSMCWfIyTTvs3YKkZ3L2Pi0HNQfTgJnsgLaESnfWkQkl+Nqf+ujA9np86FQnokkWmMQqd4PIIyreEhdSw9ogKYDqdoK7qrcNzGi4dbN0Yy7R3QWKbb4Yqgi/iQY038EP2PhEw7qhgm7PcMAqUf8OBeJrMCh+Z64JLdkdwLRpl88Hk4gyBq19sDSF9iATsNbTtKtMPldBbtj5BMi+cUKGIJB8EYffhqOxJs+kDnbtjpLhws6lAjRDUyhMFyQxkiZPPYZMVlOSoZVuMKmKruS+xoUym1fdhLQhA1LKTsqxwRwGoAof2EyY96GCWM+8Kj3qHmlY7IIQnN5OfkWB8rO+RUUAqsHmFRXh68yCKYVfI11ImM3uFIABwrWsfP0YrHWOHuk84C/EjTWnTrBoyO4yP0R9FK+k4a7s8Pf7rzZdQhBXYxIOsAVjR8oKiwUhLa3udwwis6doZH4flIl2NBXo52GDXStAU+q8dOPw0HH6eqlQ7o7qvgxVre4z0O26hDR77qhkwf7uBHRxBd7x06eemGgwUEHt4jv0SrsoZErxJvFGB836aACJfbkaNBWI8GGPaiWocTKYwdENKjn+5PeTJ7CVYkdB87WKGSe1nFel8uTY8aOKQ3H+20PtrhEzGOchjJEQkZhnFedO4DXulMDSu5UyU1ezS8w9EAg+jZWUlh7Aw7+78mvCklglwhbcYdMqKjFco9j+doxOnRCFNH7B48jN1zsFw5YLYUytXHp9Ty2wdR9fvoMmkd0ZT+fmphIGL7Gn70YWwiWPBm6MdPrfdN3+Zox0DMi9KLMS9GejLRiwevqI92DKTwHQ0YgM+c5cSPOtAn5b0jSRl5R2lJMZBiIMVAioEUAykGnnIYcI/rKfdWx8oLpQ7WsUKpFM4UAykGUgykGEgxkGLgmMFA6mAdM6RKAU0xkGIgxUCKgRQDKQaOFQykDtaxQqkUzhQDKQZSDKQYSDGQYuCYwUDqYB0zpEoBTTGQYiDFQIqBFAMpBo4VDKQO1rFCqRTOFAMpBlIMpBhIMZBi4JjBQOpgHTOkSgFNMZBiIMVAioEUAykGjhUMdHMdrHg9Dd8GgHU1fLXVeH0N3xoiXWvjWCH4UwdO8WGyurL6CSywl/DnU+cl0zc5JjAQ86JWyPatugS0VsxO9GI6Vf6YIOMxDyR85rZZfCjeS/jvmH+xY/YFuudgaeV2VibO5Pv4p20ldxExz3nf+Fc4SBXJMcsJxxLg0hvwXKbAvoRaUE+L3+JcZXIFq+aKrluS9R6PpddKYT0GMSBeZGPsTB5elP7zhZg56VvlsMOFac+meC9SjtKSYqB3MCDbW8a/z8F67DPKFnYW1HFO276kdrl3cN51rd1wsFAWWTbRre62ypYHoBcEqzRFNWfZ7LnPMAualkvHYOSkSNKSYqA3MaD9L/NWbXjMwtatfLTBLu3JttUNsaDlSa6zD5cXXUhLioFewgB7/EnvhU0rrLzxbrMW9oIL4n3M8mxVgsNv6E3pzyii1UtwpNWmGFDENMsG95VdVpWdLmuTzBVm/dhEew+7rGh/mhl0uBimcwdLvTAPeUOQpr9bZf5NKBFAkw6R7RKdcJJ9g+4sG0uyJxdhBb4P947nwJGWpzgG5EHBrgEMyOalwZI3m7bANH1iB8vk5PPJGIpG+8B5ZFVOf+pogYS0HEoMuJ6D+bLjLHzyM1ZZ+xk216WBJGCA6swQSLCMnKuhsCDKUoGEto2XOU5LioFDgQG30zLG6MemO606/09m+PrhdE6dcDFOl5RkXGSjVRL+jX6lf3sJA/t3sEQA9b6CpThRT7PskAvpiM22bL+pli0OhEAZHONWoldrLdjxmAXb7qEndzNUJXqQP55vOVnKQ5BWSUuKgQPFAM6RHCsNR5fnOW9lh7zY8kPOsOyAEy3bZwQh8Rx2q4rvtdmCnQutsv1BePIO7l9IFOEUjCDKx3txKS8eKBXS5xIMwEPSjeXVfO8gQnCBZYZeYtmBJ1um7/GwqoZlQvqaOyzcvcyChkfMthPdKj3I/VPgx/6xbkzqS79TDBwEBhRCrcKH4XLs9Jn0PS+y7KBZZqfBj4XNXLsSvhsZ6z/ayeHsB4pwDUGXjo95Ed2all7BQGby9JP2xq6IVl5m1vdEy416g+VHXWDZvqNdsXi+lSe4QBs9KUdKoQRCk+Wt91l13W8sbPx1ZNgc5KRL1yvwp5U+pTEAg7kC2cV3g+VGvM2KY15puYEnkuqiUJXCpwoVgATnRXgtbCUdq4TOWWTldddaZfNPOEeHIIfj77231Ml6SrNMr72cGAxeE7NVHzUb9FrLjnmt5Y47C0M1wPkxxPGKVSO8hpMlvQjPhQxbV5+82cINvyTKtYD7p8a82GvAphX/M2DA7fRi7PQsy45+g+VGPp8O5yirz+btoewAu6K82N7e9A5rzkyHa6sMNm227+c/aR9r2GIz115lu3dcC0vPBFPi7dRO9wbL7B3BwmiFpUcsN+xtlp/8b5YfdArol2IhGkUicaQ0akCRRpGxKw7D+L3MAhROefUZVl39YXTRSXzUhIZpUsNWg7X0sEsMRM5VWNnESN9YK075qhVHPheF0Bc+5JrPGEQpBOKtuLh1w8iR6J4feobl4N3ypnOstOzLRLdWwop0EnDAUl5MEJZ+dw8DMkDoQOe5BZaZ8FXLjX89fDkSVtQ1zWAVT+Lc66eKqzvpxr6WrZ9s2Snvseqwc6y6/DsM31yNvpzN/ThgaUkxcCAYkHNVmmuZ4e+y3KRL6HRia53pyFHVMHRVgQ/pOtlfMaWi+M1mBdInxjydEQCcsjVPt2D1f3FJdjq28dyZlkOHgRoHCyIoIiDnavS/W3Hq+9EN49EpGurTR0Vag48rDz8R/XGtUnHlkq0bYcXJ77Jy3XArL7mEWydxf0q8Gmylh11iQLyIAqlsxjidaH2mf87yihTIwDk/qoKYCdtCBkmlPBs7X4q2Fke/CEM43FoWfYYhm8fRNyO5LsPWkYmT59PvFAMdMSDjJL5aZNmpV1tu7IX4W/WxbtS9CS/xnRwmVWDseJJnM5YbfKplTvyUVZYxPLPhG6mTleAo/e4ZBhLnasxHLD/lvUStxsZ60TkNfuNbetF1Y3QuaiBOlcD5UqSrMPndViYwEix9J04WqRR73d8zsNK798YAGFcRQXCuyo8xEeHdOFcfiJyratLDktboqDn8wZo/0T2hPOdsHyuMu8gKU74J4TFqng3f1fM1VaWH/9wYUNST/L8Mznqf6Z/FuTobPiJS5QnC3edFv59ZXfmhZ3o9GSJhnlfoUdV/bhSnb98TDNBBRI9lpnzHcuNehTojiio95zqxK73Wzq8hycbZvuMYIXy/2Yh/Rd8y1ChjmZYUA93FgPiFXNTMSEaXpvxb5FztZac740mu4UiFeiZbTxrWqy07+bvw82NAUBNv6S486X2dYiBysNygNZCweR5OEURT5KpKeNE92k6f3/uinpExJB+hMI7E+LGfIr94Pr9T4u2NrPTM3hiAfzwiuoFI6MejyJVHrdQT60xx7F1TdD/P8bycrOKUj3GTptccSF37qj8995THgCe0o7/GfNLyYy+CpTBwrt96yotgyg1bK0ZxnOUmX2LW/zlEabdzPtWNT3k+OhQvKD4Rvwy4gPSdf42dq73tdHc4M6P12uDjDIGV/LhXW2bMf1M3k4hSXjwUlGqrI45g5XGoVoLot3gCcaixWwggM5SHWn3pwNVxpz5FPiKgruU46MPvQvyt317cySpDq0E4Wa8lEjE9jj5wc1pSDHSGAQ0nV9eQA/hWK456buwMRQ6R2KuWD8WLWU7qqr51Tbzo322spqe4g2HDwojzqffN1L8CJqadtKQY6BQDMJGG+OqmRkaowNCenP244yndJ92ob32kKzuW5B7xpxfpVfRrbsB0kuTfzPEqTqe8GGMn/eoUA8yWDlcxRP1mZlBPgxfb7bT0XmKnpRf31xfVhGpdk850PoafM/B1buxrUJ4TXU/u92E9k5YeYUDLsxNyXMXUzossP/zcqHNPFSKAFMZC1hRtbeSXCCPKcPvUQWb1fC/j2u6dXOvL+ZbQRg1kBSLWfqlySh6y8rey/SZAvPdbdcn70EJzqJh1jNKSYmCfGJDka2mPRiuMfTV2hynt8BBpm+5ANRMYnbsZ5tIt3Ko/Y5ggOIoRmy2w1eodXOvDhRLTMvie1Q9e9LtUL4tCUl9x7KusefO343bE1KosLSkG9oEBRauaH7bsCVdapn4SLMSwSuxcif3mbeVPKzznXj7f9RmbzmRVFX4ZizlE9+CTjcE3G0R1rht1XY+hb4ONGLbGW7n5eE5q2DEtKQb2gQGPpC5jWbU3WHbYM1Fbkd5yPoMZ5zPR2qT/FOUQc8FrYT3nYn7VfQpa7RTPZkPLDuVbxYMhDF0PmGKZsR+wcNl/pHY6wswh+YubhCMUbmN5jLMZGhyNfYtMkqIAjzBq+KUXZ+2FZxesVAlZfT9j23eFdtVNZfvlY6G976yMveWCotUVM9aCovnxn8v2h/mhjYmdLBnLTL6v5YbMtqq0TVsOjcidlhQDHTEA0wWNCPuFzHynhyY24VOgg79ht9n5UzN21QeL1gd+06ytgGt/eaBqn/pz1d42M2MXv6hoxw3KWAUW/vN9FfvC7VWbTmohrNtWcgNPYM2iV7JeFusS5QZHbbRdTQ9SDCQYkKFidiCGKjdkDnqsH6kOzVHHEX6SLfvDBwo2YVTWdWMB3Th/ZdUu+33F8vCfIlfzcfp/+28FGzY4Yz/6S9lufDy00XQGKlq8GV0ofZsZcraFDb+h0QlJw+l3ioF9YEA8swPH6OkMDY5GT9LbpIPZB904d5vZFRfl7PzT89ZC57KYD23Vjrxtuw49Cc9l4Dk5V6X1VXvzZ4p2dn3BPvjdkq/LnKFzIJufyfeHz0+3itvppAdbozj3AVF6qmsMZLWGVaYwwRfKa9+oFKMGQawhtDnTcjZqWMYWoDyWrK7aig1V24x2mYZt+tdXFm0Avbb7FlRs4uisffT1RRsoBYKC8ZA4POGKRItBDn4T3bcnoXQaDu+aLP+kd0gLBKtx9p+BVVP3C0aCh9QpW98U2gmjMnby1Jyt2xzYQvhx+frANm5HGTSH9rJn5GzCmKw9vAgDB4u97zVFe/30jC3eGfOyUOpRLBx+1R+s4YSYPC0pBvaBAempCtsuDXodK7Jr5ql4MeMd/iosJ/145kk5q+LlP7oM3biuaqs2arkGnCsenb/D7KPnZu2l5xbsGbPyNhFHbBsBsFwHlstoen1xEvzIxZQf90GI9JTzhYYDi1Mtw9AyzBh/opQd2x7a06ZnbeRxGXs8ttNLNoRWQmf66DNfGhjIEtXfgP1evhEnLEar+NWZWrqRmYU2kIhqdWNqp2P8HOwXyVcQrjCWoTxC4C7gKBKsmiOe+JYiiDc/WLGLr8GJYghw5drQJg7I2AhC4d/8XcnuWBbakoWhNVHNm55fsFMxgg+sDO04lIzXQygzUxzOhIVpzLr/BZ7yGM7L+05LioGOGNCwMoqg/zT8cBws/ZCHpcJhPxTEEyiQl/+sbE9nmPrvq0MbSPLBbHju29dW7I4fw1fzAvvGJ8ze/9o6Ow4+3VmmB+dV6A/ahJkz2X7TvGoGHjkXn1cbaUkx0IYBFFiAg1XPIo1MZU8i+7rcDC9OYWh6M6kTX762bNejE1t3w1uNZqfQGW1hpG8Otuqt6MMH6HxOwvFP8rNcr3obTKZn+5xs/UQL8uMYalwrxo9sZxsM6UGKATDgHU/1FKc4v9QGQhTF13Z1FXjyT/eW7T2/rdqk/oGtWJuzb2CjMzCe8xz35Qdm7Y4bq3bp1oqdCX/SB0i0q+vaTN0wol3oxm1EVPPckNppcHBwBQeLsDdDJdmiBmVFraj4EC/DLX0xas+albNl9ML6E536xc1l+59bq+5Q/ZbhwBM5twRCnjk958PC96zDucIxa68JA8fGp5nicW4knVnaLybNpd//9BiQo8MH3tC6VZlswYdkxC+uIAhd94HXJhEJmP/fdTaBiOk98yr25d+VbQeGbQmfz52ftWf/Z9FmE3W966GK/QJnazaR1rL8NBUqyrABr7bXiRhUbaYlxcA+MCCjpqAVekv6S1sxiT3FMeLHATjvQ/l8kkjp90ZkbT1R1ct/W7KHloS2aFtov3970aNVX8cB+9Z7WY9NHc699B78WIRBcyRohYu4AUWalhQDe2EArgtwh+CTTJGeZcxI4kWxpeHs15MH/bw5eVt+RsHqC6Fd+WcGp26BX6N4ie8WVnqyau/4Up0NWZe3D/2i1WYydB2lT1ATnVm30zhZCtaihfUnLQeJAbDIAqFKoMvhFdUQzhFPHHH9tsA2NwR2/Z1lW7YqsPdeVGdvOC1rj+FQnwqt7yUUecUb8zbnxJz9gXs2kfhep85fokykjRRCUMjdz4kt0pJiYP8Y0N6C7V2riJdy5F1tI0qwkXD43CcqdsNdZXsuyuTDryiQgxDaSPL+CvCrWE28N7Cf2VgcMjlX7RwXM6V2HkhLioFOMRD3/DUJqJ2BXIUpGtUKk63dGtjaJwP7xY0lG050/zNvqbMF6MV3np21s2fm7CfXl23NJiZcMMatCL8RTW2bTehtw49sa6IlbbjYKTTpxX92DDTDJ0X6m3t66m6niWCt2xpip0P74+1lW8Vw9UdenbGJs7NW2YHjJKbD0gekUmiI+i0vyNhrT0GfwpNKv/Ai1ajjZJmGKOwfXUv/HjAGkG6Ixsw+zZDJKERNEa7lxE6DGJ/7XcUWQFtbHNr551Tt+kvzNmMsF3ZX7Y6NZl99bc7efWHRbri7bO/9dcXmEPXSxJq2AqFCvGNfEV4E9HBE29X0IMXAXhgIKswc9KhTJP1SIjNwoH57f2BXP9hqK4mSKr79OFHTSUSyDKd+Azz68T/z0B9b7bMvztl/vrHOLpyTtY/dULUzGbZp9V4ZvKjWSFZOS4qBTjGgaCfsp63BfBuciBXdee+LP7SMdNLXfKtk60gwtvsZqv5Wxi4k32oaGRDvJTdVc4Ua+bz5mTmrxwCeOpX8wbEZa4b11H+IOqBUqtwr5ddonCctKQb2h4GMho+x01q7KvbSpcuk1qbAqP/1f2Vbgh60BaFd+AKzqz9VtNHoxsouHCwGpxSVKo7M2S9/VbJXfczsxU/L2TXzqsz6Z5dCVST+FlP60g8cp3YaJBx8yWqKQVjdBu02UVukRRJc16FILjo1a2+ezBk6/SczPKMZXZpRaEwL/crLcK5eUWe/v6Nsr7mMHhiEX4auwORFhkx/FWovs7N8K/kMcr7TafFCQlr2woCkHGUAqwUtG2AgGEk/KPqrvJdnYaRePxN+Uod/UsYnWFTEi4ysfOB5WbtoCnfi9K/F6JVJx9Jsw5gRVU1UHwZN9Ysto4tqNy0pBjpiAIaTvmqFocqEpZxhcLo41YyxmjGcSNXTsnYCo3t2PAuzM9wimzShv3KwyMliNtd7X1Kwl52bZ8gmY+eeWrAXnpTdc9IFtQWtW2D4rdRPyDU1ah2JkP52DMCLGZRcZSt2Gn6psdNyjuqxza9jVOm1stN0RE/AThcJnWiyWeKM6ZEAvhwxOmMFrm0hpUKJgdRMoRL4O6zsRO3C764boyt+Of1zwBjIk/ACJVZbsHuZL34nFSK7lgG/zRDipSiI48kxePkzKvZM8rA0XPgXclvOmJmx95FILAoNhPY3f5VeG2D89eGq/fjewEZDaF/zBcJVS1uifeByE7hDPndaUgzsAwMyMDjpwc4FOP3n45Cr11YljI3jjsN0+oycvfL8gp03u2KjjtOsmaz9jpD4lOEZe8V5BXvjBRl73XkVe/ZpeXew7lkU2HhyE7yH5koEi8kWPMGuBTC4TGWqRPZBhfSUYwA9hb4Kmx5n68otli0Mwv8RL7KWEH3JUfCcZlG/4pzQNjBU+DyGq++ZX7Zb1oR29+Ulm4ZO3EAn9OXMZP3Gh/rYL28p2dfvrNqsIe3R1AxKNty9HAduJfyoHNiUH1Pm2wcGpBczTPopL7OgaWW0yKhOwYtZ2LSZDueFzyrYqKEZe9Uz0X+zmWmNH7ZkQdVmDskynM29qL4yw9mveXWdLWPJm2/+tWIn9SfCRT3eCWXoMWzdDD8+5nyPU7APQNJTPcVAbsjwMZ8NIZzVnWz5YWfzPJ4sfzXVfSsdtw0bAhvclx4aimE1+VY/Iq/gZ/OiZRrquHH9JlbIxihqSEdh8bUsBPkgSmYgzpnzBUnFQeMCq6z8OKkGkzmZEq6nRPrnuV9OD+sNlVlodNSL4BeyNzXbAk0i8/PIisBIN7bRDPk1s7Dtn+6q2Kdurlodwa4t5LokfLoGPv3hdSX746LQxsG7rkSERPJdgtJWa13+rcjP99wXcXtaUgx0xAB8kRuAwbmThR0vYubpRFdwxFhdt928lvWVdwc2kshVXyII9z1atc/9tmK5FnL/+M0otztiBdg3hyK857HA1jSwO470YtyUuL26/k9m2/nkx+pXfCX9SjFQiwE4RoGQ8mKWUphtOd/43rd0tjz8tHYHtho7PQQfTJFU5WBdel3Whj+62c7ocxN5qAqzMghV12gPDX6Jff7uQbZpbcXXr5SNdo7MFa3a+KiFqz7tsxVTOy28HHyBPEqCG2/B9rusuusidArTNNnItBxkbBQE+9vy0K55CG1BREq5Lv0h4GnQaz1Efdv3Oc9/1xiJ1mAtjlmKZjKeq4S8kPB6dcvf1ExckhuT3+l3ioEEAzBJth+9tNvZcmuuFUePxrmCdWCZIr20Eukq7/4pDrqGbsR3DL2cflzEWn94NLAf3I2BgmeNHtpx8OkkRl2IiqsKL8rAqm6fh9G8FYM2k3NtTBnfkX6lGEgwID2FDuMrQH9lB8+G72AuolhkwdhJOO6X3RLYZdfBc2hRgzenjcT5wrlynmOYRTsMrKGT+u4fVryDqkkXcvYzWDXNZq3uXMKU+Lvg+fFUkPJigvn0e18YgM+yY7HTdxKBfxkrehCsqFbcTk+ELf+yJLRfPYhSxA/TuoA2NGcXYIdDrYWFAlQAJNcva7f8omzXDWIEisi+NmHxrFQ6nmF5O3wOL3Iu+uMH+wIkPdcDDIBZDFZ+uIU7b7PKptvZnQTCETEQ4rXi8DAcq7HjoghVdhh6BEIp5Kj9js7gPMGrKFIVk0XX9dHzGQhXaVhEL+3TTIA4lRvRQmlJMbBfDEjiNUQ90sprf8UGzWdFy4eQ2Ak3+QyYs8ghkC1SeFwqoAW9o+/jcaamMG1eUdQcTpdmD0Z8yEV10zx6tc1K637NwyTQeAV6Mi0pBvaDAekr9Fa4/jMWjHiuRw7CijbIjYadZw2Vb4Wmg42UoqXcLHUGVHSOn64nTyO5XZMs3LkSt/K8hhsD9K3tvBmjOIcHCH2lJcXA/jDgdnokMydutOqml0QRVfhIdlZ2eixO1mTy/xTwx4+yu2EznzsR14e6dCdrEJ0AjXPHq45EjMoKAtVtCyzY8PnUTu8P/wd4HlJQUCSZwgyrrvu+VbY9gLJQFjF6gI/yV5rwwZRkvJvvZNo7p/38Lpxmnd/Fp+067nImV+fJxJVVV0PpEVSmJ/RJS4qBTjCA4bHcSIaVr8EZ+j03wmA+OyIKibfAZy3wooyZnCsV8akW2tNeheQWO18mfOo85wnKZeq71oKGX1E/kTG1k5YUA51iINZZ4Qirrr4afbbe9Zp7Tzwnp4nJ1NYU68bEuaqtUjVIf3o+qi5wQtGrYPuDOG4/IAo7g3Npx7MWZ+nxfjAgPoFfgnXfIxL/MJ1GwqXiJ26X/pP9lZ0Wv3lAVBc6FHVA5fn7JfUCZKeb1zl/Z0L0oj8ork3LocBA5GAJqXKqSg1WXnI5Y7GP4WRBPC89QTb3erSgSMiRulb+1ILNKBE3aKJ6WlIMdIUB8Zv48ST453NW2vAXtAG/fR21rnlxjzvEi5oSgzYpPXmLlVZc6vWmSqQrGqTX2zGA3pL+2vJjq6z4qes1OUiJk9V+X1dH4kUNDSrX5XGrLr0cpiQT2Tuz8HdaUgx0iQHpRexyaZNVln6dIeYn3EFyL6tHwQvtIkBd8HFY2g5fX0US10/4TSAkzQPskgo9uSF2sHhEO7n7UOGdVlp0mVUb5uFkkVwQRw8ihbKH+YrbiRRHdJ1VH1AgYXmrlZb/EK/4U9Q5i/tS56onREnvpYulBfXCwda6+MM4WTdwLEMXRVb3z4vCHPzojhWHfn+V52+01kUf4TyzEn2hPnXj0pJioLsYgPfypDis/bSVl3+PiRJbXM+55+68ti+9qLoTXuQbPaqRASUSV9GvtuN26mTIR3o3LSkGuosBRbHyOPw7brSK7PSORyMnvUs7nTQgXmRokciVZg2Kn8N1dDzF357YmtyXfh8KDOSGDBv+2agiBQ0xPPJim+YxRDOXcORIdnxnT6Jcn8jZcj0ipYH3m3jMDL/IEfNhRZRFsHOxlZd+k7yrL7EorJwrGTN/kO+0pBjoDgbEi/CYZs6ws2516zX4TIPYh2scPEWylUdXPcgNa4m3Yv5CcfhKxIoKEPUKUCClNb+20lKcq4AMY09SlrMfP9sdUNJ7Ugw4BuCxLIat4f8YUsEp6gsv+jY36EYNQSd8mHyLFzUbQ06+jlkepLr5LgsWf5a8q/vRrZN5RkODKS86etM/3cSA+EWdTexy08PYaRys4qho+68cOg5bXIRV18N7Lww22+zKTVbJsMUOT+Vtmz1UvMhuY0HxUTsfs+ZlV1q44WtcSOx0N0FIb+s2BmocLD2TEI/sTXpp1c0/RS/swGb1x4FiY1I+GZwtjdsqTK5ZglktCFnexn2rSEz+AzNJP03C/N94Zjr1ybmSM5YqEZCQlh5hQDwD/7gz1Z8kzJ/xWcpvDFoex4ucvgwOmI59yEbRVvKqwmq0qG15091Ev75klY3/wzOTonp8iZCUF3tEhvTmGgzIyRpDwimO0ubbojQ+HP6M8kt9u7G+8KP0Ih9n3934UFswggwJKlKw6r+jZBlGCqLIVcqLNchND7uNAWcu7LDs9EYLN/2MmdcsupZn2iA2ugjzbcBmv5Ddx2eX/4CDxSbO6FLWFbWHShPstrV32PAl/2GlneRx5afRahoE6Tbqe3hjZvL0k9AO+yqaC8+l6jq+tls48GWWGXS29Rs0Df+KDVBxrgKWYGjeuYrUrbmWbfwdOmMbCgaCZbSmgyIFaUk8JywmAABAAElEQVQxcCgwoJFsPkEj/LiKzQdOR7c8h6nKJxNhJaqA02XVVp9UEezCmG37K1EGJmtoYdssG2a6ky9HPy0pBg4FBuTMM+uvshgDNdBsyGstM3A2a0FORP8xDE2EP2S9tXD3YgsbiVY1/gmdyNo2OZwzXyZbBi0tKQYOBQZkp9Ft1bXwHfpx0CtswKAzbF6/mXZF31329sI11myD6Y+y7hWzBb+37CH7+JrHbGa/6axmQ0c1tdOHggj7raMTB0vP4PIytltlCkx9XcXq+5TtoX8QRagpU6dC08EzbfP2shUKjOv67KzUmNWgKD08JBhQry12tMJmC/M4VS3zGW7htOyV9Ay2zfqeapkKC7Zp5eM2x2o/fQjuSEuKgQPDALyovBftJcjmgmGVFbDhxQw/ndsYrbEB0xmpFt/ikPkwYhopODBcp091jgHxWBwQwWHqz+H8DU/YN4h1XDztYmZXs0oAd9TBp99bsco+vmGzzazL2W6fUth5zenVg8MAkt9ZCX1F901bt9r0pz3NLvvc51iLKGctLfTeKFoPZvCQwXbDjTfaRz78QTtl9unWpPyEtKQYOOQYkNnCQMlQsaJx/qTr2b6NCBWrvrv20OUi25nsXm3V+S/BpqV5BYecBGmFNRhQJ5IIQInJQJO/YYWxLyZqtY1znBcvKm8Vq1Ze8AWGFO+DHxkWTHIFOUpLioFDhwEYTh5UZRNO/bnoxo+ZzWJShS1BZf6MawwlenqEWhR/YqNZOystvY+BLhwsYgZoiabWZiuylPb0aVNtQL/+vomkFhitsvBLkd24H3xQykMdOXnRaUkx0JsYYCsn+Vn1Yy03+BSOGYqWJSO5OKMF87QoKTpES/DpLxd6E5i07n9mDODsixezxeMsN3A6xxiuJOFd0a2qnH9ULBHXiBf/mZGVvnvvYkA6kBAqOauZ/lMwxqRGlIjy794O68k+Jyk70oepTuxdWrTX3qWDJVLkSJwLWCK2taUVk1WwSryacYCDNYChmHI5jlr5DJr2ytOjFAO9ggH5TQzNhIS+gwo8GTtYYUhEISi7W9Ur7aaVphjYFwaICIRV8SMTfhLuS4YPfZhaHc/UqO0Ldem5Q4UB8ZeceTx+Ofr+LX5Mee9QYfhA6unSwUpiADJimknozpZmE8qooTSyhLKi4wNpPn0mxcCBYgD+I1rgU+RjXtRx6McHWmf6XIqBA8FAxIuED+DJWGMqkpU4W6lzdSBITZ/pMQZwspz/xI/iw5gXe1xP+sChwoC0QI9K2g/rEbrSm1MMpBhIMZBiIMXAEcKAnKy0HCkM9NjBOlKApu2mGEgxkGIgxUCKgRQDKQaOFQykDtaxQqkUzhQDKQZSDKQYSDGQYuCYwUDqYB0zpEoBTTGQYiDFQIqBFAMpBo4VDKQO1rFCqRTOFAMpBlIMpBhIMZBi4JjBQOpgHTOkSgFNMZBiIMVAioEUAykGjhUM9MzB2msKYRhtIn+svG0K51MMA2LIhClrj59ir5m+zjGCgYQXjxFwUzCfehhIWfCoommX62CJXtFET5wp/eNEtJ5o4ly1nTiqXiwF5qmLgYQfO76h82W62G1HtKS/ex0DHXRgm9LUgUo6VT7CQ/q3dzGQ8Jn4sXdbSmvvHga6dLBEsgqbQmZZmbhQKFh934KVK1rgUY4WexUWM5bnvBdf3Kx7DffOXYI2/iSwRFaX8+K4o4HrOsKYCINg0/5mR0OpxaGOExgF35HHoUOgLSHYGsf31fLtSaB8no3JcwXvAAjqI18EBUFiBybBo6BPPkceQodPAB61MAowwRd/O8rA3x5yfQTxKFJmxIvoQO335nBy0hca5ZxWdPdtShzBRxDQjngUDgXO0SHTEWL2BaOATD7RXUf2r2A8GmVacMVbNUkv5oCxqgEqJ/KRRdlercd0bpNrYHQwEzofDTDvixf1IoKt+3a6SweryhY5wwYNt4bGHXbtn66z5qbdtns3ex5RchBy5MjR9si8efplraV4yxy/ejj/gAzf84uX940s2dLe9FEpck0fKTvu800vjwQBJZQoWxmGENj0kUC4ZauFkVNHDEbgcxjZbkF4DLTVgmCUkYhhzMqZ1jske1vx87AW9hwsjLLq5r9ZsP1RC1s2AgvwQNtMnxGAtYPrY/13ZIQPK3BRY+JF0ZV9Ec3YGJ1tfXzrCufBhNZSfgiqtrQ47CWRFxqulRfHo+QkgVHyIvi6r1AO3atoh4g8JFSkXLzIVjQuMyJtBF8GfGoXifBIyQvtZuqKFu6Yb6VV15g1rQdOYJWeyfdHZAbgW+1AfEYcIRzSrDt40jvVCH/Oi/Cj8yiOoXB5pGXaYUQexGuisWB0pxQ5auNFydSRkhfhsV2mwxCZNnSj4G3jRfGk9KTeQTJzuAu4yaH3yg1WXXsjamcXe5GvMxsyGnhqdXWs4w83eN5eondkP5ATl2fRWiWS6aPHTovXIr0T+RLS17Uw8rMbekdcs/+CAqvCK/2Lm2ztmiV28dtvju+t57svn63+ewR0nTIVlmtphsc474gDiYejiMGlPMqPoyxgpPwkOo/HWZhFuVEywS42/92CvD6BgkFp50/mJEYkVtaHA0S0MLoBoaw8Rtu0mD8BYdAGnP34iJAo4So7oVfW8hvFnJ8S3ScCH5YixgePVXBVXQIN68DTJHCIcGZETzEaG9dWN3AInJmRXOeaw14rvL0JrBxU6FaF54InLVj5fuDilDcpWDbyM/BN4jOg1EIUSf64CHbBeTiKK1hEqrKednH8ZFhzwOZ4FM+x6W+wjetLwHMLeEZocvDpYZUXwQEyyiv4A9/lx0JLHNMMm8MSdcmEu4ENGKvzo02zczOAn01jDyOMMvpymiql+YAUWi4/EVwNR74jmQ6DncC4Gd2ETAcZyxVO4VouciAOB53FdZKXQJs44/htvtwCiYW3PYq/rcCiTXbjc+FADibxkRNxeGU6rApXS12ms/nJgDAGOJBpdZyCBvoAG/BnNnFeMs01OTaHzUGIZbqCTIerkYXBfMbBb8iNdGbY6jBadR1ggc/sBK4PjXF4uGQaeSZiFUimIXK2MBJ+hMbgUfvyhmGTy4v0ZuAyfQK4lkwDuwsaX71d3J7RSBWd07TUgiU4WE20PvFMs6HIr3f0BAQMKT0uBzaD7XFHsbeBi+t3Ow1vIdOGTMtOW3YYH+ydCjJtAXyAnbYQnOeBW/r0sNlpCatkOrbTsKblTuCDnc4Ao2RiDzuNvkQvCaWdybS4Z98FBg/L61FcGy0/6HVWGHqmzZlzkhX7TWTD7v6cz0C3klWaN1hL4yJr3faIWcNfCHo8gh08lTrlxesjCHqjRAgJS/NQDPWWHfoWyw95mmUHnmjZvuOAod5bDirNFjSthX4Lrbr9IXTKtegWCFk8LSaerE1vFNULg2gDzhK4KU6xzNB/s+yQOfDUNHTcaFd6AAGedwPjKgt2PEFU5gGzxl9xGuegcDzfEtTeKsConplAhW5Wf7rlB38EPXcqME7Fro7gMkqEKGZQ2mHh7hVWaXwcGO9l4/breHYCrzeE5xHYXiuC8f+zdx5wdlXV/l+3z0zKpPfeC2mEFnoElK4gYEFUsPMszwaCT0EFHoqAtKcUiXSRFpCOSBXppJPeM6kzmV7uvefe//e3zzkzNyFlJpmE9/983obJvfe0vfba67fW2muvvQ+C78EHDwe1w7EW6foVXhY/ERrhaao7xoFIB0ok31Rhudpl6BCcg62vmdW+BH2j6YbQQdhXskjjHY2VAHSlRTqdSj8fbtHS8RbtMBS8lHIexEJjrmGTeXUo462zLV/5Ev3+LrdO4DzPcCOifUkjRiuDsYpgULt83mJdD7FY53EWLRnkMC0icnppMZj2ahaBlw/Ay3N07/7FdJb6YvFS69TzAuvYbaoVl461VHF/HKliJ2VepsGa6tdZA3iprXjX6rf+zbKZWovtN0yDa2E6hTHt9l3kcYpFO40mgorRjSOrlFwax8ZhegGyKEz/lf5FWSdwIPYTpqWL4yUHW1HXi6yo2yRLdRxp8aKeFg0wnW2qsgyYbgTTDeVvWBpMRyJDaAOOzv7ANMYsn5mHrZ8OXr5q0S5gugNOYKobcJFx9cxrLEfvLEcO54CZ1/j+MvSNwTDLAZPe2Zd4wdHPVuJErbRU59OtuNs0K+pygCXAdDzZGV7hePFi5WzjJmuqWWINYLqx4p/YxPfA0/7ENM5pBJvW5Qvw8WAwjXPSAXmMrkdOL+OcZA7nRva4GLuXeBN9/z6fkzkWHN9nfKR/pBuFFwa8kR4XQONU8BLaaR/T+Uw9uhE7Xb2Qfn7X8lUPoavwEpOTgn7GDuyToufKToeYxjZ3+x40CtN8L8JOC9OKpKdroRE7XSVMv4W/9TeO94aPDEx2gunIsNHjtqNcAotRzc7CsTrDUv3PtmTPoyyWwtskAsQETdBM3UZESNY5QuUYwEzlLGsse9IyG3/PpWPo4AT3qAPDe4Jb9/pD7iUv9s3OsRgdFu/7GUt0PwynqlMLjdDk6hV5zoOAxmytZSveskzZ4+ZtuR3GAQJ3rr0dQVWK40LumuUWEPD5ITSehgKZAk+KAh6KJwGNfPO/y9mqgDamv9Y9hJA9jFAKBBr16tr2LKJRjkstn9UW6/cfluhzkjO4bmpGeQYq4iP97r4qEsTXXEOZZTa9ZNl196PwXkFc4OM+UciiEUWa3QDQMAz9zrdY7xOcElb/+3/b0gh1HMAhxHB4G1+w3PoZKBPu1+jcgcBvi9rTbkV8VAS1wxEEhM4lcIXBwCHwuyzg4zZ9DY3gwsNByG54hsDgLZDMiDJGpGOfGA21GSxmZuFYnWmJ/udYvMeR2Cgiva5vOe/YEvY1KHeYbrRs5QcE5J4kwHod16C4cWbbH9PU65ScIgVzcKy+bt0GfMY6gelYQiNtEQcfHab56n5LFvPmMTipKX/TKtbOtJrNd0DeRC6QDOwrTKPP8h9apNePCUyeymBkMgMlMB3yUf2sKUI1yX3nS7rcsprSLsNoVD2yzzGd95gmj9ZZp37ftY79TsI5kC5Wv0kW1dciLqTR52MGh7Vu40tWs/Y+S9e9TqTmAK7fFwMn8UeYLgPTfcA0+rv38QyWhkJTAaYL8ILbzy8wXbvcYdormwFPN8NHIkn7ENO5zGxLdpxunQecax17T7cEg2K/nyWLkCsaXb+Lnz6mGzG+NeufsZp1N3FtaRDN2heOoAgA09jpSJez4OPZ2MIjsYHdrAS63iNKeT3RoK/Wf8saIgwEoC+VL7Nbi66xS2prbWLZg1a78UZYvq8xjfXNzrVoz29gAz9tse6HYho7FuAl4CMUhr5ELlNDMOtNRGSm5cvvpJ9DOy1ct2eRLMpOY1/zC7HTP4XGUxgYC9MEmEJMCy/uu7odG83vfNMW0lReQ3cL04/tFNOxrj16Xr4tyThXCFZqwCXWYdRPLdVjGpXhZebVOAmSFJe+F/zpMITGOwy2ZPdDwM9ERr8vcCnKSNML7arsEG7Vl5triaHXWWrEdwmi4OW6MGkBjaLX0Rwe46ZYkhmZkYzcD+X7IDzlu3iQQoACth7aHoXnqNMIF1u0hijjTdD5NRe18hWII56KCvjnvus4hi1W4kYgUaILuTwjycoHuQ3noN3oUxtFo0ZnW/DQe1ty1LWWGkxEg8ifX41oCfq5mYeil4InH0mUEumaSBRpKiN1lF/1UwgYDoW7x13VDv+IRhRxZoFZ52MIRF2Jj3Q6h+To6/G7oFFgxXmIEf2IdJyCs0XUpuF1+lx8VLvasYiP6VlEkr9myTG/sETv4+h+OUqh3O0AL676KE5YX4t3O5jI4WQirIzw0tApJ6td8SJFTIQPTMcH/NxSYFqDETp7Wxq3wQu0i73IcYyIdRxMW+oA8PKML7btjmlN71Fhbp71HvEH6zvqu9ahK0pVONLxECtEUrfBNKciYLqk8yicsUMtGh1odeVgOqLpxPbGNMbMawCLdRYdcQuYvsBiRIQcpgtpFK3NmIFAnYt1ILJOpJDoQt6jfzU631eYzjDjUDzIeoy51kqHMPPgHH1koJDGbfhIE0QimC5CjxZ1OYip2Yylq56G/e2NacmUMD3XIqXHW2LMFQz+GXiCVZ8+CAn1Ttjn7pPDYDpa1MNFPyKdpjCwWwWm/w3hfTnXzoN4MJ1rmmUden/beo79L+vU+xM47p0gUfQFNKqPxcdmOvnKICFZ0teKwUuywxRrqnrXvPQGZHTfYNqyzN70/wUZJz9B1+G4uKn8HG5XztbjEJxI2snk7LOWjXSVRkQLbLX3Ep+xFztNtv7dDrJ0ajyRmKdpAlhh0ZDfFumL9iiKQMKr/DxmA2+wxIj/YDBSiOmd9DWHNWCJgekos2b56ABovAf6ekGUaNN97VFUkTBdT7dlsdM3W2LI+W7mxjlThXhpxrP6m/s4F4l3wP4xQwGmcx5TiJUEQ5x90TUtZTsHC2OBIi4acpV1GP4diyEseUKgfqNCxutz+7/ggYrYwJx459Ho7zGWqcDJ0vyvGtIujFG9CAOKODHyDksN/iIjra7QqBGCGL8zGjnlCtdoRWSiI8xhhJYYg6d8O7cR5mu3IsGizbFGi42h0/qdCskYM5f8GlayPf9CunXeB26UMHmsdAKt6oWA3csz2lHZqT/IaYgWD7Wisb+1RK+jqRe6XV+1kkaELEr4VDTmMhhw58W3J42KCi0m7H2Gxcf8Eqf4QNd3Tqk1s2sXfHTKD7bh9Ec74xzUbzWre41mqq/byclS5ErOVZ8fWnL0jy3eaQS2VcpeIAuJ3BWN0EFkIcZ90Y7jmQaZxfPWQ2OH4Bl87HURH2ejPK621PBvg8s+e4TpmKIgxWPNq3iO5kk54fy0M6b7jplhPYd+wRl7Tb2EHPR5yS9FhvTXrH985uTAdIzodUmX8YyhRlvtZqLT5BS1XxGm0TEx6gHT8X6n0G8MHNuMaaZIGJjkNf2/9b52x3QeTCdKRljP8b+1jr2OpHekK5GxZkYGvNuGjyGXkFm6NVHSByeLAXImak2kU7SrkyW8ZIgUdD0H1ftLBsZE50WfsOr6VbQU9m/4PaAxwHSs4xCm4dE7dVvINXqTfmGQ7DAXXLc3HziAOTDdqf9PrMfYHzKtOhzyMjxxB/ZlB7KodAphughMJzsdYI2aZgfTkX2A6ejQaywx7BuIIpG8AjtNiMTWo+NPzJfjYD2Fg8WUKy2Ik3P5XuJke9E6Wz8cqpymEovGWr6CdA/lrLYrpqkxPx/H5S9kunwBFwAns4BGv4vC/i381Bl4iFzoHjkxeXKW8+V3wNf2xjRpJ6w8j4/9A8HQk3g+zr9oFDmuFNIVfg/PicacGxxESyfBcfyQivuRxW1tYIuDpZE44cbUwEtxrr5N47pRGQS4kWBzjeHTd/wpgXPeXpTR3XAqH2yZLffwDPJ02qUAUKYQ4sNutJQ6Dccl7xL2UCQtXNlFTdAnGmUEETB5yRYlkrXlTj63ZcwuHrKLU+KTlPGHFht9qyX6ngzjVZ+UnM61pnBdSGMMRxDDlvNK/EiWEkD32jmAV0q0jacsNfZ3luhxRItT0BYa1RQUTzSJIwiNXkO95WtfpPmAfW9pFNC9SvIIpqKIL3cgc7KoOltLo7vOd6gjOBURchJy1cuYLlxFX7eDAxMaix5fsRTOVZSogY8X9XMr+9rRCFDlrJIHFekwHAfmnzwHY94eys5NxeAADvwFztW3eCQ43AtMx8G0gWlPeIkQSWyPAh81Ldhn5C3Wc8jn2Q6G0Dz4VI5na4u7FoxFwXRJKbkn5JzUbJmBUWsvTEu/LLfYqP9hCuFE+gvalPTaahq5XteqXSRAR8kpy2cZdFWRw9FOmNYKy1iyg/UY/3sr6XEoPIQ+tE+baNQd0BgD00XwMcOK8UzNy9DcDoMSyXO2wqwT0R2HafFA9oVKW8tHdx1tgveK/kbIZc1VLwLTa8E0OnJvnSzZQKb6O/T+OhHAHxH9G4Du3QMbCN8V7Up0GEREazj5bf/gOTgMbhGMHLW9KAGmI4MuI4r6DR/TWu1dYKcVzlgPv09kcdfk7NMFDlYVDtYp9mKsu/Xlniz0KI/VkkMsv+VWniHdvZf0uab5djo2/I84V5+jb3Bc3GCk7XY6wr1R7HQ+0g8n6y7w0p6YXsfMyE04V5/ym72nmGZwF+00FnjTbkWnCzDtO1h4u/nMWqZ9TmVaEGNBZMIt0Xed5st/iAN97qg0HxcIEC6BJs5II5fratnyuxGEvWSMM2gYi76MKvDanUccdFozbXxR9fodFvc7PB6eczQi8MyzRkVjEzOrVY/idOwtjYh2Zg6LXYgKDfo8JKBUgtGZaAppCz9DGvXZTGd40NGIQma+WomfXu0mIjDv0XlyVjHKe1REBQ6gN58I4PWkQHyKrgoUMVxrplF80o/tyg5pRCEr2hbBwfAq5tD+zQBK08J7ClQ5gNAUrUf4f0vomyk0t2zbUddM0Y7o08mQRv/CoCFEFN0oD7nOb36S58ODvVF2ule5a0UjLaWROMmQLY5LM4k75GFIY8FVfIVXDEyiKGSSFFisdBvt38vRGpi27BpC2KdbkTCd4nnNitivfVuOFlAUsK2Zx/oSYDpGrkze68piznv2GtNaLegRLehGtKDPyK9blAGFcwyaK6abIEt/25ewn5vPORpz2JmkFXceaplGghuVj5Is3z6YjoDp+MCzIYO+1yCykMZmIranMqA/PO9oRBbBdAQ+5mo2QiRTw3uNaTDjLbDuo/9gHfue4PPQ4S+seCc8hFxdEfLSUa8fYDrOtF0Cp7+h/H1sYwV8xUjuFaY1qPUYMP030+IHQaMGEa52V63+cT+bf237peVccI8wzcDJUn0tt/kxSMO47c20MJjWist48TimBRmQkEqiBR/+M31atqW24BgnwnP69H8J03mmCgeiarpb/SZFVffSgRGmM6vZeuEMptx+BKaZNtsBpuGEle3KwYp2M7hmWYdpVg6TtJ/HTucr7sVk9ePuPbUvajq1k+sZ7X+RJUmNkf1qca44r0uCP/ej4B93nH98HuoivskWaMpQeGkkHaVqZjvYaTnS5G8PAdMDPktFsjk+plXlNn8F9Olr87nwuA7IBsrJ6jCExUEbwPRsaO7CFeh01xxGZBFWIaSU/MpF/giaUxTXWOr29Edb9al+CUuUC3RlVsfDg65SGckSKyKcHut0NHU1UEeMvbMIyfGnz9b+uXwKMYCpvUT/M33BKhD+ZhpFX0gjtOi48tN0LMufi94200iSPM+IJrvjV52JF49gOWdDLAkMcGs/pXT1pyWeJdMY5Z7s2i7Gux7hrOMmTWjmo/An+vhL6B/OZbjcPck1SCcDGhlJxfqdw29GgC7Zbk9p5D62CYh2/QK5QtOpn4pcZ/oVikax2fFQ/Ao6VN0pGjUoFh9jfFe/u+JozLAgYjzY/CIXreAhasWe0CgK+NNWET3Pw9c4jGdRYUEppCWkT6fD46JP9DueFtznjIbyFHp9CRoXcsNe0Khk4dxy2kvemkLYLqws2v0i3qh+0bI9VnRcq5RbrtY9HNSF/B/vdQwB33NpBH3taITO1spheJ2e7uSkHNk+BxiSx1CAF9WoPhQHtsEtv+Mc1zYXaYmu6OG3KwGmI2A6QeJ0tMPh8GDPMC38C9NypuIsXug68LN89gCfGSoNK4RHfIUEh5mACveh4w7T0KjSfAtf9Aw9q9vAM92n6pDeaYvOCa91EQdhWosXwLTa7kDQXKHfz+KXcL19UUvE4xiNaG5ViOmSgS4xOa/VX3uDadqWZ+uSou7nEXk5xn9WAaYdDfwjrBTiJaRVx0K8N8sqNGqKNlU6zjr2F6aX89y9wIvk0ltIGs25Lp/Pn0YPKfD7T7gQHdvTKFbv7Jz6NsbKPukK6QwfVch+iIPWfjq8QGNuBQntXyR6N861v0WwfBpFy/b2T62QXXF6nU/YGRQudgyNugT5om5fQN7BtEM+dbWWtvC6ENPYgBgLz4TpQjutSkNMO1lsISSgx/+AKlfcpxqEjXJ5v7JZJehbOWy+1O4hjXRikhW//c7A1+r2Eb0jfSLdJ71TWNTH0jfSOzqvtriCLKqdEZzJWH+cIXwAGMmpPelnybD6Gb3V8eiPYFr1Sjc73UIzZJN1LCyiUVWLRkInzfqp2U7jO8X6yk5v4UI1gC1kuvbsd3meROI4Sr3D0K9yVxh98CMatTxsLXqviJr4qnssHtQqRVebNpuNDhrAbeov9ase7f8glMty1jyji8z6P7OxbD+rra+yxqYma2pK86fPnf2F5xuhv9iieJzx/hfjB53GwyHAr8R9bIS+MhhSzDG+uqrZYN7qOPYh9HUWXykSnQ+htZTbE/w5HgCCaLIrcsUqlfIH8bj7wOEqX9AkbK3506amKN9843ymL8kXYtWl6wkxhKJ/5/OoLXSOaGyESapfwiZwzm8gssj3PswazK3hVs53hGbx0m8njye5O1dbDcOfRkbIOWgzjXCGlSX59BKS2q8iT24CFdCjAY2qa46ayxfRJT7qUxsCy1GYUwftDE7YyN9mQ0Z3JKwZBI5SRkJEsrxylrCm1/BYGqAoT2v4566hY4LnWKTW4qOuhKWDOETlMEH0Sd5krMQjVpq7ftVZSHSAXQCN3eAh7LQlVN0benWfz0S+aRROAnpuAyNek5zTYI+b2kKjAM9eUVY8yZIj/xN5CSOKPo3imQA6h/q7U536mS52NDbB7vn17Ngloinq4+bi+oEIDFEchmusfvwTn8ii2x+GFrWFRqI4xvL3aLevEv3/KpW3YFr8EE31dPD8+rz1LdLgyqdCH7OheyMXDetk9j7NFM1d4LXjoy6kPyJsO5HPsUfehhk+puvahumGpkam84oJTM61boMusu4DTuW5yE9ICHRI7mrpnhr+Oih4QhF9wst6aOxIk4o4vpnvXGqJgJeORACUSHW1NJiu3fI3yzH1UQONvs4J9crO9Y6vn5oYALL9S3q+RYddxgqtI6CRygMaxQ/pxDn052b6cwC0eI5JnAiKDMYCxHoTPOzIteK7K47f8F2YrsHo1j5Hg3vwAIDV6n6GMdLIEVYwZpYSvfpvHAOcfeGlkI/UtQ4e6VAJ/Sh8iwwZ4XIe4S7lnGgXvlpu1fAravEioi+b2SIhQ7K2TrYV02IC/8trT4z+FSpooJMhDjRjWkZtTk3eirBgwoTgQU2OFjVnHnJYgr4pPOdfwY3as49cndyG+7ijM8+G4bm2YFpMkLNfxZTewdZ91PeIMPrRB78Ony/C9Foe2wloyf6pSdLTlah+0SreqdTwWzxOSh4dM4liKGKJLNWsu5XvfblA/Sw6qbtVf1wr3aXFAd1ZjTf4PEgWKESFz8ckNNWA6cXI44BU3o9geS1ThFyIo1plr2dPsVeyXa1f3LOM6NOfMJ3oQnvIpd04gwv7QZdsYFtpZADSxIrBASykUZ6iDKzji09jChrLeOQKmi1/QXpRRfI4F7o30ZxBPEK2JsrJjvS5rnFsBHvRVBfYxbMqmIZzdpo0klbxL+BzoZ0efjnO/jSHlzwVqLtW0nfr+Osg74myDHjJt+jGSTlXorEBYntjY+bQhfIr1M/NNHKPFlflqpnFqX8J2eyNI0ajIpEM+1wdTAPwOKXB4IpufIPrbv9izE45KmHVdSgtKi6vztutMzP2+iJ+c80wZh7uPDdpTRBy0Z/TLjSfFGN4riRQ03AJkum0n0QnrHO/PsN1IvjjYzdFI926ukarhpduSTShuDz7b4nrEqr3yF2eeWHCpo6NWU0DIVnqXoWF+NldaTttaNR+cE7C0SaPWfTK+5zxdMbueDNnIzpGLIOmiSjpvSuJnWUQo2TEZC++iA9tKGwBESkqYnXMAQg/So/9tyJRjAZNXUGd//pJ0gb0jlot3pVonLUsZ5fdnzF8BZvxpbgdMYGRKN8bEMAZz2bstregD2HLspGib9S6uRU0npLy492gEaC2mkZJOU9naXO00zSXVM18DA8ntAkP62Fnf/yEORenrFNJxBrTbO7I6dfneHbpg1nrjEA9872EjR3KQcrK9Z5ddHfGKumTEhSOJyAJAITstf9TvuEl6DuKPkKju1a523bzj99OS6/AA/4MEZLB3ArNQZECkyKeuzVvD34nYeNHxOyqB9L2KnLYDX5WQNrzP0rY0H680onfb8zN2hfvztoB0KdFMrKNIiXacSCJxuTGVb0CjcOhkZNtoVFRlqY32XKDBRaaSncP9p8g56qB04v5e4n+LkGULkUOy8CRDJj2d5x5fsKmjY/Z8+9k7cKHsjaM6gPS/IfQL0p6z3aCj01IR9FQ6OPBbaKRDqXCGCtclCPnpt0CRSwjX4ai6IsN+eCSIttcmbMf0ZcJ5G49cvq7k2P22U+QMiB6qfMvz2Ts+ldyNlKyyDG1163ywZiTDW2dihLWH0xr6XJhf3HlTosMd119o1UhPx1ZuRZjRU4uC9OcJgWC0LgB/T5tbMS+e17S5i/x7NZHIA4jV4xivgq8jB8VczqmBsN864MZW7gqbyk5goEs6pkdSaKuQBZKSzvagL49aQ0PaE0RHTynprrGaqNdXXRWBi2fhUlOXqADGmdtzttFJ8TsG59O2szX0/bTp3N2ADR43B6HHXPp2NeQg+5dI3bDoxm76z0wjUz4mJbBIOldKwu3/oUbugeYFpNbU3yZyLNJaLLzkWzFMBLaAIHCzJzSWWHmBWi88/Nx+8Thcbv3yYw9/TbTLNB18JiIffOMhHXqELE0eC/C0X7k+Yzd8mzOhqELMjRCeUTx4n5Ex4602nVvoEAP56FtxTSVpZc5zEWZLiuUEefQcXpuZd4eRoePQb9cCaZfX0zKsBxWunwx7XjggriNGx6z6/+Wtkfm5m0oY5DmCAg0SldE0Bn56n8xZTjU50Nb8KKc1MZX2SvsfEuQMJ53mBYHfR42croOOv/y44SloOva+7K2an3eetNl11+QtK6lEfQ2to5bpHv+9YFnNzzmWReu5TZEJhYkvR/OCs0a7MQwHeWvtX2NsMmRgB8R9npUZMhNuzmEIjacXoJTMoLDH1yask1bPfvU3VyLGggxJXWf3uDZV65IWk9A8d/3N1lvsOQQIbDHWZxG5C5bzIUaoCWGtIE+LpWbpGlfGhxntWAc/Pk5dn47pXfeIVh77qSI/eLLSXv7Q89+hv4bSHVvoY/+cHrMPo2fIfejKZO36x+mr2flbZjwIjbJ05adZo9G7fDhvykBQfUVlQhoRYGWLJUV4/iQNxxDlkVjkkjBO+ibGeeBk6lxbDTNoM4OsKESv+dHf0zby2vM/nhuzE44JOFUwMaKnP3wzrRtok26LrSBbg83+sitfBRbtTomkhgBc0k6lHIKOt1FJ2oR5r5RDK7ZQ//MMJKMuMaXVeStkfaO6W/2mwtSjBTzdgtOl/IeUghY80iOx2lElSjuZbXJ4+yw8Xm74tdXW2nnzpZmPqxwxPoR7kBcFASSLmg3/89N9pubamxipyE8kB4QmRT3Qd1D+0URqpw99lrWuqEwtsKUd8rzdu60iKVQHA+9nLF6rjtmctwmAtRqHDH8CL+legg0ajl6pGgaw3X2Oxl5IQdbo0ggEqWWZ1SXWXCFRbxBGN3ers2hYGuk2AXhGtQnah+u8uzlWZ517xSxtfBwwSazK06L2rmfStpTr6XtjQU5+9bpCTv/pIQ9trDJrSDV9jXOWVV72ZxNsclI/8+TD3KWmMvR3RRdo/fzNawjPex7TGkxTaaVl4EilpLbCnAPxNns0z1qL72bsQWrclYKH5eW5WwDDs21X0jY4ZPi9sRrGZNgffGEpF1+jtnJf8zYgTyeJrp+IpzD8+WoovSG/Yj9bY4uANku6IRGbebmsYdMdvZRgOiHsLWEh+rJfoTFRa7QMY//IGmH4KD88ZG0/XtJ3vrjtLy1AQWNAzhldNz+/FTaunLrGdOTdjXHf/Z3zybjTDQ5o8lIjQT3SBe2wKi+h9Ujd0MvKzXd9JmTpp0TGdCY3cTeJ/M/44Cu9vp9wAiI2xXpU57jWxjVPl2jdtU9aduwxY90NHL8wR+lHF9lHIYhszVcLwdXPrQTRvcJjckuGIyjWVX4iiUmXodjNgBQtTggOyeSM3Rods2jll/xmtt0t/Ba0aio0OR+GPwLk+DW7NbHs5YA3+y2YUNLzU46Im5lm3L2zLtZuwA5/MZpSXtiVqM1EUST8cC94h8f02WxE+3ISUn71eVXWudOnS2TgXa1YWcFWXGYBm833HyjXXVb2sZ0GgoLW+RY8liNDpw+OWI/+ErSVqzO2YPPZA3VY5WwYOTAiA2Edx/M82wtA6nzcBK+8pmEfenXTTaqZ6RZ9+iZJeiLldVT7dLPH28/+O73oS2OAqehu6BRpCQYiVXXVNtll19qM98dbgP1CiaHF/9GjWZn4ftedmrMvndW0l7CWb7znzmbjEElaOYiWx9sydvVZ8XtoPEwjdK7a9ZkqJ2cFPBHGy7yaldG/V8E02fC2xZeFFy27VcRKUyzgXJ6zrfYXuEobCJRRRkhaBOV4mMZRvf+r5DsfHTCZr6QsX/g4HXBqC4laDa4F3xEJz0LpleC1544gUvXMliRY0Mb/CKngRVxrCqsXcdgjLyfeK+jwDQCs8uO5m5o1BYaXtVc1iUdi7N/CESFmPZvF6bn8Kgnf5i0qaN9TL+zLG89Ahrmw6/Hv5mwcQyU78I5/BeO1zCcq0wzfTQSHSFdoW1tsjX3W3zcvWB6XOtpZLFPduOrpLDhYNHOFkz7PGQMasXomJvAS3ccqRvuBdPYFg1AO8HLPvDxTXT6YnTmIHB1CryORjyr476unBeu3VQmsyTFXY+0qq1vWmri9WC6f+sxDa+zax623CowzYa2hUWDuipwfORAs5svTFkDOFUAxJpgIjQ6/SSBEKsAeWM2ZmceG7FX5iXtobkcp21O5mT7i3hIMXZFq94n/Jr7YbZkykkUHzsrTrdS56IbMCZc1GEU9yHUboDNc/mqneW/dlTEfnluwpauzttv/5GzMqYhygjYfO2QqH0Zu/c+g+W/g6UvwcMfnxu3V7ak7V1spN5Q49NIg7Q1Spx+6vZJs1H/wQkeLjzssnBehpT9tWzORXwfS1vRqSGNop9BRs9eSUiO2BMvNtoWLv36iQzY+8fsZfDyU3h2Nnbvtfcy9tainF34maRd8fmEnXBdxiZDn7ikEoGP0U5MMeNTyeGM59moTQnoseLBnBYnfIY6mukjGYA352Xt7eUQUMxoaHbOJuCd1NHW76HYinj4jXRoEmFaBo9HcH0L9iAchRYhz6lTl9G2ctW9CGsJI8rO1tio6Annd1KkIJWjJYW4tQIuswosxk7JLjEvuMc5cjgCjXi8//wga4tQFA24u0/iqHTDsZq9PGfVf8/YL59E2mHYbDpu+TrP7ngtZwcDBnLmXFFdbhdmdmbWJpoR9jyxCFN+Trh2QmBw2O04LBejbhE7wE53bXWjyEAoVcdwDFdFTc7+9i82lwQMzy7M2ftreADnxF9FjP7NsWue9OyUw+LWo0vEViOQE+ExlLui/nAr1aJjEAZGQexbo9eEICXBFTv7kKKjI5s2Y11fJe/jKwxCA2Uc0Kipy+5gaX15zv7yumfDOhOVRBmvEVjwMwegRBav8ey8G+ng51DCj0bt1GNYBjwgawtRynJoshgGvRsuyko4zTxKuFzYOUKDdwdQtYERlNMIGAWtDmKPEJ5BfdyrEdosJ+RRO3JKnAhk2uasy1sXumkDxzXbN2pQzP6J8P+M0aXB2zEzonYyzsLPXiQUjkg7R0YOG/s/RToAUupxdGk0qMhEK2h0O/pqWA1ZaqevjH0aFf5+hxj3bRi0EdBy9X1NthWnPg3/Nlfj1FDNEhzsP72Yta9Pj9vAXtxAs7ftPfoTmdM+WtGOo81bc7XjqXOIo1ii3dKIM4rMOEUSGYI9G4wMhzLCYIMqZxMtuAmjpUjlpQ82aTGpm17vDI/kw/309iZ7toxn0K99MbrnHJewgcjjfAZbcrBEg0b4EfKcOrLSbM2aJ3gBfAd/0MR8YmQ3mFZ+U5b5lvLyDThAo9AbfWkzXIBMUaqitIRzT0tYFdGpB57LOsOmyKWmuJaD8a9clrZ3UMyfHRmxTx/P/nvCif8I/wGuyUSKib6oDtXVsSN7twV172pgl0eOk4wSs3jLa1bPpY2fQcH3cG0WhWpeE7waAEbOPyVpc4hE3/qKZ0O6R+yZlXmbwIh7M0butLFROxt98/zbGZtCtM2lVai/mztcK814Xskg+niI6zOHF6nf7aRCR7YtvvNi0Y1MMb5licHfwX5AUDAgkaxvRX8cPiJiJx+bsJffztrr83I4eUT3UaX11KHIlaKXb6IruRxHMmebGMUrCqIov6/DxdQEU2fIusQc2fcx3RpZ5F6HaRgmTIM5OUL5ANOKaMxi9H/pcVGbNjFudz6ZtnkMiDqhhyqIbK6iit+eFrODmZn4I+dWMiD1sDVb4K2cwJb+DhwsGXWHaYRBK+AjrcU0D5Ouon3J7TCtPnsVuZsBpgf3j9rNRNcU7RfGGnl8JfU9iuP6LLMNj7+Wt4d+E3fBiIdfJnqFrPpd7eNFOjeBDcuv+R0YkSEnshxtjW4E0wrd8yaNCLo/grwUiocwPQ8ab8cBLCH/5DIiUymNRgI85zWVKOdCr/Hp19eif7wL56mrXbEmY7+AiRHkxH8e96iTR+BcKaLnPQJfYHhhZfzacdG9CE2/jYTGh/D9cfoCpRzgWvfAYivdHLPiuyJWSrDmfmh0KY2o5JJVRFFvjFn39zN2Hroy+UrEuqHnn6j1LE0wRH3jyJBQRhCA8eNo01rI/SsnVHdrCtcRTLLheob4cT800klB+3LM95fe32Dz2DfxksVHI7s5++qnEvYafoXh2B/6ZQaem3N2xgx+E0UtTabta2ek7AsHZO2pBXkb4hx/hYPY3xC966Ywm8oUwWIqK1bqRkBhZSLZjWLArPIcjjs4bsccGLfOgPLEf2XsyoezNh7eTxqJcqODL/8yI3MiICe9kbHv35O1/tyj4gRMoI8Xo0i72fJ5i3hfITu+p2Ecw+eoNMFOSouD5VlFBR3XgXC6EtzcCM+PaujRUnSKtpx7fNIuOJWq0ID3PZ+2G5/z7BUY89gClB/nTz8yar27Rez2mTAIWvk3KGI8INVqh0RPtPtsfgpFNLAgRym8eptPBMi1Ea8p3/AvbjmL52h6EOlWP3KxZk40VdSTMNbPzklZd4xVLRG2Pz2etgfeyNmljHwPm8BU3JdS9u3TcRqg7fK/gF7yJljs4Q8gXKUIml5RpPfaZfB8BALNfYkCVbSzIiEnPqx33zlFp406GVm6cKMEllLCY1L4M/2JANzw9aT17xWz7zINePNjaaYM8laO4j2MCNa153m2+qS8TT8objXk72gkqekcxwP+gUJoZPdijhuvLnHJrAWJ/q6yHf2jjswh7Eyr6t3ICrM6LaboKv2p4IGcqMMOYPqP+k4/ImHf/jRGf4VnVzLN2gGFzGDI1hM1MJwCY2isqKt4OQp9oeiLFJEjFO3oNiuVblO4WA+X0g+mfnZEnjumvha/NQqCXLWTf90znZPMI3r2jtgBTF2qqu8wwulFX2uq8oq/ZWwFInzWLUgdUwn/eTL3ifWOce7pLf9QT4SXqGtQ4t4nps0tHY3cG/RXy8XBM5qfpefy0PRWntEfTAOOoBJFTqrh7TE4JUMxFnKWrjy/yDrS78+A26vBRR1VKcJ1JDx7HWN8LBFfUiTtyTV5myg4NFcsGtnmo7ibrVn5Adc0Er3K8rL33WM6F4+7a8vLy6wLq2NjYFovlBdD1AW10HDsxIj1JJrqgfXLGJXLqfn7ixl7GGdZI/RpTG9d88mETSTqIT01Azkd3Bk5aSbQN2oxMN2lQ08crBUu/ypHo7OEJHblYGlAJzqasKCrV81ihvYC2orwKZQBHeKj8qounoZCRq8MJgr04EVFVo8h+BODuQf/RWQNZ/Qv9L/SKm5+KmN/GePLbTP7mr/ARwyvW3pOnzk5DAdN1LPTIlmUlZdsYOS1rUIUI6pXl0lGBHl8eztqMv3MZZOp/wSmCBWZ/Mvj6G+iB8ph69czaj9luqYrvFvH4OCm+5kKmc/UFwMXRVn9Dmc1eCrAdJbX/wjPbcI0GEOGlEMKI3lmAaaRPUWjZUM+gzP6nTMiNneZZ9c9krFV/87ZUeC9JwmzX0a3K7q+YHnWLrkzbYsZKyo65GyUGiuDKZ3hMA1P2oRpdCO6Sm2Np4QXGM93YVppL0f2idiY4aR6cOarn064we/bpE7cAo2KTv/xqZz1AC8nHRGxA2nLHKa+NDMxKDRV6kSH6RTPx1GXEyhdLNuyOz5Ch6NHClXyQQ6z9nB0BPKvZLGKRwkPQ4jqaqrrmq8XWeeivB39RtQyj7B7O3tRNtYySChlyg7Hrrv3vnkvN1o3kgKjCsVChl/ERxod6rXsCxzWSbV8d0WE6l50lj7zb/p44V6dcU+QTzMn55o+DLlTt7nHc3kO/eJ9mLdB3eAzj5BpSz/rWQ/6XhGlbWnkQUXSvchV5kk+m2vg+66KrpOciEaYlnuNW329o7tyDCSKVi3g2X2oL2U3f46ZMfTk9TjVhmh1IXq5BUfWleE4hNDIe95tEPammgCJdJRPCpgWD6P85ZeJG3IGMDqapHVX+P8qOjSQ+OMyRoyzFnp27d1N9tJbGTvzuKSdNZVN6DivCgTa6+5pstfez9onD0/Y1w6P2lraLsPbXFQ5nZcR/qHE/4N5KINd/SnC5VYbiRHQt/3oWHaX2TY3pfX2/Kz96rYmW4zR/RrTGtMG0XDkQ5GDlRjec46NO6b8gtHFBIDdPI0ZEOnTQQeETJcx058Tj518htfo0/UVPNSlBUWM14hwznLPXoVHl/5Po9XjnHyfqYXVXPe10TgBg6LkNeVszlLPTV8ehkI0lBwD/YLHwXBHj4ZGQUeH9e+KxuZzVCYaNZpxxX+GjJKS+LaiY+YyGn+OKNuvbmu07p2j9t0z6GDw/OCrWaYRPDv/1CTHyLkh+rIael+Gr50gp8WwiUQaHJC3W/4108Y9rm0Qxr3q8/Cn2Ik/bn3os3FDyN3BkD38Ytquv7fJDhgas+8TWl5ApEN8dmxR3e4ZwSP1gObiE+avDtPBsF5d1Iq/kChdXfBddW9Ftg/tEXE5YJuZrv4zRv9eRt7TD0y4iNUSwPmJ/twIP0WnanPV63P7wslCGv26dkKfo8PdoJv8JzlG0DFSmEFnCI8LsT0HDoi6/ltF/117b6O99GaGKFXSzgbT86vNesm5Inr1KDkxw7j2tifS1gG5cY60z76gAcIxq804J/qi/LmcQ33u5k/XKgoWlc4R84KirxXQOJZ+7oLRX7IiZ3+4s8mWrvTsbKJFo5geVBIx62Ns9bqcrSCqmqCZhx7AdCvGlcduWzgQRbcpEu3o2w1djm7aFHXyh8Mm+yJLW/BcKHb6eepwdu0GHm/hQP/yTwGmz0zaUnT3xZ+I2XjO/56coS3wVHqrBsdaSlNGMWSj++b6SHonOKpGuIao0p3/iVZUuVPfwrR+q7h/eRRBfRs7jP7h86W3svb7PzfhSEXtfPLFxPNl9PHsRZ498lzG/vTXtHMcPn8idHBajkvwOP+Z+sFzHInuhGppxV947TZ6x79TmB7uMB1zmP7bCwyKib5MYoDynZPpVPjWgVkIDeQeIGJ9x8wmG01k+MJT4raWflFQx7XVUQgnxEfVoxLW22oauUXPc/e1PEILuIaC6UGkyWwB03czU/MwOYlHMcA88+iYvQmmR+A3zia6dtqhMeuLXnz+DYijbRIbHumKPn2SkB7O+cdbyb/mtugh9I/77T9BjulSbO1hA6PWt0fUVqCjr5GdJmL5teNhx5SedkfyOct+lQ2Gu7BwBtKyyvXr098yqb74o71JnegT/Ol3T6a4SQOCj/7xgXwOaMWfruvHffgFCFyTdec3z+PZ6fD5+T7mdelnkb79GGNynC0r0gnqtj6OlnxP7te1/E7zCiXr3Z9P0RTSp0/97kYdOaAU47doawuNPEP0iU61NaCxiY3GM2wU2lRyoPUpKrPrqx63k3ovsw+WRewepgNN/lxYxHr+1A3hX3jK/9RJ6QxpihwunTYuy/GiRRKooil5x37RzAIBH/uPv2WtWiMDjOl8QrifOCxhAwiHlyL88vBnvp6x6+7HyZqTsXW/j9khhHR/87xHIqIEiCIqGFEo6bsLzo5C8B4I1sZrTgr9qz7yryJYnoeSg5mJBMMVvQxSo0hTeIxETQjUoxX0OJPkejiG1kU/FJHYTEhenuUWPMtyBPD0A6POw/8H4XrNtSagXQrIL/qiVSS85FYrZNyOuxyTo+U0SvOF4Q0FnwXXKeRLRCTvtJN/iZSbctKWEL04UdNrKF+FGycO9+yLhB8VRj7hIE2ZmJ1zCyMzElCvvTBu3/hs0r5Nhuyf+D2pi+9gwEjAmYGkKvqPh4o25wzuij7RoeuCa1CeiiwFVlEnnQLuxvHnFzLqng8fRSOO1vEHx2wyfDRG6W8sz9vXr2tCmRBZQCgu+XLUTXd5JNAm+5PgqW4JutvPZ9JvaRhpPPExOMmvHRbHa65Th6ppTNlJTsKHum+c0rTGfEa4l/4Sho2Ed9M860OUyNbSLNjbjVGG017IBN/coofFyAWzNUHReUb/WYaR1OOuCnnoPsPrdvQpPopG/2HKQ1EdYWngVBHPLMFBeeKVrF35G2icHrHjD2dqRjTCWom8RmOu69Qo/gRDsa+wqO2ORuRDlfhJt63go38x4qwk9SqewfR/Ek8dre5oZVShyEWSUeHDhOmvvzZn730+b8ceyjQgmDaM2ctEB/5KPtuJRAlvezRtVzzHdDpGJJxOd3TST8or8dAZis46TIPTnGRfXtJOijAtPDtMJ0sY8AjTdJxLsnDugtUzbaGomgetMzBoM54i0Trh2diRimYwdV7LqHwN07FLiGbRrnv/K2KHTCYKQlIxj3btFGv1TbKYpq8T1BXWq89CQ+ouLfgnB+896StoZVbRqnmxtFv4EzTLfaA8uqIqtzJN+cXb6D1G3yMGg+njo3b0kIh95RT4z3MmMtI9BRx1QiaOOzAGzXlbRN6YVqL5AzzRiIDSV+ozXzBohBPiAqI+8hX5QBYFF6lDyYra5YqOwYBaKlAEdz0D4POvg0aOHz4la5OI+k3Fxs5Et1xDqkQ/Ll+4jCmO/lk7dFLMRtLX65AByYnEVcVzkTG+tAXTIiLElDCtiLYE3/WQr3dEv2Y+5i7K2s8vg0YWNXzyiJz1Eo5plxzYtz/EgX0ASsrNpqKPJiIHho53kwR8dVPgqkqGQJjWQ1VvWDeHdl4CGmmXVJSHLAqPKvx0UTzp7yKms14jJ/Hnv/ds0lERO+awnJuR0MBZzv5Q8D0NGdSA4CX0aP8wAuie5D9LMpSjnzQxomf79IlO9yu4ckcfnFdbpPNZfagtYcJAg7sT1igXLAGm72O68qbf5+yDLxHBOhgZ6dTNHp34STv78GpLz7zHSmKbsZdJ3i9K3iXRoaimEtUlrvBFDlxUUTzqy63lkwYG/eUu2ek/egh6MYrwKKckv5U/GMO9OuPklEdmNmhhB/2Ko5+pIppFhDeJYxjRqEMiCvPT5Pjm0QHJ7upcbt6miEYeEJVO4/m5sm3O7vqHHqb2MUulNrHLPRW5WzStl42U0t/4Nt4i+3LFf1mi6kl7YAOb7eJYK0elmkH8QNKKSBXWS1AcV+T/bCZarce2mCtkSSknbAWhzo5HtHSfd9Llmtb7YVy/eifAJXTc74+P2VrCx7+e6dnRWKpiOkXz0FpBo1HtBEZJ1s+zS0hU07kVJEYbeyTwL0UMUQi2yqqrV9u0SZ+20i6lVsL6yyTTi7u4TQAAQABJREFUXdLFavbOihsFcMHgIaOYI3iFPtsMfwc6PaRO0xLyIRj9nzGaeOvDnN1G5xw4nFApkTeNaLvDjLkotJ+fE7cO5Jzc87JngxDEMArfXK8A1riFB65CWsf5U5GBI+ezUlfugFIdYhTOjKxFOrNpZ+Nq11blKYAE2hexKnh1+NCIfQpH6mGmD54hAjOaiJXavgVwSIkojD+oQ94WY1i0Skr0a+WeNByXBQW6G/HUeAejlZwPFmTZQpp0lb4Xfuo2jukaN+UETaUj6PdVkIaDwfJuVSAat8Crz06KMHqM2nWEZhfQj0rK175cEvx+YG4VSve1xTl77UqtUsnZ7a9i9DDKGon6BYeXNuca1vFqA45o93RJo4CnzmouIY3NBxyNEaaO3NSgmlW/Gm/pQHefWpWEP1qavxLZ0kpMOwYWoJj7Ac5y8kiMaY0mHOcjJlCx4svwexjLU95fDPEYwRQKUBFXRwc5h/mGNTiOYgEbpFKvy/T8CI0F9AV8dDSW9HY6JNdYRp7UMPdMgYv8SJvNIGQ98/Tjh0LwQVk7cxQOKcZigXQNZYP4Cb/U95JtoXI2y47H0hUiz/0rI8b7sXINq+mvgWC0K7qVjfF0vJnGQn66hvn30v+6zLRaaxNL65GXGPlDKjLog8jRmEfuWjnK7WAMrY1mGmZkFAeAnEo51tD5wAUJO5XpmptZRHAR+Wx9+kZsA8e7irXuSYoWcG+mEkyvskMmnBVgOoEsK8E3vM5d/JF/pDO8XMqGDhltm158j1VV7NWVYpdmjEgOY9MLWpQEK+N1+ISozZjt2egh5OGB2yoU8rc+EbVRQ6N2xxOeFcFLrRxUKeSIKFBEI8MLWTeVr6Kug60zUyRh3f4dH/1Xz1BfSmxLs6U2/oDP2rOLVlsn9Fck7uctOleVAdp8kponj47btw6L2K04puOImJPi5RLclxJdG0C/HkNuUQlY0tTNiAExG4uefIHVjhPpb+dsQ3W+cQN4ZGPGDv+B3kEBOMUZ9mlIY+FvvoNpTSPnWKwSKe3LTPcanFtSPWS9hXcawlonW7omZ1MY8J7F9NXr65mRANNq33vYlqtPjtoApr/++LRnR0yN2Gh4WlGVd6s3NVBwqkUMAdPZ+jLLw+cosh9R0p7cECeL7gJ+6zMsopUiGoVptnkQ1hzm8pPdfboixSPmgunlRF36C9NHo3PAaT+mAjdKMS5FBpA7LbJS3szAsaQwkAu6Wmv50Vdknfiry0QHWzPkhRec3gjbc/iYhpc7pdER2EIjuipHmzPk3yY7DHHNEZ/kCK8A05tIalc00CYw7QqmNZBT3qzYIL103AQwjN25i5Wib3PtSRhi2abmgizm0LlZaIx0GYFCQxcjZC7q1kxj89UFX8QpNYM2Kvdqy3yaugk5gacU/BAX2Z8NpuXsHz4uZjeB6aNHRoLV4Dkbl2pCBmnDsMNt3Vt11nlcwnphL8tXM0BBTuVT+cCmfXmiEU0LqBDmlnyGz0CeXG27+Mf1AX3WMBvBxo6mptA+jIYcw1BEeFTvT8atHtux6QPPepFjVUrfls0iLxlcS6U0EQnsy1R2Elu97j3lc1JneL+qVz3anqgRGrVNQ/FxAe27oC085WhEoOrf5h4pjkPpP3wf140sjuP1eyyRwe8psujA6bZgFoNQcmAOwsa9C1420q/HT4vZefB2xvwci75iHGPKnUHTeETNHzCJXAaRYNrxAT66CFY+u8yytUvdcmTnUdMOOZX18EfLY886gTn8wzw7gO/L1nr2D+ZSy7Fj/56dteMY/b59ddRGEr7VtMOfSficCqBchRCvaQOPBOtI3SyWsna2x5+YSaJ7MQqGRjruhRz46Kd4orJ27XqSsOcSfFkNTxA0hFfnxH/iTnYohvXEwyP2pU/l2K4hbu8tzNory5kbp9NGj464/CGF8l9cxyioE0CiXc3F0QhrpaTYw4MX81l29WOc5mZf8pov3eEXpCAf7MWRZ1fmfNMmcl+6cwxVLPrVgQjxCYeQx4ZQafpo0qi4Pf8mnY1Ce/Ydz449KGF//n6RrcLDPwiF+C/4etcslnwzgtbqLhU9K1e3DMYCgrqlbOj7CM8ubIh/3Q7/lfTiduv9bLkacsyYz4+yikU0iofq5044LJ85Viv0FB1EGSP897Air5hbWY9goweyIoltHOQcXn5Hk72Dwp7aFfrUjUHJ0zG5moUOGPmt7+KgoX2U37SbfnZMUtQF5yySGMgz6AfvkzBOL1iFj1jtBDTdzvYaV38rZQuvKHLTGJ2hecbTEHdIxP76UtYuPjdl717m5wMqJ+t28vB6Y+AIhFKFOprGsFtzrmYO9Qzgbej/Ym+xVa2kkWcwiszXsJgBpuWqP8SDP4yD2i6ABGwUiAzX34gM/eBzKZt1XZGLIGj16pOE7I0pr99+iUgReVoDyUGQw/D+ZUW2iMT3n+DIaJpWbMrLYW+spJ5ZPLo/b2v/h3kYUqcUuGS3Bbzla5ZAIM6uwzQrqnBclFPTC0XwGE7yaf/O2tnHJ+0tcgyUQyQj9+jbnp0wmaTx6Qk3lX/ouKi9ey0rrLjvOei/lrwdTelIqYuPwnSyYRbbLfSwmcJ0UWsxrUbmbV3ZJuuVmmuNdTgwkkVYpABYN4ykthKYdqBnX2A66+BJbBExlPwbIlaKAJ0zPWankng/gWiGcDViMAMXppCUE6GkWT1DmNOoWM9WHWVlg+yhh8ELIPKjKLvior+4pqGxgbZ5VkwbPTDtXh0GTwle2Thsx8XPe3YUtP3mG0X2lZM9tzr5RVZAPY8D9fwNEIM8GEr50wdG7I5Lim0GU0s3vujZFIwvj6Wr+Y95qRxYFr35msU+psNI1K5I1DnJMrmYUV5a31Q9C5hVklPeFzEhwkE7++HE3Q02lBN4449TDETIcWFF1GNMxcnL6gCvzmL18qQxnmkgremtm8nBKmfsNRAd6XKwnEBmWVODrCPz+Yr3iBQL03TWbguNcpheC+/6gxcw3ee4ZkxH6Z8UfXUHmL6SvKGFVxY5508R4Mc1zYYsPqGc3rNTNveSFDRGrAPO910vNGq3K58eeUHwQTuw6/mR+EDzNr0KvtGTbdE76Cyp+zSY7tDjEPdwPVoLuJZtJgfx5YxdwKzC/N+l3JYMyrf753ueTZOjhTiffmzcNjCweuItdDkD/kKdKFmXM5xtqHT9FOGlxd6GF3AQ2oBpKZw6MK12Ii9RvUMQ+tRHfenHx1mocAZT/dpe5U2mC4egu5dip59n4DmnwrMLT+9og35xoS1bkLcBwxioIJ7fu43kfJxHP47Ag7QQqho+fPgM33uQ3Mx0k/bPC52kXfY3TNDIcX0D0wbv0nc/YISCbkQWneGiGg0cnoW+g7DHK5ejDodT1SoGUQslj5yn32/+Qsw+B76ffJ2oKwnvypVWO92f/mHlrKGzbfaNJEWdjTzJ0VTdumgXRafRiy4BbA0dKg994s9x/EdyjD4jFn5v3UUMSnDe6Ph4SdoqSdeZBT6nUeVwnKz73vTsmIPZWukrKfvmqdjmYTG74W+s9K8A6rCr0dlB517RR0voHHAdGWKRYWMm8xor3kHY/xLrOO4SKvddWo1EKxsBG3w+6zDml0mALpdD8F7O3maEqaW0OYTyy0fGUNIRN/r5OytRlhExKuYRrskSLjz1xg3/tLpZJ7IR2jjbvAbvs62lyxAb3m2lxUbcaqlhX6ZitcZfGr8Of0P5VqcTQetKQlYZkbW/IeiraHgJ9A2lD6YzEn6ZKbe5m/zNH0Nv05HhAMBeWSvvsfTCr6MMhmHgkIDWFjUUXulFuPnMh5aY9BTO9ScxGHQiik6O6jxoPG9sBAPGfijwTSuhbiOaFUeG8Pft04yKprNksJhzWno+833PFkJrT+Q7pFUOVnrRNZZbfbkDgIu4caxVBRqljy0FMHMfWtFBb7FXyYEoJp9GPWYFfX0BxkCjIJX5K8l/+XfOhiBgUhhDe6JIiMLNwnG99f28HcQgTNNGPglBBSTBNrAM1qt4lGgW4WywE1zgnrnLf/QIiV5iOBLb3ZJT74Ong5pBqpwLBjh26hh4FewZ9g7Owh8wxlNw6D+oQWkgA9OIsspGPYHD8I+VhOuh3zkFkkgSGXONayzz/nlgbCMGarkz7G2iUYYzyoKLLidZ0SS2UNCKU42IeAh4tDoYctakKIqE7U1g78tzPbtzXt5GokC+eXSU7RsUiXE4tlKU43ryOG59laRj2E5Qn2eneA3jbGt67yAeOc6NKIPH75J9zSfVTCJz2jU6PuAXVjTmYhHMH1jkX/FGYfrPHRS1MTjLWwl9Pwlun1yJMgErJ5EY3YWpWBmXsLy3NGd/R1l35Zim0ITp9IZ/WHr2ySR4jrMta9uO6VjXoaxOXGF9xt5ufYadB6ThIUIuGrXqsxuDi+nQqERsRRD+QX+ux4FVztUx0HgAkTeVxSty9jz0a6VpcwHTUcJJG5bfbRs+/KatqRxq3tYVzadb+6XngHHWObnAohOfAdPHISsINDSqqnp8gBE4y2dL7+A8r1ifs5swDEkwXQqfIMFNnfdGNqcjD7NWkMtKpKEE+nWOB/GX493HV1t+3RV0ClunNG71D+v07or62WEaGckvsL6HvMc2A5MQRYCMQdbTm+DjhMERO3ZKlHzZCM58zh5h/7/O4KyCppyCE3MwidnKvPiAfKxXMMBx0aabJYtyXrLVtuGDH1ljxdPId8UeYnoYuqePpabeDaYHboNp/D47Fd14DAntcmreJuflBvrzQPj2PnrzJ/B3Kn2tcy+RXP7MIuSQDsiJRjHSbVexGryci6JCQDLL9gjTuUgnK+7+Wes35Rqe6WNa0qh61eGfmBhlejJqDQyY/o0teZlp4Z5gmrGLnXhw1DajnF5gdVkPMB3qbHFRDkqUhU8NOKfr3j6UrkEHN30Yqgx3yW7/gYZIEVac6FBk0K8sOfonrnt0n+yCzGEeTJ8HXkYPBtNEs2a+w3QlyeNacCZf6XOHxKwXn1XoyX/Cx5nQP4rBjB8IoQIik97658ybexogQ6bqwbTa3pZSgu6G/7HRt1t8yHk8HMGCPtGoLUpKwcm504Rppq6x03dhA8ur8ZWkV5DJz5PHloOgS18gOkz/y69sJkFfCEFnl9/Fpv3fgcah0LiiLdT5arCYzXjZPDg++RlL9f4EmwBn7RDyYm6svwTPpxo3scRK8ovsrdTF9qnkKXYw6VNN1KuNo08bQhACGjtD27us+r8eX2gMdGvQ5RcaSpAhs/Aqy627Gjs22XCwJpB0QHiZqYhOE2+xRJfJdD5xIbgi56ABxmiJtAMdHTm6S8TtpeJ3DBWh/JwHyqPH4tFrPljnIhJ+jfgBaO3C31m67PdsszCFcKWS1cU5zreyNBBvzTAlEys9wlIH8H66ksHQyFQPPaBEPyXGrsb5czRiQMbgcbL/oQOH8oOWIPwjyB3qGBhbscEVaIgAUK9hrTXO/zlTx/+k4/rzHGmu5quCi3fx4doCc9IfWLTvf1pi1EU8B2lmWC6zloDGDxHsrOZr9Vh+j4NGffK/zaPzDEPngmbQP4xziohohCI+Ohqr5rE59/cB53quw/o4b2QXNG1/ykW7RCPvcxzyOysa/k2eQSWu8/y+noUD77aZ171EWKbQBDknIlk7fy8FFAn6eBJDSHnszRxyNLJb/+aXrWne12g3yNVeKo6PPKDlSj15ByW4Rp6EQhm8/Dc2+m4cBEYpjm4+uIuZU5sHIJUr5Aqj2kkMBOXoaVft2ZUcJdys6kqhU7sCS/h9OvUlZpm1j1pu0bk8bCK/QUebaYQ+RSzZ8CV5wAz2BZqOwMMcaRGK+nOO6HBzkgySGIWNQl+rL+fCPy1+caNGXS4HFDZNZNRL3JAf3I1X2rT8dvNW/NQB1AmFNE1bigsHsaw71dNSE24mMq29vnwaRabY7DDNp6odDKa7Q4ew8iEDE9fpwTlVG8cpHC9lLOdKuSDZSmtc+FvLrr++ANN6sK5uXRGmmxrXWoeu023QxKtZxarX+bTQqIjUaqwvHy6heSg0aFGNHERtQlqNYAp2HRGKATj7zVUHeGmqX2ur5/zM6ra+xF54Axi8QHdri5pCW+vxUHKNH5CYy4t/HaZVkY9p6UalIawJdSOMHYcNzKsLA2I0SJWTswy/SXk5pRg7Z7ADGr2qOZad9z0u2kw3A6o9xHSuaZZ1GXGtdRv+dZ4hTPsEqP4K5O196Ra+a9HSaPACC52crgFLiwI5HUmkdxAkbMvHuNVtfInZ5vO5gxvlmbeaRj2JSgsxPeY+Sw44E/5IuDhHkabVmxmaMU2UajLqTWsCgLfNEpaIGLnLcfwnCEvBT85wnKngNQ+Zt+jLe4Fpcu7ImYlG6qz3pD9bh57HYOh9WXRV8M9KZG6ppgX5X3sG9nB44AS/F0Oj8ljD1Zd+y3QnJx2mm6x8yW1WueIiZjcmc4xW7xGmIaKon8UPuAFxOaBF76hCWPqhZBEMq/QH03qrhSK6SulZqXNSI1xXjKMzAvo1k6OYi/o0z/smM4t+a/kNNxboHT1YbVBpaZX/W8fD88Gn+pV3Gke6HmfJcVcRUSYyvR2mtdgnfOQobLKm+F1/cniBfAnKFKaCmySkYcEGaNVyrn6VpeddTMriv7BP/ag+tNOFtIQ36TOkL/jugAmNstP9fmrFo35q69m1/0jelnHLdg7Wm4mL7cSiU+wQpk2rYZwGcNoipEz0qyCcE1AH0k+OMw7T7PtWOQs7fSF1IBTYQDhLhYA7V/8Otvt5pk5Hc4L5YY5rd1I2X3dLVUWbZEKd4gy/HszvI4heuT7it4yZOtRVyD+aY05vnWPp9b8neDAZoU3zqpyAQK5vS3FTOkRGsptPt9jgAa5yCYd2RZYg9WHe1hU+pNScA8gB0a89rzQq3gaYjmjdw0svt/yb1+T8FYM0lbbAxT0jkU6njev/YF6vT2J4j3eKVjWIZ+NQDAkEW0WjHjko4ikfzmGJB+fEPNHv85gL4KGmIL2NL7DEl60gUgdyI6NUconaXng4oxNv3c3m9Z6O4dWIF/RxWPzSlB/ur3us5Ft0qIgdcvgOIVIourZ3rpwjzRRFpmwmhK9xfPBpdLe38R9AE+XF0evuI2fyCGSUvgakmvYQjUr6j6M8VESeaJTe0FTqZNGPIVaRLOqY+yVG40jnGteRF3k/N/T3Tzg+usvb9g/44N1P7Cj8GPVNQT9hEYIl1+KbkohdDIHKxS/1v3h4EFhRHpDI0W/RLZl0/Axo9Ko+pO1/pJFjuUjakv7RxW0tOOG5ujctu+F5BuSjqAwggGm3OAQWH4wSc7zhH9EnXmkgcHCfgPaC+nRO18g50+Aos3U20xzX7zWm44lB7lU2NWA6NfgsvwIaKxqleMcQIVLTRaf0ipwrFY3I/aP+v0p49gtXi0gko4apBL0mJ1E0lQhNg9UootzmwrPAdH7DdWD6U2ycO92pS9UgR6kzg8kD0S0qhZh2B/hH10gxT+7l89cNPNUiTQPzGhKPvsnTR3uHaS23H2u1a//HvfMuxS7aYaRN9fdgtH2iplqCIj2oIlYOAS9DfSlwfA7PSUBdjheYrl77GKJNfm6yN42Eh3uid+SUgbncugcs12MaUSzwFxhekaONgHeIaejXIC/USQ4N3OBaE+Alz+BYukI6A+L4X7qRr20s2qnfS39oVWtnEgmcjEojPUGhISdP5vYHGxnwSnwVrl2BmPFyrINjLZzmLMeiTA82Vs6zmrW30E9EhpQjuseY7mL52tfdFGOUvQJdLqR6EuGTryHHRDpFZDZjlp9asDCVxUgaq4Y2vFk3uutJ46kkvWXDDYHuDrCyB3w0MC1b6pWfioP12YB/LZieSk6nIv3Ci7NzfHc8458p4F3fpQ9bii5Qq8iP2vy65bYyO7JXdpoawLS3/hqHaet1rA+Glgr9b46olq/ilwahfXHyRb9kUfT7l3HAYboeO/0cqWzvNmM61rVHz8tFfIT3nnk1z5FsOckSUsgCGRKif2UEpBwkVBKkgrqd4nPnOK5zrugLey15dcutfvF/I1MKW6MxHayDa9r8IRr1Pr53mIOeQhRrEBVyjOe4HBOqFJ2Oxu2eHR4rpFuXaKfhrDzOJZfxi+GbQyYP2ePCvRFe+0GSdrTLVAZ8zKsBUjkHAqWMvv6awRnUI/6F50JjHJoWbZ/hbX7FvOU/g95h3KGu3ZuCsvO2svFbI87BVLoFzy9QJGE/hv29fS2iW+1o4aN+IPwR9jVDEXtr/gtNOYnb9oZGPROr0PQGz+nOdiKEWbUPkdMOvpMV8kr0FpZCPjbTKVlUJJVQb3blDIYhtyObQ7htb2gEWexJk697CgvKKxfYOdpXAiLIpzGURdGhIp7pmPpXf+KlPkWzi/Yii1rEkV56E0r0HZ6P9XMupO7ek+JjOlfzDzANXjqOEFB4kP58TBfSGPZpSFdIpz4dL7nX7cxNDkjTkqshHiW815jWyLS7Nda8byWdJxPF0gIWaVdf+lVv+CeqwxIeCz/D4/qMwsc6pmPWL7wMJY7ldjqn8O7Cq1v7nQ0yWRgRKW3BtAyv2BnK4vaYLnyy+CwKQkxLGXubXrLcikto/3DO7I0s8mRNfWc34LOQM9YNGt1+gXRcoHckY+FfIV3iX3hc311xeNHwIGtVax6zmjW/BD7CtByDPS2iBT3T+Dp84KW9vB7JRcPaiGnR6oqjET3GOwczK+6w/OY7wfRgTu0NHyWL/cjz/TvpSOPcC58h0sfMdnxs5lVAzo7kUMLhZh7I3ytfcqOla2ehIhiI7bUNZARU8yKh8SksskF2xIsCTDt5DDEb0KdLnM4JPkWvw7tOgBfldWWX/Dfso49dhJLje1zgIxs45mqJEnU+ECdrAOS1YNrpFx6vT9US6h1Vp/4VVlqK/0Mbs2bJ6c0u+SXXa3Sl5+1dIXREZHSN1XQ5yIaw6OCU9LP0tjK62ViXJatrY0favfFRxoYWHPUdP/HN6UU+m2UxaIXLNd9IvuxKYRpdG8hi4GCJWAkT02WVb6OMx7FbwWCfA+oEBKxVxXU2l6vTGtdbPYKVKb+fPhvI7Xsj/EHtGoVnNvO+0VUYtQnk4CFsAmlbaaQ5bsRCYmnT4qswlHMRNAn/3nYcvNLUWMPbzCJlcA4mMvLDUDoBUxvawEd4rukYrwLBWvRz2IfwK3KyVwAVDfArqpHQU7Cui5s+isSZS3MRGJ1vLY16DmskuDyDYGWWMC0a6R/cDh/2qoiPvHKo8kFWJI6ga8b4bRcfWyuLql+y4SI3acuufdjyq/6Tfia0vtf9HDSOXfFylc8RLsbJkgMj2gKjEVyxmw/aGSg5rbRNr/gzETacF4DdLngRpnPkr1S9g886HkdrkF9fW/DiFAhNc5gus/QSIrQVeik6fb3XfMQI0T/ZdBlO1lorJvqS5LVazsmSCLW2r1176GqilPXVi2zdgquskRySqKbd2oFGQi5g+i0GJSwKkd7RKrA9xLTk0St/y7zFl9LFyOdeO6k0EUzLqGWq/474dSUCA417hGnhTs5V3mqYzahYzDS1DQi6QR2yN0XPFqYfANMjA0yjz/cA05IZDAyLAh6y3Mofg5f2xXRTxXOWKBlrqc7DaHuLk9W61tNO5NHhhQhgxdLbrbbsGvAyktvbwQaKHsQmX0WUpOMBODDYVsn/HmDaOVdEALNLriPj4VH4yLRbe+BF/QOmc3UsWuokO00IV/0sEWoTpmUD8SVYZJFZeCVznYvR3zjqe20DIYRBfLThFduYTtko3uN5Sv59tCVbibA6ZUcOFpV+tAQ8l53OljNbsFh2mv4pwHSBgyVjxEoOHJjM1reIEA3HyUIhc7PPHBGlOrY3wOpcHecfGVx5m3Urca5uIBH2RlICJnAK56BdCjRKaTa8R7RtDQYDoPI6DKSZp4cdqIp2RGNAv6MRhvCOrKZFOFeVTxIyHAyN7SD8ro2iEcev+kl0QBovfjQKmRiyaJLxVdkpH0MaEVCu8Sre8J2rxpUIvxw18XH7tumBbS3Uw47wXuVfCV7xAk0ilr7R4HiraIQGDK7yhTIbniX5HkWsLEWtRHEAbQ8aeUaEnY8r7iSvZRBbnxCg1277os85MWrzjupRG/iTIoIe7W2WXf2g5ZZ/m2Nj+dM9nN/rAh3CBlPUuXJFsobgZA2jzqLd0Cj6VLloRG5FI6Pc9Aryrlb/gn6eyDlkuV2KaISeNK9UkZNVMsJXyK3GNEQQbRGmFY1uWnK95TbeAqYxaO2IF71JoqnubZysMiti6iNV3Nfvv93Kos8kKThtWlpXORfn6jd8PsOM8OB2pdFiTJHhwOTI1o2Aab0qyJXd0qh+5kqcP/W5V84Uj5wrpqsZ3XBMemdHcszhNhU5q2zEWME0XK4zzgF6R7vEO+Mb6p0d1QN9oaFwmG7CuXraKhb+GOykENF9gek/g+nB6J2R8IBo9S4xLfrECPHRx7RW02XWMA217DvIp6LH7YdpOW/as6qh/DnyvodaquNQnwe7pFHkiUjRyJsclDDOIpqKpbdZ1arL6If2xjQDYjkwVe8HmB5EvegiZwNFA18/IlMcF4kqwj/tzNWzewCYzm/6E/pLmG5PO43s1b9BJGuje/VZ1GEawlqDF0cjeMHZz7HgJ7PoCl7k/SJ2egD3t5+djmKnN1fOtJGEo04t5S0U8I9lHjhYFUSwDrd7YyOJYLGKdhteio8Bj4UX7vC2vObbaeVHa3uKAkwXOFjqFU0rMPdMwlu2HMcj0g393wOHrHMANLWc4oSJTwk2AiWhVDg0n2UUTsSlfvHVRK7u4j4JVnt1mipWQVloGWnDfMKGTKXEe2JDtJ9RJ0eDL1gBE3S5o9F3/DRnnc+UW2bTK0SufslufNzPqsH2EyxVqIKBZIm91T5vXvVqhLeXc2AcjRgCvxTSiOIQH1FmGj3mmwj3o+S8JZcwVVZOG0nqadOSvKCKXX74CjlHlChXxwZ4qd5E7bs4J8aN2ty929KoF79qZKb25QivpnFcMst+RJcwqmBPEV/4Hbp3WXPrTtLP8MQiPXGy/oLjT928SDvC619cxE39KjkMZVEg0DGUh6ORXBFtU5BdiTJfTXTNKWL4rL7ZBjCto+ajV6md0KjEX+dk3ecMm0ZrmnaNiB+ungIaA7xIuclBzTPFkauex7TgjeTuXUM/h4qYe9qliEbJIv2T2YJxfwaSeK0KexPp3XW+vAUVhXwMaPQxjSIG09nyt3GuSIAtvxe87BtMR+O9LF0/h6T0d/FFepI7he6Bj8ph8cu2fBSWFbGS0c2C6aqNL1vZh79w042x5FDkYl/oHQZztc/QZ+tYqACmtecS03F+LoyoLKSRSFCAaR3Po3y9sqcst+Ri+qKavm7PAVPAIuqJxHCytv6VfZkb2LahN/q7M9tZdHB8cvQ5GoPr6WthOuqcKBYSkURctepB27r0+8gmK2X3Baad/hOmZxARJNe3ANNuvyeH6YCX+qB/3aujnPPXCKaXMC1IpHf1z8De+KBd7YlpbCCDEm0YXb/lPtRLF0sU9wxkUZhWKexnMCY+ysmXDQTTjTj65Yv/YDVl1xY4V+2NaQx5ehODu+fBN9NmvALGrWh2felT2awbCzAt/ZhnkYpX8RbOFdFyotGWIAiCG9G+RXaaQAN7Y3mV7/l2mtcZOd0oB2+HujHQ3XKk0VdZFlhkZKfZ4km5Xe2NaVmD8kgvG51ZYKf27sMiB/wDMv4StsnWxo+1exOjrT8bkDdzRnQFmPbttPJwn8ROY1+0fckOMF3gYIm9vkKWgGkPhszmO9hPcBWH+S2hIrvLKWU2GVJukPotz15HHtOBmar51shWBw1LvokvUMt1g7mnvZWcaFRR5+Ehs0LR2/g/jK4rAxo5LnkniuBA6ToS5cb0izbAzG79wNLL/4TRVcQFw6iX/e0zGmXYGPU2rmDUf5Mi2hDmOydOIaO83EZ8UjiET/PsaZNjLy5PocZl17F0+ypu6AmNArX4qL5p7yInS7lETENuROFl6WeFN6FHCsP1Ncvd3WuU2FcmzzJor36lZTe9bOnFv4L3t3LNSDEcwtprJB62Ue1Vf/Kp9y9WET3YTKI/o2r3HjaFnFFofl/LEQv2I2NFlle7HAf1GSIF9HPlEwg+ozPHvvZSxIU08kyNHsn3yVfci+KaA1KQLdGNc6OpaG1rEIGPIiLPPmZ5NgDN1Sxiwc0jTK1+B/4vgkb46Jy/9lLE29OIHMkRBNPZqjWQIkzDX4qPaWgMnH9hWlP8Hsm56dV3W2bpt9C/9dA4iKv3FaY1uCsl0bjKKtffwh5WrIKUHhJP4GUMTMdwttzrdeBwVlOqYLq24gPbsPSPtmnZRTi4xdiP0HFRy9q7wC9e8cEyTxKCwTSbiebBtJvSdI5AqHfoa4fpCpeP6W15k2jLtWD6atrC/a5d+xbTmdq3rHbDPWAa+QuiG3Kao/AxGvcxrRcve+ktlq5bybUvWfmiX7Nq8Db6YQz3yPzsK0zzbPiYryJvU7lo0sXSIdI7cqQ00NQmpaJBq8XBdK6WaEvZ00QKfsKsw9PIopwrYUUy7MDdTp0d4Fa6mt2968vv5m+ew7RfC9suQJ82/3WyiGwK01nw0lS92CrZn7B84Tcto/2q9jWmZRtIDMpvvh2nfy30Ci++/hCm3WamRIFU8myho82Rc6xGz666y3LLvwOmMUpxokL7ENPMqSNG2DYi315dDZFL6Aow7etu+RKiUXa6Eju91nIV71tm+S2WW/Uz2kcbY8J0e0WuqCooqrUch340A7lTexGooYOxiCygb+Rd96Pt3sgQ64/OyQT+jmhQ8Ek51jkWxmWX/s7y638H37FPO8F0ZNjocTvR6BInDIe250+vIKFuAis9prupw4g2PpTw82oYj6XWXvX7JIsT8eJQxI3C9UgZs31dxCKA6bEbcnYj03FH0p+sUikagp+Ah0+RYOUbVtGMNxGuV2gSETlFlxx9voFxF+6zf6BPCiA7F0VM93U+AV5OZVkeoecgPC7nKl+7iM0GX3P5YBFNb5AntX9phFcZctEgNdb1LGicCB8ZsUtwZCxwrvLMgXv0c54l8JHUKK5F+J0S3okItRtPJYviIyBLL2A0Q9VdvkyiJ7vuE0nQFJaMhaba8nWcr7yL67icZFUnw66v9xONrGLKNy2GNX3pwtOY6h+NX00EUkYOLzuPIs7Vssv61of8l2IrNO8MxH7ES47X6GRWQtsEZtyPYppBNIaYJqrWsBIH8H0w85yjLeJGuPsX0zmPFZ+MYku6HGPFbFqYLBnioggQZB4v3E7Xr7SGqn9bfeWrRAlQjiQo71+8FGC69GRyTVgwUjQQcWP6RtMgGIt8/VKciJcZgc9BZoeAJYzNfsEL1Ti85IkSsUM1ajLV7RxLgum45BJM5zEWHpjO1C22xq2Po8pZKQim9WaP/UNjgGkZTmHa+TNfdHlFkVRfaFY0iKRj8JKvw8GpesD3A5L7G9NEfFiqn2taQl7WQEt1PcUSYDrOC7bluObYdyyL45IG043lD3Et3ay0GFf2J6aRt8wqMM2ioNJjwPRwbCA2hM7Xq5Ty7P+XryGSxPS5pt78vLX9i2lCuNCyGRhAX6fD0JGDwQXRfniVJ6qbb1xJP7Oiv/p11CXBCUXA9qGdRiPbYqaDTysqsj8dMF6vtXHJ6yXswfJmVdZO3DLYppKHV60djHHk82n2gWMwnK95FUzPh/ah8FJ+hpw/8fKjZRcOVngxhk3ePPuE5LMLaS8VBXIj4Docx3EW5GWKGQLMTioLn9i+n3SPi6BgddnPIp9d7PdJKNvQ6AZwMRwClyDHyNE1YMcMaV/awqeJRtEHb3AI3GtPqv7hKwxJFzot0ul0ol3ruQbPwK1jFR/3ZwlodM7gFngIIMXDcICovtY0bHyI3xY3Zbk/HNRCHqgz4aMMmAevsjhUolFdqVOORqJ+Mrb64aaJPg4awYvqzq6EvhpfHkMa5SfGBvAHna6fuW6/4oXqBAitk5ZjijGzGqJ8DGYdGbDXSo+DNPim/ZkUBXZ83N94IcqCJ53ziFJnlzi10py+ob6GrBiLAaJKadAIvFkQoH+/FOFFKpoOZVWuZVe4fnY06pRkUZtlabsNRRocXkKltF8IpBIRog4lyiKsZHFaQ7zoqFQ7716NxodBo3CF7gmimnzZT0WdKfvS5Aad1rQCA4bxEmx1qjMDveQgnFX4q+jHx0pjGhUOfbz2xombOCQWi48s5IoyeIdA/v8YMC05dDamAVn8sEUWIafFTtPPsWDg/nHaaacTF/s8DCEB+a4JWuDj3jW47zEt9O7YwTIcrJyduHitTUm/apWIpvrZt9OfZtpznd/HrbDTrXCweLArkvZAobjpD9UoYRKHcAacZuH3x1qcxoACfUKviqMLGh2dYW/6p/brv24l0nsWGXGDxYd8Dj1R2Vy9IjAQaJm5lzAV9gKe8UB+7m8HKyQn0BiOh5L6sJ+l8UI+7m+nJaQt/AxpRB5dP29Po3j3ccui8BJqDcliSKNkMOTjx0SjcJwpY2eSY0ipYtqKvla0ICwRVsllVz9q+UUXYvQOgpX14amP4RNHy/cEqDvAtKwvePa3dBA/P84iWRRdhbpRelF9q36WLP5vwUvAy0AW/ZeIh7L4cdIoeZxjyakvMwYeAcsYlAQ0KmfHq2ZrkHePJVo9GX62yCkX7efSgml/CtXHdLMcOhvzMWG6mROisVAWodHZQPXv/9npZjbxRVz6iIPF0RJbb29GPmcnJk+ygxngVTssC+akpyB/mTkXk4v5Bg8gwrYbO606Wlmk1ALh/rhlaKcUh8qCC/630SglLJoYMSqhnPlWVAjhW/5zBiRHkpwzyOKxgPtxFYh0QiMwflw07K7e/x9oFF6k1DQS21179vd5yZccE5Jzmepw+YwYB35Bqp9jEomV+PtfaTD1sdIfOFIfKw276h/JonipP8r/SjpFoxw9ckj+19EnWfRlLKrFVFoVzubHvm6ULLJMv2Fj4KPq2o+ztGD6fx8fQ778n50OObFnn5JFdLYWeCj9JM+iIKcXAztNPpk/0BOedi+PbXCw9ozc/7sr5ECg2WR0NVWIEuGNaZzExZJjJSXtUOsfC+/6v8//40D7c+D/sfceAHZV1f7/OrdNn8lk0uuk99AUEBAQLPQiz95Q/CvyFKxPLE/x+VARLOAD4SlFATs+RZH3EBQRkJ5ASEhPSO+TZCYzc9s5/893n3tmbiaTRibBH5yd3LnnnrLPOt+92l577X3Ei1IO8J540TmBGN9on+sM8Db7vr9xXGOMwG4RUF6Ye39dSTeq8+nSKbrW6NvtpfGBGIE+QgDd6PQf9lh5vfp06UXcJacv1XGWnd57iR2svWN0EM6Q6aKB3FArm1GUILZoBwHruMo9IeCiVl1D/jCg873EiDEz7gm3+NjBQACec7wY6kY3SdDdJubFg4F2XOduEHCBjpIO7NKNnKvtrt+lgMluqoh275sbFp0df8cIxAjECMQIxAjECMQIxAjsFYHYwdorRPEJMQIxAjECMQIxAjECMQL7h0DsYO0fXvHZMQIxAjECMQIxAjECMQJ7RSB2sPYKUXxCjECMQIxAjECMQIxAjMD+IRA7WPuHV3x2jECMQIxAjECMQIxAjMBeEYgdrL1CFJ8QIxAjECMQIxAjECMQI7B/CMQO1v7h1Udna4pn6VM+27N8u4/uFFcTI7B3BGA8x3v6E332flV8RoxA3yMQ8V/03fd3iGuMEdgjAm5VEPFfVNgu/xnt3ofveB2sfQCpb08praXhXq+Bf+sWe4nW3OjbO8W1xQjsFQGnTCI+5OwuftzrlfEJMQIHAQHxovr9+taCjo5BD8J94ipjBHaDgHOmSnY6EC9SHBvuPy/GDlYI3yH7qxeZJ1Ecnsdy/G7RMjVekheU+LzIQq/O0Ss39r8hD9kDxDd6BSAg/oLP3Dv+9AqI0mruju/0mxf/utc2vQIeNX6E/3cQQB86XpRuFC+y4KOn9+o5h0uP8RLDCP/vIBBT+rIjIN0In4nnSnY6tMbal+bNAiKw9OaVfaA1drD2AaS+OCXpFS1VM8ryLY9by7yttmXrUuvMd1K1Zw3VjdZQO8QqCxt5YXyz5X0/ViV9AXpcx24QIDKQGm6W22y5JT8x69zAa0a3cC5KhHdweTVjeZnpQrPKkeyS8xWXGIGDiIA6munxll99N597ePfgSmwbfIdz5VWPcjzoZcZBQGjqDiIlcdWvdgSk7xID0H9Pm724wgq5Fy1X6ID14L1ME+8nHMgrPTejJ3ln5j68xD12sA4yQ3k0TCZVaa3tLbZq6QrrN/LHNmXYTDtqyDirrKink1a0tvZ5tm7Tb232i8vMtplNmDzDkskKGjZ7kKmLq3/VIeBlMFhF87PzLFHks3aJJdITcLhQHOq1ZbeY3/Z3XsM1R6/iYsQQI5dq5BrxIg5YXGIE+goBFyUlKpCbS41ZC9b/gCDBVEukhmHPqngPHMpw8734+PP4sG04/5kpfMOY7gXbfUVIXE+MQIQAnc8EvJd9zmz1MgvqpxG1qgv5LTvbbAsdz/yLbgDAMjNRkNKnuejiXb5jB2sXSPpqB69yTmCc+PfC80/bUUefZO8882Ib3zzNRgwdZwP6D7bqykrzCYO3trXZ+k2rbeXqRTZ30TP28wdutB2tW23yiCMsrxefuncj9RVdcT2vTgTogaEMgtwsjFg/qxrxOatoPNxSteMtVT0CJ6sWo+bxrt2s+Z3rrbBjqeW2vWDZjfdafvuDRFZnlGBTRCuOJLw6eagPn1qGqbiVz3JLNb3f0k3HWapuoiWqm+G1fvj6Kfcicj/bYn77citsX2j5LY8SPLid0esxRBDqMWwaSoxLjMCBIlCmzzQkXWwxr+40s2POIKDf3zLJytAGF1rhxdUWtC2yYOts8zdeb16e6FbmiJKTtWsH1Bs7aequew+U3lf99YGlkmlr79xhrYWtdskFX7HXHfVGGzMSY5ZM4VTRHvxxjpPsnv4lPEvyaW1vs/mLn7X7/v4/dvvd37UJI2YSNyBDy/XYyhjhVY9xDMC+I0BkCh4LCnOscsilVj38PKvodxiOVq3jw7Aeem7SBKV8F/Fj4Bct37rIOtc/YO0rvm2+X41xqy0ZtpgX9x3/+MydEJCjn59tybrTrWLUBxl5OZqgwdBQHzprpD+OGflWLgy5WPzzO9dabtNjll15qxVb/wL/TuO03UcPdrpn/CNGoAcCii4tJKnq7IxnN86YaSl0X9EyVh3Mt8cqvminVZxpr/U7bLuuc+pOelQqEt2Yx9na+qwV1/zObMMPGAEgmuWGDNGjZSWOYJWB0Tebcq4ytq1tkw1oGm5fef8NdswRJ1pFutKyubxli905LVIaKnKglHOs/lhlusqOPuwEGz96io0ZMcH+49aP2fj+0y2hRPhg58ZzF8d/YgT2iABKAVsV+HOsdtx1VjvqX4gQDGSEJY/DpTHA6OLSRinnKhyBYXi7foqla8damu/tC75mxU7yY1LkKMTRgwi4+Ht/EHBR1NmWHvQxqxr/MaJWk3GsyDnt0ovOw6JG8aP0HYoRI+jcrQryVEeeb6mGKdax+HrLb/hvgrKHczx2svanCeJzSwgoWpXfYFY7GXZjYg/TzMIC70kB0sF0/Ccn37FleNypyGS1JQeeaIn6yVaoGWfB8k8SVVWUX3wb8TC7GgcMvII9cekjBDQs2N7Z6pyrL1z8PTvmsBOp2bNcruCGYDQME31cW9Ae0W99azQwly9YTXWtTRgz3UYPnGS/fugma6oZQj3dDddH5MbVvKIRkLAnnXNVP/Fmqx39LvQIeX/FrOM5/nA8+kRARL/1TXHJxklL143D0Zpm+a1PmZ/bRC+ukoMxPzqM4j/7iEAYuUoP+5RVT/w0k34wTD7OkTqOjhdVTcR/Pbf5rfOYAKRoV6phBnyI+dv2exz+4RyUMYxLjMC+IpAkB3Wzba45zCZP+IKdlVqKG9WGRstY2jbbquQJdkdqog0n7IG2LFVa4k3Hq+g+dKOXrrNEA3laSSZhbLqZgOtQzlXHICxhzCv6FX8fEALOQWLor5DI26c/eKUdMfVYyxeKViyiFAgr7lPhtARrOWRzOUunM3b6SRfYlz94gy1a+ZyliYzFJUZgnxFQtKDwnNWO/b7VjLwAxqrADuWwZfsh9jpXEQaUSQVDOfWTv0a+FhTI2HUpnn2mKD7x1YqAprgXV1pqwPusetzHyW0Zzu9wFnW3c7UXcGTY9Cl04mSNtOrxnyB/613w+Gr2iynjEiOwLwhIp+GQY18rJ15uXuNr+a0o6D7aaHcL8SLLKqFPlRSfGvk285qvgTdJjvfQs6WyH5o2uiT+3h0CyrtasvB5+/g7/8NeM/MEHKuCyysII1NhzpXyrqJPeT0998nJknNWkamy009+m73rjI/b/NWzLJ3qbrzy6+PtGIGdEHBDMbOsYtDFOFcIP8svyEmSUpCv3/NTrlrKj7k6Sz02XV854HVWO+bLGDVmfsVGbSfI4x+7Q4B1g/x2S2SGW9W4f7Vk9cjQMJV4MQnz6SO+07djt1JV0T63P6peTj+GLVkz2qrGfiIcsvblrMXmLIIo/t4DAhoaZGaq13yFVTYd4yJReFi7XtCDF6MTIv3ofosXmW7tMWSYGvUOswEfYQhqFkwcBkNijoxQO8DvZCJpbR3b7MQTz7bjjnqDS3IvELmSc5WgETLptGUymdInTXQqjb+sIUEalk86leraF5GS4FpFspr6DbA3v/58q6rpR4Q8HGqMzom/YwR2RQDNQA/NS9Vb9bDzLFk5kHQClAB8qAkWHaRebcUebWYCjL53aKilNEojQ9bGigzr283a1Tnjd1hUJ5EsnKrKwSdbut853IJZYPGCpBFA8fduEUDPFRdZeuh7GNqbDhsp9y9krCw+v3hwPby4kc92eI9sClfEi+LVVfBiC+foivAqbajOgqX6zbTMsPexvYCdsTlzwMV/do+A9JX0Vr/zLTnoJM5T5FPR+DLegclcnlVnQLrOzlVJH5LBYx3oRpluV9Crymn1yBFMDD3PghR1KkIGt5bVWjo5/npJCCiytHrpMjvn1PfY4AEjaZicG+pTZVqobFvrWhYXXWlbWlZay9bVLM2wAWOHgkgmLYVz1da+2ba3rnP7ygmQc5anRadNfI1d8PoLbdGKOfFQYTlA8fauCGg4hnWsMv3faxX9j3KRK9kz6YMU+qU/EwFnDPPs6FGe+x7eyExjdAIBU5vbajaKHPZTJ3k2tD9Gr2TY3E3gRfXWUlXDrGrYO1krZjm742Frh038ZzcIwDMMv3ipZqsY8hZsjgxaaJnkLNVUmU0e7Nnx8OKxIz0bO9CzOvbp2AIcq4YaszMnezYdfl2HscuVOgLhzfjBeHXF0NPw84dTraxhbNJCbOK/vSOgpWqWWwL95VUOIWCBp+R4puQtSU+iBzMNrCk61LP6OnFiWLQl559BJRvUj2grurQr8KXrCH4k0LeJxg/ihc1xvB7PIiyBdyBfcoKyuQ4bOWkCSzFMJBqVdE6RXoujSNXDT/yv/eCWL9vQQc00StJ2tO9QrqZ972u3Wb+Gwfb0s4/YTbd/wwrM6vrqZ2+0UcPG4iWXIlU0nGYP1tXU2fRJR5rdF/6Ohh0PhO742lciAk7Snc6o6H8k9qcOwS/ilHu2oMXswyck7JPvroC/AiKuAbNbPRvY6NnNd2Xt478q2i8/lrZTjklZB7232uqE3fVAzq78n6KNxNAV0UGKuOr1JZn6CayhNZk8T8IOcrzKEjtfiajGz/QSERBvkEycGngBqSqDxUAuKqrIVV212Y8+VWFDmxK2aZvyVM2G9E/YMy8U7MTLc3bNhSl7z2lpFzGorfLs0efy9m+3k3YhJ4tz9e3qw1Cm+p9hhU2/x+oNYacOxCVGoCcCMA3LLni1MyxROw49hodUmjUdnZlIMSFtVdHGnZOylW9N2I6WCnvPt3O2mqBXA32Drczt+dPnK6y+1rOv35mzH/7Dt2msQ5r3Q72bYBJRsd9RDA9Qo3g9qjj+fukIJBgeXMkKr8dMe4P17zcIRykcGoxqzGY7WAfrTfbZj33bvvLpH9qJx7wFZULScKbannnuUbvwyyfaKSecg9IoMttQIQMaq7xg2LQg6ejhE23S8MOdM7dficrldcXbr3AENOycJd9lOksrTOzqYOmht+MhVaIk8tifu/+Wty/9KGt/eSJvlawD00lHbkKTZxOaE/bIMwX7ys05e3Ft0c45KW1TBoVDNQqPu0gYDpuGHVMNJ6KflrJTXbm4xAj0hgDDJ/5GhvKORL/hUTmviDWt0GlJrE8KB/+ZBQX76m05u+6uvHONkhobxMEf2ODZcwuK9vmbsvbI7Ly95XVM+pmMA7aNjqssV8iMYf4L9Qc+U+576s7eSIr3vToRcMOD6Ku6E9wrb9Tx7B5zDiHx6XhWDE3a83/O2+LVrOBQTeSUYet6QlHPbQ3sP89K2fBBCSKvnvUTO1NFdxqF86kswdIjluaNA+jhOILVB6ym/KvcxrwNHzzG+tU3kc/S7WAVi0U7YsZxNnXSUThIY60DZ2vRsrn27vM/YdVVDSzHUGe/vXa2DWwaYQ8+8j+0dw/nCvpc8JI/QwaOQOkMtQUscNaYYRX4PqA9ruIVhoAMTLGdIZlJzNQaCfOIn5jZSg9rCuHuZ5b4tu3OrD25wLcHVwb24dMSNm9p0e583LchjPZd8oOcrWGYcMWmwE6cUbQRg5JWw7yKdY4JhRX1YSQTmf44Wc0omE72yMHqkaygU+PyKkdAvIcnBO8kqsfiUTG2wpCMD0+mYZksTv1/3UV0AF777TO+fe38lLXuCOxnD+Rt7NiEfeRnBcu2BzacYcN3FD0i/4HLF6xX4KELWbQgCcaufrfTeV4c7T6j69R441WOAIzDDFSvqpkc9CZYRBZU/LJz0e40jpWGr+97LG9LiV7159KPHpuwN782Zb/6a95OPYooPvvEZsQ+SkUbCeofAU/SKy282Evt0bnx9z4jEEWTGmrrrZIQga/uWaloe1DTMF6P00zUyrM58/5hf3/mXhyuI5ytmjh2hk2bdBhDijmXtxVd1/NbQzN1tdXOKevI0+K9OGI9r4l/vxoRkFHbQbSgnne6Ma5XcsOlBBS9WkHo+o9P+bYRJ+rtMxIsapuyOQuLNmtN4CIKaXpkY1As/ciLecNr0iyY69tDK82q6Yp1cTWVeSwZonB4GJDQPeMSI7AbBGCcRIbX37hxvZCLomThu+DF5fLeiQa89Q04WG2BXY+zP5ihmImw748+RIrFf1TauURSZexunF20qeTH5OFTV8SL1Otl9Ooc7Yl5MQQm/rsLAuI/nCetBSj9VeYZdZ2qIcLsanKeT07bEHywPz5WNDIobAtvE7jozLQtW+3bTx8skjcNT/fKavAjaRmEsaif5US6ao43XjICEc7Ki4q2yytTPpVPVKuN3KuHn3jAPvKOy21g/2GWZ4pCLp8n36XodIPLq+o2Y+VVuO2wfsLr8aJ6u2AT7yhDQN4UnNhztER+fyWKYSiyvxoD9faTk86g/fyhgr2WKIGzT/z527bA7rk0Y40M0Xz/lzkbSE9N+TGu2rLbOGZ3F5XvjLdjBHpBoCczcop2NeMXbSGSddnxCXSiZ7//OxN/GDYM4De+7KkXivaHv+dt/grfjqMz8N5JCVu9g6HFHpard83bCx3xrhgBIdCboS7tL24PrD95gU/MN/v5osBaGCL83pkpGzE4aZ+6PUcwBCcK76qV/ZYNO6Y7qUExtpw5NGoPNtUd4rK/CCg/SqWN9whmc8VdPFsdzjBNa92GFXbbH69yQ4YV/C5i8bTeVYqkeCW/S+MkWQle7yTcRR+xY0d7p3VmW60qxRSGPSvdKm8AAEAASURBVDhijpj4z6sXAY+uv99GAjr5fGUiLp0iTtUU4yaG/Y4/PGUvrvHt9/MCqydi0Mko39/bzB78TMamT0jaVbdm7b+eCKyJY0pw7ypUpCnyfp6hSKdHyg92nRVvxAh0IeDnWnHQxSc7Wzb9Wr45sDOPVbaKZz/7R9Emw5taOmQhn5tmB3bpzQX75s+yRO89O3J8wlaSn9UdPVDOIS8bK+B1xSVGYE8IiP/QV0Gh3emvXY0sF3NKssazNiKpj+Ng2frAjh7j2fmnsKwS13/6tJRd8e609SPK/7aTUva2IxO2Ap3pcgLdveHHPLyI/mWaYpn23RNh8bE9IuBexMxU97UbVrIcQwvOEomdTpmElylpM8d6Vk/O+ru9602X2rjR03DE8m7I0MdQtXfssA4+et9gR7adiFbHTsOMUkJyuDZsXmubtq+36oo6l/S+R6Lig69OBDRm51VhcDZYoWMNGOxs1JQ/vADZ/8xpWh7E7Jfku8wguZ1+gTEr3v56adqOnp6ya3+Ztd88V7SzmkklEAN2FerDq/IZpvbdewl1QLkMcYkR6ImAeI98VBm1jhfZxOEv6zkqyX09tuhtRyVsBg79A4/n7VkS2DPs11IhP/9w2r75Fjqe9CePI3KlyRjtOFfldbjKmRnmt1M/14W8qPvGJUagJwIoOdgpQG8FOaZUl6JM5Wcp7z1DkvuCp/L23Tm+TRzkWRXs9NenC/bcoqINrE9gfxUIYT/8WMtIY4tUrqtEcVQWEu8kO764kZ2VcZJ7ObgvdbtIqzQ3TbLZix5jrasN5FwNZmoxLUWRo6VX3mzcvNquuPqjdtM1fyKxvcradnTSI6u0BUvn2X/dciUOVcEeefx+zr/cBg0YYRe9+7O8i3AqESu92gTdwZ8XVy2yuWueZLbXTByssP6XSnN83SsVAYWvK+lFPWf51kWWaTw89LGix0VZbCFyegLRq00t5LvMCuz15LRosceprDV0+FSWaCD0fe7rU/aONyrKavbnxwp27Z+KNpzAmFuQlGhrMbvRCq1PkMswifpjXozgjb97IsDitIkGK2x7ltlZpzG2B7O5qfG8SByHaDEzs/79gpRVEZ36vyeLNpR9WqtNi+AOqPfs/zs/Y6cdl7Sxw5M2f1nB/visbzNZx42J2lKuKEY6s0QkCttmw/f0cmNnv2cDxL8jBKSnkhMZanqKBa02sjDoAFioh+7SqFIlo0WrAmvH7vaD11bCox/8UWkSz1qzN74+YTd/ns//5u3WR3w7gvXbdrDsiHOyPPi9bSFJgnPhzemxgxVhfyDfPg5WdVWdzZv1pK1au8wmjZ3eVZ3ypgrkYNVUN9h9v1pMXssgnCYWJEMxyAkbxOzBSy/6inOgPvexb2HAtM6Lb039h3Y5aaojy/IN85c8i7sMj5AUU6TOuMQI7IoARodIqA9v5ZhtWjP8HH6T3e4iWRgmDh9DbtX1v8pZG07V0SgQLdtQxSnrUSRf/q9Oph97Vs2wYBSEXUISciPDNsrhcoUDhbbllt/+OGsbHcWJWMO4xAj0hgC84iUGW2Hzn3m7zUcs6dIbwhNJPbUpAzz7A8OCfyNa+sLawIZooiGHW7abfeyHOTtzeoKZrJ7ddX/B/m+ub62wWi286nhRFk3R1OwWltq6D4PGzC0366I3QuJ9MQJysEhA3faw+TtWWFA3pRR56gUZ6TrxGcyojsDh8CB+vxWIrLazfuC/s3TIys1MxBhCVDVyrhS/KmTNR++6nighWg18x6UPECjwbqz+IwbafQ//zmZOfa0N6DfEJbC7xHW0QUW6ykaPGMe+okt4134t4VBX22hNjUxXoMigsduVHEsW67j26TU7s+c+Y/c/freNaZ5M7y2eEh+iFP/tFQEiBAnWYclt/gNO1rlWMeAYHC7eCe9C4ugYeOyBBayJheJokCNFJcppUQ7WPc8HtpWEq61Rxw4GnEpOQqMMH3zssXJ2sXODday9m6UgBnJlzIu9tkG8s4QAFoqhkiBHRHXDg5ZsHsX+UMnJSarBAs3CsWqFjYYzk1D6T/l+DTj0TKy2Kx/iep3IgcOwjXKudDysgb9EIHLr/8qQ9Xz4cSZ1xx3PmPX2hAD8kR5g/ro/WKBV1zM45Sxrs0uBx1TEj9rsKOlD8d0OTn90TmDN6E7NzJaNlmPv8TaXYssTDBH8kTDsFPahhzkUlz5AoEAu1aCGEXb3H261Wc//gxoxRrSOy8WiVbQaezvZxXKaouKcLCJRO9qz7qPj0bZ7UTR1ZNJ6jU6rPfjYPbZs8fNWWVHtHLSojvg7RmBXBDBKDBMWOxdY+9p7MD7bnWMUaoLw7GFErhq1UF7ZxXKyRjGCcxivyDkJ38l96Ln1l3OFFhG/SuFkNz9h2Q23Ehgb4ZRIWRXxZoxADwTgMKa4W2KMZVfdacUdy7p4UcZKzpKio2NwnsRbKvqST4Xqs2PhxWPJETyWPqh+O19LJ4kf5ey3LbHcmtvZHhfeR8fiEiOwOwT0OqUULxvf+CPz0WOhBhTHwXD7UHSWZrBOZ/Zrt3PFXngxyG+zIvrWsoud/oVbYwdrHzDd51PyvPCxecIk+/Gvr7F5DOdp5qCK83D51jpYMlI7FX5ruDD8dG+rIZPKL6CH9rfH7rUb7/66TZrAKu55xnXiEiOwNwTcau6HW+eab1n7mns5G8feZRuHikQ5LMqn6lmUOqg1hso/zrniMhm03LbnrG3pd3CuJsHYcfSqJ37x714QcLkv9byl5AnrXHYLa41uQbmFXf/ImdIwdc8iZ0qTL/T+QX3rtysaBuR6P7fJOpb9mKTi5/hNj6FnPk3PCuPfMQJCAL3lpSaav+xqy24jVyqJh78fRWwofg0jV04xsqdohTX3WLDhaoaclPeqNRyw+e5v/KdPEAgQfPfS5/WL7Yd3XGlLXpzP63AyrmdWPqtwbzfTmll6CbTs4cNPPWDfvu2zNqb/FJeftbdr4+MxAt0IEA5PTLG2RZdbx7r7w9AAbx3YrzwVp0XoGLAwX751oW2ffxWzE9VDk1LqxSp23zzeihHoRsAZtcmWX/sd61h+GzaOJCu32KN4KPKcuk/vfYvznHNV4aIFHctutcLaa6lnAvtjZ793zOK9uyIAzzFsbe3PWsfi71vQuiD8vb/6TLyIPlXMpLjuPguWfIbtqdyumxeTjQMGXrErAfGel4qAnKy6qkZ7fvk/bPWaVby4eRyvuBnm1rnqOTzYdQ/pDf2TM0xrVVZkXFL7g4/9yb75358k1y7NUGEFPTi6caXsg65r440Ygd0iAEOxrlrAa3Jym+/BJxpl6ZrROEtMB4SX5PS7eGrPqKoMHv9dwQiKJ3NbZ+NcXWnZrfcSDR/NcZy3uMQI7BcC4sehVthyJzxZT9BpHDzZGNYgY9UV3O/a4FgZL8qYEW3wmQbfufRHll3xFSKpyruSXoxLjMD+IMDwXXKAbW59xCZmN9hZLHLLeBH/UljbLbYqeZzdgeM+nJw+slfLKi7xIzrRS+GkFXe4YUF/4ac5h/wKovzlHc/YwSqDrq825Qg11gy2ZWvm2pNzHrH6mkarr+vHp4EIF4kEUXvRVtpOkHWsxUYrMikS2Assx7DY7r7/Z/aVH1/EIo+Dca7Ip2F/94V9RWlczysfAa1DlMGg6X2ZPzS/2OheW5Lk1SUJKYhdnCsYklmIXjLFoQR5XGuJfj1grQu+Yvm250rOVXcP7ZWPX/yEfYuAcqeGWaHl58zkasVB6u/4MZHG6XeTMCLlqLuKF3kNDp0EjyFBRb3yW562zsXXWm7t97n2MM6RcyVFGpcYgf1DgPmntjnR3yYV19hZgwe5dShZlx0Ha4OtSp1kd5AGMZzIaJeDJV50ulHD27yYnOUYiit+bsGyS7jx8NC5ch3Pbh6OHaz9a5N9PltOVk1FPQuMttsvf/1D27h9o1taoTMbLrZXkalwDpV0Skdnp63ftNq9BPrhJ/9s193+Nfv9vbfYxOGHueiB36PR9pmI+MQYAefNY9RQDOYxs3XTnZbd8iSzCtERLNDowacew30JRaqU5c5vnzViNBzYuelRa1t2k7Uv+wrRrjqMHD20OHIV89QBI4DTnxxG5/9Jy6+7AX6jA1AkZ4UXQSvPT1EqT6uQUuRUFXcst3zLM5Zd+RvrXHSRFVlA10uP52js6DuQ4j8vCQFx2Gb03SSc+7MGDXQzqRXTT3tFW1UYYXf4w2x4irxTHHwUKDzaQb7fKvO3Pe+GBIuLrzDbeCdZ7zj6zqfScHe3cyWivLGTpsbuv5A4SEVRgEwqY+tbVtiW1Zts4rRJNn3cUQwbjmHtrBo3I3B721bWz5pvDzz/R3IUzMaQKF+RqbYcU+vjEiPQpwh4imZ1oijmW5LFHVPVp1miehLRLIZq4NWAKcvFzuUYtVlW2KGp7wMwZqOwdMyZ398chT4lPK7sFYeAh+HipYNBVouEEgCoPZ511aaxAOQQ52gFLEcT5NYS6ZoHPz7CubBoBQnE4sPY0X/FscOhfiC4zxaS73x2ZaXdOH2apXCiiqRNVJP//FjLVjttZaUdWT/OtiWYbg3PBfkWoiELLGi/1zyZ5gqWYlAuqtONvVOve8TlICKgnCzN/BvQMNKG9BtgHZlpds/KRss+9lezTaxUppcYDWm2pkETrXnAiZZu2saMmSB2rg5im7yqq0YZuChB1UwLWFU7VzmBJM9FTC1ejqLAcOFoefWHY8hmWEKj0gnWaOCt8HGJEehzBEqRea/ySOxXp/k4V77eE7ftbvdbS414NTPMqnG6shg3foezs+KYQJ+3RVxhCQFFoFB8qaHYZqJWW/8WOlaaD1g5Bl6cYB7v1TRvOx/4cA/OlSqMHawSrAf7q0AOTKF9vqUmX2YTxr7fvEIbwUQ1Jol1rLRdZEw3N+sy6ySZ2NLNB5ucuP5XNQLwXWElymKiZaZeTvQbw6XFa8WOKqlaKywjR2bzr1kJ8jVi0bjECBw8BBimsfw8S425xZINUzForOSo3EBNwkhXW3HrPMuv/28mfil6FTPjwWuIuGZC9ujCVWZ1Z5gdea6l/HZyskK2U8c04Hf+mUt53c4L6MkRHNjzBIvYwTpUPFVKJmYBBl6ey8rGyndxq2SE+TGBv4MgpPYRReiydIeKuPg+ry4EIk9Kdgz1wRpCQUKKIuS/hNaFIWfLzWqNefHVxRovx9PCdnKbPBm3BMnumgjkdCO6kCEYJbmHpZtvSzvirxiBvkdAik/8p4ipeNLpQPax7e1n3l/EuX1PZFxjDwRKPS81noZi9NpuXgwpzUIaQrjPNayUSOncHjXEP2ME+gYB8VfIZ259NkUQlPVeihoE4k16ZrE56xu041r2gkCk7iK92KUbOSDHX/vjEiNwqBBwwRDZZpayKdeLbhKQeDHSn3snKHaw9o7RQThDpqv00ThuVGKLFiERfx8iBMRymjnjnKvIpXIKJmbGQ9QE8W0iVhPfdfFe184YnxiBlwmB6M0r4suIhGijzG5Hh3r5VuwkLjECMQIxAjECMQIxAjECMQJ9iEDsYPUhmHFVMQIxAjECMQIxAjECMQJCIHawYj6IEYgRiBGIEYgRiBGIEehjBGIHq48BjauLEYgRiBGIEYgRiBGIEYgdrJgHYgRiBGIEYgRiBGIEYgT6GIHYwepjQOPqYgRiBGIEYgRiBGIEYgTiZRpeFh7QFM/SNE99RTM/XxZa4pu+mhEIuZC/4aqiQFHajvjz1QxO/OyHFgG3DqA4MuTK8DvaPrSkxHeLERD/6Z8rTj+W8+a+Ge3YwTpkfFRqELfWS5LpBXw0x4B1sDytmq23nbq21J99a7xDRnp8o1cYAuKvkM/0MnK3aruLZbOfxW+9Em/GnPgKa/Z/9scp8aL4ESaEWhZ17Nr+Zyc+pu8Vg0C04De8x9sIeSzpRb61qrvjS+nPfVv8dj8cLN1EToE+uoGKbh6ueLqvN3SXHbQ/obEIJ0f+s9EorChu1ewOFsrmfVsOR/brVRCBXs+tIrpL57rfL8efSMGpraMihora+uWmT7woBSz6nGdQIlI0Ris//zPQGNFXTmNEn1ZLf7lKNzaB+I73a7l3EZZ4L3CL3+JoORHqPvflofafWaYjREIaPddhAjQgC3u+amu188uNoej8J5Zp4HFaTy9/dryol4u7PfwOV9N2rPiy4wgVzgZKnv/ZZFptrBLRKN0TohbyX6S7pSNf7vJPLtNO8YETLyB3n4gXeReh+bn9Am8fHCyBwbvJeBlxUNiIvljLTUr3UFsmqpHdUfAd75DSW6g575AXx/QZ6MJYFFazvP2mbhqdLDRB3xBkogrSAMgpvUNMpe5ZOcmCTQ9Yru15s9bZ4Vu65SVXjuTFu+PNsmCbGgNhL5NC9sBQirjYCkRLwBCaI1KcTEBnskmNzn45hNHBQ4WlGE40Uorb+CwN21lkSJeorZPgl+zHBsW96fzloFHygpAUNkPjyu43fYj8BEQmx/Gpg0DO2cvb2N1z9PkfMEnRltn1ln/h22bttHXnipDmdKNZ7UyObXT8+rLIip63S6ZRcsi07SLTA8Bw8Msr07zH0ePdoj7vEQ3yy2hnvqUbXTtDWmIond6BtLleEit50cFDXJy8wHPIdCgvJZmWvOiTfLllWnSgc9LTeMH4bVYoguGOudAKXineQ1gzPWzjzFROlICL6JdZpv2V0AcZKiJHEd8umRa++2eEXT0H/AdsnJ3m3oUN0Leum91cO6NvkrycWPZa79OTM3uoy04yvQr6NnfpRtdfTkimX247DS7JQdjnh81eeMQKubmWz7WALfhWjsZOj8WFAF9huQ/yvGcHSw2GYih2PG2pykpLN5xpyaoxBFwauCHBs2KnFTtXW2HHbCu0PY0yGcDbz0eVGOxQKBM4RzRibIPsHHhntHn1b8JhweFL1YbsU+Alyp0YuR2P0Tmai30eAzgYkUPmIIjxcQryOH6F9egShgQTh1mi4TjokFPqO0craF/I92OQleWRpiAIvGjykDkIKAiMRZCbDTm+JeqOA8uToGMItMpZKBLgaLGgY4kFrX+ATk6vxAg7R+sQKRP30k3ozM5iOJVb151qXtVpZpmBYKWeBUTlNkHjAmi830V0LXMEJ0rhHSJlohcnK7zc8YwFbHp1Z4HTWy2R6R8OAyNLAU5NAB8GrY84+CxzJNeoUxJp7JBtD9pfJ9M4LdkXLKjAuW+HB6smIjdHcUt4VQaucznHn+WzACOHskmPhMZD5SBEMr2V9pyDQkNe698cdkJ4KbUrxTZoxMjt+AfOIcY4g9KTU32IZdrPr4DtNllF3eGWbny7JSuGoRvpxMEDxfw2K3Qst3zrvZbfscOSlVNob8m0cDwUJZRpyz0jFWNWd7x51SeDFTLNy7wDdfhyW8BRMv1H88SCTqbB/1B1kiXTAekRnc84WfDa65HpqeYNOIPfckrp1NPpDNqf41WZ89xzeJXItItSHyqZRnfLa5ZMs+nVnQ2NFyATjaFMyxHMrSvJ9KPQjQxlDi9heChkWvICYURbgk5scGWDs4FW1YwNDO20FdrBEfvTTqdedjqNE5MaBo3S3YfSTmNDcsvgw3HQeJqTaS8lGwgpBcn0Cuh7FDqfx/aMQ6ah/5DJtCNDlPCBLwtradeMedjphHNKZae3oG/mQys0ZonwV+D0O/u4e5nejYMFkxDJ8HOzLFV1uNWOvtYy/aaxPRxHa3CoRJyDVbBibjOKZDWKZJl1rL/XOjfdgb2bzI3FmAdTCFAglCD7jCVwqtLjLrdU3QSCVMN48EHQiDKj+AUZtY3mQ2OxdZHl191l/rZ74Ul6Rq5HdDCFQApEhh8F0vROSw8+0xK1Y/GdRCPOaBIrTAny7fixGN6ONVbcOtcK635KQz6FEB/GUdF3EIVATkGpd5scfImlBpzMC+1HOxwTGRxRN3zJgEe+DRleh5N6CTTiUK/9Pk7jengRZeLeMC7GPEhFNBbWoUhwUEd8wZL9j0VIRyKgRAjSKBSUWoBjGBRwtDukkFeZvwWHet03cLRwwJwykQU5WAUlJ6HM4ZTgTCXGfgN7fwQ0DofGIcgDvUfJi4Y7ZNSg0d/xohU3Pmj+xuuhHyciWR/yysEiMQzvQeMsnJYjzRt1LfprGsZCNA5GGatnCwlFjBoyLV4M2paav+FeCzbfCc7ItIuGHHyZNmTaGt4Cjl9AEU8IacwMco5BSCMyTS8yQKaD7YvMX/8bs63/Z1Yxwz1DKDOlzb7+wikIGCYIcs9b9cD3Ws2g03CwxloavZOsaCKYAa/KwSp0WiG7zvLtF1vn1nnWuvZWy7fNQi0eKpnejtpYZjb4Xy2JTHvItJMXOfuKuEBjkG9F78g5+Ffzt9JxWXM1otyC3okchIMt02vgqY2WGvVFS/U/xsm0dGMijSzIUUGmfRxVv1PystKKyHRx7TdpUSKXKZyEg+oISqZpyzxOCQ5JYuw3kenD6XiOQHfjpKZx9p1MF+AFHIdO5EUyvelBC9bfAK+ORaaR+4NKY2inQ5l+jaVGX4ctxEGVTFdIpnH2nZ2WTKvzucZ8J9P3INO/4PHoyEu3auTpoBXZaXhNdrrf6ZYa/CU68LLTopHoLlFKlQB58bOSaWhEpgvrfoVs/xmVI5kWHx5EG+h0o6igCA+fCFX9uWZHnmWpTL1lnExDBWk9gWwgesffNtd8ZDromMUlu5dpb+ykqWVSxKZ6FXqDtP+C1Yz6htUMO9vStWNKvR4eUt48wtlViGK4RFlAKHSss87Nj1vrsu+wjafa5SV3nd0HG6IREOhpW2KHZZq/aulBp8D4RK1QHDK0jkbXKLqdPHxodEaYSAzGN7/hQcu9+HXqoPGdYZMnL4Hqw+KcAhqKXm16zGcs1YQnXIVScELJM7ixhAhH0RfSGdAj8ncst/zaPzG69HnORwickyMh6Hsag/wCGP4Uy4y5hMDekTjkTdCmJo7auUSja2fRCMZEBZ2zuurXKLxvgyFC4PJ25Az2JY2qC34s4Lg0XchI9IUokGkYqX4QiLMiPnQ4ltot4kUw9vPbnRAUV/zEbPMtVCMhEIYR5qVrDuhLdUmBQGeBCOrQz1pqxNudAlEE1UUJdqKR86AtlBdozG6yYsssK7z4Q7Pt96HwpkKeeLEvCzSWZDpAphOjMBRDiKzVNIcyLXlxDa5vFdFY4kdod071Zgzb8mvM61wFjhi3PjcaolEyTS822WmJ0V8lSv8GDAVO9D7IdNCB8V3/V/NXfI2AJR0rRbocjTxLXxZo9HH000TIG8d+1moGHst2JNM4+E4vRvxFO6Nz1NaS6WzbMtu+5h7b/uLlFiQUzYKvXQe0r2mkY5sn2kPUL9n8MYwajr46c9C2Z5mmA9W6kNHYX5utvYZ2jgzbwZPpRNOHLD36A6hgybQ6GBGNES+KHYWheBK9k9tqBQxbfsVtjC7ddnBlWs1YJJIy9N8YDXobHWMcfaIte5RpyPSzm81veQZ5uYFhpr8g03RMDqJMW4BMj7zKUkOJ+kmmiai4dvb1ABGOwi+UafFogJ0ubn4UGr9DlBonV1HqgyLT8GIRRz9ZsFTzV5Dpky2Jg+racq92egUy/Rd049d4DKJcGu3pY5lGAm2h79nZmYLdOPMoS8FjRZzqajB9rOJLdlrFmXY0w/6tkU0Dw0h/h3Z6GYGGP1qw8ovY6N7tdLJxwMAruE9Y1Dsr5miLNmuYfKPVNb/TUgJERkz5OF0NFl2gbx2TcvEtmWmwTP1EhhKPYshwFXncT4IlEYQ+G/4IFbEiFYnKAVY55TrLDD8b4eQeUlZ7pFH0gw8ORKrfVATmCEYWZ9GjXxc2Xq/P5i7Z/z8yFuRkePWvt4opVxK5wlgQaVF0QFg5zHaqleeKMKYRE1WD6S3NoMd5JL22ezmd44oIOhoRlj4pGfj1WZj+Iquc/CUcwGO4Bz0e0eicFgloeYHuLhpTTlBSjfR0yXnyt9wKsLSBGLDPHBg9Z+hceSNwoid8kojLdO7BPtHosBCN5Xh006hhkCQKRwYm8HHItv6S5xvWh/RRlZwrSAj85y017geMVH0YvhrHDmhSJ2V3NDrlUuRRaunkjnM0+jn4c/sfqHI414W8qjsceAEv5f8kOiw56UZSr97heo9dbdkr34cyrXPkzCbqJ8HLR9JDX0Fk9WloJFei1+teIrWuM9LCEBVRoMnfJ+BIpDfDPfZRpnVuApm2atp625PI9AZoRCH3MY1+frFVNrzBBk270moHn0y/px6ZJoLhZLqnvHB78FPUUnKRpnNV1TiDFIvD6YT+if1ywCTTvVz3EmEkfOoiLjb4o5aa+AWiQkdzjz3JtGNeYBKNaRedSRClCZLNZltuYx+G9yDJdHLk16xywmWWcjKNHIFj2F7Co3eZZpwV3xmZpiMY+A1E3X4FeQdDpqHBn2uJcdfTOUama8aGzdQl05C4UynJC3wQyvR4hpaOoHNCZ6n1HtRYX8o0tDkd2AmP5yw58SZG8OnUEUF1tmWPNjDUj5LppGS6DhrbXmT4Ezuo3No+lhcrINN0kjJTvmtpJ9NNtNu+2ekEnYKEIuzYaX/bY8j0FmishkbpxnL+2Kkh9utHAhw3M8w/qd9xdlZTNXEsZBmbk7YWW5V8nd2RGG/DGZ3BIyrVWy4vstNDnZ22ipkWtPwR+OBj6bIymS5zsKgEheB5m61x6g1WM5xeLkMCzuFyPQjdJLpR+XOwz/XK+XaNG6BMRlimYSbDhjhZHc8hBA1cQOMecOEB/A6iLDhXU79j6YEnlBgfg7sPNLrbK1cHKJNE5RJ1U4kgPIFSovGUm1IGzEsmVcxPkqFXfwLO1X/gzB0GrDCFU2IhVnvCsYtGlG+ybiJO1kR6G3dDGvW6JEEpoAMszqDhXDEkWDmJHhoKRMMero12i6PaPqJfCggcMWIaZrL0eGj8Me1Mb74vMHSPJyf1WfNG/6elx15M86Dsle+g+kWj40V9l5dyGqX08hhqciUaZtABYLhzy8+gWQq5L3hR9xI/zrHU+B9ZetS7+VkX0ujIKNGyi8ywP8JYeTAojISGtKHRz/K7lbbuMxpxeHWPxHZLTL6eXu6Z3FuRIto6omEX+oRnGY0lmfaQaa8eHNtWopDnUScRhz7BERrpJRqRoOSUqxmiPj5kIfHXvtAocp1MJ5FpDGHtVAu2opAZWgqHNPtCXkhkZzi8st8pNmg6jgG6bX9lWvlEii5UYthS1ROtY9Nd8CRJ3H0s0zb4E5ae+Fls0Rinu10b7ROOkukCKganH5n2lbS95WbauW9lOiAanR79Dasc+1H4fiA04ijsl0wXnEyn6ICq41Tc8nNo7mOZDp63xIRbGLp8F7JINFR6ZyeZFtOVlzJ5kQOAzCSUSgOf+J3wMXmrfSfT6Bwn0+2WmvwDSw89HdpeikzTtEqzqJtODt5yJrksYAf6q09kWnpRMj3MMtOQaUZvXHR3f2Ua2VCHNVEjO/0wdrW172QaRypRWGot/c+zyRM+a2d6RAJtO5yYwcHahIN1gt2RmtjDwVKbl9pam3oeZFrOalA5gWHXX7ETJ1DyViplDha9H4xF/cQbrHbEOTSilLMcLr73tUQVwwCpykGWZqw1u+VJOqKECeV4HJDxFdHQ4m0g4nIdztWJ0Ktejwzu/tLINYRKHYNVNjPZ67fUQ0/vgIswA3QUR8XUb9I7kxLAmKlE2IS/9vxX54I9F2Gzx7oekL/5v/kpRYIAH1AR82/FWJ4Kjl9EEY8OFbGjr5sx9nwLznM0gn/JEQyCJiJZd6BIRnDpAdLoFMYi84Z8jMjQJ7CT/UtOgdp5P2mERxKE9r26yaED0/a/0Mgw14EqEuUjYSwSzVcxTP0+cKikSjkF+0FjhLkUMo6gIkV+KxHVzoXUo97agToHKF6MhTf+BnqQZ8HyJb56SfISGg2rGc8QyD8YikOB9pFMB97WMHI14ATY/kBlehTKbjSTDn8Jp2AcD7govy9nGSIEilxVEnE5MJlOuJwtLz3C2jf+CHbpK5mmk9jvNEtP+gI9azCInOj9lRdFDSXTjET4PnK39U5+DwfFvpDp+aROXWoV4z/u+D2kcT/kRc8imZEjiEwn6ieTE0M+XNsDyPRAaDzAjlNJpr3RV9Nhei/PTadb/Lg/Mt1FY0mm6ST7rWuQ6aXUIxvTNzKdnIBMMyx44DJNPlnNBGQaB6bYAY3YhwOiUfqZj9J3Jn+PDhPO1YHKdA3pP06m6SCbOnYHWuA5kucTVaMtN+U/bWzdJDszdw/eBblquFdp27wHB6vs3s4GiucI2DASETD6EGz5MY/fLS+hg0X0xmcGWfXwf7OGsRfCT1U0HAxCXlAKWpRvWP4Ri+iTBMck7aFjSZ3Db19KXEVOFmFxLz3QOtaS9HegYVKvkqHsZ8kV+pZVDD/PESCvWDSmS/cXDe4DCRzaqbjncPRpt2jkBP4na0ZyboMVN9wKrSPZj0C91CLHIP88Pcjvkxd2smOsECdwBCfRENEYYhViluZYtF/frt1Eox4CI5YkQdXP0otu+TU/R0DdS1V2em6V1UTXrsMBVE88526o+/bE0ekyPQBFbe3o5Ltrf8RgbjhuDHlZJCnueJSTGd55ycoOMFzvZyw9tCucsXBDgig54VeOoWiOYBKN5cf125HuiIWXSTRXoq+/mXA4M7+cQxSeoVP3r7h2ftG8xvMsM+HToQPY5Vztho7SHcpp7DIHDkcpZHAjcd9ffwvPpahv1F77R547WxFZZNobxuSP5g+Ez6ueL/fS7dTWUXsLp1Izu0sjGrv3l+jA6XdDEcwWDtb/kAftViQvgUJowSlltmJiLDkkw9SpUy36szONkpVy+vRbvCg6IzkKsQrPSjiZZlh4422cdKAyTRS/8LwNmHItCe2vR15wol27sOoVdIgH9S1My4l0OpF90TGnj1w7B5ybskztaJLgPetouYsOwIHKtJ57E/LyPRyjbplmZyi30BjpFZeaowNlxfEBtLpjjkY61skql9Pjb18bTrg5kCEkGW0m0nhVU6xi8r8zTIrO1TB/ydEv1z3l8hzxqdpZ5+gTyoyIZYgdmdbM8cKmx1HbW6nvAEYhnEwvMWM2qNIRvDT845wrNeyeZVrHRVuKU7vsjsMRmWa0RTIdrL8R+jQMdwClJNOJYV+0dPP7w+ftIdMRVuIIfUS92jfaLzrFkzripEVBFA0v0r6Oxj6Qadnp9LirLM0oWIhHSEl5e4oGd3+RQtFv0SgMu4+JUM7ifwInyw0Lb/oJNvDAZdryc+mMXGdZOnWjWHvtzPz9uEk465GDlSKClSaCRcAkGiIUXZGt1rN0ywsEItMJhq8ZYCOC/tsuO01YiadiimeycpxVM4SQgLE08y4B8+fxNdYTwd3Kd5baKrlDNacPwBGvxJfYQeRUx9vh+iL3qKe2UXQaXVIiyKJKrLLpaKskz6dz0+9LN0XYHPOJKIftrn845EoJX+dQFLcSwTwZx4Xp+YzF+8w6SKDFFIFdDg2d0OhaExpruEUzAQA1mGtU6llAdLEVOg8jChpWz06YU2H7DM5QYf2bmU2zCEaTYaOCqHTRwI5oW98qqih6Fjk9TO30mt7v8pnEWM4B5HgrOC3jE/puHIDGWrAaTZpIO/QvJhgQthbfHOsHtkOwPWm2fRS6nIPUkNOZofI/QEELKlqi6EEkzRE9XN5VHG386qJRqgka83NI8/k8Q5dE1yScFF2+hWpXiEY1pAoe1UDRQVuL6Xfghy0UndxzRJVnTZCgGt3zi0ZC4qlhF1hu+285h3rVG4xo1A0ienSNSuk23Zhykq7Tx19CcumnEKpxbEsRqwKzNdx/C3R0+W4000B0ahOfDG29gWdY1+5OtbHwYRUkFLiP+FGGUbkU3rD3WLDkY2A4kwNcKOUvHMNbhHRF22FV4T5tu7aG0URjApkZ9i/uubujBezmtHXQuaHT3djG08bV0JHnp2hczbFNHfwA3+mKyHN7CapuGRA9UJ5Zcchl5q/+JgwwIzxBhmh3NHJtF4ZsdtGoRfIYXk4MIfmVWVlBIXSk9Qgs1m7zwMnPcTE8NgmskrCTsKqCng0cWwsvjKLtq+EB3cLdpMRvCfL1/KYLzVrugTmGc4yLHDacWY6dLox+h5WwIypgiEwHDaeECe3wtBsu4lldVRx+HqwccGnPpkIjaUvumNp/DvZUwGUqPJuIrIstcMvYh0yjHxIkyRfWn2Jex3LIq+eoaOSrnCZ+ulK+z21zontWLU+ykmT2D1rNgKM5VfvDL2CzLKy5CZ7bAUv0p40H0NbR5e3AL17U78HgWIe8ONHi4dSjT5KTWUdeSvvG31qRYTK3HEokLyJKtEaldE/3U9sqDqRumfaGf5EhKaJrikCVijpF0tHLoVFYNVV6NlxYRXWwW8+xuI3DbI+GRjmGqls8ndAM2GFvY1bX73gQzugp05wa4aHNnYqjmcq7ZHoZ+iFKR+iWadG4FfqWSyZ46LHQ1w+xlLzkeJQXOJbXD1doa5qyUqpPAEmma8fDgu+z/JKPg+FuZLp09S5fXTRKpvkkySMe9tZQpkvyomvgHCe3LbSpbjtOugW5EFn8tAow28KxlbT3eOiTES6JCt9FZHqmFQd/BqG6moPTwhp7yjR7dyldj81dRJ+sN8t9JLEFXqqOXTRuSV7UgJLpQkmmp5RkWqmd82hfN9FbjSW+Ab9mMK5GrtzQHbuTTcdasf/7aIz7OD6UC3Yj0xGRok0PX/4t+1JsYXTkLcj0SRxHKJT/CY3isyKHZ0umpWgwKjMl0+I3ithktuhESNIZdBIyE6pmPXso06nBpxIIOZkUhRWQ14tMi5byIvpUHI2qRxvcqLCSlOGLeOZj+K2TtL9ECFvaVRQ/gqVb7YlN2cAsTTAXP0L1lMuS83fgReVZJ/Ghgs138WAwBA+QkhH03ZTjT1pFI70fkg01LFigwRpg9sPHYExriRLRKHlo25ENbOm6wNaR4jBmsGenDITZUHJqt3aMyuOLmKIsWdQOeikphsuqh5xDFOtmcB4ClbPD59GD7GupGE/0ailj95e63Ckn/NAoeob2M3v9IGisZjgNjATCNvhw7mrfttO2KcB5ckdgH5yasBqY6i8LaMAIS+oIDW8zk6POsdwChLRiAt7aon2lLDyPR7WKaYwOrrf0kHMRUHosUlBgkAeL8dD3lgE4TmIazu1Av2yBplkrcVag/4zp0AYvquiZ1m4LbNGGwFppoyQaT729JLlciaZzrLj6KtptGI2/JrxgX//qmTMIN4pSzppHvlDkGEjxHz7cs3P6e84QqMp2LNaG7YHNXRvYCuiYQufrrUclLINimb0C2uGBBp4FCF3RJIfUgNdZvpZey/a/cJ+t4cOEh/ftrzQZ4950LRjFe4Nj0GjmiHA7cYxnI/vhQNOOckraaN+VLYEtXB/YcwjuW0Z4dlEzTinH7pvv22p4tAlcQ5+RnbC7ZrIUVk5HyGCSAu0M3vtVkANLMAW67oww/O0MT1iDcp0hx46DhhkjEtYBfQ8t8+25LWaTMF7PokDOH+vZ4SOT8GhgP53jWxP3V0cgNBgoEhRnEqeouPpKHCEO0hvscij3lVDWOmKNCrzPz7g8EMm0GE8YFthsBed3TPFswuCEbUFh/GGxb60o56Fg9Sy0vgH6z0Wu54PrKppRykXoqQKXS8QU8AR87m+8zWHx0mQaOUOmE82fxPEdQ70wHMwkGtVpIj3JLjoiYSMaMW7Q9NNFvo2AiA7JB+d88viE9cOheWFNYL9cGthU+NI1pZNpZI86E4POs2DxpRDOvbIvRaZxWAqbrHbouSzBMNjJocORGiUfjTjIJ0xHrms8W4G8Pgkd6ji1Qf8I5OXsY5Fdzp27PLAFyFE/eEC8qTp82qSq30yrQqa3r/4OIwG0mSbc7E9xMg0vwyAyumEOoHB0rqZtZrO5ybMLxnjOIXhuVWB3vxjYFOhw7cmfHYB2zkR0J5jORaY7uEbG0Pi4iUvkz/i1Z8A0j3Kb9TDQ/hDIuU6mwZ/p9ilkL9AOpVGoobn/FjanDfXsPaOli82egr4HoGMaNDZhgE8Yn7ABfIsk0fwk8rSKjBM5NerCy36l5UyvmAQDoKgKC/dfpuUReSjietZ5bHoddEAIN9Q9tUnT2klgOAP9soNbPLgUmW4JZVpN8Cz0nDTc7F9GJuxRZGkTuigDH7jhOzn8TqbpIK/5JhUC4EuS6WE81xp4+nImdJDXW4oACkYFQjp5hHci0+NKMn2PZBo6RsKjHxpPZxkb7p4Heje1BbZkY4Cdke6Rk4VzgM1KDTmPaODtMMCAl2anlYeUW2aaNZ+sbna6IpJp2TytnPTRiQkbhkyv2mz2a2gcBO1AbB3Qf8lrPBvckLBl0PYgfFDBMeeslmRaedNJZLq4+JNcMR4aF/O9H0UAVEj3b0JezsH/IxKvDrxzrsRdFM7x8WMa4LtT+yVszgthJ34N7T4IPvzM4Qmrw44/iw28h88kdKZqCGcLq4OMM914NtHAa2GCw7E4cLWWRalgRliCnl+ABtBDLQb8izGon3l/xrbRINtxCKpxpEYMSdhPfpuzD91SsG98JG1HT0vaus1Et7jRus2+PbUsb3k5NhIA0QzB6brRlq4/GtlsoEf0bvZxsqRJD7y74q4tMcU2FkfbsQSndTLtBcmFvFWg9WdvMvv4GUn7wFkVtnZT0Rm0xjrPGvhccWPWrnnEt7H1Zjf8S8rOOSltD88u2C/nFmyEbs99HaQQqUXtkozDesxMtOrDGUL9SEiaHqAHjY6sEs3usDwMehf+lgeJNOGp143hGl0Eg6C15oDNVR9I25uOSdmK9b4ThqFNEkuzoy/vsMtOTtrb35SxVRs140hK2zP1Or58S9b+/HxgQ2nUAm3iZsUhWNJxyrVQcqLnQtiuqt3/cURqdigLSG76A7MyzidEP9SdLzJpapuFr3Hr+9I2dUzSXoRGATNyUMK2tgY26rIO+zCG7nPvzlg1PWD1Kj8Kfj+6O2ff+yv4wmyFUm6P1oZJNh5DLiJDmQMvJfQMFqUhyN0TyBHRqIUFcxst2Pgz8/qfw3AZFkq8CY15ODiNMb364gprwqsTVhpybYYXn11YtNddlrXPXZC0T74j4xxUDVu/Y5tvl92UsyXg1QC9kZPlFv1sfCO9jN+44TOtxeKUnmsz0cJHzdezRDR2vAiO11pC6/ZoLRw1GkVOyDx6PP9+atIuOjtjO3CgKumJXYjcXPOLrN02K7DPnZSwy95egZJGgFF4py8u2pt+kLMZ4ken6ORm0WtiaN3vdz4dVnpaQ66g7XUfgO+VsPK9EI/BCdpYRHTrzSjimRhupm1LyYtGPvPhrZvOT9m5r0/bFhzoBpyDd68t2hV35O0vqwO78qykvevNaRsGj95xX84+/POCHUZHK+qtq8crGhO1o6xYezjthrPpZFoWJcSC2+y+gLNo8ZFpa1+LvEzEuJc6OhxjHV5rpar/ek/ajpvBLB/asbE+YefPL9i//SRvA6Dl95dkrHkYTmqbbwNRgkffnbXP/N63Iwg+q0MjfnIyTR5RsYL8uxqWKhjx4XA/h3tr3m6ChWEk0w8xMzptNTwrnX0MAfXyrZ74EOzx5RemrXl4wulHtedDTxbsP28v2qkzPfvkB8hjohrdS+df/7OcPfScbw1Ef0Ne1DBcxhqYWSiZ9hrPhM7JpXbupmZ3W0qOVx5csOlPhMfOw3iRjuEoxNmC/g4a7PhRnn31wozTKR3wnOT35Ptz9t17izaaDulS2v/UaQm7/rIK29Ye2Jd+nLVH5vo4NF6ocxRWQPAKjUcz9E/0fOBlyPRIgHAmpUTabgWGh6IhWX/JZ82lZP/TLcPsNdBgP24WwLTQWX8ruuVS5FZyLhH7MJ+b0S1X/l/Rrnl7yj54puyP7zrtulP7L3O2CMe/CcehICChMajoz4zJN6KD7zVv8OXIJYZTTtxeWpqL4V+ETzK9+Tra4GhL8byKOqndUtD5Ig7np96MjTmjJNM4/heiF6+mPZ8hmIDo2MU4Bpe9LWMt7J+9wrdKvvElnOPg7sF9guohVuh3Dk7BemT6ayheGFn47ktxMj2PyMEtyDSOKjSHeU2hTL8Iz3/rgpSdeXy3TL8Lwj773zmbhlN45UcrrI327QDvChh5AJ3UW/+Ut0/dVbCjJTPCkQf265qtUEMnXENww97LPhSpk2mhsbuiVuE4/4NtT4FnC/ZeMq0lkxhcQ2AS0FegA3T1e/EXpqZsCwGExnrPznuhaF/8aY6IpGff+hD2Z2zS6STp+AefLthn78y7LMpQpCXT8Al5qnnawGpeg0x/hJvq/r0XHQmP8lfyAt/6LX/F2amCrUc5fVjB9WE3KKwjAS35DcgHvHf72Z7d99eUXfhz306h//Nd7M8w7KL8oYtgm4l35eyqv/luVCwnInU3vMgEvlRxk35ip/QuMi1+l8bBcB63Y4uwR1ME+PWbi3bXfQX76SNF++gpSfvo2zO2eSu1VQUoN0L1Cwp27vdydvwQhgORJ60IjA4pPRk3RLkn8RTr646yLAsYZsZf5EJpjkGkrXZXuDR0VHBK5n/HvMJxVsGsh4S6FDwIz0dj0nAokmVrCnb9b3J2AxGBX9GIp5/AREuNB+7w7eMYk9OPS9lPENov3Vmwo1A6Upbd7cKNYPQUdSerjkRZsczERBpuX51ARZhYFyr/LLMQvKGW1vRSHB/5HGndhO9ODO/cpQW78md5+x1Rq0c+mbFxRDGWbglcz/LZRQX715tzbkjrhg9XuH334d2PwXlRjxeT6QhOEQ7Ps+iZx0KbqbHvo/1cq7p7CEnO2rWIBgkkYdX8lrstxXT7jF6HIueMIuZC3pwAPoHz+RUUh4ZcH7y8wik1WxzY+ZckncP10Ws67HZ6Fi98scLOPDZpVzxUtAwkyJCEhpeZXCx056LUQ05jSIBhV4Zyw3bclbSuPdCoYZ3i1mdZ++SbhJgPwzGQAgodLD0ZUFgL7fn0AhynX+VtEtG2uz5f6RwZQ6G9780p27rdt0/9mOgFj3zDv1bYl/8Fx/b7ORtUim64IVFyS5INh7HI5/dZE+qtOIRH0fyikYfYU4EW0VhYdz9h6mtZ1HY6zikVIy8uWltg+Byjdf6JaVtHD+yob2TtQzMTduOnK+2811XYbX/K2UXnVtpqjh1zXc4+Q8fk396XsavPMPvc7wt2OAonjzyouYI0ziUdEmNV+uSY9xGNGY1dQrB6kRdOpwcVOi3a1tpL+aU/BcubCW9Pw5w57nE9VQ1xHEtH+LTjKuzphb6deU3ernxryr74jjSGFlliiOSi8yrsMRyBjhwdFY35E84npm1t8EgOpvYwOh4TYPyK4ZatPha53GZVEy4hj4iI6B6cwBBaUSicC9Y59xs80iZL84qolJshK9o9NxTzriMTdvxRKfsflNdHb/XtFx9P2gWvz9jtf/FsDVHA7bm0fesXBfvuC749cxmG5eQq+8yfc7aCMcQO6NRka9JOLVdN8m76GJTxJP5fhnymYBXJjKRlD0U9ThbhtKfmoMzG2XScirRWHGdIWY70U0T7vntywiZMoH1/E9jn/1K0pz6ftDe/IWlfv7tAKoJnD89J2u8e860Wxr3hU/SGT6qyKx9A/4wlZUCiJ56Hxi3w+kbZ2X7H0ym/EHYqyfQeyJM8uDFdTbFffQtd67fTWx4sxgFeaNfj0Wn6xEkpG8TuD9/o2x+XE7X4atLOf3OVfRoaV4kGctg/iH7McYnWmW2pqLCl0LU0gkff4rn616BL2Z56ltnwN4a86NqRfbstUgzQs/kZcg+uMhtzLDfhhrpOjpeIRLldewrn8HPyd/Lg7NmfL0/ZWW8Aqx9mbfCQCtsO27/7x4xG4OhouPqpjfyBVoIH4XPq/in0WT3tvPJ6syPeyXMdVqIxehCd1FsRjViS1f/HtddRxxHUSYOJR0I2hXfMTj8pY2u2mr32KgILRyTthxen7M3HJ+32+/L2tnNxEN+TsjlLA3s7HQAjV9bkAFCFK8iLmzCWpiFqj0PR3m429gM8w2jO4aH2xouqROO2i24h3MeHWbJYFu1lP8+HTI8aYfaGYzP25MLAzroub98+L0WHM20nHeHZ00QtV7bQQUavqwN1K/vPeG3C7l1EnRUpe0L3dzTyjUxbFTRqeGvCxeCKF+ucwN5wVAOUiuuQ8CxzrkRutoPZOA6onaFTOCKz7+Gexx6Wtt/+DT/ijoL99pK0nY1DeN3/EkTgNscfkbaf4lR/GKfqdx/L2HFHZGzwg0SFV3K9w1P3ozLVTX6U1U6BaYhOazKe5GGPhePiuTxRo6fp2GUmUSczHNFnOfZvR/9IGlV89F3NyJT9A38C9WkXnJKxC2/vtPeflLQRRAe/dWfWfvG8bz95f9o+Qkf6ocWdtn4jzQkbuY4T9CRqJ1kxPRNFlJX2JZeJ7PcUUyqjxtYw1ehas78uTtqsnyTsodUp2wbjHHUkjPQiBuFvKRs2DEPPqzbEI996V4qcLM9+9EDRHuQucrScDoFmPXqK8HquYgJM/EOogJHF1Cih6H5s9F6cQaGmrUu4ZiyNj2ct5lKD6nocvKufNPvFfLNHlrEfYZjOWMGDz9ELeiJlRx7m2dtPT9vK9bTHAM9u+nSF/SdKbiU4o9tKpdRwlXBpksZrmUvdHBJz7LWHoWs5TwmWGxHSkZeFis41FjTqMDR+9X5yrjjtqUUpe/0E8iBGpO3XD3OTbNpu/AcePqc+t0pGzrPm0Sn79QO+bViXsg2jeUZkNqyIClzvkVZvWxU+v8++vTGXlIWeJY/QrKOHMepzkIxCksGOQKC79cXfQQ7tPgscLzk1YVUY1+/+Guz7p+3ZNUk7goTc10yvROn5VsU4yJMM2Vhbyp4CVw0JOzrklDI9XAJlHVugkQcrwgy9OAa6oqs4hUaDZLFc8vxnTIQ0pM4tywAGVCEcPnUnQ9Mo+vXw4+dwqDqo/9v/C9HwosawN3Hf+5bzG9u4bnvSxjZTZ3Vgz4g+tbe8Fxws997HFn5nW5wzrOGavdOoXneOsXmYiQhtklXa1ZHwcSoSCGoDNG5DtyxcwVAC9/3EEQxbjQps0/oOomxZO2x60SoIr/zhIR5kS9G+8wez959cAT9AE0KUK4IjbSkSPRKi8tXDrKN1nlXnN1qiOADBR9DKcOTWcu3oaBBxCJmE58MBIgSUZ8ZSUMnrWyp5Vp8HhUYPeRkAjatQBquXZGwQcnrxhDzDRUlbtSJly1flLEW07fu3o0SQ479/JmMZer0CvoF6hyALVdyrq6kZey/WMWy28S+WYi0ZBum5FziWFBUbvRQ9HDxBnYX8QgvqRrBSsp6f1ZHhgRo+FSlwAsOtCzI2tr1onx5StKHbU7ZybtL6t7AIL9GLa76NKHCr04Fy2zwWBkTxnU+j1IIhpFKoU4o3zWu+GkbAR4ssmX8R2jNWyXPURs/RC4W61kXJ85th3flW0e8sq/a2MKqFjFOUv3YyGKeWJKx9Ib3u9oJ9uw6ZgCfXthCVpJecf45IxsNFO2wgtpTUhB3z0ZVEWr9UXbB6HFf6nBRhgdOW7rCOIcdD90JL5BaoUcNje8BRkbRars2wLpc/aB2jW5XYyJXQSMU8v9iE29igF5KWR47f2pqzN6pW6NBIxDcT5C4hK+NmJGxSW9qe+VXRpk/H+dqWsxOpOwWujg/5I563Kt6QMGY0NbBsSqd0h+RFdOoPz9EbrZJpoqdWfNaCUWSi1PEKMCYLlA/5K6+36mmO9euwm7h3uhMH+X5GE9b4dtWIgk1EXxY2e/apVngPVt5A5zSLGpPf5m7Ll9vQqEYdq9I3Dyeq9zh5dygAt7SCI5JTPasI2vnrwHVXhX+gXZFz7wkLJhIRqVpuHq8qcxGs0qNJ7NL3Y98wvD9BQTYtgzd/l7bhhIJ/wPj+cdhGX11iAABAAElEQVTAhocxqn8v2H01WdvGGHwOL1++T9c9tAHfBwNYBqCin3nMWHOr0SsSWCbT4fm9/FVdVbMsmMAQZuoZq+yYw44wyuZU5zrk/hd0gsHt7gJRXWzKhm04gc8X7NitgbXdhBNIZO3iDhYnn5207HzPPjKLTj2YyhFXC6oNhY9PRDaDPavouA0RqoKvhFnXw7gzd/6jq0OZDgYsJcrJ6uzBnwg1ho2kK2lmq1yIM/OjhB2FHDyA7hl4N+kJiviuIv0F32HLd5J2zJKiPUaUrfYOrmK49frVyoHk7lIrKsIqIBF90ii2F5nXdoN2ukM9/4iqFLRXo2vC54NGfB0by/lJFHj+VoJBisWLeoJAAKHha92ikM1YPTq8Bkf+hWXIFJHeGqK/igBeMxs87idF5nVFOwaH8Yhhnt0AXx6GDVVASvR48qU00Su/xLwx4wcFqZrX2eBjbkbe8apQQJhJ1JVnr82vsjFaPRdhruvPGDM97ufnFOyh3xWt/7DAzjwjRy+XvAmMV4qY75LFBfv7/cycEN5dhZsiAIUNf2bdsd9bovnrcCxeR6hlus7adUOvUUXp8+D+mjvgTxYCG/o2ThPIpQdhUw2g3/C/DRudsFPoET36j7y98JRvo6d49sZTMwglw54Mb4rp58F0s55mvVaGb1SLrq2iGyBgixvvBd1NhJnfwW1AYRfmclfoKgoXqAY9PDNk/HW3uaGIRP8TIEpMWSqiUTqKxlVOw8gJSZs8JWmP/z1vrehs1eLkHn4cOdqzUWOTONlFy9KozhbpuJ5XP2Aun2E+sugJZ5/I7xINOoWaqsFLa9HuVHStFBDRgmDrn/CuoY9eec8hJx/mSdCGRc5vnpq0ARit2Q8TC+BR6Lzb5KNgOJisQJJGKu3b0meKvOKKu8r5iWARFn4r66o8hPM9nvvgKLl2dk+5E1k7/9DzUVGOVxCwOG1lzbE46f15bElW97XqWKEP3WM3TiaBkCbaMCs0Kk1gmma4a+MLOBNA1X9ckoRP/GUEuruG0n30EmZyAd37rngZ794d6RK1qhga3Wt7KulJ6h1VyItoFP+o95OEzwZDSyfYJAl3+Ns7rIVxhlQtY/eN5HCQpJVXiI8LGnBOVbYyLKvru4ruI6ddrwfKjCzdRzxVflJ0NlE+wzEtP6YF/kQXQyXl+yMaMzRT4whohA6lA3RC0w4Mr1iFxdTxv+kQMFRd5Hna2S/iNMOG2JjjMyqnXmiUEYMnw9fs9EZbROOu3wHvR3OyQ6QydC25B8M6Mug+ii/NvWsG6o7oKh6lfRPDRGArZ7sLK35W87sAjZ0It9ivixfdLcWPohXsIFdFiwliYtiK6NXx8qL92ofzE2Bg+Ilq5bfwLxX2iRdTRM8zA8IBhoAh4SzDmdbA2j0QnEGJe8inx/1ztG+A7CSJUrpqdAsVJ9cM4Sr/R13SgE7Jzg+gs3op6EZ1jD16lHoxrU+j6fUeXc8UbhYZyigyvJYZDA7cMw+Gun+aYQ4Vms5yhM+SDAnq3MwgDExoF93xrvo8OjsJHOhA98FDj8AsnbX7LxrOw3Do3a8kP7u8zPJroakAZgHOcLoRGsEjB40eBjfTSNsTkdZEjDTbgkVi4cpOTSYweSittejVs4ncKP+T9tu5hO208z79orIEa+WBZeA6I5Il3Si8iWrPM2LjwXuS4QC+zJEKk0LXJGvgJqLqDjt4dc+46D6iUZ0e0Rjdh8v2pSTAUY3jaJRUlGiEQOnoAsNuascEdAbwZb4FGslnQvW7PPMEvUHxsjCVWnWYOtnQzfWUel6+E/AiujhQe7kwSXSMn72W6Dj0gKMrer5yRucU4VaAx9LyFxxN0IgfnGaIX+1ewN6lkA+1vegvItNJ8HZtHjYFdbIhIVc7qwiLUju537v8Kdl4t1/Xgp+bnQ0A2Knua2lH8TiYetjA5PM/tdTXsbNnnGVX/KDdvv9HUifek7TPf6DSZjNi99xy3846NmXtqJHLiLQ+sSRwqQtK5XEPx3pd2acvIuqLsz9m/GAcrGNKDhY3QTFvQIstwMH4Tecv7PTsp3A/yGHAS8gyrqtGExBqJL22Snpc4Kmo0RIokl2LBABlr2nZElBJdrky2PWCsj00gJSIGqwo4VaJGlWbIeNIVznm3+BjVxgggA45DTnydbqWKOL0lGiUBxmSzIZKiWYpEecwYYCdo9Lbs7gLyv4IVBrOKSAQ96Ukxfxlxf2kLk4VTRLYDAIZvh6ndJ6OoUwKCIBwVEPvTKMIhrmSCJpA72KunWnUWTsXHQc7CbYEXEsgBGIuEdV9tqNFF7KryLTQIg5CZDy0r0BPyA0DQpccxozyyHauIrzYYYGgqbfgb2ffzvTpFrsWnSNljIOf4MN1QdDBlQ648HSdEt1P9DAE7HwIsHL06bcUB/yppypqiJhrUnUc59vZMleT9sOHLJQZuDm10Ckp1gldRTfrUbRL59Crc863jJoI6Ho+nE14UTmMeZSFcwR1KyJrySpoonejoKF6a5GhKMrR4r+csp2KI1bKQE6+nAEerOs+5WeKZl3bw5ioDdxDS87cLdxZrlpOhyyXD6yOkHSCaNUwryuqisdSkEIXKZ9NRYNuO9Oge7PPYScc9rNIzhzm3RiqkxDWCa+BpY+i1R71I5QbIWelZ3E6Tc6Vq6vn0ei3q6X0Q0pXz7JrXdHZ3d9CSiUCJ/zl/lKly5uT7lNVyIXrWJZ6sYouRqWrE9IrTLo4wqBHO0YV9PItZECJe8NUzrPc9Vo1jfSI9KLgEYYq6gioyOC64/x0zVg6zx3c6Q84SLh2c5+dTt3lx56vVZWiI+pvyyFwnTogKT8Wobn7ZuYCyaMDu5f22oWu8h17vlZVahRNNDrMRKMu4dFCjNmWvKhAqPb3XjjJXUQFXTwYPVlvV6idouM9ry07n1PUtg43BCKkMZQfx5tl7K5jOkH6aNfCvuhBHI7RvXc9c9c9Pa/t0QaOxvDxHQRqd+RWMq6SkGMFTV3HON8FxHchU/wkB5MTnJ5zl+/jn3IapSMjGoUZx7J0pKZMt9kVx9pcG2lveu9EJlMU7G3fzNkcDv3knSk7cSY5ZKSkjGMS07xlRDC/k7PDaE76hMgYdQg31v3MPvUheoVP4Uk5j5r3tvEy3ySvfiiizT6de4Qo1g4bUXyRv8zQcMYZtTSaa6lDkWjR5g12j9nFAkowFUC9FjWcEHOvVIGa/SmRtveGcVUv10KTK2CWGAV90OCSzrBP+q3D0VU50V6+I7wy3Bm1qGjsuqLrhD1sUKGjEXB7ozGiT0Rg2z1m7GXF4NpffoyIukcuW9exiOiuO/Ng7j4CX07n/hRu5PJ4RABOTM/nK6eDw+okdEZY6XaChBKdpuHE3nHkgKMR8PebRj2fDIYIoCfVk0YOu13gEi0T5ejQbp1OwX91dKnjrBIddxrSXawT4ENHowBXnJx9u2Ctq3sUneOikzyjo1GKskeR4qAvIVJVJHNKcnbywq1KqiGEjqZQCYdYw2331+VEcKZz4IQjdO6x6JnKinNEoMBdV2Z4o2cUfvTAcUndRTq9iwbtUnuXbun0sPaFp5bfJKTPaUQu2BcAVUdEQxTldUqyjEbdgfOcIZB/qd8U0ei2RXtUhw6wrf1O70Qna78rAO8w5EB0kbPQapB9KaUK3bV6xrKiKvUpsYDO1CO5K0o0dt1SzBAdK6si3BSNuir67HLCbnaUnE8d5RldHiAN5+7PLgeRuyd7IF3UOwPAvi74OCRnS3RG16m6ruNuW8RDo3sY0Yrs7HQGP3dbVCu1uWtVj2rWJ7pbyfkDyMjBV+dNZ6h/KVUg51pOviBSU2KTw+o4p7uoPj2YrtRFpft2n8Ah3b+X4k4FHXlKriOjc1RPd1GnWGinaGtV7ROt1PqLcqgdjTgJzsFheC7go9GRHlWUKuMCPYA6Tapo59t037DnlqMREJRfp4ixc8i7TxIuBWjS86eRGZmxIk7A/8/eewDYdVT3/+e+skV91XsvtqzmCphmTDUGQg0YEgiY0Esg4Qeh2KaTEJJQAyEG00wvBptiY/4QG2zAuMpFvfeyu9JKu/va/X++59779u16Je1qi+zojvT23Xfv3JkzZ06bM2dm8jgZ3Cam6Q4n+fxs5WPWywONtpTkraz2k9858R95MkRpIYP4BEaHnVvAJC+V+CXHgFL7FIcsF65TADB53BHC/TyethLeN6U6ebvULSrDk9qIYNIgV+W7pzJ+dMyvpN9ViPAv3UcKcaLUOHpC2p1lId2OjgvtkoNPIp6sbB+Y1mFve0m9rWKhwPoHQvs7YrjDzxXtcaz6/zExyqs3UDaL2LJME7pd4QVD03LNyUPGQB4DS3tK7WW6ZxtxWNMgz8Ce0flLG1++yToz7CxNjJFc9xTj9Ke+SfonEEEBt9MKN3Vf9PPwFDcyYdKHZ+j1jhfl7+ixfkk9KXXDut9xAUsWCb1q0jWvuL7RNc99EOcFJ7kgwsRDIAL2lHRKkqcP304J5HOPg/J3q4T7Yj4IDNBdf8ZFKpdg18dHbMJn/KzbFxkC9w4NBoyx96U79UZwSIgJSbUoEHwIER9lws0ZoshdsTy8GyICdq5WK3ptSbdmdf9BvbwLifKqPJ0A43iMy4EWBIcLWgSJC1QRn5LibzQCor8FW6A2+DNhOElqFA/lBq/2dX9hVKNJAqKyP7pO/qoq3UbYJXpI8qo60NIzyVaNUsgrL6uTcvK+t5VMEiLZ2GKsPjv2hSi4e9JvPqJF96gmNKN6IxxKkTkcNCeDQtAIkjvumve+T/gOHMptH3l9hSvlE4wIKt+Lpr/443VPgkkwMlXiUwr6rbJiGJnWL8tapip33EpZCEZw53vUcNuz65vb8px373Ne9H4eWZNRmfubKNyndOT1TfAYlVFhGsOVL2CKnLKahtFIHBgreIF9nzFel4dSzxx13aqHHjMMlFwxqe39S5RYRYFPEfq0UwRj8qyiaTactMop2DStJfZMalM3+5SMprQxuqserbjsIvoh9NGK4Id3uhOsCj5BoiZnBrL5FGiXgSYYtRqY+VMOw46KaWBquoR1pXiXRnCWgd/bNX0Ev9cBeyco0+pBvRshVC1hOlcjVwlRTdt3j1HxnBw3LAx06wK9qTuhEMRmk+K7oBrwQ3F6Dn+M0lQV5HSUmYccvNI4nkl5WKsDPh/FbE6ejEebmRZuGmn1Y1hgRYxlj5DJCN9aTCNcsFEvQpbSVUNfEq0lDAUlzbs4QXxQqP7gXZrM2htrmgMiobtmpqNHsjXHSKbe9u+uWCc0qj4ew1ZBMl72abqad3pNkmnEHiroIOT4s6ivIyz1mt9v1jwv7gIeZh7qZvMqRpAegT/Vl2dl4ERWrBaB5wAwNM0n1ot9OHasRp8A+ozHMeXGLMle4sgmspBASnI3q6y7bS6vhmjvPO2KL9nDRqBCQWT+dsdmdF8DjgTPAgTcd66NAGp4LGVoxk56lcEmMaoj5j/JJj1+of0Lq1C+Vx/aM8/H9qGgg6Bd8asTEcuN4PFqVjHvxbB6+/UlW85WVR1VfDo1AfM24ER/ycAKIKoKZ74VDj3EpqAE+jFkKDAf2ZlZgGwjeJK/AXERWQ5A1Fx5V2MIDVMBUiAAIV0mwheg/OK96FtUQDQFH932v7o6YdLbigfSJxqdcQMpH4jSE+1VU4qIRwZACSLTu0revyjaOphTMGqE2cm0jL5r85Rpr58tJrM6eTG6iv4qczfYk7e579YSv5NbdJpPt1WNA71L3SzfrCM+o4jgSGK3vXCeiUEEf4E56mRg78+qf8gkTc2KLWc0r0yt654qwPjwu7V5BCQ9IwZQpT1gFE/UoY8KMsATOUiBEsgKm6vjFYZFVijkrBNh455a6LaahOSO9bwsZaQHx4em+l71IkJiKEFef2EMY0y9PBK4OVYPaoFhAQJ3uxjYvBp+ZmBijYg0RZeMlrqBIGnJ1GXQcS8jjk42yI2ET7X6BNwIjOptL6P2niQGMWLByEvII8B4kbYLvnr4fpyEGSsKNV3Y1s6qwl3AhEGTpwtnncECApRIBV7Zs6NizQykhDYl5y21nX4OW/+XYms6IcrS7a9eoxg7ivupFjyHSXFGI5YTXPw8CgYwJTJpJDttDvuJzWYaXcYAMO5jo5/NG1neT9VLz89aPUpE8Ckpjmw/cTH3r0GJ1ROsrbZDi2HHVmzgn9HXEoaetf9/NBof91Q02FlM/xEczpQoY1pgDG0Ze0gtmKcRbATj/esrtvrusk0l+PWC84hzSuhObaJ59z1Qtq3rNWqnuRpR0Zjw0D1IR2B0hSTwInlS1PO+JLJJ4dZPu5yB70IqohPVWfHrFzwza9MJCgZK3wzzrnvKtu7esk1ZkLfzLh7Nymny8n8XSuP3v1bwMz+rbEEhaJbinhsI5P6xiNfh6wtYnofXS5KNMGqoUwpmsT1Bwwy6GpwKZ5COFoE9iz1Vpk4CCFIbiuLXvyrY3jUYU7FMbEekLGA7nsdelLObri/awU2oJDkIKF9UdRj5Vt7+FQIFf0mBk2kAAyDRe1+SeEJ5iQkMRi5jBuQq+oV2Qo+CsYQRPWNuxp7zggZrhF+E2mYMwh/8rGgPbWAvrNmBvfC5LGJgml8erXWbyvb9nxbtCO1QvKjznbQz8Yqljf+J44RjoeqmASOEHHeSIAUK4pTroS31VfKECyVViuESdjyIl/7llp37GjJEQkV91UFdz16ZsWdfDPPyW9Vtw0D46o+Lth574rGzArvsr+q08p/jYomfXRvaZ3imfZ0iEIEAZIftW6y07goUEIOyEQtoP+X1B4+swLf2P5nN/agdYvNX379RLQP8AjrtCgyUJ7LyVmyvE34e2Fq2j7JIaR36ZioG16dfU2dbuPcCVvCdj1Eoj3WkLYRHehr9VG69x0oPvclaw4m2hwjvBvCIRhKSHFW9/0ksAmyzIzsY091l48/6CpuLXwRfEnsKfjWbNAl8fOqpLAohNjbEyGKVBrFLgT2LGNm5GDNfv6jOFrGyvoLnrQJ8fyDW+4UbEFYaH6l64UpEu/smmP0T4PDZlIGwVQdHf3QRJ3+BayrVylo991EF/Nu8iWv009nvZseAFfC0EEZ+qjqb2NOrV+TtlU0V+6uLiKsi3OT6W4t2A0Hs7C5hI9CBH/8btoqADt73VVb9w8+CTyIxSSH8UmlbQ3kPUP1KzDsxAQKqs/lOq8x8Pkw0hvbAAPJa8SyPG2535kn23foXsmqKVVTcE/gS2UcRrtqhuBGFd5QRiHYlZ7V6TVLDsFr33Gid295LJy4HGhp5giScqc1SHEexODIYVmHxITaffLPlZ7+SMoW0qOOVV1UqRlIdeZhHeldJOaA1G8+fESDiCPbTQZ4V+IAjUkQcHOJgHVu/aaXtH4BBL+BFkC7DyUvW97GSKuK5qFw7URf+yPYJX2R7gku51/WeLjsYsUxjlH2ArAeAVQ4WJexBmwDMso63gdR2gHbGjB7zlwzi9PJR69z8KQzj79H8hXRqhMcYgsjSBl9tVEbxvSRyYkyHpbtt9MobrJ5DdaO9VKL+VDjQJOh3JnBsRji3SkDzinCo73ncn01olZb2bmrJ2oMMJXcBN3LR82Qg4FLnXmtd945oU0KdDdaHvu4OqCAHEFH7+e+l8KUUzrX6gf8iunnQ23SE2e/59op1X6/wmcK9lQD0EI3ZqteS4rj0DBJqhx9kMdRXKUsUrAwyYvqRFBdV3gtzPt7s3Bcy5TsFOCgDvnB4qOJiCHAeyk0bjT4AL9+tIa5kPukJEB+DN+eVn6HoO6XMqol8gnH/H3gJPNYtA2y4uIaWqlm7XfCepxgZspQ7YfAZZ5ktQxD5lhfk0WPBwUD6max4m4mx2oKwu4NQuS1azQc6Lm5luxW+NT2s7NqjZivejfvYlqWKT2mZvT9h6etN9BFCSvFo3gl89TXJVX/0PmIengvzPpPX1ReCkVq5bNrBxrIENkxEhu7FCPgVRmABHhbsF7MKSjyij7LLFrwRo1rL93G3U4weQLkHwMFDt3AfuaPo/f4mHX575F6G/2+z+ez6XIJmksGewhBWrGVjx2ZIAXTv4vsBYNyK/TCBPl9+GzSAoa1NU9ez8vFe+lqbp3YljZqP2o49KNytfwHRovWjPAb2Yyba5kl5dA0hyXgs3ooAeT8KZwG/qVBIkYBDRHzrJnbBnwwp0e+bDpj9Flh8k6akGvDLyVl24S9RatolV/Sod0Vz6ueOPTx/CL7Zxm+Qr9jK/iTJapWVg6anvRtkzaedMYzi4X2B/eDHGPZiI7Ktpro/sJXJaPr6ml1mP/9pwEakLOSi2tt2sAEzr2qgEo3jNVWXR7Ej2Hf8jps0MqTPfRYhaWACrMwrvHnJT/9WHowLBeHj6Q3C+230TPYxqpsMyAT/87gFGH+yGprbyy7y9Kc20759N6uFCSqfDL1dvxUYv8epDIR2HMKj9QP2jxiNUGd2K6oLPRIgM0pH7kcP/hL9Ak8f+jXlix7B7wn5RjBCd7m56MADlt2/1sZO5b2M9uui/fR1G6ta/+4XgT3lboxljOl98PONbM+QBdYmdA6Lb+0938VAbWGAx6rqQ9CY4y+pmyrgKAalu7BVH2AgvcLmtH0pAk3V9zEFeQ5a79xn2dZ1xO9eDBuKmCIyagGGV30zsMdPRyzhAdyyP7Qfb6nYcmRl+Whgl362ZM+dW2YT0sDWsdHsH/ksZZU46sbJRxAGGGyFltUe3RF0bAKPP9ftXhOk5I9Eyt1SPZu0MsDOoQd03qYPYkGGSL2FvnzBxwr2xLlsbgtfrAaHv4Yel8K3os0j8PWn2SLoAbZX2sm1TmKRzRGBQAYZcWxTETbDzyI0ZGcwf8lZPGEMFq6xpuXXscPp0+0bLR+2psrdjCgnsqx5s23IX2bnj7jcFqH4WlH2Ap528yzE2o3KUkMQmQSF8UeJZ7LSCx27bfPd78Ky+SUvwUU+Ko+yHP+vABbofGRgyOjhQNzxq7CO2WytguUJWlQR/wLbDQY0g6DFHOJnwehGGg3F2eLF8NfoPwxFjWmUh1E7S4mzrffbkbv/nir2gSOwWWuS6qW+JCG3DJOOfpyNXPkpPKSzKQaYhVv+yom9Dz0MbRkxzxHz+dPIqNICH/GNjBnBpneUtPIww8R5ce/vrOPey0DJBO7qqXJ1T2p/hJHu97t+0WulTcxK/B3y/EqYVnsXydDoMrJkWDWRLYFD76qmQ9zH48y+V1j2CI0xeDkkgIR9JQm6wrbvWnHN39JYlK638OEweubj/sHmZ2l3ZtZHLbfw7eTsaquuOoFDxyKNppucPOKy9EyxgS0oFbz0EWPGz6IvtZEA9PWfs3Abo/3cSm6r7f2FUTXRURz0nF38VcvNvoxi8CJwW080MtSePS0ULR5hlwsbyUewOh4hiYPAz6yRH/PjOxWTL+IXRowESBYf+CAbSH6bambzgMwnSKq3exIV0NoQIbL0p+wF+lTKpWKAUF7hSUcOsRjK5GSZCHw6+kN8sx9FhgMp2itOebnWFhSjsStFi+IPbYBavu8fkDhoHvdInBjG7vDpFziUCxQEZJd9DQeOTpHAmITXBaMMk/3AKJ0vntWRSNr+RYaNjiXhq0phlOSDKK2OjGBkQ4nWe4HxlSzxpgCPnFZfK6n0viTe0wi+3Gp1o5bbpFX/yTTfTH4DVAyjdj3XoFLCV6dD6IQB9acMPh2V08GFeqIRxtSxTQm9Jjx9ZPfNduDeS4EPpasBnTqgv0lyp7SVuL/LLHfmFRAdmiGJxqa4VjwYe4GR/+5F0BEfVe8f94QN0cMhBiXjIMromWDhgbYL2XqtVdZdTrkJv3C/34mOY2CXnf0Jq1v0lqhsKnCOFIzgaj+40u9JZB0FHn3M6vBjvAI8s5dOAzhRY45VfmGXabB1n7bytvfXwKhWqQFdSbm73+l6Fl1RluTOIlaQzfprZLcwFvGLCE0GggbAsuG1UbX6UxQF9h3+zWTXgrgZwC4Hmtel/hTtOU9fCU9/n2czeUPU21c6JGuSKA8T3rJnfY91X0+hXLaUgKhcDgPMQWDcybfgmA588kg7nwCGjmuTXBQ4otdq7YIRng6PbraC8/SD/EYvdOVIau/DN2Vp4J8fYfUrr8aA4SSEeI9B6WLF++3lMft42jQQNwlalKHnsADoLmhVenAGDZJTRN0rWKWPA9yq5Za7rXDvqxAbZNJA1Pu/d7BUpl6taWl8h7tMM2pvt7pl6Gm2VAjlxYKnhccSsOnIOGb4jd2UrAk8JtJNsOzlWSIvu4wrFQ3G0NOlPeyWcD8D72ARN5lSdjBg0gpzGEd2XIcbDEbSXkE+R6SnuOMhpZmMjBYwMigwTdgtOXaiZjgukj8S5gjQNqz2hpZvYnCcAwxA52qnWwnH/CFyUv8rBbmxWMdE5e/8kTWMmgFuBSNUHUstZg4coUl+f4l39VgyKEG4g6eHyiizFfd1++6fsu/HbbjYz6FMuD0u08vo8x96RJvJHfqh5fY80+rmvCLqYBmUcXkicHWSYKhNOqNOHjgJ5m5JMLLpS8juv+Ud37eGMuZ03XQKEB57Tz2L6J4L6snNZSHnZ6184Bkc6/MMygJuT+wVg5CfCkElMMZd67iToTAxzqc3NB3phBcr3dKRTdax47uQ1NSoudVyo9L7/pfdoDJLsOa+ablJT2WFN3TjSi2CRgNiGSxS/D2T+pkwCIcfXu1KwBqAx1LLXWxkei39vihud9L2rqwnvqJgGfw2DWn2A+IILiR2ZV6VScXz8mjg5fYkXNbC0siImFkFT+pvBpkklQm/0IDSwTusuO8L9DtK1wcjniF6oc9/6Wd52rQF/i42l2VHdx0kXTUO4PomcChTXaULRgbfvBMdjyVyFenpt0DVc02nOiNhkJf2Mn3Zej20uIqHSMyTSuILEHXkTgt2/4ol8PPpF5ATGwcCfzJCFo5yGIUrzSwI9WPp4wQ2Vc3tyKgBRg3qQrxVJcoMj96PJRvztDJ6Uu4+JhmAxHG1Nf/MMnteSJzLS1FoEJnXSNAz8On4G/1UqcKZYwOkyauvDSj0X/er9Oq0yCa+TBXt2/FTzjFkACUBcLJ4VOGZmVgoX7Bs83OYxXsaMIquo7rrCT2YI6uApKwRvUW/k79q0kg8v9Vnyiile2SjFXf9kGzQujfyZPhFtYge4bnd1zJ19BTo8ewungbMEcA3N5aRIjN50z3pGSSyKIZfNFB9xrXzNN6CDso1yQwfLJ4kjE70U52ny5zL50e9xIpXPD0GGJYBj5JgTHhaMnAkMC6rgVHo8+Q8zRYAB//Ezt5fBKfLgVFvJBnifH39ElMUWtm26GcwwQpYfDyoZU85+lp9OB6+EE8rCVcaW3gCbh3TJszovlL0xV+9CEwlBvDl1p8zyQFP93vmISrT/xIDFx6904rwX4Bc9PlKeBofHDo8sGnInZiaHI/ClWARGDOwotHs/ls4djzqD1ahBp6lXT+PefpsHh5bBwoOlXnMJI8lh6yX9j7P6ma9hMrpYN7QAj8tqFgg+eJ3wFcNOclInAEeVbZsvJgcuMEPpi8reHvLO38C4rEhfLSHF7Rp4qSrKIY2zMDQvt4Kubn2ihHNeIqb6RB2Lsah2JJdav9Rd67N5o6C4LEnH/YRAqP7dCSEpaj8Iwf+aAfXvJtpxSkQAUv/1QiA689H7dOnDBFUOIOvdOi7voliMPoM6sHpSweovq76Ezi6vvUs+TiMYKhCj8p67tj9S+vc8AbmzzmGBsJK6ju5b1zQWdraepOFo84lbmMe5clMVKdE8Oi7t4/g6nafdgmH8oIVtn2H6csPWViHYIKwovKiju55TVUnSBATMWflw8QrsHNxhpPUIy9Wdxgj8hEJRZ8EfuFFdXpy4wrCYhPGzo1fIub7aoxMBKkU00knSlcQQWkPBHsAz8Y5/ESQJNNwlFutv5c6nClr78cGoLwupXWfdIXOgWPkkKA72QQW5LlpvwWZzvFADEr82JwYRsEnAeFCokcVtc+iR1FrdAxE+RDTCGuvAjT1EcLUqbFHAX3+CZdptNz2M2hyDrtSnAVeKTP2WApPvcGYwKfvJI9TsJQF9Fg58HvOAnsXxiCG/oDgU0PoA52reQgF2QAtcpqEDM1IssIvNTAqd5JqYXMcJzdi10xZgnjTG2OPxskagEltcCaB6J2tv7G60ZyCMGou8IkLlOBZ6vbqoxvVv8m95Lk/4EfAoE5B1c1bvm2Htn2YLpGyGCiM0Es4yo9Icp5msVLUz4KtC4+C6Vip+izmaSs0W2kTRsGBr8LTCylooDyNJVpkn7uOFmxW+lrGwUnxCy2Iebp8dKsV1v0rhuB90BFK0zXLsVp4ovvi6XHw9O9AHTFt4zg6LoemPSkYI2xGPM2U1torAI1RjUaHA+KZhKd/yoz6PDxEx+bpnq2t9m/1ge6Ip3MYf7fC0/+EkTOLe9QxoIS5B0+Hrd9i/HQOzrDFlPZwnhZf9EwJv1ef6QKelgYqYVSWNr11kHha5TLgPPQ7RsNnM0Ce2zu/9AKjbnW7LVngbsF2HMnfsnDXx+CXLp6ODSyhAMSyl1Nzy+12+USCDgl6k9LncAk3sL6MIJhLHhkqx0yqDMNFndZx8C/W8uAVjNSYdpO3aUCEldSopk1kzzo2zGw8g43IFnh9LkwkmPuSEoSQvbj3N9a55p/AGONkf78b6vpSWi95EHYwZbnlDgyspYyEIFrvFeGmLzCSWYJYAX0yrnb82ErrXw9hMfoZkFGQgEr59EfIgdbhEc6C42ibjOKIhBcRdL9gZJTL8QOFzV/nAOUrGKEw+onG8EllJ/kNLBKYbTdhvBGYOhYYJZB99Kci+4hH5SSYv9Kx00obPod/F4WRE8MPRFmofiXxiwTJD+lejkcCj4GOXneBrOd9gDHGd4BBWT68FuPq4xgbtwAjQTOD0tfgUQesH/waA4jFbsD4FHi/YFQZEU+Xm++w0pr3s9t1K/fkuuHZoKTxLDD7Je6KMwgtmQ/qZDCA3z7RIgAkPM1lee/NVlnzTq4w3LwLxHwDTBqMMSrtbL3L6kcvZQYEw1XJ5V0f+lkCwHmaARMDpNZtP7SD696AXB5cnjYCtStH2NmdqZmT42lQhudKA6bS5muYSr8KZaGpwcHgF9HReML18CyWWBIvuXOyPC3d1L7DCus/Q0zql7Fb4OkBGYDqTCXx9Azm/L5Pj00Gj9DjSfM0A6bDD8Ev8PTh2+DpSZQ/kEGdA8ifiKfDg9fQN8A3mgEtfZYYgkmu43473UY8Le9aac17EdtHaDvlDBZPh/R1803w9BL09LyT5GkZpMyUMO1WdJ6mbzSVPuAkPYerisUNFS2E4didjHhaRfebp6WnO3CA/NAqG978MD1dY2BRJ4KtHTfZa6dOsUZ8ZVquKQOrGQ/Wl7HK5qHgyi5PEqESN1ZfCEM3CmDG9n23WMtD7wf+9SidgXoLemBT1mJZbtcfQWCzsD4ZneskYCHGFVaS/xgw4tfXwcfFnT9nxSbGVRlEi0AHi7DUS1oqXNiFIchOrg2z3ciqxnadEEYsdmCsENBYJKaptP51lMdIxZsT4ztp4kl/YzqzYWl49A8IgR2AOwcYp7th7Hh0SksKV8U19epSCtddogi5TVdbaQsLGFwQD4YASepF2HGEkx36CcYgI3yY1JWGEOE4rIHJkdP9t4x8EOkrOkrEaNiez0Avg2UAJjBSp4ysg99iZouTBgRjfeykd0ZN8um7Bx75rSkO2RAlpjkkiMOW64ARgTkoyiKpmwq0FcCBLzN1NAMDZi7OMbxv6tPj0aK/3sXT5X2/w3B5HyswtyBEmng6WH0NHApaEfuy4i/E65bBSxRkxdPQwPFgVJdL7miuDp4u77zeKuswrioYfxqgDCJPBywUKHXusPbmP7Hidw6rbWfCL9TTJ7nDIAEYy6wEa9nyHTuw7vW0jylgT2rEYCQQKM/s0f9lJdYevAez4evj8bTqjOvWV8LT8vRugla2fQBalHE1WP2s+hiew9OV1h+jkwg6p58z9VPoQmhUy6f56kr6UYMbh5H4TPhahkvnuv9kuv/zyJ3B5mnggKet+RuQ3yh2I5kfedAFWDeeToCtgbGWp5nqL6/9GPLrF+ARR8Bg8zQbE4YH6afMrAiPeWLv+kSLMU8DT3nfb33AZB3bBp+nXU9z1M2BX7CQbyZG1hz4tK88HelAVgYwRY3nas3boQ8Gr3jQB5OnMR6Y693GLix3oKexI0bOgr6QJcJjLe1VCTPua6dFYNTgvbAPz9W3rbLxTeDw4TzdzcASDWn/7J4GVmv2LPtaw7k2B+uRyURlI0FgGmm6x0r3CCBuW29t235sh9a9C2HC2U863NPd3wkx+osD/CMGANEVRgj7mZYqYsxwxE/ANJKEGA8juLwWwYgBBZw6BNfnmgloL4CQ4qY3kwPPjYwr94wMJowyDiAIRoLl/T+gv4jGIKA8U8+RDBCeB2cKd0oSLjEOA00As1qwjMItbPoKXqEP8IhRroOmTh/MJBhRvO0PYqwy1aWIkboxrnwVCxThMcGJcKoRj/DIFIdGuPt/bwW8QuU9GC9VQVwrbAYDVmBk6toO/wKhvCGGkbO86nDhq0+9r2MY9TuGESAxyvYC281W3vBJhOW3gXGwBXHSPtqMS7zSQvxZG2fWYVxrZB6w34VgdDxGHQgOu/Cofq8wxVHa+QuM6A8xdXkvMM6DFotJwYP0rT4BRxnODTxwDYqNiXoES4YFI0FeR8HEMDoa+SMccs/7GoxX2taxTP/HFm58N/TcQX9gnDmM/sIgwSie1kgQujvwJYpH8OE5EE/7wOSYPE1+Teu3Mg1DMHa4+S3Ag3KUcTUEPK2jxDTwObrvOuyBEYRHjiYOq4lZDAxE4dhxqUuUWIzDDDytAd1RPPoHN1xtrVuviD1XQt1Q8DQey/bVeA/+EPELijeoGxf1ay2/+DX4k1wUjByJpqmi0obP4unl40HtMq4Gn6dlZIWHryfmZzNwSe6Mo/uPz9OiR8WiFuHpwnqmBZt/wHtaTMPga9ATbZaR1fId6L+Fa8EIvxyDp7vkDtg6Ak8zRV3ZcBXG7gPw9BxuDgFPi9YIvQkPftX33ZOxoFCKbjzteOnO06K5Ct5yeVzKG+DpErANKU9TI/FnYRF9CE87jAwsQSrwS/Yo1cIITRKPWG65z6fcypvfxvOZ0KjeET0OptyRDsQw5Ri5ygEG8gySDZ6W3PH47FoYe+ppjL/ywT8zGPkfC3d8kLahpz115+lg/pKlzkEJ2AcZMd6+coWNZ/MoBXI1sFX8xkKTndf+RHvS2AVW4lBkCRYJEbnNyyzNV4BzZ+uD1sFZfsXWm2GWxCgYbITEbfAvQYzLvcCZco1MxU16KcGTy6AzeToYuclaloLwPU524TrfRGwUgngfrryj98AsGp2B4EEXchRZTRALKey8jymkJ3P+46VMd8kdOReLmZGbFhNIgLHzq1zeFYJKy813A+PV3NsXBRE7c3oXeVmD/se9BwUY4CGOkno+g+CLobkl7tXK1E+E0CKLXkaVrx47vAEY7/BAeQsR3Pm5NGEohFxNSxW7wGqusLzZggmvYqbhQsLImPIaMZt+FDPI4CZGr4CBc3QLwnsdq67/gLK+BgZCwCm2YtCFXA18uvSg8q14iQ5aZtJbmOE8D/f9QmiTUVEeo0RGK4JDK1UFY+XQGhYa/BZF8SOeL4nxLH4ZqgS/CI/wSwg8mYlv4DzLVQSizgfGGTyCpyVQWPVTYeWvVhWF7I0X7r+BUfhvCRZPBIh4ZqiSBC54KtxjYeNy8Phiduxf5sGyOkA1OvOQrnSe3oky28QULcbEPlZnYVSY87RwOFT8Qrm+RIyBZudqqx97sY2YdIk1wtN1yJ0cPJ1hVIvUwRBrsyI83dm2gbMe77Yje75IPDLxR9WYq6GCkebHPG3wtDW9AJ55SjQ9jKc6U89UVRyLp+l98XTIwLiCxyXc/zlmYOCn/GxQONQ8jRHMAqOwsgW5+HecAHahT3dp9bXHXIpWWcRUwetXad8Kv2Dow9PlA1+DleZCJomhT3uHKjlPwwdBC6s034rcgacJS4l4WkYr9EoYR4UFCy534OnKgd/gif4J/HRGjOfh4WnLc8jyJPZrU+yYYGRPNI8Lhae1OjeMebpyiGnkfTcgI3+HITF8PB3C00HjSsb0L0IHMoXteppYwRxGDUZTiMESEsohPV1mK4bKvu8yUMBA1UIan6IeQn7xtaBEmsLTwZinIhsvAUamX6Wn8bD6npHwtHZoD11PM9hnRWNFA5FS+3H19AkMrAp74uRsw+EDdv6d19vKMYusQwGPOilaCqPMETuFzQgO9tCCH4McAGlK0PdKGUqE1HAUeztpDjQssFEcWwcEDU+GsKYDI5apEjvghuwwG3Ywoit0RITv+wIxGh+WJMUGjCwNDYsbvcMC9hlhCR8MiFUvA08biHKwdth+qw+8nfCF36EWctX2IygEI0GoYZkYjgYxKAJCcQPJilIdIFzEMGj/s4MciPB9aflgj86qQHW/ED4wqFlLzDd1sipOMQgeyM2Gt05zgr8EHRT2k4c2Jczpgd3dixuSX1IKTLG70U/11ngeMMo1LiMQL4cEXQnDuXMN4DJ9jlfJcJ/D2WTuPvIZEvhUqJSGXOCFe+lbfjc8HjwBgxSWG4FtoHcPqz/uAU6+5VXz8y/FL8PF0/Sn9oQqYCBoA6f6JwIHwrjK04eAcRfw3UIeFFjdmeC3EfCGk6cxpDg0vFLc7KsJs4RQZOvmgUIZqhhYHBpf7lyHgwDjBRCzUmanhKe3Aw792IDcrlsCHmVgCVcAVToI/rbQ13dE5HfKeBqDWtOHDcshzwXAiA5xjyZKBTyGnRuRjfcxpod2tY+U+H+YeVoDE4kUazgfGDBAxdNuyKJgNRjuhFY7N9DRU3k2A/iGm6cZ+Eg2iqfrGNjlFgHHBPCKR1pnu6J7QjYUZyvLU8fTzM5oIB9ox+oGBsnO03iMACnEliBuBxb+HfKTGGTnacl14XE4kvQ09ZUPAMdmZM40fqKnFQ+r2SjRmwb5hW3wC4N3fpo8qDKyj6On+2BgZW1D2yE7/8GDtnLmpXa4fS/lAQRCWh4YzVFbG53XfAOAwLzDhpBapNNIVxwIDXYRD/1AaRSFEqekBxkJFQSfK0BR2DApMwcg/pMYCOoM7XSO0AtjhRDoID0dFi2Dq9phw6TMusGIMiPqTgYr8y7gcXdEWKI9P6wboaL4MucIhNxwKdxuMGIIgr9g6suAg+W7TLO5suBaI0seWrj7OxEuTwktClkYWkoyEnQot9Mjv0UDCjrXrt0eJA69+lSW5x7GP4IxNrS0SaiO0wmBU0mGtgw/DsP2PMOpzCII4r/deTrCYcLT8EmVp6FXF3CngqfBlQSyNkplp/cKctBP0dYUYZ7pmkbwuPdG9v5kgOfGlaTyMCcZATU8beJp1w58OQ6b6OdTzdPiF/pbh69zLJHLHe4oBc4vko8YhZLbQ+2J9lp7/ol5WiLZj3aCX5JjshKe1uGop5KnBYe2OKnH0zvpGRgq9DMefQBGL6On8VSH2mFcgeeK1TslsjHhaXSH60AMUz+3EDB19NYjgqdloUKP8hiFGH0anCS4yohXpKdHijC5L1vi+Hpa3HeCpIKwIvMTLT//VUwZIngTpUDZQb6eeCG2Edj1JXA0Lcp7ghIH/7EYD6NAmh9rM/CRLteehAA9T/LEt4f7y0dcErCCERwybYUYjqEARg+sk8I9focNKdjer8Ag4mH0wz7aEbxORAmMMMephBFYwsJ6BonPxx2+HFLEK4lC067GOu6hwtx9keXv0RSw8Dvc+BSexHgkGTE5eEJxQd7XgiXG47B5W6jyYUkwwNOCSQazgj1tTpxLMD4C+MVhiHlaA4+ePO38Aj8lsiiGfli/ZLxwZJCmrPPzX4Hux0CAFj3pGftxFYinDNv/gvwUfk+BgdWDp6Pd7BK+EB3Q14pjUrefqpQYTcIZHoPAdz/rAWOi5E4JjMKTeBqYnKfFzzOi3464GI+nlKeBrbwFr8pKdtW4HDgbgDmiN5eNbP5ZXH8Ng8+r2bgLr8wp6e9EBwOrPL3ymrtc5MsB0vNTzNOJnhYfayDs239w7UnwCXF919N9MLBUsiogOFbl+0hMleieCItvbWDxiEiCR0QVEdYjAqSHAfFogFEdzecRmWJiF6H7prd4saq0iGEY/3pkgP5IxqMwJL6VQHtkYKt3KBIYH8E8Da+EmhqWp0i06Phkasa/BXdEl723b7juPtJpUXh4pMOoDuXziJWNEZ2F2uCRxUium11cCuaELoeL3o5Xj+ARXzyCedr7eeAw9tHAErJEXEpCDh+Pv4l/V595hvRPioFhwIDoUbQoQxDB4t+6l6YUA6cCAwktxoos8WSdClDSOk9fDLgI1J9aepThGt87fTFzSlouk7f/ya1i/8O7yXf/i0nfSDEwMAyI9hL6q70eWKnp2ykG+o+BhP74dpL0P/0vJn0jxcBAMFBLdtVrXVR/DKT09N1+YuDkDKx+VpJmTzGQYiDFQIqBFAMpBlIMnE4YSA2s06m307amGEgxkGIgxUCKgRQDw4KB1MAaFjSnlaQYSDGQYiDFQIqBFAOnEwZSA+t06u20rSkGUgykGEgxkGIgxcCwYCA1sIYFzWklKQZSDKQYSDGQYiDFwOmEgdTAOp16O21rioEUAykGUgykGEgxMCwY6Mc+WIJHe2vEH//FFo++v8awwJpWkmKgBgPJvi6iR91mh/ca2qzJmF6mGBhiDCQysYsWnR4jwqTudIn8EHdAWnyCAZeF/OgmC7VXYPIgyZh+DwcG+mFg4eziwNogyzk9voO2wMPA0iG22t09TSkGhhMDOlZDtJflTEyO9gnZaDTgYPKQexIlvs9jKlOGs0dOy7qcxKBFycFQtMi/iP4kEyVeZVxJwaVGFkhI05BhIKYzBF+gXdwz0tOiwfi+6+lkwiqlxSHrhh4FSwL0IdEhKLCw0GqVQAfYxucyIUoqec7r0SGd6rPUm9UHXKZZBoYBjHqRY+kIx09yYHaRw7394E2UWH40v9tqjKvUwhoYrtO3j4sB5J3TYrndKp37zYockB4JQgx9HabNmWVubknRpbR4XFymDweIAdFXdIB7WGjmWodmF6HG2JjKc/6tDp93PS2DP03DgYFg/pKlzvlxN9hBhMbtK1fY+Lo6K1Yq1pDN2oa2Njv/vo22YuxcO3zoJ2b0k8sL+jMY+7ToupPTu91qlvGVCpPh6LzTrw5GYDpstcJBxSMWcEbtFrPD97gek0PLRi9HxsyDPjdAi/WQoWgxFSanH50MR4uRmE6LHH5ePwWDCtpsvcnPTXYl1ih6fL4FHTsgQfIE0OGpPJh6OFCS1nHqMCABqJklDPuwgcOoD6On8XsketrGPgMS5Gy9wh5oUd6tVE8PR2f1wYOFINFJ5sFhC+qnWm7OvyNXxvGbaZlSu4VHt1iljRPji6sjz0F+JXBLqT2SD3IcDtSmdQweBqBBwwugA0I777QQ+RDkllkw7sUWzHqLCxUpsRAjP2xbjSP1fhQbr9SfxR+RuGgxNfpBQpoGBQPySKHMCndDa/isGqdZdvQ5lpnyQuiy0e/JixAeXctYYD2eVmSjDP8MXgSnxdToH5RuSAuJ6FCysYzHigFnMGo5Y8tplhn/H7GeZsq6eNTC9s1WOYzsLECLmi7MSTamenqoSej4BpZiqyqHzRrPMzv/45ZraLJ8volYF7wIpBCF51M0hYMIk51W2vNLC3f/K9pvDvoQIyxk5JamFAMnjQEZRSgyCZDSGgymWRbM/qxlJ5yPsT8JATKeRyMQGBoEEOQug1+02PkOqxz8k4XbP4sS5L3cUsqQkSWBImMtTSkGThYDWPeVFuhti2Wnv8uyU55pwYgZOA4m4BgYwyBT9MrjcgGbH6XH1GHl0For7bzWwpafRLToMauaPkxp0ZGV/jkJDEg2or416CytNmt6oeWn/xs2/GLkomhxXFVPK4/0dKVwwMIjO6y09xfo6U9BfnORnxj9qWcVXA5N6mWKMGCKcFk0RUiQXEO43TbmX2bnjbrczit32FEUmeKxPCkAAYESuMCQpdyMIb3aSps/hzD5GTExWMnuihwa4NNS/y9jQAIEw0pfZQTI9PdYbtZlFoyci+AYyX2EhlzeokfPJFqMAzyhx7DMqO3IJitt+57Zro9ipy3jufAlQytVbMJEmvqJAaYEw+L9lhn7HMvPf7Plxq5wL0FEgqJF5KL/oFwZWpKNBByHlRKerN0MQP8/K236CCQIzbpi0zRNSov97IU0u+SdpqdLrdhYecvNf59lJ1+E52oKco7FFi4XE9koEpNsTPQ0JOp6+h4rbfy8hYd+RRlnkEm0mKbBxkCNB0uKSh4rBVjFBpTXhqCQhVsqIDv4dsFRIxQSRae8uTGWm/xEyzCiK6yfbpU9n4MOVvF+2nmOyvRPPzAg4wqarDDdt+DzGFcvYfqlCeHBVCCeKhcaUk5Oigk94sVSvIvojZiEzOilll/8D1ZqnGnhxjcifDD4fTBQS9/9ACnNevpiQAqNKcHslDdZ3cK3WmbkAuiMhT/IRU8JHUqZeYJ2kZdhSTIzsEzDDKub/VK8XbOsuOYDZh3bkZd4YN3Ln7wTv5p+pRg4JgZkXOFFLbGoomGe5c+4ynITLnR557KvpHAevcyfKi3ys5ueHmu5SRhkyMXi+mlW3vtFikRPp0aWEDeoKfJne5EotPIhkD4PRYSHoGpkyfBSZ2lE5j3XA4C4I/VMAqXcyevzrG7JPxGTQHxM8UHegyDSlGKgzxgQnfFx4+qLlpv9N9hFY6AtBVZJwIhslae3xH1/jrGl/NnRvP9yjLT/Rh/ezwtx2b29mt5LMdArBvAKIMcykzGuFr8rMq60ktoHnKK3Y9FU8oxCmTIU6eYnPcnqzvwEynEq97Sqq2aM22vd6c0UAzUYEL2Uj0A/Myy/9GOWm/hExqGSdYmhfwJaTPQ09JsZtdDyS6Dnya/DYFub0mINmgfrMjaw4k7JHLS6+W9nJdZilBuxVx7/0p+qonLU2RlWMuQXvplVhpdAELgy5R1LU4qBPmEAhaa4gpkftNzMl0CG9RhHsfe0T+/HmWRo6T3ez816sWVmfRhapFwPfO9PQWne0xcDyK0KA88xz8Rz9RYGoDOgISmzYymyY2DKjTAsLOgxN+GxyMYrKGIfRlc/yzlG8ent0wED0Ir8HZnDllt0BQ7QCyK56INO0VFfU0RzrqcbZ0GL6PzRF0HXbRQQmwR9LSrNd1wMRNgMUGCF+ywz/d1WN+UiOlG9qE/cafpCzjRgPGe51hMl3W7g/gjuN/JxGeIPiMdCCGVxo+fmvQUi2MxDMiblKU+aUgz0hgHRSaWZ1TBPx/P0Cgb4oyIjKSauupjeRHN1PWRBlt9+X6SWJL2HUlPcVnbWy81GYvBXDkCKFJCmFAPHxUAs+JBfirnKjF4I7WBcxbQoepPc06cemlPuJOVqnolmo6QcSE/ka37Sky074/8hd+/lRbYUSVOKgRNhINHTM97pnlA/uSLW0yLJWl1cq6d1LRqVbFSemHz9IoSes6MWoaffjM7eCARkStOgYUBbs2O5sgXDiHMsO/UZGLCNCADN40oqIAxYocWsn1lzaL8PQlswIbCRyIMSYSzKcede/nSQj1nApRMJMuZmhZ/qRO2unR23wjJT/9HCXaxaSOOxQFaajo0BEQ2fylYLZnzEggZip9xzxT1Snq/75Aw9LCXF95jAVrAIpp14TgmPFkKzHjjAg5GBLRnN8+i1WJCUIO3plPtyC9f+nPeJf/EMKihNKQZ6wYBCG4i7ykx7B3KM7WfYF9DtI+gqx+cwM9AbkYseTYFMXIVsLPEzj3G1l9m/HXqmBD2u7JH42gAAQABJREFUgk61pto3flQQcrbBclOebuV917H1yEF+S+5yP00pBnrDgOvpVhb5PN7pRl55K0NRKFo3mCDNO/dDb3KuQn+LoMVGwgbL3G9Df29K6JR7y8ej0xPZyCvS07mms60y9W3ETX8eAl7GTVFrmgaKAdQSFlFpHfFS72Zhy5ldUzGykjB9y0dDG7MosC89OWeFQ2X7/h0Vu2uP2ewGs7XMvlx1ScbmT8vY/tbQPndr2fJ0sEZvvqOxPAfsmZWb/HQr7PwUwkUmWZpSDBwLA3B9iJXUcL5lJz7OhUdirWcgxzXQ1qtXBfaEM7MmHfX7NRW75t7QzsaYumtfaI+fn7F/eGbWNnN9wwMY99JXiSCBIkM24stOfKyVtj4WQbSfZyg1X1V4LHjS+6c3BrQCEHmG/MqwJYgHtKPNJMUOoLTOnBrYOy7J2lhCVtfvDO2Tt1dsIQ/vIkTm+XMDu/IFWcsjYe/ZWLEv3hPaEq7dhJJGhIAlbzPjMbK2f5SBqYKMUwPr9Ka347Ue4iltYJbpb6GbM6oDT5FSEVuojD6+ClqcPy2wA4cMPV22h5iBHo9BNWeS2T8+O2ejR5ht3Rvaf0KnkyL1znhWtIieZtub7ORnWHnnZwiZpi4fDhwPnvRZXzBAsAtMzREjgUZo2oBMhlWslRTCUj5UsaY5WXvMisCmjszbE841e/fVnXbjFrOvvypnlz4hbxu2l23e9IydtTBjz/xM0ZbTkRX6LZppDH1VYWbs01k2vxGjjYfpSK0vfXMa5oHgKjssGK8NG7U/C9oNOpLn6kEU2psuyNi7X15nR9uhUQTDJU8ObNJ3O+2TvynbPz8ja6+8JG8LZ2Vt9cayXbeh03KEFGgm0EnasclZcToyoulitm74DzTn4pQWT0Mq61OTE4/B2Ivx7s+ETqK3tOVagYHl7Ilm/3J5nU3Ha7/7YMWe85SsnTm/aJd9uWSvOzewK15Tbx0ovhIurRc/PWNTvt9p/3x9xc7FcdrpdhQFcvJFduxyK+8WresmhScV9QnINNPpgQHoQh4l9rbKjMW7JKHGb3lDc5DR/XyufVHOnvXYvG3ZVbbpk7L2hHPK9s4vFWw3ntR/f32dzeTergMVe+HTMrYUOn3R1SVbgSqWx9UTyjoYyT6DY57MlMAOaDMdfA4GbbEdO5ort5AVBYvoNBRcTdIimfzEjO28s2SrriralRhWc/BWvfA8hmlYzE97TN5uuLVoF/xjp330moKtWpyzDzwlY/eh2ORCl7zwQ3i1KeQoRmjlDdxMvVg1KE4vazHgQelHLdCRN26IV5ihZtoF3VNmJPb65+ZtP1OAi9/TYas+0mEHWyv2souZxsFj8NdPz9seBMgPbi5YHhITJSeyI6pCxIjBlmFj0jEIKZ2f6QqtFoD0OsVAggGIqLQeubjKR/faVFnkImP/oZbQ3nZJzmZPydg7P9dpq/650371h6JdfH7eLpiM0oP4br2nZJf/e4ed94lO27GvYhefg1IkxEIn5lAECepkOlwruYL8kpgeu8vfBJL0+zTHgMtF5FUdHs9RCyLHBSiRnLuHtWhvXpmxSy/M2w9vKtrZ7+y0j3y90+bPyNqLL8jaOkIqbr69bG+CFle+ocPWb6vYU89DZkKEmvGWA0vXom/fvHnU2Qjb9dxL9fRgUB0GFh2XnciqP5YNe6pVSwiEJAZrt9khsrr3kHwvmx9Ye2doP8MVOWNcYP/5p4odJRbrgjPoGL6j7lHP0Ys6ELp+uq9qTg2sGM3pVw8MiNNRMGJ69meJYgEjWpQntJ5HI+qhOcX7beW4wYPQGK/Io2AMtv7tmwW76KMFjCye6x4peju6jm5wh9gF7f8isvT6ksw12dLLFAOSU+5ArWeXdskvJ5iYsKCdUQ2ET/B9N9PRtl0Kijd4PAGvwBfuCu1lXynZnr3Ev2iwyYOCQloYy0pX1tKlbw6J/OUoDB7G5afoTzHQDQPQRUicdA5HRf1knkQU5NSC3T+KcCwZW3sZcNoWaA49XY8NlZMSPhTau35VtkZ+f/HNeZtC/NVtq/GcUISOz/RZJrew5N0fS/nTMLBUeaTBdZWmk8cAU4RwvUb1OVxS3nFdTB7ghiruweV4ac5ufEreZhFUPAolJ0NrOkF0WsVQKKLoGJzNopPVYSNUTG0iT8CB0QFBnVHxIpbaDOl1ioEuDIg0gnxjpIjY8brCKL8O+upE/9xwW9Fe97x6++OXsOGJx1rK1PXt9yMsUF5/2cSbCIbGnvTXVTRX0KKUWHZUt7vpjxQDD8OA6AR9JbkVINhCuVG5pSmVWWMD++4tJXvs8pz96gMNdi9T0k/gmrAqayuEthBv60xI7LfbiUv9m5zNmJRxz6rcXxRZk/iVq6f8EVAmQjVNKQZ6xYB0Jq6qYARRPHloJVKgRchnGbPL37yvYi/awJTgyxvs7DOKtoBwnZF1gU9Rq7jnzQ3sFXhcH3NGzurR6df/qaAxaWTPR0W5Tg5YFhvkoEXuuZxMnvUKU3qzLxjAJJKlimSojtBqsCpE0yElvAboODtyJMS4Cm0rUzEd3Atd+eHm5pnmgpU6NVKrTdCGJ+81XdWUHz1J/6YY6IYBTSvXkgkmlM1nBPZfvy7bd27ijDdudOI9bWUBxg55rCDOibKZUGzJe9rCQdM5vSbNfacpxcBxMSDhRwanRS5iWtIpNwocvvaB0P77JwXbtqti6DJrZWXr7uaK7WRl4Tho9be7Q/soQe6vfk6dXfe7gr3nhrKdV42/SirmRclFdxmkHoMEK+l3bxiAqKCTsCZGWpcKm95PUPsXrivarXcVjTBpO4yebkE2bpVsHBXYNrysH/120d7+hQ7bisPkHS/KWzv5yhozxHQd0TpVVOOjRZdpGigGMFkZ8rMRaKWg9e8JtqNiQ6RJfnzGdt1WsovfyFE5PH5oc9k+d0vFDrSw+phXl84MbPM2PA2ywEhb9qAc6Tz+xkmjPw7h5fwjuccjgZI8S79TDNRiQB4mSETL1j3mJaJHCRJNTWsLold9qWSPewyxBNsr1oaR/+WbSjYbj8JO4rCMKRkPLEZwPMSA737udRMTXjhCikNPI8HS7WktIOn16Y4BGT7Iq5ADmyt+gkCXbJR5vhwXwFVMvVz4kg77JMqtgSnDm/5Ysg3IxTuYFrziWVl784vqMa6K9rJ/K9oUrP02KbRueNX5rWhHbcQc6PSMlB67oSf9EWMAugjGIhI5PLwIcdVQkbxYiyGd364J7envLtiT31mwHE6RB/CqfvrWij2WFYSsYbNbtrMo7XsV+997yzaGbUMe1xRtb9NFj9q7shPZ2Ox0n+rpwSE+9sHCSirtJhRrC/N7s7p1nrRQqClAFNivr6ojwL1s//hfBWtgyHb7ntAOM23zCoKLV+8g6JNpRE0RXntL2ebTgRrpucAgWC7s5BTv9g04y+hVH63pWZpSDNRiQASDtIDjwyPrYfYLuWbeuUbpIDdsLl6Ad30jby9/Vp19+1cF+9Xaii0azdYNiwP7K1YZnjk3Y1MZFHzkqVnbvrtiv18bWgcaMUOAsSRHdAj0+kiIeNlOqLWApNcpBsAAQb/IK8mtkC09Ao4miYJIfScrp5x5iM6LX5uz97+6zjbuKNsnbsKCgtbez6rBK1/TYPej5G6FPj/40qyHVdzO9QH0o/bJYigBfTMwPbqVYndxjcXm3qwU+SkGemBAXlSmka24k7U52yzHWb8JqUBFvkp6NE6Nx68M7FOvrbOphO+8/fOMRpnPfvZjsvayp9bZ9bcUbQuLLZ792BwxWqH9iYEAu93E0hVqxBVWad8PvW+E7hGyqZ7u0Qkn9xMPFv7u4jpOg3jQGT4qJlI68jgVcXtPXZG1GVPMPv7NTvvGfaEtx07aRcjAp76DV4usH0fAzJmWta//omC3ICtGyf2oIvj4afKdey1svREDayb3EEJpSjHQGwYkSLIshmj5MwSkoF8IMBYBUkqrUU7PWhbYM1iO/JPfFu2N3yvZ+QRtrsMJ8PRz8Rg8L29zp2asHQHyUvZtk/HfiI2m8BkPhld5ZbypLXdwg2BO1ZemFAO9YUByKjcTufgLCzv2uRxLtJpoqRNDqgGd90r2F9qG1/5VLImfKJkHiY0dwV5ErDRUvjddmrfLnpa3lzwlZwumBLafkFftAJ+kyuGHMOAegtY1mEjpMcFL+l2LASnSBujkfk6wW8sDmVVdSQPP+/DW//2zcjYBeXgVqwi/+yB6mutbVlds9/6KveDJeXvrC+t8kdBnf8RUIvRbDXKXEpcjpB09fein0H0ymOiqI706OQwE889YSaT6/Wx4d5nVLf+4HambaDe2fcLGV+6yYjDBGsJttrHuxXZe8GpbQED8qIaMEcfpkVsSFrvp3GewAPEeZnX2oBNX4K7E6dVFAjwvbv2elR54NYM0NtHSqsU0pRjoFQNoHjF7uNWy59zI7tnnYAMpqC8SKHqkIx+2c+sAsS7LNKiLy9GUn9TTbgTHIT5zGDeMZIQWb77NE15m36FKy11Wvus5/J5MsdJ0qVIDCWnqDQN4lcL2v1j+zKutbs5LIaGIDpUVavKtaLQj9mqmo8/EAaWVXKLRVuhvK4R5BvSp+CxN40gJKum5vy2FxnRMx+r3WXjgGjKu4HZCzcqTphQDNRiQI4RTBYKJf291yz7EQqBx0IucFV00qWNw7sTQmoxYm4a9Lj18BJLagsp9wgyOG8Tj+ottxAjyykyu5QSpvo03tbj5Wis99LpUT9egfaCXCpBCMpyF4vmGlfffHo3UYq9Bgn7vRyTFROIMEuNJamkSnbScfl+zh+XJ3FhZa1zhHQgydQioHVbecQ0DtCUQBG7LNKUYOCYGICLtv4IRXt75U4wrLHi5BGJ6lBF1BHKdyJ3lorWacrRkXqu4WEBjZyFc6hAe2hDS9Zn/5UGlw8q7foZkYTSgY1BS46oGg+nlwzDAgFJyq7TjGqby0EzIs8TrKcWkFYVlaGwVCyxkXClWUPQ2lkHAKgyuHDRZ5LnITF5UGfueyCTPfunAbRY2f5WXV/KiMqYpxcAxMOAbja608OCXrXwg1tMitprUhkBcjk6eGhtXejQakl3FLiO7CK26fycOEJ7rFJaqceXTj3VWObIZmftV6P0MaFFyN02DgQG0jrid/2GTlXbiaTqyBeZHeymYIE4eEEyeKK4quRv91o7t6kTpxcT48jIRIGHlqJV24WJv+x3CCYmTzut2IS+9OgYG0EKZxQSsf71LkNTk1F5DojV5UWuT7vu+L1C0vArsDBL9jjMpxqB88E+U+y0eYuyntFiLvvS6VwyIFpFbR26xInIMK4vfEFZstkNmTmOSi764Ky5DpCkalINUNJl8XI76NHgdM+BbMdy+T1HEu3h8YA+CjstKv1IMRBiAPkRw4TgcFj+AFDnxIovirQlzUBiF9HF1d3ayiy4lK7UP1hiyiy71XEW5O9VPbznKwBP6PnIb9I11lg48hZ1BSXQJya3jOYymvmeFrd/C87ifHpBBlAy5PFcsVqLr5K9c3j5y49uT+8AJ7UKalPb8xspbPoCzYFlUR/JS+p1i4JgYkFLTksGMVTb+O+eQP+ie0GhuJSKyaJqlewF6ovvdP9ENeVLLxLpUNv4HEoaBA1OFPWm7e2nprxQDMQZcNnKczdb3sSfgr7kp1YTYjInQ6a0XZHWnwzi7ewvqEbfNTMd8nVjA7+C9msPDWl9sL4Wlt1IMCANOi/PQ09+y4hbop8jqUxlEsZGVyMDekCUd/TA9zQhA1FzafaPTt+U5QSP1pPaGvpO+FxlYep3pu4CpwuL2L+OK2hwbWOoyt3V5ruvjJZ4rD8pRIzUZV6W17+UeAVqeTvT+8cpOn51WGBCTayXL4VusvPZf3TgK2JDRafGEdBhjyvOx4ov3yofXeDl26GbKZYIxFSKnFTkNrLGSW5Jts6245j1W3IuR5TYWg4C+0qK/TxlZjKtSsxU2X8MBzx/CtbWKMtLpmIH1z2n2tugFuqlsuxI6+hqKtgVPloysmE77gg7ldT1N3NWeG9HT/4+35vPpRxl9qSfN4wEuNWgQ4pmwTYwqfyKkI1Ei/zbXSSck356JP1jDWTwD5SNW3PFjKz74FjqfmCvt4J5OxyRISr/7igHF6+UXmR38npUfvJLpwtvwZGEw6diAKn0mNFj7rQrifPKiHvijlR+60qz525R3ZqrQ+or/NF8NBgigkhJjLrD44FutsP3HePnbInlXpUVlr6VDXceJOW3JxsrRLVZY/zkrb3o3SnIlD1PPVYKi9Ls/GIBuoJ/ypn+Cnj7vWze47lXsRDUdgxZdNkpPt+FM+RFB7W/kGpkq3Z3q6Sr2ButC2qpH6j4tGCkz7hEnwDGm5JXTKxEeKDJdc4JpWC6gzO5hLvcGq+z5V+4RLKdOc/e3hnxpSjHQHwxAMxqt1TG9fPj3Vn5gg1WmvcYyU55mmZFzoTti/KrjA9GjaFFJ9FtBfqyHDm+2cNdXWVO/A+NK7m95C1JaFJbS1B8MiBZRalnCJljVWlr7Cqu0vsty0y613DgMJfcgSC6Ktrpko9Oi9rpiH8Dy/t97zFXY+gNoUcYVXtpqXi7TlGKgzxgQjZWYcVpple0ftM62By03/cU45x/PjCGefx5HsrGLFrv0dKeV9t9NbPT1Fu75FOqcQacGre7VT2Vjn7ugjxmD+UuWei8kqD2I+/D2lSs4DqKO5cWhNWRC29CRt/Obl9vZTWdZeyPKrW4MDi0tQGxnYdYujkkivqX5LlYi3sieMWt4LgHCqM8/Scl9hCjNlmKgGwYgTy1RZgUgczRssnaxBU1PYGPj5RaMWsiql4l4tjifC8XnG9pqk9LW+4hTuJWD4TQluIQPXlRfwZrSYjfUpj/6iQGJSnkJtMXCPWxNtMgy455lmaazLTNqCfHw05mSxggjJkY7tMtjVW59ANn4J2gSD2o4AeNqNt8y9NOUYmAQMKD904pbkJEHkYkvZ7ul8y0zZinHFqKntYW7jH5OIqi0s0mp9DTb1ITNv4R+17uBlurpQeiD4xRxAgOrYg1YtxvaWuz8v1znx0MckYMgM4c/dGy4kW+NxEiyp3J4rbTqxpWZ223+KP2TYmDgGMBDIEOrtB/62mph7EgNAs6CMJ0Q0EoYwh6XJzhU+Z4FPfLMaVE30pRiYBAxIMVWYYOh0kPu1NcWWe7hD+ZTCdPblc1Oi+6kCkdBiwvi3+m04CD2QlqUMKAtZ6RuSxv4w27MsWy0YG70rLLOH3uUj+tpvFYZDTpTQx+EDWnqZYqwl/rUeSOfapn5r7RM8XC0ekHZ6NhgxExWw2AV7/50bFylndYLBtNbA8YARlKIFyuHC7xctOyc93DNCK0To0qraLQmvn4KXtU2C7cwRa0geeVPU4qBocCAlJMGk1ptPflNnAJ2Ltu3bcewig2oHF7+urFM4VzLAZkoPln96SkWQ9ETaZmavlb8VXYqxwsstszMy7Dxm10WQnTQaR2kyvE6B/9s4b4vp8bVMFJMHwwsTaswIsuNteyMZ3OQ5FiECF4r3abvtEqruBGX+Bby1FFcahUPY/edjlXpfMxdlp38JJTaCoQIRpSGZkxtB7kGKzffS+Dn27C3mI5JiPR0RFPa5qHHQIC8K7QzJbPS8nNf5iETES1StbYaKR+2wu7r+d7L77nclPsgTSkGhgIDDDDLijW9gBOenouxheGvnZddT0s2NrLp7VELd+Dhyqd6eih6oLcywXRfkhRYCUcBH98yWx6DSKlZgLFVwbhSR6YpxcBwYUAxV+UyH1n5VIqBFUqBMZpzV7jfGy5g0npOawwwDR2yv1otLcqrGkCf3AQ1ErOaBkhTioGhwoDoS1OFODtkWGmxjza+imUjxMh97nlKaTFGxJB/aba2b8kNKP/T3Ziqvd+3ktJcKQYGEQOJsGCUFtOi30luD2JNaVEpBnrHAITnxBcTXSwmu/KmxNiFi/Rq6DAAndXSnp8QoNpEf7UPhg6CtOTuGOi7gdX9vZpfacfVICO9HFYMiPYS+qu9rrk9rPCklZ3eGEho8fTGQtr6RxoGUro8VT0yCAbWqQI9rTfFQIqBFAMpBlIMpBhIMfDIxEBqYD0y+yWFKsVAioEUAykGUgykGHgUYyA1sB7FnZeCnmIgxUCKgRQDKQZSDDwyMZAaWI/MfkmhSjGQYiDFQIqBFAMpBh7FGEgNrEdx56WgpxhIMZBiIMVAioEUA49MDKQG1iOzX1KoUgykGEgxkGIgxUCKgUcxBvq40Sgt9K1c+MOGjv5JNs7TMSXJ9aMYESnojzYMiA7ZVE8bOvrhW9G1aNMXJTu9PtralML76MRARIu+uaMOJfSkjW8TIkzuPTpbl0L9aMEAdCb9LLqr6mnBjmys0uKjpS3/N+Dso4FFh3HWUZDh7EGOxrEwfk3KLMvusdxP++//BkE8KlohGcL5WkGOM7ZkTiWnCuTyHALNR+QqnaZ8aUoxMIQYcBLTmaxZDiL3E59jY0pnw5WRi278a2ft+P4QwpIWfTpjQPSlI+ykp6HFrPR0vHO762l0tmjSU0qLMSKG/KuPBhYziRxBUjmyBVt4K4Kjw3VXIKFRP97CwsH4NIhkK/4hh7uXCoDFCUhEpJnPZPZTIlACjo8fW3EqtS4w6VBiE4x83DDgUscaVOE71R5BwRjD5zgUMwpnMR4dh6cSRjxWgFdp3+VGVlhsBbYoBfkxft/Bl5V1yiws4awWj6JNPg5Tz76OgR/2r54wii6V4n52ehSs+pyqJLzV0mICYwyX06J4WzCfgiTvKSBJ/pUPr+VcQuSg9zGwZBsigDhizA+EPlUwOhS1tCgcqu8T/kjkonB6ivDo8PTs6wRGwZXAmMDMrWFPgqcWj/rdG4ynil/ATTAKdi2gpzfSleCs3Ok9Gkj21I03Kx6I1KLzzbAjMK4QWI7H0936+lTBqH4WnySyR/2sVEuLuj4xvwTzlyz1XEkRBxEQt69cYePr6qzI2UUN2axtaGuz8++515Y31lnb4QfM2uO6MJRtjPC1nM6kQ2U5S6AMq1COiV6tKDdT9dbIjkroPMFVbibw6QBgJWAdbhi9swCSg1/D8u4IhKR/4r4MsvOBEYQmHdmHDlRrBiclxET/lbYDX0s0AEpg5HFEc4uBcQRVxsQ2bDCKMUFUCCAhBMjBzmH7PWacXerdKfBHk6VhFfDzPOCw02o/J43g1pCmWHiEgvMo1a/tzg5iMh4F2XHADz36GXWiRX2GKwkIIQtAKoeoemN3fombYNmpZJsMsNyoGtXDBaMjiXqpr4LRUtoW0eLDeHoWzUBxqEmnBEbGp1JoWeAtr7YQdFonH8EDiwSjz7CgIh+rvAcJjMNFi9RXVRC98DTwqGudBLPwdCCAQbDjcbhgFADgTnCGIK68ng9njKqfBYJg9MfolewCfuCVOZU8XYl5OhF9QNMF4ynmaRkt3m2cOZhBnrQ91KWnhbbRePyzZ4A+aOFU6WmnR2CpYOihY7yfa3laYik7G/iaHK+nhqeFR4DSAe3lPd3ZIRZL1g893QcPlpiAThm5wIJJT6TsRfSPhFoW5dGGkttqlda7zJq/hYXcAYKWxIzAO0OddJo9B1BbaR01waBNL7XMuLdZpnEe517KUAH20iGrHN1sYesdFjZfC/JAoMOopg8XjMBWWk29QDThcsuOORt5NospLkYcdGZYaAbGDVZpuc2s5acRgWVnAJ+ky1ArX/WviArhUVrPSAe4pvytZUYvx1iZjgDWqewcZFvYb2HbWqs0/w7m/S2v8MwNVnF1wiVcDkkSHviUD0Hwm7GdVsGDTwPGf7BMwzRgQQCXUXQdu61yeDUw3oxwgSazc3mt1mBVW4cqCUbKL+/ns9Ns1JOB8WWWGbUEvTCRRzlgb7ewYyd2Dcr44HV4PLaA34U8k8Gqfh5qxUY/q47ydroMw2Xsc4HxtdjLC+h3hJrj+Ag8vQ0Y77bwwP9EXTucPC2Nr0Fa+UG+yxY0XWbBuPOAca4F+bHAyO2ieHqThS3i6W+DP9qVkdwZJp4GxlAGATwdZHPWOOZVVjf2DZYdMYdoiZEAWIEcm60EvxTg6ULL9cA3nrzwzCnh6TlmU16JwbcM2TgdOGp5eg04FE/zkcyRwep0OJQ8LToXLcIzlVb6Gj5oRCZOeQdOmKXwyxQMqzrQyCHanbuROw/CLzfC03f34OmhhBHwvK8C4Et4+iL4BXoctdiCOng6A70xmHOePnwfMP4Ent52CngaPDAIQfBFPD3usZYZuQgYpaczsNNhxDuzT4eQiQevAUbwnxtGPV3l6QeAB69v08stGANPj5wLT0s+EyEmnj6yCXL4M7bEd8lXD34XRDh2p436YyiT5E6ip5nyn/gqVAc02TgLmoOnkc/S0+GR9ZGebhVPQwMaiB6Hp4/vwWIk3mDNtsEutPNzl9k5CI+j2VEwqJjD5Qj1yqo/bJXO/Rh9v7Fwx9UYWigYWaJuwIiZhiAR92BluTxLlpmC0TLtOS48LIsbIzcSupLCI+GFCwUjRKZppfLuG6yyO1Eck2hEMco36H9hTBFWGcLPT7bM9NdabspTLSNlmxsTCbkMeUCPn35exlgVjG1brbTzhxbu+xLvI/DUniGBsUbIldcg4M5Bvr7GshMuhDE1GoPwmebwUa7DiNITowrGw2vQ0d9GMH8D/MOoGZjBYVSbBzNRsZSmjyjuR7A927KzXmm5Jgg/h7LNjQaPGFeqVjBiZDmMTBuWW+6x4ravmR2+gXacRR7RA23wzIMNI7SIMrDKQwiPV1h25ssxovFeAJ/DKEFchZFBiHBYaEFu/wE8fsWs4w5gZHRZ9QoONh7VbPHLYS52MVC63HLTX2SBBJzDCE/LSFG1FYQdhqCM2UrnAQZxN1tlp3h6FzAOF0+X4Wn4ZdqlCLhpgA4eEXIJT4fwtJUxBIsxT++63ip7xNPgOYuXekj4Bdw4gmQob2GQOcNGznitNU5+CmwyETyOsQyGS1Dl6ZJVgLFCXxcPb7ajO35gHfu+DJnOgGaHg6fxYDSeb8GMV9fwtPiFqcuEFn1wyqBF9HhojVW2X8sAj4FyBlp0L4dk42DTouROzNOV+xmIXGqZma+ybNPKyIAGNw/jaQ2sUMDl5ruA8WsYg7+gn+FpV2xDydMo3HANBv7fwtOXMaBjsNSDp31GmJAZDeRD8fSBhKcxZuQZHBae3gFPvx4d8yKMljnAyMBdejoT8XQIT1vC0x3S07+2cCf8UsRwzM4ERuFQ/TIESXKnpHroranw9NRnM1iaxm/JxhHdeboET4sW23daWTwtPR3y/jDwtJW3MsicAQ7RgZMvjvS0YOzG0wyCYz0dtm220o7vR4NQkxEGzkN0QA9+6cXAyjBFeFY0RYi3pyHcZhvzl9l5Iy63cyrtdlQUlcQZqD9QXOrI0Ecj7VihG6y86SsW7v0sCFxBBoAa7M4LUKqFu1FmL8aj9hbLjqUeEZRqqlCfFHK1Tu5ibAWuYAOE4xErt6620kbga/k+xs9Ksgoxg5kECUKkdA+E/wbLz8NLMJoRRTy11gVjXKesGOFRSg64Q5i1tP9PzN58CouZUVsexSbrukfnxW+fxJeYibr0VVkNUX3AcrMZVYyYCQxMvWmaQDh0PMbFV2GkXTBkWGSEvuc3wPhxGPUQzWW01AuBxW+fxBfAuVGA8Ar2WHbOBy0/4/kMbCYBI/0PjFpB2B3GuJ+FR5RspXMfxup1Vtp8Fb812kC5DKohKBiBpdRMH4203Pz3YkRfDNgaOcrLgeByGIXoOHk/Y+wBY1ghlrF9hxW3ftsqOz4InaI0XEGLZ0RDg5EEIwZwEQEycjkw/hPy6jFuEFBZTV/3gFHCWc+ZFgnb1ltxs3j680PL00V4etyLLb/gbfD0cvprpCOgix5jGIUa8BfxCygWT7fcB09/Bq/WD+iLVdwcGp4O4emGKW+2MfMut/zohbBtI2wEHcroo68TLIpdBKN/eC6e7tj/Rzu0/pNWOnIfNDKb/IPM06pPyhTDJZhxJfYw3pYGDLqM6L43fgFIp0cZPOLpg87T4aaPQdNHwD9ezSHhaU3hH7BgzlUY+n8V87QWp/Qmd7p4OgSW0Hn6JxZuvhIETxlCnj6Iwh1j2Xn/HPO0PLzH5ulEfochPH10Ow6la+HpD8NCy2grr7oe9Av9GGCij52nt8DTq9CB4ukLYp5Gx1XxmFAj1amfa3i60rbOSpswYPZ9kWahA4fCyJJsFE83/TVy563w9DLYQTyNjktkd2JLVPWLbAkShky55V54+nMM5OHpuqHiaXimdC/e07dabu5rMFAX0GcMlMSzVVtCAJFqYITJnKfL+28Dxn/Du8qAJodDpAdPZ5smTrrK3/Vm5ayd2JvXTptpjawOxJkHSR2xZrwU/51dYdPohKKoxSuKv/WyOlTAwOCasgnGnQ0CIciW7wAs1mpV7CjzAFNiXE3GcFnyXsuOE3GAJCkzh0HEVwuj6osFoIgcpe2u/HHnooC5f+inEWKcAQYIW/V1rO7iPZaZdaXVLf4H9MTCCAUaMYqwAK8bjP6eYAQ+wYpAzEp4j12Jwbrd7OifaOJknvG+v+wvDOCP8MXrMq7mfx4D8PJoqk3ELhgFg1ItHv1GAiP5YJTs2DNh8GW4de/E4N3JPSz+QREk6kOEvkaGmQL9/BnLz/prug7PmvDXJxgpAvezjO+g/ky857+iPOEWpvf2qRMGkgQjZZUOmKHE8mf+m+WnPYvyme5L+MGRXEuLSZ0xHhF68mhm8ciF2XlMMXwVgOhn7kcdNBD49K5glHG1Dlp6muXP+IjlJjxeiDkxjEkb6IcMU8UZeLpSGRO5732qi7IHKyU8PeVNVuc8vQLIwUHC0z3x6DyQ0CI8Q59mGblnxp4T8/TPBpmn1W8oV3h6JIb+uMVvx56eD3zc78HTCij2oOJuMCoYvsHq4Om6Maus2LbNSvB0MOg8TZ/IuFrwX5abh7KonwqMutdXnh4Fvyy1cORZPv1qhT1Dw9NZPJSLP235mS+BFMcCY195GtwiA2R8h/B02IwnS2Q46Dy9H+/fXMud+a+Wn/rM/vE0dCueFr+E2Tnw9DXw21Dw9Fqzcc8Exg/D04+LeZp+dh0ipPSUO9xzPEsHxjzddA634OkWpuQy03mHfhisFPN0ZspbrO4M9PQYDM0qT6ueHjB6vTFPS/Y4T8+Fp5E7nXhSDzETIQNm0PS0eDoyrjKzPmx1C9+K6J4XgdUnfgFWDLGsHCej0dN4tKIp7AkxjCqfGqoGlhQagWcdYy+y105qssYM3iiESs4OYWCdZf+dPwcDqxwZWP5q7Z+4M4U0Olhu1OzYs7hU58nIGqTOk2KQspj0KpTu//O4DM3Td+usXg2QBD41WoQGg9dNYI4VGNt5v+2XYAJhNCgEBoyMcjOzPmB1C96EfsNzwmoOBysxWGpRV72uhZHOA0aNPjOjl8adtxYYweeAYRQOIKzKfYx8MK5mv4KfGAXCYxU+5ekt9YSRV5lmspFLMGB+T7vxZGm60Jmnt/f7ek8GIDgI9rtxlZt+qQsFVxR9hpG6JGyYnnPvYf18wo5+RLkNlEX5A4XRDUBG+ayizZ/5SctNegIgU5/DXYun3tqcPBeMCEU8a9kxKDYXyF8FZtGiBNAAk/iltI+FKBdiXH0wUkx94hfVm8AY8zTTdFJslTIj0MEUyM7TTMNMeg2DkXf5FEf/eTriF1dsztMd8PTN4FWDEp4NOOFdcePqKhu78I2E/I2HPRH6Abip0mNvlSQ45FtwQBu5RoxxeLp4aBPjh/WQogYlA4VR5YuniQmTcYU3WsK/3zwt2lVJIzH2RyzByLoV+jk8uDydaSaq4NNM/z474kPRfxWHakdvKcEjz2p4OoSnwwPfB6/Ir8HkaaZ88xhXOcIlnKe9fxIY+gKjeBrlC09bMBND8JpB5GkN6vYSa/VEy8HTGRkufeJpwZ20QXgktIYBaMD7YQlaaf0eME7XAz4DTPB0WLzfMpNfz4AJnibeuF88LXpwfkFPy1jF81VpR9a2/S94nRQ9GyCIuLnB473o6Q9Zfv4b+Mmsg+tACvb6T9TPCYwMBeHpYBSD+EPrCAXfBIyjqjDGBhbuQ7mI60ZZefEH7dX1R6yRFR0Vln1GBtZSDKyzj2NgJa2NO1DGgeKgRi0kGLXN7MidVDpQ44ARrVZxjFiOsng/QmARQi42Cno1qhKYen4LMXxgVAXrZ0bNY8pwI4jBA6PR/oAUG0KuvI9A9hehLN4JcUAMLoiB/aRghAlGoGwb5mAc/IayJIwGahzIkEawz3iXT12CSHChcgVjf5LwiIJhhJwdiRDJT0XYYUwbI9IBp0hZZOf9C56rF1MaMGvk4oTfj8ITRqVtWfo5DMaBx68NgrCLach2WG7xpyzPtGAkiGOF2w8QvU1SbBqxjV4Mj9ezIOM6fg/UOKA/5QHKjyCe9WPM4DJaPVl+ER7hF/F0Bi9M5UgrXtW7gHGgPK1+Rj6MOptR7vvoo4UnD2PC0/UTkDvi6bXw9G5oZqA8jeeK1UT1E1+G54pFFfB0CB92ean62tkxzYDHHDEo2cbZVjhwM2WJrgeBpxVHOf297o2OjKuT4Gnnl4SnZ7Pd4RR4+hs0EOUzoKS2RzydmY/hMvOF8e+T5Gk3BJktoZ8rhle7+esxTw/EOEh4eq9lFzFgmnxRF0/3S3bTNOEx5unMmEVWKSK/DuFtU1D0gAyYhKfxNIqnm5g2OymejmGUDswTWiOebmuGp+8DRhkH0MBJJ/XzYXjwMZHnCk/vScudhKfR0wFGf7nlAWZKMC7lHRsIjD443k0g+8stv4hFcVqwUNGASTTQnxTnl8OGxSPWMBNHw6/pE+gw5ulIqwJwWHwIA5Zpt/EXADuVOVHFBegLvI2ATnLq4xoYdJ3n3mgMQn37MwAVUlVpbs5rUGy4mn2H4/42oKYiwVjeQCwOq3VG48J2azMqL8vXSGAbxUff+p3AWA/cgk3P9N3A7yqMlU7oaTGxCq+n7I00mQwnnQQLCAh20eZXu1WbEJbqE94Emz7CY8++VOiNntUlOBQcagcGWnb8ucQivoFueZB7Iq6TTSoco7R+MYYLMVcKFE9GkBRZB26EJ30a+SgJdsGU4LAWjxGAmk+nfZOfiif89XgYYdKB4NGJfy9TWn/NFMKLovZCwF4Xf9WfwpPg0HVtUt/qvp53PQOJCJIQmHKK4Rp3GQwgxdvj5dqCTnSt9tFOjdC0cEHtjzDlO8Mxvd6Fx9r+FIWo7wWjPlVeEjHA4PL85me/DCJdTnF4PUVPJ5ucpx+0zAxgHH+e9/MIwFY/1vKHQBffJjAJh7VJ8PuzfGB1Bk/jVc3C04qLi/pErTrJ5Dy9EX6Bp7UogDaPpB7V56FocbGCUf2ZwCg6dZTHzxP505BD7sDTWbZHyM2GX0ri6YHwi9pGn2b22Oh5BItrqhT+GQGM9cDYMwmuBu7ro50bEhjVvcn9BvCfQb420Ccj4OlKYTB4Go8dNJMT7YiGgpKNqQucDmthVGvEG6P5CJeiA6WEBvw+N0fmdBoCAydo2ya9cRB4GsSI5+C93PTnU2Pe6oOyw6h+TfAkWBI5KFgEa085qTz19PPoHIYqC1xyM5ARY18CfaN4fSCmHCeRYp4OprzOZZl4ujEbwi9Bl16jWMEqvk1oMZGTSY367bKS90ZnS1ZXP9Zys16BEF3Ey8jeAfK0oQMy0E226VyXGeKX3njaZbZg4dOTp5M2jIZGRM8BhoF4OkR3RfDFhJE0qj/f4DEsb7L83Nf7gDHhafXlcXm6hl8kI6v6hvaNJExkRNNZwPhGtwEGzNPYImFmr9smQX3E08KF6u2ZamV5VV6TSW2pleV5wneyE1i9Oe0N8EsXT+dc0RDlH4xmNQzR80h5CEGjHyhf5ERJWoBg+0O7lQDKSZMDm4pHsRAPFtSR9+G903NrCmwpBrA/gjNCuSERdpnpH7Jw6xVwxjlkVOpvB1J2gXihiX+HsXEBCk0kEhM7RR2Bblfv41502xZMQbggVzU4vPsgGZt5oCpplvbtWkYbSrqlVyhLBkxl4uss3P8/MAKjAk/9gTGuuPNOnxrU9KjaLumgJ9CI7cL5tu+AKuQGKD4LGOU0UmxsHlQXsGn/vJ2HowJbzqDM4RPQwKfgxCyrlSp7LiHo/V7el3eDl/uV1CuUDx6zc79AQDsj1NhqF0jQl93TwkWrfpEazFZMUqgf93FYeP/WVgmcSwizy0Af8t5kmGbMTXsue9n9FMTT2AyesZOBUbQX7kZwssUB07gJHinMkKt2JyFP1gaMAnN0YGePx1EBkOKNv+yLn4l0R0Z4FPwupSlX5eVmvNSKWtofTuG+vBu1jVLmEyVKZLGHBGZ2+vNgkxFuBKsOwHOa+ssegJN9pMrHB7aKWSDBiLy2O3byR3JWjyYENnME/MgtLcJQf2j7juzM17GFFsZq/dlRxpOBkanBzOinO91kmCYNSkX7i+QnS7THQf8z4eEiMEn4PtQGfOJfJXC6agLhBDyrF00c4l7CP/T5ivF4usecaeVpV1q47YMD5Gmm0icS/9d0nvdfJ13vPEC9c6A9tu6xEnBIyN3FANtpU2CC07Ph43b4ewTP1iF/Du/lAbCfCe+Ir7IYMGVWS4b7v05fYbCejMzhrQo8PYq4qzoMwBxGQWtHYP+ruoDtcROJUaUuQHTa/I3o72iEx+U8G0/fir+LtOsW9bse0bYVTaE1oXEa8Xy273468VisPs3Ju3EStMhb4ulg3pdA1CxrDIp2t/pM8hB8nEFfRhCBE27fuYNfok3heBrKC4NPaTU04DwuRiLjwgkYMPV4LKf9FdsW/YyGQPO+SOckYBRP216M/ZeCtwnWiCC+qxkARFfojLNieSeDr0TWv0gOakwFbGdOjeVk3AjJgHucFmDxSSWbN3KClaZfxnTm94GPGYOT5mmIiLiunFajs7qtjgH8nbLZJGvoy2XoNfGLjOiD2LM7xOOCCT5aAT9p54MMnzvFY4e5ELLVholFO2vMHCsz0KmsfxN1rOImjTiZvi7tQX9dQjMvwoBn1glkOU+jO5qAYToyO+Hpew9ThfSNEnSw8v9n7zwA7Cqq/39e35JNsum9bHoPCTWEXkSaihTBhgoWBDvIDyzYQVSkKIIICII0RUVQQJBOID0BkpDe626yabuv3v/nO+/dzctmU3azBP5yJ3l737t37syZM6fNmTMz0EG9CJVUQheuojvXQ5Ntu5v1LhNPj6CvvwtP/6iFPJ2vy0tNB77PM5AdD097Vg9sb6g/aXI/YGxDn+6Jp+vBmZORqJAdKOL99p6N7HSoZTt9Bjr9037xtMHTkb4/xOYZgozL2Pq6kL2h/kQdDEbu+Dwt+edoYFu+bbJ9usPTgl+2xdTV3Bdp63Fl1sa0j1sWGyq37jiE00KEAsa1owQ25wxVEhTZpsopy7xCkmLHENnsWafxIfv3aVFLbc7a/S9k7YG3PDsCxlC5k2o8u+SQsB13UNQmzc3av6fnsNzzdTqFweqqLEF4uZUCBM6uezP/kJ/7nEqryMrouQPzziVdUGhoKBofwULaAF8M6hmy686PWGdgWgfT/u7JrC1c41n3diH74clhGz8wvzKhBKG4EKK69p8Z60JH5yjDwYjbP9NpAoLkdm4gnbYv2GfQXEbKsbLhjiCinY60CIGbXgYuROkKxiUQ+weGh+3ciVFrA0MupTN/+ljGEqCjA7/fxrCpwmZ66Ksx4MvZ757Juo7MCsEqW4oXF2m6w0Rcuf+id3mR5bbNSmL4xAgIM0xswSEYRqwWVBC5ps/oyZnA+LXDw3bKIcTdkffNxTn76j+zNggK+e6xYZswPOoWKMm2ldJYuDZnj76as60IIO3a4Yw1lFCm7UQCOx+B099uEOT7BKfaSp8QbQguj2bjYZZtqzK52sGjtNgcmv2jD0RswoiI88JOeitn33sqaxPp9wVYKdedEbGxgyIuTOP1eTm7/9WsQQJ5RnVlUVzlaEu1ORb8LQc+mAAB4HDMZa9JMMKEcvWH2p7JVmv0uQxp8Bein7FhbD3C6+bzIjaiX9jqIdN/T87aTZNydgRKZB5Meceno9YPxSaD+qEXM/bYm54NQni7vpYxTTxWjhVB6QTEKk9y8o28oN4rcEUZSrB82V4l1OEiK2nT39ZvSdlC+uiuz0WtLYbnv17P2nNzc9Ydg+lF+PcL48J2FrQpr8u0t3N2xWPgFOPvdYxtRxMHQxPQwXMzcnbDi2mUTVvLdD6SZcpqegt5WntvIZ3C8EtJWWebWZ20EQiwBy5DLIPnR17M2lx4tXMpMKIovnd82I4eCw1CB/+ZmrWfP5+zo1F8L8DnX5gQstMPjdrc5dAkuE6C+EgpPE1Af7b6D8DICIF95pqVHE8zUAIn7TofYeWsKJuyut7OHBmxH3w8YpswSB55DoML+pfXYiH8c9tZERvaP2JJ+v3v9O1zyMnO8HdHFNzDPOsKTjcjrP9O22YuSlv7in7mdZxo9duethCrpqxelkMzEn1qJfB0ghg+VobGoJ3XltfZl4+L2gfGs0H06pzd9WxWtqDj3emQ6l0XRa1v17DVAsctj2dsEbJIfXvJ2LCdehhGH/S9FJze+myGfbwYlbcnXqztkZDTY/DKvObztCqP0ddlx1kM3hMgU9bk7PtnRO3gwRGbviBnfwQfnTEONiGOyuGFh78esw5tQ7amOmdX/zVjbcCnjG3RhQyDq44L29iqKHSQtv/MRT91HG3J8qOADesmieyGbZrP0/BM27OtpN1QqyOoevrmnN14NrzaLWwvzs7aI1Ny1gveeRt9OLEqZJ/9rHAVsvkrcvZFYDwMxVtHf/z2/KgNQB/JqI6B10lzM/bI5IS1R+ZmlqMzHU+jA5EFzUrEhTFagKcvsURFf1u7JW3LKV/9WVEWssdfy9qLyLxuwPhSQSd/aALxp9DvVO5fiSw/AvqTQ2HSOrMLxobs4xdH7R+vZO2pN1LWpU07S4tfVgEVKyGt7i2uzYKQPh6olxt4esqGlB3cPWwPnhtFXnv2MP08H6PE5+lrTgzbxNE8AxdPw9O/gKcPRw/+/pNR66XBPfWrz1Pgcu6yjN37cmcGpRMZxN8FHaE06xY1D0DxdCn8Qj9FsEkS8XJ7dVXSzhkdtgs+FbUaDGPxy+pt8pDinIHWfn0usrw/shwx9+fnM3Y/9DYAWmzLoPmOz8esFzKoLunZMzOydstrGRvdtsq2dTgGQ/W/VDZWRqYooQtTMhrliWNpkU+dAOQxrIxjmWXoxMG9SuxHYzCMf5+zpxEeTtn0MrvwnIgd0g+DraPZLxHebjhKKfmygFTCtPQMflL+iJupBqnj5tFdpj38EUaoZxmjk+qHaBUwso0ApjtKjmdiJOq//4sR6wZ/zFhodvjhjL6GmY3/ddaW8fyuMyNWgdCYMh9ByajXwyBbzJTTYhXtEuXLa8fGmm7/l4oTzEbdxRMfF4Vsu7touCxDZcGtvAIw5SIyLAUZBYKRjjl6dMi++znyUdV8lNIHT2KHq/5mJ/8GXAHPB8eF7HsfZc8xXvvH254tjeRsaQN8FCcqwwth7Q9BkvO7z1fMulPIvuDQf5d9ymzuj0DCFxDKfXaGEUK6CAX2jfNCth4ZX42Nef5ZDL5ozsevzdjxR0dtEN8nI1+10vdoUDWwxuzrk4BfiaY5suFsQGt/FFLw9wwFwEfH8eAG6Shc7CkJRtz9thWGeetjrL7+jKNJ5wpWu/U+RPzjj0Ttog+Cw2Xcos4vfYKmIHeuuCVjd18dtY8cbfb6HLqAor58KOq7AoMMJWLQrsOhvLKxzsB4itmSK82G30e/D2oejDXTwSM4rKKySDtaRdkYV24KnK93fzJipx2GxwV6697D7NsHQaYVKKzHs/bE96N2xEiELrKrd2+zq4clbOWdBV6CrJ1EEfMwDWdtL0apTWJ4jGJTLF/BI7onNLpnQsyaZ9CS32FUJSSU2bghOXvmoxE7dCgOUh6vokvueD1jC3AZfOSQkF39+bCtpT83YId87nyagzF4+R0Zu/DUiH3l/JCthnTqIfHPX4BMK8/ZL5+hEMfTdEaoHJ6+BVzQgH2hRydbcsD3IO17gnaORoKW2EePiNlVH4nY8D7Y2DTkFYyrvyyCvjIh+/bpYfsKtDl7IagBPd+6CHupBAPhaYQyRuPphzPIgg6GQbuXv8E7GnGKbpy8qOJ6Kjx9HqUCtyNUh6nd//F5ev5vAKZvnqczwHdm1D7zwZBV0R3y8D0427Pn5PGt9+wOjK6PHg+PQH896b4rR8Vtza20YX7OnvtsxIZQzExo4jBoo2qw2YduzNnrm4Gnkhu0y/p+06zbCfuGwwaeXs+o4/uM0kBIgkrZM+hH4OOTx4esL6S5lP78OgNiJydxsfz1K1EGJ3jTZpuNG2v2q8EJG3Mdz0H4fSiSCrpw8Rp4/0zEBLT70Rt41paHlcdANHeZDb2NuiDo5vD0Fhr91sdhBuhZAcolCfv910rsDPqsK0ZJj35m33syYwvlLqD+Sd+IWA+yvfKm2fFU+4e+Zif8Ejh4LM/vuMEh+/InwtYDslubSdjtr+RsUa+uAHyK2XJofvgDEDl93hwYq6cy+vkSbTsKPgNxGPqPXhKxY8bQ9BhVtzX7xX8ytgQY20GfP7mMLUIA561l4Oh0UET1F9yYsQ7DQ/ah0yIYhsxYwE/xUkiRefnZ7OZvJb2RNcgNbco9+p/0FwTbHJ5e/TTt+x4AHUJ/ltr4oVn7w9kRO2wI5Akwy+HPuybD0+icsw4L2ZUXw9PAUb3F7GL4VosFr3oQWYixf/EHw3b5WSH3/NHarK1Dbi+W3JHuSpxEP1XC079pJk/TR0vAfS0IU+A9saTnTozZlR8O23Cazl17Yblnjy4hH2B850MRu/TskM1cQHdBYpdfzKtRz37/Ws7+jtzZuh1+WQQOefFM+qHz28D/JIXITgl1R4ZDpGPOgebVEx6fvSTH03V4M26ijdCH5Fc6bl9Fp1xyatgGdKav4Ok/zQC4zSmbsdXsdxdE7YJTYvb6Wxkb0jNsPx2SsK031ttjK82euTBmo/E+TJuXsWG9sH9GyphN2V1TPOtdOdLqV1MgthVDwqQTIm7/B0c2xNQgiDxQ4jGsjnSosC1TVtu0F2bb+oEZO+O8Evt2+7Sdug0Xchq5MCxs3VfFbAOd2QOBeLMK5X6hKAgd4gqziWaPXnyvQXgjvd0O5iDaJSHIT0JUMcL0nf0mtifoBTaXjG+k42YBOAG3FJvaRv0jwjZ4c9ye+XPK3sL6zOLhOPbkuD3cNmnrlnlWNi9uc9/M2huPZKy8Kx4l3rsVWnJCx682K8XLLq19hoMLjhSoBMb8uI+rD18xbEUwuo5jg7SuwBjuA1yrMQboHeCWXVAPjGO7RazT8pj97b6krcbrUsbIaNxBUbszkbJaRucT+sasM6Obpx5M2bjlZhO70ESEyU5JMJaya3D/IyCuBDDCBBK0Lvnw+LD6b/JcWSLY0TLBJZXaEDDoLQF5wOnDyKNju7J9xRuM1m5LWh0GVsdPxuw4Rh/X42Yrmx21OS95Dodt+zD19om41a7M2a9WZawMxm2AFVx4bamwP8TL/EioskMTgs6HsQh2KeYIwd2xdRiP9AFuvRDHzDjaUQP4j561UyvjtvlFs5dvTVoc70vXC+P2EYR0fV3Sjs4lbMukkE2/IYmXE7v74ridEc5ZJ9zooNmhoQErcht61FOpAE8fRgjDJcHlw1i4VYAB1yQo593+VQgRcrFSRjhUduEg2j5kH8BNuuQfWXvtzrR1HBC2D4Orz1RkrYp4jIPTCXvr4azNeDht8xlNnvO5hF3TM2unTcs4t30eI8BBYV4X4CoDvsoKBEJHqoHxG8Bq+EL9Pm7da3sAAEAASURBVLz5t2XUewg3Cx/GjE691bPD9BhYb3QyZi/fnrax46I2bHnGbowRl4ZQPrgLdDUzYi//IWXbGfn2vChuH8IgzeAl/UC3mMXejNjk25PuWe+vJOyiLp71ZcgZMzad7YXkxPMSqmxH/0FbDQZWMXxFOHRf9Ywpie1IVQRxOFZj9Vtn2tF9kSOrI/YSylYwHrs2bYT8O0/lCWi5Dc+FbBK0GUeb9PwcOG2fs77Imgs6J2ztSzl7bTuw9w7bbXjrXIxpknY5nkYg0yd5nhbj+/jy4dLVv1fAYQNP8x6jxojHxofJzXZKb95/AyMeL/NAvC8f25Sy05B1mpU6kdHRwr/lbPo9GVsxMGSnXRC3y5hOPZ5YisjkiL32z5zNxxhIHhmxiSdG7ZdMHa1YxXREWZ1l+mNkNcnTxTD634FRYMqATCIPekIfbZEFmcUsBl5pZ/SI2Xo8AVMhl85dwvabNMzNfy2SOgyDZMYfM/bmwxlLTgzbyWciJ7umbcOSnK16GIW8lBmBpTnr/YWEHQRf3RhPWTwpnqY+0XwlfOl4Wo0WPPrj406/i5LjaeJmJev7DmfhTymhJm9bOzxCp3ZAJv8ta5s6ha0MN8Wvw2mLoVArB2C8bozbf/+ctnnI8jYfjtqhRyAnK1Ns0upZGh4b3z9qZQuitg6DcejSjN0Qz1op3usc5VtoWJ6n28AvbuX23nga2BnYeVqFWDWA1WoeovtN64doOAY9MPWP0OCwqHVD1t0QT1sUGKt6RKz94qg99kDK1s7JWRfk5FF4LW8qTTJLhGd6asym/TVtNUvQoLBEb8jwVs050QleF+Aq5yY8HdqJp5viF+FSuCWhSBxPR48gtnc7PD3LxsLTo+qi9tJtGTtofNRGwtO/hqfV14d0Ra1PR5bfCd42edYDnj4Lvill2jMOXXxgYJznZq/ekrLvwIZuM3X1cxhrrGdfqk3Sz3S62zwT+eZSYxj9ftdV7UNmbaOw9sPg6Y3ovZl2DDzddWXEXhRPo+9OXJcyfMIu/OXk9tDpf/GSw9MJjD7x9MUdczYcd1X18zF7E4/Qgpez1gFeWn123Lbgfr1JLB2Rnh7nDPVQe4h6Jxos4MvBqz8+feorLyOrvG4wK3s2hmwVMw6b7dQ+6MbZ4AKeHjYkZCduidvVuZ42hlmG4w+J2N//m7ZPXpe2KpwkT/9fiX348Ij9469MBw6O2lTsipMPS9op34nYw98psZH9QrblBWL22gy0+lg/ULLJQlUDe2GFjLD4+DuJTe5ImEPWXt7+Q+uY+48lQ4MQhaxu4uy3RHgFthiussXc6UlMUAVIpT05JnZTTBd5EHm0QxhGpiE7tVM/QHykO1feccfaINldp3BpIumNfHfK2GMOPjKYGyAmt4ayZbyoQ0lkUv3JZbjBsSKjwJTBtZtcnrWSKixKgp+SKzD42jMt1g4CEq042PwaCuU7JQnhu+XxCA9W2UkJ+FDwpSH5bzbc0LsaekUH5m9lV3Mtah8wZreAozXA1BeYSnAfV7PdxQbOeQTGUBRltjFrmU05S/Tit4KhfNuzUEm+TilyKTKsL628IuC/Kfjyr7hGFj2nwBBCONKXe3Cgg1GVCMvkhYEFUxbcCcYQno3kGnairvOspH/MPRMuHQ55LcWzEKM59bVczvnoI4oSLrRSRsdt6HiJ3BLu0fc7E0Tht+r2k74jPTUy0V4nrELxcmspN9/y/Pt5mISbEvAk21J96xw+/K7HhSwaLO0nI4ge4HcExs3DmK+nobwwQ84wikn+8Jz6C2Xlkl9f4ecuF+rDiHYjcY6l8HKsGPVpUXmpuB7aU6hKQkIOeOqXQH8FvqhbgJCGDuOdmcYkyK4eBRHrCN2KNqk6jxHRJCNk7R8nmtcxIh4DC+dR3QUg8hbj3wFB1qpC+9Zzg92lIZfUKoyizvAHdBajfp9/xS8Z+r4EI18yqB6jWamkJyEBG4poAsOtHiEu+oyjuD0P48Pth0Vmxy9FNO9K2PVPHrv6S0WOXzCqocVQaJulMe4yTAlFUbrZjTmLo8jCChYhpdbLGIQWJQwhsfqlLPxoi6wBd/VLmD4HpjAf0avey6/wE7+Ip8GjaN7B6NO8K7bhz6445N0invagE6gPOYciR94Id8JbCQaXcKaUBL8heCTBYCqH8le/x/geZSAgXg8z1enkk2TB6iy8rvaJsttTBqNdaJ5deympmC9c0bv5Q1t8ntY0regY2V2/Qqs9eYRc8YAjgawWf8s7KnqLwrMx6DGLly8JjyT6SQZRNXBFytnDSTITGqAo3gXf8HQoBHzyarBCWme97uCX3YDWcFv8Av5FJ2qft5ZBfR6OCHhRHZI18a55JIp/hTfpF+EqDa2m10KbGFVuh3ya4ctSsZ3eU1+IJkI+T2ve2hNP4/rYp4S8D/cDRuQWDgB8PvQx/Qluoh3zePLlCMiAxtAvK3fI8hTwZXF9iH8Ev37H6XfhUTztEl8cTzsdmOdpD55muF/IsLcLBUUGACfGqs7IM06qAJ2ioyZ5uhaeRqeU9Cnw9Er4VvjqTkeDq9RaZDszAoLZkZvI3ddjDkZ+7iNP601RsaMJx9OUqQUNPk/XwNPCo3gaegrLU0lKrYOnoU/xkONp+DiCno5VRmiXdDZ9i1GoGdV64I9VEsqCyMZDAB66USU0r0G4q3tfeEaNlJ4elH/HzYWm0GU5cAGN476Nb37eZvT/hR3nXWaXMOb53oVRuw4j9ZbXoUMGcE9/N2GxmGfH/iBlf/gsBuNheLfeyNggBnYZPGlf/l29bdxMOAUnzNRP+SyAsydd1UCGpOUTLHHIHQDOUTi09o7kY1bBfG87bzmG1hJ0GvE6SBLxqZiRgaNDCpC6jnNChmdiGH12TXSAMKWk1Rr7LETcG/zhXcdFehdKKUoinGKYBIs+qk4EHuYVverg8vtB9LBLUiYapkbuM3P6hey5fU3CCNxySog+HMz8dnhtEja/HiFYMIox6YhmJbUPpAgY966PjHwhPgwOJm5pKlDdRPiXw6/g9HGowbNwK1B2TT6Mgk+FNCf5MDbdPvWz0xWFehvgAEb1s4O3+Jnf77uAQCY1RgU2G8Y9t8/RWwE3jl9Ef3qFT8Mzvis5+JuEUUQgGHno+EV91py0c/sa6I96HW8UilaJu/S7UEL1zmFGN+jdBprg2Y5+VyNBvFIr8LQPh8pXnY4XaL4rvql+L+DN9btAERgFes2/pb/K5NO8CKQ5adf2qb9EYz6M4g1XMRf3jKvDG/A3lkk8ynennoFXXz6hJfhBh+hmK/C0jw/V5/Ov+84fR38FvPk04bfBVa8m82loS6F787Qo4hECBGdzUqP2gT9H99TjRC1Xn74Er4PRJ/1i+iOfkqOTAgjFNLIDRvUzSG5W8mHMt8/HjWM/0aIe81Fyz6jf3QOXDTJJuPLbpvwFeH364A4Z/Ia1BEa9S8GFPmiAUbcET6FoB2Mx3rjh41t53PNifvLhdE/4sd88TRkORoLwC3D4/LKD5vNZdpHlRTzdgF9wKvHifrs+aF2ebug/wpdKw5tthjfBzt32IbvshDZ26ac6YmDV2XWTaBPxWU9fHbe2DIYP+0HSrife98LT40xlstKUAfUU4s+/fDerg9MafG61+skXMef4qjia/5qSEJUzSmVNlJ2UONO16o/Jv9vp2bcsg+kYDjOqUdtwNLhOyl/yMkyEJmT693a5KoN/s4Fr/Rv7dnXvU07jVICpmODUGUr+K07RAZ9uqA07iF65/CQYfWorNNJ/tC/Xhvap8kYM7sMoHAndZNHHf8VdRZcFHDr4fVB2qlsw6oYa0RIY9bIK1vt+7XxVKsDkDCt+NjCjnokxaZJjVOUrdGGjEpST5MNIRhXa3NTQPr3bqAYJEW45GGlGAxzcc/gEfz78fjMblUCZhfa7B/sLYxOlFwtaUFHMLw5eXhGMjpd2i0fByMdpoIJUbDEeqVDF0VRXnLqHvtTH0Vmhi4rx1kCbTTxz5ThY/H7WjxbytF+OrhSntBOMAl33hYLivtU9tYeLIzG1R99ppzMOuLq2NdCiENASflGhSkKE7ykp1AUMDXTI4wb6g79d0ivkcbLHAcd32uCS4OdeXtwok+7qZktg1MtqX75QBwf4cMnHB48cvYFHJ2MEB6+Jxx0MgkXF6KoXhT8fLP125euqRunTzOQKFXxCFF4Jla17Apvk5Ioe83EwqT/1nI9rTyGf8roiKMbp8HwW/iqDCuXiiEXXZib3roBQpVxUh+6pWK5ObuuxPiTHQ+6dAsz52+5d96zw29Ghg19/+LhC3yGeFuiCr9BFxTzt2lOAyVdz/vMdMKqxhUwt5Wn3fgFJPq50T0VDd6rbwbgHnnZyEhpwdEG+Yhm6o5+Fz5bwi98+AQdghUuYmL0UttDAyGybnH7Clm78qtWmWLFJmFScqlIYeRG8wrV4rvsxiSTjasbbWTuJcJVvjIvY9z5DuMeHcvbJ28wO6pAlZBibivLwvTJ3zfE4uWQNBVQ62mLNn70KFsqMqcHQPDbzJRaiJolLHjcd8RkN1rkQJ5rBMJNrVIQVx/3c8Nz1ljCLay7M9JaSw27+6z7/VcHS8Joaa5giFILzSTSbYfWg3PZxYko0s+IawiWzDtiZOpD73k0hMAXh3NM7Xs9nZlPVhk3WWgwjRWl1g4JbnJG1UyWWBhYP16xglF3bAON6YMRlLxjlNpXbN8KUwg48ktchmnlxt1QanO78UBn2nkThaptXzUfEKbwWYCwwgetHEBoHT/5j4VfwpZnC0RSIEzY7N21H3WHi19QBDoe7y7Qj+87fqMjBCFflgNGXZn4mwQjYSdzLwo/cxkoOPvo4DR6FQ02HSGhoCsFtg7QTGGoX0x0NEnOnh668Pf/xYQQQt/fOzrkFS47prBR9ram/KNOUDTXwTKQh93iUKa4oSxx37kYyuDYzrerwCKxO+u1cx15/CQhZJFpaz0kM6mpNDWrqSsJLTReehD95DASrYNZ0jarXFKCjT74Lp3rPn6KJQ5vEDFBuK/K0ERvB9gcORqZZnJIFRk0nxNXH/Jcr30eWm1Yq0KemHrSNjKaehCqRj6a64nSx56YT4Gv1QCvwtMSPVlU31CUYmfIXjKrb8Y6m5oBFclJTcdL3CllQm5TX6W/yRlklp+lDFsrzABksxO9MDNzbh9SIp7O18OpW5IwUE0Wqr1WPaFHkoOlW4VX97UIngEM0kSIGxdUPDeiZaKBBBolfdBzN/vK05A7LQDPEBeUY+WsKXfiQItWUr+DMgt80fepgRFY2qXPAX5Kp0Ch4dzhUEHmr8DTTTh7yG9yJFrPU7/iF4jXlqhhL4UTT2ZqqdDDCG5LnDj28p6l4x/C8I76TDAonKIcp9dbhaQLBHE8X+GV3PE3YjqYBRR6OpzUNq++OTkUfPAP3IrmE9BFTX63D05IhzF+yesurA1dMV2rqdPc8TVaAEH6dzhGL8MmweCTLCl0niwS3RtZqSKvpaYVd1DtQM1sJcunSiSro41zW2pdssnlL0qy0NRtcFbbUg0zps+qyb4+wPTMpbUOhAa22ncwKUXuJxSK08cpPkJfntl0hBDXIA+gI2woDi5zMW3vbF3MGVX8qxUqDQnrSE4/FT7A37XBrPyZi55wXt/UYMH++m+0SIBwJPdk9Wga6kanrS3+asG0w5r0EzimOT92VJzTidOpXsBLwBl6gru6f4iV8ak4aKtNukgpwioLrusfor1eIGLyaudKR4BkqUVJncEkjIAaeELYzCdqcOz9rjz+UdjC27x2yz/2YIFgUyNuLcnb8UTFbgrC7744UhmOhz1QPHO4R3Ogt+Rn7EBFA1+XDukkGdShfd5ccjPS+JNea+7jWWqjP5QSj9+a7RvX5l9UMwTj+vIideHzcXnw1ZS/9CyOB9ztVhewTn0jYZhh64RKWnrOaaibzuo/+KW3l6DAg2IHHja+at4L9OyrPJxD8WB6Chz3B1/AuEiy1gdCE2+iCvpze8DWkbsd8HyiPygAWbRVw/JejNp4g4388zqIBgnJL6MsUPN1jfNg+9jECUJ9P22RWb5Wit5w+EA6UXF/BTOv/RajFrzk88+usWDkIGCGWvcJIITpip24JMP6SULPTLNSDNkrxFBSjitfXMEbJGV+KWe9eYfsziwLWLcy5FW5nsWR2LEt+X4YBEiiycWMIAH01bc+xHUac5jswRbD0lbfqQVbu/4OQr2/QV1XcQ7D6tJZvza5/VYCskS0zad8NtO8rMOWpFEyZ+dJdEeqSMvbuOfvKOJsMmt37x5QlWcjgT8+UsoT7Q9+KWSXxBrffkbSt7KmkoPxCM4EDeuLwaG/5bRjji4Dxi0hpxejAzHvFo2Dk/eoXCNu6nw0Jr7ZcxQSr6O3ZkNER69IpZOPBkXhg/uKcvTUVwQGKP/2ZElu0OGtrMaaOnhCzZ59L2zMPsHLmqLB99Ky4LYMuk/D2KFbK/P2fSZv7GrFGIWIyl/6C+iCEbp/kqr7aCz0Kh26wxJe1f0cYvQ6/XGU5YkA7s9JxwJCw9SKGasSQqL2B8FpOcPHUlzI2eCSLBc5M2Ossy49hGI4Bjr/8NWlvQp8HsUq4HYpvKFuxdMMomA7vrET5znoFZciWMN6Sn9Ihh8LTH1LleUTvCY8OxjxPe2vuZW+j7RbtewWnXPSyPuMJACdwt3+/iKO/mbMztoYtDV5/NmvHsvLpyCNj9vwLaevdh1Vu3cN2D3JmGwbDl36WYHFNyGaQX4HaMchoCXQ7fwaGWN0rlln2EwKfL4Cnj6af94JDWuHITVZJaj20fCtyfCAnM3yDRSKVVjXBs27UPWoowdgYLZNnpm0VKzKn/jdrH7skZoMHROwp+vcweNzDmPrVL+tt2KFsIXNOwqbPylgtUyHHs/prFiunHrpbMghDaN0T0PxNBZ4eA4wIsz3h0MEIIh1PL4Knf8XiJvDf9VyMzFIbcjwB+BjqokVtuzGNPltBcP3caTn7/PcTVoYCex7eFRzriF+793cpt8JaU0VpRG075PrF15XY5Mlpe/xPWfaAqrfssvvZYecJ+OWb8HS/feTpAoxbpudlVjfkYuUplsAYHcbKso7st3bo2JhVY/C9gbdi4dycVdPfX7qGBTX06+w3M3bisXGbxfXPN6bsmHOiduoH4jbd9bNnhx0cs9eg2aceJRaOAWNu5e3w9FJg/AI8TcxXs3j6OXj6AbfPYq7NEVbRJ2tDRrH1h/A4KmqLlkFP8PCb8HQZsUufvjBhCxaxxxPGoHTK08/A06wiHPfBiJ15atzm8yyJ2DuId595IWWTnsTA8ZaxX+X19Fv7FvA0Hbn2b8jw6fD0/1muZLh1ZqXjABaD9GYF3nC2z5ktnhYtvsDKu7HAgRfotSlMqyGvR7IN0COPJG3+VAxwWOBIVj2fdGLc7rknaUtnMbAn/kpxbLb5DXj6xywWOBIiOkOUxgP6cU/02MDTKLLVf+QF4jZ7X2G5WE/riYoa0gej6fGfW4hVcx6LHrII7m3LzeYsMTv7pLjbEuNQ+KkTckZbAy2n77fgcPgki+lU1hgWM7UD57OQqVZBjOW2xSjTlcBUgYEl0zv1FsT5FgAfxwsyckOEXnr2BMHKG9Kd7HpcYItZCXEz+zw8iFXcELcswPVBx4zbErWtdNj1URSBdI4arIZHKb+W4MgVf+UezLkGgZd/WLhyaTKp4ALWNERNTkYAwdgd+qGApLQLz/Qu7bp3HIYJ2a5i+fkk+SExDGwDbZmBUTMubD2Ji5uN9+APs7J2h7ga5eeSYASptn0mML5E2yhk+Qz/Ideiegp3d1x8GLnqzK4c73X9P1b19OW3lLYQQYJgNFB9bDTKixjFs6elLUOVzktAR6ZmR+yEg1hxgR59bZPZTSw1fzQKjMjQvIXFlZWAVvskO9zNRYE+Do6fLTzcE3xkcR2kPJSXph+0Uq9bQQhpKbPaJzDBzVgE1wkot78s8OyzCA1toudGPTTvyj4Rm7Y9bN+am7Yluq931Hw/OQuI/tmwBiJehNV9P3keIQ/17hGHKkAFUaAbSkOYrDayHh1pfxfApky9D2/h6LCPjQrbB1iac/fsnF3O4gbXj7w6Z2bIvk4QJeeXutpeoJk/QNC9qt3/EMxuCwTnrgEHa+cDH/XU/I4H7mG+Dv7uPlGOM9Do1/qFwLMKPPbkHh2pNgrF+kA+l48OWzXBmg++mLVfEeTZQGuA+zX2Q6vtBPyskLkOw9/RaaH5jl9Ei0kyroTetUx2/Q0U6iNbFewpFWDUtiH1c2B2iKmir53aMWejR8Dq8MR0yNQquY3Amo0n7Z7JGMWzInYUeO3cz+ypFWYfRnFZV/ItomZWTI0fxAaBVP34MoyxhdBMGTBuWgufYCSF4enVPyGzYFND9gRj0XNtRpua4jZitDb97KKu7CGDsK+n6KmbKQXUJtqbPb84Y9fM9Ow+BPBQVvIoPfQ29IkBoFOZbq+KWr++LDnn/npwXzIEditnSw8MLNsOP658hS4G5uXT3Lv7DiOw6mxND7nQDZ4u72vX9sracAabGyl6I7QYGUDzgfGpOQzqJrMP20BWnB1Bs3j1HoynyzD0jsOgnlgXsTYY0Yqv1aBKo99avKw/mMaPLU8AI31V/U8e/idPS3vEoZrBey4P9KOjQ0o30l/fIv63n/2yX9aGogxYQO2W7pcPhyTLPPslq7CmgJNruoGvY2ABnt//XNZu0I7RyKDIgqgNH4bhzP1XKe5mjK2/SP6wws/Wr6SPofmNf+L3w82AUXTL+0neT81Hv3QCj53tTvBQgazRvnBKWnk/nRW/103P2vpXwnYxK8GrjmU3FLrt168Ah3hYsHBR6s57o9kO4IXtWfu1GynD02sov5Z6qn8LamLkol37gkfH01Qkno6vhjd62uh2cbsGHJYigmZBUzq+tD1kvpT6fo6CzbIq9MwJDAYm5nF1BTDO6M62IZDKA0NiNgScS628guPh2lns1eWCiKhjxeuggwLX/wrYmsHTyqtBvHi6HTQJT5/GRrDiaa3jmCae7pDn6Znr2KuJrQK8N1itysCkU3/24qN/P4IhY93IRxH3jIzZyIF5yfcsjHPZrJQt0757m2n/8scAbWwLeRp5lZ4KT0OL8MsXumVsDEZ0Hd0xFRhDvfI8/SzG3Q/gj/vh6SFjYCbSg3M9u0geIcZrWpNybduIpZeF7YusJnYyUjQg2ahj95a/RkH07zLkh0sijHw5hRuNLkXPM7U8o6O6ftsZ4t/p69lBw6jjSQhMto0Sq6TLOrPdBZ6rp7BnTmMlq0yGmx5K2p3AKcf0tfel7NMnx+w09hqT4//hZ1J2MStjR7En4/aF2FMp9hZl0/JQ1dAx+GSX0XHHW2zk9czm9YA6iLcCYNZFOE/PWmThClx2PfAeaBf3AhgOFn3Hu2dTsJTVxoOpQJ6QfC4RERvWLf6jeQu/gvQbB/CbCs/2hBC97ycK0zmGyZkW6vZ1iw0FMVF+a7RMhapKunce7sQtW3HTMerQpnQ+e00TXPzuz1TNYjY561LBTgByRXPbbWQpjwFLMtJv/4LR4PV0HMSVhYibmyJI2np2ch/A2XT9P0vhLP9tgMKhxqbiGtcU1yhg9L0qwoK7z7Un7vqVLEfuD5616hgZTDvpCbwSXnItp7NcieflSdrfm4c0do9ExeOGpMbSTq2cq59ukRF/ZmHPma5sZVE1gkN2wnSmWpXG0o/yTuqXCKi6zmwxNDCC7QW0F5GPX5fZGakx3K1zOef6YpishrrUCSj6ZsEIJ8rLmZ1t0dH/YUXZRJoP8RfKEIzadG5WoU/Hgyc9wjlgG6lqAbB3Zw+breTZgtdoOB4bHQ/jWiQ8ss1CdsMrlp55PC+NpDTKdlOlKnlfEiVpulv+bs7wio25051UULzbvGDRQGMuMLaFzgYjMIQrJdWiUwfmAmeiDCUBTYqKi5NWwGVWPWbZNz4GvxzEy0imAq0X59v9d2CUJZVZhVF/vMVH/dxSHGT+xmZqEioB3TEMfTgUetNO3lML+IzgHcrSx6PoY9GnhMp08OgMbX7j2rYxTM1FUbrpxXdbbuHXinh69xA1+cTx9AzncYgPvYI9aCpsrmAUQgSj6gO20cAo+nNwgC/XmUwvHQQPCdcL4ftN4Nu9o3fZSydSFmWbgS2WnHOd8560lKdD8HS2bpqVD77RKqo+bZvrY7aIkWuN6gE32mC3H2TeBxjT3NMGj+Pgmw14+9j03QYy4tXO2i9sAIdctacSKDY1c1gFHqbwGquZeTnTIc8yRYLczaGgCrTOl70k0eIOng6PfJCF2qfbsi14WcR2wiF1Co9RZIlobSN4WszouxIYN9LPYtGDgD1J3jcEI/d7cG8VcrIX4qxLeRQbc47lZn0O2kHeuGn15vI0BaojOYg6MoZ2Vk6AFhlg+n3GU8HYFQ9Ab8h2EdXUgL/O4E7el57wUDd4xclCsmocJw/HLDy/HVADAypihAy8xNn1J9IhWGpaXVYkM1T8nhPt1nJOedpZRR8b+3vLlQ7h9AqYRfyij9QYMFaBw45knSw5zv+OwFwNLw8B1jaILW0uOkv8glzqQNfUAKP2Z2uXYJpp5d8t99YF6Bd42msJTyNIMksp7FSLjfqZJVk1+RZ7WLl+Vl9Tn2AUT0vm+XrPKWf6XDwd47k29ZypvkYVuHeq2fIKL1gimrL0ojvNW/TN/efpHldYfOi3bFum3OZCj415egwwqh9nyLPPdzltdQLCOGAU+Yvfl0AH67k3lnsRGVfQuseAJz3nWg76+DV4xOJ1eprM+5QowxUOYcPT4UE3W0m/T9nrWH8Tt223B0o5x5OpV0wrK/Pm2aT4t+2U2Gl0IsYPK1Wd8QXQo8Cb2GoF+lDeXu3uvh5YNaoa2SFq6fpV6OlvweTPQU+9LFQ1ZDjSgOXSbHEfGfJHzkI7D0WrHssDLrDUYGjEHY+TN564WZSURyuqdWXFY/5NtLV2pc5K6c44D0KgEGE1r+6K3t7Xr5h72RkWG/00jo3jQDYtLHiIVK8El84kU/0+M6pkNi53VWp7+wREqGn/wtQ/94GR+ZnM+hctM+t4GGksmcVRLUkAIEAidRYf+xBTWaMhAIRREYysJHe4FIzK6ifBKKebYBQTSCgzRd7QAyE8L+nlj1h67scZnIlBEQYtSlQkIV4+xOJjfoOt0BMYaa/rl3yBDha+CkY/uWYBu+BvDHu+JWIY4vAW3MK00RU0Ajw6IeeX0IyrlEZmCQdxfsJKRv4IhCFdGxkYokXB5B/XpNKlbAW7hJwQpyMtWFHvRpIut8rFa5J88xrLrb8TYTSQ28rcguTmKmawY8PPLD7oMgqgYsd2VEzSX8GoPtSnOPnPJFMEf/4NfhSMVA8GTc64FEvsLYpFqLpyi0vYx+/yrKXF0/davPc5eE7YNZ0+Ep5UlbpXdCbwfB4R32gXfznQfLDVDt3XO1G8DEkMzGztm5aecS74RJLvD08Lj46nn2Gv46OJf6gHPlYfFWAUjgSjkuBw+1vxTG3w6VODO/1WD+i9HFZhDrlTv/Z5S886EfrZH36hQBoeZhTbcdyDlmjHvl3AqGONeOJwJNy4wRo3BIt4WPAIFn1XklxysPlIpUyPKb7aJQ9Z7ZxPMhbbHxjVQUj48hEWHXOzxTj/NYLXV0dYAYLrO9GgZJ7gEw+L7gSTT4PCnWSjlK/aogFUkmMussjH9IKb8BRctZ88TYHanqfzRRYf8X32Miqjv4gFE1KKYBSckuOCU/0uGAW37udzuuzuTwlKl41Y4Pftln7zu3jO/8SL/egUtaoFyefpvj+3+MBLgYF+pxj1JdU7+hcswo/4Rc+cvOaLPJa6r3uO74Gdn+QjFpNyM9tXsn3jJfD022TCitxPng4PvY+zZM+2mPoZHApG0aHIzedpweH4nPvahqtYbpeorwUjz2IFns5smsXg+BwKQd66pBa0JKGnmcmJj/4vPD0Rnua8X2BUV6s+9c7eeFo1iwb0cXzu9HQpW3Y8C0+fjF2xv3qaGhiIlY590Go4jWNCdqPdtO0q7NNGBlbiNDsqtN02EeMnHIsIfZ0jnCK9TEf7iE7D0EuSAUh66QOWmXdhgac5F7WyU+dr9GKIDRQVK6UzhMKl3UF0XvGqXDVYRK5rU0l5RGD66LvDpKZj8Axllt6Ne+ERGtRDufS0ZUmdhDGQY+gTbn8Qoy98ojIEdZ8SRVxNwejgUo0gQQyifHkYZQAmCL9ZY5lFv4H4FyKMsW5bDKMaD+VyaDaHN4BYhKa/Y30jGAVOcSqGUUxLSTtgjCYI9ptv6YXEJimAQ3ENLWVQlSwPTP3LbADIWXoyAp0B2FBjQz8Wwyd8KYfwu0tSkbhusxtft+zin/G4ko//xi659+EGBWreZfvzxMONdocAO3ragZUmYWyAj37Wd/V1PukLNII7LrP2abaV+jH90od7ooSGTPms+/yX99iDyNs+i2n2cQRV96U4aFtSpJCEK9XQVHLPVIT/UJLHKW32R1vxl/wIbX9hFCweAycMtnC7g5nm6MbIH88BwaKqXzTnJ5/+dKtxH+uZ7mMSoNDgaabC00vuYorw0VbgaTqLDSE9rOIwc7s5YogyWTzeBRilNPzkwyGcFsOo33qmexkZV/BHpo5R5MJboKHF9HU75fCLaeaVQpFjueSb9E8XgtnHYBhxlBH1KIzCGZ5FJeq3+lQwFcOu74JRV73rIXdSm+dZ7YLrEbPEg+wXT1OZ4+kXicHiwGyMQLAJLpiY8PGoLHyovgF3wpfg8WlQv/VcN9KiR7y9uZrXzFv8U252zD/I51CuZibK095424GxdAw8M9jBl6Ee9bXftz7u/P71YfJh3FFp/j0Pnsms+Tfxij8E3r48FuZdK3Zk3edvvOd4mr2LFDta2hcY2Z+wiF9UsoORL4JZqTGM7jeZxC+YPxgblLHiYRfDZpHevNFSWuRVn6fRWaF24+HpLo5f/H72YRJcjt64Ckwfn7qv5MOchxGDCM9QZumd8PQ/6Kdu5NgfGBl84FjwUGQR8TTn8e2Np1VbMezCseB295yjho1RsU0yC2+GhlbQ13K/qa9bkigZnvZ0fic8vaX9WOuNYXRa+kl6Syv/2FyZvdBWRCban6KDrRuOArZddRgphlG8IzxKfWogkkUuZPH2Zhb9wkJyscr+obS8gaXmaNfW+tfxlDKy4PiKHQaMGrErie+2aWJOBdoyYs4Qd+Ut/QaCGEW+P53mKgOhEZh065MQbSVKYxTlMhooGFm7haepB+o0/OOeDMAluEVXX48ZOgyYMSr3KwFjuAfxbI8gRAcg2ylTfniNqoqU7z5V4QgLA7B+dX4UWXM/MPZvBRjVP12YaiQglHPMwjoqRv3rlHwz+lk0w39npG59mylWBPH2OfSRDKz9YFAhR1RL4ENu82QWjYzKGzDgw1XYHFoUgOSXBzBTMxkYv5sHTX3SYgblVZUrpciByrltKx0thksRTI4W9bwZeHR4RygxRErLAFyAB1Cbmbok+FuaxC/i6ZdR4oxyMabzPJ0fODWrVOEej0sI/kivgLaX4gJ3PN1CD2BD5YIR5c35mh5KPAJPhzhot8U8jaHvsTtzeskfMFJ/Bb8Mpav2n6dDbL6YqsUrHRtsccfTUcoF9mbytMc7YYyrLEbvpvk3WqrmATzSrcHTIFQb/NZibHDWWqRiIPDtB09rULd5Lvs4wtN18+mj/Rl4FjpbPJ1DsW2ZRpwNPF3WJ4/DAo82kMRevxTxdPVrlpv/HXgaZeYUGn3S4lTg6fQaVjhqUAK/JLruF0+LPrJrn7Tsoq8DXxWQ7Q8/q2HiF3i6jinRFKsTHU/TNy3WgeCNKdXM8ocIbv82PM20G+b5/iXBCC1ufQJoO8PTI9ERmoXIO0OaVbZ4THFX6VpCEu6Ap2+Ep4dQ1v7ytMJuulsYnq6OD7eBFVV2WuYFDCwWQBFPVGxg9cRMloG12wSM7vzYOgzABb/GSP0bMPbJt5eXCgaWXkcpahfXzY8jkHGJVQyFwFCWamQDYeyhIuUR/TDyUexNZhVzzgu+CmHB7O61/SWuAowyYDayCsxDIHMadijWlnql0FX+XuBTEeSRx8Uj2C299B6mtHzC2t9Oc4XzBzhCXTnwGMMNC1jCTh2w8+qg3cHp4wgYWRyQ03zugt9iAN6Av3ksRePBapWEAZwjcG/T0xhZA5mJ6g/MvtJQBbuDT898GDEKosQ0bWEbj/kYqJsegrAw1poV06TymkrQnFalpdci6N8ikBNvW1lvMgou0aPSPsCIR1Hxa5maKZaa9wME09sIEYx0x6B7ej9fw57/il8QbnUvYmRtZtQ7hFAOBLIMpgYc7akO8imrDJcQUzG4vzPzMK6y9IPbW8Jv556h2PNTwdgTnn4MnibIncO4W8bTCDmCbDMr/2a5hV8CZgwXzWm3SgJGx9N/Bh1dgBEB6o7S8uXOnnAoAAQHeZwg3oRx9Ud4+qqCsmg9ntZoN1l9D/JmkMXbNubpPcHo4wkjF57O1K+02rdvsbrVN2LwthZPqw7xNB6Tjc8yNoFf2vSDrlrA04pTJKwj+/bPMdj+Ck8PAMWSO3tqI4/3mgo8nVrFAHQOU5rIxrJevKVyfVrfUx0FPDbwNB7zt3/AAGIxfS09pb7e0/t7BZAM4hfK2v4cRhZHQLWBp0tbxtMGT2fX/gfZKJ5GlmkKsqGd+wLL7vL4PP0PdBinKewvT+MEyS28GB4cCYx+P+yu7n297/P0/dj5XR1Ph3biaZWzu77awS8avDMKsdSSu5l5+A4olAHYWjxNk0MdbO3Gp20wZzGfXroGAwvPW4MH60g8WIPYTSGDX6sxrEUwMhjJ1S3HY34zXkq85vHRBX7J46rIwNINEKOjSjYjSOu2sPy3Nwq4M7iQ0FclKpjPjvL5rft8ND2GMvOS61kye5/lFiGIQ1jtuq9ydwGSWy1KVM7RC95G6kBphMr6EkKG0gQ9O6poAkaNoBxzsh/M9qWWXsQyeB0O2iretUYNEa5C7KtRjdXtdcJA6IswxRAUjA2pKRjBlWDkdRkW6fk3YLXfhJBDECs6vtWShB3EyyrCXM3jfO9EaEAfulnxAUUwOmOhUKm62e/nQp9mayTkfsrWMQ/nYVSA6Y5OKLzYkosqkyBpxyT8IqYfJ1M+jIpAdsZqcR07waj3+NDXMqy0/UJm7TPg8XtMAc+lDAYQraIs1CbVxahMx4Bse5b+WgGv9HTT6yEJ06b4xb1WDCN8pcBNAmCz8zH0FRihM/3cKFL5WiMJj/A0yjJXt83xdJipBceXTcHoqvVhlIGK0q5fx1YC8NviS3hvMB/RiIRxa8EILzCizNX8ie6JQYv98obgXnma+gs87W1bgpD7nWU5EDfU6jwNfNSjY22SG34PT3fhnDnxtKYqinCwEy2q7wSf5A70iEGaInZt09s3WP2aW1rRuFI9SuJpBnKsuPZq/oWt1bnA02U82xuMebkjustWT8IrhOeq9lH4hVmCVudpBiWs2PM2TUEZdSvwNAb8bmEU7AU8Mhhxhj6e3px42g2YZAC1hgFINQ4G8TSG3zbq2LqaoKo8T+9WB7rXfBjzAzpWLeDpfdSyC2Vc8UwenNbmaenpTX9hEF4HTyO7dSC85PI+8LRWL3n1a5kWvJcp4Euhm+FF76lBrZHyPO3V3Iuejud5WpvT7ZWnxS95uZNlu4P0olstt+KagnFF37RawpsMPVUz7zd420t2ehcGd/CpIu928mBBWw0GlrrZ0WKRnq6djRH9K7YnurVJJ0gjA0sFFATytufZ63EK3keK52DKkOKJnLBAeeCOdQpMHeqsLaxKzeOuQ9HgJvPW/BKikkUsQdyaxpXgU1LnodhqIbBNb1MFbjoIzFm8qlNTQFKw+qizJHyIKfPYCyqz6p+48n7Bsrg7C6NcwUd5rZqoT7hhpYeH0shtZtQmOBwe5bHQM0YfDkYZr/yWp5DO9HA1ppmzzyy4lvb9Oy/kWtW4UkNFKbRbRpZGvdV/QJjU8rs0r9gc3oCrAY+CEbzKzQuMua0LYM57LLv4Jwi5BcA4kPutZVz5HSEYqU9GVnqj5TY8gGzdSp+1BSzuSZDIkPFpUcLXJWgRD2p202zcyr9n5PMDiuGe2/ertQRxoaoGgQwt1s+FXxDKye04oCoBrU0eZw6HBX5xMIrWaFd2G2fvTUKA/AYB8l3uMcXoYvaA1ZXr19EaV/paRhaGYK56quPpcDFPOxjV3+IX4RFaZKTo4ZrPwtPphfD02l+94zwdkier9hEM6gWwgzZyZHCiUWwTPO1ghB41oEuz6jK94JfQ8d2APwbYW5unRYvIGPEw0+up6nuJoUL5Qn8RByM4c8/y/Sy+ViC886zDLxl4euuyh2wLPJ2Gp0NxGS6ixdZMglE8jZxW99Xc4XjaU0C5FJvft8U87QZT4ukki1XnY0Tfwx5D4unF8HTVO8zT1eZteMQN5D3idNwAVDgT/Wm6T/DuwtMEYi++nems78NC8NE7ytPwS91b8Mt/QA9GTANPg+cCT++A0efprRiorxKHc4t5K4HRGNBp9kJy853i6a3InJrp8DQRX/vE05xNuu4/GH+/Zq8OPlFo0Rll4hnRUGsm8OJ4+mHksXianyXwtMMffd1Ai5I7fES4DTz9D3Tg9fD0PcAonhYOhefWSniUKa8az+8QTuU+nY1GFYyvvbZiVkMM1hH2J0IMehK6kRIdOloEZvGY09N4rZY/CB7R01ueg19GuPuNocuvImx8V7+lvHRKbG4hVvyhFmITvFA7AhTLqgrMADAEnOcQHt4W9n2oeRUB/hSVIBAj/SlAiqI1ESKgGiVNpWQ2cHMFQYnHEaM4MR8PI6+WvDHQi5fejsdqGW7p2RDiSzDNM+RHIWqPpVYXcsXwqe3qEOFxGbCAy/KTCSObwHTSCPCIdzAq5iPUML2FaSaN6mZYbiMw1oNLzdlrKfs7DqMIm09mDhcMl4rjCTg+jGnDYYyMukH3wK/gYU4G97YtwKCdBpwv4FCbRf4hwKk2SFm0NnNSpEvgUUKXqEIv+wZf+9HHxwLjocA4OD9y03p5lkB5yQ3gcR6nDkxBUT9HmxYBI4QvYd0qUwgFkHa5CEZoEcPOsvMYyRB30P4YYvXHMXJjOompdnmCJAQ9AlQ9pmBcAPGW/5K/GlpkBOm04jsh5IqAFYxa2pwDLyWHwS9Hg8sxwDgA8OVhFU+zu7F4mg39cmxsm+dpRuAuiPhA8fQ6YFkFT0OLHQo8rVF6DDhIjqfrlrGvr8/Tz3L3QPC0aheds0knS+ZD4XrCQE+yRMcJxGYR+1SKt0MGISmbIr6TEXhy03RmOV4k7moSdFgFPx0onkb2ZN6i3zo4ng7B0yHCPkIsdvB52ksxcIGnPXjaNj0PT79B/qHASRvecZ6WXIHes2+CTvACT1v7g+FpwSjDGhyz4MGrJ85x61xmLCbnl75nlgAjg3ct63pHDBf1nlJjnh4NT8Mv8HQIng7H8cTJE8TCEa+OuK2tbGex8TWULbSorYiiwygjx+dA8DSD49xiePpwx9N5Pd0fGCsg1yI9vZmNdze+UuBpBoBuIY14WnC+U/JbRSN3MgWeLjshz9NtR+G9hKcVc0nKpdnks25pEU8jG60XeOxUoEWXrVX/oFXsbXTbGWx++7uRw1m1qGB2trkIJW1SXX87JX2UHdKmh23x9XSyFn5ZhGxET9e8gCxno+TwAPAILncTF7Z7A0tNcZ4VGFXLgN0J5dsLDYQ5dFSGbSn8Vucg4DR/7d5Rpx2gJOULL+Am4rqSL37djORcqitcgTkEjDqyR+A65iw8eqcvMlZlvuu09tBKmJIK5fDx6Rr9r80oQyFg045xYYSw5sNdRm694wmEOCOGUYI7omZNUY3A4vpZSFYSbF3paxjDwadGHIjkw4gx546owTBpSIKR/m9IBE4zRZJXFK098mmopIkv8IroX5sC5oRDjqnhr8jN4W0nGDHwHYyi3wMIYwNPi3fxIngIZ9GiaFLA0gRHi6JJDwGnOLN3jaeBzcPQes/yNEY9S7wdjIWYtBD8wYJtYNZHCTkU6o4glrJ7t3h6PXBIwfmpMb/wW6vH/N34nWDy876TV/E0slEDE+SOFwJO2NvvbvGNJ7GNfjamZd1KRGf8HUB+EUOI/rUxrrcWQHw5I+jo04bffJUXOizZ8y7ytNPTvs4T4mTwN9bT6BjnYfV1pWB/h1ODnhZPr6QyjGf+cuhMoWIfZnV4T3AoPcOjd1BP7zCwSjCw2OZEBhYOjzJii1+tXmkfnPq0HQQKN0k2Ku2kp9XPe+dp1bH75BQopYvxbGAhn9DiK1VJYyWHCa4SIAew01S1P4pRY22Y7pAawyj4lHSf9hTHSrj77/Af4UQbaOZWQjvftUjXE/CkSegVek5TQ7FS3I23MLqYQd4DKYjVdvDiYARPEQwTgo3zuPLxqH4WDn08vgv93AAjVK7pLsIP33swCi98pBEi/YBPGBMOm8CjFLLyHnB+geZcN3Itm2iRAV9B1snz5gs44oUI7M2te45jmb7PCBJacGdruuYcmD8+TztvjwYdwp8S+HKpSO44PL5LPA0iQ27RBMLWJcGpMbAQ7POMHug+MsBvhm6944nKGni6K7Wh/B0AAkJ49OF7t3kai8qFKmyxyKA/4b1ihTPn4vpJYRVePR6ieZ8mHwPkd9Sj79dafBWP8hGM1q/wQDhsCo+Fe+8GT0uXuD22BhXBWMwvfj/7MJL/QCafp2U46QgGUl427g7Gd4GnHVDol9xGFjicZDbhKg4yWM+WWQUY5VRgoUp2wY3o7zk0gPt7cYLs2cByaNAfVaCP30n+tVDxgZUcAqhREtH4BOPD5l/fIzBiwYvvwmX9LdbtGOxCBAsWcz6pU7dZdsndXDG85AlsaE8hywG5NIVHCWLd10fJv+Z/Hfi/Pi2qZh9/xTC+2/AJLh9GHz5dG8H4roIJLAgRBdRHOx3KVUKvwD8MPrSCNb2VaXV5E7QD5bsCK5U2CK9iPAKTw6+uyqPru5WaglH9rPQekTsOQY1lYzEtCtZ3E4n0rdCIkR+uZPuG9qPp9oJsFC2yOjS7caZl2VfJHeQucN+V1JinBUQxHt9NHPoIadzPPt+8l2nxvQajdDFetkRfjvw5lg2aUwQEFGCUJ5MFDNlF5eRhGlghNb7c9Lug0XUfDSz/LZ+I/Kt//7109WHzr+8V2BAW6if2LPEy+mgKocCgbgoGoeIUCi7Sd1Xg+fjy8edf/fvvpasPm399L8EmWHy4/Ot7BT7BA50xqnTKTJaUP8L0YdaiBV/2vetg+/jzr+86QE0A4MPmX5vI8q7f8mHzr+86QA0AONnIprNaVKXVzY74NNMgUFkN/N6jRYH+3sOjoNoB13sVvvcyjODMTWfiDUFHe1oc54ivcB8a1fSmy6Nm7CU108DaS2nB433EgDQXH9+Dpas2BnS/38tMsY/NC7L9f4AB0Zkms3DUO7or0KS7LcNfv4MUYOAAYgA61OpLp9AcTVK3YoUCWjyAnRBUlQ8hKsjDBtkoMvR1tJ7tm54W9QbpXcFAoMDeFbQHlQYYCDAQYCDAQICBA4CBwMA6AEgOqggwEGAgwECAgQADAQbeXxgIDKz3V38HrQ0wEGAgwECAgQADAQYOAAYCA+sAIDmoIsBAgIEAAwEGAgwEGHh/YSAwsN5f/R20NsBAgIEAAwEGAgwEGDgAGAgMrAOA5KCKAAMBBgIMBBgIMBBg4P2FgcDAen/1d9DaAAMBBgIMBBgIMBBg4ABgINgH6wAguXEVnr/Tt/a+ckl7avBxR/j49wqPgkuAgXcEA3k64wht6I6dnh3t+XSonZ/1PUgBBg4gBqBBz9Gi6I/92fgdcseUBLR4AHshqMrtfeXLwsLVYYXvDXJy3/R0YGAdMHKSwKAyDgINc5hkw2Z6uqfN9HSyvHZ0dyed7lvnHTDQg4r+xzAg+tKBuRF3FInpLEydIqDbUmpRxALnKTrS/B9redCc9yYGRGsWjiMboTvJQ5RcSLQYgRbdAc/vTbgDqP7XMIAQdLKQky6iCY4bREbK4HK6G/3sTh6HJt3JF3tve2Bg7R1HrZODTtPB8V79csusf5VrNeUWPAUoOJ255U5sD3cq3G+daoNSAgzsigHoLsw5Wrk6y9ZM44qx1XDYM0KkhAN265bnT4NwxzftWkJwJ8BA62AAzYX+CkUqLLdlLue1csZbirPgfPM+3h5aXA0tavDpzLDWqTYoJcBAkxhANoYqoMGVZute5gzMjZbxZaAOew7LGVKXl5/7QI+BgdUkklv5pjvbCCUW6W/e6hstvfz7nMZNHXIiKGFbGU6EUKg7X9ogR/zQOP/wTmUKUoCB1sAAisrRV4nZ9imWmXlCnhZ1xJaS9BhyJBTFAIv2Jy9ncvn06zIEfwIMtBYGZFmhgjjvzaytZed9zEx0WM8nP0vo5KIlJBt75vOF82doBsZWa/VBUM5OGJBnKlpp3qYnzaZ9w3Bg6UhCDCo+kF5eT3fjS1tIEPp1AnP3ejowsEDRO5fUAaA4s57rKguVHm3RDh+3aNtRFi7ri0e8DeEvOfNSGy27bYFlNk3Do/AsOm0mHTqIvkPTScEFKcBAa2BALtTsdhTVfITFUAtVfoQD4cdZuHyghRId0GKcA5feygBtmXmbZ1uu5nmMrxeouTu02IWrRgSBF6E1uuL9XYa8VshFLl56LmRXCh2ehGw8wiJthlm4tCserQSzMBz+XL/GslvmWHrjq5bb/BT5U7w60NHqjgPK39/YDFrfihhw4Tr1yMMRZuMvtmhFLyuJVhA5kTUvWW25rQssVzvNvI3PEM2Dno4MRlcrxKJpPR2qGjI8kJit2D/5ooRSuQJQWJnZFqk4zeI9z7N45wlM4bZzAsXN5bpgOrIpkDNXz6Ue/bfaUmuetPTq+y2XWoEw6cVznS4fpAAD+4EBxQ5kVuIt7WHhbudbpNspyAUMJ4RDSDEuLv6P8hUoCL15uMG99GbLbnjFsisfNNv6T0h6FBnkWtCITYOHIAUYaC4GoC/Rogx9W2vRzp+0RM+PMugcAglqCkb0uGPc78m7JdlI/kztXEuu/ItlNtzLuzL68cI6xRbQYnN7IcjvXB/2NuLsjJIS+93IYRZFH2dxU5V5C21S/Gt2SsmZdlgoZ1tldCnJyMrhzkI25ravsszqf1luzf0YWusorIeTm/mMO/7uoOQd94Jv+40BGVfgOzPLEn2usUTfTxBH3BPdpY7CY+UMKjrKT04+0BWRtgiadljNAy3T+SirW3izZarvRx6NbbLz/NeDa4CBPWIghAGVno7H6nyLDrgMb8FovNt4s5wxBT1KiRWPwGT4h8sZxVVYrNfZFul4hGWWH2q55d/l/siCMRYYWXvEefCwCQzIuJJnaj3e+45WMvB2i3c9icD2ckgRmlOsi5RYxo+doAjRIu+EYmUW6zzRYpVjLLlmotUv/Knz/OP24h0NQJ0QbaLO4FaAgaYwIFpET0vueRuKMoiOJNuQj6KpLMa9oy3RobJJT7ezcNv2Fq8YZNnOR1tm4U1MKT7EKwdRVpFeJ3ekslPna/RakFoLA+oFPFfZNxAgv7XS/p9hEUwXlJiEhkb/dKx6ygmOwjXfc/nnbllyyCLlvSza/iC8WJ5la/+BJ6snz9XxQQowsK8YyCs0S8+wUJdLLDbk/7Dhh0OL0KGUmaNHldWYHnVPtKp8OZRhJTHxY8xTDGHNXWTv6l5RriAFGNg3DIgWWSGY2YCTqr+VDb/O4t1ORAzK0C+mRUrbSTb6pZNHshFva7TdMOTjCEIqpmBbrUNPlpNJZUj2BinAwL5gIGxh6Kna22RD+19pp5dtRmtvRzvH+FdtKyIT7E/RQdaLsIhUYVXrDvrKy0Xp+UhZbwu3H4tudE/UAABAAElEQVSTFf2+GS+/09PS9XlaLPi+9gWgIM++YSCKEJltJVU3WknfCzBhibPK+iMsIX1PQmDHcy+TovP6Wengr1u0y0UY2nN4Fdd6kAIM7CsGnOeKGJeOn7HYwK8T99cP2hQtKu2gtfzvxn/952wvkmWUhxKL9Tnfwv1vxu6aTebA+d0YY8HvPWBAMVesVJWxXjb0BxbvdCR0JEXlG0Z7kosqt0CPys97cTz8ZUN/bOEYK76YQgzocQ+4Dx41gQHR4xwrHfADC/c8l+eiLzk//OTLP/938dV/xr5t6PZweZXFB30DOfspZgoWFvR0vqzAwCrG235/l3H1tsW6f9NK+pzHyIrgN3muNCJrbuIdL5vEyOoDEVxKJ06AIDZTVn76sbnFBfnfZxgQnYheyg9nWlD0g3EFPbWUFiFsR8+x3udaqNvlxHPNpazAyHqfUVULm4v8c/pmpSUGXG2xThMKHn3dbK5sVH4UG/sGxjsfaSUDruLn4gJczS2rhc0JXvv/GwPymmbesnCPb1t5r4/m9XRLp5mlp3MYWW36M4i9jBXYY5C7WxtkY2BgtRqp5Bk/FGtrJb0xrmKdcEGmrCwWshJ0XWPWT3AvAfb1LFbUC2Ey6p57FmWqkDKibYdZotenUZCLgFZzw0EKMLA3DEAn0Euk56eJFxhhIUZaZdGwtcEmikBj+fFVvgzIzMq5XwbdNU5xaFP3SyHMuLGCK97Bor3Ogww7UkhLFGTjGoLf//MYwBD3skst2pGA9m4ns4Eoay3CHvQITUFfxbSosajkXxn0KFnY1LNS3gsTfKy4rTiLNaId8BxkVyJkmyDg/3nkBg1sHgZEcHhOWewT7f0x51ENybjyA9kbFSbdLJnZmE4lQyUXS5x8RE/LyGo3Cnl7IbSOF6ugp3k1SK2CAQVv1k9jhPZzVg0OYgIlZavqQraiGhGBrhvVKeQMKQkM+sQmsfDAKSg83hVtQjaU7a+yPEzh8JpaeEebulcSXjCwLTPDXY5mdeG5xGM9jfHWh3d5GKQAA01hQJ6l9DILtTvLIp2OYnUMdAVxTV1DZuitLbTYhwVYaeSMlNlyFnTVbID4iIUfyjMpOdFpnOtM9n20JL9EtGi8UR3S5rEII9zjm5Zb9E0KGEdmTdEEKcBAUxgQMbHJsm1mkPhRF9AexRs6qZr726CrtiE7mC3XJPuktDLQ5ytr+YEcrIIWO0KTGeg0Av2leTZ1Dc/4369Sz8jEEvo4Bn96wx8w3HoCAIXsZJY1BVNw732LAcUBoqejA2+wEFN7JejR7fXyQoERkU5x4vdLNdzYCsG1Q/ax9ZVkJuNUW89kwBrpaeSo9m6r4Fl/zVajp7NrzjTbMgm9382JzeIig+8twgA9QQ9Jr8U6HGrxeIW9vjZrZ40N26SfJexfl8etVyX7OkoekHU1guLBL0Rt2k8SNpnPN48J22S8ikmed2NRzOPfitu0HybsVT6XHhOxmZszlijryUiNaUJvIxA2poQWAR289D+LASQAK2NClUdYvE1Pm72FlVmlIXviyri9cm3CPjs+bG9AbxUY/jPXefaR0SF7mfuPQ6cJraBHiMi4moXh9bMzIjapQKc3nx+1ZWjAcLgNKwsPNk/DsyYl0/8sYoOGNRcDbl8hAogrPmyxdkMtmw3ZazWe3fHxiE37RcJuPzdiS9l0WZ6A1duw4TGo/vmNuL2O3Dx9RMjmQael0OkKnrGQ0MnSF6+J21nQ8AbsehleKjdScTrabQvQcSNIAQaaxEBeT8vhEelwsEWjZbasJmujRoSx0xWSU3hJ6hXbyaDT30Gfk6HTmz4SsdlEXLTh3TXQ63FVIfvP9+I2BR390o8SduGhYZu7lWnr8p4WdnpaHhTKLRQZXPYHA7imtfQ42v4shEA3W1OfNSmjc06IW4e2YUZenj3wTMbmo8wmYw0/8LmYnTwhZk9PSlvfbmG79LyErdtUb3+Y7dmdn47bgN4R+++UtFX1CNsXPhK3rfVJe2SqZ50qh1o6PgCd5rs0ZXYHKcBAMQZQMKKPeD+LVw639QiDz4wJ2eXnxa13F6YIS0I2Zwl080zWVvD9Z2dF7bNnxK0N4YIpnKLt/5K2Ot5Zwvcrjgrbp0+L25sLM7a1znP0vA1v1pX/ytio0m6WaX8Oy5NfZtTQCYHE6CBIAQZ2wQArqnPLLNHpUpynZda2PGfPfD5h44dGrV05Xn0U1voHs9aL6zGDQvb9C+PWrWPY2paFbOpbWdv8StY2YXSdw2D1krPj1gXPVXuU4fyVnv3qpax1p7ws+2dFOx5pyS3/ZJaQGJgGTbkLMMGN9zMGNIWcWcfWCR+zaElXW5ZET38cPX04XvvvFsaKhPTIy68d3B/8esROGR23stKI5WRw3YuMw+PaGU/VV86JWdfKsL04M2MnHRy1r56dsCnL661mU9hi7UdYMtabQtKBud869KaOW0lA+lDLoWyixAeMqIrYs69n7Pa/Ja0OF6LCVdZyPbYvLvERUXv4yZSd+8O0HXZd0latz9mxYyM2Fi/XqIERe+z5tJ3zxZSN/3GSacWQfXhC1JbjuEq06UcMTB8EFsO53cwZt057glL+v8WAm9/DQor2tmh5f1tdF7bxA0O2cbNnl91Sb2s2KXaF1mFjaT/HgX1C9sLUtF3/YMpqmbIpZZ5GA7jNfD/v2KhVb8zZST9N2UeuSNvcRRk797iYVSZyluLMzEj5UITRKnJD/0EKMLALBkRJMvjxMlUMsfXpMhvW1bNKlNRP7k7alDlZt5BQr23AoB9dFbbqTZ5dcVu9LVlTGDxSxBw8VYN7hWzT5px94Vf1Tl4qPkteBrenICtcI22GuHoCD5awGaSmMYCcQl6Fy4dYGj1dGc3ZIJwZr2Mk1a1iO5qEiAoyYhBZ1jUEnZr94v6kPTc9k6dT6C1HllKu9/w7bRf9ut4+fUPavn1H0ioYLHwAT9i8bSGLEvBOoCrEWR8YWE13RDPvOjc478QJbI+XW/twzr54a9ouuDZtCmaXG1tdtwUvwGi8UuqMFcQStO3JXdyOazCweuLJ2s7PNEbySARNgmnDKw6PWFvis/KxxB5lt0d+YIV5coWrxCAFGGiMAejC28ZIvtJSfEa08+zGJ7J25JVJ24CRHlWgSyH1hDYvvTtj5/ws7eIDdY6pbC99RF5lCJzVuMkNT5f1YAqHmIMyphoHlnhWz0akYejdbT8UiJECRoPLrhgQPUImsa7WnfmVKYtzNu6HKbv+qaybjtZ4QO6Bnkz/PfRi1iZck7QFq5GZ0KYecdKuHYnYuw2P6xE8W02soGjYvefOgmMbSM4n1F6DDYQbyMZduyG4A0Fpf0rIJNbZIujpciz/U25K289uR/5pilBuKj4ytOrRzydfm7UfPc6WIAxE83Sa1+XbGQzcMc2zWkXrEEvx4cMiHArt2aT5OetPTJanBUBsRhoYWK1GdHkjKBQmgAWpoIDNTtqyqjOrXVBaSnmBgBcKV3iUDpMAIQY+LxTIX4YSm11j9sTLaRs3PGpzf1Ril55LTAz5V0nJ4Sb3ZMhpbyN3UrRKDVKAgaYwoCnkOEZWFBGCVwqy6d0hZKWiST+JTvneo0CnGgQoOaVW+CLDPqtMuonLQD4F3XM2mrvH6jB+54mba5ACDDSFAWgkFCkQHwRzuPYFJWjYyUTlFy2RR8HDo9qHrA0izj3TfT4isbKGZ7pZSHxF8rofxcfr+I+Da4CBnTGQJybRSljyDNLpAa11hxbzVFSUWzdwhLTHi7UTnXJb3tNDsJ+mEvJz1elhO4Vwn5fwgv17rmftEx5eLllk0tPpIAarCKUt/4rQUCe4fYbUa3z3DSsVqr7ilrN2a4jB2l7PPi7cxENpafpBxlatViqgzH7xaMYWr8w5ZTi4XxjrOWpPTsnYQNaEptF2nsf0T0gSKkgBBnaHAYhKRzZkcYciDWSXyyjS8nglR4vck6Ag5ninpHwKOBbRiqbLtEpG7zFCKyE+QdnroNMIBJyPBdTzQsF8DVKAgV0wANFINopKQhCVk438aCAb3VMePiI9ZdQz0ZqIUHSoH86wVyGupPy9Qi5oEbdCkAIM7BEDeaISrchbJbpycpF3HK0Vv1ugOUylHamQX1sovbKKqeyTI/btTyTslVmETtyXsXE49Os5Ds9tzOxWVscD3/4O7O3PNywljCQvuZ59RbchLLTChc6kE+rhewmLVVqSzL0nF3q2eYtn40dErG65Zwf1YMqlb8SWYVTpuUZqV92Xta//JWvD+kds4fKc/XGGZx3wcKXrcXFlN0IY7Ong/An7A3Pw7v8kBpxm4my3bA2xBNXQYsjk0l7C1Mqy7YyuIMO6NH9WsKqV+5ull3CHb8fppY21Z0Cbs+Qx5XcN3/t2hSC5byyd70dcQnWtZzOZyy7xtjp6z289pAxBCjDQGAPQkYwhkVD9av5wiDhW1GToytZzBBhkoy0YRFurGDfKWzqTGKwlyErRqWjSVni2ibGCTiKZAQ3P5F0904IMvVfPCEH7GOXq1xS0JA99A4xvQQow0IABrfR3enodenqL09PLCduZh7wT1RQnZ3BBhxugU9Gotg+x5WaLWVk9nZWtXzs+Yt+6IGHPTSPI/ScQKnQ7DRqmeOTueqenLVQSnEVYjNQWf3dDLA4kZZ4l3nGC1UU62lkHm33jvKgdSkB7785h69clZMcMCdmTb3k2omPITj8mZuMGmn3mhJh17hC23/8jbetrcXJhMn9gTNgevbrExRp88Zak4aW0GP7z1MZpll57H7/kwRIJNCYLbgUpwIDWIXtrWdUKLcar7CAC2f/v7Kh9lJi+ERjziuubOD7kvKaDocvvfCpqR46KWv/uETuou9mJBGtuQ4gsQ4GddGjUPjQqbOedGLHhA6P2h38m7YXFEeuWW2GplX/GBYtU0dr6wOAP6K4pDDDYDOWgxfIxFqoYbeXlCbvig2H78ukxGzsoworAsB01MmQ9WZm1AuP9uvNjdu4EaK0/qwyJizn+UG1wiyeVP99Hnp4vGq6KWiX5jx8bsq1bQjZjxVYr2/QvS2/6Lxqua0CLTfVDcA+VKZ2JbEReRTscYduJZ/7ckSH7wqlME77B/pJpvKzE88WsxpZ6E6zq9GF29YfNxgyKWUemEQ9HZg7tjMhj0cVvv1LCyuuQLVqds3MPC9uFx0RtACuxHyYOq1vdFMusRTaGKoIpwlahO22kh1GV3fSYZbd/jWUGgy0WyVo73FFL8UzNI7CzLfO55fgWx3XK2lf+knGjt6H9w27l1n1/TNqdc3N2BAJFFvKHuoVswfKs3fJYxpbitOpORyquK1M7h8NN2UAyfhAKlGFdkAIM7IIBCEWxgKkV5m1+03KVJ7qYvwpoKJ0K2aPPpa0Ue6gSeowy3FLsVTvmBFexamvxspwTGhVMC3bEhr9tEosvOqTsmDERK8eDetdjKbuDZfMjCOZKV68xr/bvyCvRolwNQQow0AQGtE9auJ9lal5kl+uPQ3MVhD94yEKtXsUthc7Top84GwRqKruMoOFsOmT/eiltJZBxZRsW/MRyyFP2IIIGMdfcszh6sh1bOUSYW0yltrnyvXB/vFlyiQUpwEATGFCEe6QzcvEvlqu7DD09gLAHwnEU+lDsr5Dfgt8l0Fg5zyYRX6XnlehzhUyEOabpqVfTTiYmeO5Bs8qrRUHGM6t9AytsNd6SrhaqGjJcxQVpfzHgdnKfbvF+P7LyQZfYwrpSq62G2eUz1Ec6CMWmHd0TeKmm4Hp0E7TImI4ImAGMyNiWwwV6LsB7UMuKrWFMH5bHcKVjB+e2LbFtsy/nmKPJbGiqFTO8GKQAA01hQEGW7MtmbcZZYtQvbGu0vy1fy5yKAq4QBC66HfLrjvdKm7TX4KlyNIqC0w7aGnb1gk47IUxmYOCbphRFw1xGdYrgMq+z9IJbLbf0amg6MPbBTJB2iwFoDkHnZWZbmzFPoN+OZ6oPImMg6WgRmtKJFcb+VmMw6rXxrftdRKfd8Pi34/c80anyQ5/OYYq8HNgjauUbn7baGWdw8POowgNlClKAgSYwoODz+ukWrrrWygd8wWZuK7UBG7fa8+2vslhoM6KxzMq8eTYp/m07pQ7X1kYIVUFXSqJTnCADCXBfIP0tW9635yUjO8dsZHShbZvBwc/bMbKiHQMPlvDWKolRfCgxxtIrv2vprsfb4E6HWawt0yf/j73zALCjqvf/b27b3fTeey8QIFSlqig2RFAUEcUOz97+2AUUUbHwUERQn6CPIiqigAIC0ot0CAnpvWeTTbL1lpn5f75n7tzc3exudpMN5XlPcnfunTlzzu/8+vmdpm5ZMWnugJwoRaOOYj6LlIU8Y/3OQSg36ZjvU5lilSEkmSNvgTkLCc7tym25n2NybqWOubxXOZokxmnl2g4G5HynGOvb+XeGlE+2fpMm2NxxCcdfcW7YjPkrrqNmkybLCO5Kjk/hxxY+B7PiWFED8SqzXyzLQanB9mfZTuZbRFLncLMSvdqFucq33TEA46DkPG+Qtay50foOmmtHjRiAvy5Pfhff6QgSzXV5LftduWhCWUHSgzyy107gWXxfcw1ZDdbSUmc7Vt+AjqTTqRd1v5IqGOgIA9JXVXMsWPddKwx7vY0bdKjNZQ4OvtXuCcf+eDqabHrjnumv+FSfQ9liyS3MKL4lzswTPW1Yeh/7Md1JHZGdVl+gknoEAxJsrawabNlVv2cTxvHmVw1lMh2OV5mTFVclR6s8xYpDVzlczdI/KItEqorw91OM+HDWVmp6xaCVI63yvWMMSJEkp1uw/jfsuD7HwkGHc3wlw8ptrRclNIrX2knixV18ilbROV7ZTVZY87/Mq2FzImmPikFrB3OVW60w4IZmxrA+5/fWsu44s/Hvg2/oeGo4rw0/yunvKGmie5Ska3mf4ZiWdbfi8N8ArxO9Uj2VVMFApxgoOuB+2vzVv7PGXuMsrzOYSqGospdhT61VU7C1bdJK6lJCB3qy01sfc/rWS++y07vCK6XclS97jwHGatNjGJ25ylpW/I6wOGdwsf9L2G0jBFWLRPPrF1vTkktZJbMMJcKYTXuMsPcAV978P4sBtIP4pWWVFZbCP/WLinsRScEUlUxX2y7+xbkyVt4U6DyEm6+g7LEUU7J4XS2pku8/EgPiN/gxMR29+F3LbfoXgX3cd3U8u6sbXX5iqpp7tekea1n+HcqdEZXfXb7+j6RFpdFuHkRyvAWbfmGNq653ei3at6qbetHxG84VNt6vX4ie/Sk90vXwI8OQRTtdcbB6mt/c8Mwcy67+hjUv/y0jKNuck+WqkXLoUKHEz7iieLwUHvbOhda06BJ6fjfyWwatMhzT0+T6P12e+CU1mvMC/2z5RT9ECbwIazGZxe2tUMZv7SKB50WDJQUS5ussv/JqC1Z/jTIZGnRDPO2+WLlZwUA7GKDLr8UXzANsXvQ1y268h+AVPMZmuC45vSieay/FvMozne/Ee9mNd1HOVwmCUaZ42k0sbO/dyr0KBtrDAJ3D1GxrWfktdNrvyQB/uknRyqvY/S79pzu7UsyLXNGjXhI7Xb/A8gt/gJ69jTJH8qoma0UpOXDI0AviH5VrT2EArzYxwvxt15nPLOJk73EEAAYVlUPRpy0pFBFK9XLfnQ/BbGL2iynUPopzdZFbmehlDig6Vy5jTwFZKef/PAbELygOnCxrfNCCnctYGjPKEtUj4DV6WaXdcMuUhnCiyIKcMBkzFE3YuMzyy39h4doLKasykVgoqqTuYqDIi4leBD4bGE65FR4bxPmt6EYOa6YXSoHK05YXuVfiRVZs0WHNrvmzNS85jxFBZr4kmbDqDJreraQKBrqOAe1XuTXsa9OaH7G3Dxvp9sXCWrP2YoutTR1n16am2Rg6qVFYo42d1qqfIGt+7UNWWPQdVlT/k4nTM+FFpmFEBt0BUuw+dB2oSs6uYABiKERITz+/4Zc4SQ9ZZvTZlhl2PNFDnVPUG8XAphkyZEpEvUK/Edo0ss2D9he6hcnJ13AfD7lsPNflrfypYKC7GFAkKz0NJ2ueFeZ9wPxhZ1tq1CkcejrW8SJf4MdIFbjDc1klaGyYG2a3Mdz9ABNCryH0Pc/xc9TTg7fLlEh3wank/0/FAE4QvOih/4zdtFuWfNzym8+wqnFnWqr/AQSicJZwmDw5/8Wk0wJChqadU7Z9Hs7VtSz2+RMO2cyIZyvOVYyqyrW7GIjnACbY3KqUZLuJigYsJNNoFNMsPBfx52fA76ARXYidblxthfV/tWDz1QRU6SCkp5KhtXOlIivbNJQQu5++sOoKakCcpThLU9ng7CSUyUGW6DWBYT8IQyQryNWx/cISHLEn+NzIrTTKY3IUQRCRK6mCgZ7AgLZvcEpiOaXhdA14ryX6H2aJPtOIsA7kHhECv4mI1UqiXc9bWHcnS2YWw4dTIkesLPTdE+BUyvhPxYCMmCJWdDCDLejGDfQ5X49uPMaSfWcRYR1J35NzLnHCtEO7z35uhbqHUKP38soong3hXTn5GtapRK5AQiXtBQbUpVzM8RUnV1fblQfMthQLLnxW7fdKFuyxhoH25sZD7bB+462BYIg6niF2OmxYbMGOJxgOvJG3FXmdyAde7sBOVxysvSBM919RpErKpIXFMygFf5mF9agGDdVKP2jueh88ZRsDofCeZQidApESqaQKBnoSA2K4WCGwc7G3mcgWzKidP2T3NJ2FQIKXwsH3yZeIF1ZUeBHMVFKPYkC8WIziExkIkwxHt6wwjyCBU396RLDLqieapz3ciLQ6fanIg2NWLpVUwcBeYqB9B4vj6ojmP7ptq73ludvsEHSijmraZacHsYJanVGirM5Oy8mX4mw/qY5K2u8YQCG4VViLLTH+++xofDLRxO3UWiSMmw+D97zw++yh8QhDMezp4pTIfgesUsF/HAbgOdk1H/7rc5ilZ1wPr3GDw3jFjiG9OK9qAPtc3W7hiv+HcYv2c/mPQ1OlwS8BBqT/ZKAwQ8FyS8/+m3k145lShcNfTF6mH6MyK8x/4Z30Cw6CQXdNII7zVK4VDPQYBlyUf6t5/U4yO+5iSzI8nY5tsVZle74VXvwendKnYdvB8GPRhncAQMXB6gAxPX5b47ga7asabskBsxmK4YfmYIlAehY0mK9oQbiTTDpPq5IqGNhfGMChCtndhV2Nk/2mYbjY00p7CGlPIpSJl+LkgK1Pu1Mf3PyDznXI/gKyUu5/BAbgOfjOsR97ByYHHMT3mBe1BB7dSDirIHWZLka7/iPwUmnky4MB2WRCqGmCHH0OtASMmXR6sWinC8xLVbBEeUxD1Z2nioPVOX568KkIRHHMgQl8emEFjcnohi4oEU2Qc56ySFKxaA4vlT/7CQPir8hwhT5zsUImtbs5BOJHPSP8rYnxlVTBwEuBAalGsR68GLIxsxXQhUWjFobwIhPdY1X5UoBTqeM/GQNiRtljbDRRfbfIwjGf7mObpS8VdXXDg3vGU8XB2jOOejyHjixlj3aIVDRoTpnwXT8rzlWP47tSYHsYkCOlJL5TZEAfvruIavG7HldSBQP7GwNiO9UhPShedB++667jTX2vpAoGXiIMuGE/8VyRH51hLvKis9lF3uwCONKklVTBQAUDFQxUMFDBQAUDFQxUMNCDGKg4WD2IzEpRFQxUMFDBQAUDFQxUMFDBgDBQcbAqfFDBQAUDFQxUMFDBQAUDFQz0MAYqDlYPI7RSXAUDFQxUMFDBQAUDFQxUMFBxsCo8UMFABQMVDFQwUMFABQMVDPQwBioOVg8jtFJcBQMVDFQwUMFABQMVDFQwUHGwXjYeiJfJv2wAVCquYKCCgQoGKhioYKCCgf2Egco+WPsJsZ0XWzxLy+23IUer+Kn4XJ2jrfK0BzEQ7y0E04kPHS+qeH2vnPXWg4iuFLUnDMByjhsdH8a6US/xwB1KqGslVTDwEmEg3p/S6cKY93TlU9KTsf7sHKb/gw6WGh5/1PgYQRLclzMBk0DhlHgvqRN1+aFN9EQwd1SOdodVQFHn6XSNeGTcTynGXzkcAj7+7Kdqu1VsBcZuoatVZuFOZ48k+c9O2Ukd/cDuxW7DWx2Vw293HESrl17GH21pHfOhrq+E1BY+wVSBsTuUcXYLPhTv6WhMD10YumOb4MWEThboTmn7M28ZrfXVwVWhdfcxHg+eCYlKrxQcAo9OtfCw0ehGL5nAGuse8GG7pRd1fFjoTr6IIO/s7/8RBwsEaOt6x+w4KjrYyjkqarqQImKCMNHSIcZl1MOXLqneDGduNSy0/NrbzJo3QiTBKdB7AV4fQOYcwsQo7rxcziB4cscEgB8Hmw5WFSxCnAxwjEs9lyP4MiTBp91FFGVxMAqHglE0Foz66Hv8nK8vdXLHKEgoBYPwJBjFc4JLOBSMxefuGbdf0gRciaHwW73lN9zNlaNyCjpbiwRsXs1w+PRFHVVYhN89eYn/gJ/dZDqSF4dHh2PhMobxZZBp0VO0lPIt6RzBKKCKvOjoHT9/OWAsykMJxleaTIMTZMFLjzS/9t8W7FjCqWFbI3HR/erBnNpUy3P4NVLwXF+GVCbTkd5GrgPBHsm0O7NTMi15dhHglxrGjuRFPAcPxPzo9I54VDrzpU7lMII/hyfpR6WiXnRXfr5cdlr0Swwya1liVvc38/NbLB8IX6RUb1RSNaBxGHlS5xDuGYe06lWe5GmKUPlVMPt2kEPDE/35jsOiFDbweKd5wRa+9wNJ4yOheClPZVc0IOB8LeMw502XWLDxkog2og88px6bAghKnqFIQmB3ghAzX/Rs//0V4wtGDgAuvBDVnRzJtS+f3lQrYYCp/Dry4AR6Y8CjGEzKpMh8+w+4YskyZtDa3wEMy6GxerYcip0ARqvhwxlRATCKzgHnPCYmIQTwgaPzngWhR8CXsZUiK8hArIlgS3DiunAo2A24AnDob4rwlpxOHpxrd+6fFOFLkJzTIoaDjk23m//i7Y6Msl3cdbzo/AbZDQM28a1w/VKeTViS6ZUABb2dTHMgtQc8SjqoOqiNPiE0To3jGQC/5DINzxVQxB44So7gin5x8iK5aACv6CPR2+PgWCdPIPkl65gUZdoXrhYBA3yZRF5KMOJoBTjVAbwqufHGgkd49WWRaeFpg/nLzuEKCPpIHMSDYkpA9/TbR9ZfJpkOCvBbuBY268tnEOoZWByfNuNf16EG1zs/20tMB9Uvk0wXNgDjZnCEg5CQvMgGSi6gcwiO/Y1c6TUlJ3P75ZLpFcCF7lEHLyF5EYySC/Eisu6DZwP2FPz4Uss0NTt7lgSuhnvNnv2mBVKBsYkTLxZ5MrTh8ID0Ojc7kelXt4OlLnZ+OY1GQfR/t9nAI6DZLPTwOKJ5vZyMhvTOw6bV6JAX8UgfN6v/C0oR5kpPBTE6uFGSuz+SyhU1MKz5Z2GYUeYNOsMSAw/FJ5iJXR2DNwz81B9k6/FtVsBf89HH/4a4f+M+kawUClGHQO+3JBjFAjBJ7hnO+J1pNuiTwDgXvp9mieoRKIsUDmoIqrajj5cjp89buOMRs8Z7aB6CmkTROBjFffsjAaMUGYdkWx4Ya44wb8Cp6I+DgXEKowc4eglCtn4AjLUWNCwFxmeB8UEcCHCZok0J3nfGd3/CCC19GdWlZr1fDw4/hJ/Paey9JxEJGoiuIHrpc9A3kcugYTF0fgYY7wV1z9C8ObSRdjpB3V8wQhvJSwEFbOs4Kf5kYDzKvP6z4UVgTMtgCIQcMK7Fn15oYd1T+GF3whvkTx/Me9BABthZPS49ngBAjn4eHCZxRvu/yzwn0zOR6bHIC9qOFBaakOk1+PovAiMy3fBnQKsBxik83N8yjbWXzOSQ6fRoZPpMYDyMvsgMS9TwW8OrImUOmW5eAY0l048B4628N5pXcbZeUplGH/b/FLQ+pB2ZrnMyHeyYBx4fRqb/Bd7BYRKj95LINE6eOnQ1RzpaJ51MT4VNh6B3JNM+YGzBV11iATJt25HpZuidmoVMQ4OXQKZDvx44llmmz4nWa9BHrGbAHMsg06mq/k6mg4Jv+ZaNlq1fbE3bnrLm7fdyRvAzqJyXUqY3wVvrkel3OJlOINNerwnAEMt0Fl5chw0sl2nyZ5DpUgd0f+mdWKaJTCaz6O1dMp1wdhq5JQV5yfRq83cucDId1v+Jmzg66Un7WV5Ue1nb1REJ0OO9jzZ7zbesug+RVU2jIAIc5JHphuXA+IIVkOmw4TbeHQM/4ix2INPepOmzZGVfZUkIQcAKz1k48H2WHHWaJQe/FmL0A1UIJs9ctJZcapyH4QoxDArtBbWPWbAeJ6vuWopACFx3qaeNBrUqUhDQFQvm0wH/L2A8xZJyXJyRAEYIGZM1hHhesecY5LZiAx8wf/2NOIN/p02xEPQ0mQQjxkA9XG8jnexPAePbnIOqOQ8eOAzpQQhGV7ODsYjHpvUEYe6h03kdQZl54HFKhwzG6/uQBKOcAno16WpLjPgInzej/ydzv2joXIi+WEUcciaqJmewsOF2Czdeg8GmjYq47S+j4Rz9ZRiKWeDwLAIFb7AkxlYwihfFjDEevSKMOqXd37HA/A23WbDpl8CG4S31fGPO2AfUtX3VwYiD2vetjEK/x5JDj4+c03jowEEY41HywAfe8HEE/fV/s7D2CozabD7qEcvR6mkY1RmBpsi0DXw/MEqmX+McPyfTyFNco/ixJNMoPX/ro8j0Tcj09dD5oAj2LoTvydiNJF7cJdPe0E8SlJJMHxLRrYTHuEjyF4ewg2yt+VvuB8Y/ItP/gJd5pwOFHL+9d1fBGMv0ZgK8gjGWac0dQabp9MW8KKPh4TRryCvEABc23V2UaTqjqf1l2ARjLNO9zBvxYYJ/b7ZEn4kOv5G8lMPInEAXQffpvywj+n87MF5tXgEHfD/LdJBfYpmaOdZvzPut34gTLdOLTm/caXYGhrY4bCIrsjHIdDMyvWPdbVa/4XJwPRIV0Itncvpj7t07yu7+FuWp46nOe9+3oXfei50/jk7yYGqK7IvqjGnticaSaTonft3T6B3JNHoniUy7SFFPy7RwIx2NXBeepyOCXkSmU4Pp1Mnxc/KCPJGUU0kyLb0T5HYSyHoUvXMTneUbijKtZ3FO5d73pNoXM3x0clXarjxglqXAg09ApFe42B6rOs/eXP0OOxo5bWxlYwQHHeWWWsttvt8K2Omg4Y6inRadW6fkwCFDL2h965X+SywD0fznzcZ9j0DUF4iIHsEtht801uaIACMprldUcFGLYDaYPUn0yCN/4I2EeNfBW8N5HL8X5dy3vzCBU8RC9iZLTrrUMlPOJbItRkYgHI/wR7CVYMQRcwnFkuprqQFEPgYejszWACPOYFKC3ZPMJRhRxIU6ejF9LTH1x5aecDaRjInUEzG9q283GIWnJNHlQeCcHnH/ufSMCPc2EOVIjeEZbeqxJBhRxPkV9MwOttT071PF6ZB5JKAJDiU5sOV0Fh4jGD2ib8lBh9NrPwgBWIojiOFO0tNwUZj4fZWxj0kwEv3zBr/HMjPOt/RIHJj0IKgV11FGZ8ePoiPP4IUkUZnk4CNxzA4gekmUI78NGIkeODzG7+8jfO51aI0i9kZ9EXn5Kor4eGRBUQrVATyt6BzTkGfIVKL3ZEugFEMiviFzEtwQgyKCzoHpKRiRZ8ESoIjHf59A1OctRVSolUy3CyPyUpTpxKAjaQmyXIfTvz9l2ttE4PYyOtbnEIkmktIlme6H/M9Bpg9DpuGXHTdDZxzwHpcXyfRWZHqAJSXT4z+ITE+gHhk6Eg5Va1rvkpcEhtl1APsdYmHLdmT6n/tJptHTilD2PcyS079nyTHvhswjAC3mJWBqResyGJ1Mo+t7H+SiWtbyAk2j47QfZDpApnsPfZ8Nn3W+DRj1FkumB5TBGMt0EVanm+Fh5CKDTPcZcqSlex2Is/UwUY/tkaz1qEwLV+jp/HPI9JctPQ2ZHnIcuOgdyVFnMp2sxgZOQTeid+gYRzINTXpcpos858+zxPgfWmbq5yw1SDIN/+9B73jMdUr2Z5QHOx0yZSag4+QlGILv0URXAzu9lbmn05kb/fZho/kNaMhK2rba2uQxdi34Gct0k5w6xU53x7qR4AjBnPSAg5CZQxlcyaC//wqdd5fpV6GDBWNBNG/SFTgFH8JPYN6AL2dGghgnMKUehutliBnjRB4MciLTn1DlHEKWk822/g9El5PVUwnGcsTYhlMAjGNOixjfz1NB0bi6qjqBkfcTVUMtCQGDAMGuu4EydifeXkMsB9DHMaoaZsmZP7L08DeCK+5pGK4cXc4RaA+PMBrKOkGPLtEfGLO0q/4WYJSTRRmtC9kLMCnPDRWtZujgBEvN+G7kRJcYPS6yLQ7LgHc08OgZT2LayRycrLUMGT4NjPBLjyg7wSjnCsdl2CctM/0rluw3k16s2h8LouAsg9Hxo+4Vk5xDFFuy3zSm7sxmGORxyiNap15vK36OX9iba9G5GnehpSd/mmGssRTdPXnxkjXAOMvCatq3TU4WZboIovh5X5NohswEKOLJV+IUnA3pB3Vbpj1kWk5MkJxgtu234FUKuSfgU/uKMu3VW3IaMj36nc6xw3oW64j5rozWrWQgUtAeMu3kJeiPI/gHiu1JmcbpLexgmudoS8+8hNkFb4BG3ZBpyYtkmshrJNPw8U6GNVOCsSdlejlTbN5kyRnfcR0gF+V3sio8KwmXHeCxKNNJZNr6HoiThX5oVscJfukRmVbVVZiTZ4hYfdaGzzzPqvvNAETRGRqWUhl8rWwM/MaohYdMVyPTGWS6maEkn1EJF8lqVUapsL34Ipl+zhLjLrLMZKZ01Ixx0bMOYWzLi9I76BgNJVr1DAu3Ev0NcbJ6VKYTkOQFRpx/ZZkJOPqZgZhF6Z1ymSzDYzsweuooYKctOR69czUyTee6x3BIoCBssTqcuZmTv2Fvqybia8zXtkyZgzXVxsL7eUWwWtFZJItkOlE9zFL9Dwb/fYkM3ggKW8v0q8vBclEXBGqCIi4fBPF47GL+3RovBLSXigSFwTw86QRCEGiu07bfUVZrxLT3dtfuEZ5lWDA9DWMx+pSIacXQ3YFRzIahlpeclIDnWbq848/AOAYQKGufEswiRZX0ca5+4sLKoYYyxTAOxq4UDnxKtEtzoBKCsRHl3vQo5SpKtI8wKirA3AfrNdXSMy7CcB7Eb4TTVVus2wHQ2R/lQ5hpq6JeXp/p9DLo8eY2IKg94MA4XlxBNPR0nKvz3Fwrp0C6TGfAc3klqKCt93hWTE22YNs/wSs3ekLZORhxAEefh3P1SRwXaONnKRseaKXQOsIjOBSMcmwx1ur5WnocCvkqfveQA1OU6cTEn+JcnRUZImRay/Q1wCEqdv4hDzB6khd65wnmQrlI1rbfO2WnoffO3+9C+ThYXjjfUlOR6VEnUx6wMZzRLRh5SzAmkGnJS5jHadv5F6YPjuHJPsIoXAlnKQ95ocM05Fh4SENrfISbPeJQONC/0MGYRKaT4NEa68xregQYh9Fi5Ihy9vqDTCdYJJPoPcvS079raeYnejj6e1UeeEzWjEJmmK+14ylL5DCOid6UFexdecV2JeHFBJHevkPebyNmfsWqemHYkZcEOOwynEI28qL81X3GM8Q4kT7TnzDmGYagUnzwWSlv7z68i91KAmMama6afK6lCDAkgNGVR5241Hv+CAb4N8Xc1SpkOsXoQ3Lrb/g9gnIYpG0Hvgz30l39MIE+jQNYNemn1mv8mZZO0EGD1mnqRbPzCUsfDVrrd1XxiqXDxXEL7i0NnTPIdHX/6ZYJB1l623VWBaxV0LkKWPb0EczV+hCacld9h8urabeuNcFC6zv9ZzZ25JvsTfm7oVmLq31XBGsaDlaefyJq26R7fGQDZaf7I9M5JHnnzU7vxDZQ9Hh1JBndPAaSaEFq3BmySAgoxoI5IYp887dVO9R83WkXNdwMpZA0vDD2dIallzGa97MOx1FbFVz8EZddKt99iaIFiXEoEOYzudo1rgxhI2jaK6mDe7zj+S0uQpea8CHLN85nwjEODBNr921MH8XOxNLk5F+jiI8BD+qdxq1pjcP2IYvz8lQTs/1moi/jLDPpk3RYmA+Qb3B41Zj/3iWpJhn0FQyvXgbjHsjPFodK/WGqoVNeJbx3pRLxCb01f9IXzF9wMm/Qc0PInONQ9r7KVO0ulVdQ1uQIVbyrFZdVo5iqQg+y9wQUMXiAZqHLEBey6xpxQHmhu5659uJUeUOPZsLsVyxY9FE0DE6lI4f7U565w++tcjp5WUu732HJCcxdKzlXESQdFtLeA14JnBNA54Eh0ELTxRau+jrtPwQYcXz3Nsm5IloQDvuMJcayAAQjqXkskQPYzULlNMLLHnohGPdeYFxu3ubLLWAOY7BPMKJ3ss9aYuIPLMV8JhQPn8i5kgvTLS7XnDw6Cl6GyPHEjyHTy5DpB+lIjSrisTV/5FBsSEK7OmwXdniHIZfQX8iID04l83AKctBdKnHzruzFb3RLHeyta+SXbkg3Ms+xMPlzTLFcBI0Yunadkq61VrUXpJTjJNrgBITIR3rSN6yKHn8UFYrmoZbldG8IhLb39CC67xl2DD4J3PBM06TzLTcf/i4g465TIox1L6kuDRflNURfc7wdPPX/WVPvKeaLVopSS3+3B1BH1Qjtaj908YafaNmWS235C+/Hq5nFPeGwO4WVVSJ5yUOPwR8wm/gpp3+ijifRJ5eAU0jqSlI+wSicjX4PkcCtZku/hN5BN7qJ721gbPOzwyqKMm3jv8EUng8jLgMcP0VDkB2+1f6DGEZFKMd/DIcf+qy5BBiFR+jdlVTOhy6/CkWmCwvNZl7BWrLT+MUCKUcXPWuddEfkV9qtKO5J52uldSIz3KomfIxAw1IWEzwOrenMyol1b77i/9AIEThJDxBmSFQxvyZotiSCq9uIgdWXuViOF/SniJhyD1S3C/yRDCRZeeZRVn70+y275UZ6AlI7SnsWUhWNiTU/xroYVasPqo62vqNPt3RqIPpeSiVSIkVQVLhLgiMGse0zZRAEO0Q8H8PLir5wzMfNnr+FuxrO5KmiCnED+dY6qeQ4qfRiTYLRX8ckYgR0xDt4vReP2oT/y4FpW0xcZNv70hkDjoBZP2O2CDjTCClKOqo3fqmLV+cYLEA4v2029I0UkeZFGbUiYOXwqci2sOheeYqfa9xf5Q39jtkqyk7P5N1yGFUwmWN6lpfR6rvyARMTYG32r8Hla3gHWgi3e4LRE82KAMVwlcrmhto+Agdw00fMNjOEpO0HHH12y1x6q9WXWBM47qYubWUw+qPMWZkK3eW4UH4MY+lFlV1s+27P4kzKw0eRzlQ/yjwN+O5AANYgSCh3B2Oct4tX4UvbLSgqO4YOE8PVbj8uGeO9TUVl58oa8z6z2psok3a7yRViUrWzG8k5Bo3MATwW3oYuWqCiydUOxtD6IYcacBZVlRyViuhUTeW1uTwuA/fljLOCKke7cwv/wos4WI5mxQz8Uv4RbHKYppRdd7nZNjmZ3s4cwDMZFjyOPo+MRdypizLHcMTliMX7KlLB1d2LM8Rl62aBMhjy9kefaeHqL9L2ubrJC+6NOGe7V0V8MsBeKtzBSOR4yBmM0GMcAwzlbvpL5ZYDUv47qhNNCJYCq4mNa0gdgyaZP+pUhlxvB4XwZoka7YLWyU30NNsEDBtzovXpg6OfW9xJ3i4+Eq5Y7RgOm2x1Y061dMsqq07V4PDLNe9u4g3xXcBq2lGslq9qBEbmLPIvxlQfOhKSnvj3nmqIsAosyHA4YiIq+2jKpwTJURs690sxpCago5faL9o9lx6sIcA9iWKW0TnBERLcMVAq1+WLCpPTnQEffXD3Oy4aaZCeGTvBwprD+T6IOiTPnSdV1ZfVqIq8tS6bukNWyA/tjwl4wjJMl1GEloJdJyDA5rj8ZFNrWMxKFC5Ci3yHOAlNel4AZ4p0JvtOIv5xhmVf/Bvly05DnVfFKkL1IlqeAcFft9S0LyK8vW1RM8tj0c+KO07u5dt4LesuNl6y6/gDBKQSYZlAcp9nGToCQhr+FXYRzGm11MrfYNh+WfSOUcqdJghGBTW8m4F5XNTCOQYLGWn8slsBJWPmht4CgNB/UaIsCQ6nC9p55rLRC+2rniSKUDCGeVYirQS+RqJ42qej2xEiKpL4+UQ1xp5nNYOPBS+shhB8gkVw8NgxvwAAlzEetXDMSa7uK5HfwR/94h3BSANZlu6vvtyqMJy92YJCimSvUtjMcPvHWfrOhFu1U8XIQVLEDCnvh6JXaNmRm8e6toI9rlQPim1z8ItW9c9heK/lQdwzdaW4MiSIEkjHO3EZba9CozKowsFnsCnnFH6jHByMPOO2g6X4niurCH8iSbtkpECytr6IAI8zutu8z/36J4hs3E82DHrUymKm9i4R/OpJJSXxLnGVkcUZ8gacyBWFBIChaE1y2URTvapbAkUwklrhUff5SD2lDUeDH9puQoY2rCda2bKUh+BxjzCq5LZJMOaYzjXS0tBZwxWSqbgoB2MErnvR4ZHHSuX4dbDrflneuFcZND5nqcI2SxeXWbuXu/tHeKR36lVPchXHcKjKtFeAi2hDEYl6JrhdHq5lIEV4bPWMH3QSw+wqh4fWAhYBKf2i7lmx2Z1ADvGIFHh06pQieKLs5TBEz6L7NeA+iXDssWzmqbi971q1Jiqjo79t6yzlY6jIOfkOUaW7u3+JgdqtIG7AqMSwiu8ooxiZ+4pydwPGqAC9H1fCd4iX0GRv9E+U4mfFn3t1kWBp4ItVsHToHG/uVTl6SfCiZ6UHw518V9t3pYTDi/IUU/y102bw0DnkfSm3N99RqA4n8ctRWXKau5wkoNoHTnusdSGGo6HsBANxUb0d1cJzzav0+pMhhrGjvLvuC+72Ieeuj9PPvokh7c5643hJ8hZY7+Bhe7TqUnuDEf1vabIp/RO2iObU0KzpqGRRNKnXAeN5ZrKMga2HZLBHGHltK9I07yvMx/orkWrm1r7yHSyhB6b3mUsy88/Wa8w7bN7WnJ3zmoR95pQ0u6ym7Pc3r7cPPvwTG9q3xXmTULeEYaee4h5P8a5T0GRxilB5FdbU0IR61G2YtlRQO18EWSuBUYFaJeHJ6keGtJ3XuniLCaclgRGMUJHdSOVwqN62iRztiEV0T3lbPUeJJBBQT3jpjuC0rbTVb9iOTQxDvH+5nK3w0ipfV36ohVLsElC4mp+6ozboT9KNiovNSTEy3MPoVqu/rZ7zToJIiTYJjEorZdXrUlfdUiT+FoohSiSl51JnQOiZIkjK21E+V0gEoxuSUb64AcVnnV0iho5yiK7ymtjoMsRgRLNIisWVVV+qIa6m+CzOEpl3/U2VEQFMuc181Z44Z2eAdfRMlSInbHSpY1FcBW3gaPWmnrVX3W73yaQejdsMUlTVS3HBrUp0Pzp+WnwiWZZuAL/qccclyZHRJ/5dXrLejFO7z0UrhqU8T8M7ylH+RvSm7ux+N3q2218ZRg2FtlfZbplVrjLuKbNqF935dDc5Xixvl77LMOqzp3o7qyzCeZSjvPwuyFVnxZaeqc0qt7zs0sO9+KJyirpqn9pdXrVgjHXOrvsRTXf97vo3wSi6FGWw6y92kDOGL6aJyu8oqaOs5/roPaW2+WOaSA67xz9xiVG5+lt2x0X0Ixjl4HmMMGxITmLVoG/Ph2+0ew451s57GxHTXjheyP3fH87bl//h26H4oY34e6so6q/npq2q2rMv/iZnTThhaQI+zUuvstyKL/DjoC64l7sge3m+yRvSirdexzMhb7zNawjsktOS9sE3yylihAaHdsQgJrw111mvvg2WD7VfTszQMchtmLFEoyLhpDxVj+u9FO/Fr5auZYQRAzh+iKIoJdZwnhtOi6ItzlyXXt6LLyoDpypmNmeAALwnHCI3NNYHMOVodJ5KbeskWykPMBbjediicnx18nK7j/SuHNWxpael0qisfMi3lEFAdJbi5xJQN+8svlF8ST+pZBdFywuLay9mih95jLO7yd7xjX24looWEMCoIRqX2sDZpSpieOFpb0hrnlFxpbraFNZeVfG9snccjpzzBpxOYame4tc2RXb8syijTmaIsBX5Whd9xD5tWchloSonCsWCy/PrlnuXaxQhpA4tMFFqG0KO7nb+11UkgORIEh1SG0muTsFRLDq6u+uvp+4tKWR4X++4TWaJWKo9euKe8z3gntsXLe6M7QZjsUJXWnt/aJ+AcO9JXuSsRcnd4nVXdHyz7KoJ8Uph+ZgHv9194V6wx0l4kM5wtOquswV8JRj17q42xX5bezA6HJPdVd0Gzy6qD/wOxiIbOWOgglzDY8MeN6Czq+CR4aYgB1AMX3TVLccGpXrKyiKLqnN8EKNL94oocvfde/FD/VBjBF9cT1l5nX6NkbD7uw4GFQ2DlZeqWh3JuOlIEJcfwyxYHR8rJwslnM1yBSHVPODOrvLiNsSFtHd1jeWBYFSKYeariosf61FZcjDG8hFXqPxKVOtgjMAqNiiGJc4cZW3vr9zx1qn8HenYop7VcHOywf5ac4pd4DPFhc7KPScEVl2dsJvuzdvbXpO2j56SsSVrW+wX/w7tsJFmd52TsaEDEvbfN2StmQB/BroH2P5kf4bB05P5kX8VOFiiTLAOe3ssn1FMuAptUB+8yQcL9sgS3y45hzFt6Fgg/MzABSQVcWE0EYiPkzl+C81CrUM3X6TkHOGkYGIauHlDyhgzCN/bpLic0jvuucqQcKsGHL8ythQMrh7xWlyPe4c/cTUxHzq4yCZm0icZCYwTVMehKiDOHL/MrT0mwaUC9a4QU9QAMUAM+zjDVK5UyeUSzxzYGtJqm3RLRUtZ826oCFurevSwqymGUXAWiRfDxx1HT65OD7o6ysqNq4lB1G8+Ed6ifI6keu5gVvkx8PHLekf4LvsdvaoHpW+7vuheTKji3ThbDMeuzK4Iz3kMrR/qFfnjTgHqR1yG4yUV0Dq/7rSXolcFjxK84QhapkC4q+olKxryLRXv8u96ppHeOAnnCoMHeWjLeLrOKE/pPE1Vo8LUIRGtFDkRnG0LjQtq76qosd7hXdchcoSlbORR06bSPI4dEfc6DfSRfWVLVcVIQu6b4Tiamca/oDQ31YzDB6I8DkbmgwgurUrtIi5dPjGM2ysMx0JHycSEUVFsS8KUC5bhY4YSaB3XoYqyqKr8DmACZ1UoX7FIblvATuCJCF0AmauL9FM1eixEsXuaCEzDQs2ZK0ueGzZRq9omtR/C6JgRDQu6I6K2c0/EIz+PC9uBoYUVWUOAoTzpVYDMrSGqmQgsPWwXwQV7do1W3TIZfSBdJdcu1UOXPYVF0RzTYCMFtCmzvPzid+0n5IxXfMxRsBnQNKwl3RPBmN+gsqlraISn4qsOfjUvBywpcJQUHmM06KufsOxytoTkvURf4ISpPR0BpMnQOm6Fo2siXJRK7OQLBHIwMvZDRDp0owZqX1RhYQN8Dz4S/QRjDASPpRfhx8IWYBwEDcmjpJHK/EaAh20yo4APukvmtBwi9KCzaCY8dHm0RHVSdgI6C++ORyhQ91QletffCozUwwQvnnOvmCS/jEJzCk3A3orgid9K/mZ+M+ylkgOeJcGhI6mrCvgkmw5GOdVRuyK6udc7+CN41DZg07Fqeo/yYhYKG+D5GrRrkUVdISqaT9DIH6YIsBuMk2/hrtAoYHisNoDn9GC+KL9LCLv7oWHhKF90v72/4je96BrHVb+FpCIO49vSFczBZq00z9J2eMK33/y9YAs3h/bM06HVIk8/+myNjR9CWesD+9LH0zZuRMK+d13OVjGlkFuc04A+SEFzVp96KfZ2y24oWVoKfaUmGsQsfS81wHzmlMxOh/axG0DOSrOvnkVjeKweTTVOWLVtI4KlHYtZ6gGuXgAAOJ5JREFU87QTBQPzpIczW6dMAQrPmmtcqCMPREyPZJaDIzoP3BgvPzhXyimHXRRtFzmRl88jMaT2V9KQmyZwxgSFyULq8HcChxSderYipJKahaKVwUiizJzwAmdhEwLbF6UC02sfUGV3woEgcRchoR6Yw3PDZ8WyuKNvFOmuXEpJ9ygcRkeBaFhH54+VFB1PBQdRQdlICV2pkOhF9BVzHnCgEr2UkaL0ihwxtUW8inGTopSik4CwbMvVE8pw6nypooDG8JGj/aSGqgfuJt6zHwm41DL4uGFBvUqg2t7g1AlBsRhuB03gBsNf6jkioCHGJdUPGAWnjDa4TvCup5m9GqpzQ67Qy/Shnrii8rK52zrpXWf5ya73iggpZpJBEy/F0YHSu2QL84HlM9Xmo0giR4ungOaazXtVGJIc+ZwyLt6PvC7y87tEWH0vTxFaoK8WGRcjGDq4WQ6/2zG5+AL55Dz1RQc2QesWcCTZca/zR/MSq0HLdo3MAodQLyXXh/x9RqTYa6fGdm4NbcMWopRSlDIweRhUxwNVsQ0GyO9W1DKLoQZZXmaUFYgQBchQAF/1gmbDhids46bA9Qp1IoqAVLRnIAqthrrXrIMni7APn5aw3tyrxajJ+RswwLMG+GH1Oik7wOMIqgIdp0SfQykGBDj5a4vENgh1Wh1ENDwDDpkMW30Q7wkpmEkcp4FjEjZkqNmyZUlrybI1BB0hEVMw5XH4xsxNWB8M2oJnCm7IYPyRSVu1wreGLeIPzyYcy4AENFj9AoYuk0ccH4E4zJfrcxLgRbCJy31kQTDre6ukNqhx+U3sD/QP3jse4k2KmAe6sfjYxhyddDA89wjx3gg8gehwKQdx6lnMZCTav/wBcKPCeaZ1ENM/mLImdOeaR+mqMq/ECRWbl4Zb/4BoHgUzvI965LhHcOrVtkmTGBokCHLAmzjOiOX13tBzgXEM79Jenms90dwzxTNmT/8zbxkcFEcaAUPxIerqyE+nbVttYC8+DCwSWYqUjLX0TtlJF9TYqqUFe/Je5sH1h3caV1q44YfMAPgc/uBMMsZy3Ra68t9UDh6DOvC/4w7LjPm8tXDodIDs+AUmX2PH33JW2tZvDOyhO33rjQ8n2RDChON+4zx74yfStnKpb088BP8B45Apnh32sZQN7u/ZqsW+PXwPjlUNVKQB9duetu3rLrTqyVeBy/GwlGLxHePREUvPmZeZX/sHdNoqS0z4Ar+Rc/gxCwzDx3h2+qcy9ji89s8H09YP/lenSJ0oDVlNm+vZexntuRc+eOABn06BZ+d8PW1rVge2DufhDa9N2bV/ydnG9eig3kkrrPsr/umt7Pf2Y/S7HFaIAWNLt0Trt8VMbZKTl2YLFn0bWZnIMbDf4L0o30783SOPSti73pK2P9ySs+eeY24xeBSMzJu3bdtCO/HkKnvL6/vY/96UtYceDuwTH8XBOTBl9eifAeiDBTjT/3M99iSHI4vj4y/6AeqNiemzLgYQ5ECy2S4e0ftFuD3Ji45Se5oNTEdfytZaH0C9wvvI22bw8P6zU3YCuFj484SNXM/iNHTK4ytCG4Ze1E5Ox81JWgOy/RzjggfM8ew1c3DFIM0X3p22Ydjv2xk+/OwNeRsNE4fs3yVbG4YrXiUOFrRyq/FgGuyUHQbzPjlO9yLmzDGU9nDVh2xkmj0rmBiqnu64oxM2FIX86N0oNgTdZSV7DbzZl/enzE5aDY7MXXfkrQAjJlgmEGy+DcpvYmntJ6CXusQiXPtJNbeAvix7fnhs8BesuZQpSMfSGfqok0LxnMKGc16bsDkHpOx26tmBgVLPXIokj4I57rSUZRDKO2+DDXBONAf5JMZ0t2Ncbvnfgp362T5WTW/9+mvz1t/1KFvMX3k5oLF3zqiPCwFAIUbWtYOkyqSdmldbsOwTvHcxm6zOxZgHlmO+WAPK9NT3pGwcva0r/5dz6JAnRQBk6NXjOfMDaduCkrvpZt8G0okSHo/CYGQxYi/OD2zOwUk76vCU3XpPzuY/B04zm1lF8SHLDWVvqFFvRVnS0CKdOoCQisCzTinX2XdL32/ejJsxiFKSbFMBImUw/+szbMiJUf/5r3I4I0QtuS8696FHce4HM/bvJ327/XZWmQLziW9K2rvfmrGb78xxP7CTT0rZATOSdtW1LbZ2Zcaq/MXmP/dG86bfwC7lRyOsaCpglDGTQO6OU+GYhAYN1/6FVVXnWmLu0zgW0IGhk9AnBgNdv/6lKltFr/tnP8vbyOHc47UWYJ80J2Fnvydj196Ut4eeIgIrP5dn8oEKkOZ751fZWnqV37osb2MGYVihS7DpXgteYJfrwx/AYMyKrF8neBSnbpcxRhkXFv4Yo/2UpQ79AYzNViT0KBoYBZ823rOLPlVlDz5UsPOvy9uBI4GRFzfSoT7rhKSd9rqUXfjznG1G6TVBttMZin/P69L2NAakJe/ZnBkpe/ixgl1yS8FG94L3V1xj/vIvWOaYRThKwyAjL3XGi8KhBAPnNL/gYwz7T7Gq2d+wBhg/jxO/CPn4+iFJ+8qZVXb9dVm7+P7AZqKMxR4LiQrd8La0HTYtaYedn7XpyMsibOi3cHY+fXrG8E8dn/SmI/Pwk3k7+aqCzcCYLFx6Pg+WwLTnULcME4zdGYyxvGQ3mT11gdmMn5lNRqbh44HMr6jbENqvwMm7jk/Z13+cs7tX0R4iWa5M4P+vExP2w7OrULgFe++/8nb6EQn7Gb+vvzlnP8ZIG8Gg+WdUWR094hPApY1BSTx+Mwsmppgd+JFICZQcKixQezQXjDrHdPtzKI/zzN72Vd5/E0oFhCiaTDDr729I2+xJCTvhae6pyfCZK5ZpjZeclbQjTknZ5X+jkypLF09JxMFa9LakLdtg9lYcBlbBUD/KAN1hj6ATjwC+YadRT2R0KbHjJKKlqXQ7hLoLGN93HA6W+Fg8As4A6+k3MKWYbKcTKTAcAwefUIkhu+HclFUdbvaj34Z2tXrE4M31hfj6ry8mLTfR7KIX0UsZ4FTPoOFZs/uWm512CHAfGylY8VpnKYZx7WZmKz9u4yYda/1wArXHWSP8Phj+eQvO8LalZp++zbfDe2GjqV+ysYRmPXVOkhWMZj95PLCHe9E5AFVz0dfZqoQdOZVB5QM4Lxg6//wZ3w7rh/GubbGGJ3eYTeFBFcNQCtV2CmORr4g02vZ/sFKS/FNBiiJFOBrsgGknMT3mdPTxcur577vAI3rI9fuQd07qsWVEWtZz+9Rl/KEDc/m7cAxwEI6/MW8X4IS/Dt10PfL8pDrNGfit5VE8f3A5A/hSwymLxooHBUq7iQfOmYaP6/j0h5nSM6gLxxdezNIxHjyYFYjI7eKBBbsKnCeQoyqxFbbnpEM9e/3p6JgVZp95gfYh74dmiWbVJ+1BnMbBAz07Ez45siWwD/2Pb9UDA2tpoZFNtD8xGogoSHTsUKYFOB/ZQI/yt/BzZC/rlxxoLQQBRgLLKjpIb+/D8wFJa2SxXIry9NZwaPwI8vLttyTtTa9N21/vy9t1TwX2noPwLeDXNTjeN9yZt1kTE3byCWnbQCTx8zeHdng/yS1wYU309xWeaKrkBGOrwz/VU3b7vMAvDq+gokB358OZtyNoMIJwjef7a4z+8QeavfMeMR33hTLo7zCHof5os2cXvjNhy4hufPMmXuoNwTbdBdWR/DEoK/bkiZQx73SUYmXMkTi27N1mk07F2309MFCXMLvN7OcY9oPe4Nn/PuHbP1HAzn5TlZTFnYelbABE/PyfgZHrZ49J2IfflbCF8Pe26sB6vSFhfRHqVet9+93zICGkwPXUNWgO+4K8hnqEGMrskLn0mLZJGTdj1V/Ekxw0BgE4OlJ0ghE4jpuStjEohAtuEFIpD15zieJPnU0vcq3Zf9djYDDIdfQg7RmewkOcKGAnbfPsVtrRQmTjB4/wQvVyBBSFNWAY9SJoivSUjITo0E5yMGL8AtrG6zZlBO9OB0a9S5kI/4cnsVEfdf4CpVTDFfK5NBMB+djotG1eFtjVmrfE/cOJWuZwrq9Fs9zyNL3fuSk75mR6IOML9ssXaXRqIzDy+tQh0HksH+LoJUUnfLaThBdFKgvwBc0zn6uGFtQ+eca08auDMtaEI/AnYBxG94aOkcPnB1C4wSAEsCpvt2FRxgK/FPUmXv3YgURDJtC7e6pg92D8x/CsDgJIwYt/LOwHWw8kmkFErwM6qxqRbCAfhSuaA3aj1pxErgmGn6pY7bacd/vJ+NLbb672bTmGThvwEZCxJfDrKWi8oG/K1ieytpJsy3EMrzymmq1CcFj/gAMKLA99O2PvhCcvvKvF1hWIWDJsqHZkjDPlnAVEGXcAo0CjMXwUkcM5CznvMsfmg+wgneR3Hwmue4zRrQbPdJTk5WuDQMc+wOgrRFAFgsB3H+qZTbbvPoXo1bP6E7IePCNh78b5ufVZbRPAZocYh+mEZZIsjWeLR1ibTK5TQqM6TMRXyKdJ/TrVRlu3pBj6FhCIoj0KHEk6bCGwDGYxy1T4YhiwPAx+zsMQfP2sKnviBd/e+7uCjSLqywJnF8UaRo+YpUo2nmbWZBJWK8cGnnst8NUnG7FRGD7aLzaLk1acuuhTfKN4VaTQ09JwPCcfG5hkiDAJnOqv19C+B8mXwumnt2lz6DFVU2aKeh+pM7v8vUn7CAbj5tuz9tWr83Y0YgoZnV1+gHxecxXbCQiInB1DPTme6AzXPOpDw6FJ6WG3V1lnOIREyLQX0BFivEdOSLKw3RLQw2NVIl1Se4QaEi3wgGtvlrpAD+L7BKJ4E53Mk4gCXn591q6+w7djUAc7cBjm8fzhr2Vs5jiz83+dtb88EthrBhLRktpinq5Pvgz1Jakn1D51JZkuIq7txeFRHU0iVvgso9jDL1OlyHuOmShsRAkOwywylPVtFB2p8cC9U7hB5/yBDp/U1A+vzNkSIpGH4OjU4RgufMFs8QLUH5GXK87L2NlvCO3ZeVkbyGbRvRm+3Ai+B4DVJBG2UFE2x9xtASv/LakPrJE6CyngU8SYA8W1UShBeRuKHBp4rFKPHTk/htyryTKceq79fJVlkKFP/3eLTaBjMHoSzhg2ZgfDdecdWLDjpofWH7475ygcyq2+1aBz8qz+83uxqaf0mlaQqhcILhyZysEqfVc8Evkgf75KeqDB0opYINPV4Pcx3qwuMPKSqwKfitgFdhTvPoJDeCa67yfnVtmGDXn7OB07rJozVef9hbaoQtnrjaG95ZBqO2oa33N5m4O8NBrRMsKLKQ27OL0BA1Nyx4nClAX5yKO202yTUgUscD6bjUaT1VNELAmlUyZRZZ5IVcq5+iYdpi/RIXrk2YJ98no6lgRl5IcqPYADeOF3kOPXB7b1qLQdMgVa4FAm+wp3MDLziFXWKzyBgcRQkLuZqG+tpTgWoB6nSMjHqXVobVY3qCFnR8LkjAraC8hWJsdk9xaa10JD2ZnutRRx9ttT9sBzvl13b2DBeLZYKFRbf3m1pMMZL836K1y3I51CeanXBIN0Rjg9RWs4hs8Pey8GY4Wltasw51Zl877NA44UcBB3Bh6YFQE8EgJvhWeX8jOVw0Jg5KwRgnB/IIy6fAXRpL4Y3uMJN+N09UbJv3123u58jt0VmtdYc3Ipi6M+xNJzwSgA3B996SAhoDBEkOll+ZGTwMkylq6zbw7Owo5sYMvBo0ckyHJk0p4lWNzD4K4ndY+iEzL0OZioEcemwbO54Pidr03aU0sDu2ZeYEcyhyNAyHdu513s3+FNK61RvkevwSy9RzDB5Z5hVOgXdq9iNxTolGhejkGgl0cDVzGcUQcJPcEBGBrfGgGT46/YU1SZRE4S1B8ifDAGQxgoY4Z/kXY7aGjebqGnM4VId473m3ASvUSLHcImlM1DwH91P+e0KXK1ZxjBBx5eodcQ51uloEWKDVYDFNhz0FLJQ5FYASAb8jac+sbQJgUQEgiuB4wF9fwbfOtHBFUjrptgvY++scrWrSvYN/+etSOAKYfhHIzBzLesAhcjUPh9GMUQrTuGkaKcPpKqU7Zc77GsPp5nqRbmABCuLsiYg8MG4bCAIyVHtInelZQKzdIzF9jBoNTmcMbgW8117E10QKQ3lK8xvOVjsHvBsiMYpm/EgctkVzE/5jSisGz6K+8XtHeOR/GU+IHhO3bW15YZaSJFiepR1ljgZck0VXlY/GbhEdr5wLRDMAgmlJ/bagLBfwrQp+GTH0rn6fqHKBfvZ8kZ1bZiTcF+9QTROcIJfnYzn5Xm9+UoC3aEjrYI6BiP1KBKAFGrdftYrt9pOBxEfnM4B+n+tgmZNoxTAX2jyekbkZUl8OcWivzy6xL25TOIpM4v2EnfhrDw8XpEfx5Kupk8c6V8V+PQHJa0/oTb7lhFWTBBY8tma/SfQV7OwREDRjoTIknnCRjpkQccP5Lrg5w1r8WhUrQ3bevk8YJH3ykHz57HqVNSoOfS05P2fiK7N/4rbx/+ITwwMWErua/pO4oGSj9pqNmX18O8mNXMO+rPkHpL80bmuML+NcPZ9ZtIcxflRTD6nHGIKFpSMIbQgXcXgQ/RMyTc7BYjNHm2At7cDKjXfzRlJxyath/8IWsX/Z62AOM60FmPvN/5KZya8Un7DM7VdfdRBnK0GsD6JXGIKB9/zmqqBgKj9jGSOxy1Xe1vP4FH8uZol9DU2MLoRZ+JOIcJ1/npLyuLA6Ro+foWz7aTqZqo1jc+lLYJCPcFV+Xs0odDex2dufXg/MMnJa0JWbr4dt8O0fiR9B8VF9ShKDRbU9NaeGqcFZDJgE6vcL1nGMlBOfle4+jELmYbtq3MtxoCz3i2lLqmcFXYXt0v0Ww9Pc/Jo+kQfyJjGWTjwO9nbfsqqmEKx0Hw3dK17N0GXd9LhHMoU0KqcPbnEpke/IhnGzdgF7JrkJcT2X6wnxQkMg2D7CmpHTQ0q0h70xJGFrYxb20kMgyPAVMLvKh5kIpUy29bCb0/eDAdNSK76+iYH/YdCEw1ihjWoMYveiN6lo7MBeDxgKM0BSBpazZTFjYvx7FDLdnV0P612BbRWHULy50lnmuIMOxr2b5vJ1azBn28g1v9rFZ6BtpRuqO1bPMKwMlS7DfpTH6O6PijePZv/q5kGgebbFvg3WZ+jofuRhzgA9NxuuDP2h08hNd9+MjYHkYrhKn1FZ5QZC5S0DKfHs8aq02NsffQuznlv1I2dhgKgJ7hx0/O2AlEKX52W97eOjlhvzoiZROYxyEGeoSx+jUQ8bJ/FuzIA9L2zhMyduZJvh3NsN2W7YH95qHAJvdmfLx+HWPaLxKkYBPT9XeAFJDnxGMP+IFxNDQSYKG8Jo4HwAncTmTjnOOIXn06ZZOY4zUI5r74I9X24XW+fe+vBfvisUk7dGbSpo0mFEo1D17q2TKiVBf8xSc6QI8ZRVEg/PHET3EAcVZO/wUCOxQYG1fgKEC4ptWWWPcPwOsC86sNCHjIoaMBh0Z7DfNwArdbC+cIfv7Ngc0ldDtrPJE0hO+Jr1XZvBWBfe8fBbvhDJQZSmTa2JQNZ3jyvl8m7JnFgV3F0MHrj2CIhKjc+0707TXgcd5y3371mNnMAT4nyS+yPG1KcCxNQvC5XgbC32kSjCjF5nUonnEs5piPIL3RehNuvvR0z6YR1pk+QXNR6FX82LPHMGLX/zuwv380baMZEho/PGlvP96zWdOT9sCzvn3lgcBOOIKe23ur7Q1cD+H+Q88X7Mr5RD16t1j9xvnmp8dYfuuTlmjaiHwi1V1RxgwHBzsXMoSHHDUutKb+R9oU6PvtNydtHLw4BmdT84EeZBz/zscLNn8tEyMZ6hg1OMEnaZ98V8becTxwM7/lZ8B45sGezZyUtFuYByMnJ49jTf+bqPwOy9U/j1MwiWHrh0DNC8AoFbAnPCoL7zeucvkTTcuIhM6w46Yl7JLXIS8oiKEo17cek7a7JjA0QHS3Dwrhqs8RwQSPwuVvGULcyBDhZQwb3EEbPsz8iKcurrImnMhDUcR3PJq155vgGfaPyTYAozfIchvvhuBoGMnqHpPaoEngbB+RW+AM71bOu3vPoUQsPlmUaZZFn/vOjL3hcOT21oKdgQJ7HVHSiSMkS0SLvoNiZtj6SoaWnt+AfKCEf/AxGkL6yJVZG4dhlGOfr1uDczQfpI63/HrmKjn87UkZUwgGQzLt9Hbz8zibtbaVIYVPHhfacZ9J2eRRwIFX8vNPVNnC1b5dcV/BPoEOkr7JVPn24CVEz4g43EsP92u3+nbz/Xk7i3kw91/j2USG4ldvCuyHdwU2i/wtm5dixHBsmlZZYe1t3ZZpLzWVLYeAUTyDo/D1t3p28JRIpuXIPfHNjD3LYqDb6Ax9+G0Z6wt/jh5GBOkK7VNn9ieGPRbApz89NW0DMHDjR6I36ZA88uOM3fVYYOczteGAloWmvkOwYx6jBfCqIlh75MVIpgMcHy8zGr3zAob39cwL62PXxDI9FjyT7eEfV9kDyOcqImxnvD5jO4meHn1A0h67gvlgOPrf+yOruJgD86bD0rYWun8EXv7UScxZxBn97d8Du/65nTa56QXLp3Fetj7GnMw1wNg1mWYLbubIvojxRuc2vIgDdBg0StqX35S0Ucj0cGS3GkflSfBx92O+DWFo6KiDU7YRm3La61P2kVPolBBK+iVRl7EY3BOPTvHc5/gVOkoMb/3xH1k6CSgMr465bRzOjH7LbnoQmUZ2uijTHjLtwx/MZkf3L7OdVdPtdcjEpURrxzLRfzB0PvnYNDoyYdcg06ccQeRyUsrm48T/+ew0NsSzxThWP0Gmj74IvMgvWRPaL5C3s3C4L2I4/qF1GTvQw9nX/nacLFDYeFdRprsgL44XkH2dhZmVnV7LGX+j7IzDEvYL7LR0Y386E58+LW1vOjxpl99dsHPfjpOKjd5EZ/i+/8cQP8+fXOjbuUxF0dD2iYxAHTOngP2hs4PDfzXDn6P7skFPwxqctBeQyWlMlZa8dAW+okwzIuLmMbM/HjuLM3VogH3sBLOjP5OM7DR4vIyI2iJ6HVc/6NuHgXEIMlpDxP/hH+CwSqYZaTjv9sBuZ07bKcen7eHLPJsAreVL/P5e32YORJXXLiXwtwz8jX0VOFjqFmuDOg7qDeuXMaHxNS7EuYHQ4caNvt2LEZDSoONtWeR+C6H6NTDTQpyBPBqkH4SrJWyXY2HD5+lxnH18wk1K+9t9OfvLE/RCEerB6ObsThCijRPpSfvrfw1FupFkM3RoJtvvB01Mtmf+0FZCoOsJy65aXcDbJRQLk9fR+5WnvpFowKregb3AHAKl3jRvM/cUlRlAx0Edgq0owT/dk7ca7o2np5bHWfG3YyxoZ7jxN+av+oF7t8t/KNOqOKw3/xCRwE8z2XGMbSEysY7JjUuW51zgRTBuRnHQabUNjC8TcbZn5nPOFb2xGnBUx5j5QnrkX7giZ2cdn7SBhMH/+M+c3cL8p411CRtbnbXs1qcYGmALiFVsttYVPVzeAJScpelB1t0Pb36Ehva3jcxN0vTK+UwYVeoHjKIxQ/zAHthOlNu/n2MYBCWYpruwo4FM0Psi5q2demRgQ1Fy192esxuYEzMwhxPnMZSw9X4UMBGAJZ9yc85cwV35I1kmguOxGsive5IdGtiJm5jzhk1MQm0K7Glwlca496Ljt42hwkackrVMtt64wbcHnixYb4awNdVBkzc1aqug2xVM7Pz7M4FNJzKYVWREvfosk4rrrqEydtKe/yFg5Wt3UhUWknd09mJy8JuJNiWAMSCy59mjz2ahJa4G/LCTnpim7WjS+HIc6xYiMpKlRvgVH8f+608+q2da7ICJLCbh95V/ztpP7s3bFHq2/g6c4R33YShmWuG59xSHeroBpCZlF1axwGKpZXBUdyCfkhfh6t5/RzKtifhZYNpclOkF8ICGs/oB42ZorMCchkn6ICMP48xcj/O/nLyTkSfJftggmcbYFu6yYMNV8FM34HMyjbwUXoxkuvd0ZLrAcEZoK4syLYdkCzLB1E83F2P04IgP6XPBIyH5tQkh8waZe1XfkLUDMRz3opv+8m+fo3zIQ1jJr8NY0I5ww5Xmr7y4GwCSFZo4mYZXguxn2Gh+pG2uRaaZD7RkOXNLYTYn00xNyNFL/xXzwGSMq+G9Wjm54GMn8iI+XM9quZ3w54IlzJEB/j4Y4Vrgx1rSGX8C+nJY78rzui/T6sKnkOlt95s35kPYw362STKNM/7CIk2HJ7gCHrdR1wZ04M//mHU8WIWc1QG3hg0RbXtyEZ3hv7FbNsDpmQyr/jW2EMEKdrry6Z1xkswnnY7co/9HES6BA438a7PJxm1PWc3I0+nc9XHy0ghunmG4N0UbJDOS2y10Pn7HpHDpQznRtcBYj0NIIMguv6lg69AFU8Z7No+2PbUA54ERk0G90ta8nQ0odT6mN9Ma553dtb5IDCNXr3oIkV3JNGdiDjrJGokCSUfvAJ5H4P1ewKc2y/e9H32ybWvW3VNguZZ5mRuAU6SYQydOenLLaDoqDG02MiVmK37RZPg0X7uOCO3DZJiBTP9pr2Q6LCxnUetSq+p3hG3fCV9hpzcg0/+STGOLGxlizUDTW9kFQDpdepuAsdsQfDMwToMWn/pd3s5Dt08BxkfR7Q/N9+1PdBAmopRadi5FpjdhIO/gUJJflmGoC1/FbBxY7/uS6fWWRqZr63ynd1asKlgLek+Bhs3obo3q3Mj8qpGDfMdvJZkGV5PQN5firNaC+6ljmYsFrHcxz+6BFTzrU2AxA86zRokyE+xVsNEoSCG6wTIKCwe80aoOuNjWhmOsQRNYpAnENSgIKZsJwz1byW0NZ7hJKVJAMvIYvCn03jVWv1YaufgOO+XbMLRzDmT7C76FRP+d9ybwgl4UNYoXXnFJt9p+d/d0UyvxCPWP/DK+1pdtfguFK96oULEcB8GBUM4AjoUYE8MBk7F2SfCj0GYOhtmoWk65XpsHg8qiHDiYmQU76F3N+zzMtZKHuMkaC1K1SoKhbdIzB1t8lZXmk2PDVg7hzEz4qL24E0QIDtDr8gpGGGwGxS+EeRQ6dTDqVZqikPyB2O5tOA7r9Fx45P4o8g/uzdweoi3B/I9RDQ3TRpmy4m3h4JUS3PreFkZ6dWHheY7tYgL6iFNtUS0VxHAov+iL0zSdocBFmuQk3Al+lI9zRHh20ABQT0RorWAU7oF/Cosvq5m/07L2bxa8eAawH0jdvFgOI1lL8Op7nNQGJQertJwOBW20qjm/NX/gsbZkE0AId6KncCWYmHw/id/LUbguFXGl7/2h83gik8x5tfXwwnTgTWoCjuO7vOWWX23BcmidOTi61xmMei3GIV9LMPrb4bexlplzmdVXzULxA6CGEwSjaMl7I3DiNVpTJxiFJ30EO7COVrQLfn12C7/lFbo6WEEznGEff4dlF/4Ui/hDyptLBh5KA5HN5ePiUvxb1zi5cvQDPOZXQsu3Mt/3ImR6lNULRpUjegoO2GcSMr0cPFkthQh2vS9cI9OTwDG2y5bBH83I/NiRrCJk5VueAsKW9Uyk/waNu4PyxvMCjYvr1rU8xXDqXvzd9Yz5kXuaw7I5+Hfal2xBcz/gADCcaIcr8SLO3AR4bqVkWvNzRH99lIh2zEYNqKgFdEwI/7jbo7g3GL2TrZvPsaCfg6fXUh5M0JFM67UY5qiIYluiykLOSkxOucwy4z9kC3ZAPAxEK5km6jceeVklfYLhcLJSLFOLRIaD12XiAfGFcK9nYoyRGZvd8oA1PfcRqqcArV6LYSyHJ/7Oa6VULN95EkS9wsI8S87iODKO6FqME9hKpkVPcDgCftsofSRZ1kdlwANj4AEWM1u9eEB1xc/4Ooxo04Dav1p+/vsQ5zk8p/1t5YV8nSacPc3Z8jwWmRzyGw6iPtqe2ZKzbQxbynlnkbXDzRHIrfTyApxqwePg4DKAPHPBo0YjFuPg53CuGd22CbRnFBEQnYVZu/S3fL5gyaoyme4UqDYPNRrAYdlWPdGqDryUKNbM3WWaV4YCxxbRkQ6I48MYV6jjacAvh8vZF2DdjI5UR2XaYGYoBtstu4jFMRt+jJwdQgFkaE+mY7BEG9GidNUXkJJfwTzfk61m9ndtHcfRbN+MvKgcyBLrlvHAsYq6NVfavS9c6nX4dDa2RN/n42yVntWEdtDAKhZWMcT6wtewWXfDp+PI2EamVUZ5EnxKuu9g1RfccmQ6Pfrr1mv6F4nGc3ap7HQs00XdMh1+XFQu09Grjk8PQQ1oVtJzZTAO74v+6VdlzXXzOL/z03SScQJ1XvIrfyd3YYikZfVZoiMzrrPq8e9i4m7U+4lxJxo1w0zCE3bUMZF7jT/isWZwKAGQoy+ESwY1XUFDMoV1GN35zKGqOpRnovxeJnWFOOk8dfA/rWb467AH0sAxlSN+Fxzq7ehso/Ik3ZsVoMWkdlXR89AquixOVn75lVZY9mVgxKBp8uFeJSqVoCaYf3PIH1mRcUA0mbEIoyAlYODgqAaHjLKU8Kjq4me6z7xtpzvVU9ehG/l8oxVe/C7RtctoIErEDQ3uDZBUzO7j1vtgyxx0udX0HsnkX1nbCI+SVc0LEu20amcXdqO6dF8f4Vd4ljJhwAhKsOs/c0nyz2PQ3GGcQ3gIMfYmFensDfu0Vc8+H8etL8OhKmsXNExvc36JJuTvukuV5BKdRW8pa8EoeH0kNsE8IX8nw6PPvC96WcaiZK27CSjj/2H2aUtM/JFVTznXqpMaYqWiMmgkL4JNtC5PglFzoRThKIdfEYMsXJ3b8gCrME+kATIWoo3e2IsUyzTOdM3YU51Mx6UILkHbmUyrw6Q8knm1QXjNQ/AE8y3ya2+m04TR3SeZFhRYT06RSB50DzJ9LOemSQPrfpSEI80FlTy0lZeYF3nkdJKuwlWOOT555rYUlv3SghXn8XBfZRpEwEzpQ/5gNQNmEYEu0zuAqultgkU4imBwgLg/js58K6ezYNSy9hbC/o3zLqDD+gvQsA8yLT4u1GJAj7D0QZdZda8RwKhJ+REe9betvIijdF/XmE8F4y5OE4wsBmlk7uwzn2bo7FkaJ+sME+xNQqYDOp99R33eRh3wLeYvYRylK8toLTxKn6Tbygv3tLpdSXpHefSaFiOwA5o1E3Va+9TpTGeSwtLLxcx6oTtJq2CdTP/EqqaewyIV5q66siI8qlrRM9Yr5UWrj6RncVJeyU0GG+NketN95s97U1GmxeN7mYoynZx9o9WMO4XWR3Y6Lk0tFxzCEwHAVkn2RbpdOt7pJDLruzRrPmTl6Oo/Y2PO6jGZrjn4PmT6tdjA1jItXElepJuFy/Kk+6K1YjvyM8SQsi+sX7c8wyotS6+w3Iqvlux0cuCQoReUF/DK/a5WIUCMn4acXeZXjWFYkPMImUAXN1qwS+HFv4UIfZdgKInxRUT3AYuh5tQwryBY+l2GtdQ7c7lc3r3/U8N8ig10aw5lPvHgEoyCJYZDBNTv8o/ulScRTRNVA6Isfu2DKONvolDGkkXstreJShS1YSuKEGDC/nNZ6dvHMUaMxxgOOQDleBSseiYUOTyqPXzJYyz4yrFOt1i45itI7UH82lcY6S1nHyRsP8KCfgdhwongycks0jqGsRx/8XfRXzDqqnsORhzAgEnA/urfW7j550jNpH2EkYITI+na3oqUHWgBQ8J5JnDmAUwwql7VrxTDVX7VI4dHrsKzWxUGLxrz63LLMGY7HgTGQTwt04j86l5CsSWGA+MD7Cl0MCuDJkU4BDYHK1fBoU85bPF33VcSfJHMoEQwQpoL4i/9EfSheydHc2+NhStdeJRMI4P9JNOjS/IS856ydSbTMR4FdwA/Jlg96O94Dhi/g4Gk215qpatwL/8QimBYIuwXyXSeybsxnYUfpfbkJebF+LmcP+EywOHwcVKD5d+k/eP0trLsZaJAyXSBCL9mojuZ7g2tI90ovMTyIv0T0ze+FsHfdd/xMJOJAT63Dple+3V4kcjQPsFIxQnGplruR6ZHQ+s5dMro8JTJtHAlWARXTPv4qvv6xL+dnCHTOSaO51f+zrzaK4Bx4j7D6DFHNVd/C8P3cyzTl6Fv4Q58SA8DqtN7gkPfW310s5iEa7UloMMUSnfntxK5upwtCR5FHvfBAXTlow+Q6bAB/dB7rgXIdE44pMJymVb9MX3ja8ynMZxObuBHX45l00orLCEanXPj1mQpa1D8QpevIIcpFGHTAhzquUWZLpMXHisJTzFs8VX34iTcR7oHJ1V6Z/szwHgBehM+6iGZDlq2AOqhrE4exM4ju2CM4WgPRuFWuFOKYEQvwh8hMl3YfB9b13wLOo/XU5fnVeRg0TIZIVY5hE2E3/odSMR6GLiGEjCKc3Vdk/bwx+UluxRx4zLzF19CROMRHIPBvLgvBk31Cg7GfppRJMz0TvQHxkx/bsflxqTpCoyaJ4OA1j1thUXnw/zbUSJE8fbJoKle8MXkPkORhOEwRiZmEVXHEGm1iAOvOzCi0HHl/S33M5/pq7QTeqjLsU8CKhiFRxTJ9htYzTKDXZSnO1w4PLrylacLSbSmJ65IVWE9UcrlRK+Ss3ixKOVdKKLTLEzwDnb8i+4/m9f1ldNG27vDi2on/90eLSy/zq28BoP2XXhxOjf3xegWodZ4s5bv75zH6qhZjNqOieDrLowqTp0Rwt6FZZdz/OJvgHkCN/cVRtEHmc6tRKY3c44r8lI1FBhFHyGmi7xYzBvJ9FIrLP4BjuXjwLivBg0QVLb2HWr6FzLNBgP95+DPINN7JS+0x8n0U+id87EwOKk6iHqf+VEyjUO+k00ibThHdcyGh9AVewVjUaY334uTSocpxEnvKZmWw1/3JzZinI68wOPgwtG6WzKteYp6jzlmbIppKz5DOQcAY0/J9EDmS93HHNVZVtV3YsSD3ZUX8osXA04P2Lr8Gtu++iLU0DTK2ld5oQhNWGKydlD/Amw5uyjTtL27MKplgrGFqP7Sy5hT8Tt4cXwPwIi8sI+fZZfiuG3FBh5QlGnsC4+6Z6dlA4GRfezybC7qNv5lw/GesdNsDNN0N2zENjGCcR9kWtHePPMUWxZfgEw3tZLpV5GDBV6liDRXoekhdkivZb7QNJwsKQCUgp45AipfW8XMg/gZyNAybL9+EUqOnnjd9cQqp/JcQx09kYCD6Ea4A4PO9hCJvsCoScdKznBwdeDtCUb2PYFohUUXYnzmoTBleHYNlbny9voPyNCu9XXX0dMazLYPwKhdvyWkgrEEWulLsSY95yOFyBJsMbq/+R7wiHOlTfOcAygl0va9vQBUdXiDmex9I6vpxoHHKSgEHEHnUMcwtldPOYwYb3auz6+72YJlX6C8cXzEK+TZ5yQ6Uz4z+YO6fxHJmsjy6YncKxqNEh7bwlisWxdg0TJxzlIx9cQDJhG7uWH77OjHjROMOPw4MJoc67GxZ4LFDSCSDDxzMChvOzDGKJJCp01aDVZY+nPmaPwEeVGUsgflRTLdiJPeWAcvTo1k2g1mdQFGgU7vMZLpF5EXeuJ1NwHjJNrXAwZN6BGuEqOILN7MyDc0wznw2A7Apa7KtHbvBc/+tsejDlPzQmhNp66HZTrcfi0iOpS9eKYSYIxlGmI6Erels1rAszKZBkJOk7irKNPgrydlWkDouJhtf2aVp2R6EqyII9gNmZZTECLThbU3Wah5ih507kGZlkEP2SepiUn5qZqJLFiaQPGSaTkIHeFROCziEtlyjr5WnuJcbVvxFcTnQB7CQz2SgEMynWUyuVY/ItPJXqPBQfdk2m3zwWr0/NKfWbjpv+FFRSl7UqaRj8a7ken6yL4oGLI3dnrnApyr79PZ/hsyPRE895xMe8i0v4ONo9m6JikbyLYnLnVZpqMNzPOsXG0hCBI2LwGP2PoymX6VOVhqPoyaxDlo/DdOzAssBhuOA4OiStHLlDFwSQwvhpZASKgjI6HlriETdP3aRy1YfCEK806INrOIkOKrPXIRjChkepRBw2aM70hHPC+FYJRgJI8EVsnBiAKWIEsJEVYubPwnPfFvEA1bQdtwItuME7v39vpPsV7nZF3PlC6coxqWUmvvEzkxzripcPLtBiNOBTQIOeqkwK7mwdIv4WTgtMTntkWaXC/vYwI/LvrUh2M6/ofVfsyJqBkJjBgNp/TBUwm+GI/A4WgtGNk6QwoExyVcSeTKmxiV55wXvbuvSWVI2WEgCvQoa+mZs5NZopqjVdLiRYacXYpxWA6jHAJozUaDQf1ihgUvt8BFrqSIlU+824MwJom4sHdMUHcvuGM1EsrOE71ifivHo6sWeZEDDf5Dzp8Ltj9LeJ7OSO1VReeqp5ScQ1DU3iRDro3I5Y4FTH5AXpxMw4viAZeER+GFa5lMO6WtTSZrH8EpuBCZuxsYiY70WIepWL3qdTKNk6XOHTLtsZ9RSaZ57Oi2m7xEMh06mWbl05KvMVS2FplWhwm56xE6q24BAPE0hFR3LaxVgM6SaWjv5AXZcHnItxuMURQtZN+0/No/0xn5MqwN3pmkW24sVMu+pVimoevW3xDh6QuMwiMy7eSlyPMOPodQmiSZlm5EpqGptrPwV16DTH+B+5O4L/5ADnsEj6pfQ+tskMpxU01bbqLYQZZh+4tkCliJNkYQRjjUnET3Wx0lzXEUjCyAydJ537Lk57Zj7fcATzItvu1pmcZRza50K67D5FDQBz91JtNFG+jwRbTcr3sG54rOiKLRblpHTzlXNNUl2pscjUw/jBODI+hketAueXF5hEfhhWsrmUb/sArPr33I8k6m70Wmpzn6R2X31F9FGnGytmPHGrehykfBZsi0bKDsNGA5urWRF6e7eRLmay234Q7LLv6aW1TTnky/Ch0sNVqGDU8xz+GcmzBO2qQHAdUZhJoULoXiaR28MyBkZyfiMLseQs8zf/mvLSCs7GmAVweY9rgiFnxKMI56vc2L2KD8V0SzBJf2MEbxqcftYOQ3CoKZVrRlO0RaSw/3KcsRsg1WfxvYpBxxeso84qjsff0rteC4BxjBAUtzg81E3PDk1bNxSkawlsGonoOMRMgGm34tQrPkYpb80PPxJlAGisWFvyP1w48eSCoLvDjFgIO5/U84MY9hG6AzQ1/MHnD1egyFOJgRCLfDND3HsGmF28fFX/JNFPl10BklJwHuMUUcN69Ypgev6dy4rdeguBbzXbyoPBJgvrOtgWB0vMnpqyEbYAYMT+cZtiwswpjV/xsYUSBqr/u4l1VAD6QijFK+Gi7cfBUT6TeDOxxAFii4JDrLeDjaM58ABSwHOqhn/6PV1+NEfwJlvgVexKD1WC+3bdOgp87zzG9Gpn/OTvTtyLRgLMn0TmDcgPPH3kwrf23his/CgrTVdUZ62ljEsEIfJ9MLOPNYMi1HVM6JeFGRC+kdZEGOqZNp9vpqWYdMP0n07zKGf88nL3qrxzsjgk90Fv+QJNP1DyLTt0JLOfM4IdKN4C6G0d0ryfRqhvkfAsaLWaTyM/JOoIyXQKbr/sgKLjrKnDjglk87eYHGsbzIyGm38xx6Hpn22ZspUKdz2w3Q+QDgLPJ25ObQ8J5IUZme5COsscYtV1vT9qXUBW2RF6QDHHL+JPZF5ws6GHCqtKltlqGs7WtvsS0Lv8x2Ao+TZzoAwRu8Q8aeAK5YRrHdSRxT5pZKpoN6nH7ZQHhAm3o6vVMm0zozVPISFmXal0y3bAOPEylzf8mLZJrFROgSH5kOtDuns9M4sdLr5XpHKOJ8Qa3+lUznV1xlhRWfZ2sK2U2iX/sNRvCFkxU2s48a2x8F2hhceJOdlm0us4HCrc5fVTQ/j0xnl15qhTUXAht6qwOZfvWsIqQZuyeQL8b116JI6pjg+Wbm6xxJ2HQCPTc8fFLIBnxh80rmoTyBkf47CJPTMs49i5i/+HW/XWAkCVjhBXfxBr6bMwsPhs/G45UjIHjwIbvThk3L6L0/TA/8Qe7j+btDnWODu9+AKxasXmABHiZ6IHAHfpDx/QOjHjC9WLcRJwY2aPr/3Z3PbwxhGMdnu5Y0RLbO6qD0IBIuXHDiIg5cuPrb3CWOXNy49CScJCqqcSCRllJ0dzo+n2fm3Q7axGVmtn2Td9vatfOd53m+z/O8z/tjSB7WnjJF+xKMBNsZgvbEgVRf1cgPHQrAHPGPmFo5QsI1vMPlz/E7FSOdIU7OrbHb37gHy8k4k3gmVizETk6uEXDVl1YYmb7IRsvY4PmsN3eDav4iI3RGlwYsDj8qfnF+1MYrqgwPStENuId03kWT8OK75QvdB4WPP7AI9SpriuizC2Ak8OP0fCxKwenlhQcOktRGbBgQzCJAKMemmwYop9/T1+H0Tfhymfy1zmkGI5vv4PQSVejHmAal/f48/08v3RZGrjWC06p9eJdpkIvI8RTJgZzmAb9M+xY/lqmyPyPZoXOYapec7s3drzjNYcNRmWJqG04XcLpw2/t37mWwAMajlQyVZZOt4os7HkevoyKYDW+DkTWh8nvCaQ4C5gDQbO0RidbHTjgdVdytt9nhYxey2RPXWZ+1yBMSqASTsG7nm+xO5pBqOL3JOiaXvfXltFW3GHQ2KUO/u8bpEZw+fg1OX2FtFpweEPgpOJScXsHvvEDXD8NkI0FtldNAzVegxldmiW8Rpy/BFzlNPKZ5EHbBbE3xZYn+BCE6EDnJO23FQP0ONUk4rWXOzN2jtiGn52uc/kwMZN32OscRbTwHOz4nNi7sjXGfJ1hIIsSBcMyIUV6WL5c+1nu2aX/KztF3VIN8QyfctAPhEpOGyiQcuw08jbfIV3cwhjb5oLdgFSOegUiyE4bVBUaumX+i49hqYlK81MnpZ8Ho6M5RTxIyv7bSUGbIEfnkOJMxFQIhVGIqMULYQxh++lwnGAeIhmeN5W+olG7tYBS+9miVpU/3j5Bjy3qWFMrHZHBM0oyeQ47qUFNV18rQJN8qV6x7aBujhKAzpU/Z+Q+MIcOwx9PIEX2HodaM1ftovNU4HQkrm29qECYYp4bTJCfuHv4boxW3/hl0TRWpa06PVyt9AwX9RYEq+MJg2WDbOad/UuVnRiK2EIIRkOpZM+3B6ZngNHbRCV/+g9MWFkxcOuU0OOX0mGRK3223VXLM+gtgdNZGQ60Za3yo6Zcap+txWhfIpZOuYxOS5zyGnsW4dzsACVb95rR0emQraMwW86cE5InCyn/u5lUFiovgFhj52xaWhqJCYcniyrfafxVjJcN/MCY5TgtG5BhYKyklHbfu4HbTUvIYYlTnyDXpOTKatp3HXhiTLdb5IjZ1rZ51LV223TgtLvkiTnuXbT9yWl0bNZTjNHE62aL+R98oxmSL/uzaFktOc1znDqfNEJCjJyGVWKcBY5LjtHNaOapnVXswOf0bL1e7AC9Dw7sAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "e0025777", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "#### Define 1-D line\n", + "\n", + "We need to set up a line of qubits through the machine that we intend to use such that we avoid broken qubits or areas with high readout errors. To do this we examine the calibration data (which can be found online or via the command `plot_error_map(backend)`). For example, suppose that we use `ibm_sherbrooke` and that we need to avoid say qubits 20 and 71 as well as qubits 56 and 73. One such qubit line would be:\n", + "\n", + "![image.png](attachment:b9ee6c9b-35d7-4e8c-a647-645f67052425.png)\n" + ] + }, + { + "cell_type": "markdown", + "id": "b00af850-c30b-44c8-b40c-e0c6642ceb24", + "metadata": {}, + "source": [ + "We descirbe the line as a simple list of integer indices and add that line to the `qubit_lines` dictionary." + ] + }, + { + "cell_type": "markdown", + "id": "13b544fb-5b38-427c-8b37-63f07cb577db", + "metadata": {}, + "source": [ + "We can visualise the coupling map and qubit indices as follows: The following example is for `ibm_sherbrooke`:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fb35aa4f-3199-4bff-ba63-5781b08cf818", + "metadata": { + "hidden": true, + "scrolled": true + }, + "outputs": [], + "source": [ + "# Current Qubit 1D lines with key the name of the machine. e.g. ibm_sherbrooke\n", + "qubit_lines = {\"ibm_sherbrooke\":[19,18,\n", + " 14,\n", + " 0,1,2,3,4,5,6,7,8,9,10,11,12,\n", + " 17,\n", + " 30,29,28,27,26,25,24,\n", + " 34,\n", + " 43,44,45,46,47,48,49,\n", + " 55,\n", + " 68,69,70,\n", + " 74,\n", + " 89,88,87,86,85,84,83,82,80,79,78,77,76,75,\n", + " 90,\n", + " 94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,\n", + " 112,\n", + " 126,125,124,123,122,121,120,119,118,117,116,115,114,113]}" + ] + }, + { + "cell_type": "markdown", + "id": "3b446989-863a-4078-86a7-9e12ad40a773", + "metadata": {}, + "source": [ + "#### Utility Methods\n", + "\n", + "This section contains methods that make building, executing and analyzing easier across the three different experiments. These methods are:\n", + "\n", + "- `coupling_map_from_qubit_line` : Modify the full coupling map to force linearity in the qubit layout\n", + "- `submit_circuits` : Submit circuits in appropriate batches\n", + "- `process_fidelities` : Calculate the estimated process fidelities from experiment counts data\n", + "- `prep_P_ij_conj` : Prepare circuits with the possible complex conjugates of the eigenstates of given Pauli operators for Monte Carlo State Certification\n", + "- `meas_P_kl` : Prepare circuits so that the final state can be measured in different Pauli bases with a Z measurement for Monte Carlo State Certification\n", + "- `resample_single_dictionary`: Resample a single dictionary based on its weights\n", + "- `resample_dict_list` : Resample the entire list of dictionaries n_samples times\n", + "- `check_jobs`: Check if all jobs have been completed\n", + "- `cal_average_fidelities`: Calculate the average gate fidelities\n", + "- `save_data`: Save the data to files for an experiment\n", + "\n", + "The methods are included in a single cell for faster setup and for those that are not yet interested in the innner details of how the experiments are run. The cell below must be run to do any of the experiments." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "ab2cd963-3150-41a0-b9d4-9a37ca82c85a", + "metadata": {}, + "outputs": [], + "source": [ + "# Submit jobs\n", + "# Jobs are grouped into blocks of 4 qubit number values\n", + "\n", + "def coupling_map_from_qubit_line(coupling_map:List[List[int]], \n", + " qubit_line: List[List[int]]) -> List[List[int]]:\n", + " new_coupling_map = []\n", + " line_edge_list = []\n", + " for i in range(len(qubit_line)-1):\n", + " line_edge_list.append([qubit_line[i],qubit_line[i+1]])\n", + "\n", + " for edge in coupling_map:\n", + " u,v = edge\n", + " edge_rev = [v,u]\n", + " if (edge in line_edge_list) or (edge_rev in line_edge_list):\n", + " new_coupling_map.append(edge)\n", + " return new_coupling_map\n", + "\n", + "def submit_circuits(min_qubits:int, \n", + " max_qubits:int,\n", + " num_circuits_per_job:int,\n", + " qubit_line:List[int], \n", + " coupling_map:Union[CouplingMap, List],\n", + " samples:List[int],\n", + " optimization_level: int,\n", + " backend: Backend,\n", + " shots: int,\n", + " build_circuits: Callable, \n", + " transpile_dynamic: Optional[bool] = True,\n", + " use_dynamic_decoupling: Optional[bool]=True,\n", + " dd_sequence:Optional[List[Gate]]=[XGate(), XGate()],\n", + " durations:Optional[InstructionDurations]=None\n", + " ) -> List[str]:\n", + " # Calculated constants and storage variables\n", + " line_length = len(qubit_line)\n", + " num_samples = len(samples)\n", + " num_circuits = (max_qubits - min_qubits + 1)*4*num_samples\n", + " nr_jobs = int(num_circuits/num_circuits_per_job)\n", + " \n", + " # Run some parameter checks\n", + " # Min number of qubits between control and target must be a non-negative integer\n", + " assert min_qubits >= 0, \"Error: min_qubits must be >= 0\"\n", + " \n", + " # Max number of qubits between control and target musts be <= line_length - 2\n", + " assert (max_qubits + 2) <= line_length, \"Error: max_qubits must be <= len(qubit_line) - 2\"\n", + " \n", + " # (max_qubits - min_qubits) must equal to 3(mod 4)\n", + " rem = (max_qubits - min_qubits)%4\n", + " assert rem == 3, \"Fail: (max_qubits - min_qubits) must equal to 3(mod 4)\"\n", + " \n", + " # First transpile all the circuits\n", + " print(f\"Transpiling circuits...\")\n", + " \n", + " all_transpiled_circs = []\n", + "\n", + " for n in range(min_qubits, max_qubits + 1):\n", + " layout = qubit_line[:n+2]\n", + " circuits = build_circuits(n, samples)\n", + " \n", + " clear_output(wait=True)\n", + " percentage_completed = (n - min_qubits + 1)/(max_qubits - min_qubits + 1)\n", + " \n", + " print(f\"[{percentage_completed:.0%} completed] Transpiling circuits \" +\n", + " f\"with {n} qubits between CNOT\")\n", + " \n", + " # Generate the main Qiskit transpile passes.\n", + " pm = generate_preset_pass_manager(coupling_map = coupling_map, \n", + " initial_layout = layout, \n", + " optimization_level = optimization_level,\n", + " backend = backend)\n", + " \n", + " if use_dynamic_decoupling is True:\n", + " # Configure the as-late-as-possible scheduling pass and DD insertion pass\n", + " pm.scheduling = PassManager(\n", + " [\n", + " ALAPScheduleAnalysis(durations),\n", + " PadDynamicalDecoupling(durations, dd_sequence),\n", + " ]\n", + " )\n", + " \n", + " transpiled_circuits = pm.run(circuits)\n", + " all_transpiled_circs.extend(transpiled_circuits)\n", + " \n", + " \n", + " clear_output(wait=True)\n", + " print(f\"Sumbitting jobs ...\")\n", + "\n", + " job_ids = []\n", + " \n", + " with Batch(backend=backend) as batch:\n", + " sampler = Sampler(session=batch)\n", + " for job_num in range(nr_jobs):\n", + " transpiled_circs = all_transpiled_circs[num_circuits_per_job*job_num: num_circuits_per_job*(job_num + 1)]\n", + " \n", + " # Submit circuits\n", + " print(f\"Submitting circuits:\")\n", + " \n", + " percentage_completed = job_num/nr_jobs \n", + " print(f\"[{percentage_completed:.0%} completed]\")\n", + " \n", + " job = sampler.run(transpiled_circs, shots=shots)\n", + " job_ids.append(job.job_id())\n", + " print(f\"Job id for circuits \" \\\n", + " + f\"[{num_circuits_per_job*nr_jobs}, {num_circuits_per_job*(nr_jobs + 1) -1 }] : {job.job_id()}\")\n", + " \n", + " clear_output(wait=True)\n", + " \n", + " clear_output(wait=True)\n", + " print(\"All jobs submitted.\\n\")\n", + " \n", + " #Display qubit ranges and job ids\n", + " for job_num in range(nr_jobs):\n", + " print(f\"[{num_circuits_per_job*job_num}, {num_circuits_per_job*(job_num + 1)}]: \" \\\n", + " f\"Id = {job_ids[job_num]}\")\n", + "\n", + " return job_ids\n", + "\n", + "def process_fidelities(counts : Union[dict[str,int], List[dict[str,int]]],\n", + " samples: List[int],\n", + " shots: int,\n", + " post_process: Optional[Callable]=None) -> List[float]:\n", + " \"\"\"Calculate the estimated process fidelities from experiment counts data\n", + "\n", + " Args:\n", + " counts (dict[str:int] or List[dict[str:int]]): counts data from an experiment\n", + " samples (List[int]): which of the 16 Paulis with non-zero expectation value to prepare and measure\n", + " shots (int): Number of shots used in experiment\n", + " post_process (Callable): Post process the counts with post_proc if given. Default = None\n", + " \"\"\"\n", + " exp_all = []\n", + " # 16 Paulis with non-zero expectation value to prepare and measure\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " sign_rho_lkji = [1,1,1,1,1,1,1,1,\n", + " 1,1,1,1,1,-1,-1,1]\n", + " \n", + " PauliI = Pauli('I')\n", + " \n", + " for i in range(len(samples)):\n", + " P_i = P_lkji[samples[i]][0]\n", + " P_j = P_lkji[samples[i]][1]\n", + " P_k = P_lkji[samples[i]][2]\n", + " P_l = P_lkji[samples[i]][3]\n", + " \n", + " exp = 0\n", + " # initial state p with eig value p_eig prepared\n", + " for p in range(2):\n", + " if P_i == PauliI:\n", + " p_eig = 1\n", + " else:\n", + " p_eig = (-1)**p\n", + " \n", + " # initial state q with eig value q_eig prepared\n", + " for q in range(2):\n", + " if P_j == PauliI:\n", + " q_eig = 1\n", + " else:\n", + " q_eig = (-1)**q\n", + " \n", + " # post process count if provided\n", + " if post_process is not None:\n", + " if len(counts)>0:\n", + " counts_post = post_process(counts[i*4+2*p+q], i, p, q, samples)\n", + " else:\n", + " if len(counts)>0:\n", + " counts_post = counts[i*4+2*p+q]\n", + "\n", + " # measurement projecting to states r with eig value r_eig\n", + " for r in range(2):\n", + " if P_k == PauliI:\n", + " r_eig = 1\n", + " else:\n", + " r_eig = (-1)**r\n", + " for s in range(2):\n", + " if P_l == PauliI:\n", + " s_eig = 1\n", + " else:\n", + " s_eig = (-1)**s \n", + " \n", + " strr = str(r)\n", + " strs = str(s)\n", + " try:\n", + " exp += p_eig*q_eig*s_eig*r_eig*counts_post[strs+strr]/shots/4/sign_rho_lkji[samples[i]]\n", + " except:\n", + " pass\n", + " \n", + " \n", + " exp_all.append(exp)\n", + " return exp_all\n", + " \n", + "\"\"\"\n", + "Preparation for Monte Carlo state certification\n", + "\n", + "It is necessary to prepare the complex conjugate of random product of eigenstates of local Pauli \n", + "operators - corresponding to the Paulis $P_i^*$ and $P_j^*$, and then to measure the the final \n", + "state in different Pauli bases - corresponding to the Pauli operators $P_k$ and $P_l$. We do \n", + "this with the following two methods.\n", + "\n", + "The `prep_P_ij_conj` method prepares a list of circuits so that the control and target qubits \n", + "are in the eigenstates of $P_i^*$ and $P_j^*$ respectively. The `meas_P_kl` method prepares a \n", + "list of circuits so that the control and target qubits are measured in the $P_k$ and $P_l$ \n", + "bases respectively.\n", + "\"\"\"\n", + "\n", + "def prep_P_ij_conj(circuits: List[QuantumCircuit], P_prep: PauliList) -> List[QuantumCircuit]:\n", + " \"\"\"Prepare circuits with the possible complex conjugates of the eigenstates of given Pauli operators\n", + "\n", + " The first and last qubits are prepared in one of the four possible eigenstates of P_i^* and P_j^*\n", + " respectively. The resulting collection of circuits covers all four possibilities. \n", + "\n", + " Assumes that circuits have qubits 0, ... ,n+1 where the long range NOT is between qubit 0 (control) to n+1 (target)\n", + " \n", + " Arg:\n", + " circuits (List[QuantumCircuit]: List of 4 Quantum Circuits with at least two data qubits\n", + " P_prep (PauliList): A pair of single qubit Paulis with the first Pauli refered to as P_i and the second as P_j\n", + "\n", + " Returns:\n", + " List[QuantumCircuits]\n", + " \"\"\"\n", + " \n", + " pauliX = Pauli('X')\n", + " pauliY = Pauli('Y')\n", + " for p in range(2):\n", + " for q in range(2):\n", + " qc = circuits[2*p+q]\n", + " if p == 1:\n", + " qc.x(0)\n", + " if q == 1:\n", + " qc.x(-1)\n", + " for i in range(2):\n", + " if P_prep[i] == pauliX:\n", + " qc.h(-i)\n", + " if P_prep[i] == pauliY:\n", + " qc.h(-i) # Change basis to initialise in Y^* basis\n", + " qc.s(-i) # i.e. Apply SH = (HS^\\dagger)^*\n", + " circuits[2*p+q] = qc\n", + " return circuits\n", + "\n", + "def meas_P_kl(circuits: List[QuantumCircuit], P_meas: PauliList) -> List[QuantumCircuit]:\n", + " \"\"\"Prepare circuits so that the final state can be measured in different Pauli bases with a Z measurement\n", + "\n", + " The first and last qubits are the qubits that the given operator P_meas will operate\n", + "\n", + " Arg:\n", + " circuits (List[QuantumCircuit]: List of 4 Quantum Circuits with at least two data qubits\n", + " P_meas (PauliList): A pair of single qubit Paulis with the first Pauli refered to as P_k and the second as P_l\n", + " \"\"\"\n", + " pauliX = Pauli('X')\n", + " pauliY = Pauli('Y')\n", + " for p in range(2):\n", + " for q in range(2):\n", + " qc = circuits[2*p+q]\n", + " for i in range(2):\n", + " if P_meas[i] == pauliX:\n", + " qc.h(-i) # Change of basis to measure X by measuring in Z basis: i.e., apply H\n", + " if P_meas[i] == pauliY:\n", + " qc.sdg(-i) # Change of basis to measure Y by measureing in Z basis \n", + " qc.h(-i) # i.e. apply HS^dagger\n", + " qc.measure(0,0)\n", + " qc.measure(-1,1)\n", + " circuits[2*p+q] = qc\n", + " return circuits\n", + "\n", + "\"\"\"\n", + "Set up Bootstraping for Raw Data. \n", + "\n", + "The following two methods are use througout to bookstrap the raw data from the experiments\n", + "\"\"\"\n", + "\n", + "def resample_single_dictionary(d):\n", + " \"\"\"Resample a single dictionary based on its weights.\"\"\"\n", + " keys = list(d.keys())\n", + " weights = list(d.values())\n", + " total = sum(weights)\n", + "\n", + " resampled_keys = random.choices(keys, weights=weights, k=total)\n", + " \n", + " # Count the occurrences of each key in the resampled keys\n", + " resampled_counts = {}\n", + " for key in resampled_keys:\n", + " resampled_counts[key] = resampled_counts.get(key, 0) + 1\n", + "\n", + " return resampled_counts\n", + "\n", + "def resample_dict_list(dict_list, n_samples):\n", + " \"\"\"Resample the entire list of dictionaries n_samples times.\"\"\"\n", + " resampled_lists = []\n", + "\n", + " for _ in range(n_samples):\n", + " new_version = [resample_single_dictionary(d) for d in dict_list]\n", + " resampled_lists.append(new_version)\n", + "\n", + " return resampled_lists\n", + "\n", + "def check_jobs(job_ids: List[str], display: Optional[bool]=True)->bool:\n", + " nr_jobs = len(job_ids)\n", + " pass_flag = True\n", + " for j in range(nr_jobs):\n", + " job = service.retrieve_job(job_ids[j])\n", + " status = job.status()\n", + " if str(status) == 'JobStatus.DONE':\n", + " print(f\"Job {j}: Id = {job_ids[j]}: Status: Done\")\n", + " else:\n", + " print(f\"Job {j}: Id = {job_ids[j]}: Status: {status}\")\n", + " pass_flag = False\n", + " if pass_flag is True:\n", + " if display is True:\n", + " print(\"All jobs have completed. Results can now be analyzed.\")\n", + " return True\n", + " else:\n", + " if display is True:\n", + " print(\"Some jobs have not completed.\")\n", + " return False\n", + "\n", + "def cal_average_fidelities(job_ids: List[str],\n", + " min_qubits: int,\n", + " max_qubits: int,\n", + " samples:List[int],\n", + " shots: int,\n", + " num_circuits_per_job:int,\n", + " post_process: Optional[Callable]=None,\n", + " all_counts : Optional[List[Dict]]=None,\n", + " display: Optional[bool]=True,\n", + " debug: Optional[bool]=False,\n", + " n_bootstrap_sample: Optional[int]=4\n", + " ) -> (List[float], List[float]):\n", + " proc_fidelities = []\n", + " proc_std = []\n", + " nr_jobs = len(job_ids)\n", + " num_samples = len(samples)\n", + " empty_counts = {'00':0, '01':0, '10':0, '11':0}\n", + " if all_counts is None:\n", + " counts_flag = False\n", + " all_counts = []\n", + " else:\n", + " counts_flag = True\n", + "\n", + " if debug is True:\n", + " print(f'{nr_jobs} to process')\n", + " if len(all_counts) == 0:\n", + " for j in range(nr_jobs):\n", + " job = service.job(job_ids[j])\n", + " \n", + " if str(job.status()) == 'JobStatus.DONE':\n", + " if display is True:\n", + " print(f\"Retreiving job data: {job_ids[j]}: {j} of {nr_jobs-1}\")\n", + " result = job.result()\n", + " for i in range(len(result)):\n", + " if post_process=='post_process_postproc' or post_process == 'post_process_dyn':\n", + " counts = result[i].data.cr.get_counts()\n", + " else:\n", + " counts = result[i].data.cr.get_counts()\n", + " all_counts.append(counts)\n", + "\n", + " else:\n", + " print(f\"Warning: Job id : {job_ids[j]} returned status of {job.status()} : Adding empty dictionaries\")\n", + " all_counts += [empty_counts]*num_circuits_per_job\n", + " if debug is False: \n", + " clear_output(wait=True)\n", + " else:\n", + " print(f'Using provided all_counts data instead of loading from server')\n", + " print(all_counts)\n", + " \n", + " for n in range(min_qubits, max_qubits + 1):\n", + " if display is True:\n", + " print(f\"Resampling counts for n = {n}: {max_qubits + 1 - n} remaining\")\n", + " counts = all_counts[(n - min_qubits)*4*num_samples: (n - min_qubits + 1)*4*num_samples]\n", + " proc_fid_temp = []\n", + " \n", + " for _ in range(n_bootstrap_sample):\n", + " resample_counts = resample_dict_list(counts, 1)[0]\n", + " sample_fidelities = process_fidelities(resample_counts, samples, shots, post_process)\n", + " proc_fid_temp.append(np.mean(sample_fidelities))\n", + " \n", + " mean, std = np.mean(np.array(proc_fid_temp)), np.std(np.array(proc_fid_temp)) \n", + " proc_fidelities.append(mean)\n", + " proc_std.append(std)\n", + " if debug is False:\n", + " clear_output(wait=True)\n", + "\n", + " if display is True:\n", + " print(f\"Process fidelities:\")\n", + " print([\"{0:0.3f}\".format(i) for i in proc_fidelities])\n", + " print(f\"Process fidelities std:\")\n", + " print([\"{0:0.3f}\".format(i) for i in proc_std])\n", + "\n", + " # Calculate average gate fidelity from the process fidelity\n", + " \n", + " avg_gate_fidelities = []\n", + " \n", + " for i in range(len(proc_fidelities)):\n", + " # Use result of Horodecki et al. to calculate the average gate fidelity\n", + " avg_gate_fidelity = (proc_fidelities[i]*4+1)/5\n", + " avg_gate_fidelities.append(avg_gate_fidelity)\n", + "\n", + " if display is True:\n", + " print(\"Average Gate Fidelites\")\n", + " print([\"{0:0.3f}\".format(i) for i in avg_gate_fidelities])\n", + " \n", + " # Calculate average gate fidelity std from the process fidelity std\n", + " \n", + " avg_gate_stds = []\n", + " \n", + " for i in range(len(proc_std)):\n", + " # We scale the std as in the average gate fidelity\n", + " avg_gate_std = (proc_std[i]*4)/5\n", + " avg_gate_stds.append(avg_gate_std)\n", + "\n", + " if display is True:\n", + " print(\"Average Gate Std\")\n", + " print([\"{0:0.3f}\".format(i) for i in avg_gate_stds])\n", + "\n", + " if counts_flag is True:\n", + " return (avg_gate_fidelities, avg_gate_stds, all_counts)\n", + " else:\n", + " return (avg_gate_fidelities, avg_gate_stds)\n", + "\n", + "def save_data(name:str,\n", + " fidelities: List[float],\n", + " fidelities_std: List[float],\n", + " min_qubits: int,\n", + " max_qubits: int,\n", + " optimization_level: int,\n", + " use_dynamic_decoupling: bool,\n", + " backend: Backend,\n", + " spacer: Optional[str]='_',\n", + " base_name: Optional[str]='cnot') -> (str, str):\n", + " n_range = str(min_qubits) + spacer + str(max_qubits)\n", + " pre_text = 'data/oplevel' + spacer + str(optimization_level)\n", + " if use_dynamic_decoupling is True:\n", + " pre_text = pre_text + spacer + 'dd'\n", + " machine = backend.configuration().backend_name\n", + " base = base_name + spacer + name + spacer + 'avg' + spacer + 'gate' + spacer + 'fidelities'\n", + " file_name = pre_text + spacer + n_range + spacer + machine + spacer + base + '.pkl'\n", + " file_name_std = pre_text + spacer + n_range + spacer + machine + spacer + base + spacer + 'std.pkl'\n", + " \n", + " try:\n", + " with open(file_name, 'wb') as file: \n", + " pickle.dump(fidelities, file)\n", + " print(f\"Success: fidelities saved to {file_name}\")\n", + " except pickle.PicklingError as e:\n", + " print(\"Error: Data fidelities failed to be saved to a file\")\n", + " \n", + " try:\n", + " with open(file_name_std, 'wb') as file: \n", + " pickle.dump(fidelities_std, file)\n", + " print(f\"Success: fidelities_std saved to {file_name_std}\")\n", + " except pickle.PicklingError as e:\n", + " print(\"Error: Data std's failed to be saved to a file\")\n", + "\n", + " return file_name, file_name_std\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "11e35681-d7d0-4d5d-8764-5517181d91d0", + "metadata": {}, + "source": [ + "#### Set Primary Parameters\n", + "\n", + "In this section we set the main common parameters. Custom parameters for each of the circuit types can be specified later." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4fc13eba-bc50-4607-88f9-8ada04b69794", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Machine is set to: ibm_sherbrooke\n", + "Maximum number of qubits between CNOT for ibm_sherbrooke is 80 with the given qubit line.\n" + ] + } + ], + "source": [ + "# Set which quantum computer to use\n", + "MACHINE_NAME = \"ibm_sherbrooke\"\n", + "backend = service.get_backend(MACHINE_NAME)\n", + "\n", + "# Set qubit line and coupling map\n", + "QUBIT_LINE = qubit_lines[MACHINE_NAME]\n", + "COUPLING_MAP_FULL = [list(edge) for edge in list(QiskitRuntimeService().backend(MACHINE_NAME).coupling_map)]\n", + "COUPLING_MAP_1D = coupling_map_from_qubit_line(COUPLING_MAP_FULL, QUBIT_LINE)\n", + "MAX_POSSIBLE_QUBITS_BTW_CNOT = len(QUBIT_LINE) - 2\n", + "\n", + "# Use this duration class to get appropriate durations for dynamic\n", + "# circuit backend scheduling\n", + "DURATIONS = DynamicCircuitInstructionDurations.from_backend(backend)\n", + "\n", + "print(f\"Machine is set to: {MACHINE_NAME}\")\n", + "print(f\"Maximum number of qubits between CNOT for {MACHINE_NAME} is {MAX_POSSIBLE_QUBITS_BTW_CNOT} with the given qubit line.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "c7718980-3efe-4810-afb0-29f8d252a2ed", + "metadata": {}, + "outputs": [], + "source": [ + "# Set the global scope of the experiment. These varibales can be used in each circuit type\n", + "# or can set individually in each experiment that will override these globals\n", + "\n", + "SAMPLES = list(range(16)) # Set which Pauli's to sample (default it all 16 combinations that have a non-zero\n", + " # expectation)\n", + "\n", + "OPTIMIZATION_LEVEL = 1 # Level of optimations the transpiler uses: There are 4 optimization levels \n", + " # ranging from 0 to 3, \n", + " # where higher optimization levels take more time and computational effort but\n", + " # may yield a more \n", + " # optimal circuit. \n", + " \n", + " # level 0 does no explicit optimization, it will just try to make a circuit \n", + " # runnable by transforming it to match a topology and basis gate set, \n", + " # if necessary.\n", + "\n", + " # Level 1, 2 and 3 do light, medium and heavy optimization, using a combination\n", + " # of passes, and by configuring the passes to search for better solutions. \n", + "\n", + "USE_DYNAMIC_DECOUPLING = True # Set to use or not use dynamical decoupling\n", + "\n", + "DD_SEQUENCE = [XGate(), XGate()] # Default dynamic decoupling sequence if dynamic decoupling is used\n", + "\n", + "SHOTS = 1000 # Set the number of repetitions of each circuit, for sampling. \n", + "\n", + " # The number of qubits between the control and target are grouped into blocks\n", + " # of length 4. The provided min and max number of qunbits will be modified to \n", + " # align with these block sizes.\n", + "\n", + "MIN_NUMBER_QUBITS = 0 # The min number of qubits between the control and target qubits on line\n", + "MAX_NUMBER_QUBITS = 63 # The max number of qubits between the control and target qubits on line\n", + " # The max for MIN_NUMBER_QUBITS is len(QUBIT_LINE) - 2\n", + " # max_number_qubits must satisfy MAX_NUMBER_QUBITS - MIN_NUMBER_QUBITS = 3 (mod 4) \n", + " # at this point.\n", + " # This is just to make things easier to break jobs up. Not a real limitation.\n", + "\n", + "assert (MAX_NUMBER_QUBITS - MIN_NUMBER_QUBITS)%4 == 3, \"MAX_NUMBER_QUBITS must satisfy MAX_NUMBER_QUBITS - MIN_NUMBER_QUBITS = 3 (mod 4)\"\n", + "assert (MAX_NUMBER_QUBITS + 2) <= len(QUBIT_LINE), \"MAX_NUMBER_QUBITS must satisfy MAX_NUMBER_QUBITS + 2 <= len(QUBIT_LINE)\"" + ] + }, + { + "attachments": { + "59c82c7c-996f-4f54-8b6a-c730b233c35b.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAAD1CAYAAAD+mCs2AAABY2lDQ1BJQ0MgUHJvZmlsZQAAKJFtkD9Iw1AQxr9qoWJLVRAF6ZDJxaoh6SA4SK2iQodYLaiDkKY1FdL0kUalgyBOLjq5dXFUB0cnERzcxUInQcFBd7EO/on3GrWteo/j+/Fxd+84oCWgMmZ4AeRM20pMjQsLi0uC7wF+hCj7EVS1AosqSpxK8K3NUa3Aw7U8yGeNlsSRzfLY9s30devezvHB3/qmaE9nChrpG6WkMcsGPCKxsmEzzlvE3RYtRbzPWXf5kHPK5bNazXwiRnxF3Kll1TTxHXE41eDrDZwz1rSvHfj2gYyZnCPtoQxhApOI0xOQRAQyJIiYpRv93xOp9cSQB0MRFlahIwubuqPkMBjIEM/AhIYhhIn5PAkyv/XvG9a95XVguEJfleqe8QGcPwMd93VvIAV00Q4XJ0y11J/Leqrewoosudx3CfiLjvPYCwSfgPdTx3kpO87rEeBrA3ZvPwEUcmRbdJlh8QAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAAC4aADAAQAAAABAAAA9QAAAACr4748AABAAElEQVR4Aey9B5xWxb3//33aVpal914tCIiKAhawl1hi7P6SaBJjijHlxiQ3ef1vctNuvDfG9KImMbYYW+wNFSsIggIiRVF6r8uy7dnn2ef/ec/ZWQ6PSxXUXc7snuecM2fqd2a+85nvfGcmlpOxyEQUiCgQUSCiQESBiAIRBSIKRBSIKPChUSD+ocUURRRRIKJARIGIAhEFIgpEFIgoEFEgooCjQATCW1hFaGhoMCYv/AQG71yYsB3PYbf+W/497M8FEv1EFIgoEFHgQ6RAmCfxzJXP05pz492G7z7Z3r1/D9939i3sblfPPl7c+ee9DTs/v4QZ5t8+Du6RiSgQUaD1UCAC4S2oLD2Dj8ViLtUw6Xg87i7/jTt2YZOVO+/H2/Pu/eR/826ie0SBiAIRBfY3BTz/4e6vfB6GvedX/k66vHv/7NOKPSbs1j/7b97t3t59OPBh/7w3YZGu/PxmstmmvO3rdO9NGiM/EQUiCuwfCmyP1vZPHFGo+5gCMP3a2lr7zW9+Y2eeeabdfvvtlslkmpi2jw7GXl9fb7f+/e/O3e9//3urrqoyGDzGM3fvPrpHFIgoEFHgo6AAvIjLS389jyItnk95oOsBK++4r6mpsXQ67fga/rz7/Hzgfkff8t3uybtPDzx4bwzp8vn1eQqHQ/j+e9g+eo4oEFGg5VMgAuEttAwfeOABu/76623jxo02YsQIS6VSTZ2Y78jIWjKZtCOOOMK5++lPf2pPPPmkJRMJ5xaGH5mIAhEFIgp8lBQAYM6fP99mzZpldXV1TpiAsGDKlCn23nvvNfE10hgG0vC5NWvW2C9+8Qv729/+ZlsrKy0hwEoYgG2ufB4X9k94HpR79/6db5j898D2/fak/bbbbrMtW7Z4J++77ywO0u1NlfL+M/HqBQsWeCvHs5teooeIAhEFWg0FtrX8VpOl1p0RpCJr1661v/71r076c91119khhx7apEPJdy46Gzopng8//HD74he/6OzuvPNOW79+vXvO76BaN+Wi3EUUiCjwcaQAgPv//u//7D/+4z/s3XffdUmcM2eOfe1rX7Pf/e53VlNdbQ2NUnIvEQbQwr8WLlxof/nLX+zmm2+2iooKB9yvueYae+SRR1w4XiCBPy7eUc/DeIDt3eSD5Px35ynkj/B8GEjjV61a5Xhy2F/42fvnHrbn2Q8OSAsX+arUoALz+OOPG0KXyEQUiCjQ+iiQbH1Zav05mjlzps2bN8+OOuoodyHZXrlypet4XnvtNaeacthhh9kFF1xgvXv3dkD8rLPOch3VjBkz7PXXX7dTTz21CaT7TqD1Uy7KYUSBiAIfNwogBV6+fLm7UJ/DAEBXrFjhJN0A8JV6Rt2jqKjIgd127do53nbwwQfbtddea507d7aSkhJ76aWXHGDlffTo0dZJ9w3r1tmyZcssK9DcvXt369Gzp4uDWUQEEoSF9BwVP8BwD7kpbdPGtm7d6vhqx44drVOnTs4PP6SR8ADeHTp0sG7duhnpwF17vWOP34T4MpLxnoqPtC9ZssSloVevXi7OzZs3u7AIG+C9YcMGKywstLZt29o3v/lNGzpkiMv/k5q9JM5x48a5+Jj1jExEgYgCrYMCEQhvgeUIiKbzGDVqlMHQ6bB+/OMfO91wGDidwL333msA8htvvNF1El27dnUS8WnTpjkADwj30hfukYkoEFEgosBHQYG0AGZ4Bo80eN4EkEXC/d///d9Oyl1WVuZUVAC2SM8HDx5sjz32mA0RYAWg//KXv3QAmPUyqOJ98pOftO9+97uG4AIQPmDAAPvZz35mp512mt19993261//2tkBgOGdDAZ+9KMf2WWXXWbMGvIdNb7zzz/fpQmwjuoLknYAMwKMb3/72y7se+65x37yk5/Y3Llz7Y9//KMD3uTrv/7rv+zvWpeDygppKi8vd3aTJk1yaoLMZhYUFLi4Ro4c6dJ21VVX2U033WRLly41QDgGkP+Nb3xjuwGB+xD9RBSIKNBiKRCB8BZUdB4sI/VGsgKwhskXSwI0duxYlxM6Hb7/4Ac/cFKhd955x0l/+Ih0CImLnzaF8UcmokBEgYgCHyUFCiTZhY8BaOFPGP/OM+AZnoUk+ctf/rIdeeSRblYPcIoQAol5G0muAeInnXSS3X///Xbuuee6C2Dep08fO/300x2YB6QjoDjuuONs06ZNTu0DXnrsscfa0KFD7YYbbjDA8THHHGPPPPOMVUsVBqBPejDTp0+3f/3rX069DzeoiSBRJ42LFi1yd/ygVnPppZc6vjx58mR76623HE8G6OOHuFErJF/kmzTAt5m55B0deQQt8HUupN+oFOI/MhEFIgq0HgpEILwFliWSIaQwXBjUUU455RQnTWExD50VnRlTol6vEHcwcJg5dkh0kMr4zs4DfNxFJqJARIGIAh8WBcK61T5O+BdScPiS51E9evRwEmpUPADCAFkAL24BwYBtZgcfffRRB6pHai1MhVQ+4I0II1jkiQHcMlsI2AW8X3nllfbVr37VgfSnn37aXn31VfNqe4D1vn37On1y+CyzkKWlpS7MLl26OL31pHjqQw8+6MImTNKCwOPyyy+3DpJe33XXXTZs2DAbP368czNw4EDHu4nL8138cWGw8/kmDoQt8G3yF5mIAhEFWhcFIhDeAssTMM2WXABpjJd80/n069fPdQBet5KODAODB5TTQdCJIAX30h3fETiH0U9EgYgCEQU+RAoAMNHnRicb0IxBuswuIQgaPH/i7gUH8DV4mQerns8ByLGD3wGa77vvPqd+MmbMGKeWR1wYD+x5Bui2b9/epQG9a1RJAPnrpEs+YcIEpz7iQTJ3Pzhg8ICkHYOdj5t30kk60uLRYXv8oI7Cne98a9Cz58XuXXaYcJzkNTIRBSIKtD4KRCC8BZUpTBnGjT4kTJ9OAsMiTVbQ02H91w9/aG2lN3n11Vfb6tWrnaQIN/ijY4PJszgJt4Tnv7mH6CeiQESBiAIfMgUA4Kh8PPzww/YLbbv65FNPOZUQQDkSZA9Qw8AZUOrBcBi4egEFkmxUQNhlBTAPCEefHD8ILeCdAGjAsueDxcXFzt0tt9xiTzzxhNMVZ3tXeCcXpn///o6PwnPZdcrzXYQeAHzS4vk0aSwQnyVvr7zyilNRYREoAH/48OEOjCN1X61tFvGPXjppIo0Yny7uqKsgdCEOTw/nKPqJKBBRoEVTIALhLbD4YP5Ibt544w3XmdB5wLyZZr1DB/fA/JmyRW2FDoUpVToRFgYxpXvQQQc15Rp732k0WUYPEQUiCnwgCkRtavfI5+l08cUXOz1oFpMDnJmpY3cndLvLNfOHtJqZPEAo3+BjLFTkHaEEzwBqdoxC/QTQiy41OuLPP/+8k24DfOGFbP/HgkcAO2ojqKTABwHQRx99tAPXEydOdGGhJ44hnRgk4wB8Fncyowg4Rk+dNLFTCmlAwMEzYJqdX1ing443Ki+kF3viIZ0vvvii888OKww64OPERZ78LMAhhxzi+Dj66oRBuv2gwCUq+okoEFGgxVIgpgYfcJcWm4UDL+FIuFn0g6Tnz3/+s2Pm7JWL7iFSH07RpMNhKpbO61e/+pVbZPSVr3zFLTgCmKNn6A2dTyRd8dSI7hEFIgp82BSAB7EzCXrbgFGk1iy0BCSjegdwRhIMKEbIAFCHt3GxDgYQzDaBMYHeZQLYSLsHDRrkpM0IH1gHg243AgsAOG7hlWw1iHQbEEwaWFD5/e9/3/FLdlj5zGc+06QP7mlCWLNnz7aN0knvKz1tzmlAjQbpOmGhb+7jB5TDWzlUCD+kHck4u7TQ9RIfF/kE1CNc6agtC6doMSeHsAG42cqQ/CJFJ/+EGYFwXxrRPaJAy6ZABMJbUPn58RJ3tsn6zne+Y2xpBahGMgTjhzkjhWGKF7BO54T9t771LcfI6VjYfsuHFTHzFlQBoqRGFGiFFIAXwYf8PZzF5uzC38PPzQkT8v37d3/3/tHRXq2dSjgwCOk0IB0BBwMBDN/9qZY74pmEyeUFGvlx+Li47+xbOB/h5135C4cfPUcUiCjQMiiQ+JFMy0hqlEqYv++s+mkBJlIdVE447AEVE+5IUrxeIQuAmP58+eWXnfSHKV8k6NjRUfiOwN8jCkcUiCgQUeCjoECYtxG/B7r+7nkUd2/4Bkj1Jp+neXvuPpzwM3Y+vHgjbyUMDvlhn+6hIbU9ALgPw/vxYeW/e3sfvveHvTfYkfZ8Nz6sfD/57nw40T2iQESBlk2BSBLeAsvPS2WYnmXqFgYN4PYG5s4pc+wOAFNHP5yFP0xt+ulR7PMZvfcf3SMKRBT44BTwgIqQora2Y3p6fhUGurj2INXTLsyzvB/P4/gGgPZ+8O/98YwJ++fd81Gew24Jg7DCxpdl2B3f8+3DcYSfCRNDuMQL6A+nl3CxJz/ehNOR/827ie4RBSIKtGwKRCC8BZXfjhi+Z/b538najux8Z+L9tiAyREmNKNAyKCChbS4H+NIMVjw6lXZ3Cy2fZ4V5FM9cYZAc/u7j8HbcMWE/Htz6b/BC755vnjfij2dvF7YP+8Wdd8OzNz7c/Hdv79Pk48ZdONywvU+zDyu6fzAKeDoTSrhcP1ioke+IAntOgQiE7znNWryPMHPf28yEmVg4DBhauEPyHY53k//u7ff1PZYT6KH/javTjukkvlzcnIzJdcr6FsvosyRnujBx3GAjPw3Kg3bxde4TToBFGMqXvPE9ltOevXrXXILzG/1sowDl66V21BF2j/BbrvEtv/z9u79nBYK8NNADD19fw/VqW4w7fqKEVHCWBQDrkZLGLhujpCl9ylJqBrqoLhS1npwbZxEuX/mXQ8upArBjc7Brc8wKGnBPHDggVGLIWUphqtLJoeJKEH7O0oqhMJcSIKc+yqXokVXEugUmJr1jfOMvRm31Hxq/R7eIAgc4BVyL8G1RtHA8mXaixks75J/2RwtXk3MLdQN2HbQ31yYbMpZJxaxebS/OX07bS2qGImh9tMmcFcCrmL3QnYF0Rt9p4gn6DwJW+EFkAVehWOAhGHfDnTPyLwvXjegd/vJxMvCgyHy0FIi2KPxo6f+RxL6nDQ8QFAbdYSlUfgZwF55mZWcDFod6//6e72//vWfF9pQm8RrHP2E6jXzQM8Yg7jBzDBhTYMOvfxIQ1xtAqZHVBl6j3yYKUL6oFQDEc41T8NQBThWku8o3Hlh74M53VKyoM9Qj7L2+7p7W26DYKH3XPQdRq+higOnGMvRd0PZ1QU6dG90ByYFP9+sGd40WOs9RzhRSY6csOO/qh/NBz1uvUBmvZdEnzlkRdgLl9OZxHXbbILukwLbr64W5Cda1j6hjDFE8eowosCMKNMOHZYVt0EfpJFXauxiP4/+0R9pzNmHJjNqe+ItG5HJNu623eFFcwFwAnEEzg2s+wT1wh/HtsilaAtfFv/8WuGz6hc9obqXpPXqIKJBPgUgSnk+R6H07CgAKAD8cD82dRZ+7MvgJA3UPtHblb19+D9geAAkQvg1i5XIFjhE7sYa+xJFY4gIPYqYJgBKPskZaKYjkPuQElpCO8zXhJSQ4jMz7KODLn8NH2CaTnSbG6iRCjN9hIuyJeuVBO9u4sT0dR3SzTzKG7w6chj3txjMAmQLLyD9/SLI8aA5mNWSr8pb1tlkOPbuZE0nL+cIvZR6n83Z1xVUTFzsSMlfPFQ99uZs1EeimCjn1k4qMrVu8wtatWGU1y9dakWmP6PJ21rFvV+s8pLtZp2LL1TNEkJ+UUiEJXSyeNP2q3jlbF0/0E1EgosA2Cjjcq5+g5dJOaJPMarrxrcPKgN8MNmrHOpLUEmqX8bj2YN9Yb2vfWWoblqy0+vUV4vdxS3Yts64H9bX23XuYdZRcUgC9IamWDxiXGB1peVZIntkvegt9CpiAos7GscXoRQ2/Ea67tDk+0sw3Z/Ux+YG3RuajpUAkCf9o6f+xj51GWqVDMn77u985cPT5z39+p0CcBaBIMdmRhf17L7roIucvDKJ43t+NH2AFfIo1aPrfiSPhnCxUBdCJXwKqBNAdkxbDhqXHUAHAmQy8O853fSGkBoes+CIDKAyeot9mKOAHYCwcfvDBB90hK8cee2wzLgMrBmmooFRpf+V77rnH7af8+9//3vr37+8GQkjCMYQbrkeB75380i+6ksVNUI6UJVdc5dvU/QRWQVVwX+lMVcbq6IOuHf/qXqkU6rS9P4B2g4A46ktcVDM6+1htztZNmm6T/z3R3l3wtlXWpa1NOmaFVmDVqYSVJBPWY1BPG3HO8Tbw1LGWK9dR6rWC3oUMEOXfDQCDDp+YIxNRIKLANgow4G1qhTBztcgGtU2nMqg3N4CVfYPaZ1yzUKk6edhYa28/84K98tiLtvq9JZasF7hOS21M7bW2qMES6rOGaDecUecfZz1PGG6xDsVWq76sKKETVSVOFx5XuC4qfonScRT3oFfSI6tGOwTs23qIOP2d+8ZvZCIKbE+BCIRvT4/oLY8CgJ60mBEn2bEFIjq+6O02J9HEK9sf4mfJkiUGkGL/8jPOOGM7P/sbgJMOsDRMGbaXyIl9ugVyATPku9i2k4o6kbccuelKJznBLZ7lpomRBswz+AXWRWZXFKAOAK45nISBGYZy5woDaf/MvVQnF3LC4f/+7//a/fffb9dee22TWgphebe7itt/p7TdDMd2JaZSpGxxREECrFXOSLwTAGlnuKtbde4ob+dQv7KXpasW+nF/jXmKKYsJOatbvsFe/McDNmPiS9a1rKNNOPlU6zF4oM166Dmr2bTVxn3mQtu0crXNmj7V/vX7W23YjNk24fJzrezQPg7E09Mrq64+NiYmukUUiCgQogC82jVJBCOuaTJY1myarGnDqMExjC6g/abNat5abs/84z6b+9pb1q1TTzvrU5+0QT162aR7HrIS6YWNvvgMe0cHJs2aPMNuvf4Pdvj0sTb+8xdaSe+O4jkKA/RNnDJEF/AU96pYhM6xxDjH9D3eIvDkeiF9c8luDCfwEP1GFNDMSkSEiAK7QwGkkFyAIS+ZbM6fB0onnHCC3XrrrXbzzTfbEUcc4QB8c+73m52YMUwZhu0kEUhKYJgY2TkpuGPiAehmsVyg2xs42faL1NuxWieVDcSljeFscxQ9NVKA8ufyAy3/jGpPPtVww4CO+uTrzYkC4cccc4w98sgjdvbZZ9tgDkuhU5WbfAC/S6KrfAOJmWpCY+dHkW/rIwHg1As6TQF21QEHxoWE3d2pnwQdKu/exJ3UTRJw2TkVFECznNW+u84e/fVfbcWcBXbquWfYoePHWUHnTkIGSWuYMtVqMlut3ZiB1qnoEOt39lG28JXp9tJd99sjUlk54wdftHbDByiPohMo30W7LU4fd3SPKHAgU0BNzRlwsTPiC8Ed/oIKikANOtxqP7Easy2vL7X7b7jFKtetsQsvv8h6jx5hqe5tTdNTlnuuwLKZuJWOO9gOO26gDT1rrL098RV77tEnbMvqTXbedVdb0aAOrp0zO5V1CimAafoEOIYshcjdoJxEuKTAUwDiuGpUK8OxZzxRk4ZSkQlRIL9fDH2KHlsrBdC/zTceBAGyMf6dZwe8xdiQggOEAFQeXAGiPJhygAqgru8cJ/3pT3/apk+fbs8995yTiPowvV/CDoOr/O/eXdjeP4f98pxvAN5oFBegHgADbNCbRBppsc86MdM6pTutKcmMdHJhmll2pKjXg/QUHBiHv8qKFfMOgOmZBZludbxjwfkx7v47efB5231fLcOlL09Sy64oXjWFmRPqhZ9J4e4l5NgjMaf+oJZy4403ur3tUU1pkD1hhss9TAlf/8J2/pn+jg6S8ncdJdWAj9w1MwL45pf/bH3G6pSmBnWqNbX1buIkIzfolSL5ogrJWWAEzllLQF1gIRf2sU119tJf77HFb82zc6+63EZdcpYV9Gpv6URadShjaemONrDwq6HKsgV1lmifsIPPGGuXfuvLVrlxs03+031Wt3Kji6chS/xBbOQ9Mh9vCoTLKPz8QVPt+QTh7Mtw9yZdPi07aod7E+YH8uMbI82DS7wDnk/66vUsJm/p1RX25J/usPp1W+z8b3zBBpx1jFmPEqmKSDyeS6vt1luDdkmx9FarVzuNdy+04Reebudf/Tlb8uYCe+Yvd5itr3U8A+l6UmHTBzCLyt0Jd3w6EOIwBGBmDSO3WfiH/NHbOi6REB9Se86/nPud/Hj3O3ESfWrBFIhAeAsuvL1JOkwKoBNmpjzT0D3YJlzeMd5d/t3r5wKu+EaYXBjs0As/7bTT7KijjrK///3vtm7duiadXh+XD9PHGwb34W+EybuXxvOOwc67C2y2/3VbCYr9wQLZiYJNCZ2er6xSlQVWuaDB5j6+yuY/ttZqFgpuizdrDY+AOBtbMLhgoiigQyNrdREEchD3uNs/Pp3cyb+fVdjtAFqwQ/IMWMZs3rzZarTIl0Oj1q9fbw9JZ3ySBmnsiOJ3Uzls2DA788wz7eGHH7Y33njD+QvTy9OQDw7cN4btHOb/uE4yKENflq5qq9PMSIfELa7UtoFF9UVWvyxtm+eut9hGHZqiTjyJ/rcWZkkBS39Kf2MwrvyVJ0xSIrJ4VYMteO41mzlpik1Qne8z/ihLF2mwlxSETyKhq9eUo9oGOqhqG6Z4GzQ6rE3VW9nIgXbGpRfZklkLbPaTUyy2RZ291jEkEL3J+HqT/+w+fgg/4fjD0Xn+ELY7UJ/DNAo/59NjR992REvP7/i+I7/5ceyvd9Lgr/0Vx+6GGwYtAcBVk1J7UQpFJ9mgNC497vnPTbVF7y6yT3z6U9brqEOl+y1srlWVOYFhSxQKIMPfpfOtfosFlvWJjFWXZK3vsSPt5IvOsQVTZiiMKdIrp63T+BWDRuS0aL+1KdY5gLcAN/GDuHGTkgpkIXosJFB9Dzri9HOUY/4lFzs1+GtOcLZTT9HHFkOBSB2lxRTVvklomKHDDDxjpZEDot966y3buHGjHXnkkVZcXOykl3QGYcYB8MFdx44drVPnzrZU+t9//etfHZO54oorbPDgwU7i2bVrV/vCF75g3/3ud+2xxx6zz372s05nnJx4UOUBOOH7rej47tPl0+jj55s32GFw27yRfdMKPGQRSDLEIGuT9vrDy+yZ21+3iqX1siu09oOTdtY1R9mQ8agPKDRxetgqDN/BR5itnh0Ac7bNx7gjW59Gn2+X30a67shPS7X3ZUb6fbkBsFevXm3//Oc/7ROf+IT16tXLrr/+epsyRcBT5fflL3/Z1Q/qA9sZXnDBBa7O3HnnnXbIIYe4nVIA7rj1YfpnaNqsaeo7VXiNnbTTJ5XjbE5DMnWMMQHw+g319uqDk232c7OtckOltenYxk44+zgbdsYIi7ejDgRdveT6il+e5Y8/agPTJZkNNfb6AxOte6++Nvy0461aEm9NsSgfCQH9rDpjpbu2wUpzhdJR1WCvQYtQs2nLFKTU+TdY73Ejrf/kN2zW4y/ZkceOs/jgdlKNYRAY5NXfySPPzRlo8kGND9uHxbu3ay7snX1rzn1rs6OuehOmlaef/+bvnl7cw27C4eS75d275e7D8Pb+3bvx/vflnTh8PD7efRn+noYF1YPdg/RAE4Svq/o3aDYrkQzUJmuWb7QpTzxvA0cebD2OHSE3tY6Rs/sQ+524QXFW7TLBYmi1cAUaqILJZSpth502zha/NtOmPf2CDTp1nCU6BbtqMWMXj2vLXdwregbyybiEWoBvtiJVWBnNilVVpa1MfCQlXoBEPCbvQTrf3353Vna+76XPpQyoK+Gy2FPaRe4/fhSIQPjHr0z2e4p8I/aNnzuNnO3kfv3rX9u5555ro0ePbmL+uPd+YApINVk4N2bMGJtw4on2xz/+0WbOnOnUC9gR4xe/+IWTdBLuhAkTbPjw4c79KaecYr1693ZxedBPZlFL8ACLd/xhF9egwC2yUZxeLYHvGL93K8DdS1mDL9t+kUiwtRxgi8NU2K4wJYnnypmb7cm/vW5b5setLNZTeSuypdMX2cRbX7OuAyZYSR9xzAL5E8BCIQEjaKhfnoFfgL49Az0unWLgMFFmCTDQALq3duPr2VbtsrNo0SIHqN9++22bPHmyfeUrX7Hnn3/eZs2a1UQP6hp1hp11/vGPf7j6SD1ipkQEbBrAQTfK3teRfDrGG6CtyjEuibTqgCqAxmRJ1SvqmKaJpY6Ukk7ozIkz7MlbnrCCzUVWrG3MNi1db48uf9DK2hVbvxOHSJOJhaVSS6HIHQIIZOO5es34FJZYxeKVtnHJai3wOsdS3bpph7N6ywoVVDsPkrLhr1BgX/XP7aiiNCe0QwrW1MlYeYENPn2MTf/Vn23RnLnWb8DRSjazB2qXtAHlm7xTV5oDbApmnxhfTj4w/+7o7i2je/MUoG7K0M53ZfLp2pwf3ITdeTfejjhcuexBvLtK146+N9fGfHp25Gdf2DdX71wTFOIF8CIpyWqmibYs7Csj3qBtQONqrsvefNuqtUj6tDNONytTu9HiDfmS9Fs8lzIS6hZnCGZvJbGOJ1Ia+KrZaZAMyC7o3MGGHXO0TXziSaudvcTajBusPkEqaHJHgxbrtrj6CPhLhv4rW6jBfNomPzbFXn/5ddu6eat169PNTjzvRBs4eoCTsqtyNJUpqd2Voa/1fWO4PuzKX/S9ZVEgAuEtq7w+cGp9Y6aBA3Y8EERCiWTyrLPOsiuvvNJJrPkOs8WPH5FjV6et5FauXGnt2rWzZUuXOgB19dVXG8CKfZ7R9/W7pLDXM7rh7HTxwAMP2Ne+9jVJHxJNgIJwAeDE4ZnuRu0vDWAjLgx3LwHgjjSCO368m/cRJuCPmhoMgBigRtzTCtPFNm/yOoGmrJVku1haYZOeslhXWzKdFfJvWY9MB6uL65Ah+Y1J0uGO+3GqKSAwpUeSTKc3vgdA3KcTenQTUHOH1zTmzwXain8oJ8AkqiionUAL1gr01oDsIG0LRt0bNWqU6xB9mVJ/LrzwQree4O6777YRI0ZYhw4dmgA4dWWtJOuotPj6sz0JVa76w+R0OipdLnrccU0TN0gKHS+kTkktqarY3nhulhVsLbKieIlTGSkpKLENm7TLyXOTLd09aXVFaSfhQoLtFn9JbwlJdXmJ9jPv3NfWvLfM2mggd9igQ4QDElZcp7qW0kALcRlT49qyUMI1DeMYAJTKLm5F1KcM6ZNbOevds591KelgKxcstgH1R9uS1cu1ZWNVU36p85425Il2g/H1yt+d5Qf4IQ6uMNin7Agf+8hso4CnObTiQCrKaGfGu/f3nbkNf6OsGbhTDhju2IXLZE/DDIe/J89h3rsn/vbG7Q7zJIFKAqkzIFx8PYM6iC5UvcSurXdZT1s5b5GVW7H16T1EUp5CbUkY9DMiHLqGanPqC3RjfB2rL7A2Es4E4mxZ1ulSnzT44BH24sPP2Oq5Sy3RNWHrt25QaxWUV7PNSqXF9QsKp0gzXKnaQlvy6hJ7+d8vW3ILc6spe+edBbZ5xQY7YdMJluhVIJ4hNbRGnhSmx87alS9jdhmj34AvRqZ1USAC4a2rPHeZGxq1b9jcka4hhWRbuL59+xpgGjUTvuUbzyyqpNNbWVnpOuoZM2Y4EASguuOOOxxYopPALR0FI3l2uzj99NOdbjgSzUMPPbRJGkwHRly4zagjQzqKNB4dcg8EfFq4Y+c7At693fvSquSDcZimdHCM9Mh9SbrcOtQMtUHJMy0uhhaTRKRWq3gKUHXIFNj//fxXtq5ksaWlFJx0ohHpDYvdNjCfiGGRX/DES9PT7jxAk5KSEvv617/udv5gb9rWbHz5+DxyCM/atWttqQZu8+fPd4M41E0oe3ZC8fULUE05o9bE7Mldd93lBnhjx4519rhfJhWo73znO24vesInrnzjS8ftfEOpCSBLcKZSU4kKmMdjKSuva2fDtFtJ91gXSbA1nU091CCSsnn+xVfsz0/darUFmspWuQPCAcxZ6XI3yH93bdn5P9/9iSToVWbVaXvurgcs86hUuCR5V9BOEyqp2Zgidcmr5iyUxKzOnvzDbTqYh7reYMWpIouRoIxmR7SXcW5jtdVVVNmdt91udzz8T1u1drWjjaeLv4fzyjP08G0lnwZ78048Pi78+/j8fW/CbI1+wjRiBhC+BI3C9vn55jsXZbYrgzvCxC2qgfBVyhl72gj2O4trV+Hv7ncfB/F6/uvtdjeMvXHXXP688IO2iFwFgbgbywqEw+sLc0kbf9DRNqygp6TRlfb43+6y+rYpQWLxcLXhrKTR7PldoHUcG9/RgT3JTfbcr26xbAnhqb/SlipxTZUVNgg0b9LiTamWPHTPA/bwrfNteeVKK9TgO61FnUynKTp34q3VxKxrrJsd1mGYdct213qSBPJ4Deq17mhxhf32pzfanK3zrSaudS/vZ1M7JA35h95czEz//Oc/d330Dj1EH1okBSIQ3iKLbd8lGsDx+OOP27Jly+x73/ueO6mQ0D2TReIIM/B2MAQk4HQIAHAk4gBypOhIOS+//HJNtW/T3UVthP2fDzvsMLv33ntt4cKFDoSH1VF82HQspIPFeIQJ0+dqzvhvpLM5N7KVNxhlvb6r44JjikHHJLXookU4bcsOtR7xUivNtJHEO2k1iQ22rmG5Ldrwjq3buFggjQ5VzUOgS90qP/Lf2HHqW2Ch224aT08kWuhGk2ZoT55bm/Gdp88zdYa8ogc+dOhQ+/GPf+zAOCdqDho0yH74wx9ab52QCU1wy50w3tXevc8//7zTCe/fv39TnSRcQM+KFSts1apVzn1zNESZCONOumysRoGNs5V9zDbkNliX9h2srKjESlQXNOHsilknW9u6Tett6ZZFlolrlaYqAAI3TZvoh+0JVSc0gEtX16j+SL9cAHv9qjXSD2cAqg5fO5wklZck4F3T17nNWxS2Bg+zFrqOWMI8haA/pYvqVMiBIpXVcltv60QXBiobNm90efN05O6fPY3Iyf4wlANxEQ/G8wCew/a8H6gGOkCnMPiGTtjtL0N5+DLh/mGXBfFh8u/7Ir8+P4TFc7jObR8+aaBewpm58x48sZi6V7KD9e3fTlojWW01uFpqIvqmWakG8fM6CXqS8lKidUHxynrtkJKR1HyBbdUpWwzKY9o5JSZJeYFOVk5UM4OV0daicavWzGx1daXVqSNxeaddOFIEfUKhbbZcjXiX+kU1c8Wd1oCgSDMkOgE3XWsbayrcwF8J3WND/WKmZcf02OMgIw8fIwq0PgTwMSLuxzEpnnl6Rg5wfuWVV5xqAEDZ2/u0e3UU3sPfPvnJTzqJNWBh06ZNduKJJzowhfQSd+gRIlXEP3rA7BeOJBM9cgzfSIt3xx2355xzjvXr18+FmQ8EnMfGH6blYErE5fMU/g6DZiMpsUPpAErqiSSkgSnHlBVmdBra20U25/41ll4md4k66zygwU4751S7svdYqyuukDqKpJmShhCCUysQY80hCYXz7gUIJxhMkdRRhonOGAYyrdWE6wp55L20tNSpI7GIl1mTU0891a655hobOXKk9usNpNC4A7BzUWfc4FALezkoyhvqSv/+/e2mm25yIJx6k28AyTkhXb4kMrC54B14lAMo6Z4UoC6S1MrWmr3+yAxbP2ej6kjWqhPV1nfEADvrE2dLioYeSQDCc+rgG6jTir9BYrfy8g42ov+h9s7iZy3VvszO+fJnrPSgPlogpg2KFR8T5kSE4OzZX//dMjoV84xvfsGybZQedfoxAQBDF1UAPLOm0u76xa8t2abUPnfVJXb8WadaRVWF6qCm29UJ0xFTz7mgEXUnpQGcH/DuC+BHuITj6e/D9G0tTGcG1343G2W2VRuvJucz6emAPWpzDAg9QPI8y7v9oHfKJGx4Jy4G7zw3z/vCPvbds1+jQ12kjuyruH2d9iklX9RvpP8+jm15hf+qDWiWkhbGSbVIx9kuFEELbfqgrgNs9v0v2Jp3NtoF3/yiJXqXqc0y+6UWCQLX4Dmx2ezhX95snaVSdsy3LrWMZrcQ0sQF1t3JyRqFZxauszv+/Gc79byT7aIz/8tWb9XMlE4AYq+kOOuNFF5G8bJINLYxZy/f9rItn7bG2he0U1hS28zVaRatzi757OX2g5P+x2r0x+B7d4zPN/WJ8maTgx49e+6O18hNC6NABMJbWIF90OTCzLyhgVdUVDigg5SybVsdYiDjmSLftzG/wJ5vMGN2uBimreSuuuoqp17B7hYwC9dhyQ07reAfhv3Tn/7UMVXuPcVICNMvOMEdYQLKsUdl4bjjjnN+fcfm0xS+h/OBfXNGrFHsUjgHxicxplin/sSsBYrsZLNDOlTYrT95wTr3bWNf+OlJVnK4AFlK0i25bRCDVTdHpuVYocDs5TswnpNuo2Xjh53eHO2gUSNjxTF2rdWEywggB5gEPDO1+tJLL7kdUQDgrvwFKrjjJy1Qc68WCd9yyy12ww032HipMGHfVGdEQ5bIHnzwwTZEknVAUTguT0/1k67EWKAbGNGaIuVH/+yQkmSbMgU2pNdgu/2Hd0qCnbGvXvdV63hSR7Nipq9Vf+QDD9QlJ7l2EF6AWOGq27YeQwbas5kaTVevtYM7DNIUtyRocquT6rUXvaRu0jndWqaDQbRgM9e52DLaI7xB52UnFL9IYiVWaiuWLLXV6S124tDBVi7d9yO6d3DggnSTt3A98c/59rj9IMbTMBwuz5Sbp7GPe0/j8WE3529vwwyHtbPww+4+6HM4HtoxxvMp8hH+nh/XvsgnYYbj8GkI2+XH2xLfyQ95e3++aL1qj8xKyg1LLmidAJkGgWvaKIutqxessaVPvWprK9Zaj2P6WG26Ru5UXlpcSQilqQar1oLNTHmxWfc2arO1arPaOUX9kcQv0iYvtjWvzbKqgoz1GTnEygf1sF7x7tpaNOAFDI7d+RNKRkODdtjKFiiYHnbHxrutYuFmqaJoDUx2o43RAUCfuOJ8s446SVr9SlJp3h1DXaFe+ToFLehboce+qke7k47Izf6ngEcV+z+mKIaPBQVowJ5x08iZ5sIgefCqEb6R+86Fhh9u/HTIgCrUCdDxRUrpGQbSMQC1Z6Ac1IN6CaC9j1QOfNg+Lp8Wwvd+cOPfsfN+fDr83RPUv29/h1kK6ODI8T2k8mKYurRDs+y0uK5YB8Zov+YqTSVmyiThSFSKqUt9RQzUMVjnV4zb+deP0sgzW1ltH1dAn53ZuaDk3+eFd8BNazPh/IXz5oEcdl7fv43UlFis+eSTT9pKqZZg8M+aA/YIZzA2fvz4prpAnfNuqGMYBnHQvVlDFQgbnMkupjiCRVgCwZJIm1Tz69TZ1uV0MIf297ZucqiFm3USYcc0i+KQd2NYgt4uELryJKI3NZ/i7p0s1amtzZs+02xrjSTvCjOrE/kEurUjmryzO4sk33qOSac0rlGhWxyqTtktKlMbXP3GbCstL7X2AyTtwo+C3lG+dlbPPsg3T6pwGfIMjWnfhO3vexqPD7u5+56G1Zz75sLdl3aeJtz95Wnh34nPPzd331fpgSf6y9NiX4W9q3B8vnblbm+/+/B9X7DTcNRGPAdlhxT4sqY9EWhbt4E9rVDt6d2339U+/toFSWg9BV8X7dz5ERr0M4SqZ1Qtpt4gf2m1S5ZwY3JaFP3evDnaZrDMigdoFk5nvTW43VA06BIAZ5E3tM9IFS3hdj2ps+7Dutt5V55rbbtJEq7tR0//7Ol26hWnW648qbWg8BIXdLM/vhzDd2iAgSbY0w5bY5/RLEEOIMsIhB9AhU1WfSP3Ddzb+YbOnc4F4xmi9+MsQz8A8GoBJk7HBCCh883uKLjHoPv8hz/8wS30RFecRYmEjUTTG9+RkR6e8+P0acE9bviO8Xcfl7Pc7oc8KB0w5hDzE+uUSoGguezTYp61MDod4MA8YVZ7zLIAUzzWSVBzknAoIoWDe99UCCwU4HZx7viF9Ho6cicvMNXWbHzZkHcPmskvutwM+pjSRjWFbQgB444ucnvddde5hZvMrvTUDI0D8Kob+XXW05F7cxeDLn0JissVG8/qpKWjjT36324LStWFDDqh6ohZVKldCtUpA6BV9pQ/VUCG0qIWUIewzKFOojUHhToZc9jJx9qC6W/a8ulzVZW0LSGhC4HHtF94XPUopvDrBeqJB+/sUxxPJ6xNsszWz11ss16eaoccd4S1O7iXQhTIaqxu5MvXdUW2ncmvU83RYE/tiIBwd3b5ROxp2C3VPfnNTzt2HhDxLWzy3fr3sJsP8gxP9Fd+3B8k3F35Ja79HW84jubTA609Lw7mJtVCXPkg6QZEwyfKB/Wxg8aOVLuabDVzF0mNREszkVjLrZvZ0g5JqKulXBvXjBjgXX5p2yXaSWX1a3Ps9Vkz7aBxR2jb0XYC2+ojBPSd6gl9QcAChPklPRcfixXKro2E6kO6W2HbQisoK7aDxx5qZQPKLSdBT0zhO14UypQvO38Pfdquvvm2SH0L89Gw++i55VLA1+aWm4Mo5XtEgXDHjUeYKiojSKZhXp4h+Gc/BYZb79epnOgdkI0pKipye4X/Wfpz2KEjyXXbbbe5/cPZDcSDKcIAsBMPz5h8cEWa/De++2ffAWDnDd+au2QpjwJugkP88Qq4RlcYcMT2FWKNcoJkktBwX+R09tDbo191a/B0B7Kx1zP+cYY43QW/g7ibS4/Pr88rNPT5IvbWZJrLF3bUMwzgmzrA4I1TVTmMh2/QaIa2Lrz99tvdVpmsH2B/eC8B8jTk7gGQp2OzNHeFROepfwFtt6WY4o9pe4ScJGDu6HrcUL5KU0Z7BAfSdtqBW6Kp2ZPGgZIreyRg+qYg3daXqii5ItWlopiNPudE6z2wrz1x90NW8+4GSd6KJQxXXZP/BkYDmipPpgTKNfhglwbWG8QzRZZbtMme+dcjVtCuzMbqyOycVFXcoFA11ecRmmHQhc83zeX7g9gRvm9n3KE1V3OGurwnV3Pp2hP/O3PbXNj7ys7nPT886iW0IV0YT6t8d/7dh/NB754O+zrcXaWL+Ih7f8e7u+EHqmFKNe1bzJmDeJC5uBMxS+M26vyTrE1JgT17572WXbTa7VKE6pnb5Uju6jMaFKvdw8zdwFy6Z0Van7HlneX20K3/tNIeHXT41rHuaPuk2oJTa1R09ClOgK6I42rbiaQEN42Sm6r6Sk2OaUZNjmOlajfiEZx+CxchX2Hj331+8+/hukVbpL55P+FwoueWTYEIhLfs8tvj1DfXodLAYa7hb9hhGHnT8P03nv3CJHTI2e0CdRT2dD7jjDMcmALIsA80W8tx4ArbEvqwCMczG//M3T/jLsxo8uMOf3OB7uAH4OyNukn1kDBAQJQYLhJupClCU3EtymzIaiGdwBUSTBht4DRgmFmBKPQOvQm+Kb0BF/bWu30nn5jWKtEIlyP5pF4BsAHLSL8pv/POO8++/5//aeWqPwMHDnTrAHBTpUVuv/nNb9y2hFdccYWhrsJuMoQRroeE4d93SsegyJUKZFzbLtJF+bGRWAodEbnjUCe32JBpa82GxKRXGtciXldPnAc8qY3gWHVHNUn9eZLulm2IraB7mZ36pUvVOTfYo7+8xVZOnmvFAuLxhC65S2qhVzIrrVOFmZRdYaLENs1faff87822eslKm/C5i6zNoG7afUFSNRb+qpr4PBI9Zqd5DZzsk1/o6y8C5Lk549vt7t73RRg7iqu5sPenna/n0IZnTJhm+ztuH+f+jKe5sD+qePPT4nky/NzxbDmgjacEeF3PJRWzoiE97PTPX2KLtd7ioV/dbJt06E5BvFzlhW4JizA1yGSALP2VAkH00lyxrXztbbv/xpuc2uLZ13zOSgZ0C1gA4yzHTzTwVHmzbkjdRVDmmraKx+EVzBRo8CzVk6D7kQcJbBK64DPukKD8jOzk3det5uraTrxFn1oYBdQDReZApIBnpr6Dba4Dwc7tWiIg7qWY0ApABaNj728W1rG/OCvZAeUAGcJm20NWdH/xi190YCocz4dDbzFA8VcmEOGeKB4kxDXhowGQIhVINfVNTJL8JFDwRUG40bAbRq6xgyWsuDubmA4Xe+8quu+IAtQJ9vlmoOZ20hAIx1BnHChXXWFhMAM+JFIcYMTagSOPPNIGCJxT97y0kfqDO1+PdhTnjuwFK90nV57Bo4qUChKkiQJ1dUNpTDZ2qPSyTnZP5dDoCxfODyHJPadvFspTnJGZFnF2GTvYzkt+3h7+7W125/W/sWOOP86OOOl4K1A7KKlSPBldm7TdmLbpnPrSFJv50lRLSG/1/G99wfqcMFxVL+7CY0BItWtMpkt39BNRIKLANmwrViDuDU8OqELLRJUEPgOfcIs0JQ3vcdYYO1MztZP+cKfd9d+/s8OOPdpGnX6CtSntYMXaprBNlXxtjlnFzLdt2otTbeqkSTbg0KH26a98ycqG9w/UwlBVcfwe8N2YBkUL6HeQn2+kgzYrPsYWpUjI425BCOlznnWLWjTUiMz2FIhA+Pb0OODekDICgJoDN4BppG/F0uXmFE3e0ev2pry8XNu0SedNAAnDd5gg75dccoldfPHFTYcL8O3DNaSJC5BF3IEqBE+AaxgiLJS9wAOpNs/ogNMkQF0Oors7P04NoZHTRqy0iSzve3B1QOVPvQKEs3tOAepHqkd888BaDly9o8OkDjGAYwbl/PPPd+pNqGIAwDHUJz/we1+EO7Vwpe1cILum03b9YKN14wxyEIJeUFdh9S7T2lRpnGGQuuGfd8JwRi8udVQGLmZXChPW5eiD7bIfXWtv/PMpe/2VafbKjNesfWlbK16V0d7DSbvtR9fb2i2rLVWYtEOOGWnjLjnHSg7tqQOAFB4BKmLij0xEgYgCe04Bz39QOUsLDNdpgfWAUw+37l0627T7nrYZL0+xV6dP0WYl7Sy3ttqWLF1vc6/7ni3VPt4pnRVw0iXn2RFnnmDFA7tq4b5At9qka/f6oZkzCEf63tDISPhGz+J4QSNzCFToNJAO9ByDTASeg+foN6JAiAIRtw8R40B8hGmhJtCcAfy47wJKJ510kgNSfoqcbwCq8BQ52w9y2iaAiWPGAWJNTPFDB+HkKABOSk4j0IYTYhsAbb66Z0C5LhgrDDYwsFeYLu+4DDgs0J1t69hhI4Dqzln000gBX+a8AqoB2NQBDHWG+uIXGPEdcM5grVD7p+OOO2Gg8uTdYY9OJv73xASzGOo25c2pn+jBlWejOMvpicuOGRK3faAOypEDp8/JHQP4DmoRPlFRCeypDYBznDn1LK2pQF0lV5gVqO5u4755mQ2/+BRb/uZCW/vGO7Zq9VxLb6i0Tod2sTHnHWddDtdWhEP7mpVp6zKFQf3KaADAAJG1Yj5+PUUmokBEgTwKMICmjcCzExJT0w41gSR+opakj/wViW/Qauu1yLrwyJ52fP9LbOSFJ9r6WW/biqnv2oJlr1ttps76jznMjtNMVIfhQ61t/y6WLU6Y1mY6/s7caSO2DiJsjDfgA8SqeGn3euRQMC39UPwsy1bfx9GcgRPnLvqJKNAcBSIQ3hxVDiA7JJGAHH8PZz0MngBMYRDkARVuuABMqKe4sPTOd++fsMN+w3Hsr2fHlgHXMo4PgsS07wQyC/YAR4+wQSdnNmirwmzjkfRZnaaJpnCYbzpmild3hD1MH0geLCJsnKPUx8h4ClDWDkTr7kE035xaU2NdAbRSN3wdYm/4sPH1BuCNwV04rLDbnT1TViosJ6VyZUo5hoC8G3QRgD6y2AogTL/JO0fdI+PCX0ISbHWp6liV7kb/qKBk6fUbF3mqH1Z1UCfMg/RCkx0LrLSsqx2s/YUHjD7cnpv9a1tVscWGnj7GBp5zrMC3unekbL6fVjjsnoLuqDvhU/EEU+BKQGQiCkQU2I4CAWeg3crQSNVccyBg+hpmsxjI10tGndIuRBIyAaVz5Skr06xT+bB+1rvfclv4xruWrkzbqAvPtNJjB7lwWKifVOfALiu0daeuqDaZEb8iDtiCO3eAOBsNfoKhunif1nlmlI6UZsWYVaML0jyzVB4JvjGh3mN0jyggCvi6HBHjAKOAB8UAJp79e3Nk8CDauwEk+cv7R8LJIjoujP++q7Cbi2/f2QGcAhNIM8VHAU6NxjFUsJYD6DBJALrcNDFYOLu3wLLpgw8iuudRwNcRrL06SfiZ79QN6g13TNiPt3Mf9IM7TDgsZ7EbP1pCpeKjgGXUG7IjSljH31k31pCcpFfsiMJmKEi2vMF3MPVMDdIb33SxJzHzR4FEDD/Kiy52QqCzdZ2+dk5BzYQDPmo0AEzHtQi4SDWyWF91WEjWibzll8hULwscANejaIQhHCT4/sKmOcMAwV2OnrgPXDZSVy+EB93Ji3t02QjnK+vp1BhBQAHyvI0WzcUd2UUUyKeAkx2rPlHVtquXeuf4eC5OHc6xANlt8+laqguGaki9zGiBMt+DOoq/oI67ekr7I+ygmQTtRxZxTsNsBM6cZulOo1WFd4qIat+cy1VfojbJFqRaf8Gx9oWlhZbmAB91Wxm1U07UdHrlCtu1aVRKlF7WFLnm5VKpH/oFTYVx078ufskv1tqONKlYlYTgm5x7F3jAcNeFe0cHwm/sfMhd1OoclQ6IH49RDojMRpncRgEPdvydL77z3+Zq2xPuvFt/90DKvwPWvfHgCdWUj8IQa8DvUCLgjV9UBlApCFhcUtLtRKO03NnAwGF/6gQAb8Ap509+cEZ42CX1wm4akWmeAtQH6lJz9QmJeNget/7y9t6NfycWX5+aj7F5W8pSXa3iU5mqvNyx865zdgG6nQA59dIVufagzGQAA3KHhexxzxHW9ZJlucWXckrHTdFnGvcaBzQ4H67qB8CDwzwY/gUgAVCsd6H1LAd7aC96jSjUUQdu5ZB/50aJ1IPekKBh6SrxtruLS3YAEy7eaV7U3Qx3pQnaOY9a55GpqdMpRAIz3Gu1+3itjhuvl4xPFwaX7tAi3YgOw93Z6wHSYMhfZCIK7C4FXPsX6KUBUHOoba4tU1nVfrhYf5ERAGfgiytmuvCHB7d1qPOnOkxtbLRXs9DnoG3ghybn+TDxYOfaPPXWVWLZyRNtGgELwNypG+p7XG1RcFwNWqoqwtl4IR68uR6D0bj8EC4R0YZzSmM97Z9PeJA9bSTL4Vy86B83bo9/HeyTTClvkopzNABZx5CVIFCllWddyNF9G8PKGdq4f47urZoCkTpKqy7e3cucB0GOCeZ5gXl6e69S4O8edMNA/baF3i13gJOXYIYBVV4UH+prIy/cFuf7LLZ9ip72HQV8+bNoKS79aV8/qEPh+uTrEt/9hV+3m4rrtXY/TXSmGQHwAgaHQqlsH4buN1uMUewJib9S2ssb0FtXB2BnmKaOms5XPaADAOoKixJaqAmgUDoScY6fV9+pjthNM9OJhuuQnt2r7AEadK/0tJwHVcjgTdJuEDZ6rA5A6DMDPA94/exMVmnFq9tGLRR+INnHIgAjkATJIoMNZqPo0GvS9drjR/r2yk1mi1LJAbGSvMcFCpKSzOd0sEhawAFQwiJQdpIA9ANVMChkkXbfpoM8uE/RT0SBXVIAAbdb0SipsseraYHKuIB5UvWftRRpDQTjiQKrVx1kQojDKDPVan8ptQuh2KwOzUqpkbG4kX6EEy0TaQFnqqjqsZ+5CQQlQRtUM2psbwqQFxnaGaqHVHAAuGsveq1TWnwdL3DrOXCL/6C/k1NnaJfOnxqpW5eid9oY0msGEPVuoMEgol4tTuqMYg4JjTqk6ahnwX8AegH8JOYO4UrS5oLGJv4BOteYnK1QiU9hcyPpAPDGLOgpMq2ZAhEIb82luxt5A+jszPjvAQARTBF38sDaMcfGd+xx6+0IE3dhULWzeKJvrZsC1I158+bZgw8+aBdccIENCQ9F7AAAQABJREFUGTLEZTg8UOMk1Y0bN9r9999vZ599tnXr1s0t7gSkU5eoY3ti6KDj7HYDakaMJpCKEgkbmaQaUlaxqMIWTn/HFi14z5YuWCZpccLWLdlgj9z0qA0a1c8GHjXQynu3lzRL/tH9bpQ+I4FWX+rABOlxnSV2ugIcK4m0ossqvfS3rmt37QP9VLmWXYPS4j7pKx0uoWzf6TJQQOLNVDim0fW2SPSNYQY+0U9XLBpIJJW3uqWbbNZLM23xzAW2edUG7Vcu0C3JX2mncut78AAbOG6kdTi4n+U6MQCSf9E2wUiC9GMUFVPxgA1milxKfGIDF9FvRIGdUEB1Rs2Oth2j/qouIUnOypKDqlLaCTalbQGrdeJyxboKq6tOW7JE+tqd21uySztLtBeYVfuk6aKiQdVzgFlglhEvB2XRnP3AtaltNLYR2gytqnGoHah5kFqlwzVR6reTyDP4pI3JgvDkhHD1kQbg2h3tl+9uxtQ5kEqLVGUCzZdgsBtvYN9xrYvanLHKZVusKF1khXWFVrdGhwF1Un/ZVsN64ey00h6XcjhhofIW1xVDrN7Y7uAZGIbSCXiHe2u0dM/RT2ukQATCW2Op7kGedhfYAKJwi+RyypQptmjRIrenMweq+DA84AYwLV++3B1FzmmIkTmwKUD9AEgvWbLE7rjjDhtzzDFNINzPpuCGxb8rV660b3zjG7ZVB/dwT6fTTesMCCO8G8+uqMr+764nc+hWh+pIKpVSb9iwNWdP3DfRXnn0JWvYkra+3Xtbh6KOVpmrs6GDB9n65WttzoxplrinwCacf7qNPWWsFlqqk1V/yUE6Tt9UvTbS7SYDOHbRBXe6e6IFrAuNWFozADkB8Di9sewycot3J6XT3emWezu9Ix5H73zbbj1YyggVOPgut0jinX6t8qljh8w2VtnMh561p+9+xGJVGRvaZ4gNLutl77w607r162FJZeCNR16wFx9+wg4+8Wg7/rPn6YCgrhpkBEH7XwdMlBknqQcJKK7IRBTYXQoEAzu5Vr0JDsCqV51NuXqb21Bvbz0z1aY9/aKtfutdK6iq1xrlYquWOLy6JGM9B/a1o846yQ7R4mVXL8UXYpKOay5K7UWVUSg5IbRKlXRNi3bnTdD0ZC8Y64A4AFvu5BAw7wa1esZfXG2SdkkDdOC3sZ4TCxLuQHouh7JnQKpkuDjB67RcdkApiGm7Xg16NyxYY1OefdVmTZll6bVpy4m/rNm81n77k99a+/7lNmLMSDv6pGOsvFd7FzmzbG4mTTwhpVk2DGAfAwAnpS5iF6Ozjn5aMQUiEN6KC3d3swYA8le+H+zD0nCen3zySXeNHz/e7e8M+AYccflwnn32WbvvvvvsZz/7mQ0fPrxRKtLIafIj+bDfSQZ8LjIfGgVQbaBuIB3bWl3dFC92XtKNJJyDfBi4Pfzww3buuec6sI4922juqTQcoIvgmd4cqXRK075b3t1oD95yr815Y4EN0zaax4wfZwOG9Lcl8xbbymX32KhTdfjUkb1tzbIVNmniJPv3P+63FQtW2CeuONPa9CnT4i1J7dhFh8AJG6PHoDo1dp668QnYwbS01LJ1ip70sV16AscuWY1+AxWUAAw4FRD863LT1nTJAhry1WTAHfqXAySMunS6Z93iTfbyn++01559wQYfcaQdff4Z1rPfAEtLsv/e2/Nt0ImjbMinjrd1y5fZmy9Ms9cmvWTr3l1i53z1Cms/apClhSdShKVgvb66O+EPi3DkxBuZiAI7oYA760rfAcCoaQCAU1I/2fDaQpt020P27hvzrKR7Fxt3yolWVFlvrz/+oh094Rhr6Fps77wxy/59w032ngDtMZ880zod1V+LHCU1po9hRKvBqTcOlHtGDjp2jYJ2Q/vDnWZzZF+vTwWybFCjQqKusyulCs7ORwK8qLlQv/Gui8cm02jvbN0H+Vd+APiF9SVWv67OXn9ymj31yFMSFmRs0EFDrffIXjbrldk6G6Cj9Tuyjy14b549d89zNuvF2XbKeafrsKBDLVauWT3xhRQHwylSHabrkg7wD+JnuLBdSpqSFD20PgpEILz1lelOc+RBNfc9Md4ffgBSdXV17hRN7AFH2Dm93UYgPmzYMLvxxhvd0fWoHrBrCm695JNwfBq8lJ074WBw5+PEzg8E3McP+IN+r+PRCifYLUW6hx8Cz/P54+7z42nwAbP0sfdOfn15+sRySBSSMi/d9gf6/PGPf7Rrr73W7r77bvvud7/r9g7HD/XA1x9PNx+uD3O7e6iKs81g1Zoq+9dNd9vSeUvsossuseFjD7dcG0m2JUSuT9RIslyjAzqkQN3ZrGvHPnZx/8ttxLS37KF7H7bsn2vs4q9dZPE+SKCl9iG9VN1kqEvSDdUTaiHqTyVlozIFOqiAagYZWdU518mz24L8JV2dlky7sR0CtPlTDoPp+yBk1ysHsrHg10nB5ceBbwdKFN6qanvp1/+0N+fMtLM/e6kdOuE4y3YqkeQ9qSn/enXyAg6FirQ8ae3b9LIT+/WyQ4Yfak//7Z/22I032wXf/aoVSv0my1Q5GSB/SgftGXr75uJp7tsmLg9ks9O69wEJ05JpHSzGp73TJpJSkYrbimem2X2/+ZsVp3RC7FWftV6jD7Pi8jJbLbD9+qRXbMBRw6zrKaNs9NoJtvSN+Xbv7f+0JbPn2wU6TbbrBAlxtIMJLUDV0bWjoInR56DWQctTm9NH15wUL0Acpu6qs0uI2qGQrxtY6ht8HxDPsNOdk6HmQXNCCi7roK3ij4EpvIs/ge+E2m+BUHN6VZ09estDNnPqGzZ67BF2pGaWOvXuYgmdwrlUA/gOOpFzwoUTbEzNaFv73hp74enJds9f7rb1K06wEz99qsXZJUmJY3tDx0ZIf9MoAP6h740mn296++jeOiiwraRbR36iXOwmBWAs4YuO1QOccBC4wThG5Dhc8AwgciBK35FUeoMd12GHHWbnnHOO3XPPPTZt2rRtHbr8Ob+SbBCmc69nb3ya/Lu/+07Jv+/t3eWHLInzkZ1wvvY2zN3xBxALM1NmD6DDgWKgM50zeS7RSZqYpBZEsR3Yli1bbP369VogqN0HVJc4tv7EE0+0Rx991OmR4xf6OUCoO7TDYO+foW3+hd6mK2rtehJLx+ylx6RG9c4Ku/TKz9iRJx1lWQHwTFL7xDdIuh1LaeGVoKemvrMFDVYbl/S9LGmjxh9pn7rsfJv32pv24j0TzbYCqFlkFUiMmcpOqzLxh5RNGXRp4xEpm5t6VnqdjrXSyEFPwiUB+GZLE/2DGFQbAn9KsRskuul08hnI+1wHrTeWk7nKiztJ3zjkdfZjL9rb0960sy+/2A791GmW6VKsQYWUVbQHfk5SxGSKxZfUN3Z3aLCaVM66jR5m5159hVWu3WwTb/mnZVZsdHsZe+kidCOppMrt7iJae0MZ+vqcT/MD6R067El+Pf3y79Rjb3jmCvNj4mjOeLcf9T0/bU6fWXWNus1CxE3T37Ynfne7devY3T777a/ZoNPHmvUo03aBWdsqBfE6tbVq1dfaIvnp3sYGnjrGrv3+dda1vL098oe/29bX3xVAZpEmCyG1nJGVnyyMVAQphc+e4EiR4S+uPIhYlTfL4g+NIJO6stm0k6Q7SuNWicZ9QipwDtDL/bbZJ31T+2NgrIhcPjgEiHbakNUQfEuDPX7HYzp98w0798Lz7KzLz7J2/dtapo2+FdDWxQ2Un/oCbUnaPmu9R/SxSz53sY0ff4I98+gzNume5y2nRagk0+10pNSQLpc2LBvfKPZw2eqDyx/3yLQeCsBnI3MAUYBGHTZ0JOHOhG87YvphfzwTFn7R5UWHd/myZe7uTkLUN05C7Nq1q91+++22tbLSufVMxauuhNUMfLyOkTYyVOKhQ8pPN/Z7ZeBsMk7o4DgfnR4MOQAd+yyevMR5aa+3ZvZgf8Xl4/g43QHLfsbED9oA3tdff71ddtll9ulPf9q+9rWv2XvvvefqH3WntrbW7rzzTqtS3YJ+1DUM4YSNr1P5d6RXGflBH3XF66ts2hOTbeyoY+zgIw5Rpy/ozDYGpEtnUzfUF8it0HFGQLxWJ3fKT4Mkw1WxrTbkmINszHHjbOqz02zVW+usSO6dXE4AgClytwODOs4C2bKloetdXdwkVnVLaXe1Tvd6gXxyUSMw7Jyq7gG6ASs4CgC4kqXpe+R4HNyDSgtJBXDTQSMvF8JwB/tsfWulpGzPWb+jR1i/CUdapdRl0kIkOQCIq+taAJcWYNGuLqyWi7ETg+hXq32MS0cNtDHnnmHzX59jS16dIzATpFOxqj0ofWoYCXZ4UKy0SU9fUuHrr7c7kO8eMO+KBtCtOeP5Ht/CvM8/ez+EHzZhvs3zR3GF0x6kjZpOfdZAghHq0q328j1PWIHq3elfuMxSB3WX/rd0xDXwTUgyndM2hQkB3BR1jbqtLTxrU/VWPKyPnfyFS622Jm1P3HavpddsdWA5q5E1e4g3CIzrXHq1A7VFbcZP3aUdsog6JzRdr/BpUgBnVVwnwWb9BHwejRbU0zIaBLNyo0ELPjO+X6BjCGq8A8jkiRbNoFORynWhzX1xpgD4dDvlE6fb8FNHWX2ZBrhFCkvgGyCf06Cftkz02WTGqlNVZt3iNuG8CXa41O1efuhlWzl3FUFrSK1dYBQn61fwT4rkVXG5ZLsy9QNerKlrkWldFIhKtHWV527nxjNPJNEwb+7eLp/ZNxdoFumeGBf36dOn2zXXXGNXXHGFfeYzn7GHHnrISTQHDx5sF110kVvI+dprrzkG4hmKjwOmAkDzHRjf/TPfwh2Nt9+7O0xNDJZLxrFaMX8ksUF4jZbc5GbbFXjZ9h7+tvvPLs7GuD2dsTtQDGoZlCd0rFddwzBLMmnSJLvqqqvsBz/4gRvA3XLLLU79hHUEAPHHH3/cXlP9YoEmfvMN5Qc9m7sy8oNahWmb7DdemKET9HJ21PFHWU1hndUV1EhdQ1I1bYWW1pRwve6aS1YHL3AuSXGdDtZBSp4rqLdkac7GnDxWC8SKbO4rCyxXr85WAMPVHYFUdhbhZD06aXpf+nH2J2bLElKsYIW6dTCItmQrqleKlCTAQn1jx88UOPt3J9iSTeHllM5EnfTX5623mQ+/bnMen201i2stroWV2mHRAQlXgwVCFkgaV7Fig4047VhL6hROFo5aRidv6qRAQAh7GGeUlgxSPIEeCfuVVtZwxATWYzZs/Fjr0LePzXlphjVU1LoBidt9wuUHam8bAIfbAG22OZofiHYe/O4q7/C2HV3er+eP/p27r/dhXkjJ5Bs30yT3H9bdxx9Oq0OQVP2MdMFVv5a/+qYtnDbbRp9zmpXp9NgaDX6zqaxmmtTvEIDaAXXZNW3AK7xBYJT21+6QvnbcmafYnOmzbeHkmWoTqo1yzsxMIi3wXZG0BU++ZS/+dZK9csfLVvF2hQaNGrRKCTzuKrraiuq9k2g7Pq82wYJnNZGCdFxnZhVYWapEg+dCN2igrSpol65gOIoNlopX4cQ0QM9uSNuUJ1+2/lpAOvY06bHrgB8WW+e0LiOmwXlGbcwN7jmNWYwgrl1egPG1NNzymJ15wRlWVtjGJk981Q0iNHRQ+hrzrzunOUMM13Zpg/iGYch4OruX6KfVUEAsOTIHIgU8Y0cS7cFRPh3CHUD4G369PyTgSDM7d+5sP/nJT+yFF16wX/7yl9a9e3cbPXq0XXjhhfbYY4+5XTEOP/xwa9e+vYuPThxg5sJqBGfYYfyAgK3TnIEzyjCl/kGMFA3EYAVyXDBinK4XUIhKB5wX6aNDSNtFAkOECQZp2O7THrwA2OhEE1LBIN/kFWkiND5QDGVNfsl3TU2NPffcc3bsscfaWWed5erTps2b7Xe//a0jB7Mpl19+uT311FNuXcHRRx/t/PqBGXXE10OACzTNNyn2/5W0q3JTlc1/c74N6DfAOvfsYJXofrN/L8dZooIi3emsgCt43bUFfWLamT206VzrrNY69uli3fv0tmXzV1qmUrsaFMovkjWBCLYddNPh1C0lgkN+krJnp+6G5TW26KmXLbdJi1Era23aPx6w0XaGdTthuKJnd28ZxUU6kNq73RKqcvbmE2/YU3c/bZvXbFb9TFrXfl3s/KsvsB5jeqgeUY8FrnXk9rsz3rQh3ftY916yr01boQBMMq7t0bZqVxmlKyXgziLSmIA9aapN1xr7IjdU11kqWaRdXzrYQC2EnTt5mqXXVVtRpyLlgXaptkfdZDBBuSltlB0AD9Mcvd2HA/gHgcTOjNM9lgNPQ+/W8QbxGO7OqH34tsI79dsbT3fPN/zdtYVm2oD3tz/uxO3j9+G7+q/6CW+t2bzV5r8yQ/rRba3P2BFWLy00KUQp/6JTssAa0tIXjxW5es9qirgWZzSoXSeFtBk01mlwfOjY0Tbt5am2+JWZdsjxozVwltQc0LtZOxzd+qhNfWyq1W3RcVpSu5py0FS78CsXWd9RvcVnNdiXNJxRsAtXMbMYM6XZrvp31tmCp6dqN6Fa21K/weZJneuQ8pMs24HVyarrZMaBd7oFtQYyozTHYgX23qxFtnb5Ojvn4nOtoHOBVTdUW0Zbg6bcSdFqM0L4bqClIFIadGcksY+pHVLmNeIjbXu1s5FHDrdXX59mlZolKDu4jdpz44BEieV8AGoRs3NJ/Knsw3Uh/EwyI9PyKRCB8JZfhnuUA5imb8jcAR1cdBC8Y7wb/95cBJ75zpo1y+n0fv/737cR2m2CRZhTp061Z555xgDdPXr0cNLwG264wV5++WW34wV+w6N7wvegnI5s9erVVlVV9T4G1Fw6ds/OAzSxNzCF9mZNaBpzzRpOMExJcJixxUuWienVvI8GhK/k8svPXhtoSd4Al3369LGioqKm/O11oC3II/mn3H29qaiosE2bNlnfvn0dTehsevfq5cA52eK9X79+Doj/6U9/coAdsO79Uz9efPFFW7duXbNUwF2xTqYcd9Q4a5Nqb9Vbq620bxtbt3a9ZbaqQ5XELCvJG4Kq+kSFZTZJCpxOSdKVtZrl1U43vM6pYqgjlMQ8l9jqgO681+ZandzOWDTT5rw1W5JpTSer7TC9jR5pVqBVrUoS77iVpwssPW+VbZg429puils7TcmvnzTLnlmzwrrMGGGrOqW0NbnqlUBHVtPySMFKs0kr25K0d59aZtWLq6ws1la0yNnaTWvt3j/dYx3f7CGVlkorLSqwow45wuo2bLHuBe1t/ZK1Vr+6NgByAjYFkoTnlIbad9dYmzqpomyotY1vr1QdlISSRaUqjwaBnoJ4sXUubmclNQI9azZa0SEdHIBSA3VgQs4k4fOzRTHbIHrTjlEl2hl/aLZQWpkldczTgPqKwc4/52c33AZ8PcaNt/fu4cVhfuzt4R1sCVtQWOj4p487HJZ3+2HcffzEFU4DCyA7t2lng9v31SLohVofNMxKunbSjEzWShjUAW21UDqVUD6yBcq/9isRYOXwnrg7TVaqKnKDClWydw87aOjBtuiteRar0YE4HUvduHCOJOwvPTTFijcUWrsG6ZdLvWrpjJX29L8m2uW9L9PuK0UOBDMjxc5EqI2lCHvRJnvuhltt5bNzrW1GB29pcPzyLffZuq0b7NhrL7VY+yKlhzJhBiiQQJNP96zuY9nby6xUWxP2P2iA5Yp1kFdWOyXRNcgtNKDc2De8wATo1eySYjBkOa6fHG7keOjIwWpDr2jB5mqB8MFOz12exQbEfxD1K++o6mRQ5yE8gidRMmE6O4vop8VTIALhLb4I9ywDvjH7e3O+d/TN2wPaPcNZsGCBUx/oJQCFQSLer18/W7x4sdtBBT9nnnmmO4Dl5ptvtjFjxljHTp1cJ+IZCm6Q8HD/97//bb/5zW8cCCceb7xb/747d/w4yZEkk0z5CerDzRwITzUUWLeKkTYwPs42rVpr3/r6t21D2SJ9hwkGTC+IM2B+HxSE+zDpSD//+c/blVde6eJhceKBYPw0O50UIAX1EnTDoYcrJ5U1z+y6EzYs0kRqzt701CPcUk8Y/H396193Azbch+uK959V53vtl75hX7nwS2bVWZsxcbq9MVUSX+lpMrVMZ1mdqFbnLKlVTdwKtibt3397wGrv0KJMVnUqTSyETEjKllJnm6lqsA7t29na1avsf375U3v66SekdiKpt/IU0wALiVcGSRggXBLoPlZuZ3Q5wg5KdxCQVVhKd7tMia1fuN5uf/PP9nTl21atKi4FGAm7VS+lF1qSKbTjBo2xg1KHWNt4GytUOoXOnXRw7YLldtPTf7OVdRow6ojB/++L/2ntBZ4XvznP3lwwz3Xg5JkdKTJIxDWIKJe0v7AyaVPvnWjVTz+p7RI18BTwZ5o+rYwXCKi3UWdfqnyk6yStR+gHalB+kloMpyAcbSkz6M5M13XXXWdrddBK0D48tQ+8O/RgYO3rHu9cOwLhe0IhH5anMe/wCuKiDX2cDW29W3kX+9mXrrP6zbVW8856W3L7JKtCBUVVK6X6BWcv0iBwzYKlVqqZpbVT51ptRaWrt9oIxdW/lEB4kXZTyWj3ny0rNtlv/+cGe6t+ldMvb7OuxOLVMamUFKoMRBMB+baJdvbOjPn2/33nP21rsSTU8HIB/6wkzQh9yupT1rOiyNrP3mTlNRoAaJYroVmw9puzNvtfk2zS/Jm2qnirBuVqy1IlkUaYBgMaLLCaWnk6tPfBViz/SR3E897zy6zozfXa/rAumCmFXSQLraFK4HlTxrbUVNrbT74rdTa1J2miJNRe0zlmpwqsanmF+EPM5rw6w+6dfJe9vmiBeINAP/2V2q+CcmCd5JeWlro1MyeffLIrcmjrBVjOIvpp8RQ4MBBAiy+mfZ8BD2YIeU87DToE/NMZeLUA3xFxp7Oo1l7QPtwuXbrYeeedZz//+c+dFI1dUwA43g9ScM9YODFxmRZ4sijPGx+f75C8/e7cYWiKTKiaO9IqHiRdcPp6Pa2Pdsio0RT9qpo1tr5yhaYNA7CBa8yO4iRNe2oIC6C5WWoXAFCk4QeKAahS3n5RZqGkebxTT6AldYW6hD2G6dusaPTII49YSUmJTZgwwbmjE+L4aGYTTjrpJLeQ09ePMC0lc5fEN2GjxhxpxcVFkmyn7LCRB9vAw/tqUSKK1QL9ksLV5mpcmaxauMrmvfCmHT7mKGvbt4PVZ2vdvsIcT52TukhJro0tmb/UVm9YZSVtym3C8eOtsqoC+OwAhcRtbqFlGmm4AHVxbdx6by21tluKrUgncRYp/yzYEowSONa3Lj1t3EEdbAurLiXVRk9emqk6aS9lnVJdzbao1tILqz7GpYueiWkLRaXlsBHDrEumi3Xq0MGGjxyuBaeTrN/gfjZEO0rkijWdr3xzDD2DyaTaVZWmzqc9PNkOO/pw6zKir9teUZovbpq8Xm2gjabY17650BbMmWXxYg00VK2VUoECBqIBRTMKDx1yDDNd48ePd4d17U0bCEJsfb/Ua2Zn4Fs74hl7mmvaBGH58Jqr53sa5r52n18HlFwNQnPWp1df69ROMzSq7+8tXGxz1iw3TQy5AR7VWvJp086ZFtPguFDIfPKkF22rNERQBqHesaZBeNQtukxX1Fi6tsbu++tEm5ddKylxwkZ3O8LGdhktDwKtknBLzmJFharLGzfYxClP2bLcKrVHDUa1K4proGoSUoS0o1OD7FMdj1AYEsyIvsSnZR8W16FdE+972N7MLbFqEii3Wam+aArMrf/QfJj179zbTjn0ZGu/pYM98uBjUoEJBrSovTBwzao9FUjCn9PuKRtstS1Y/pZAuvpJDRA4pjcr3sAuL/E6wHbG5r2zwO6c9k+bu+w98RrZKw4uopcLpUGSdvURqHYCwqkHB5oK476urx/H8CIQ/nEslQ8xTTTsfEa6u9EDmgBSSIPohDyoJjyeXdi6V2lnlMmTJ1vHjh1t4MCBwdZ0cGuZ8Mie8NADRvqJrjnvGAB6vh6l+7AbP252T6zWHU2s7gE2z/lrLN7ZOK3Iptz+rnXs3Mc+/fnfWrzfZrG9QHq+t/HtKEkMWKATIHPo0KEHFACHJtQFQAUDNOgAsC4vL3dqDQAX6IOKgx+YUOZPSaXp3nvvtUsuucTGjRsX+Jc7wundu7fbh56wMO+vwwDJeispLLX0SnXE0kct1BT1qPOPti2xCieRKgQVqJ9lOnzB5LdtnvYnPujYYdbv2D5WpU4yyS4jUhOhLnMM9eZ/PG5rGtZbOx2t/aVrvmqXXX2FWyimPUdAHpp7VpyqQQSaAM0u2mKP/ugvtnXKewK7bWQt9RflPyNR3wWfvdwO+twZTi2d0zTjAu5Z6a8Xaw573uT52tLtEatbVCcd70Kd5FljFdphodcRA+ya//iOlXbXVLfAeamk9489PEVtT4OSs8ZYpm3S6th5QoAg5QB/0ta9+a5VvDLF2h81wPp96lilTQvjFBfLH5DKxaWCs6m2ytLvzbUiSfndDLxAEaBC2AQVWeGRbRLeQw491H7/u99ZWu39/TSX2wPMUK8x1EPqJdeeGGjowwj7w87XbcLkvcXQW+2lvKCNZZdsttmJiTbyxDF2yKfGayGw9MHVrsTQ3cCWBZHvTZ1nL93xoJ1+6fnWSfWbRcXSFLRcocCs1jEUZEu0OHmSvT1zpn37/33LFsTWi3snrENNO9s0e71tXVplheyoIpBb01BlQ48cYgd9YpBtjleqPWrtg1pkXGAaWpZp5qt4WbWlX1tt9ZXaKlUhZTXAZjeWgnZF9rkzr7A17bVdoiTgqJ+oWal9o7pIE8ja4K79LLM8a5sWbLGzPnOOJTomJYlnJk8S/ka3aqz26F0PW+e2HW3sBeOsTjssMUJgYFsvd5qusqqV1Xb/vffZiKOPsgFnDrZ3li9SPOQq4c4rkAcNoCVVF78oKilyAghfR6gLLaYehCt09LxDCkQgfIekad0ffEMGYPjn3c0x7rkATgBrADgXagMwC3R9UUvhgJ6M7Nkthd1Rvve977nTM3FDvDAUP7LHDoCGzuOoUaOaQLdfrBQsjtzdFG5z53at0CugQlDcfWjQopeU+OH8LZtsWmKRlbYpttHHjLSiIZKqKF37w7Co1C80BWCS3z2l+/5I14cVJnmlfBlYUe5lZWVONYlFu5/85Cfd4AxVpP79+7t6tGHDBkMXvGfPnm5g5mmFX19n27ZFXzp4h575RssQtdBLfX67Uus+oLstWLTQKtZqKrhzsQZ/fFWdUCdZKECbiUs9RlLp2niN1THFrO8c7CFYZXWaT85VZO2dtxZY977drKCD2Kb0QduXtNXiSxCD/tnJQFUHNY+swksJ2MeK2tmE/3ee3b/kj7ZydaUVFwjI57ZazyOH2eFnnWgNnds6ibOOsXJgoUhhNUhKdsTxo6xUEvEn//K41a1Q29LkQLehPe28L57v8pGVekwh7Va66j0PGmjTdeLg5hWrNHXdQ9J/hVVXI6CtLp12prALBXrY/SUtgJ7Oat2DQEGDvtfpW5mkt/PfW2Addax9Ufsy+RFOEPBmx5e4QIBrMmo7fiExU+aF2ue9WIMoXyb5dD+Q3/dHu95VmJRDc/X/wyiHZusAbFbj3sq2UjfrKvWtdKUd1berlWr7TI0q3WwjM5Em1as2S9cJdCesXe9u1n7YAFU8JNdsLUofoUFilXYJekSLiLu3twuu/rTl+pZLgKL2VSd1jsfm2sS/PmmbV1WqjadszElj7dTLJlhp/1Ktm1Ai1B6Fp9UHSTYvyTrbAGaXbLInfnSTrZo4SyBfIF32mzUbOuxTJ9mYay+xVFut1UHbRwsk0eFmogppubiABqyF9uKdk+yluVOsrGeZtRvYSYJ4DdQlEWexaVGs2BIbJA0XcC7TQL3bYb2tJlnLMEDZRrWrXlL/IltaKXUytb/BaruDThni2iZqL3EN3LPaNx2BUSoj/XDFyiCCPsnT+aMq5w+jLh2ocewfxHGgUvMAybdnCOjvsvgSUMQuFqgWoLs7b948J81G2rlYuuE33XSTk2RyDLn3S6fOM0wlv5NBCg1QBaAD3NylZ/S79/gSAAH8sttDsNiGQhJnRX9XjJ6dJtL1OlRBwAlmFw6fNHCF7fb2GTUU/BIe0n9odiAZytsbdojB/P/svQmcXkWV93+erdd09n1PyE4CgYRAgISwCYgCAuIgigsqOuroMO/oO/Nx9vmPOjPquI2+jo4sAioiuLCLQFgkEJawZiFkg6xk33p5nqf/v++5T3Vumk7oTjrdneRW8vS9t27Vqapza/nVqVOnsA/OoU5/9Vd/ZZdddpmtXr3a7YUzubv55ptt8eLF9ud//ucO0IkT6k4YiMIVIN6S4ywc4pVVZuzkWSfZug1rbamOp8+gR8pytAC4jgpxXWryx+l1qF0g/M1IuuabJVU/Khor7OWnXrV1q9fZsScda2lJsnUkFWO8A3AufpiHrpyWiT4pKyo6K9uGnDPdPvC162zCh8+xvheeaKf+5Qft0n/6vKXG9VPdo+6jotKoNBRHmyYziJ4rUzbxXVPs/Z/XRjGdcpnqmbX3f/JyGz55iEA20mnlHRvHkhaOPW2aNVRkbNEj8ywrP0wcUmb0zJl4ejvTRAREwvI6euuqiL5RrVI8WLPgVVv54suyMz7ZMj2kHhXNJbyuKnNE9AttMbRZ7sO38ABH+Z94H3Yo2vU78Tq0g874DKHse121CgP67Ta0t409bpK9tmShbV21So1Eh2BJL1qyaNuhSa+O0pTxIpkFVV1lD0NeKz679CzlE0185SsLRjteX2GLFy20AceNsbL+1eq5tdJTrkmk2tbkcybZhFOOlYWTHXbi7BPsfZ+8yLqN6a52oT5b/W1U16XTXa7preos9T83vJ9d+NcfsxM/8V6rPGOcVc0aa6d+4Uo7/TM6Dbef1L404UV7JK2JQEZ5YpJe1AQ2r42ftOfh40YLpDfaskXLfAJep9U2NpwW1aYa1FewmbtB/QgTd3TRZQRVZcvrvIFaTfoFyCXpX/7qYqsR2B8+fpgAPH2H2jOdCTMG6YqlNVZJAO99EGMf4wYOHr9TXfCAyZ/DigPRaHhYZTnJbHtwIDRoAMy+QExr0hk5cqTbc77++ut9U+V2qZ6gq8sPNQPsPgPOP/OZz6jjkeRP6Tm4VccS8hA6Ftf3VWfJe/x4Hxx5DOGCX2uuUfcFBAlOdAV+cOo3RVMdW+nePfWneTrNn0O4tl4Dnbj0P/i1ldbhFp5viouXd4g282LWcsmSJb5Rk7qE3+OyvoEaCvsIzjvvPK+fxI/Xl3h9iNOM8yUlxIrAjYFu8vRJNm7iGLv33vtt5KQxVj2gWvB7pwZZTQapDxoF0cVMSzczD4hAGqbBNiNrJVtlSuyPdz9iYyaOszEnj9UgjKQ70l0XFFZchVVlYmMlDvUU1VYtRetFTaMNOPs463faRJ1wqZcayK1KZtJEn2Vyxl3AN5PEjETQDL4AbQ4cKdPJl3XonVbkrKKHPB0YRPXX1VfqG6zPjIk2Wabb5j34qA3TBGGQnncDDCShK2gikQJ8MOGllit/GQ4kkstq42hRp2U+fMuvbaQsUIw7W/q1VfCYnCssReGbUTaKqLZIvQ18D98CWkerCzyI17/An6OVJ5Q7hZk/qpsOwTlp9sm24IG5tvDBJ+zk0Zejwq3Kx0qMJNSaNOYFWNVgBGJ1VQNkjki3Xym1jVRtoz13/1wrSB/8uLNPdrDOoT5USG3nUFvS2CWJN+2xvIfWk3ox9VXbExG2RbB3BMc3EaJWmxQgphnpwKAZf3WlVFK0CVyWgrLdREwTdYWiiciprvNE3RcJpaC0lT2lM+zYYTZ8zAib/8h8O+7E49VGtQ9DUvBGtUVMogp6O+imTOiCZ9W2aUtYRamUJaK1y9bY/Kfn2bGzj7WyIVIr83zCL20g9bKhuCJvtXVxwMcq6ldSr8SUI9RFtfQILVxSrHfmAA28tdKbMNiE8FyRMHCoyre+9S37tID2V7/6VbvuuutcHYVNdRzIgk4vEk+AFLN6wDYu0Au5DECLZwa4uGseNv5uf/dQiVPino4+8hXgUDrq6rzjx7cjXCjbgZapI/LY3mlQ1gDEg4oRoA51JizmzJo1y/W8d2vCdu2117q6ysc//nHXESdu4Bn5CuCH+/3xMCf0nZaCqePOIVl71wfO1+mbW+z2G2622tWbpBMqaZmWgNOSLAMAsCzSIKTMoE4esYhSu7Fov/7ZHbYtv8POufp8Kx8gKbqGxyJKoKo5qH7LyIIGYnIj5/VJNHXNgOoFuuvKVc90kE6mhwbYGgAIS+2OqaOyCPirIEINkbTfoYTAAeVkq1ZagNp5J3At2EKyWsVRG0IiWFmwWR98t/Ua1Nt++6MbbOsLyyRVz2nwZ6OX1FAEEPhXLvqV6NgKfFfkpSC/Ypv98Qc/t3U7t9np115hlSP7Cvgrnxr8kVhSHIBHPfmiqHKt5XsU+sj/27zuxflz5Jd+PyWkztCnqh11O2mMzXj3GTb/4Udtw9wXrVzGwlONOiBHlkpUnSXtpfctan9CtFIJCs7pIJ10Y7Wt0wE98+Y+ZqecM8uGTtJeIgHojOq9yGqOTJ+t1tCg/SRqfDk8VW/TalsZTSTB6Bm1G3l5+6Za5zTRxeZ3SmEa1R6zA6tlJ1/50UoS9T6C4ZRLkWgATY6WpEk3bbZ7xmZfeLpWxdbbH+98UKfrKqA2WKR1aE9dUapeFaySqURqdyiTcyBYo/qVcum4FNbX2x90emheC07HXTBDx9pHAJ203DJKLNGoBSr/zku9L12bspTcHDEcKHWvR0x5koK0kgOhUYfrvqLR0eFcmlAKFEB4mJ2z2RC1lPe+5z2udoKu7sqVK12nl02WqB2gHw6tEJd0A+0S2Y67lDpYMBKOISNxh44DfGvqCuoM7B0IdSl+JQy/Bx54wG1/A8BHjx7dtDktvG9TLvV9o9PoNDDWNdjIY0fYFVdfYa8vXGrX/9f1tvQxbZjcWSMgLmmYhm3ZMZGpviqrSVdb9dZyHRCy1H7y9R/ZqjdX2KXSxx4+bYjlNagCrllF8cFTF269Iy3VJ/Koorh+dU4AQXBaS+Fapi5j2VoDr0u5FAbcoDior7joUJG4dSdRHu0DdSnmCEi+SQR9UT9im7ACCwWpxmSH9bELPv8RSczL7IavfsdeueVBq1gr1RaN9lWyGZ6TeD3LTEE6q+mNDfbGH56xn339v23h4iV2wac+ZINOP07m2EQLIOMARPklS3ryckU5Sv4mHGgVB7zeUjuZzHVP2fT3n2f9xo6wX/7oelv1h/lWuUNAW7b7MlIZQSBDPWOjr6Cw9jZrl0Whwl677T6768e3qM2Os1M/crFZT01UJc1GOqyGoRiln6os001UDR2d06DUiKJmFP0V5HYJN3GZcCNlzrOJWvsnWHVCak0EogLE2Uvh5EW3kY2ZCpDVlRMwlXEbPn2YnXPxmfb43Mft/lvvt5zKgylRJO+cfMvx86jC+D4gzdIxNVq3psFu+/GvbenSldJbP197PAY3tTFPTElG/QB5UJa8T9BN4o54DlD9EncUcoCOEmDzTo4whAU8hzgBSHHFxd8BrNBju+mmm9zaxd///d8bNsTpbJGCQwOpHuFak/475S95f3hwAD3/kSNHun10rMPgqDfUg/iVA59++MMf2pw5c7x+oEsfwlDfqFutdVrRdrCMioUO2dPolrLj50y1fj362u9u+b399Ls/tZEjRtvxM060bTrdLyfVkzWL37TXli+x1+YtsmXLV9mIiSN1UuUlNmL6KNcLzWHfjxEbvCrHgIkLG4B55fqdunGArXca86MBV+/0Xz95xF0JOIhFHoAwbp8NaRrSb8rMEr+QP0GwfsKmUXRXWN23qpzUUsbbh/7vF+yJm39nD9x4m829+0GboJP5ykQ0u6vRVrywxFZsXW3LF7xiq5atstHjx9kVn/msDT7rWKuVDjqnFAIGWI73W+jKaQ+o56lZjv1d8ifhQEscoI+nokeAV4tBI/rYhV/8hN33zf+1G773Q5vyyit2ynvPsAGjRlqFLPyUa1WpSvbAZT7Fdryxyp7+zR/tyd/+wU4+/WSb9RcfsdzI7mp7tDXBaGaF3vao/7pV/9GoSuub3vUOwK1g3nx8vFEwD+6NS/Vbrxl/aDfgXMmqnY63Y97pFznoR63bwbn83WSoGkdjZd7OvOJMtces/eHO++zNlcvs7AvPtNGTx0vYlNHEt1orTjLBKutDFVtS9uJzL9rdd95tu3buskslBDjh/Knah5LXtF8ZFXH+Mb0gPVdGIa9kjizol7gjmwOtH9GObD4ctaWjw6Qj25cLwJv34X7UqFGuXoIlE4A0Es6wecQ3VcrvWJkywxwhx43j6PgIGwBVoMW14x09G4BGHR89nfd2HZ+Loy3FkSNH2pe//GVXYeK7MzGjXoQ6QN2gzrgEXPeoq1C3uOIA5CFsq3gniRTqGK5uIskUepdsehx8yjD70KgP23OPPW/PPPKs3fv7u61BdoLTUhH93Z33SMXDbMSo4XbpZy61Y2dNsSrpZiMBQ4ebpWX0t6m2yNtYRvYqxGCuqgQA1/TSa5Zb5PHqzRI5S9rRG6TzboebsFQ/xWVzJm9xyqkDCTaGyrCZGg9L4ei0KrxeZRUfYCCRnoNkGX+wlNReKqcMsbP/9pM2atYMe+HhP9lrf3rOGtduswod1vPq3KdsRz/pp08+xt598dXSSZ1hmaECN5qclEnq7hMFlQ9VG9LPaPSPckOq0Z1uEpdw4B05gMQZ9Mi2ROoRk9/qYwfZJf/4Gev589/bM/c+Zm/KWtbYvoOtTPb0e+iU2ld+fo9t+fUOe/3NVWp/Ffa+v/m0HTPnRKsYLpv92tiYEuBlM3Va7dknuaJL02tgxUjIHJvgQFkcNZYwNJGoLuMh9SpJqX1lSYdUhc3he1ftKN8KHUXQX29nPIpoivavCT2aKcWejTbnA7Osz6Aa++Ov7rWbvvkzGzpghA0eMNx2L99lG9ZtsD/+53320rJX7M1Na22Iyn/5Zy+3Y6YeIxDPyKM+jZ3jOWygkG/5kGHPNTdRWfBJ3JHNgQSEH9nft1Wla4tEGlCElZNzzz3XevXq5fQBUjgAEoCJ0xA53RC6qKrgH35xqXmbAJWncCB/WujQ6GvlHeW61Nklfd6BMLfVcZikpSTRRZIdJmMBgPMcpOFhktZ81YSE2lJPCc9eL7c0oI9dYDTVN3a1DumKVg+qttMumWknnTnNdmzYbls36Oj6WumSVpRbTd/uvnGzrFqDe6WWmNEzVWTURzCdQI1ioxUE+cc9S9zBB0DLa/AHQNyd+2ngJRCAWt4a0+WgLfigPHp9LPmhyI6+OkYZMtIZdwAgqO5L5QqDdjjSa7FO8wMBEdqgdE05eXO0rLCM1uShuHKTPfODO+yFu+bZpJOn2YlfuNiqhvWQ2QoFrCmz3WKQNHO1WU5E4JXuo6bsmVAKoHvPsPIZ+ZHjxCUc2B8H/HRiVRsk1400AiloM5lsHFZlZ332AzZNOt4rZJN/07NL7c0nF7s62AqB1l4zhtuZs6bbiNNOsJrxQ3XapFTXZLIPVROf7AK80etWvUR1wzdQIwBSY8ro9E2vo0Lf3ib1RNOjySLBpo5H1lLkSR/kjZP2qbYrL9qsNyZd/RngTxg1MJdVKwAtlH+opxRRD6sxO/68E2zclGNsyfOLbOGC12zV2pVW7CGrLrbdXpORgmNOHWNnTzzfRk8bZZWyRY4JRvaRZDjO3gUQOqhOEnAmEDRD7ye9n2FyIY+k3YkHR7ZLQPiR/X33WboAaLiG+30FbgJGjNCSUGIjOEjBUREIKgPQIWwAWtADtAO24iAL/wDGuT/0znvYvZJxbLGXT/LQERygjoTJV6h7PFNvcKEOhfrCFYfUHJ3LENc93+GPy6PdXJrqpdLwwZwBnbENiZb0oMt1ymTZwD7Wp7GfPPUiyobMjGGvWAOhfIsa2KnDmBQkfwVJ4wDGSKVx0WAP0WjI9LpVqnKQi24FFDxEkIdHL4jrAECBsNQTQXkCik+YHNSGrqwGbIAFYQENSPeilScoU44oXTeKLnCAjeT6iqxVZ3pbekA3HWKyW5vQaqx8wkABB/GTdAQynLOkC2E9eQlK5QeI4OEXkklcwoFWckBTN29jSMGxx5+WKpX7yUZ4g/Sbepw0UudFjLTGM3faQ//8U1v45lM2+4xTbNIXLrJ0jSa5VSnZ65fZTkm/G7VRGpk6k18m1QBjpNzeqLhR3aQt5FSH3fa4QvOaFKO7qEkz4U1LAk4/4NW5WZ2mvtM+ySeOVuYx6a9KnQITCvoQV3/R6wLlEoIqH1plxw2fblPeNdXqd8lvu8ZEqNUUZHdcYnPMneqxqLKkte9CU2sB/ag9067JEO2M4njz09X7BDKSuCOeAwkIP+I/8f4LCPhpDmx4BmzgwjWE4RkwFEATgLul8CHVIO2M0+I+0AvhDt01Kkdz+gg5mrs98IgOOLhmvbV7e5cZAiTXVnCgpXoUrwPhPaS4D3UqhInXo1Yk50EYbpEMM8hhW9uHOh+Ew8RTI6Ne+0AYPikjsVzWd2zx7RngdWGgdLAqyTW0RId3AGL+oyLCAOqDJ7TwLF38Uc++SVR+kAPAc2XkZcAHgJMX3fiF004aZGtYC/qiiQRcGZM9YocQUkMhOBQY3HEZ+QFUENdnlTfJ+jwLDZqEpFHsVsYkRJQjXJQ3LEi4U5pxR9sgV0w+gCCKEH+d3Ccc2C8HosmkwCj1Sv+9rvsKEqfQqhLKoxHrP5oQ7pC0u0HS4Vy1amw3+XEYrJZ/ohUs2pdArJzXQhqXbG+z/6KglaKi1Mt0woPqNXVc7UYTY09T1R17/40lVTQ2VHp/r3ZBm/N2V2oDgTh+tK1oKkp9p7HoSn9Bu9I7ZPBRs9dIoawQingp6YGTwVS3nJXrYFzrV4JVBMDpnXcd8EDtmP7Nn/2VUowS91Uu70OcMhEDAe4Td6RyIAHhR+qXbUW5ADjYEObHSYYB8MQBEWTwj0smg3Q7gCXeh3vCBT1egHqQZLYiOx0XpNSBvj1BvaC3Tvq+t7PmcPTRd9QXjZyPwk0PJf8IYgbfAE6bnkNFcCJNlJpeA1SbnG59cJeH+5bqUPCLwjGgcxeBgciv9CYAYUVmoAeKI3nnIJOUTvVzdA/heN2M3QcpmoMIEXAaCl8vIAKNtCbLJI6N/HCwUMj+HtaQwB4X5T2WyJ5XyV3CgX1yILIuQl1SDSrVWVe1UOUF6FLV2TSNGhd2wuu036KWGaGqKHb7qY8OgT0uMm2c9o9ATJGh4SAYfXDGGD1Hk2wP6G2E+u/jkt5FwDp6F9rjnjq/p91GIUhUrimAALN7hXYQvY/oRPd7XofnqJ03pRuieuMN9GAN4Ut9UGlSEPLnhfCMJH+OdA4kIPxI/8L7KR/AGTvfAOX9geXwjqU8IQNfmkc9AMdSIO8DgA8ScoA4JpqCNYvmwH4/2UpeJRw4ujngY3nO6hqkP5qRNFw/dM4BBpFETezhMcalqDUCVcApGvVLL5lg+1K7jskOfrFoyW3CgfbnQKiY4VpKQfDbJ6oAaOopQLtR9bOR1SpJk5EIu9pYqOe8J66D2IgYwLWggKzqgJPZKI26SCRN1tRVwSL8rHtf+vHIUOkwR/vr+FQ7rHhJQu3MgT0Tr3YmnJDr2hwIoJkOAxANGA9AObyjBPF7VAIY1N98801btHChdptHJgpDuBCf53odab9z505u3cXpBL/kmnAg4UALHFCbLGrzaF7L7Vvy26xYIVmgemo2hQFk1CpdN9xPGQSbIAYHfPgbroTkQZLCgvRpdWV5no2lEQziZeISDhxCDlAZvUbqr6osc0i3lKKHCCTrtdA4h++w6TLDCWoKV3Q0rfswq3Q0Gx6gtSc+dNg8XGD/BqZFVM9DSFFN6voh/LwJ6fbjgPfV7UcuoXS4cCAAZsBx/Ef+w7twHwA00m82Yf7mN7/xUzE3b97sAD6onRCPH3p/9957r/3d3/2drVq1qknKHugcLjxK8plwoLM4wAl+Q8eP8NP5Tjr7JKvuhbKpIDSA2x0wgyV6rWYJefjyfelN6bXW/NW2NWlGb9ytwgBaFB3VgMQlHDhUHHBVE6qp1zfJqYP+tXCyWxyJXrHFQdZ/8jpFs2CVjqijismmReK60/jkp88yTskjgGzesUm5LlUvdRYdFl+utyVFa5IOrYRwiUs40JU5kKijdOWvcwjyBhBuDrJJpiWAHA/LfbDXDPhGGl5bW+sbNIM6CmFYTkRFhVMzOf1wzJgx9rnPf979DkFx2kySvt0lMfTo7ppugkdyTTjQaRygbQI32FDaS+YEr/qLK6OldlmMUCNV29VFuXPrJY5ySmgFdCKwzVPQVS9KOrhLdoi35vJWpyPutXvU44lM4hIOHFIORNZGUB0JOs+RsNrrMCs1qq+MF3nXC2elxz2a8uTjSAmJew2nzpaqOrrWDsll8iTVQ6b++ulgnO46QwBxu7cOvaetBCheitdEPLlJONCFOJCA8C70MToiK3EAHk8P/+bv4s/ce8ema9Dz5hkAjiQ8gG9oorJy0kkn2VlnnWU33nijnXPOOTZp0iQPSxxcoOUP+/gTwobX8fwEv9ZfS+kqwp7OOS5XCZQUTnlEzhh2sIc3e64RrT3PyV3CgfbhQFTnVf8ESlI6kt5tG4u0AwyAiuplEwAnyVhVdAwiwOGCRz2kZQt80LTxNnjtauuvQ3rYkImptmijG5ETl3DgUHOAChqhYK+qsmDiQ4AmjEVtxtwl09mbZSGl0F0P8ivIQEAmK2AdALRiBwquYqLxJ415UZHM9iy3iz/yPjvn/LN1su0wjx/12WGyGmsch7qYCf2EAwfIgQSEHyDjjpRoANt3ArfN3wMU+GFRJbhgQg5pOcuJSMKvuuoqe/jhh+2Xv/yl/e3f/q2O9GULvIQe6JYLuL+T3efm6TZ/Dmm3/qqeW/3yHuhdWjPdi4DC0NGX/A4+zYhQ8wnFXkkmDwkHYhwAZLukT+v1qKXgSvJEB9jBHnIsCuLvyJUQSx7AXZ2xEy46y6bo+O/yPjU6eVDqZFoG2vfkci+KyUPCgQPiAPVTVdj7Wje9qdocSa8Za+SvX11D0ap6VdnsD15kY06cYkNPneKWUjKyqc1Y4hPJEoZ2qbruoUH/HR2iA2AvWv9RfSylnw6XtSKmCj0OUvDQYg6oCEmkhAMdxoEEhHcYq7tmQgFQtyV3AFOk31yJv3vXLpv76KP25JNPWkVFhZ+WOWHCBJsxY4Zdeuml9vvf/94uuugim3rCCa6WQlw62kCjtWkfPJAF2tBL81eohY1rSFVco9Z7b38Xz8/BpxlRC3TaC9TH85jcH1kcAMSwQS2qq83KBohxfao9YCSquaH+EiCaaDbIK90zJxvMPTnhXiv+0fQTgFMi4WGTPwkH2pMDDqAhSP3Tz1dudPVxg2f9ymQnnDo59NSpNvTk43Q6ZnSQDzb52fCfkzSc+E2Ty4DemzKqzZwKLCuFURCZE3eQ7iKWqA00BU1uEg50YQ6oyifuaORAAIXh2hoehLBxIInfLbfeat/85jddwr1y5Ur74he/aM8884xv4vzgBz/owPy2227zpUY3QaUOFRpxOq1J/+DCRB0zf5Fz+xOmrrxzh3LpfdPz/lKLwu4vRPN3SP/57UmveYjkOeHAHg5kdFJmRof0sBETUM6kMZo4Ar75RXWwIJTj5gv1yAoUS/Y4QRyXeINj6iUhLEoKnpaOeKOu2GdOXMKBQ8aB0D2Gq9dXSa41CQRwcMB8WkjcjfqUFS1fycmT2nPkiF0rpDrZUnuKvUsGsEeOuh0B+kjPXMT1jlUdQH5RwpSoWkeJelvxthA9ByrJNeFAV+NAAsK72hfpoPwEMEld8FwAAEAASURBVBiubUkW4B0A+Y4dO+yuu+6ySy65xL785S/b1772NevTp4/96le/8o2b48aNs/PPP9/uu+8+mzdvnm/uJE2Ou2/JBbotvTs4v6g352+RtUvdRFLwEtXodVO59nT+B5dqiB14dujKF1JKroc7Bxxgqz66SUGB7ZTQCidiRkvte0AFVRYTbUV+pfrrqiZqn8I0lhPoKdOvQmCEEzSZXwLAXTJ5uDMpyX+X5QAHxmNKEAwcHc9OxYtOnCzWq+9lHyb1WwdJNcgMZ1G2vv1Yea+jkm4LUEteQeV2y4NYH+Qex6VpsqkH2khGf6ROrpeq47zXXwB7MteEKYnr6hxIQHhX/0IdkL/WAvEQjis/bItjghBAPXXqVJd49+jRw2bNmmWLFy+2bdu2ee6vuOIK1we/4YYbbOvWrX6iZsp72T2Fi4PTQL89ryCQlCTfHIeczUk3XTWfDUC+5K/7rHQR05mcNsJhL13v5Me15Tzsyz/iS8txonehxJSXcIlLONCcAy6pDlUD1MG9EAX1F1cSgkd+eukABHDtcBxkonCqXy47L8XlrYMjKr7T5FhxAA0PQBau0Z3fhCdQTuISDpTqB4xoXiPiYJcJpNdHheMYHf7lUfnTzK+xXkA8LQ1YXa1e/aGOcGdXEZuP9eTmNKHPfUH1V5fIITLXQ1T7vevWM/VVP3lysizBcVxCOPdI/iQc6OIcSHTCu/gH6ojsxQHw/tILwDEOHjdt2uRgslevXk1Ru3XrZrukJ46VFNzo0aPtz/7sz+x73/ue/eEPf3CdcXTHcXGagHn0xF9//XUH8PF34d4jtepPtIwPyKBjLkpEmFKXn9JgIBhuuULOVr/WYA3KY51GghdfWWzpbds1wOw9xKBCgiNf/OIS/DgfPNA7/MHG+qhRo6x///4JAH8HXh3tr/cC4oEZjjQiZBJUSiK74YLYkiqmZHkCB0hHGsiSf0qSx0YmlqrHLn1UO2Cpn/aERzBn6PBFk0Kv7TQYbzWCPgoXtaCAiHiXuKORA4BtnwCqnrDyQl2hfnhV8Ton4QWMof7wXvXLRwBH6apbWwu28qkXbOG8BRLKZGzSWSdZ3+ljpCBOfVVdTSMU2QOiQx2HZOQE4glQctFkNDY59dhRPfUdFUmVDaxKrl2YAwkI78IfpyOy5oOxEuIav38ngBnCA1IDeAak8owVFAAnzwz+RVlR4fRMQDngGxOHxA9phPu0wMJPfvIT++53v+uqLNAK6bSdF+qB6aVLYhqgNZq1SlTYI6Ol+owNqZ1mU6rPtRUrVsqW+fW2sWIZnHhbUiF/vKBMB+qgc/nll/shRt1qanyTauDBgdJM4iUcYHqZBf4g2lb9zkeQRiA8bbW76qx+vQ7Vkn9V/16Wl73wTIXgk3a0OSiXv4N2bxe0ETl5FFyvRaAKIE9TSticcKDEAeoC9cSVPqIbr3e8pgr6RE4zPeolNcendjsb7MWb7rK5P/2tpbfXW5nq14r759n5/+ejNuD8E6yojZW4eF8b+SR/Ew4c2RxIQPiR/X3fsXRxEBjuw3V/kQHIANKqqioH3uiGRwcsmG3cuNHfoa6Cmz9/vuuIIw1HVcWlcqX4gU5IE4BeWVm5V9K8o3Nuq2ORM5LiCTyLhkttRIRl0Ewxa+WN6vmFqbNSS6nMVlhFuaTzzdKJpx3uyfOBOOL37NnT+QUoCpOMA6GVxEk4EDgQtYwIWIPFAdW5upSte/IVe1LAZ/PClVK1ytjYM6bZiZ+41LKDq6P5aSTLpAlEgByoHZpZ6eq6vZ5QeBFSTa5HEwd8ZUX1irrCLyc1JbrKph5WlY7e3lWceCGQjTQaIM5+hs1L37Cn7njQijsabNJJMyy/ZYe9sPAFe/7OuXbuzAmWHlgdCW1KfX3SNx5NtevoLmsCwo/u7++lBxzya4sDgAOMhw0b5pLtRYsW2SmnnGL19fW2cOFCGzVqlFVXV9tOgfP/+q//sn79+tk111xjNZIAx12QfOQlJcdsIbbF58yZ4+osIVwAv23NI0NEtEVH2MKX6rU4yq40WZ3IFXO25K5t9uBPXjQ2j/7F5/7MGodsdnAS0uXaEvhnctHWvECHgWXIkCGGuk4yyMS5nNwfDAcASPzPSLfWV5+0yy3/5kab+z+321uPLLSqTLk17K61J5fdZfnulTbr2kussUagXVgJwN7kHGdr2qrVo4z0cHkMmzgPbNrZRDm5OUI4ENWDSGkv4yhcPazqEKsqVBhXA9HVtyWwikIFk7rftg1brX7zTuvXu5+d/NErre7FJbZ0+TLbvnaT7dqx3SpNwpzYOOT1uI1j0hHC4qQYRxkHEhB+lH3wUNwAfnkOgDq829c1AE8AZACRHMpz5pln2i233GLr1q2zDRs22IIFC+wrX/mKH9jzox/9yF555RVXwQCYY6Yq2AgPNEiPDhiHusrYsWMd/Ib0/EW7/GGkkOxGWJz9ZtvnS0KosiB5HzdhiOVGDW0zuG5rtuB1KHf8G7SVThI+4UATByKcIxAe+WTVlt5cstxWvPSaDevT3865+oO2ceVqe+C2X9jqP71o9e8/W8d8d5cFFVaYFEfxo/2XoChMGOoZICUg7qArappNySU3Rx8HfOsklUU/nXnpdYY/6IYjGY9WGSX00DNScMJRe3ySp3pZM7i3ZavLrG79Jnv5/91su7fvsvqdO6x7/35WrbrIKir0WhJ6HH3cTkp8NHEgAeFH09duVlY6vKDPzemXYSNlCBZAYgCOfsqlRvrQUXJF//vqq6+2wYMHO/hGPeWf//mfbfbs2fb888/b97//fZs5c6abKQzqKXG6AWhzDf5x+iEvB36lc48kei7bA3gUNKRo5EBOjmvUSMJgEiYI7ln6E/IU9zuQ+0AnlBMaoewHQi+Jk3Bgbw6geKUaDWpWXaZmV+ihvFYrTNLHLW7dbuVMdGUOziWWOm0Q1A72wTwcnm4pRfcFzVKD5JvWE9oJoXCh3oZ2Gvkmf49oDpRAMvt70rmM9gxo1UWVo14bf3PlWauTBZSMwLfMfnv94sImSq9a+tNz5AA78c/Os8d/eqf9cf7D2rBZtD7jR9vU959pqe5VAu/eITexMNSxJo823DCW8UO1kV/iEg50ZQ4kNbQrf51DmLfQyQXVCqSz/OIuhAn+HEmPw59ODgDOQNxTllE+8IEPuK1w6AHmd+/e7dZQ6ASvvfZaYyNioOdgvllaga4ncEj+MBywcK8r4hqBcfLjS6AaPHywaJZuyG8z7wN6bE9aB5SBJNKRywG1QeyAN2IhRXUcADR4wmgbMH6ErX5ssd1x842WKuRtezZvx556nJV1rxZCylpelR5TnEVt0qR+FtUmC8UGK5cZuUbAut65WcQSAAsMTMB34MTRdNVm3XyDpWXKtZ76oi4006DNvlSiuoJlZe2kTqsoRc3osCiItZMMkz6Fox41VmRs2offY8PGjrA3Xlys53IbffIU63XsSFnvKa2+tBM72XNEfQ7XpL62E2MTMoeEAwkIPyRsPXyIApr5AZYDUKTTCvdBCs7VOzZ1boBsgDn63zjUS3Dl5eWRNFvPv9MJmXPnzrXrrrvOpk2b5suNxIcOYD7Q84gd9YcBgVHB10ije/LE6mmLKJwgiUs40MU54K1PksRIFUBdutpv44Dudob2Ofyp6re2acmblinvZjPPOMuOe/+5Zt3KrChzoA1lrA3JsoqQOEdnpSTazKZkL65ObSSXkilnLKiorcu2vuv8dnE+JNk7NByI7MnLkmBZzhpQp6P/XrXFFs19ztYsWGrdpEI4+szp1veUcczaBKojVZSCKmSasUT/MA9e7J21/uefaP3nHC9iGgsE6LU9R9VVNNuxA/bxSNa5gorjoeFKQjXhQPtwIAHh7cPHw5YKgJsfoDhIDAIAp1CAbfzDFT82V7K5MEjR8SMM0nH86PywlnLZZZf5j/cBqIew8TTwOzQOdO3IW4MBQ0EJbXNxR9n9vMEQrEUehNDJNeFAV+QAkm81UK/LtMOs7ovZovU/aYK9Z8xwq3trq6SCKasc0Nsa+0gvV5JMX6oXSCoIeOcl/a6UjWZbX7Tti1ZadY02Do/vazlJNwvpBrUgtSGfqe4pPe039Bd7fJO7I5UDDapXSLbT2mSZ2VJrT3z/dnvmtgesrE7P6lcXPvSUve8fP2Pdzp6ow3k0XqiPxR8pOEfKs3kzL3Cey0roo5/7yw/VJ/Yw6LZdXRhvkjrarmxNiB0CDiQg/BAw9XAgSefUmoG0eScGWL/wwgtduj106FA//dJVOtSRYhs8WDm58sorfZDmBM2gzsI7pODh2px2x/ANUB51+YALQDj50P/EJRw4LDkA4NGRPD75BShx2mBWUu68bDVnB1dZrl+l2ib+Kp7CuoRQ4RqloqJlLavMZ23tn162P/7gdtv++jpLV5TZ2HNPstkffY9lBlWZDAl5G+mYifNh+QmO6EyjhMh+AlZc+LtK6iQv3/Wo9bduNum0k2zDG2/ac0tesCd/dY+dO220FXpkmRO6YAMpepjA5bRHIaXxAxf626xWWZoe/E3yJ+HA0cUBX8k8uop8dJe2OfAFIDO4hl9z7sSBOrrcuBEjRtiMGTNc/SQAcPwB6EggkIhjNYVTNLkP7whL+oRpng8PdEj+MArww0X3LLvHXcrX8eM+yX3CgcOIA6rOGalwZxA3Ngh46xk9b632SwopPfFcNNnMsOwPQAdKqQ3Q9suzZbZ7+Xp77Pu/sE1/WmS9t2at7M3d9uINd9szN9/rqilpIak9LUjEQVCipT8lJkXtak8725t3e2IrP/6q1A49ekQjoh/9jcLsoSFFGz1E74Lv3k973sbjHg7NOp7ffZUt+L/jtcSU6BJttI3z+23xCahfyAP88vuSP+H9Wf5aWFH/HlHYvmmr1e7Yad0GDbQpH/8zG3fWaZYur7StMje4e+sOKxdQl3p4VE/U53MLkM+IQJqdw6KPvjbWeaiHvGsvl0wU24uTCZ2O4kACwjuK010kndBJhes7ZQtgHSTZgOc4KOc+vINOeOcqKSWg3XRyZgnov1N67f+eQV4Dkv6hnYhj4xAKtNEFfVdWBeSvslIGfh4OsJG4hAOHAQfcKgo1HETjIEcTXr8tQWCqdKleY4kiCo9X2ta/9qZtXPSGDRgyzN7/l5+xme+7wCqlJL7qqRetduduNRU0dvlBg7YixK/25OTURpjT+o8AQlxuG5oWJ51yv9d7z0VkkoggkUlE9yeX+qEupotiRC9Ted2RjqcaxVEYt+Di4SOQid5xFD+6eHBIlLz9qlddwVG2vX4ULfxKGTzQfBfE2wLfXzyCPXx9ej2nTzIl3uLPj7DkpaG0mTdKN9ogWadv2qB3CF1YZaFfhJqMSumvWd++fay8X0/bsHqVzf3ad+353z9gqXydDRw91Cp79VB4z4BvvZG4RZM+OSJGFUb+yoHSIKt48aq9XMcJd9orxwmdo50DCQg/SmtA6Ky8M9wP2AwgO4Rvzq7m/s3DNwfqzeN3yDMjjI8yDD9U+ajbZ6zQC1+Sb9eRoEMKlSSScGBvDjj+ehuoEXwuvWgCO0I+SMob8ZcrwXQr1tbZjs1brW7bdqFhAbBchLqIJwG7W1NBv9dBmd4XZJ4OFMXhPg75RFOHI8opcEQ6alYQ8D6Gm7jzWAorsOhhoncRNe4dRsYjqCzu7X7NqQVAB3QvFa3puheRTnqANc6e5unHC1LiW+Bf86D7e/aocVotBA6v0dcuShUpp1lbQcwqNohrDdqgv1tmBuvTlqlHBzxtdXV1mthpI6aYi7CCfrT/lHE27QPn286eOXtx+UJbvnm1DZw+0aZe/i7T0cM+EfR0wgcpJcqldNuUs+bPTS+Sm4QDRwkHEp3wo+RD76+YzYF0PGwA6XFwjR/PSMmD1Jg4gU7w4xr84jQ7955uP4x0pZw0e+zc/CWpJxw49BxIy5RcEfAl/Dt44jHW79jR9sajL9rd//tT253fbTvL8jZj5nFW2a1SwFqwWOHzkp2yiS7npi6kXiBw1tCgPgArFwJr6QrtCWlsEHjLCWyV2llT29KN0kMyigTWV6NUzACWUQlDRhuaZhSN8C5cLzGkJOktxQst2efX+JUiI2nHYX4R367iogNtItUMz6qy1jx3/tzEs9bnnBNOnXnEpd9VAhlnbrTCELFG1Et9MhLznBRBGgW2c5o57Vq71V59dL4O09lqwyeNsaEzplixWupKZeW+HoGmU05/fA9N94xN/eiFNvjYCbZl4UrL6hTWQdPGW7dJg3xDMJLuFicbrS9OEjLhwFHDgQSEHzWfuuWCvpOkmvcBVMcBdQDg+IUwIRwp8T7+Lh635Zx0lC+jFMN0VC4f71ib95uOykOSTsKBzuMApxPSVmmTeYHr7PBeNvMLMmfYs8rWPLfYKmr62CkXnCpzhudJsplT0yhaGX+F4dICe1yxSJ6tk7QcSF2rqyxe5GWyNFsu84eou6h4QEFgZqEEyqImxloUYDBqhYQAsCFNR9qKA8L54S0Ciu4TEJ3yS2iwJRv+eOfviSQHGOdZRXJHKw9RI5/O+xvPp+eCosgFf8fLMQ/ntYdo3Z9IBSjiCzxHeSj4wRj+lRSKnHfOI+3UhcO7Xlpj9//HT2zln16S3rbZ/JoyO+1D77FpH7/YirKm06g9BWz4TWnFoqjNB42afKX6VNjAs4+1QXOO9QwWpQZVp3Bp6a+4xLypZK3LfxIq4cDRyoEEhB9lXz4A4wMpNnGRgPthO+qIgwsAmysDPBswg6ScMOF9CN+519Lot1cm5NeS915hkoeEA0cGBwC7qCMAdAGpHLIycPoYu2Tkp61+4w5LC3iX9ddR4lVq4+noTADMGGbSkpxKGspGzd0rN9lLv3/MVr202Mqrymzy7Ok2ZM4Jsv8ck1zH2hSA2E3WqaEB6gHxvCYnEUSEt5GPA+fGPf0L3mmAZADXunIbV00hNg4QiVC4CdxG3p3+NypZ67OBLrazo7VRQgICytz69AOmMzNxoQN+AuliIhMYTqxkepWqbbTX7nnUlj31qg3qNdh66Bj5FYsW2rxf3m+Dpo63wWcfp8mRqLFkoit7a9hMiaZ3Pquvpx/vySwbgVFV8lXTKBO8SFzCgYQD++FAAsL3w5wj8VVcWk35AMjvBJJ5H+Ih4d69a5fNmzfPJk+ebAMHDnQ2BWDOkithOchn+/btVllZ6b+uyEvy6uWXRCgZM7riF0rydCg4QPssYD2FXZwCVBXofqsNpGWOsKJ/lTXoMa9XtAqkp2zjU6Pmr+Ub8la+uWAPffcXturOx6y4o84aBbzfePg5O6v4cRt10elWLCtEIF9xiQN48wbmKFpgTvShWxRa5mhzT0lhCOvQPKBtjxi9B1oqmgNIfDLKt+NL3QO6wZtOS3SCP+GUbU+a+852hdKJR6WLSrfvzLVVEg5z+F7Rv4jvwsdyYjA8hi9+cU8/GbVMakOm89ZWLnrd6vVdT5gzy8a+51x74F++Ya+vWGRbV62xwcUpTRgeAUtOJ62q04SwvkW0egHwzmo1MSUd88DwKIQHS/4kHEg4sB8O0K8l7ijiQBxwOwANQLR0bYkVAYDzDinHs88+a//+7/9uL7zwQhOAD/a/Q/wlS5bYNddcY48++qiD8uDPNU4v7t+h9xqLGLh9guFipw5NPUks4UCncQB1gYybvYgAWqqkluBgDeG3fgBaaRe4agGgFtDL+7T0wde+ssyWPfq8Vaer7YyLL7EJJ8+03Rt32rMPPGmNOxoEyDCCqAam8DgfZDy6/Gh3Am0yymEZrJfqsBff8UlARQj9UylqRCKgaieJJJ3fHkc7ZvUtr3D83IoHYenT9gTrsLuW+jfyCCfIT1GA1fse7uXTNOcgCAH0a+vAjGQbfW3MU8J7NO/fVvoSXVYkKtSPew+oj9xnyACr0PddNe85W3Tj7bZrtWzFS6G+QqshkW6PqCk8ZgWjzbzOXF/DYFUD3kf67qK5V2EoUOISDiQc2B8H2trW90creXcYcCA+QHAffmQ9/i4UJQyK8ffsmN+8ebPV1tZ6MKTgDKx0xj7wafDr27ev7dy50374wx/a+vXrXYUF+rwP+uIhjU69xkfzTs1IknjCgY7hAFUeXIsEec9PkE1qKQX9sCcOuAINRs1D7VZAvVAvw3VSJt61dbvAdq31raixyTNn27Hjj7WyYtZ2bNxu9bvqwZBEdedQj3sRAhpCETAHUDRtCvSfLo0YWtE/wKPnz/9G8SJK+qtwEYzVjQrQyIZRJUAaHFaUV/+SF8DV2yi9aGcmTx3q4n1mSDhsyiS3SJTJIzC5eZ/rZfcChJituzKnQpdeCtuaMImTmKlB5M6HFl/UO4uQApW80CFBLcW6pe2Y82da5cTB9sSqF+z2h39nr9avt5HnTrdBJ05QGK1q6HtBymsFfTi0nM8QiPjvN6LfqIwoaOISDiQcaCUHEnWUVjLqSAvWvPNHwt3cL15mBpbwPlzxi2zJRp0x4RlghLStj0D4ddddZ5/+9Kftpz/9qX3hC19wci41UUeeuIQDCQc6iQOgJDXBSJc3ygOQm1bpEErvkSbjgoUNdQ862EcAV4EGjR9hPQb1sTdfXW03/n//YoUKWUmR9Py44ydbefdqTbJFx9u4CLn5QddtcSlqg+AydsczOwr2q+/+yh6b+5hd85fX2HEXnCDLKpoAkC+pyqSlKkM2ydceh8UPfB1Lev4dcitTjUVstyiTJL67KD13gcOynE7oFSClYB3oKHsciCOhzudhivjpEwOVQ2C1IH+AOH1ik/pJVDz/FqXbVuWcNNL1Gdv2+mYr71Nj5X2z3hdT9GgqFe4iFaOU0q/XckRRe3v6nTbBPnnzN2zT0y/baqmgjDvpRCsb28dSFZowZAt7VJfICXklz56riKbfkmP9j74X04G25D6ikPxNOHA0ciBqS0djyY/yMscHCVixL+l0ANwhTGAb/vwYQHABxPOMagq/E0880U4++WR78MEHXXIeDvsBuCcu4UDCgc7hQLDrTerYEPef7mnJkY52BKaQfALgHMSBwoWrCpKIVw3tYzOuPM8ah9XYttRO21rYZgNnjrWJZ58kHRbRoXm7WkIkT9dTJJQlAYFrh2jSRa5du9MKm+stLxWWCL1FaSERd+fhIzAX6VHLA7ol2p4vAXqsgLBRsEIzh8ZVW2zdky9bepsstYiOS51LwD0i2vF/AdgIJjh10k821TMH2sAH/mEqEkm2O796hJJH6y6a1tibi1fZT/79J3bH/95h9Vs47Ag6fAPdxegiHC/ILniFdMLZnFsok0fvtPU5c5JNuuIMK5vUyxor9b2l688Jl9EefFZIpMakMrCOwSeGpEvdFR36URq8T1zCgYQDreVAIglvLaeOwHAAcTZQFrShJvyaFzOA9TgYj4fBv6GhwR555BH79a9/7fTe/e5324UXXmgDBgywj3zkI/alL33J7rzzTpeKc4x9NqvhUfEC7Ti9zrlnsEpcwoGjhQOq7yAoLgE5MZmONQMHUnrHezZMYnoOhyC3KMn3xCvOssHHjbP1y1ZZTtZRBk0abeXD+0qCLnCpsBGQBmjyEwwUmMOFa1pi+Fxt2qqKOuQ8H9ImHPEVVnlxLO/xyViUflN2yRsEeaWfQ/udDbLqcZfN/+U9duHnr7FJV75L+SZAxzr6NX70cfyi1b8IcJPXaJIinmrCkgeMl3hLebVmEIra+kxTRNHYtGqzrXtV+typcqvXJCTXu1y8ES/FKGjzbXwlQX5pNlhqQpXTu7xUTgrKCwrljbKMI6ZF/BdAJ/95lSULH53n6LPDeb4s3xZX4nGzOuSvkj8JBxIO7JcDUc+43yDJyyONAwH80sFyrHw4Zt5NS8UKGx9IYt7eMfPMe6TaDz30kP3DP/yDVVRU2JAhQ+zrX/+6/fKXv3RwPnv2bJs2bZoD9Ndff30vAB7yEafd/vcaJsLI7ZkOz3uGj7C42v5pJxQTDnRRDgg3hc7fm0cJRwUEiBqKS8UJp4AFxLkCyG4DXNiuoWfGup0yysZeMdtGXnSKpUb3tQZZRUlLekq/EqEzyUylKx6Ad1GgzyXT6CMXpWtcyMjcoeBzyRyhr5SRK18pC62SXO6RvAIm93I0Y/2KeeWvrmC7lr1lZevrrG7tlgjsvi3CXrEPyQPldx7EqCMxXv/8Urv96z+2FU+87O/dqogb7I5AMvzd46KCMQkqTTccSO+vOBnpgWcLZdrwiqw6WiEI9PZ86+jOaTpoFjD3sILW2pGLwRz015ls+eTAyxIBbxUhwG2vOyFf8B/nqoh+Fy+HeyR/Eg4kHNgHB0Lb3MfrxPtI5EB8gGhSI9FIG/en3M2f98ULJOCnnnqq/eu//Iv9vcD4e9/7XgfhGzZssPLycvvwhz9sK1eudCCOJDyPKasSfdKIg3Huww+AH+4P5OqDuUYtkfTxDb1JpDcaXXwwiYYK+VB28qNrSJP87SvNA30HvRA3fnXPI+hPKGe8SHFexv2T+87gAN1+BPJQTQFa0SLw9RpKm+Teg+hO/x0r6uotRVdM0rkAl7VURcxJXzwryykBMrrKi+JLyIrAVbSksyxdjDIhOaIUpI9cr/aQzpRJEFDhKBQd6ciJoOKQNX6esxJgBA5GmYtCAgwxlZfSSZ2mw4PK0xWWy1dYOeb38Few1vZjpcQP+tJS/UfGveahF+zlGx6wFb97ymyXdqIysVFxXDIeLxQMBXzr9R5vmElhNJEJtzwrALzF1Tfs1msJVsqlZsLHLH1RHUyv1DFFowhs2MSVaAWpdxp+Ob+jcSCUAWDNKgP54aAmXOg9o76UaJ4RTy1658GSPwkHEg60ggOlFtmKkEmQI5IDARwdaOF27thha9assalTp1p1t26uC376aae5jfC33nrLgewpp5xi5557rt1www22ePFi321PugGAh0ESgM49EwN+6JWH+wO5piTOwZqDx5WIJ6KhwY3xWb/KyioH3viXV+7RZec5no8oXpSng3kXjwv9UO4D5X1XjddSuULZ4+/i9121LEduviLg1FL5wH7BORB3JBh8wjVCiAAxB2OlMB5XQDGf0mRbP1dz8KQ01DRm3TQh+i2AuwZNslNClDngmySwbncaOorXqEOCsNSCizZjanOj/ACgcRelLdIuPVdUoosekwR3nTzCBTBLXgq76y2jiUKmQeVyNRR5qjyBxz71Uf7hIcC6mG4QH0Dp+q8L0nR0sjPYdxQTvQ+ltOFgI1YWJAUvK1RossPJpVqxkBoJByOldKQlfIzWFEgj/tUipjLBas4ufxYd3rXkyGviEg4kHDhwDiQ64QfOu6M+Jps50QdHr5xDeYLrVlPjai6YKEQSzu+KK66whx9+2G666Sb7p3/6J39P/DgQ45kDfm699VbfzAld9McB54C4tjqXJClSI5I9jWKu/6oRD/NdOQ1c3dePt+riMfbiiy/ax66+17Z2X1kamqKU4nlra9othUfvHtUfVg2uueYa69Gjx17lbylO4pdw4HDjQATvhBa9Nam9gbBLrii9Y1oy6iNYQXGdl7TbJ6ShCm1GPyTp2A7JsvFS4YlTr5vmAxbvcKSG85Usj7Cnv6Adx8FwFLLj/jZZE3HECtTWjfLIY6PUclwH5G3Z4a2AtvLOxk2OjfcIflXZ1J95mfQceCBTJ/LTs15rvuPq4BGwjkJ4egL1TTa935Zm4pFwIOFAR3OgeZ/W0ekn6R2mHHApjAaAACzjxUDPHH+AMzbFecZW+O7du91+OINi+BEPWgyeZWVlbkXl3nvv9Y2ccZrtfV+m4Xxq2QV2+rCxtnXbFvvj4rttXeOS9k6mRXqsEFx66aXWq5esEKjsR5IL9aJ5meLlDKCo+SSseZzk+XDlgFaVGrXUJNSIbNXVUQSTkWzXp+pldEOK46r2RYlqizqxp6FMplLkkPQC0cHi2KfmyeEjwFJAPlKJEYgkcIQruZPTxkGUmJGUy+oHTYpVsC7lKK/6RLKNxREmG1EfGPHn7XkVfBYPXXjAygDhkXjDHKeiZ0m53cihaGfFnyLSc73OV9RaIbtTqwHVLkEnDlHro+mPNmNGcnCs4iQu4UDCgc7lQALCO5f/nZ56HAy3JTMBSCEB5x4JdnCAzGAFBQC+fPly+8///E+bMmWKS8QB2+iFYzUAoA4AR/UEP6TDX/7yl+2SSy5xIA9QQ3oMPa5td9FA0yQJ10DkS+AarbY/U22L7t1m444Za+/5wjetvv9bkjoFmVrbU9pfDEAoP8o7evRoGzhw4BEHwCk/dSHuAvhG/SB87xAuvOM5fh/ec03c4cUB//oChS6G1UUaEgKP0gfn+6t91wMbBb7T9dIfr1W7ry+zirxW0aTSnRYgB6YWJMbNFtAvL7lIx0Qm/uTTrH4BtUVaqht6J6Fyg45fB2KmtILWpZzy2CjJv9vz9glCZHUEHXdAeVOvUyo0U41GN+fIBESHJAWeAqgVpig+RABcLzDqTvGFtItaVcjmZCI2VSZ9fDgBJTFGH6JccRpLaXWxKUqX+lRJZhIOdCQHulhP1ZFFT9KCA4Cf5gCoLZypqq62oUOH+hH2AGZA5vz5862qqspNFCIJv/76623Xrl32xS9+0YYPH+5gG0sIId1wD0hDdQUdcuyLB6AfgB3hw33r8sjIpYHHA0fDHAeFuIdWwJ9OLbfXHphr/fv3sSsuv8DSoxjjo1EwpE3U4OdkDvJPKAO8CvcHSbLLRY/zjswxgcIyDhO2wYMHu4oR/s35yimsTNpqpM6UuMOUAw4WS3n3pqR2B4LkeMaGcivblbYda7faWy9utF3Skcac3taVO23L65usW1+psdXkdEAM8RWnBL4xoYdEHUk5YDM4gCR6z24CUJY9fOM1B9AQTP1LcKGfCc+ddqV/VAGyyisaOogUyCeTiCane/KPwzqNy/0xWSIHpEaYTU/WoEhMSrJYl6mVDv4OmZpdL7OE8qvYpXW+zYqjw3ZS1WzLFJ8lNXdVFTjp9OOJOvnkT8KBhAOdwIEEhHcC07tCks0BEANVS4NVHCiGe0AzLoS/7LLL3CzhRz/6UasWKF+wYIF9/OMfd3DOQT133HGHXXnllTZjxgxJwZpkPg7CAg3ohTwFv+bXeJrct8UVNaAHk2sOwpWNUik0qmnTl8akjCR1LdkwD/loS3r7Cwu9UNb9hTsc38XLxT2rHKyS/Ou//quNGTPGVzkAHqx8BD5wBaj/x3/8h/Xs2TMKg9SuxKcwueMap3848udIzzNSWmx9I6V1IC2d53S63Bp3Ntpzjyyw+fc8auuWvuGm9HbukJS3LGO/ufMuK9yz20ZPPMZOe9dsG3faOGus0cZNqa4IZnpzjabSpb6DiXIJQwao7VZeVF/QM+fodEeanhdlo1SXOpL3oe6SZqizBZ2aibntNCt6tA36JBXEgTbhShkMZWIO4vcSHFAmVHSA4I16Rqptu81en7/Qnr//SVu5eI01rNfKgmyvL31uif3wn/+fjThxrB133hQbMn6QCKl/hw+i0KiJSpSnkGIp4eSScCDhQIdzIAHhHc7yrpcgHXL4Nc9dGEy4IuXGoTYSnpFCYQscFZPHH3/cJd5f+cpXbM6cObZ69Wr7zne+Y4MGDbIPfehDLgn1eAwgneY0DJVETQBzH5YY7WKOPCbuwDgQn2RBgQkbG2w3bdpkGzdudKL4UYfCZI7NvdQ/JOC33HKLg/Da2lpfFSEcjpoXAQd/TP50YQ7kBfIiHCzwmC+3bct22d03/d6ee+hpGzykn5190Xk2auRYu+fme61R6uFnv/9sW7pkiT039zm74as32pxL5tiZV53ppzgWZdbQTYeKZkYqFqBvWic9CJDc64Wu6J0D19G7Vu8UhfJ+pgTcFaYznPclZFZ9SqEByb8k+k2qMkxVoj717XkDbGMtqoyo7lxZRxPR8rz2zizcavfc+lt7/k9PW4+aajt2ynFW27tg6/LrbeTpo219w1v2yB8esof/+KDNefdsO+vSs6y8h0xB5jThzWrDu1YgEpdwIOFA53MgAeGd/w06NQfvBGwA3gwkhAtXVAZ4DoCLQQUgjgoJjnfEwyQhUvFvfOMbDsQDuA00O6fgYQhXmUqjGxfGycQdPAf4tkFizffmmfqAPr/XmdIEDgDO+wDAuWcfAIc8fetb3/KVlKzqWQDqgebB5zChcKg5kEllBThl0UjWOrYs2WK3fP9mW7N8jV30/vfZibOnWmUvgWm963Z3tdVnGmzo5CGS2g63U+acak//Yb49fO9Dtm7dGrv0U++zquE1kohj41pO9ahJBO4ee/6ksRbCP/RTFA7b/6BXptmd0bap6ziu5EJLQj5T4CnaRKr8IZ32MB606Y9PGxTdT/uUPr3TUlkyOlk0p8N4lj+11O744a+sfkedXXbZ+23CyROtx4DetvDxl+3+lQ/YzHNnWO9xfW3NynWa+DxjT/z+Mdu4YoNdcu2l1m14NwhLDqG2mWzMbOJ5cpNwoLM4sK9peGflJ0m3gzkQgPH+kg0DSgiDnjfxAEaArOAATfwI//TTT9vPf/5zu/zyy+38885zaVYAZMQjfnO6gc6hvzL0RcCbodKHy8jL/ZM/B8cBNmHybfnxrXHhm/tSvJ75/tQHVlDCpA51lauuusq+9rWv+aoKtp9RZ8ERtjV11QMnfzqRA/rm2mSZyeSsYWO93f3j39hWAcBP/vknbMYlMy3fJ2X1OVnvyG+37Q27LJPTdy3mbXtuixUGFmz2lbPtovddbC89vsDuu/4ey28UAJft65wM+6NGEcHWtxcPjKsA0Q98K1MqEcZUDPw726keF6WaE9V71FGUVbJMvlrIHioqBSYzdK+aYLB6l9OywZoFq+ym71xv5Trk6BOf+6SdfOFpVuyXsfryWqvP1lptrs7S0gUvVBStx/iedu6V59pHrtZhaQuW2c++fZPtfGu3+K1Nr6XVQJJPXMKBhAOdx4E9CKrz8pCk3MkcYGAIv5aywjtAVADNffv2td69e7v+N+FRSSGMH66je4AV5ghnzpxp1157rbF5ExcAGffQIk5nuM5JtTNK2vFpBjWT8G0DGEcSDpB2dQFJw59//nn70pe+ZB/VPoJvf/vbrq7Cplz2DmBf/vbbb3fVpiAx7/iSJCkeCAfAwuzBZGK7YO58W77oNbvkgxfbiGkjBBB1+IwsFzZIClvMZK1CJ2VylD0Ts7TQZiqbsR1SdJ56/hR79wfOtaeeesJeeuQFy8lAeIOIYuEoMhPi02bPXtOd1DwKkoIX8qgvMQEUPQfmHqxNf5CmF0XHpeptitlyYG8L0gdvwHyiggQrT1EbifVGsVtsw6R1ngGTDin3yLKKJi9r6ux3t94nPfoKu+jay63ncf1sd5VOydRmFzTq4GVR4LoBXkrdpCDd8XyPBhsza5RdctXFtvbFtfanXzxuWRmy4vRL1g4Sl3Ag4UDnciAB4Z3L/05LPYCkeAYCyI77cY9/kEQSb+LEifbNb37TQXYA54QJ94SZNWuWfUNmCY855hgnB5gK9KHV0S5aeg1DNoMPI3RMCBVeuW/y50A5EP/O1IPww2489QPAtUT6v//wD/9g6H1Pnz7dHnjgATdhuWXLFhs2bJhdd911vpLCHgMk4dQXwH2oP1zZyMm7QP9oujYvd/PnzuQFLUpw2epW1dqTDz6pzZZjbMJpU2xXSuJxHZ2e0fHyHIMOwG2QqoVgY9RvyHZ4QVZA8mUCq5LqnjxnmiwpDbNnH37eGrbK7B7AmpiY4aP5qr2mJRlXBdB/pMa8k6eadbEoneeSGUDsqpCKqozeRys0xEUQDJ908R/qGXmh9tqCNoOit61Jgs7IjYTQip8XFaTHpEHYQgnhEz+iQDoIFvSEZyObSjGXKF9J8oWcZd1Fts5Fs7JCutmkj7/osWEcyy/84z8/ykhxrF78EZ+E4W3xc8vsjddX2vkXnGcDxwyxncWdfopouqzc0hJ8kG5Of7zEykhGBPLSqd9ZUWcTZ0+2mbNm2vy5z9rm17d4GhmV03mgOOGqFI8KF/qSeGFb8ou/P5D7g6EZvkn8eiB5SOJ0bQ4kOuFd+/sc8tzRSYRfaxOr0CAyfsIEl4C7dLMkJQ9AHTqoGPBrydGpdJgLSTFCaUiMOwbiyAEbEtdeHGhp0ACAIwHE+sxdd93l17/5m7/xFZVRo0Y5KL/ooot88vbZz37WTV7+7Gc/s2nTplm/fv2arKkAvqFB3XJQj3S9VP/aK/9dnQ6nJ4Y2RNvNttOkNtBsbfnDdyYP3DfFV2Na/tJKW7dik8362FnWoG6A7ZIZSXYBmHlt1M0UkNRKxiuwnNYuzgahzLy0NBwYCuBW9O2tCdoMe/C3j9u65ets6MCh0jNX+CxqKbRkoVLUUwRssTuuvYZWt2aX2ZZa65WusPRmmQ6RRZZ0VYMVy7RlU8AZeOobfWn34hmbRxXZi+vdgwByOce9v9FoS1/doHpWZiMn9TDrq3znFE7h3Qyi1Eqw083EgMmEnhSTqQXlJFvSh1cO8wWp7cmEYE7HyG+a95qtX7jKusn++aqXl9qwVbusfGiVMLZii7wy4nkSyldcgL58RCyjyQVWTepq6+yFPz1rQwYMtMlTJ+k4em1m1r8MEu20coL1FIH1tE9s9E46QVmB7KKWHupFM1uTsmlnn2TPvvScvfb8a9bnhD6+YZpJcYPUC9nXU6fVS9rW0eBCn0HdDffwoqD+pT1cS2Oqm6Ms1bfWpEF/iepn+DaMu6HNtSZ+Eubw4MDR0eIOj2/RKbnca/BsZQ7CwH8gcVuZRBLsCOMAoJkBBRC9dOlSGzFihJsjxB9dcFRRlutQp9NOO82BOWYv//Ef/9Huv/9+t6wT6hoD5rx587Rxb51PHmHT0TIwuZUQ8S+sJLG60N5lp23HHfT35ULYAGLYD5ITSD5mxBhb8spyqyrvbiNHD7cyjrpMl7kKRL0AY2V1ZPM7I5UJNlSCXruVSwou0GgF0RCwFBK1UZOPtew9T8jK0iobmh4qKbniSfnbpdxkC8Qr2kh81z7yoj3yzVsttXi99RPwffRHv7FJO7bb8R97l2UHCPAjlc6yGgdpgXHAEJJgEpfjKnVqW/iHt+y+Hz5nby1TXVWYAaMq7PzPTLUJ7+ovMC+5usTWWVCzwL+rinCaJRMQF89rFiFfUXZ6aQHg9O6ULbtvnj3wjVutevkO61ussoV3P2G1Asmz/u+HLTuyh063RJUPSO8RqdCasIDJVchSfuvXbrE3X11s00891Sp6V9qu/G6p82giKtuqro5CVCH3BumRV1R0czDdmK+zCm3kLKjQedHsMby79R/U21YuWmon7z5Z/Gi0erVJvmNeABwQyvPR4GhLzV2DeMBG8YN18DMIpwKt5s/Bf1/XEB4gHm+DnLUQf95X/MT/8OFAAsIPn2/VpXIaOgI6HH48h8G4S2WUzETjbJSt+H2Xy+iRl6F4/aB0qKCg883JqAwwDHrdu3f3w5127NghyV1Uj87TZl4spdx444125pln2kCZuWTPwbPPPuv7DFasWNGkW3vkcW3fJaKd8Qt8DSFDewzPB3qFbmtdyAfhwz1gcvLo4+z8Y95r+e15u/9n91iuUhJGbAhmKqw2I9OTAuplOilz02urLadv+tD377ddZbsk8RVAz8p6h0B0Q1mj7d620wqb6qx+W4M99/TL9tv77rR8Xa1LrzmyPaNDb1BPqakts7J5ay218C0bVNRR7ZKYZzbU2hM33mWPLZ1vO/qX2w4ZZEEiLwt9EsWjZY3SBkA3KyAb7XfpvnuYbXu2wupf727lhb5WJtC++sW37Gf/db91n1tr2ytWqwx11lCfl51uSSWVh3qdZokeOqdTak4kaTTfJpKOlytvg+uqreL5jVa1fKdVKW9CytZdaa+UFZj/3bHGVg+VHrxo5rppg7Ik9oCvtOI5/kZ6rwnG6dNPt2EVQ6ywQ9G3pWzp08vE7zoH7kXCaiKSyqWkZrJV0v+MrXjxDeu7rbvKqNUny2n6IX15JOwC/pWSym9du82WCoj/4p6f2+LFSzxNviGTOtI/Gly8vdAP4eiX2MvUFrev9tLSigLjYzzdd0qHfIUxle/CHqtPfvKTTXux9pX2O9FN3nctDiQgvGt9j8MmN3QAdCjxTqUrdwo+4Iq7TRCjDWDjsPkoXSyj8frAAM/AxC/444dkJ0h0AwBAosoJq/x4z2AUNv8C3qdMmbIXWAiDaBcr/iHLTgALoe3Bz87gAQAhfLNwX5Ypt1FDh1vP7tW2fMk6W7dmvRqdQLG+obCxVCNkK1uS5PKGMtu1ZaurWyx9dZmw4w6BWbNyqxDI1RmPsu6BVnZ+p6x+bK+3u372C/vmf39DtKReooBFSaTTSMJFa0LFUPtQ7+k2NF/tgDorMF/V0Gi7dtbbr+/8vc3buty25PKSEqsXUJ45VRLHATjof+cFwiuy5TYmN9PO6HuV9cxLOi21kZSk3ZW5/rZu2Qa744lf22v1Tyr/mwXOhegF5tETL6KXLgAujCunPlGwl05G2N6kMWLjUn3tyn4zbHBDP/WVUrlRiIZ8vVV3y9j9D/7B7t36sm2HkiYd3jmpT0W3HHpZkU5JXedds86zv/3k3ype1u6/94/W+OiD4mGtiiKJq6zQNCr/8CNnlZbelrNbf3qr1aV2uX64SEudQRJzoXrk/oXtjTZy7ChbplWn62VCdolAOKtQtMGjzdFuQhui7KEOtxcfaBthjAy0Q9/XmjSIS7shLvdvvvmmXXHFFU0gvDU0kjBdnwMJCO/63+iQ5pBOoS0dQ8gMHUPzeDzHO7UQtitcXf9TA5uPlQh7QOWJ6zAOMJhQNwDhSL63bdvmz0jGkYADLDltFWk3fjfffLOtXbvWbcwPHDiwKZ/jxo+3//7v//ZTOKEFza5a55oy3Y43tLEwaTkU5W5Oc39tOrT/EIclflRJagSlH77xIduwpsIu/dwHrGZAjVRNJI+VVBcJdK4o4Lgpb7/80a3SVa6wCz92iRUrI6mvq3oAQyWF3rJio/36+7dYdfdKu+Dcc2z9tlVWpwNvigLTbjVHEuiKxgrrtV2ge8EOqxCgzgq9NiLxlfpLVkrVJ5043Ub0nWGbsgLhkoSXCQjnfNejQLSro6gz0JXDKLuvHWdlr9VEB9loIyXyclUvqdNU2Dkzz7LT+g+zfE6rNfqe9fIHIGNGExOLEQhH9kwc+Qn0lsmu97C6Guu+VBOHdaIjUO4hyrO2ObXbJh5/nPXoz6bVWqvTBkoSy4p4XnRRCne1HPHhzDPOtW79e1mxPG1nnH6OTZgxSrhfElvVBSWkjZ+oP2RtybOL7YVHX5KZx4usanA3rRpwKI+CKb9FZZhj7p+UaoymNXasNtf/3d/9nYNwqmf4ltwfbY76S/n3V9fbwhPAN/rbTG6COxDaxKGtc4XmcRI+sD8Gh1/ijgwOJCD8yPiObS5FaMSAaVwYSFtLKMSPh28rjXjcDr13/c2oE9OQ3eayd2heY4nBc3jMLy6BbOlbxKK97TbQCfH29d2Cfwj3NkIteBA2PkGDRojPgMLANEGbeu+++27DGsrgwYPtlVdecV3x8QLYuIcfftjuuOMOl/qcccYZHh+alBnwBYhHIp649uXAgXzveA6Y4PoBWNok2WfkINv9xPO2e1ed9erZ1zcflmPBRKb2MgLIhXKpSVSUW0aqKlX9Ky1fLpCudpnJZW23LItUpbvZG0tX205JznsP7m9jzxhjJ86ZLrFuVJ/YdFjAODgH2Ej15O6//ratfuh5G1zWU+3DbL0kwbUDK+1TX/mC9T1xjNWCh9TkGfDYvIgDZOMIj/R9+ysNdsP/ech2vLZV6ZdbTnVtS+Et6ze8zD75r5+13lNEAGVt0nZo69F1F23mU85c/xrlhoKAObg6syNlz/7ot/bU//zWBkoVhE21G4rbrVL8+dw/fc6qjh8mwymKR1ZK5NHh5l9GGdtdqLWyXJltXb7NyqVLn+uRsVGnjrJdsrGeK1NKZEcS+6xA+K5tm23R/JSNnTzcek3orQ2XPo1QJiTt1zJEeW3WFjz2rHXX6tKgwYPsivdf0dSfhDYalSj52x4caC+ehnZJ/xdfSWyPPCY0Op8DCQjv/G/QaTmgcbNRjh9Hi3eVJUk6r9DxBOa05BfeHdQV5MDvMHAB3NIZh8nTgXT0IW7gcQD04Tmw4kBoN6cBLegHSzm7pWKCFRSA9uc//3kbNWqUPfHEE+43SdI5JOSf+tSnDEB+9dVXu654AOCh/NBsKR38E3fgHIh/7wPlL00pLz2RsSdMstSv77eXnn/Zhk0earlyQVWshkiPuyh9ZswBanYFnhUILchcYV51hDC7JAUvt4btRemBL7Cy3hUyxzcAga9WSthgKXDqEFX4U/2X191cpZ37uavsrvo6W/PqCjVnSQ4H9LB3f+FqG3jieCvWaLMi6egNcZGUS4/DATlKGkjnKyu0cXGy2XmfONHu+/4CK6zdKnOFkrQP3m7nXXWCDZggHfAqsqw8q5CAZtfbht2SmoOGyRuWTEhHx1DJS2XUhtMZH7nIMjIj+OJvHrb6XTut99iJNuvDl1ivE8aY1QhIqxxYb4Ef5BIQz4/NnlW+gtRgPXpX2YiR/aVGsti2b5lp1rNR+dvhuU9LBahaovza9G4r5sRL6ZjvLupQHk1YIMRx92XZCtuw4i1bvn6VnfmuM80qZd1Faiok63xU2lyZ5Cbu4DnQUvuJt6/WpBCnEb4NNOL+raGThOnaHEhAeNf+Poc0dzRoZtYMZFyDo5G3tcMIcdvjGu9kQl7ifgedBropGh/dMe4dJi58k8CTg8k23zzwNIDyQD9OF78QLu6/r/uQN65u47sUnzSC39ChQ+2rX/2qWz7ZvHmzffGLX7SzzjrLyiQl/8EPfuDqKR/72MdsuCyoxIH3vtJM/NuHA235zvtKERvagL9eI3vZ8adOsVeffEEbyqZav/EDbKcUIah3KYFbGQK0Yp1M4mV6WL0256Yq09IZl7RW1jwqGitt6YIV9tJTC+yMi0+zGqlW1KXqFEd7CjDZx0qWt2HsZ0s1RQi7avoxdvG//6VtWLpKOtIN1m30MOt+zEDf4AmuxEALbR5VkZSkxtKMKc291deJHPQauxVt2hXDrXtFjd32H4/Z7u277NI/n2EnXTbK8jWomJTMEkJLoJdNoTiiA72Br67PjY64XqmEwucq77BudtK1F9mkK+ZYQ229VfSotLKe3axQpbIoDHZR3MY5bUW0EbbjMH2IZfF8ocEqupfb8adMsdtuutNWL1hi42cda3VKuEG89jS1IRaz43V6zmt2gGpQXvrq6IK77rgOPJr/6DPSac/bqJnjtEOVSYQk8OJHsO3vqxhR0snfg+RAS31pW0nGabCCkrgjkwN7kNeRWb6kVO/AARo6P0B4AOLxxv8O0Q/J6wDkIB7yEvdrr0SFE6MBvb0IHmI6gRcA0yC9cklgG9OFTgDE6GAHuoHHXOP3bSTfFBzaOOgHPWbqGCsvmCXkF4A65Xlm/nz73ve+Z//2b/9mWEchfjwv8YlDUyLJTbtxINQDCML3A3GcxAigTFek7IwLZtniJ16yu39xp131Wa1q9Cu37QLeZblywU5JYcsrrY7dmBKHA961XiI96Ep784VVdttPf259B/a36WfPtAbpRTdyumYJnAKkswKnSNWBJng3yvBI2fj+NmRkHz3JV/rTSM9T2BIXbQB+GbslQbkC8UVH5ZRQ5WSCKG9smqQqczZwrPYmSHqeKUrffJj0WLRJ1CQ9z0lFxRNTWFEnsjvyjupISgkCxFH/cL1w+QGk1QAsr42YVT37aFMpkwCKrDBkRa/JZ+Qimm7JRGVgwiECagflClOwMTpwp/8jj9ndv/6N9R/a33qM6G71MlXYKNSe1uQlLZ1v0iU9Th+lREVNSLpgx6WjAABAAElEQVSnq23xU6/YYw/80U5/7xzrPbqnn65JPtjwHHe0x8QdHAfgabwtBWq0Kfq51rrwbeK0EqFEa7l3+IRLQPjh863aNacBZEGURu7ArlkHHA/Trom/A7HQ6YRre+cjhS5pNFx6TqB/ODg/aEQZRXIVDmwh7weaf+gQl4E33Aeeww/exZ9bw6MwKaA+4aANnbIyluz1DBgqbVgK+cYP02A//vGP3XY46ig4yhuAfDL4OEsO6R9U0nDYi6Y+HJjTdwfkKnq/MQPt0o9ebrf+98/spu/eZO/54EXWb8JgbQvkIBupv2mTZTZdpY2Psqcte9dl+TJ7Y9Fq+82tv7JCWd4u+djFAoy9dDCN6iHVCfCrvgqVD9Jwp1u1AOVXEz3uqrSqp4CFBm2WVBtnj2NeGzQ5AZMqGQEbwKpjVYUQARGXj656EguQHuclzU43arIgW9qIpjGJSBCC47CqwjNSZ08fTz0jVQdUc4pnJqNTLAXCpQZvFZKII3WW4Zaov4WWMkE75uCfQCOlcmEfXBx0UI95QS+PTCHmBlXbeR98r930jRvsthvusPd95H3Sve/hqjyKZA3ERQ2mMevlFwK3noVKe+1Pr9ltP7nDhh0zwma/d5YmGpSZtq3ykrbyEdpiaG8UJ3EHxoHAy+ax4XVbDtbaF53mdJPnw5sDCQg/vL/fQec+dMK+TKxOAkfjx59fZznyEJfKHDgo2LsEPparXIypGit98Ns7RNd9YoDcvn27q2tgXztIhtv6ncL3DZ08lkvYMNmrV6+mb3+gXAhgOYBx6ADAu3XrZjU1NW5yC7+QB59M6HtwkE+fPn38yPpQrrAES9jgR9zEHRoOhHoUl+SF79nqFAF3Mgco8azvgpwwZ7J92K6x30mN4kdf/5Edr+PoT5g9zXp17ytjhLJqIksqts1s3Rtv2PzHnrOnnnpWakgD7aprP2wjp4+QBLwW+bjqC0AVCyLql2i5qhPqoPxHL4WdbgfoArqNApcZ0DeIWcAU2+W0ewfvgF85onKr0OoLSv0dgRQHSykp2TGXTUPR0eEo6ix85Ql6CKehSX5A3FGulMOYc9rkV3SwckJiyh+WSkgYYbXLqXXvScq7lC3dKC96aFQm+KWQguuZ/k82VGzEicfYBz/7Cfvl/9xmP/jPH9m73jPHjj95qtnAlFYYZGNdJ352y9TooKQKe+v1Vfb4fc/Ykw/Mt6Fjxtlln7vUqofXyAy7DuhJRyfOkuvw3bkPfQL3iWt/DhwIf0NfSW7i36r9c5dQ7AwOJCC8M7h+iNIMDZyGGm+4DKRxUBQkjC0NsPF4hyibTWTJZ0t5AWCitlCUJBSpHFccg2wAY6g0hKPL29IxOfBmFNQgygDMkH44uPBtN27caH/9139tr7/+umc78KMtZYBfSJ8B3zgkoJ/+9KftE5/4hC+TH8yEJ+Qn1DloAb45or6qSlJPgX38wjfj+/OMxRPCANhDWclbqI9xP/wT1/4cCOpoUA78Dt+p1am5DoiAtZAjWxXT2ng4avZo+8jIa+yROx60eQ89bY/dPc8G9Bpou9busPXLU/b9V79hG7e+ZenqnM0++xSbdckZVjO8t9ULzKe16ZH9haqy3lJpsU0PUUajrKEjLucA3W/0DHrFG1veSK79gZdIjLHYTR+gAMR1kK+rTvPBnrkedcinJNmolhTZN1MiBWpWeEqnPwLMgGy/9WxBHX93XD1dXUleafkrDx8FwluYPgLoHj4Kk5Y0m8ARWFcekHBzMFBlvY09bYR9oveH7e5b7rKbf/wLu/93c236sVOtdqN07HeaPfv7Z23z9g32qo6o31j3ls2+6F121vvOt+phZbI2s1PSWOZHWn2AqYnr8hxocxvs8iVKMhjnQALC49w4Au5psM2BS/ALxUOiGkASEkjucQGUhXCH+ko+yUt8wOcecI3Zuttvv91effVV1x3mGPPJspPK5iHKA2AI5WxrPn0p2Zdjo0EIOvrf5R3lxob2yy+/7HxpzwxzEAT1gBMM28ORV1yoe5glDHWOKzwHsIfvD/jmuwcQ3x55SGh0PAcAtV6PQK36zuhLp3qkrPeEPva+z11us95zli16fomtW7HGdg7dKql50Wr6VtupI0+zURNHW79Rg3SGvfYNCHlHgBp9cWFYTZyj51KbjRUNINu8+ZbwrCogYJkQ4GD6Od6INpPwEjCHstd6F0GXokjujApKowx3p9IAdgQBiqt4BHNxuSi6OguInbd+4WUJc/udxyrdtXzx3EXRRCOUTx5KHwk/eW2UfniW/Eg6XsjV2YCJfe2q666yGQtOsWcef9ZeXfyS5XfIQkq2wR5f8JBMeHazaTLpOHnOFBs4brBleuhwJEnSc9IVT4mXpTlLyxlKfBMOJBzoMA4kILzDWH3oEwqAJ4DT8EzKARRxH95zH9QbevfubdWSVMbD8f5QOvIRHOArSMUXLVrkUtEHH3zQT00EoM2bN8++853v2Lhx45oAXDx+oNP6azQwtz5854YM3wWgyobG4JiMINVui4NvoQ6EOsL35z78DpS38XiAMVxIgyt+XHHx++AXj++Bkj+HFwcEetMOZqWTre/M90QnulimutDTrNdxfWzG5N7aRKjnOtaiBDJl3STFefLqA7zG6J22XUbgU96A8KKANLheBFvNDylzKCzwWuopHg+dd+LjJwUS3ZaqYgSgSVx2xxt1CFBjUSJlgV43aUiu0FERDVbOkEuz4VOeTk037e5QdYE72bTSlh1wWJqVRB4Zvk8KyjVhHpizSf0m2rjTx1pxU73shNdKvq9Nq5VFHXCkzaU6MCbdDeY5V3X6J/riyjuid74N7ElcwoGEA53KgQSEdyr72y/xAF7CwAfAAdjimgMcngMAQtJM3KlTp1qlQHhHupDXkJ+gBsFBLgDwETJRd8EFF9g999xjjzzyiF/HjB3r6guhvFxD+dqa98MLhkel43Cbb3/7265CwvcFgIfv3Nbys/JBfH6AcFR/4vzkHtqB122l3zx8+N74cx+em3+/4N88fvLc9TmA2TuX3AoOYgEEyIrFFDe7B+gDbAtKqmoJJAoIg7DdR7dAWqFNdLCzBICW3oW1GWK2zTEJiGgQ1+XdnpzqvZ6RBoNHUXchaULwX3tE9R4dbk4AZdNouTZrqh1INQX74EBvrSU6oCXWoXBYWsGAi+udIxEHMStfvoqnDZ/OLSTaarM56bybrLnIWrjrm/vUgNmF8lpXlGnHnL6DNmnmtSHd9etlyzDlSuxe6EOR/YRmwoGEA63kQALCW8morhwMkIRe76ZNm9y6BJvsli1b5rq4/fv3bwJRAewEcIUqyty5c/0o3Dlz5uwF5ggTwh/KsgPymBDgSA998A0bNrgEfKIOb/nsZz9rq1evdvWLNWvWWEG64BlJxoM7GJBIqimNxP7TmHU4uJzKPmrUKP+m7fF9wncOqxDhWwRe8P5AXcgf10A3+IVJILRJg1+oC/8/e+8B51V15o1/f2X6AEPvHUS6SFOUImLvPdGYaJJ108u77fMmm2z2v/tmy2f3zb6ryW6yMTEaC5aoqBEVNIqIokhRBBSkCNL7MOVX/9/vc39n5jIOMDMwMMycM3N/995zT3nOc0/5nuc+5zmOpqbm6+OdOg7UgkUOLUK4RI6BfJsNjPVAJvQytFUtMCmgy+ZvzgC4UCNdYHiQcWmWL6h9apw8TK1E1w2rk0otSFeqJ5oOEM6rX6O/pNkZAVu6IDXrDfhMNEo+zxy5aRAEcM0v2NhG6nDZCLehZwpWlxtGirJplBMIF85Pc/aSJb+0SDmSll1x8YFJ6d7KE1wHGviBlSM9oxaL2Md4nEDwT8A8ZqZZGJ5FyhW9UTT5wJ4DngMnngMehJ94np70FDUYLF68GLNnz0b37t0NVFdwZ8INGzbgpptuwvnnn280hcGNrh999FHMmzfPLFKMGDGi3jAONDV3oQTABASlbqHdEmUpY+HChbj99tutHNqmfOzYsWbFwwE60XTc9HGw0nAWDMfNXcrjS98BZfcedW6KC8cX/8RPt05A9y5dd308PFZaNVZueB1elOlMIyp9XbsFuO6LSFPK5uOcWg4I3PF1EkAGLSpQu+YSTb1fqnpEaTUllqVNa2LMLDehkR1t22WS29UHah65tsiqLfBoSFKAlzJcU+9uRENlrTKJddqIkOyasNXajFSixCeCWp616XxElkhUP0lbhgg2paz5TDa7rZWpnyCo1YRCwJjGM3mtv+Z2gs+5qYSYRr5quhCAcX4FI12igoJuloHlYR+aYuHMshALR201LjRlPP7HpeLCgFlKz/XFwjvPAc+BU8+B5u9DTn0ZWz0F27dvx3vvvWe6wnPmzDFp+G233WbS5Oeee87Mv4WZIGnzCy+8gP/5n/+xrcEFdJ1lBAEiJ6U8HvAVzu9o12FA6MDXlVdeiS984QscVCJYvpxbSHNg0RbmF110kQFEMxeWE6E5wHi0POo+sw0tKJHjsBVIvTj42kBbN2ALuxd/HKjVue618zvWWcUSKBJ/LQ3y90gTm8bWAaXn4uharpxmFbfya0aK9U75On/3vo0GfuHQlvZy7rnd5H4cvWE/f93yOJAhUk1RcpuitFgzW73LZE4VIpLkgsu9aRzctB+7PtiJnR/txsFPKpDez0lglQAkt2KnfW/VmqB1SkZEU3qUCqcJGhvfRkWA5MVJHpQmG3qVn0Atd9vkb4rXqWwV6WQYbWdPffB0tdoZ48UI4mnw3KTfmSq2EaJw2jePUck9lqSaioyhN5MTRhZ2JrGkXRc2RWHbMjzNyQF5HE3ShjppJn9j5FGkOoXq/dVI7K1AYn8lIjTzItX1NGcvSb6PJMuXpUdM5WgCN0WNd54DngMnlgNeEn5i+XlKUpP6yaWXXooHHngAEydOxOWXX26gav/+/RgqHWpKPuQc6NLA+Pvf/x69e/fGt7/9ba6k71BDt55JKi2naweoagI084XylEm7H/3oR6YPvmnTJqNz0qRJpres5w6MHj9tjR/Wm7n4R03evRtJreVU/qbCABfP0siBe127CZjSd/np3FAXVg/SZEm0aiL4+OOP45//+Z9tYa17b5Ls613qftGiRabz/5WvfKVm8a3y1TOd3TtvKB0+3KnjAKGtqXgJ4GoXx7x0Ico3V+D1ea9i1dursGfLTtrhFljnc45AZR3bYcTEMZg46xyUDSkzMG6bWxLFR7go0XS2KZYWmAwkvA0rm6TFguBZSt+FvyXZNnjPOqVFm7qX+kw8VYjElgxWLN6Mj9/ejK3vs77t7YAUJwcv//dSnHluNwwZ3xvth7PVaMt7SvCjJEpAubmcrMqo1SmLCOk3NR+7473IoKpPhFL7OJH6jjXbsfK197BlzWYc3MsFpUnyKT+C9v074MwJZ2L4pBEopgWaDCcalgR5rnQb3qqbq5Q+Xc8BzwEPwltBHZCNZR2bueGF1Ep0vXTpUtOlHj9+fA2wkt641D1kbUQ2of/+7/8eP/vZz8zutIC4Az1iSWOA14lmoejTQsGZM2eahN6BQ6cz7O51diDtRNPQUtPbtWsXXn75ZRw4cMDKfjQ6j/QOHd8c4NZZ9WQ0TUC6CZvSbQpvlZZ7TwLgAtqiedmyZbYrptJUGH3dUF10NBTSksNLL71kakjf//737ZlokATcTTpcWPl71zI5YAszqXtsoJfS2Sgx4bL5y/Di4y9g2+adGDJ4MC66cBbeX7ICe3bsx7QZU7Bh2zq88vQrWPjSG5h14yyce/U5iHXiPpGaKUranEOM2ro9ZzelgYXnBI7RWYUsDQO2TEta6jryKBDOHMhi6by1eOHhhdi+fj86FvRAt6IBZre7a5dO+HTtLqxYuhglXYDJl5+LGTeOQ35PLmCXwrURJuKawREhRwjEpYhj+eQQs6B5hJL4vEweDm0tx/NPv4wFcxcin9L7/l37Icrzns370O+MvtiwciMW/ul19BvaB5ddezFGTZtkCzgzXKwZjbrlrs1Au0/Sc8BzoMEc8CC8waxquQEFejZu3Ggg/PrrrzdCpU8tUCXQI9WTy6+4woCNA0EzZsywhZw//OEPbTfD733ve6Zv7YB4UwDYieKQaNDhbIErXUe3k7QeH30c2Jpp7DxRPKibjvihsu/du9cmTmvXrq0BsHXDunvxqD6ntMJOGx/95V/+JUaOHGk8d2DX8fxI6YTTcNf1vReB7XAauta7dZJwnWWdZ9asWbZO4a//+q9rngmAi14HxuvS7vL155bCAcLGZE5XmnarX579Ml584gUMGjQU1/zF9RgwYgAKqP+9fsfHSFA1YsLltGVdOgIzN16MN55biGfvn8N+aScuu/1S5HUtIugmYKSusxRIBBtr5cMNKa/pnzC+0Dw3BmMq1KK267wk5fV7snj+f97BK88sx8DeXfC5r03F8LMHILk9iV/886OkbRLGXjYJ61d9incXrMSLj7yFT9bs5s6T09BhZDHT4oRTXckR2llDKDxSGIPI/IqQzqUtSylsCEFeVcCna7bi0f96GDs27sD5U6birCmj0LtfL7zx4iIseHEBLr79EhT3LsamD9Zj0SsL8PA9szFtzQ7MuO0i5HXXhlgi/Ei5e3/PAc+Bk8UBD8JPFqebKR+BEg0Cq1evRklJCdymKEVFRSYtfeedd0ytI7wVtRs0pLYiVQGpplx44YWmyqL0XJru3EykHzFZ0adDYFDAUyAtvFumA2RKQOFEZ2OclZ+DUHMNoI2hpbFh9TVDakaSLp9Ip4W8jpfGHybelPevuA5c6/1JjUQ0h517f07CrWf6+nHzzTfj2WefxW9+8xtcd911NjkUgJfz6ijGhpb/I7Gz2hYXYS54bjEltfMwbeY0XHjNhYh21peRKupT0+qIALHpj/PdFpWi4xntcXXfa9FlcBe88PwLJjCYdfMltIVNwMhwtqhS+tmsX41x0ucmcrcjzroYiVRTnYQTu11xPPsLAtbnFuHSqy+i9H0E8nvEWc+oFr4rjQKOjHk0p1jQLYJ+HXuh71k9MXTxEDz+m5dw37+8hDt/eBHaDy5BOp6D9Y2kq6FlsIWglIgnecTEV6rn7Fm7Ew/95++Qqkrja9+7C72G90MV7YanaE5Rlp7k8mh7Pa9THgZPGYZ+owbhrXlv4Pk5L6CCvLzmrqsQof1wqYs1lp8NpduH8xzwHGgYBzwIbxifWmwo14mOGzfO9Kil5y2/a6+91hZqykThUG5wIzDrQK0KI4AlFQCBb6kBSHI+YcIEi6twcopzKpzyt8WXLIfoFABzTvcCby5MGMi5MIedc2O2SlSbigvBhzZ4Nm5gd7FP9llllprOnXfeiW3bttVIrZtKh3hpkxxKwqdNm2Y2h8V307tlou65zg117v3obDrhfHcC2Lp3h6ygLH//fbz55pvQZFHWe7p27WqqVKq3//AP/2BrGc6dMqUmW8V1db3G01+0OA64lrRl6VbMf/JljBk9EpfffDmqi5I4lD2E/BiBIudkWhddnaomaCQwp8RXO1OmipOYes107OUE88U/vGTS82GzhiNBgCnVjLhs6zlZuElyJRdX3VSuQc6SmMu2tnSozdSh9FGs/ko/nKF4Ha+MY+GzH+G1OW/hqmsvwoybRiPRKYUD2f0oibRjO2BfoXh0aep+J2LUcSd9Z184kGlegwf/+w+Yf/87uOZ/TUWsc6BfrrRt6aQ1lYAekSh6ZNZFqcnsoJRYhJOtP1Kd5n3gyAO7yPnYjaYegVM5ZWYxva0Kc/i1YP+ucgLwr6HHsO6ojlUiwWcxbuYT5QSDnSMynECk89O0jMLylsUw7ZoLqJoTwdy5L2Lg0IE467KxOb120aC8g5xkkcak8JatSpSjNUddjhx/8hzwHDhBHPAg/AQx8lQmI4AiEONsggusyMSfgJWeOTDtQIzO8pcbTB1NuRUrVpiEVbrhLrw9aMYfB6zCNDo/DZxhOuTvJKwujMCigKkrV/2kBuUMxhANhbyXPqd2obOhMRhsg7i5sIclVDsMHuZ9km9URkmQO3bsiG9961s17y+r8ocmKQ0lS/G00YcAsc5KP/y1ROmE60lD01U4vR85paf34+6Vno5nnnnGLPMMGjTI9MSfeuop/PjHPzaVFK1V+Kd/+ic89NBDOJsTS6J0S0d1wb13pa105efOLg89a4su/K4cL+TXnK7efJhnilY6XvvjG4hWRTDrqmlAIesAgXFBpBAR2v5TuxUQjRYQ7mmxJW8iua9dqXQlpl08BZtWbcB8StF7UT2kpGc+raNwUSHbbobo3UCjEC5dJq1FoLQfQpUVa9pMK5FKcoKaR4l3UN+yzCNCayLsUQj+C7BrE9VknlyBs8ePxIxrRiFTVs62FQGXOfLgukYeCYLRdFzgNMsNe+jDKp2MHMLYGT2wY/tkLJyzBOOmD8LAWX05gVCd5yJjkqSqLxvo4o21ApZbZgHlp2mBAK5seCu8pNZZ0c8/iH7yxV6ZEDqdSyvGuh6nnn2WKjTL3lyJ1Us/wmW3XoOew3oTfNMKiia6TLSQPDHDJ9ycp1oWYWjdRffawTRZkMI5V1L/ft0GLHzyTxg2ejCK+pYyTwYICJXFRnJIhZCfaCIRPIIe0qg0utr6j6v3jeFDuH02NF5T4jQ0bR+u5XDAg/CW8y6aTEl4sK17Hb6vLwOB99LSUtM1rqqqMvOG9YVrDj/Xybiz69y0aE/gah4l9Joc9OvXz8wTasEph4fDJOPHKl9z0H2q0hSolVRZzn0pcLxrCk2OdwL3cu6+KWkdK44D41KjeeyxxyBrN1qAWV5ejr/5m7/Bk08+aXbgBcy1PkGLT99ZsgRTp041uhRf9OmssmsSYVJ7AhCpu+hZeDKi587V9a97X18459eUc315h/3CaTpaws+dXzjcsa5d/MPi5vh0rLhNfa68lG84zzhVRvZu2Y01y1diyjnnoseg3pTUcnMbgme9kiiBp2xvy0J4hGHT3MWR+8TTnwiQoJlNHx16dcMUqrA8/sjj+JQ6zcO6jCAgZp0XIFSeIpg/KYLSGCW/UeqgV3HRZ8WufSjr2hEFA7oQfDJAnPVE6VPHRNL2ONGk6PvgnfVIHKzA1DvPQ7RTFhWckMuWeCxHQ4p8S0aqzHKLVECyXOwovfJ0PoF8tBqTpo3Bqlc+xuI/UZd8ch9kSqhOpQmFAWuRFkigTRbP8uYlSPyBauxfsQ6V+w6g08AeyD+zL5KUsKOQ0muWS7VVkN+k97l7TRrixjSaGOQ2npwDYMXCpRgwoB/GTTsLldFKAm1OcIi0s5wBJEl3RIbBKRGPcJOeGJlWwDSkYlOdSqCwpAATJ0+iSs0jWMX3c3aPCaSU5g3JU4H1lBlHpwV05ingnRTwNyQu2kRh23Uam1T3wnW9Idxw7VJhGxvXpa80tGC+Oftnl5c/n3wOeBB+8nl+ynJ0jVgdirtWx+K2L3eEhZ87v+Y4Oxpc2rrXcejQIfzrv/4r7rvvPpscFBcXQ7bDZc2lb19KnnL0C5DZoMz7prjTbVhx/FH5JU3UWa4uHxvKC8dHp97T0HhNCac6pnclk5M6/vyuu2wNg9RRxowZA61dkL37Hj16GAiXffgHH3wQUrOSyUr3nlXWJHd6lQTfTR7C6kpNoU1gXk6TnON1Lq266YX9w3mciDyVntLX+3STHZdHU+uGi3+0sybLzpqO1Um+4/aF7bH9421EcAmMGzOSwCOubXZYR7VZjL5cSGIcQwHDxhJZFEUp5SYol83trIBynvTF9YVuKErzi/DJqo8x7LwzEc+XpDigRie9sTwB4637seC+ObTA8iay5ZUoobnDyTfSEsjnLwHac3ijVFgRqe1NJrHFV2ex9p016N+pJ3r07Wg63Vnu4V5I8JokzcLhEYm0jVZOMDgxKKAKjYTDScZPkv72nfOpLtUfq9aswMEtCbQbEdBshVRZ+WdLGZgdBfA4RB3uF+9+ENveWoNYRQIFndth1FXnY/xd1xGEi75aZ0Xkj3w16RDtAudaG1G+/QB2ciHmtPOnoR0BtUnBGdL03gWXKdXWBEB0aLJRmMnnRIXLUZUeC5agWcjBwweiXVkxPnj3A4yZPg57yvexHTEOVWVicerK85qvw1yWPNClkWFXgX9b/HVtS+3LOTf+uPvwWf2Va3uK21Tn8lA7KysrqxHCNDU9H6/lccCD8Jb3To6LIjV4NX53rpuY83dn91z3dQdw96y5zsqzLh3KS9ZctDhPg/x5552HDz/80NQTtGPmN6mKISfgqHKKZtfZ2YNG/ASDVyMitICg4pdzTS230tAgIRdOz6V7os+iUxZYNJDIuos2iyqjWo3bIEpqVHv27DHVFOWtrzO33nqrqaWoLtx44401dGoB8r333ostW7bYgKT37waq46Vb6RyvU1mb+l7CeTeWFuWp9uK+Ip0IGsL01Hft8tR7Fb1lHcvwnS99G/s303wmbVV/uGo1Nh78hPBNaJRQjv9xIkIB0z2bdiN7MIX3X1+KLPWxs1xUmBcvNKArBFq8P47iSBH27zzIzXMieOeDpUzvfWpJBJCwgLazS7LFSC1cj31zl6NHZSD1rtpCc5i7nsGn27bjwCA+z09yUxtJMGM4b/wE9IwOwv5PdqNv/mikKglst1C8XJCHKtr+lt651M737qDSeqoIqQoC171ZkyJLipkgKFUZVE26dOuKA0uTOLgzjfVL3+cah7ctnPSuxRdNKPLSeShN5aHizY+x95U16Mr8SrhgNbu/Au898BI2792NStpFT1F3m1oybA8xqr7wPQpKMy/RHONXghhF+OeefT6im9luqwiume7+Tdu5UQ/p5SQnQnWbFBVo4tlKlO8/gHwC6sqd5YiWcCwgreQMdcSpAqTJRFUCHbt0xq5Pd+KlOfPw88f/C5WJSr4hTYTYp0qaby+bEyZdSHmfzxwUt0dt7EfvU1/bdKgfc33n0digNqFD/avahtLQ0Rin8C6uBBF/8Rd/gRkzZtT0m41Jy4dtuRzwILzlvpvjouxIDb6uv7tXxxKevR9X5g2M7PLWWZ2N8lentW7dOlt4eNVVV+Huu++2TV5+8YtfmAWYBKWgkp4qnOJJGuoWEjYw28OD1WLaw/1b4J0DzCq3Dt07PjSFXJeO4rr0XDru/njSd2kpDQfUBMB1Laf37d67G+BcfnqmLyL79u2zMkrSK4m37N//8pe/hFSnBDhFpxvsXH5t+Sx+yol/cu7ebk7wj96VmZokMNF7UF7jBp+Nke3PomWmarz0zMtIRKnWQcl3StulRzME1nGkqSsOSmkjVCd54t4nkSog6EzIWgr9KYWmMgdKqwuRphS366g01m7YiB/87f/GsrffosSfdZ9gNcq4/TNluKx0FM6u7kpJtSwo0e4869ehXYfw8K/vx4JDa1EepXY3AWiatrG/eNvt+Nsv/hRVhyJYtn4jlv/VGpJBnWpKu+OUyGvXzDT1yYvS3ZDZ0x4Lfr8YLz67jSCeC0il2BHN4/NKFBP8Zw/RfGKsEOs/3oK7n/s/+OMLT1FaT+k0AWuagL44xvCcGHSNFuOKzuMxNtEDMQJwqbVUVR7iZkBZPPfQE5i38wPsi9PmIEF4PsG25gGyZx4hwLYvPSwTN/HE1+/8Ju6YegdBdhLPPDEP1c8eNBWV/Cj17LUbJuNkyed4NVVr9qfx+399CNWFpJssTWunTE2EqJ5SGi/AgT270HNUH3zw3kr86ZVXUZmskDxdAfkVgG3T+kTyjF5soXwiGE++K0wbdepr1KZUz3XIqf7X55x/uA26a/esvnh1/Vxeylsg/FPuOuz6zrph/f3pywEPwk/fd1cv5a6D0EPX4MN+zt/5aeDUtcK68HXD6L45XN08lYdo6dKli3U6q1atwr/9279h8eLFlr0sv2jQVxgHLiQRD9PdGDpNqnYajSsqt3tXrvy6b6zTgNBQnjUl/TA9jmZJkJSn1h+IdumCC5BLwqiNh6Tvr8mVnCy/aGHmDEp9rqB9e9EbQEqYn+rEjh07zF9pHi+NYXpP5+vwOw1fN2eZlI+Agd6vFnVfdvHl2PjmJyjr3gmfu+FGlPUrQ4IAXC9QQLxI2hLV+Xj+D9xwau9OXHf7dUhy4abURQQ+M5TEasIV2RHBH/4wB/HiQnTq3B4jzzwDB3ZspzSXIJ7SWU3I+qfKULCb4LlKoJX9APWmi2PBIs4eHTpjaK8M9kcF/lVHMhg27ExE8ggyaTmke39a4zmnG3Gp6iXbFdUwUgSrUa6yrNgawcrFq9F3aA+UjeyJVIxAnpJ9amgTRKcQTxRiy0flWPXJLpR2KOUOr4M4UTjTgKoMFkY52RCgzWP47pxslFYWUoLN+zhplX9BIQ5GKqiOVYoB3QZiP83FSMhO+F3bLnPNOkJ6VLYhgwehgLrnMTaR8WPPRgnNIxJyc4051UgoB+ecxOj7cPkH2PrRZpw7fTIttxRwQkCpvvTGOcGIUIIerYhgyaK32fZSuOnmz2HItOE4WL3fVIS0/jQuBXJzOehtonSBcOefe9yGT67PUb9zpHamNlFA62NufHJxGsM2pe/6eZkf1j4O3rU+DngQ3vreaU2JjgROwv7h65qIvDiSfzjMibh2+ejsOqrLLrvMVFK0WE+ScPnPmDEDV199dY1OnAZqDQsmCeeA3BSnWKebdMd1+o5vTSm3S+NocRsS5mjx9SxMo64FujWRkoWXNWvWmGlCScDXr19vKigCcQr35S9/2STgP/nJT9CrVy8biATENSBJZ/yOO+6oqSuOznBex6KrNT53fDgRZRMvG5Ke43k4bAGlwwe5Y2N1uhyxkhi6juyGQ3FKarX4kgA8n9utFyaKEHmZE0Eix560v11VSj1pqkpkcpY6YlwIWb42SZvWlWjfowydu3XET/+/v0flgUqT0iYJhKW3Xbgvgjf+7x/w6Zy30TFbSKxJtSdibNnCvuFLn8P/vnU6Krg403aeJBAvLeuA/P1FKOEmQB2penHBLYOQbRdBpUA9ZdgxWlSJ0//T5ZV4b/0bGD5rCsZe0x1VnDzIZCGxOjI0q1gE7u56/0dYvS+Bbn074a9m/SXu+tpXSRvhsFQ+skyLvVM+Rcmxymos+vnT2PDYW+gd4cJyTjQqUIWDxVl87pt34m+vPMf4wwg2UQnUPzTZlhpDijtjcrt5Xnfp2Im65bsRK06hzxndMfyGcZzcEFjTEk0BgXNSvGXhE5l92LF3I8ZdOhpFAzsyHVl6Id8kzU/kI3agAO+uWY52HQrRe1AfdB/Xm8+kYkHNfRZQiwCl5WLfUwTIVXZCcE1BvGscB5y6ndqHayuNScG1K0nCnQS8MQKUxuTlw546DngQfup473OuhwMCWt26d7eFmeeccw4kDe/Tpw9uuOEGSrKGmZlCSRfk1LFpAw7XWdWT3LG9Gi9IPnaabTiEG2z0Tuq+F93L0s2MGTMwe/ZsG1i08ZC+dGiXTEl75s6di1dffRUC4LJbH05Daeve2R23iRj9nH8bZrtJj135G7rY0/HPxdO9XDh+3TAurM4uvK4lmbZ3T/TWs193tM9rhw+XrkG/SX0R7UBprBY9RovM5naU+hUxWgXJUFJYyWuZ6qvMVCBN9CdJdBEltu+vWI7yygMYwh02JX0ubV/KryjtOetWZsqRtHaLY8rtV+KFzbuwf+kmbrDDRd2Ucve6YCxG3TATsf6dqToi++Js5ALQgpJUTel1Rk98/PJmHNx7FhdyyvIE6yp1pavZ90QKihDLpyoIgbmk7llKkVOZStJO9RjqX5ue9MEsNqzdgO59y9ClNw0bto+iHb/kcGZg5BGvE8ySPlpoiVC9ZfqXr0Ni+0EcfO0jlFEdJE1LKuNuvBATbryE0uoidOZEgatWDeRLH1zE8o7F5LUWrIp8HX06oX2XDtjw4VoMODCM6iYptgWWjgsuKwmkU4XkL/mTTEiVJIKqKCc/BHAFeVT1ySSQT6C9d+tequtU4cxJw22SlKEZw5j0ygXAxVb2rbqSeopRYn2tVFKCPldBvDs2B1w/6EKq36rr554d6+zAvMJpfGxqOsfKxz8/NRzwIPzU8N3negQOqIORjrfAmuxhS/dXoEsbC7mdM9URCYjrfDyd2xFI8N7HwYEwaFYyep9u0HDnu3KWUbRZj9y3v/1tzJw5E5s3b7bJlxZl3nbbbSgoKLD3K+mPXPhdyy+8sNalbQHb4E/ddREN4kduQHdhxeXw+5N/wPkjMDQECFw8gbmuPbti7OSxeGfBYozcOBzdhnXlAkOB+zRBOLWmI1QZSdLCjSTQBLoZSoZtjxnpNKfi2L51J155fR7OGDsIvQfzSwh1wKVnLesqRNQGDgUTo1Tt6Dh+IK7/P9/Fm//0Oyx77W1uqDMV5/3gDkQGFFOznP0DVUOyRMUsiulbU0cEIyacgRXPrMHKpRsxZeBQHEqWU0WEEmwibGJWs4QSo454JkM/ws8MFbYFVPWgJF6E9ev2Yv2GTzDzpnHclZLepEvzF2ZhzoA0bywKy9dhZH/c8I//Cwv/7jdY8eobmHzphRj/nS8g25XSfwJwSZoDxJtLQCchYPJS5hItYUqkY+3i5MkwLJqzAKPWjkH3sYNRzglCjCo2WhCqLw0xTmLiMk9IXfKYTAySbKkBxcwKegGWvP0m84xi9JSz+EyqRCwhJwyC/ZoMaY6jcugQ9A5qgCC5d43lgNpPTbtQBWykqyv1Dvd/jUzKB2/BHPAgvAW/nJNBmuskTkZeDc3DgQJJAIopHXV6dQ54u86tbifV0PTD4Vpi+cP0nW7X9Q0Uel/unao82vVTQFwTLL1Dge0Y3/V//Md/mPnCRx55xFRWpGrk3n34WmloAuaktCeiHijN1uSOVq9d+wm/FxfePRMvjiV1E98VRufaeIRulHJPvGwy3nqXCxufeBF3fO8r1MUmIKREVlhEWg6ydh8jCM/SfrVMeAgAxmlJJC9dhD+99Br2Vu7FLVfejOIOBdR4FkwlemY8mf/WxjemhiZkX0jb+cM6obh3Z5MGl/aiCkb/Yup950wYMj/brEeAkmBcprCHjumEwWP64cVnFqHfGX3RfXQRVVJSlB6zLKRJQuwoAWxckm/B0Dya+qvmgk0Sn9qTxbynFlK1pR3OvWgky8QMSI8mhJJYa9JiMmOmJRvjArXZYj7vXopIjw44WMg1mH26AB3jSJBGbVQUVYbiAcM72FuTGNMNJljUhSf/xs+cjCWvLsb8J+bic32+ilh7CiO4sNV00LXoldySmcE4VWOoxWLpSt++KFuEj1duwRtvLsKUC85FzzO7IcX0xFkBbdvYiMRT/Zz3FtHKInq8azwH1J7CbUop1LaRhqXn2p/iufg6u3TN0/+c9hxQn+FdG+dAS2vU6nzkNLi7T+OORnVIOjQISzLuOqjjeYVKm/85V3PhPPy5ERw42vvQ+3ROwFuLMXXo+s1Fi2zDnptvvtl2fpUOpFQcauoC33m4DigtAXTl5/xd2v58dA44foXPak/Sz7fFsuRpQ5ziayKkd6S2KGeth6+50/DOuPLO67FhzWbM/uWTOLSDag8EgjHqLceoLiG9iTwCz3g+kSjF4PmUOheWRzH/oRexfMlKXHLN5RgycZjZ0VatiRG5S8IsZYkIkXie6oYWcdIyCCsB4lxoWEA6CrTwUtJfqrbIYojUOQS+bdMUJkSr2ci0i2LWl7gbK0l+/L9exK4PKmhTu4ATAKquMCwF7KbDnpVomUlU0rJKvIBm6miO8JlfLcRHKz7BxTdPQklfmjThRkSaGJgs2foRWiKh6kec15IwCwBrUyHRVE3LTkL4ZpebNOeTDeIh9xoySyQMFQBfXggIZzkhkCqNyiuATqUSdBzUGZfcdj02rd+OVx6Zh9J9UeTR6kospTJSJSWvGtlCJcDFsATjmXQ1N+2JYuuqT/Horx7lTsrtcd6Vk2gDkjkYStdbYx5iMunR+7R6wbxVdt7mjsBfz/xxbB6Iq3Wd8bWu51Huw32p47nrD48SzT86zTjgJeGn2Qs7XnLVmMON2127Rn686TcmvvJ0wEzXco6+uuBK4dQByV9nAbRjO4GJIN36w2oUzI0+DKCBL3CKF3bO3/kdK10Xru2e9Z5MWsmzNhpxqiXiiPydhFvvUu9WCzUHDBiA22+/3Zjm3r/Ocu6sa1dXdO1d0zngeKwUbMKT47Xjb5jnR8rFtcMadRhKdrWML0kp67gLRiNTnsBTj8zBxn9Zh0uvuASjJo2hpFwbwxSiIJ1vu0nGucPjxx+vw9xnnseHH63F5TdfiQupM50pZdskUJe6h4TeZsVEgJFVQt1FRIs51WYJNhOsR1nea3MggWteMlAQVrQHKiME8aQvQgDaa2wn3PL9qzhBeAq//PdHcePNV2HUlK6UUEdQzDzymV4+M6EmDMqq8vHJ6krMf+BPWLdmA264/RKcdfkAgl0mLNpEkKopgWtEKjWBLJx+AaG2+Y/1LeIMNygqJHhn0YRzbV8gdS8MG2BiS0iJ8dAv08zxVOo42jl07MVjUEHrQs/Ofhqbt27C1dddjl5nDuaERelRes8JSIx651Ljy98DLH71LTz39PPo0KUTbvyzG9G+f5nRSxGH0WM9qbKls+uanjCgIXjif08VB1x7VP4NaZOnik6fb9M44EF40/h22sZyjdiBXdfA5e+enazC1QXgjgYBMwE159I529IOiJsaAh+6+6bTrUEyN/owPZky+6yrz++zobxPLQccyBbQloT0ggsusJ1Ohw4dagDaSbjD71+mCC+55BJ056JcN9lq+nutpcVfNZwD4QVgDY/12ZAZIssoJdfSPZ5w7UR0oYWTuY++gN/f+wA6Pd0NQwYNxccEs8VElC/cNxert3yIDVvXo8uArrj9O1/EWeePRbQ0MFmo5hnNTdDZQxl4DPCp2qXaL8/U5U4S0WYkzqV9bmFgA7SG1BWHh7lA/1qmSVNUYxk+qxPuaH8jHvvvZ3HvPY+gz9zumDR9AkrK23PykMW+bfux4rkk3uYi0WXvrETH/A64/Vs3YuTlNG1YRrm8Rk9O4t3k3W0kZFkpzxx5lrv6NJpxlAt25Ay6nqgmCgpIOCw6g1K5PkdPdM1ZRc4RY1NaHcG5105Bh24d8NR9j+Pn/3oPzhw+AmO4mdne9bSrvy+DVYvXYPvrO7H01Xewd/dejJw8Cld84Qp0Giw1FGMR+ap8mYMR6PJURuaRy9GfPAc8B5qTAx6ENyd3T5O0Hfh1oMcB9JNBvvJy+YWvJV3S53HZkJZtaQEE98nbgTvpYTqam0qrK3tT4/t4n+WA3o+TcEudaNCgQRg4cKBNrPSOw+BbseUn8C0nAH+879QS8j+N5sCJ4LumzoJzOmwbdWLiAecOxZ1De2PN8g/x/lsrsWP9ZmQqE9i3swLvVi/BgMl9cc5Vn8fQycPRoRfNVEqKTRxoc2LtGEOnhYfUqgjAtRA2D0ltDWxLxYOTPYHJqLapJwhXWNN3ljkTPrBUuDCUjwhpFZOTBJ4GTG6Pb/S9CW/OW4Xl3NVy3sMLafavAJXlcTz91Ku0IELrIp3iuOiK8Tj3ktHoOqSUEmf2O5S4B2mGwSuTzTnXp7l7FYjV3Oq+LfLkA6NFNPNatLiUlK7KLhWUwBHos6C604c7au7QRTBy6kj0GdAHb1PSvXrBB5j/h1eQ2E91FILw53/7PJI9gf6D++Hy26/C8HOHIV7GxabxAOyzlVm+Qfr+13PAc+BUccCD8FPF+VOcrxtwNViY5FmDmEYJuvAzd90c5Cq/8GDl8ldeH3zwAX71q1/ZlvWyDf2Vr3wF55x7rumIi1450eakpubRlB83zjUlro9zVA649+kAuSTgrj7pmcC4CyPwredOTeWoCfuHzc4BvRf3rhqTmRYjSqjLhkrsS3CsZZU081fQLQ9jLhyN4ZNGcNv2DOb++gUsfPx1TDznfFz03UuQxwWYQoU0021AU/rfTCIA2Tm4KMAtYC272YKslo2IoxQ8RUVu6YFnaepPD7LUX1EaMVpHiRjCpb9E1wLiVHFJU1rPtYvUZKHd8t5xTL9lNM69dAQObEtgz/YKmvlLcwfLCDqUFaCsZzEKaQ4xWsI08qhVLkBsXRDvj+DC/CNVzJu/jKOlkLb6UV7yD8i166BUVN8yuM3nfGZF1T3jy0lPXBtcZaRQzqQ6DC7DzF6zMPmSyUjtSGDBYwux6Ok3MGHsaMz85sVo35MLQksYnuYMU9RxN0sxOX4egXTv7TngOXASOeBB+ElkdkvMSjvdCSTpkDQp7JoyCIfjH+vapa+zpNwOpGnbetmNfumll2qA9urVq3HPPfdg/PjxHEg4uDKOdy2XA05VyAFtN1lygFzv3PnpmnjCnAPlLbdkrZsyBx5d22xSaQk20wTFEYJYAUYtKRTg5L6OyHTgQkLtHKmFgTSRl9eRm+yUchgiaM5KQVowlehTAmza+WD7N5xq9cP0wgMYawBfsmEdxNW0h63QTEamVwK8aqRzaaL1IVrQaajWUuKCblPxoJ/E0Uw4Qn3qeAm/yPQpQg9qhZsT0FZy7Bup6k01EO6cqfx4n2W5Au01ptEQp0lN7i/KL0Vy4olIDXgdPA/SDJ6q8PbcbpUPw1jxpHrDeORvkrRESzIoLs1HtFMpirrS9nq2CiW0P96+D6X27TgZiWsBqzTAWRy1u1xfq2S98xzwHDi1HFC79K4NcsCBHVmhEFByZ7HCPXPn5mKP0neHA+DKa968eXj99de5HfQZ+Lu/+ztMnjwZsik9Z84cszCgOBq4dBbtTXMmysoNgE1LwceqnwMC1w5s6yzn3pPeWxh86x3KOdDn7s3T/5x0Dug9uKNpmfN9R7kxT76AKt+tqVQQiNP2nalhEG9LMC11EQHINBF0poASWpnZIxiOUo9c0NSsIpEWEsMjOIkeSYZ5awCYoQgug4cSIMR5naeFmXTa/0bhBLcluVZ+5mFQlCBYOuT0kv0SSYd1RSuKCm3hGN0AuuyM26pQir45fTDTfzrX5K1wDXQxbmspQb3seosMAemcto2VR5MMfjQwKXtAO+nOhZG+uQ7pg1v/Z3nKzjop4eQlRpUcwfhYiuVgOlpQGqHqSVTPCcBjFPvHaYVGExzF0bTIO88Bz4FTzwH1Pt61QQ440OPAd3jgdc/c+WSyRwBt165dKOfq//79+0MbtwiMy23btq0GwDlw13TQFlT9psc/mVw5vfJydcnAgkASXZjPeu7u69axuvenV8lbB7V6N+79NLZE2vUyQ5BnQNpAJQE4AWCGyFvAlXCQQJAP9NWNTVALOAOgzpxYVYTZDXDKvB9vBKYVPi2apAMiHRXDj4rHf3rJRaSmwfuYRMWqcowbZb76ow+9Akm5ogYqGfkML2k2v6rRM2p6MATkpF/56JZW/wiClZ5Au86KLXm2yqT0lVH9ztVj8dG+2nHnzIg2zWEU1n4SKjrEkSANo1HJ55z4p3AWVuEVjO1GkxPZSRcVku6LBrN/HilSAG7uI+sojMVNglgqHlQgJ+2mCq4QzJMe9oQXRkNT37Xie+c54DlwfBwIxAbHl4aPfRpyQB2vA0OnqhN2+Yt9jh5JTEeNGoWePXua9Pvaa6/Fzp07bUvz8847D3k0uyXnBjm78T+eA54DLYQDgo0aVgQQBQIDp/Yq2bOpQhj0JCimekeUwNZURSjyVfAM1ViCr2KMlwOljGo3povt8KgkxgwvDC9D3fbHbLXzpoTZBnJ5Ng0X0iIAayLmGuBM+iwDAV0+U146kZ5A21y+gb+SM/Cbu1dQm0jwcX3O9aeWpZVb5CjdNBVyaCFFG/zQBaYHNQmwjGuT4q1CxNhHByzIeeRCOOAeEBx4Gqcl3deshDd5BZxQkBcBiGcYEWMAXAo1tc73o7W88FeeA6eCA9Z2T0XGPs+WwQENGG7QONkUuXzdQOCk2zNnzrQt68vKyvDee+8Z4P7a174G+ddduOfinmzafX6eA54Dn+WAAW+JkYkEpUphmFeoj/2MycK1jbzgKNeiaD/KfKJow4YMKLUJ25qeUvAAfQYQVOGDgYqQUsibqi2SlstPe9JoO/kq6j0f4MY5FVSDEcpM6zkDSHhtO1GSJlM1iTICFygG6hhGGANQKm+0BqBXdMaYZoxf5QSe9Vy7aXJPnECthdLySJQb75heOU91nAQJgfqV0id5JEkp78tUYF+kEkmuQTUkrJ0txRUxieWyLwCk2RaYKiL1VSI6xAYeYovUUdxRy1xpuLNcZHsqXcWyaUmqKeJYWWWlJh0wIiinklOaDXS+j20go3wwz4EmcMBLwpvAtNYUpXbAOHWlEhh3Hb2AeFFxMb7xjW/goosuMhWUjh07YtiwYbRUUGYLOCWVctY0HJA/ddT7nD0HPAdqOUDAzPYp5Q+B8BjBX57aN0GfJMtpqaUQLwpCc2N4Al2JaynbpchalkqilBKneZbutICnnMULLg2I0oP/OQm28H67PHQeMwidq/ajbERfPhQNBKwSCitjJ5HXWTts0kkxRr+BjFogXFZPBL9lepAA1uJol06mY+EEal1ahNRSUREh9Tj1SbV9GqkXvcX5GHjBOFR3K0L3EQMtVoyTCanZKEcV9XAZtYKI3hwTgjv+1t4rYXcnNRyRXEmd8Ey0gGYegy+GQXgRwIMAPtglk/Tlknb9rutHde+uRYFc3fvA1/96DngOnAgOeBB+Irh4GqbhOt9TSbqjwQ1YutehoVG2wWUJxTk3ELiwzjqKu3fh/NlzwHPg1HJAeseCswKQNTBRGFASXzZu4e5DmUocRBWS+QTrXLAY5Q6PpnpN0t1ZpWAMA5rqE3SnreAFIAXwg8GLMm2qPU+//WpMuP5iFHTuwPSJviVBVmz+my45Y0udRdA/QK58mkOwJl2XvjnpszgiUvFyz1UW3jK84tgVffRQ1591rl/Tk6DfIqyn/fKzb7kU46ovRKQD9beZnwC4aaxbUkFaKicpIa2BJL8WmIv2ujmKCpPv2xPxRkr01dlKEUtec3Kj1Z/8VxY6NKFQmpLAy8d9fQxeDdPizCVMPwN55zngOdCMHPAgvBmZ25KTduA1GCRODaXq8CWJV6cvOtyhHTGd2onbfVHPFNaFcQOF8ztyCXKDmwYljUIhFzyp9bQBS2PTYU6hasMc9sjfeA60Yg5Y+1CzCRrK4SWlnzBfuLmobQbAVssvpdKhKAzIf8FFd5tfkoeRU0YhnUhh0MQzaBowjwsKCcRzE3CBeGFHxXMI0gAo0anrKwxbWroEsxzFIh0LUNClyBQxMlS/iFPiLvOIJr8OdFaYHAGoFKXpAtrs0oC1IC5jGP3BYkxlFhTewgr568g5pVUvX/jcAVlHq6JEaBGlqoxTgGy+6amnpA8fzTNpfUBRkLCy1L0k8EmWz+UoVqhfDNPNVMkP46qRqglEr8Gd0X9UT/Qb2ZdaO0yJjy1N46XyUCh9kWAOekZGxqSPT97T296SFtbGpEwfJG0v2vW3KrMmCXL2TuSRixf4+l/PAc+BxnDAg/DGcKsVhnWg9lQULTxIufzlJym36JLTIi0b3HN+bjBw4V04d3/4WWlwhKCTDqgkWsENhw8iCGmGSiKlrIJQHPzoFZNptRqnJzrCfuHrmoD+wnPgtODAYSBKFOeqc6CqwKbB6h4Az+CZtVP6OdCt54oiACh9Z+E3tSHpdAtMR9h+bLGlpc12RsAXi3ELGgI2wXMZ7Dhr5liMmTaWu8xzCGJzDGyYBOkYwA01MQdERZ9hTuYnwBy0feXEtm36K0yHxEiT2y16VFzd61cgujat2jZfmxXLw/jWT5BW8ammz1Ahg1LzzCvdHsG5Pirot5QPc2D8AqVhmUkFRVZLmEAoHdEWpCsadKMfueDCyszwoSj2RGGlBR4tiGDcFRMwcvoYlJbRRjizsAAuW96qa9MCWekEZSQPp2p7ckc5KrfsRV5ZOxT0a49ohA5VGwAAQABJREFUO6rJWNQMk1DqLgFG1iUP/qvrdKTxRj6aPJGOozGHobzzHPAcqOWAB+G1vGhTV26g0Nldt0oGaPzS+CCnEdwNEAQMNtBx4NBgqWD6tOuCWnj/4znQCjkQwKpcW2CFtybBsxb8uQbgmokAt+lX5/gg4CUhqW0Lz4cCXVJxMJhLXe84Jb4ZonWTrNrsVs8YQW2MWaqvUdrRQmlCS/WBCavx1XFB26zjyVtHV/i5wGngVCYBZ3cf+AZzahejNrPaq1x0O9X61sbIpWen2ufhWMe+Zrx6o4pX9ceumQDUeVxfMtIJT3PRa0FZEfI7FBoP1KsFKjjitIQQQV9v4DnCaUB5Fuv++Bbevm8uyrfvBYrzMPySiTjvjqsQ6VGs9a+aHdU4pwbkPOrSLUwuTSCxvz4aXTx/9hzwHKjlgAfhtbxok1etGoDX90YPGx1Co99h/vVF9H6eA62FA66y80wkJSAsyWeAXQMEZUJOXupsjgi6RhWC0WI5cbgB7ARDVGWR3HMQ+SVF3LmRm9kQwaZp+URSYFs0KF1jonmuuaQENQCeJjEVKaFmGGTmf5vCAanzCP1KlCA1PVOLUUL0Pnxiwud8QZtfX4oX/u13KPm0GiXxApTv2I93fzsHhSVxjP/z6wnKOaHip8Es35vMKMo6jN6nSfaZbDBB44vmM1lfsddYF5k3pSA+judAG+KAB+Ft6GWHixp8KmV3ahIqjYRtz9lXgFyxa8BG22ODL3Eb44DAk9BaYJ86aPu6Nuk1n+iDkcCcUJVO2uHSpMLmJ/lq4C8UFqnMYPviNXj7d89i96ZtiJeVYPJ1MzHkyilIU60hmk95LnVWpCaihYiWjsAc7/UnfZYcfGOq3jWVA64/V3xdO1dXyJImv6UWlKpKo3rLPmR3VqDbwCG47K478OZrr+CtPz6LXeu3AhVU1qOlmgS331QapgrENxVTfNNL0lcQTdKYl1WYHDSnn3eeA54DDeeAB+EN51WrDNnWQLgNTxykJDTSIaThAXirrNq+UEfgQCAVVQOoGyAH3gS63COG0c7tCqrdJCXxFGjWQdPcOPDeJvzxH3+JQx9uI9DOR3VkG17dsg357YvQ/8rJSBCwSQKuxhaRvrhMFPJWesmBNrfLyJ+PhwNugboD3W7RexiQK31NgvRubQpEvaJEJoFEVTW2f7yBXzL22y6lCfWItFYjlaMY313QPwZfQmqtwygNvtscqNcEzsIJmQuUq8J45zngOXBMDngQfkwWtc4ArrPWWR14W3LhgYnF985zoG1xgBgpAFYsNuu/Wr+agWsKJuvOdQk5oacBN9t8h+EUV3rWsmKy+Z33Ubn2UwzvOwyzbrgRby5cgBVvvYp1b65A/4snIa9UW6kTvBOsaRt65wQEDZizAYbbo3vuz43jgONh2DKLruVcXx+kqHdAQE2TiT3GnIGyUf2weska7Lh/OyXbKcQ6leDMGZORIQiX1Fs222VrXZZmTOAtPSO7CKTgtplRkHBYfTzn40+eA54Dx+KAB+HH4lArfa5OW53z4R10UFj3THfu2nXy8lOc8H04jHvm0nX3itdSnNFWg0IOp0pCO+88B1ozByTN1Hq7FPGUmoFAt/S9BarNsQ3IoonJvGm0WzarJb4W9hI2t81lkuw/qC+cSlGtgYg8WRBFefdSZEvyuVEPwVuSm+JQUi4cqOhx/TBF/etKnjXqKbr37oRwwPW7Six8HU48atLtNIqHd8dlf/UlLH7weexYswkdaGN99LUXoP+F41Gdx03T+O6iUuLPj3MiRSsqfN9xxjVpOF+idPr1rmUNh4/tvYZBeThPf+054DlQPwc8CK+fL23GV9ISdzhgHe68dR0G2boO2+4Wo1yYmsVAjOPSqF8ac4rZa4CglgYBbzv0453nQCvngATSAt+q7QLVAagikGK7SMlGp/yj3FQ+nWQYoWiashN4FtKi7Wm16ahMpHDXnW5jhyKvTyes/2g1qn/6/7C76gAOlUYxYPwILuzjVzYCcdsNU2oL1i8QmzOqJSUCdOHdSeWATa406yqmNHzqKFw5fBCS+yupv0+LKZ3bIVsUoWnC3Mvh+05JpYjvMU79lOSqbdizYSsKCdg7jB6IGN+1dkeVbnhgoSV4oapX3nkOeA4cmwMehB+bR60yhAPJSUqsHAjXuT4gHmaANozIMlwiTf1ODqp5ebSEkJOqu7ipFG2V0eleG0a4jXfC6ZyqaxtaCAgMfnC80JDBKcOpIsfn6zlw0jkQwGy2AFZ+AWsD5frRP9UOtImOtWl6RGly0GycGALnhJztPsswspQhLbaeE8/ERd+8FYt//SS2bdqN/B7tMeOmKzB45iQrF2MwUabDTJWFDsuHJ1N1Oeml9xmKA+r3BJ0zMW6S1L0IBd2KjTFmepJXZsbQKoh21+RbrEjho6dex4LfPYWKbXsR5a6fIy6fivP/7AZEO+abjXItwJWteI0R3nkOeA40jAMehDeMT60mlAPKDoQLRMcIlCXF1uH8XYFdeJ11HDxwAM8++yxGjhyJMWPHGoBXWMVzYQXCV69ejR49eqBrt26UrnGzDo3YLcEJCLgxQoBAjrQLEASXzjO497+eA62OA4a8Kd20RXTBFFTVXzaeI9ymMbHlAPZs34OOPTqhpEdnZAupisBGozYck04w4Zsm4dofJ07b0mdePxV9J4xAxa79yC8tRod+XZGhebskN4SJ0UyhGpwWZwbgP2hfAudm8pC3rjm2Oj632AKpr+a71OTIcV9qJ/q6QWdfKjhr0uQrnUkhP52HrcvWYf49DyG25SD6lnXDrs17sez3c9Gza1cMu3WW9I0sbjYXz278j+eA58AxOdBCkNEx6fQBThAHBJbDQNsBbwfE62bjwuussDt27MA999yDV155xSTiLrwAuAPyFRUV+MlPfoL//M//RKK62iThLtypPgdAwA37rvrzPhhDDiMvzKfDHvgbz4HTmANRSiwD3d3cFyuWJcrLyL401s1+BU9986f44/f+BQ//+T9i1ew/0T+BPEo4bSMWSUXZXPLiMR78CiZoTTOEJUO6ouuEwehwZk9kO1B9hTriUaJsqaKkaRVFE101MrU4pROkxYRcUzyN+Xm6kS4d/zTfZ8psDGqSxBLYpwp+5eBaAE2XpJkns4TC5gyIT5atRvnWPeg3bDgu+7u/weQLZyFO85Tb3v0Q0JcTvVjF4butpys93Vjk6fUcOGkccCjkpGXoMzq1HHDSaqer7ahxKim6d2HC1y58mhKwagJrSbudnwPfLo3S0lKMHz8eL7zwApYvX+6yODVnNyLkvoXrC2u4fDZ6aKDRoZMQhneeA6chByTgdtU9IN9VbILhXHk0CY0QgAX1naon1DuQnwaC7Yvex0s/n439y7cgs60a+z/Yivl3P4zNyz4M1BOEyPgvCar+BK5jJgEV8uKDfObCrdPNjKGAfizO9sTFfDxroaecgh3mHGGHefqbk8GB3LxIFSLQLeI5zi8XkoCb07vWF0z2iQXchEmb9hykgGXf+k04sGsf0lyUm1ecDxRx4SZVFPnJ0wQxiqv3bjbE+StQry8fzrlXrrO7ds/82XOgrXHAg/A29saddNedBZzrAk/3TKxx1wLaCqd7Sc3DzoFvPZM+YEFBAW655RbrkB944AEcoAqLi+vycumG0znR1wIXwRI0fVoVALDfmjJJLmd+HDAMnPPedN5ZBtEZTDI0eNQOIErRO8+BlsYBw8e5qhrUe9ZfSTIFsQWAc21XdJt0Uy1C7VXPhYQSGaxfvAqHuIHLmDGTcMsPfoiJE85DZPMBfPQWJ9JVDGcT2aBFGYCSuFSO6cgpe6Vtu2gKdvHaZN/yI/CX6oOkq8Gh5MLQzJLwPyeBA1G+mDweNe9D74X52vuwC2Jyvmu9R+mDg+YM+08chu6jBmLt+jV46r9+jQ+WLEFxt/YYOmM8MsThoHlD6hwFlUDvlYdql0Tj1EqyBQBa0K9+X/VC+n9ZOwTQvfMcaLscECrxrg1ywIHg8NldN4QdAuIKL4m4zpKQC7hKcpJIJDBw4EDcfPPNpj/+xhtvGLiVbrjAvMXjdfM7de/uCOVm4jh9IucgQZiStVFC9nA58JA+J9nX2TvPgdOBA9pURTq9wskRgR1dJNneRLy2vCTMEiBPpak6ICBk+gZZ2u4WGAucCbUTScTYNjvSUkYkUYUiRWc6bBRC19ac1HyCCWouoj+1ag5o0tRxYG9c+8OvY9TnLkZiSBnaTx+Oy//3V9F12lhu6sMKwfqR5CJPbeiUZP2zNTYZ1aE8oJJ1sVqAPoZq1jdeBiCdoD0SPVyg06oZ6QvnOVAPB/zCzHqY0ta8GgO+FdaBbgFwWVf5zW9+g/nz55uaypAhQ3DXXXdhyNChuPbaaw2E/+53v8PkyZPRsWPHmsHbPnM2M6MduAiyYc9/mDNxDMtCXJF7JCl4OI6T3h8Wzd94DrREDhD4EAJZZY4T2KjuRuMSUQo3U+rIik07SKbrq3szO6e2rLCMGy+Mot+E4ejQvxveX7kUq/9lDfZVHOIiyzKcOWlMAMCZloF8xeOFsJey9K6Vc4A4OVsUQ/uJA3HlkD9DppzmDAtYtzoXIEsEEafuf0JTPOmV06xllpO+/FQcB5ZvxDuPv4A9G7eitIw2yK+ejl7Tx6CiHb84imX8bCLhuQ7vPAfaKgd89W+rb/44y61Bvri4GHPnzsUjjzxigPtb3/oWPvnkE/z2t79F+cGDOOOMM3D77bdj5cqVwUJOxjkW4HfA14H94zsLkwSTBgPaObAtAGLfREmPOZ71abSuq43r0mj6WeXS4Z3nwInmgCTTUvuIEVDrrGrG+bGpAUhLABWUjO9PozBNc6Ep7oRI8xd5DKfNelQjZRRD526TR2LWt29Dz7OHIlUSQY+zB+GC792KXmfT5rdUWhhOKgWarMYlxaxTEANWdfz87enNAfWBJqXIo9UcrabtxkW3fdvRNmUB0rSaw4pkkzjVPNXDKPtR2ttC5fodeOPfH8Sqh/6EAwvWYfPTb2PuP/wam19Zhni1ahungvr0wi8ytSsWTm9eeeo9B5rCAS8JbwrXWmGcxoJEfY7WAk2B8DFjxuDKK69E+/btcZDg+2c/+xk2b96MsrIyXH/99Xj66acxe/ZsTJ06FZ07dzZ1D8W3Dj7HSwdQ5Se1lRPjBBPU4QcukvssL7UTifY0XGS5IyAi2pqCiIT5yjyXbCWfaBfkSWoIYMLlPtH5+PTaHgcknZZutzbGERgSwIkT4KQ3V+K9p17Gh/MXmYrK4HPPwliqE6BXGfV4g3YRAHglwPZcksWAm89Hr2mjIQtHRYUFtB9dZtZPMlTdUrPQGopAjhnkU8Nt3YbaWo2/v2gVHGD14PvXmh/WA9mW1IRP+t681FcRKZXwlmfN7CJYv+JDrHvnA3Tq1RcTZ8zAxhXvY+V772DtS2+hz3kjkelAKTqBvXbiVG+rwzvPgbbIAQ/C2+Jbr1PmMACu8+gztwKQ7tizZw/27dtnNsMlFZcueL9+/Qycb9myBaNGjUKnTp3wxS9+ET/+8Y8NsH/+1lutw3VphPOWasuuXbtQVVX1mXyP34MogQBC+o3anjsvG8Pe/RUsSz7pzeDTrTsQLVS+zSOxVjlLSkrQhXZ1NeB4IH78b9SnEHBAEmiTJrJiCSwZPN6fxdLH5mHRLx9DhrshFtOc4OalH2JPeQVmfvfzyHYtoJ1uqqwIi/PQKUorF1VqG/06oCzSwUCVzNPZn8TllHIG81OCMWYUloVbfAPiQXr89a7VcIAiity7jdisTW+bu6nya0hWM0BWCn1JjEfzbJdV1anKvfuQ5fqCTqUdMGT0OFTv3of3CcLLDx3kOJFEPv84kgRCCUnDlaR3ngNtkAMehLfBl64iO4msA8NNAYXSCRdgbteOWx1r8ObGP7KMIldZWWlnScvPP/989OnTx9RWLr74YnTu0sUWQSpPxbPP21zoqU2AfvGLX5g1FYt8nD/60JmDF3YlOY2cLDXEuClJr/JJ6J85H+vWrcd3vvkYdrX7WGIdC+N+RN+JcEpHE5If/ehHxg+l2aI2MToRhfRpnBIOaFInSyiSJ2aIgKJJ1vqdB7Bm/ptoVxXD1GtuQll+EZ5/dg4+fHkJzr7+QrTr0svaYE7Jm/a8NTFU2+ChOs9/+2BEaaX1EUxdOahNSXPLfdnJefKJYXQ7e6mmsaFV/Wiip/dKEUVtH8nLrIC4SsrKkmHFMPOXDDxg2CAs6dYOH61bjQruF7F3727siVfjvPHDkF/G5b5C6grPP6tQPHnnOdAWOeBBeFt866EyHw/IdBv8yDKKnCThzmpCYaEUBrloh8B81apVkGT8mmuuMZUVbWOvcCZNk2hN4ju6nTt3WlgB+6ZMCiyRw35seMj5sJen1Ebl1dbK6vwjmX7o3zGCyqpKfLT3I+zesZ5hayXhjgZ3PizpRt6orCqfNjuSEx3iw/Hwv5Ek+OCtlAPCLzFuvJKJUJ2K9ZofeRBnfUtwIhynBLzrkP6IlLZD9KU8pKq5hI7+thiTkstg0sl2wkQEsNVitCW9AXBem6Sc9w5YGwDP8dFalzLPORfG3ftz6+GANFC0pb1gs2C3voNoRaXmfnqmumBmCdWf09pU58nDMe6Oq7D4wbnYsG0D7YkX4LzrL8foy6cjU0g7KdJd0WFp8sc7z4E2ygEPwtvoiw8XW0DQHWH/+q4dIFV46XxLCq7FmALiMuknm+BSK5F+uNx+qqtoh80BAwbg61//OgTOBUiVjsvTpXnddddh8ODBBMUnRh1FoEJ6ixosmCM7fScJZ99PaeGeN0uw/A+7MIR53nbbPUj23WMbkNRX7uP1E+gRv0aMGFEDvB0fjjdtH79tc0AASKhZurlx4hlJw1FWgB4j+mHd6oWY/9CjKKAq1s6929Fl3FiU9O5iE0BrEvyJCFlrcsq41maMnULXOYRtGZhnoPsbXLJNsR0xSBiYK0YoeC6kP53OHFCdkAt+daf1NCbGCIrFB6x+Vl0E0TNcwKkvJRM+fxmGTRiDg9t2o6C0GB1HD0CsSzGqlRI/ucheuSK5/l/jgXeeA22NAx6Et7U3Xk951Qm6o57HBhpdR6nnulaHmU/Vk3Hjxpnlk23btqFXr16m9z2U5gmlG64wspQi6yharNm3b1+zriDzhHom0G62w60H58L7bt1w4YUXWpj66GiKn5OxCIRL/i3dxRTNaBXQttaSvTuwPLIdxe2LcP70iYgNDmyeN+fCTMdHx28/8DTlrfo4h3OAUnB6ZGgDPCYdXUGkrsWYdvvVqKZaysa3VyFNPdzeE8/AjK/egKJendiIgy9RVh+lg8IVyZqwBvWTYMjSYXtRcgJNdO7ScuCPAXD6OyBuU9wAV1l4/9M6OOBUUAS7VQu0kY851QHVDYrDAy96yM90m3jZJR/tywaiPQaav9bFpxg2Ih1w/mUoHFGd8X1gwE7/2zY54EF423zvNaV2oLDGo4EXLp52xvzoo4/wne98x/TBZR3l+9//Pnr37g1t0qMdMy+55BKcdx533yPY1pbXzkkS7FQyZPrM6ZkeyYZ4YztrwnyODxokNFgYNKHuK3XXJfKjjdpoNEUpXgJ5MS4o4of8PG6vHdUgwcHBucbm6eId6az0xAcvBT8Sh7x/UzggMBONa39D1mt9/eFEs3RMf1z5L9/Frk07UJmoRs8hvQnAO7I9yH5hro6zLhputmbJH9bPNEGS2qIk3HIKaaFC4Eug3zknEbeEnKc/txoO2LvOddtSe9J7tgmX/Nhf2mY9vLR6ZGf2cTxrbUGGVnpU1RRPH2hUr6S8aCrhPEv1SRJxJmP9tEUMfujhnedA6+eAB+Gt/x0fVkIHAh2IFhiUKonT6w4HDofVtQ4tvtRZizLTPAS2f/rTn2LFihVmFWXAgAGmUiLLKZJ+FxUV4atf/WqNeopL3+WvtOSOBLxdeJ1dnLDf0a4NOLDT1+igVf2SFyq7rAYSOXsmP8p4CMw1PEheHowGFsKCBFdulAjujve3sWU53vzaYnwb2FXwoArUsMC9/gA2yDtXB1kPAviQ82M8BzZVOwK1i1zdsdSCeHZ5jJ/adHK1K1eddFIbkHRQzvJgveT0UGQT7LB+2gSVXbVEifQM7HtriknFACsMw7CwGcaL8D7CrzxZbpySKeCkt1cH9OT24jIHl44T/lg2BqHsUoui5ZS9Hln56cUUeWeB9Tjwr721VuJAugWwMPwJhXH+/nx6c+Azdb/mHUueHYBrVUOZx7Q6oZ2IeZ9mfbT6rTC8d9FUb7WxlCTq9uVGkztW7WyS8cx0puo8045SKKK+mYkoHSF3a0e8MWM9DJNhv61dXy0AM0nn1A91b21Hz0JClRP9JkSPRoxjuYaGO1Y6/nnr44AH4a3vnR61RA78OfAr8K1rHXWBeN2wUh/R4ss4JW4OjOtaO2FOnz4dWqipQV2gYc6cOaaG8oMf/AAjaapQ/mEp+FGJPGEP2QHXdP1BourvA6DNszpshWBnzq6eV7xvxg7bMvM/J58D4WrgkMBhVKhGBIAi7B3UjsBH4MKmZ0or51SXGupyGDsACy6NHF2unalmKoDaihYPZ7OaFAZgRpJDczyLLlEbHvwDuMNf+8rDAIwvUKQ0koeSiJewbcYVS21UoChIMJyGy6LWz/kEWdf9rQ1X94m/b20cEBCX02Tvs471KeddWycCD64Uqg3Oes0KaXNJPZUMBFUZ7F+5CVu5cH8I7djHuhVZ/dYXzEBCHuRr7YDBFU9jlT1jXbc2aolxcsqxLEJ0rltW8gCp69o7z4EWzIFQC2nBVHrSmoUDGvydhRMBbF3LOYDurmtBgjpOSukoARcYl5MaieIJlMtJvUQLNe+9915TQbnssstMyu1UTRQmnL7uT6arGUPYR1tnzQ49J185mWT4vE4GBzRy8zgMLOul28EHlCxHecQkYc5IbkZJHuu3nQUe+B1dkjpJm9UygrpjtSaXCE/H61j/1KYkeRa56pAFeLTxjna3FI3c49IwRa7G8nlQCDsrkmKRfqWgT/1MzlyETXTlc4vw++/+Iz56/g3unJmi4QoB/OC5//UcaA4OaIGwNkbTofYT1z2P3DSWwhiBZ/a7rMbpveV45e7ZePKn/4NPuXYhU806TGQdjVC1SnGCqp4D/7xhpDgruKkM8tpGLAvDa96oN1eYmInKnXClOUoZpKn22hDX0HANScuHaV0c8JLw1vU+G1waB6wd+BaQdn7urMR07UCzzqWlpZgwYQIGDBhg4NupkbgwiiMLKF/60pdsh0zZxtazumkq3KlwNhZwCAgGBFHgBodTQY3Pszk5IEDqnBsEBaQlIa7rPuvDcBrcXVjW4cDxXDOTqy9WLlhDToyuZINUatuZJc/NdpDk0Y6Ll+Mpmvqkiom+2OSyNPBheTgaBORzMMelWZ7E7qXrsOX197G9P9XEZk0G96ay/BjEO8+BZuGAoG9QqTWpDbKQpDyQUQsma1JLkM7KnDhUhcz2g8jfy3UKB9MU2KgdsLXymfpqzY9VV5VMTNJtOvsGxC88MueTYRuJmWJ5Gpk8Tp+5k6c1Emv8jg6L1iw/VrwcgQF1n83GdRfB2PPZ596nbXPAg/C2/f4NIEsv3B1iRxg0h6/1uU+qJ9r9UmBcwF2ScEm/XTyF6dGjB+788pfNLwzizaMF/bgFmPpk713r5ECN1PdII2Su2HosoO7UTmzkD7PERlsBAH43sevaT/DhYEe6zuEHy8OFUZ5SPVFyyrumrVGCPW/2PCxfsgQ3fOVGDJg0hNt7E2yoMIyUI8XmAkpD9xrgBXJ0HzzgFat1fkUG7VMFKKSRZ9V35VGbggJ75znQfByw+sjkBaYD9ShWS1MDzNVizhzzuMihMEMVR4JvPbJdODlZVK+siaWc2oc5VnRWY1ZhSdoZV6BduuT6kpvPCSsTkBDcoL61Fz5zM9dcEv7kOdCSOFBTt1sSUZ6W5uNAMAjXpq975+ek1e4s/zCIltRbO2J2797dQLhSkZqJwpmpQT4XIA90Wint4L2cS89uWtBPbd+cGxBaEG2elBPBAUriOGg7AGwp6lVLNMVD+q20zGcANhjlOYBz2Jc+qgCtcwK4AgQKq8VmUldprFNLqK+zDdrI4QpRVQcPYdPKDfh4+Xrs3LzLslIbSpMu0S19WNPBzZGohZrJXOJSSMloUaYCEJCkEzwIbqL5weZZoNZYsOiysSXw4T0HGsYBW5cp7MtDX5PU3ASLUxR22M6ufCCgbGtxUlqiGSzUVB03gM21C2pvaoMS71gaSkGAmx5Ba1GiEezZtA9P//xJLHrqNaTKKUmnWhYHJIUOjsY3VcZrjFM/EuRm3YLyCx+81fOACcaIxiTuw7YBDtQ3LrSBYrfdIjpA7IC31FF0OP8wZ8J+DpCH/XTtDoEJhZFEXUBc/i6OpOUtygX9N/tK9Y7enUwOuPrj6oarP44G+dd1Lkxj65E6t+Cofc8a8PXaNTA6QJAhKJCJSnDHSYMDvCdkYBjWW+shw3rUqjVKrzbNuvQ26t6SYYqcKQQTWuatbCsjKM4WUS9cu1oGg3yMtHyWOwElAjrSETfNcLU38ZHxVBI9086Zxkf6K5x3ngPNxgHTPVH9Uz0L6pt2yNRn95jGB9bAiBS/VUF5zma4oJKX+VS5kosTbEfop2S470+uCQaTX8VSu83wOSs3tqzZjNfmvI63572LxMEE02VcNu4o01CbbvaaLsJzTsInTfg18c+1Sp6CcVB0uL7PhfdnzwFxwIYYz4q2zYH6gI/jiANLunfhXGfi7gW83XM9c/cunJOIW6CW9FPbf7Ykqlo1LeG6ofqje50dwNaE0NUrxwh379SenP8xzxr5PjMKa6CURSAO/MxXQ7Wc8ILuJIFjCPaMASBw9CodgQIK6Uwyp+sT7pRHgJy5MJPLMWlqMMYFasrbVVV3DvLO3fG5lkVHiQBUDpsk8JwlwKFQnF+kBM2Dv0AF6/BUTng5fIJtmgNS0dbXmbSBcLFClZGn3DihG1nxyXKvBrW5lAC1wkvszXBSVzGJuMKFqqrMFRq+p7/TNY9UU5WlqhDFqWI+E+BVfs4dduM8T+g5xTZn/RPHPVk0UvsVqLKiihj1MTmgfjhtJ5QMn9hpzAEPwk/jl3ciSHcAR2d3faR01Zk4sOTOCns04GRmo3Kd0JHSPXX+oR7+1BHRJnJ2A5EK6+qOzvJXvRPAdnUwHNY9FxiuAcQN5Zhe72deMSEqd/TTUGkSM1lw0IgulQ3K6CIEvZInp5hfWp/PhQpyyRim4EBvtrgdCrCnjfyph65wmWXiM6PNpEiHWSzSPEFkOExhZapNxDrxFAOJl0IvKp92LWQpk0mWgUdeXj6BDRey5dq543UjKffBPQeOyQFVU1MyYRU1qTXPVnX5KUf31bSupeYToe36JEMmeR/Nj8vADzjv5HpkWcmvjatrOX2YCqysGGa3RDO09hNL0joX/7Ks/zbUKDM1D/64uLprDqd2a22XeYo+E4XLApEQt+jQydocr42m5qDCp3k6cyAQ95zOJfC0NzsHBH4EtHV2YMlJJdXBCGhL2u0AkwPleqZwihcGGc1OsM+gxXEgmUwaoFTdEGhUnXF1SMTqubM97+qR6o+cq0/O3zwb9WOybUqqOEZyJHSDOa/kYQOlaFJ2JonmwCojC8yYjyV106BqoYPAxzmaBqViUjVO8sBap0/ttniN+cdzOiiBColiMiRpCTsVIZbHRWmk1j7A0yOPKEef8s0cHBVwBb5NzE8xZSauGCyeIRa79D+eAyeMA2pLakeqfwLGcga6tUaBk8RsPIZqfqUplFlQGkWJUoUkU5lGfrSA0nEgwXqseitwYru/Wo+Rq/YCvfyz+sznkqZrUmxtKph3som4FmZTbWXfbE5tSCXM0kpLmlJx23xICu8E4prER9h+o2ybGgPtuW9zzfYuTteEPQg/Xd/cCaZbAKc+oOz8BIgcGHLgSJJMgW+nbmKLM5mOAFV+Ppe30+laG/p417Y5oDpgu6wSfEsiqzqjeqRDdUwAPAzMVbfcBE6cc3WucVwMBmOTZucGP4EDy1OrLOV04gBafYhDPwf0wqICRAqDZyRBQmXDvPq0Ljrtczgfk3KLfkJ/BJSZdoaDeZJAXAvRTBKurPRIZAmA14CM2twD/mhhKcELAYxJ5RKUEFZnUMBClEYpCedT27GeVxnunpmh9P/kb6BVS7O/ap0cCHa5VKW1qa0BcFVtMz3ILzZ59I/RWg/2JxD9tBxx2gZvny1Age4PZdG+mGA8lUSEYF2pSG1MlV9AXhNps0Fus2e2FQJ7m2KrfeaxVXIVp3ZHZig+ZOMVCc3RVpUsnb5aaeIg1S+D4/oSpTwJxGOaRpCUdJLrS3hvE3yL5X88B2o54NFRLS/a5JWAhQPa9THAgR+FEUiSe/ihh2xmf/PNNyNKayl6pnBh0LRs2TIDXbIprngOqNeXR7P7sT8+qjvqcz1Up+7d8XBA9ePBBx/Enj178M1vfpPSoWBzJ1f3XN165eWXESNgV72J0t68nrswjc1fCy4DGZlGxUAaLtUTGywTWWxftxNL3l6CdavXovpAFQd7AoS8AvQdOgBnTRiLASMHINKBcUm7MLtqgaTirj4IbDhnV3wkyZ/kzGZj3OIcXnfsWa4+BU8oJeOFrLLIWktEZto0qDMNgYmMoQ7duJwkmQ9uTDouevgf0aQlTXUa7kC4b/0mrFywBDuXrMPudz6mhDGON156FRtj+zDm3MnoNHowYsX8fE9RpbVd5cMjKE9Av7I1J0Jy9AYe/tdz4OgccLVToVRXrQrxOp7kDzegOrRuK5a8ugirFy5B1YbdaL8jxY80GTxw96/QadEAjJ4xCWdeNA0oUUqq3DwFn68YKpg4ajMffvrhZFXffxhGMh/W4TTDqbVH1Y4YL6CFHnTqDeT0vNY56gKfIATTsVsB58DVtluFZyimb459g4QKSERQtbMSmz/ZiN079qCisgpF7QrRq19v9BnQF7FSNyEIoqk8jBmk5bxIoZz8deXyNk//02o54EF4q3219RdMYKgxwMYGacZRPAHpqqoqzJ07FwcPHsTVV19tJgtdmjrLSQr+1FNPYenSpfjZz36GQYMGWXz3XBL1k6Giok7XdWSuUxNmUQerL5cBuBDN6hB1ZuiQpDEou8IFXbOuvGs8B9x7f/PNN7Fz507byEmbOMm5Z5rAqW69vnAhnnjiCfz617/G2WefHYBE1isnGXfhG0KFbJ7IaTEl5e+UrnEyyM/EB9cewms0afYOQUCS20p26dIF1dsrkeTA2aNXH6xYuxLvPLsMZ4wegIs/Nwvdz+rNqqHJAGtULGWDbpZgPkOpl8nqVHXkcqO+YXNlTf8I4wlgCIoEn+ZZl4S6dSJAUf0U4NVGPLqQNN6MKtO0YEYLK/XQksoNzcxTEjWZK1St1SfvOONmq2OoWLcdy2a/gGXzF6Cqoho9OvRg/pR+lxYQoMfwzmOvYMljC3DmpDGYcsvF6DhhkIGXDK3CpClFFDVR2oATTckgW0ot5XRDurzzHGgAB1STnC3wtL6KclKdqab29+4EPnx2EeY//Efs2XcA/QcTcJ9zDj55eRmKupahZHgvrP1gGZ5a8A4mvvw+Rl9/MbpNHIxkEdc0sL5L0k3czdQ52aSU22ol20tKk9J4PnGxprJqa4Q1amKs1yY9Zyu16pyrwsGkNyiI+oUoBwX19aJZk2dNhoMIGhnYGhSPbT+TSaqFGAVIBCCfntj74T4sfm4J3n1jCcH3XqCSsarzkC7hSFMUQ9fuPXHORedi1AUjUdi5iKpu7BxifMa2HHy7ctkFfkYZCZaVFeXmXevmgAfhrfv9fqZ06mzkHJgRGNa1Oz4TgR4ujgurT+Quvnume3ctqebUqVMxe/ZszJkzB9/4xjdMJcU9VzpOtaW+/E6Yn4qa63glJbEb69gCTw0W0i/QnxzJkhqwOefnusfA1/8eDwfcO3dnVx90Vp2RDXpN7LQZ1P3334+RI0cijxM66V26rywuTkPo0Hb0ArH25jka59GY9roFq/DwvY8Slcdx/qVTMPSsoejdtTeeue8prFv3MW7//pdwKF2FDR9twIJ583H33/8/XHXrNTj36vOQKlWFCgb5ALCKCtYUektSbvaMeRNXMD3hWRJmjbl2Lw9rfxrYKXnmtdU5emftszrppQ5pmuA7wQcxlV0VkjPGYEFaMHVUgUz3lGUjNrBP+Fteew+z774XqUPVmDnrAgw9eww6dOqJP933OD5Zvx43/c3XcDBWjfXLV2PRS69hzd/+X1zx5esx7KoZqKK0P8rFcbbVNwlVU8kjPYHLFSZ350+eA8fkAOuP1jJUsR7H+BUmQsCKT6vw0s9+h6VvLsPoyZPxOdbRLgN6AhVV2P7BBnQeNhBTvv45TN1zKTau+BBPPvgklr2/Blf8+U0484opBLNsFwLBAtpsR1K7VjvIpE0cjgI2kjg37YlxEulqrL4qqblpgmuCF3vAH/nZeMV2xABaR6GvShaTaesLVPBn38xsEq9Jd4QqXVlbNEr1Ei4qjRzIYskzb+H5x15EXrwQoyaOwlCWY/varVj2p2WYcdMMbh8dw/tsc888OAdvvbIIV912BQZOGcRehGTEOYlnGdL8ERzXxEKzBmm0WOF08q7Vc8CD8Fb/io9cQAdodHbHkUOz01CPRicQnSZocqDc/ATk6afOLUqQPn78eEyfPh0PPPAALrnkEgwbNsziK46cQJeAlQPz5pn7cfmE/Rp/HXSsLi31ayylCqG+2/o45W1APNdtByozQSetsC5ukHdQ9uC68b/1lbPxqZy+MbSQygAli+AmYYkE7fqq7unLCOtDilKzsWPH4stf/jIWLVqEd999F1OmTLE64upNYzggOXW6igtC86kbzVF4w9IteOi/HkKnzp1x3Z23oMtgSsCzFVThSFDyW2kDfaQj0L5TMUYPHI5howfipcdewLO/fdrUZyZfP5kDJusPEXcgoLaaZAO2JGoavK2eSfymctpgzgu7JSBQcHfIk+ECk2sBiJdsW3aOWWD+ExwQPGiglvgvw58YbX0rmiXHnySl5XmcaOx6+0M8/u/3oqysDFd97SZ0HTsESY3uVXEkiqOoLmB77ZiHwl4dcNaIXhgxfjRe+M0TePbu+5GgVYoR10+njjg1dR2yYQ5SzRGx2ZyVFd545znQIA6onkulSl+BoloIvKsKr/3yD1j56lJcd9uNOOPq6Yi2y+eiTK7D4HhQGU0iVRhFMp+qJb3aYUi/afjzM4Zi3v1P4Olf3IeydqXoMWscJ4lc16DKz0OAnHtsst/QmiOZ8yQ453iSJzUVOVZf678N7fKeRFm7IWHSI7fdYwPvYBJNmjWxVfpqe5aPnvNQm6WPrjjZZj5sc5HqFF55cj5efeBVTJw8EdOvuRClPdtxPQm/SCUTqCrIohvbWq8zeuGsqWdh0/ub8PSDT+F3/34frseNGDVlDNs2E2QHQBFEbpJAW/7MS7RLhzw3Uilb71oxB2zO1YrL54t2BA44gGkgSEAodyh4GDCGr11SCitApcOBqz27d2Pt2rXYtSvY4U+A4M4778ShQ4fwEHXIq6urrcNVGornFua5NMNnA8cGRARGmn5QBML4gaSfFzVpKS/2s0GZDTYFzUCLbIJeMKDmePKuGzdcvrZ67YC01RvyWpO1DRs24OX587FixQpbxCve/OAHP0Ah9cGlQ17B+uPqps6NcVY38wlcCWwrNpdjzv1PolP7brjtrjvQbXA3JOJVHOy4KUhBIWsBtxDhAk0kCASyBOXRBEp7d8BVX7gWo88aiz8++hw+Xb6F6iwFBBaOCo2YOlinc2fdp2Wcm4Or61yTpFvqHbKfzGpY46w0DCTcbXqlfGJlZeXMYxLaxtvAAsNEtLiZI7TWs2mRqFRR2JCQ2bgfz/7qEeSzDNd8/Q50HX8mDhF0J7QCk2JytbO8GNVROOKLxqpsJeLDuuOy734Jw8eMxqv3P43ydzebNRVmafadgzKJUFFoVPLsnedAAzmgKiO1KprG1FxwzZ/exvL5i3Dh56/DmdfPpJoG21imnBU8wzXRCUqaWfMIyOOccOYVxVEdrUTJGT1xxTe+gH5duuK5n/8WBz7aBgaV0RFhVB78ZTuQicMK1vV0oQBsMB4JZMupBte2N5lDDNqN+p+gK5EqCyeoCkzxs8Fe0h6sj5ClEwLzIClrBqamwlDR8ijefXoJ5j38PM6/8Bxc+aWr0GFAB1QWJPgFK0EBFfMhWE+RvhTV18oLDuL/b+9LAKyqrmzXG6tezQzFWBQUIPMMKiAgouIsEDWJmsGoiekMne6k2+78Tnf/+H+6fyed/N9J1GgGk7Qx0YhTFEcmUWRU5kFA5qkoxipqevXe+2vt+07xKAsERIWqe6ruu9OZ7z77rLPPPvt0vrgjbv32Z9GuQxs89fCT2LFmm/VH9ahm+srB8e3MS/b4Z8qm71peDbh+ouWVzC/RKdWAgJGzWiHgKJcJdjKv3Ts9kyTcgDXPc+bMwVe/+lXcc889uP32223hZk1Njen03nTTTXjhhRewdu1ai1vAyKVjD5r86J30fz/sITNv7lBc7lqbtKh/kFmrBMGOphl1L6mkQHiCesMfNu3mwmeC8iZFbhW3Ur2wwReBt9ENv/OTf/4zvvKVr5j+97333mtqKOXl5ejWrRtuvvlmzJ49G3Nff/04ejydykpSmlTLDjlRByx4+S3s4ILFyTdfi9zuRTiKGpumllJ0SpItGijO5nSzdKKlqhLkNHodCNKLUrj801chmyB2zpOvIX6QSID6Jprg1tos2eVW522b+EjZ1AAyZVvqP3krPK7p8Dhpq555sY7ZIISQPDtfPg+RJgOcVmdQHqwnCuU1IIgwL7FQzIpsUnXpuPJPAFtm3MIcMCx+fib2vLcF135+Gtr16ozqMAe7tHwi6Zrm7OspKUxGmRkCnATrnhaZUUXJY7JzDsZ9bgoitQ1Y+PgM4AghCr1J2cZz6hoIanh/7Fn6lX/ya+AkNSCwmqT+traQj28sx1vPv4Leg/ti0A3jUJdHkBrmYYNE0j/pUkA6pYYSoEQ8Xktgzr4lFEcWJctXfnYajhw5gtUz3kCojrNl5Ot1DbXcSZZ0ynadOFRHO+Ep1FQcQdWWSupiUzhE8K+Gl5SUmWQsig6pbQrrsk0luIgyTpOIWiQaTHJDLBK+yc+Vb+l38ey1RRVSjVLPaM+c+dLC7iNbDmL2n2Zi1ICRmHTT5agraMChQCUl8XFkyxyh1p6w7TBmuw5SDlAdqEZejyJ85su3oSiRiwVPzEXgsFoYDRukIsyDVM1cWjz7rtXUgA/CW82nfn9BDfASRGcC8UxfmWA589r5kQ7v4cOH8bOf/czUTX7+859j6tSp+K//+i8sXLjQzM597nOfMzNrfybgqqmuNj1YhRdQbeqUhkD62XMCSyJxsWHvsIU2Bix0Rd1CTcMHouoG6EVwqqlzYZs+P717DVo02Dm75Tu9PJwLvqWCIin3e5s24f7778ekSZPw05/+1AD4ypUrMXfuXKPHG264wRZMPvrooxAwdwOb0ylDQ4qqKPyuleygF81ZhIF9B6DboFJUUwUlyM5fW3wE1PmRFEV7Mgsom4TqQtnfshMnaCaYKOhWiNGjL8bat9dg19Y9XmfOqXZHwQLOns42acXINy1dE6Cm+bXw4SSi5fWIVnDqvIqQlqM+dehJAhFRKFE6QT91WpMRHOYir7/85lkc2ncIiZoGvPXimzi06QjXccmnpq6VqswQctp7z2G8/do8DB7QH6Uje6MmJPTOtOtrvXZGyxFBivPiks4xXAMBRJBT+nLxcAMKyjpg1IRxWPnW29izfjsXb9or/ng0f0yW7577Z78GPrgGGjRYJH2HOQjc+fa72LthG/qPH4FQQYRtr85mckTD1tw4tROXFIQzPXHyyBC3rhdwJqckWE+i/Yh+6Dl0EDaQRusP0JwhAXGEfoP1Ebz91FtY/MIC5HOgun31Vvzyvoexac56tk/RuDi6Ub1lWGpeEW3jeYTPtlEK/95RJNge1T6JnW2gLH1v6+fUJBs7At5Ysxa/YI/BMfiqt1ZzsMDB+XVXIdgmi4NctktNVEmqzjgiBP8a92qTrDDLQ5E/I6RqWDCBNj3aYsJl47B51WbspnpcmIMAtsrGBFMMm+DBEHzKtH3X4mvABoAtvpR+Ad9XA2I2kmjLPrNsOMuiidkkzvCZKQXXtcC6N5VHQMDwCrdo0SJUVVVBYFsL6bp27WpA6nVKMEdz5Xvv3r0xZcoUPPHEE7j66qtNT1xhNU2uOI3pMU2dBVJleWX58uWWC/cuI0uneSmJhiQMTEfSDHNkbWTIUYoxg5u6skxZ2LN7N37JKc/qDru9/BjTTXs3QKLrD8cQVVYBcdXRtddcg9y8vMayu5Ra+ll1IBqT7XipLomWRBsdOnRAx44djUZk2vKWW25BWVmZ6Yb/4Ac/wCyaLbyZz5o6xXcyly35FsHye5vKUXWoGqOvG0U74No5UljVoz/BU+JZOkJOXXBBmfrEaCCLj0gzSoId6dBRw/HG7DexZe1mdB9aylCSdNHpvWXDy4t513M53hyhLuiCx15ABTtd6a52vmgght12JfKpEiJQ7a0wswzQxFk9/vKrZ7Fx7jrmL48ddJQgYxEOxg/h1n+4FdmdqArDSC1dZm33uu2oPVyFEVNGAkVZlOlzwx4uhsshKJElGBUkRLvMOSyTwkQN3fCac+yaEUJ2FD1GDkHdy7OwbekadBpehqgWn1p2lFL6kud0Ie3K//Fr4GQ1QLmutTtwwLn9nXfRKb89ug4eRBwaRS7bIxs+eT/5L3lwhKA1SiFIFttbJCuPg23tMUE6VtPjoBH5MQweNRIzHpmOqp370LZnb0v68LoKzPkTrQDtiCOGPDRQsr1/7QHM+O0M3E097FivHNI8G7LjEUS1Vav3YdHvX8DuN1dzvUQced07YNjtV6H7NSORIm4XGA5wcaek8xZMDcBagfergXD8cB1WL1+FHrScVNSnEwe4NexjpPalPkwBNCDnNe2cRzg9lqD+TIoDjUhDNho4ytVAueTi7sCrwNpFq9B5TBeq0miwQIgvdRpLk4MRDkysx2FdOaf+8IN4nvPrn8+fGjB+fv5k18/p2aoB15h1dtenE7cYggDVzp07DcgXFxfbYkuZnuvUqRM2b95sYEv+ZE9cVlKkGz5o0CA483QC9ZIMC5ALkGna8cEHH8TLL7/8vgHB6eTtOL/SGZAzEC5pIoGJ9GPJ5fuFJ2FiyW04UL4Hjz3wR+wJbTCpqHj32XZWVpa3f//+BsT79et3RvV+tvP1ccTnvrHrRFQXkm6LDoxuOPjSgE7Xei4nmpSllFdffdUW906cONHAuuKQ04BNA8BNlKi7waPCuPc6R7JCuGzUpagrr0I2e9k2uVyIWV5LCRzjIBhooKQ4lM3OjgscA1zEGKKZv+QBdoAh0YdSIZjQ1DSPNjnt0a6wPQ7R8gGJFuvWrsNymuCUzqiwesLSppROEnI+SLA3bXOI+5HMWY0DizaiXZygnrBg9Yod2LVlO/LHluFgrMF0xdX5B6kCk9zVgC20651dlycxPOOiqgzztmHRBjz+q8eQ3Y0DCKZVw8FCl4JOyF9TjvbZReic1wHYW0/ATdrWvt+GApgcAUWsMoWcwyxvBSXxkWxmls8JfBg500iiXU5bdG3XEUcl4d9fhRlz5mF7+S7mVDucRhgFl7+xbUpsaUHT9a/2qm/mO1YzB5Wa4RHNOfprrl5OxmtPFE5tRU51LYGJaP1M+HVz+flonlGYQmDarqg9xvQZiwM796NNQwy1y7ejZgs37OLwNUL61U6XEZalbv9hhGi6MLGzEkcXbqYEmKpWJPJUVpg4uQ554RiyD8RRQKi96p2VBLN7zJTpwYWHcGjPUcQ4WOW402Z42mS1x27aHX/luVeR1zeXFkwocOFgU1Lw7Jowdj23BPtmrkE+23oW+4D9uzZgTvl+9Dm4B/GSbK4RIY1rISkpXUIb6ZgbBicwluCmTV4BukQ7cbBchXFjLkEwB4wnG1kaWMiJZxDMR6h/ou+VFY3RupOWj7KdUNpu4m02opzOMZT2KMOGtesxrmocn0dN8q9Bg4C8Zu/I4FhTTDfdzk5EH/Tiu/O8Bnwuep5/wDPNvhq1Ay0fpoHLXrg6BusgyDAUZ05ODg4dOmSSczGj0tJSTJo0yRba3X333WjThiYo6NSRk82ZP90LlE2bNs3AmMubnp+pM9Z4nCRcMILSBgIkScLzd/cGtgZQWFCEacOm4XCb7ZbUsalI3aYZrEEQe33GP6pnWf/o3Lmzlf3D1PsZZ+ITCCh98Ez1I31bgWgHKLRAU0405ECH6qYdrZgMHjzY6EYLNydPnmwDPQ3aNFuiNQiyO64ZhqbO6pYd6VdvvweXl03E0YNVeOTh36I2Sh1SAlVSPyVzpAeqakQSWajeR9BJuvjpv/8/W2AVjVMyxXTomR0yAUN9FlVEKlBSUozK8oP4/vf/Fa++/Ap1wTWAlAqLHONLA+AoO94Rwc64PKc3SmpjyNUUOQkrQj3ZNTOX4NVnfod1gQOUjrEuCEgkx+4VLcX4DmOQl2zHzpjAngPFrEgMh2oq8YuHfoltlZsUBeo5SMhLxnBD+4HomWqDX//kQdQW8EWAG/BwmjxMUBDn6IBFRfgQp9wJEH//P/8Th7Oo/kI/ktppOCppW3YyGxWsw649OmDOq6/h6/f9DQ5UU/2FagMcWbC5aPDgtVGrD5WSmdO1o199T7mm9/awBf+48qqIjm5PVlz5d3Ulfy58c89cPJnvXP27d+fmWWVsoG50Lv7Pvf+GbNLetg2bsPnnv0RloJYESZApAE5JeJKD4DA3zWpfFcU7by3B3NWLEaqvQyCLamKcpdFIOCELQNVsN0eA//rRj7GsYbupjvQO98HItheaZF31ogF1A9dI1HNB9X/+5CfY0bCViyS56yaJXe26S7ANrkRPDK5vR+CudSDkN9QJr3h3F378vfvwTnIX9bbJA9Tm2YbVnoOkf1kp4ZCavQZ3naX65Q2jrkGHA12w7PXl2LJdaRxlS8/h2yy2V6qicFH0nnf3ovpQPWY+NQeFxQXGsxqoiqLBtsB8FjcE20e98gh35v3Vg7/Gs6+/hGpKzmWvXINd1oz3admOZSFp+PDh+M53vkPeU2I0k0kT5yYN+Lk6nRrwQfjp1FYL9Os6gtMpmpiACye9cIEgdUKuk5FUyEknFa+klVpkJ3NzZWVl1hEpDoXR2TEVnb/4xS/i9ttuMwn56eSpOb+SKKQEwsXwtRCIPI6JkVlSYEHwtHL6Pvz5P+ajS7euuPsHX0GkjB0A//SfZoMKkI5agc/cmU1odsKql1iM6gK8dvV15rGeHyElCZc5Sn1f0YrOUn/SAk23uDfMe23Wk0k3GzZssFkRAXF1RDJrqXqU04BN6k7vvfeeSZ2aA0ECzwOo/hOlhDgvPwcTJkxEgKb6ZNZMOuHKS1iDgVQ2Fry5nEC9EuPGXYRkFnW3KYkWwdRRr9w2zKmNYv6cN9kzU3eb22oPu3AoDtISkBZysngmPdOiSbO1bR18AL0P5iC6l4CDwNsGIezg1c/GqJfdv1df5BbWUfrGdRBqB5TAlYKDs6OUxolATV0mhaMEBtSYQo/ePVAYyOOCTEoambNOWW1wQbgrIttqMebiS4D2MaVOctXisoQt3MymfeaN81eigSorA0aNQHU+MZDaA7fRzqZqTJwdf1Z1Cm+8tYBpBFDSuzvLPwF7KvYSJDELBAQBSi3dDp2qd+VVR2uhXZX5RE50rHqwtR7pOjmRXz2Xf3d21/agmR/HH/TK1bUGqZmDn2aCfZImlM4AAEAASURBVOKPVERt4V6QnYue3bujYulelPbrjrG3fwoNNEvYwMFhmO+DVJfSWswU1cTeeuR5dO/bHT2vuogPCMy5KJq4maRMaqcKy751O7Gcm2tdUNQL+6neUc92WxDK56LralRxrFgQpWofras0cMFnKlqPtrRAkqDVI7d7ZpjtrziRg7wDlExzr4AAwwtmSxs7i2m1b9MOXXODBPDKkBvQ0x/bkxZqSioektAmL4Z2xe0RqAjjcPkhVNdX0j/Lk8qljrgH3lOhWlRX1FFtJYC96yu4aLqcPIILpLkGgyViA+LBwfXRvUeR1yEPq7nOZDE3Dausp5WUULWZUpW/OMG/9UWkK/WnsjomYVZzfO4T/+h+Bj5UDfgg/ENV3/kb2HUC7nwmJZE1EenzajpW25FLwl3NxZcHDx5EdzJgdRpy2v1QYOtv//ZvDTypU5FThyIGI0CmOORfoF73H96ZrJNMkqCDzumEa7pPC+XDZOaxWLYxY72L0JRdTq7XHKSvKH7pOXfh5dk9PZOz6tp1rro+1zvUMyljc2FsAEJacWXWuRulOpot2bNnD7ryWp3Lburma5ZAYFxSpQceeMAk3dILz6MOvYC8c7Kg8hNKvGQCU2EzwbujrwA7e+0aufy1lUjkhNBzeG90HFLMKNhBUzJlqkmUeBNnY+XOTVzP1YBR116IcBvmlXrgMjVGtG5Jxvc0YN7b8xFqm4vsnBi+ec/X8aXbvmDgWaoozJx1yKZ3TZAboipJ+aurMOd//44WHIKUc0uqFacqiRZ6FuN/fPdLyB9cQhstRBFciKXZ6tz6HLw1fT5e/9Nc6ZxQEsdd99gUrp06GaM/dSEqo5VIUKddg5p2XMS544WFmP3IiygbPxKxsb0ZA0EEy2Xz4sp7PBu79+zF/r3AgM9fj1Q7DoRUHA0wlGfpjb+3H/PWLEFWUS56Dx2M/8vF1XWURmo9mfTKw5w1kHcNMORUt6pvDWBcnet7Oufq3t235LMDRDqr3Jn10Fy5nZ8P8qewrh6dX53FL9x9c/GfK8/EX0Pkoe3COZj3xkqU79mF4n4liHZvSzAq0Mr2RdILcJalYVMFTRbOQH5JEUonjaJ6Vh3BMeEx+XYgSck5dcUbuANlQ2EW7rn3m/ha/yIzARqgFPvwukrMfGQWdq7fgmgsglLqaV/1+WuQU5aHyvBRa4/asCtKVa/4nirM/p+/QeXKvVRxId9n+5AFlwZuAnTH1+9BD7b76gaaQzXGT2pnXVNkwvak5smBNNPLzuGAYPNBPPejFzHmmrEYeflg2k+qJjthXqVrwjCyrrXilXew4KWFuPmvpqBNWTsb7BJTW/NMcGBbX1fFzcFepfplLb5+z19jKv3Fk3XWR4XZ5jnyIFan4EhmnZgLrZeR+qJoorX0GecKLX8c+fB6mI8jJT+Nc7YGzoSxK0w9gbM25RFjmDFjhi2oW7JkiZkj1CJMqaXo+WuvvQapocivk4q6jkuAWxJOAXDX8Xw0FeVANBmZ8ARvzYY4mWJI8/N6QKdyCVM43/bwLP24TtidVQdnUvdnKTsfWzT65g6Ii1bk+lE3XtvF//a3v7X7NWvWmFRbizLl5yXSzLPPPmuLM7V9vQZnrr4kVRa96CgsLDwh3RAaEWgG0IGgN84OfeXKZeg4+AoujqqkpEnTw9QDJ5jNpr4pqZkmxmoJvpOolbkE2velOjQFXVRXoaR8w3vv4kjtIZQM6Eo/lKyHC5Cfy805NMVMgjGIynKaKTR1oBzktZl8MTYtXomtzyxC5xpK4BnfoeIgLpwyAd3GDqNyaABFBAJS9Jbmh8yUXXnHNcjrWIgtazYTuEcxlAsnB44dALQLID+70KTg6sizOY3fYeAFqEs+jY2bVmPAuBJuvEP5HoE+IzK1lHyWPU6d9zg37ElxgFGbK4k8Z3so3RZGlxWHim0bsP9AOS7p15Mi+giKmIbpubPuOGTkoV/9eW3DPlb6+qNtry6lc/vs2q9fF+47eW1BatIpbmhTNrQfVry+EBWcsercrYhWgeIcdmrRImeUCMbjXBeR4iwMMS4FxFU4Sj1rScMjbBBRknKU7Wj18mUcGIfQbWB3hHoW0IOEO6TN7iHOEPXCvu17EKWd8K69uyDUjqNW/rfXtvB0slokqyYoIQa+Yxpm//BRRHYxB9y9qzKHM2U3jMfoG64AReEmrxFWJkPRL51H+4yEQFsDIDaRRD6yuXh5H9uM2ov0zm1XXE4dxeviZqklyPcptjtQRSzEfKu9EvJbO9ei1cD+GMoPlqNTt1IMGTEAA2PcyE7lYT51nMiJ//mu5dWAD8Jb3jc97RJ9UAfi3rtRuO7FECTFluTyrrvussVzWlApCZlsPAuEb926FT/+8Y9tGk2mC6UfrrA61Hm5a+nh6frsOmOnBh7I2eg8OKF0ZT5L95JwSH/W9FPI+zRFKYBifpkd6d/qqXOZt9479+bUz5lldx34qYc+f30aEOd3dh2JAPg//MM/mL73D3/4QzNbKDqSiolmVR566CEMGTLEaEsmDeUcjZjeZroq3LP07XEnTSXL7kBx92L0uKA7lr2zGBdePhSxrjHCAA2+9O0J1bmAUVPGQdK0vqu0MgUQ1B0GqMoSrklhydz5KCzKQenAbiYdc9/OqIN0JLmZ6MazG04v1H1NFMcw+e++gKXBXKz741wUd+mMSd+6Cr2vvpArukiDbA+mnEoa1ICQcATh9iGMvvkijE5dTEsNCRt8cKxAgCBZNCVyzKDME2phZUFZV69cb76JXldfhAil9AGaFSduIRBnQaRyw0GEqWLxNsmySsNb8QQ4JR6sS3J77TfQsUNblA7rZ9iGVWaYQ6BANdHAeAQMVD+Z7mT1numvpV/79dD0C6stkMZIPklOp5TRqlBRyatYQctCXUYNRVYuwSoHz1HxYapa1WmnWqM1kizbQSTBRZqkbeJZ5IUKcGjxeqxf8jYuvmECgThVH9lORJu2iRV3pSzon4eCPr1J0+TdnCnzNtRh+6Pah2ujppZCoN/rxkuQ3F+HlT9+Cski4Iq7r0PPG8cDbKdeu7cWTFrXWU4Xai3sGTiwlVQ9r00uevUtwbqVazFhz2WIlMa4uVActVTt0gLuONViFE7lV4MStJbp0yAHBQ1Ur8klL9i1dj8OcUHqlVP72IBBID2gxZwaiacboFeLiuOYc+U59sS/agk14IPwlvAVz6AM6jzUqF0norO7zozO+dMzqYxoCtpJMwWqtahOZuaktys1FEkmu3TpYlJK2X/evn272YOWeorbql5xNZeWnp9NZ3wwjR2kikc+SqZIPid1E17Ze0vw2NXJ0vfCWtCTefPfNakBp8edSWPaIVKAW9Zi9nO3Vc2aSM9bMyMaxGkAJ3vzAuvOuUGguz+Vc4ASqgilYxOuuwKP/PhXWPja27j005cjqG2yZadb0+ME39rRMhjL4Y6RpIsoTYlxUViQFk2KkIsV89Zi/erNmHLHVOR1aUeQwJTZa4uKvO76GP2wSXFMxw5bStUc7EU7UXd7YF+syJ2PSI9i9JpEAE5d0BpC7jDToi8DFZq+J76w+2ypSWlAENGAkPnR1A3fW3pMSmEEySOFubhoypX43Q/ux8rn3sJFX5xmU9hSbpGAnVNVjEfghGBc2WHmEpS2Jwi+cwO52D73Daxftx5Xf+5m5HTlYlAJ2pikduXUBiaaElcONdnuO78GTrUGJPU1ytZ0S++OBNBX4tVfPIbSl2ej/9QrKAmXOhMHgdTVjtA8odZoZBF4i1ZzSHz1bD95nH2q274PMx97GvlcOD9kylWUPOeRLhmnhDYuMyJNohgtnHQuE6xa/6Uwmu2klD2vWzvuYEk73h2L0GfSaKRK8jnAVZw86M94leIk/dumQ0b6mjPTYJTPOIrtP2EU5r25CAvnzceln5qgpskda5knLexkNho4wJV6CmG3DYCDbL9hdkDRFNd0HEliztzZaF/SBoNortTaJ/tRi11pEcirbMqyeInvWn4N+CC85X/jZkvoGFXm2V1nBtAzpwYg0C3pt5zza0yLnKdPH47q08/lf+6cOWb3WeYJBbYEwDMl3i68BfpYfjzmZvy1SXrN8rpmH5I5qoxNwvu3p1YDAtH67rYgkjQjmtCgTYdoRu9nz5qF6dOn47vf/a7RjWJWR6p3joZOLTX2zQSckjBzrztccHFPXHnDZMx8fjbyi9phNKXR9ZRgNcgKiNZMSUeUeug2K0JLC1HuYpdP+8Nr5r+LZ6Y/gwEjB+LCSSOoikIJtiyinIAKRB8hSsEFREykzLxrExJuUQLuL0KJmqC0pOBsV/QVVg8uvwxoC0CZDw/E8AH9yo+wsWKUT/lTGuqhtalH1wkjMX7N1Zj/3EwUtS9A3+suQSCXpgVp3k367JLOaaGnwRYBH0aSTQC+kws2n3zkcZQMH8Qp+YlIxrgIjdJ2ZU9pCkRxKJEupaWoVH3n18AH1oD4o00yCdhSJNxv8lhsW/MuZjz5NAenEfS9diKFxGwMbJtxzjIJxTaojZPetKtsdjAbVdzWfcETL2LH/t341F9/2TaWSmjGqJEqecUwTfsR3eu5c6YGRz1tDkUJpDnwJuCuoboZLQuy/chCk5o/49HGOty4TbvbKv+KwZO5q6XzmQYUOjMPpcO646LLLsYrLzyLTp2L0H/icFQ1cL0GFd2DjEMqMNr4R5UQJwDX2pKIzOLSTOLLjz+P9RvX44tfvR3BjrTSwjUcQZbfxgCWaa93EShPt3R76v+03BrwQXjL/banVDIxraaMLDOgY3Ty44CSzrII4JyLwz0XyHro4YdNVeXOO+9Efj7NMtBlMkcXV+YzF99HdiZfM2lfOgGPzRmLPS7JYyz8uMfHbjw+eezevzphDYg29I2ljiKa0QJdt6BPgzIBaycp10LNB2gnXqpMn//855Gbm2vhXBxamHk69KLNPiSvTrHTTcXCuOTGsTh4qBLPPvEUyrfvxOU3Xoq8UprLpA5pLkG3ZpK5ZQilxJRYHajGrBdewmsvzaV1hzLc8KXrKT3jAmIuxQpRHCY1UWLxZp3XgRMksOzqSBME9ersqR1iZ3XzniqUEC+7etGlfOqHnbxCCZtbPExEUFhA3DzwperDprBpBx1tIxh76zWIczfB6b/7PS7euQWXfuZG5Hah7XCabAtzbVuMEscg7aTnRXKQopnFpS/Oxow/PUdrKCW4+p7PUx+2DdPSoEG6q176LgOcKGgsh7LgO78GPqgGREEJSrcDtDMvF+hYgAnfuJ0TMwlM//XvMWrjZrbFa5FbVsK1FWzjBL4xms4McJ1FFhct7lywFM9y87QGtoVrSZ/dJnP9BM35iUQ960NsGbzVwFwukydkXttLxh2kSU/tZikndRGZLoxxwBnkTBPHpdzVkpHRjwYMvLK4dVLsAu+eU5q8prcA11Zcc/NkVO/dhyd++ydMoZ77wEuHMz4u5q5mCEnCpfLIdIKcYsuPFODI3kN45c8zMH/OQkyedin9D+EgoN7LG9O1uMlUNGMr1S+lqvbvu5ZfAz4Ib/nfuNkSilk5cNOsh/TDTD+6lhqBVE+0M2amFRNn5cSknfQjlQLpi5eVlR0HtCwOMTM6AXHdf/wuk8Xp+vTy4DPH0/9iAtyXXnqpqZ9I9cR9ewesRQfS/f7GN76BXr16mdUdt4jXdawuzKmmLlN9klxZR0oJWLiYdn7vmkz749mY++wsbFi5BoOGDUTfnn1odoxWfTbux7InFqKapsKWrVqD3eV7ua37KKprXIvskjxbzGUT01LV4BhUGKApLYicBSo0sJAuaIo2j4XYk5xBirFbN71PDQzYSQsXyEqDAW9GprhUVgFigWxP992bPQgaQPDo1gPMAhUh1DKSaEkhJn7rdmQVZOHtGXOxc8laDBx1IS7o2R+hA8QvR0M4On8jNu/fgeUL3sT2HTsxdPxoXP7lmxHr2wF17AVizK+lz1ilTyv1FYM4fGip6sd3fg2cSg2QhrXRk+hJalNayByjGsg137sHHR7vjuVPvIKtby1Drz792Bbb05Z9Hfat2IxlP/lvrF+/Htt2bUVPLli86Jar0G3MUErNPeITppd5Qts8inFbW7GRK2lUDa85p+eSuDMc94Qmqma748xQxPyznZL2LR61L4589Zjw2WhfA22pv8g6kCwQqoVKTStAv7ndCvGpe27H9F89g0cffgpDFm7EGErHSy7oxAWmLG8whpxaqdQcxfo1q7Dg5fnYtncPpn56ClVYLuFon/XCve2TjE8NTINy8Qlv7QUf+K7V1ECABKi24rtWVgP67GJcsrMsne4ePXrg4bT0umlVZJKILFMc5Tb1cgJTUlGRU1yZIElSTwF2gZGmDNKlbQE/0h+RtkEJShgocVVaBBhJLsTTBg4rnyzH7+6biU4XZOOrP56GnD5kjEJWZMY2Lcm8++7s1IDopoFrCvTtMxdaNkcbGshl0tyZ5kCwUottzdEKii71RVO0xb177Q4sm/cO1q5aj6qKo2jgTpkBTheHcxNo0y0XHXp3w8hLL0TZ8F4IFTE/VLIWMA1Jx1qdOX89SbfFqFjtGX+Ydx6ahqaELEK98s0PzMDzP3kUAy+5EJP+48sIlFD6x8wQkst7o5OpQ44Z+I6dMd+TGtMLzEiTwtx8l+K8daO1GfrT4ySn2yNUVA8eqkHFsk1Y9toCvLv2PVSVH0bqYC3CpPesdrkIUxe9pG83DBo/Ct1H9EegQz4aKGG0zYhsMMCMKwN0KqUm4k2AyDRVOt/5NXAqNUBQQW/eQE6UIzUQSZlNzHukAZVrtmDDwhXYtGItDlTsNxoNcC1IVlvuSFnSBRdcOAhll46kiRPqixOoBqWzrSlMDajVRk40BaVU0zz7OP7BZ2pN2lhrwx/m4ZV/+gU6jOiBW374bTT04loIErnC6Y8JMX7GI3BsxWAJmH1v3lf9Bt/R6pBepfiiljvRrpi5HAtffQt7d5Ujn6p1oSMMe5C2zHtnYW/VXgqhUujTry/GXXUpBxdltJrCSLjuxAa6NGWq9k5lMEaoNJmY4uYlf/XzkTpXXx9pIn7kJ62B43uBk3r1X7akGnCNz5iPGFCaeTVXRvfOMbZc2myWc2oEutY750/3DpzruqnL9Nf03cdxLx08iTG1OMjLN+EG9ffUYWihjHRzP+k8fhz18HGmIVrJnDlR2s3VsZ45Ovuw+dP39DpW69GYICVa6kULad9+ZBdcO6QUE/fWoGpnDeY89QYWvLgIE664GFfdMYmSb1oaoakxWXBIcjtrKkx7YEKRcBqZmSfRa7o9HXdjZnXvOk/5UXmYLp/JDBvNQvARrxmOE/Ds7JkfhUi3P2EVk5zznbpjy7+Ljvfmm9FKwmhSOaVFjxpkpjrE0P6yQbhieB9MKK9C3T6aYuRmKBGqpcgOeKQ4jwMAbmRSQNpn1rVvqPKqjUOt16cETxggwfwJ96hFKG699p1fA6deA+k2wZNo1BqAo6KiEHJH98KIoT0x4shVSFTVclAsyyIU2BSQPgto3kdmCmM0Wyhqt0XJPKXBqeHxD8hIJv/Qtde21JpE05J2U8Er3QdYtsjvj6NxZT89kLBAesk2YYNiRqNBgQC0dsGMdo5gzE2jcNElw7Bn035sXbeddsKXofzQLuY5GzfcMgUl/XqgbWkxIhzMW8OiKVE1rEyg7w28VVdKS+2ZF/z3cm258H9aaA34ILyFfthTLVZzQOhEYeVXU+RnEyidKK2P8rnH5/jL8pjUlYnJrrMAjzFncUHfnfUaOB1aOxuJS2qmr0qK9RaKkdtJ51LQ2cyHEBDHuuUghybK8udqixAKqdoWIrt3DvcIYVj2gILKkoJxHaXXQTK2OPVX1WlqA55MZ16IG6QCIxpzyzcbONjTNHpQG/pQMVzxKV8mWXcgpTEqhdTBeJRZXepd43v3SO+8suk3qZVw8iyzKMU0AVdMSzPJtnzmuTSGoUCSYJ3ARunLv6nHcBdQRkFpoQC4/EvWz3j4L0Cu+vOdXwOnWgMebXmqHI1hBCo1CKUT/kUef/JySVu5Hm2r3dhbkTX98pAE3WvDokPSpI1Q+Yoe6aNZlwnA5cH0xulZs0dKIaz2xniCtgkXKVujWmZFzUdqJrIM1Bi55cOy0ihw0sBeEnlrbrwOcfDLlaQIlYXRtawTuo7uiOoDh7B7w2b05EBj5KdplECDCjq1L0F5zXJpp12z6GLZ8kru5dC8Wha8p969/9tya8AH4S33255SyUxSYAzq5N4zmVvm9clDnXtvxUQt/2SCYnKShgvM2IIf3ovB68eVUTxaTrzZd2deAx83AFdOA0Se+pwhLZKynl/DLD7j9xZMlqpKnKA1UitAzB3raMMkFfJ2qdPG7ynSiGxyS2JsUivGJTCrWE/UQRr90J90O2XiT07CbllB0RGgtNmbQfKgiqsXdcDOKZToThI8pSPcwCxYngVEZEZRd3qms9KUwPDYM13T0LLUetJxeJI9BrH806ckhAzrwLtYgNueXukrSTnhJkvG7vwfvwY+uAZktUc0IzpKkyjp6BhVCewaPYpwCXQb2EDMMpDuLQQpU+uFaDvb2acXHnZU6cWu+1NwjEdOA2KhYO1oqU2xshi3to9VimoLsiIkp+3pvZYpabcGoF6qUl/0PKtNKf/erfEV2xhIamJMhYs96/jXwAYZpNlCcxa/2rQHw/Wrlq20vQrSiZxJjdAeWK6OvZQ/37XYGkhTSYstn1+wE9SAA5nufAJvLeax8U0yOfF/c+KpZPoh25xH8gkySTJs7QLqdNv1jEIPO7xA/u+Z1MCZ0NiZhGkub4ZX9XUJxK17JQE0Spj1RB0/P3IDO2dCUoIB0YIkXIKfhOrqDz3q4K16Xk9n1KbZXQ+amXCavtSfmpSNZw30FI0Xp54zJT4XODfvlkZGJO6hdcoCxzy8gpgnL22GzeDeaTzD94qMBwFGimXw6JoR8sIGH4zMtgQnEFEE6vxVcmsLDKlSN075N80X3/nOr4EzqQHRuzbaEeBW+zIyNerTXFOIbUPErDdeO9TaHPEAa3IiYmsTPOnBKTqFd+03yZkoc6RpmS311v5I2CJs7oFjayQZ6Xit41h6nmqNfHkA2gA78xanzrcWWEqzW/nUwuwETRQmWQYlIA04WUqxjba4JX3Q5uK8xusNsNMNTW3cMQ2XWS/X/m8LrgFfEt6CP+7JiuYkcO58Mr96J38OGBlzVK/f5Lk9yPhx/k81jYygZ/FSTFSc1zvE+kwtgILCulp2CAIlXLSnncrDCdlK9oC6mdhixyDpoMcu04zScpaO8yzmsqVGJRqwKWEW0A1uTqWsZ4Nm1GFr10yBSpk4EAgNs0cUzBZN2FpEfnPaLEMoEbXFjSFuYi+VpBT1MjQ7krCOXHZ+GYlQLw+D1NZZkpbUiyt6HppbEZkZTjC9DtGc/HidfVYWd/qI0DYwVZ9SiluvOfCT6ofCH1vE7NGadfW8VI69J/Sk9KztachA2tQLe8kYLGHesPOnlTSjW5MAOj/KC4uQhiNWL3qlvt82QeHZHB9ac+GNBzfSz/2TXwOnUANhIW462fWWiUu1ASNS3hvNk76kkiXYGlQjFD2LXkmcokfBdBnLDFmb4xM95KGdLxXZqVkQYQC2FYFvLucw0M1tAYSYGS/Xp0gdJZpF/W6vPcRlrYjpG69QHhjc2gSvLX8qAw9699qPGojyooNSdVMx03u2L63zELCKhNnepcfGQAbgxYP4p51BVT6VyaWnG3EBxap27Lc7VUTrcD4Ibx3f+X2lbAqkBXoc8GkKnp1f9z4zMufXPdO9A13y79675zpnPnfhTuUsFizQIR7vAeP3h3J+PB5HoEKdPePzlECEySlTu1NYNncLVi3ehq1LaxGpK8aRzUn8/vuL0X98CYZP6Iz8fkHUhLmvGxlzjAxWllKC3NnNJIcmRRELVQ5OlIv356u1PJEVFGd20FlEef3111FWVoYLLrjAqsHZBhedZNKHoy/tzCp74rITLqfnsrYT4QYfzr+9+IAfD6ZKGsbOzz6VJ4XT9tPqQNVhahMdSb/rk1JHIagVgcmpd+R7TUMHSDvq0AUPElyoKdmdRwvquL3JZVlKEJ1ZD00iDFHfHId5se0QajYfQHZDlAslq4FNhxHqXYQQrZLUsbPVlvIhpiXAIdBicUtlhVE5qZ9j0gbwHc1Z9vjDuml0du1J2U3lha+tPZiHtFRQeWQqcmkcwTt76B4fO8uP+fR//Bo4jRpI06RN3jSSJ+mPUeiZaFI61YbVRejO8Z3aoGZwFEzSZVubwGujQ/3whcA4Zec2o2Tt0tY40I94s9QM2bDrGHmKgDub6zdCXHy9ffEK7Hx7A7Zwx9zc+gCOrNqClf/1R5RMHIE2o/oDbQJUQJM6mng986d8qK8ij5I+ufEmtVdmwbKsDDJXktzbAF8PddBDAzfKSrIMDWq49NdoaYvh9UC/XrHVJj0hj5kqZKrm3/uhHys1ffuuJdeA4+8tuYx+2ZqpAQd4xGh0aIMdSSrl3DsXTPdLlizBSy+9hLvvvhsdO3Z0r953ll+BrHqCqDfffBODBg1Cp06dDJi7HQ9PRyKamYDDR5nPml47P5Ie2mQ8DTpr+/HkwRTeeGEDXv/LGzi06wByszqguKA/aqNVKOC25ocqjuCZ372I2c81YPQNwzH2phHI7RgjU5epRabiVQ0rhzeSyBiCaZq6fy8A7pyud+7Yge9///u47bbbDISL1hxId3RgnV264xb9XH/99bYDq8K1acPNdOgEwJ1/F/8HnV0nZrqapAdJt7Qsyrp4fj/rE9nhmX60Om124jIBKGf2Swi+BYs9587eW/WWbrdLz6Y3WSnJgpga8T1VWPv6Qrwzcx4Ob96D6M4G5ASysGbJMiz79rvo3KcHRl05AaVjBiJEGmsQECfhJgkCIiZDSyfpThl9sSM7rxN3edH5WP5cuV3wpufM9y4eF29Tv/69XwOnWwMZ5OrByGOkaVEZzdGToz21tmOOoDTjNpMuJUcWG9ZQ+hiXSUfOxhw0FTJue8+ZrSAHsuHKONa89DrmPvUK9m/fi3aBfBRzt9h66m0HaL9//ux5OPT6THTs0xOTbrrW2mOqDVuHy6DSMgB+LLXGV8ojk5alFZ01I2ZdBNt/gtNQUqqxkYa80a/Atsb+buaMj9POK6xXF43DYR+Au+ppBWcfhLeCj3yyIkrCqCMThDfnf/PmzfjjH/+IG2+80TZSaQrUXRgBKknhtPvhv/3bv9nW4//6r/9q5um8zUfEuNKM0wU6xbNJTujXY1gnDiR/HrumlJMSyKqtCTzz0OtYPG8jhgzsg6k3TeamCu1xYGMSv/nRDFxy0zAMv6wntm3eh3VzNmH2owuxfsku3Prtq1A8IId6jHGEOLNoEnGCpYTp9Sl9j4GeOCet742+v3Pu+siRI6hK25bPlJQ3pQMHxrWpz5/+9CfMnj3bNn0S+Da6ypCcuzROdjbdb1KCSbWM5iS58qbErVtlViM0hxCIc8DGne0StNWXMOkVX/BfXaJAAF+Z0REBcpNb8aGAgoqqMgRJD6k60j074O1vLMfLv3gUVbv244LuPTD28qtwYPk2LFvwNvoPGIT2Q7th4/p38dQP70fJwF6YdM9tKB7RC/WcpolQVYU9uJcGC5YJQE5WTv+dXwOtqQbUhsXjrQ2zbSYoGDGJNBukVL2i7CGq2f7mPPgYlr7OGc7+Q3D19dehKzcHKl+6FjMfewpXfO1W5JR1xI7lq/DO3IV44gcPYNw1l+Oie6ZwO3nOwJHPaxG12ndcghyqr6jNq+fiKX3Bnshu0nxAmaJgvIE6N5ofC3NdhpC5uEZKei/Os8L7zq+BdA34ILyVk4IkjDpk19upkTRXJQJBOgTY5e9EUkmnYtC2bVuMGTMGjz/+OK677jqM5rV08RyYOlH45tJ2zz4IfDt/xuwMPTHEngBeeGgplr6xFVNvuxRjr7gAYdp/rqc0O8BpykSkDoFYHaJtA+hZ3AG9+xSj5+AuePSR6Xj0BzNw57/egPwLsjhVWevpEZIxm51xT4x6LEn/ympA31cDOm1NL1pQJ5Y5wNNATH703J11bZ0d1VBEi1/96lexdOlSPPbYYxg3bpzNpJgKy2nXsbpMHuooeRL9qHOUE3lIMq7nCXaeDdrdkr1sICzzg5SWm7kRSbekp5kG7oxH0jiTbDGozKZZR0vJl/RN97ywCE///JcoaFOAad+8CyVD+iDUthgFz72FJVs3YPCNE9D2quHod+AANi9ejZl/fgZ/ue9+TPvrr6DNuL60jUwUTymdbcdpUj1l0Hd+Dfg1kFkDGlS7RZJq1J50nH2SLJ9wI53krkq89MNfYdPSZbjm1lsw5OqJlHwzhmg26rdyl9kI7ea3zUFej47o160N+nBX3AXPvoY5z76Io+F6XM6BcZyzo0HxMAoAIlRpEa9yzptR83hIhAyFbMBc41l8gnwuoo3sxHQ0c6qLY1F4AfxfvwY8yvDroTXWQCZTUfkdYNJ15rvMa4EpOQHopk7+dLh3WoR2++23o3379nj00UdRffRoI+hSWIGus+0ycyXdQMTDmDt9I5bMW4Wpn7kc46+/AKmieup7C3zXUgeXKjgBbrxCwEU+i6pUNWraJjDwyu644yu34DDVVmb9eTGSlQSWYsI+8P7AT6bvKiAtJ+As15S25Ee04s6mO06/bjOfwqIiU19ZuXIlXnjhBaMpLWB0tGWRntKPaIyH/tUBMs0QYbiWVmqtAG01ULuIUna+jPNa/aXUQcweMelHErf0v04GxwXJG50AgOzLNwSxbcFqTH/oEZR06YzP/d3XUXrZKFS1EaCvQV1+GDX5HLx1yEUiK45Exzz0njwGn7v3m4hyiuWJn/0G+9dtZ2Raf0AqphTO768ba9m/8GugsQa0KNNZB1JT9NoJZ6HoI0JpdbQmiUV/egFblq3FjV+8HUOnTUaikPrZMfKibK0BUZunrX/6T0a4LoM64Mk2uRj7mRsw4for8NZzr2LV83O4Vog8gpGnbLTupeL6F0nElZ4OqZiw5zMe4tZwKFOy9mLqMeyGUiGmybwqnO/8GmhaA6Ij3/k14AEdAU26TICceS0wdSIJtt65Q9Jyuf79++Ozn/2s6YYvWrTI3jtQnxmveT6FHwGp446MMGKQxC6e41nChz3r92PW80swZGh/jLm6ExLZ9aZaInN1KUlr6UmALMitg1V0Lcqpo0pCVbAOfUeX4LLLR2PRzCVcwLmfOr3ZlOiyubCcjYmkr/zTsRpwgzF9X0m9RS/um8uX++4667kWYb63aRMq9u2zSJzfiRMnYtSoUfjlL38JqUKZSbFjyZzSlSTVZo0h7VvkEdLirTQQl1ycubPeVH6D/L4FAe7ap47Xdu0gTfO1dpSUmTH2p/TNfKfpzIA9iS6+5zDmPPwkcrJzcN09n0eyZwdUcwGnqXeTxjRVListNTRTZuUm8NfC36yBXXHDt+4gMEjg9Udf4EJOhuEUttRfTEp/SqX0Pfk10HpqQE3P2l26yGon4sjWTnlzZNlmLJ31Ji6ZdBn6XncZF0c2kM9wiM32bcrelJRHOMBOcsF9kioiZsaTq0QbcgIY/emrMKTvILz11Muo3Vxhll084E0GIKcodBIv4KG1JMqMFopqqb7nlx743Cy4pBmFhD1ymlHznV8DTWvAIYqmz/37VlQDAj4CBw4gnajokoTLjySX0vE9fPiwXQt0L168GA899BBWrFhhqggOiAuEFxcX4w9/+AOkG6yFLg5oKR3FZcCkyfMT5aHxeZoh6l7hjZDJE6W3naKZilR1Cu++WYHa+sO4YupIRIvEAOsJvMkQybEDZMBx7T7OvcS1cE9gLRHSHohUTeA25bWUnAy8sgeyIjl4e+Y6JCuIqWjOThYwksZUG1luY5Y+6ELlzqxrlb2lOQ3E5Nw31rcxmklLxbVW4De/+Q22b99uzx955BF85jOfwa233oq5c+daWK0p0AzKHXfcYTTzl7/8harSnhqUi9el4erTAjb9sRGbB2gdcDYEzRtRg0RdYdovO7z9MPZv2c9p5xjm/WUe3nl8BQIHSCP0J1UVDxErhKjD+4bW0fKdBn4b33wbR7ftxRWfnoqsshI+o0lD+g1SSq4p7XB9PXJJdnnSHVe6XOwb5I6cRwM1KOzXDZdfOxl73lmH7TwCBP/1VG8hqRznXBtxD5vWg3v+Yc6KMzPeDxPX+RBWdeq787AGtDhetMrPFycPbVRPqU9h8+zF3IgnG4OvvIxImf5MMuO1ZTFv7ZhZrzU+XAwdSNRSpqIhMjftCnMAzJ1zL5kyGTWVNdj5FnkAH0krLcU4nAoKMbyNzzVGV/pSV5PUW6yGY2zgKMNwFC3rLdE4h+21BOd1hOhcd6J+6VSca4eZbd7Ramtqn6dSVy3Bj9djtoSS+GX4yGvAMQVJOJctW2aL59z19773PVM7+ad/+iesWbPGVBLkX5ZUbr75ZixYsACzZs0yyxgOfIqhyFKGUzMQgFOYEx3GUMVUdWT4U8FdGItDrJEMed3izejbqwSdS6kewRV3oWSUet3Z1OPNJuOUPWgyUqYfSkVNaJlNpplD1YIcbUhOrtq2Sx769R6EDUu3o/IAuSt5qvi6mccS483Iw6lcu/Kp3M5SzEf+0T7mBJp2EqoXOemIy+3atctooba2FuvXr8eTTz5pIFxWUKZPn46jVFuSUzzjx4/HhAkT7PnWrVvtuftRvKpPHXLN1b91znwnc2iWDXXesg+sgzA5Qlqo3lqNpx98BvvWVZA2crHvvXJM//kfMfPxV4Aajz713W2Ux3gMXJP+AopUUP5wAqsJwrt26YZuw4cgSdOE2pQkzg16UiGmQz1VG2opA+zJ1bHrQbyeQIDxVlM/tdeIQaZbvpqLNykuRxYHg7a7JsO4cjGUldXdO1py9eCef5izq88PE8f5FFZ1ej7l188r25DaEf/VqHWZbe3fe54sP4LNq95Fzz59EOsmC15SCWGLDWWTn3DRM/VRbIMdzoSGExTIUBAjeYpxfyLqJBdFt+t7AYo7dOTC/BXUXeEgmior2itCvETrQXRobZPuZTspbWvJdNEDB5N469m3sGHVZrbfCGZNn4nXHn4ZgYP0rbZPm+H2x/An+5auHTLD5s/xVJ0VznctqwbUG/muFdeAYwanUgWOGSiMAJSk4QLUWnwpG9BaUPftb3/bgJZME+qdJJi33HIL5syZgx/96EcYOnQoysrKLDkxGwdGFWdNTY0B9YqKitNmNgovSb2k7uPGXYJYdR5qD9SjW9ciHHiPyyqpi5vi1KTAU5LSzzi5b2U58VBdBLX7w6jawN0yCbzjlJYLHcnOqzZr6NS2O1Yu3oD9O45g3bblWLvrXUrNaf7K2Omp1JrnR3kroq7zJZdcYnl0ZvpOPYbzy6e+h5zO7tC9Zk9kA1xrBp566ikIjKtOXnzxRVx44YWmFy660MAsSj+ip5tuuslmWf793//dWyzFePbs2YNVq1Y1LhR26SkNz0nqJPirfGjamWeCY6mWSCFFnXMskINttJizacEGFDW0R5wzInoWqKrD68/ORE1hPaJdczRdw8kTSb2pesJoSEHIpomzUcMuRPbOoziwbQ+uvGgS0K6QnTaQxb8oO29P7M37KOMkPeXFeM6KISvFg2sRUrJnGOaAryQX/QcPwsoV61BHqw5LKzbhSNVhgm6v7jLbneuIRT+SsrvBjfPjlf3Mf1XvUhFy6z/eX69nHve5FNLR2MeZJyds+DjTbHFpcRwtZccgQa1sosisqKTb/fv2R6S8AeW7ytF7yDAEaqiGcqTGmmAwykWWkkJTNzt4uAEStsQ01q+oJRjnmX1CzBZC8yYVwQWlZVj/3jpUHzyIA9XcQZl2v5WWwLgiFA/hv/UDUgoPBuuRrEpg+QtrsODPCxGppmlbmkms21OHOY/NQhVngC++bTwaopSIS5flJC6zHWttjWYE5dx6Gdf+TxKF/+o8qwEfhJ9nH+yTym7TzlhqBepUtCOZpJQCUgJFAgVdu3a1bJqUm+/btWuHqVOn4p//+Z+hjVv0XvHJIkum0zv5EQg/HWd5M5BEnd6CAvzgB/dhQtl1QGUEq+duo1RjJ+IRMuwQpZLkswFKxLmLA1KVMeTXd8HMPy7A3OcIeKjoV588QgabRalFjB7puYIAjlOWS5asxP2P/zve27uBC3pkrkpTnKeTS0bHMn/3u9/F3V/+sgVsyUC8aWfh1JNUcA3e9lEHXFJx0cIbb7xhAzDRkO0qST/um3bt0sVoa968eVi7di0GcnBXT/WO//zP/8Szzz5r9CY6zOy8rHIVh4FwdZgaVPH78srs9BJs8+shHI9gQFYvDMkZyk46QAk0n1NyHY3GcODwfvzv+/4X9odIDyQahTPNFAJjbawToznBe7/xt7iu71jUV9Zix5r3EPnv11AbrGFahAkE+ZxUQQ53zdu/Yguyj9Bm8Wvz0WbLVtTyfZLz3BF2yNqkIzeZgyO7SfNVtdi9aTv+x398D1t3bKakjp0+natLnQUe3dlenuUfxZ0Zv65bmnNlFI25+jyb5VRcRr8ZFZf57GymlZFEq7oMS4DDthqkNSFSLMZfPB5/M+1OpI7W4R0OoOfPmkNBCdUnqUKYHaJApq6am9VSIn64FlmcvXr6R78HuGBa22kKzgfU1tguc8j3D+/bC+SG8L/+8Z/x2vpFbKOazdKf59iVmPqi+ErIwHs98pIxDMoajrY1Hal+xgEy/8LV5Dls23Ofm4OfPvUADgbUt7hYjv9cjl4cbegci8VMCKG+U8IqCQGcv+ND+3fncw0cj4LO55L4ef9YasAxicLCQlNJkepJZWWlASrZdr7hhhvQu3fvRhUTjebFOC6++GIDXJJ4TpkyxcCy4pI6i3N5eXmNG/u4Z03PzUICdXr2R2EkTSPm5eQhK4d63pRKdh1Ygn7Dy7hBQw1BkbZQ0NbEhGPESVXbAlg0h8BuWBd07NUe9aEaMro6JhmhNFD5DqN8xWGs27QchUUxdOjYHtSEp+SEzcbSbJq7E98LKKouVEY5MVQ9a+lM1ZXP0Y1oIzs7Gz//+c+xadMm7N69Gxs3bsRf/dVfmU151YlzqqMqqqdoUKYw6pQ06BNw0mBP95LaNh3MeeFFKToEZClZNzxL/U1+twZKz0IcAAYirH8OsGpoFScnmk9QruVVQRqjpJ1hKnhGotxllRK0oMwWEnhrGlqzICGC8jDfBfk9k4y4Pp7Euxs3Y13FVtJYLUE7pXBc7FvNzls2i4sOJClVq8TC+QtQuyLMhZikV6ZL4+LEAGFK5sJIltcg2j6bUjeZaSRw4JbaGuWp3lwdqm40WySn8rvnOrv6tZdn+KN4lIbq1MV3tuI+wyx9JMFUJldWJaBrSRp16Ppsu8y6PNtxt8r4xCKoypXFNpiMU7rNtpDFQXEkkmVmAbuUdkO0VycKtRO2CDNAsO6ph0exd9NuVKzbip4D+yLSIYfznmzzaZYTpDpKFtUW6xrqcIRrifbt248d3GyMGuPG78VHzJFEvCAa1pM/cDCdl8hBj/Z90CFM04T0J7UVrgal1Jz7VFQexc4DO3EgeZD5fj99NdcPiGYkkNi/f78laVaTWE7ftbwa8EF4y/ump1Ui10F8UKDMzklhtKHK008/jW984xsGpmROTovr7rrrLg/gsDOTP4VTp/7aa6+ZvzvuuAM5OZzip9M7HQ54XTx6tKkdOKBxwjw5PpaByMUetegzh2CtQ4diBA9QYllI4FQSxZjbSrkZCsEFpR0ySRciU46ksrBrySEsWLIAfSYMx/DJ3c1cVSopkEP9cU5LEqNhxv1rkVUewuARF+DB6x9ARSUX8FHnIK3pe8IsNn3hmKpmBZxEQ2U/1fpvGt/5du++sdSFvvOd79gumqtXr8bAgQPxN3/zN7jmmmusM82kCUnPZaJQAz2tNZDKk+pLqhL33nuvmcDUwEb05dQyjq8XD4Rr4a2mgQmhCaClq60pbep7c5SWcziK2Y/Pw6pZq1EQzGHnGkJNpB7TvnAz7h3HTXQ4MEtq8Ra/lXpyDgEoFaeqDK/LSnui7p3dyM6nibNhl6D/9WPQEKKuKfNNaEAwT3okrZTPWY5Xnp+B62+7BUXD+lBFS0vBOMtCWqwjYM+nStSiP72ItXs3opQA4qEHH0BNnKFZVtWbBh1yqg+p8si5wW1zHbh5OMMfxedUURTF2Y7/DLN11oOpblWvOlSvqk+BcFfXZzNB1aHSa55Gz2ZKrSMuylA8k7EEzVEOplNcyNy5bSeE9tUjqyAXnQf0RP+7p9IT94AQwuEuWqr/QCQPm/7yJnbu3oUhUyeiYGRvAvCj9MNBugb3nLpK1URw9P7fIbF/F/7lO9/El1OHUc94aDjLZj41CNcifs+Rf3O2NED6yY3nY/0rG7D6pdWcUWOeODiPxLgTMwf4l117Gb459a9xJFhN/y7s8WfxPTnl050lXBDP0ztdt6b+wiqhlfz4ILyVfOjMYqpTUGejszofXWuK36kMZHa8jjmoY3adiHS9e/bsifvuuw//8i//gvz8fPzjP/4jPvWpTyGP15lO02jSH//1r3+NK6+80nbcbMpQXBoCpyUlJZnBP+DacTSHxnXWxisEQjQ51aOsGO+s24Q9+0YjvxvlGWSgfElJBQFQtIZqAbQUTWllIovSEAKz+iRllNRUka5uijp90cowNm55D517dUa7joWIdMpB+64dPDGIpJQfkLvM166MepbJaDP9tJRrlTWzjLp35dfzYcOGmUrOunXr8Pd///dGE67seq9DNKmB3a9+9SuMHTvWZljkR/GIfjSYcfqSLuz7zu4DGZl4tMEY6E3XpH9aLJBuaV6nNrRS0gY7V25DTlY2LrpsNIaMGYJAGxJFlH7tW2siWWFt8tpLimSUzQVg0fwQKmtoYrE7dcKjXHfQQOk8fVChiVJ0qjZt4rqDvARyurdFsG97lo+ydpZRtuyjpMlgRRz76w8g3DkX4U756Nm5s5dNS89Lyv/1a8CvAa/lSjFESiRybG12lp42CHILufnOhh3vom99LQIFUQ4oqc9NPk/joLSaQvk0peeSoieyqMYS5XO21RQDk61wYM2ZqAO12LJrO3r0KUXpkH4oZT/iJaEEvLQswYwfSdK14LpXx76oPVKHjQvXcSfeKLuaOvS6sBeuveMaDr61UJQMQ4mfhnN8VEEyr08jCt/rOV4DPgg/xz/Q2c6eAzjuLAAt6eQB7uLnLFMoTYGd5sC43gksE5HbQrru3bubBEkAXCoqUk2RXrbAt6bQBOx/8YtfGAP55je/2QicMuNWnHJKU/lygM17mvkrRijnmGEmY9Q1ARwZrkmaOZs/YHxnzJm/CGve3IxLb+qFeBYXw1GkkeLCHG7fQBhGaShDZfGaWdX8JmrJOEME5m1DOXj3nXK8t20rPn33DciiqkADpR7akljAyUQaBGen6por76mGPd/8uc5C39HRUaaEUc/2U8VEFlG6deuGd955B3O4cFeWdCQRd2omDz74IKqrq3HPPfcgJzf3fbTh0jlR/bjP430ljz6kViJLBeyPeZCO+Li4tAOm3TkVCept22LHHHbxlI4RKTNqb1CgjThMn5xUY/FKpCWaaR9Dt349sY6bg/SvKEe0pIidOmmfizkTHCzksOOto6UexRtnfIFQnAtAOY/CdiEbxdnsrOvKy7Fp63sYdfMVQGEeAYMWmzF9Zc53Lb4GPoiOW3wFnG4B1TS0QIP9gCAtm7PXVLgLZveLB2Pusy+hev1m5FxEUMxBdIAoWXsASJzdwNYlIUuC64M0E8U5Ckq2OUvBtqpFmTsXL8G+gxWYdMk0onLOnbGdhmjVRE4ScLZka5WcWGXqUk+zC5O4F/UrxKf/4WZsfOddVFVUcyF+IcqG9URe93xaS6JgiLNnZlvcYvN//BrwakDk7LtWWgMCytI7Gz58OLZs2WIL31QVDjC5s6sedRZuqlqqHwe1epzgXSBeKiQ//elPIVOFDzzwAPXgKk1y/uqrr2L27Nn40pe+hAEDBpjqgEujuc7nxADc5SLz7DHH45/oGQ8CodILO6N3v6549amXsGcd1Ui4YEZWTbSoJ04bzuKmAaLvFHWBhavjtB8b5PxlQYo7G5Yn8fLTS9GptBiDJ3RDKpvAioBKi+WMGb8/6cxsvO/69Mr1vuDnzQOVU0emPXjRkVRG5PROsy7SBdegTfT0zDPPoF+/fti2bZvRivxp0aVoRxZ3tGmP3IevQ482tPGPBkW2wx37Xq6hRIh62NFimq9sy7UA2SQGPtOhRVmWNkGxycBti7z0x1e/zQ584PiR2Hf4IN559U1k1fIhF/4GOCVdSykbaA0lGOJOmIqG9BZkZ6+ZpCj1V0M0lZhNHdSlM+dRmp6HwePHUEec6ltUVxEJ+67l14BoWu3DP069DqQaYtaOSB4U25iqiFEKm16vyy5EKJaFWU8+h1Al1VE4WE7QFKGaLRk9GzoHuBSmhG2ATZ5Oxp/QoJy71VZu2I2Zf3kBXWjrv+PIfmysjJ/AmTDeDm3245qlAX81aIFy8oBkkHFH48jrEcPwaaMw/ksTMHjKUOT1zBe2Z1un5N0G1pZT/8evgcYaEGn6rhXVgAMyAsBaFCkQrsWUWjAoO81aBKd37nBV48K5e4WVuTkB8U6dOmHhwoUmBb/zzjttod2SJUtsUYusWEivTbbCI9S5lPqLASCm0TROF/eZncUeSc5ppTtZw4i2DeOmu69CdmEUT/xyDo5upmk8AiTtb0Yobnp7Ys7xAKctBbAb6lFI7lq/I4HH7p+JPXsrcOMXLkV+TzJhRi/5uU0mkokfWyt/ZrltqaEc3dhsRAbAcN9a73WtwZvWBojurrjiCjt0L5OFe/fuxW9/+1uamhyHadMokaKz2ZfTrjTRhOs2vWvXjVon7l4pXk1R8z4h/W921NrWXsOuFOlccZjXjE5U9FBHKVgDVZlKhvfH4NGj8DatIOyeuxrZ9VREaaAJRE5vB+viXIhJqzuMJsLFY6FaAgCqoSRq2WHz4YYZc7Fw5lwMu2ICCvqW2oAgRrOF1r8rX75r0TWg9iB+6B+nVge2QFHA2toqSUM4mCDY7nkTpergxM/eiHc3rMMrD/83sitqyPM1MBaQJu/RQk5tosVxbkqBaB0lFspHgqZGX/7ln7kQ/Aguv/V6zmhxAT1fW8snUBeY14J+dQT8JT+yS1sfot0zuYSbllgYv/LDEXeKC4oaKIWncRbrloLkHYb7ees7vwYya0A9jO9aWQ04ICQwJHURWS751re+ZZuoPPHEEyap0zsHnDKrR2Gd03upsEilZcSIEbjrrrssjFQI9EwScZmik+WLttThFXBXZyOpj6SBp+/E/nQ4ZxzP3aTPYpJMh5RNISM6jsjBZ/92GndePIwH/vlprJ1RgZyaLGTnZGu2kQySqgd5YUSoglCYzMf2+Un86r6XsH71Znz2q2PRf3xHmp2rNSAl6K7ia8MHp5PYJPFWf5tJHw5gqFL03eUk+ZZOt4C3BmZSZ9IMyf3332/AXFLvL37xi3b9ta99zWZZHK00R48W6Qf+ZNKMPLMT5iNtqqM1AaIiTUsHCLw5NcKvrLzynlPe3rBL0jBJvPiUdGVYnL1tRGEZUUNhBOPuvAXFZd3xxMO/x47ZSynhplS9gQM9ri0IUuIdZ1vhRLjNosdoMyWvIRtbp8/Ccw/+hjbC+2PYzZPMbCYxAcE9/TXNsrLtO78GWnsNWPdDEM56kL1wdQcC12q3xMFm/rP/VRNw5edvwrJ5b+GlnzyCwOq9yA0W0ms2VQ+z2O7Z/9BzkKZIY4lcVC7YhD/e9zPs3LITU77+BXQaSzOoVFVR3Gy27KuE2L0GKSAdZuM0c6Vspw3iFxqoq+EoOl+iAAAKvElEQVSyXdN+LQNpZ2Uvj3rliWzEX3jjO78GmtQAydZ3rbEGBGgEjCSZlpPerQC5FsIJJEl9xL3Te/kXeJaTqoGuJAGXpLsLbTl35mIy7Yr5/PPPG7hS3LJs8YUvfAETJ040SaYD/1KDMRvi9HPmwMqycoIfTW0yn+SY9dw0pc/Y9vjydz+D6fe/hv9++A94bVY7jLyQGzocKkCwJgd711RifsUWrFi6GuuXv8cd09rjc9++Bf2vasPVdTQVZXVENQLyYTFfmaizBE6Qemt+rO+pw31rWZyQLXCpLMm5mZBJkyYZ/cnaxx/+8AczQahZFPnTwE7XI0eONFpz9tRFN5kmLU+5ntVxe32ofT8BcDlNEcul+FGlH85u0vS+jb61646+N99l0mgjOBYdsDOXvmk8TGlav2Lc9Hd34on/9zB++9ADuGTVGIyYPAmRnqWIHYyjgLrf2XUcvNFGceXmrVjw0qtYNX8x+o0dgav/+g4ESotIU8qM2lpGhi2H/k9LroFM+mrJ5TwbZbOmq7bHxinwncbGnpSZfCdGiyQaJA/73BTECLJffHQ6Nnz/hxh88UiMGDoCtVsrQJkK6rccwK59S7F0/htYuWw5hUZF+PQ370Tna7jrbR7VxRgXJQaMn21W4FlNks6lLx6iobq8mWBJ9sLlR22YTt9U+wloiK9riy7db3o+/F+/Brwa4DqBDNGmXyutugYkwZb+tpwklZl2c7VRiqTkAueyYOI6DkkpBYzmMNyfuQX55ZdfbpZTpGawePFi23pc/h0o+3gqWNyQDJoAKUUwxc0JZaUKNTvqsG7+Vix9cxN2bK1F4gB9HapHmDOPERp1ads5BwPH9sDAK8tQ2DOP+rsMZ3OIHnfV2h5x4ZCMjJPbCrT57v01INpwbEW64Nu3bze1Ey28tA6L9KKz/MlCitYS9OjRwxZkyhKKXcsueIYpS8WnQaCL9/2pvv+JppDlvJO+oefUeTogricaWKU/refB9ezeXeOvBmGab9af5ltCkohxCjrJyKTGEuY0d/3WPVj29CysnDEfR4/Uo6RjCSKV9bTQsxvdevZAbX0Ndh/ci1iHQoy8bhIGXH8p0Jm68aS1mGVXNMsMWR68/DdmwL/wa6CV14CNT9k21Dw0IPa4sNoL/3lI2mzrL1hPgaMNOLxmB1a8/CY2L1mGyj37QYujqOHmWtnkLRHu/VDAHZVLxwzGoMnjqc/dibNaiorCKcalOJWC2r2pouhWTs/ZRu2PknCJpPQnvmJB7OrYnZaPBjU1a5lXBOeOc/34uZOj1pcTH4S3vm9+whI7gCOJuKThcmqkDjg5e8wODDlgpPfPPfec7Xwo8C3wLmspffv2tTjk7+Nv7GSHZJ4CS8adJb3W7j20VNFQnURFeS1qKKFMVlO6ShsWhW3CKOxIZlnM8pID2+p5TllSoUAxmEREzFh8VDqABsb0wnfH1YC+c+b3djTl6EjnTD9aU6At6OVPdCRJuMC67t0AT/7PWAp+XO5OfiNFFDkTZnnkc3yANAD3ulqWwzpWToszmGiDW4dQl4TWdWqDOEpJ2xZaSdi8bB32bdlOHfA6RLKj6NinFD2G9Uf34QMQ69YOCZpA05BOi81kkCWlxWOWDUnpvfwcnwn/zq+B1l0DbnDtDYiP1YUD6Go29eQfKS5yjrA5BY8mULvvICp3VeDgzgNIcHOtgtx85LYvQG4pTc+25RqOGPsGmi9MUnAjwbesmLBJ0qXBtfgWH4g3iP0L/IsPePJ49hm6Yrq613PtJeC1Xv5KNK/DgDtfn0NOvNV3n2wN+CD8k63/cyZ1B7QdgNJZR6MKCgFSpstsvALtOmSeUGFkT1xmCjPVWTLDfhzXyq3YqDY19rQHdfbUDxLcES0cyaYHDjTk0TzzPXfLTGk1vHFhPmdYsVIt4lQ0YsByFH6I29Kf4vRdZg3o+8s5+tBZtJV5L0CdudBS7xytOVUl3TcNm5nOR3Htuk0XtwTSx7oo963dWd+fbz1xXFqHWxvdyPQlN3siQA/U0e9RSspqa8wCT1C7YOays+eW2HESkzbPixN9k+RM0pbiQDEgHVPrGD0Zn8uLf/ZrwK8BrwbUTjNbh0nF2dS06FosWbJpbUNfp75Iz9meAtwfIiiPOuTSPDxBD9pgSypgEbVZ292Hfngv04XiAIpXdsYb+YGiYNzqDxwI54VFaX0Eg1lQ63voyXwxD3yoGM8l5/jyuZSn1pYXH4S3ti9+kvI6IC4vDgQ19e5AlgNNko47PV8HphTGNW5JM51Ob9O4Ptp7MVL9UyuPUgk5bfEg4CQph/T8krTlzLs0c+TyGSmS04/HSGXHOQ3CCdY9BizuSqBl+n8eE7aI/Z/jasDRiGjA0YR7Jo9uJkXXeu78NOe/6TPdf2SOcRulZPSUrqNtTDPjne3CqfxQn0UyMZsKp0en3uKpr4gGFcjLt9Z+2houPglTlUV6MQrt6Y6mqU8DXsabkVRj8v6FXwOtvga8JufxaVaGGzxLxUztV5arxK9D5C22C5sapAx7q0WR72uvB6mSGRvnAsyU9FfY3qRSYiv6VcHk/QLh+pMqiqxtGYi3+OXB4//pMbilK4DfCNTlJe2E++WPCTXm2b37pM8fKT/9pAt3nqTvg/Dz5EN9HNl0gMhJLt29a6hOJcABawfa3Tkzjw50KawLl/n+o7sWt/OcwRtuCy6dPEm4yWptA6EIGbFMXUmbQFLvIHW8gwI+Qa5upxM2CombepyTDFkhxXY9ZqwrTS8aWLc3/k9mDeibu++fqVLi/IhetPjRDc4cfem5nHuX6V9+MuN1705+5ndqdB5dsF99v+Mr77G+sLtOf37n20nQ6MN9d5UxpU6cXbDsz6co3g5QvN3AvGoHP0FrkhcjEk1R7YkzREZTSk8ZEX0xDqXJl5YHThJYGC+N5jLrMuSf/RponTVgw9N0ezShCtuXbrXJlVpdhMIUz49eeGpdKdkmEp+n/X4pjsl6iYQxAT4LCI2zzXIDXbZn9hY860jIQgrjE2CnBzscG1BYcwynNix/Au6WEXIIe8tXiiHNAtxTL9w58ut47zmSnVaZDR+Et8rP/sGFdgDcgSnXWJs+170kmwJQzfnJlHp+cKpnw4eYpZwYYhrgEAkZAOdTvRW+FnvUgjpdSv4ppitUrhACSOKtnu6hveCNJOBip4qBz8iNxep913wNZILvTNpwvkUreu5oR88drbh3OmfSlKM9F8epnfX95LxvZb/ukffC6zfNx7EX7sr6X77Tt5ZAzX3/xm9PWjGAzffaidNohIkYpLYVYmkaEa1J3US6oXrEQ7SmflvEprJJ2ua95IlvPSCua9/5NeDXgKsB49rkvx4gVrvjGzYdSa6leqJBvKwWSSXF86R2pf6JA2Y2YgllEnqnK/pVP6Gnan+KU23SgXCTbKuN2gud0m1WfYAeM5zlR/fWmPXM6yccADePaf/e9bnz6/jruZOj1pcTH4S3vm/+oUossCDnN94PVY1+YL8G/Brwa8CvAb8G/Bpo5TXgg/BWTgBnUnwHxM8krB/GrwG/Bvwa8GvArwG/Bj75GvCFaZ/8N/BnPD/5b3De5cBvuOfdJ/Mz7NeAXwN+Dfg14NeAXwPnWA14xqDPsUz52Tn3a8AH4uf+N/Jz6NeAXwN+Dfg14NeAXwPnbg38fwo9BSZN4/WJAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "d892de47-78f4-46b7-b425-da5ce4b9c6b8", + "metadata": { + "hidden": true, + "scrolled": true + }, + "source": [ + "#### Unitary-based implementation swapping the qubits to the middle\n", + "\n", + "We first examine the case where a long-range CNOT gate is emplemented using nearest-neighbor connections and unitary gates. In the figure below on the left is a circuit for a long-range CNOT gate spanning a 1D chain of n-qubits subject to nearest-neighbor connections only. On the right is an equivalent unitary decomposition implementable with local CNOT gates; circuit depth O(n).\n", + "\n", + "![image.png](attachment:59c82c7c-996f-4f54-8b6a-c730b233c35b.png)\n", + "\n", + "The circuit on the right can be implemented as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d54f7f67-ae85-45a6-86aa-9d0151d572bc", + "metadata": {}, + "outputs": [], + "source": [ + "def CNOT_unitary(qc: QuantumCircuit, control_qubit: int, target_qubit: int) -> QuantumCircuit:\n", + " \"\"\"Generate a CNOT gate bewteen data qubit control_qubit and data qubit target_qubit using local CNOTs \n", + "\n", + " Assumes that the long-range CNOT gate will be spanning a 1D chain of n-qubits subject to nearest-neighbor \n", + " connections only with the chain starting at the control qubit and finishing at the target qubit.\n", + "\n", + " Assumes that control_qubit < target_qubit (as integers) and that the provided circuit qc has |0> set\n", + " qubits control_qubit+1, ..., target_qubit-1\n", + "\n", + " Args:\n", + " qc (QuantumCicruit) : A Quantum Circuit to add the long range localized unitary CNOT\n", + " control_qubit (int) : The qubit used as the control.\n", + " target_qubi (int) : The qubit targeted by the gate.\n", + "\n", + " Example:\n", + "\n", + " qc = QuantumCircuit(8,2)\n", + " qc = CNOT_unitary(qc, 0, 7)\n", + "\n", + " Returns:\n", + " QuantumCircuit\n", + " \n", + " \"\"\"\n", + " assert target_qubit > control_qubit\n", + " n = target_qubit - control_qubit - 1\n", + " k = int(n/2)\n", + " qc.barrier()\n", + " for i in range(control_qubit, control_qubit + k):\n", + " qc.cx(i,i+1)\n", + " qc.cx(i+1,i)\n", + " qc.cx(-i-1,-i-2)\n", + " qc.cx(-i-2,-i-1)\n", + " if n%2==1:\n", + " qc.cx(k+2,k+1)\n", + " qc.cx(k+1,k+2)\n", + " qc.barrier()\n", + " qc.cx(k,k+1)\n", + " for i in range(control_qubit, control_qubit + k):\n", + " qc.cx(k-i,k-1-i)\n", + " qc.cx(k-1-i,k-i)\n", + " qc.cx(k+i+1,k+i+2)\n", + " qc.cx(k+i+2,k+i+1)\n", + " if n%2==1:\n", + " qc.cx(-2,-1)\n", + " qc.cx(-1,-2)\n", + " qc.barrier()\n", + " return qc" + ] + }, + { + "cell_type": "markdown", + "id": "222c5d97-8da0-4abe-b7ba-457701ad1fc7", + "metadata": { + "code_folding": [], + "hidden": true + }, + "source": [ + "We utilize the methods `prep_P_ij_conj` and `meas_P_kl` to prepare the circuits for Monte Carlo state certification." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ce0aaecd-3f3d-4f68-991b-dba151b988c3", + "metadata": { + "code_folding": [], + "hidden": true + }, + "outputs": [], + "source": [ + "def build_circuits_uni(n : int, samples: List[int]) -> List[QuantumCircuit]:\n", + " \"\"\"Builds the unitary circuits needed to estimate the average gate fidelity\n", + "\n", + " Args:\n", + " samples (List[int]): Which of the 16 Paulis with non-zero expectation value to prepare and measure\n", + " n (int): Number of qubits between the control and target of the CNOT\n", + " \"\"\"\n", + " circuits_all = []\n", + " # 16 Paulis with non-zero expectation value to prepare and measure\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " for sample in samples:\n", + " P_prep = P_lkji[sample][0:2]\n", + " P_meas = P_lkji[sample][2:4]\n", + " circuits = [QuantumCircuit(n + 2, 2) for i in range(4)] \n", + " circuits = prep_P_ij_conj(circuits, P_prep) # Prepare circuits in eignestates P_i^* and P_j^*\n", + " circuits = [CNOT_unitary(circuit, 0, n + 1) for circuit in circuits] # Add long range CNOT\n", + " circuits = meas_P_kl(circuits, P_meas) # Prepare circuits to measure the final state in P_k and P_l bases\n", + " circuits_all += circuits\n", + " return circuits_all" + ] + }, + { + "cell_type": "markdown", + "id": "7c6b8e59-c90b-4276-873e-a94ac2d375d3", + "metadata": { + "code_folding": [], + "hidden": true + }, + "source": [ + "The `build_circuits_uni` method therefore builds a list of ciruits to run with different Paulis $P_i, P_j, P_k$ and $P_l$. For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e048983d-0441-40a1-944f-6f6725f01096", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfgAAAJxCAYAAAAeptNwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjHElEQVR4nOzdd3xUVfrH8e+kVwIkQAIBAoQWqtJEBAFBQUQFVHBZGyo2lHVZcZe1wdpxlVUs2NeGiBVBpAhoRIHQexFCTEgCDIT0PvP7g5+sSAKZyczczJ3P+/Xyxe7MPfc8SebOc+aZc8+x2O12uwAAAAAAAAAAgFfxMzoAAAAAAAAAAADgOAr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4IQr8AAAAAAAAAAB4oQCjAwCA2khJSXHoeKvVqs8//1yjR49WTExMjdr06tXLmdAAAPAIR3KhM3lQIhcCAFCXMRYAfBsz+AH4FKvVqjfffFNWq9XoUAAA8DjyIAAAvo2xAGA+FPgBAAAAAAAAAPBCFPgBAAAAAAAAAPBCFPgBAAAAAAAAAPBCFPgB+JTIyEgNGzZMkZGRRocCAIDHkQcBAPBtjAUA87HY7Xa70UEAgLNSUlLc3kevXr3c3gcAAM4iFwIA4NsYCwC+jRn8AHxKaWmp0tPTVVpaanQoAAB4HHkQAADfxlgAMB8K/AB8SmpqqsaMGaPU1FSjQwEAwOPIgwAA+DbGAoD5BBgdAKpmt9tVVFxhdBg1FhYaIIvF4rLz2e12ydu+TQ4OdtnvwG6XSipdciqPCfGXXPgSAAAAAAAAPszXayO+XhuTTv4OKiu950Xg7+/v0p+/pijw11FFxRWKuOA9o8OosYI1Nyo8LNB1JywtVcV1N7nufB4Q8Ml/pZAQl5yrpFLq/41LTuUxyZdLobyjAAAAAAAAF/D52oiP18YkqbKyUp999pnLzuduY8aMUUCA54tjLNEDAAAAAAAAAIAXosAPAAAAAAAAAIAXYkENAD6lQ4cOWrdundFhAABgCPIgAAC+jbEAYD7M4AcAAAAAAAAAwAtR4AfgU9LS0jRhwgSlpaUZHQoAAB5HHgQAwLcxFgDMhyV6APiU4uJibd++XcXFxUaHAg8oK6/Utn05Wr/Dqo27rDpyvETlFTYFB/qreWy4eiRFq2enRmqfECU/P4vR4QKA25EHAcC32Gx27U49oQ07rdqw85jSswtVWl6pwAA/NW4Yoh5JMeqRFKMubRsoKNDf6HDhAYwFAPOhwA8AMJ3UjHy9Nn+X3vpir46dKD3n8a3jI3XXdR11y9VtFV0/xAMRAgAAAO5jzSnRO1/u1auf7FbqofyzHLlHkhTTIES3jmqnO67poFbxkZ4JEgDgEizRAwAwjRN5pZrwyA9qM+ITPfvOthoV9yXpQEa+Hnh+nZoN+VgzXtuk8nKbmyMFAAAAXK+svFKPvbJR8UM/1tQXUs5R3P8fa06Jnnl7q9qM+ES3PpqsE3k1G0cDAIxHgR8AYArfJKer0+jP9c6X+2S3O3eO0rJKPfrKRvUe/5W27j3u2gABAAAAN9qy55h6/2mBpr+2SaVllU6dw26X3v5irzqP/lzf/pjh4ggBAO5AgR+AT4mLi9P06dMVFxdndChwoZc+2qER9yxV5pEil5xv8+7j6vvnr7Xs50MuOR8A1BXkQQAwp6U/ZejCGxZqyx7XTFI5dKRIw+9eopc/3umS86HuYCwAmA8FfgA+JSoqSsOHD1dUVJTRocBFZs/dqfueXuPy8xaVVGjkvcu0cl2my88NAEYhDwKA+Xy3JlMj712mopIKl5970pM/69V5u1x+XhiHsQBQO3ZnlwxwIwr8AHxKTk6O5s+fr5ycHKNDgQss+/mQ7n3qZ7edv7SsUldNXq60zJqtXQoAdR15EADMJTUjX1f/ZbnK3LiH1D1P/qTv1jDpxSwYC5yd9bt3teefA40OAy5mt9t1/PhxrV+/XsuXL9e3336r5cuXa8OGDTp+vOZ3Pq1atUqvvvqqbLa6tW9fgNEBAIAnHT58WDNnzlSXLl3UoEEDo8NBLeQVlOnWR5MdapMy90rFxoQp21qkXtcvqFGb/MJy3fbYj1o6Z5gsFoszoQJAnUEeBADzsNnsuvXRZBUUlTvUztExsd0u3fpYsrZ9NkqR4UHOhos6grEAfIXdbte+ffu0bNkybd26Vbm5udUeW79+fXXt2lVDhw5VYmJilZ/9V61apTlz5shut8tms+nuu++Wn1/dmDtfN6JwM6vVqqlTpyoxMVEhISFq3ry5Jk+erMLCQt16662yWCyaPXu20WECABzw4AspSs8udKhNbEyY4puEKzYmzKF2y9dk6o3P9jjUBgAAAHCnNz7bo5UpWQ63c2ZMnJZZoL/PWu9wX4C3OPjSbdo0NkK/vnqnCnYma9PYCG0aGyF7pXMbVsNYmzZt0j/+8Q898sgjSk5OPmtxX5JOnDihH374QQ8//LCmTZumLVu2nPb874v7khQZGVmnJgCafgb/5s2bNXz4cGVnZys8PFxJSUnKzMzUiy++qP3795+6DaN79+7GBuomT9zXQ9Nu664Jj/ygd77cd8bzK9+6XH27NVaPcV9pxy/muz3re+sRDf15lZ5O6qq/tulQ5TFBX3+iyxvH6cs+/T0cneeUZh9Q9mdPK3/HDyo7+qv8AoMV2CBWYW17K2bwzYrsOsjoEOFGR48X660v9urdr/bp1+wC2e1SfJNw3XRlom4b3d7hYnddkHmkUG9+4dmC+5NvbtGto9rJ398nvhsHAABAHVZZadMTb2z2aJ9vfLZHD9/R3Ss/P2QdLdKbn+/Re1//oozDhbJYpJZxEbrlqnaaMKqdYhqEGB0iXMzROkjCvW8q4d43Zf3uXR1b8a7aP7HKmMDdwJdqY4WFhXrvvff0/fffn/Z4aGioEhMT1apVK8XGxiooKEhlZWXKyspSamqq9u/fr+LiYklSamqqnnrqKQ0ePFh//vOftW7dutOK+8OHD9eNN95Igd9TrFarRo4cqezsbE2ZMkWPPvqoIiMjJUnPPvusHnzwQQUEBMhisahr164GR+sej72ySSMvbqHn/9ZHS38+pEOHi04995c/d9LAXnH6+6wUUxb3cVLhvvXa+8+LZQkIVMOBNyq0RSfZyopVmrlPeZuXyj80kgK/ib300Q797d/rzliT85df8/Tw7I2a/uomPXFvTz1wS5c6lZzO5c3P96qiwrMb26RlFujb1RkaMaCFR/sFAAAA/mjRD+kO381aW+UVNr31+V79c2J3j/ZbG3a7Xc+8vVUPz96gisrTPz/sTs3Vg7NS9PDLG/T8A310z7gkg6KEq1EH8U2ZmZl68sknZbVaTz3WunVrXXbZZerbt6+CgqpfYqysrEw//fSTlixZotTUVEnSihUrlJKSooKCgjpd3JdMXuC/7777lJGRoUmTJum555477bmpU6fqo48+0pYtW9SqVSvVq1fPoCjdq7zCppse+kFrP7hSbz3WX8PuWiJJapcQpSfu7ak1W49o5rvbDI4S7pQ1b7pspUXq+MxmhbXqdsbz5TnZBkRlnLCwMPXp00dhYd4368RRz769VQ/OSjnrMRWVdj04K0WFxRWafs/5Hoqsdux2u17/dLchfc+Zv4cCPwCv5kt5EADMbI5R4+FPd2va7d3qXHGrOo+8vFGPv775rMeUlds06cmfVVxSqb/d3MUzgRnIF8YC1EF8z6FDhzRjxoxTS/GEhobqhhtu0KBBg2r0fhUUFKSBAwfq4osv1nfffacPPvhAJSUlys/PP3VMXS3uSyZeg3/Xrl2aN2+eYmJi9NRTT1V5TI8ePSRJ3bqdfrGnpqbqyiuvVGRkpBo0aKAbb7xRx44dc3vM7rJp1zE99dYWXdYvXrePaS8/P4vee2KALBbppod+kM3m2Vmw8KySzH3yj4yuMqlJUmCDWA9HZKwWLVropZdeUosW5i7S/rzl8DmL+783Y84mrVib6caIXGd/er4OHSk694Fu8MPG7FPf3AOAN/KVPAgAZmaz2ZW88bAhfadnF+rgoQJD+nbUsp8PnbO4/3sPPL9Oa7cecV9AdYQvjAWog/iWvLw8PfHEE6eK+y1bttTMmTM1ePBgh4vxFotFQ4YM0ZgxY057PCQkRKNHj66TxX3JxAX+uXPnymazafz48YqIiKjymNDQUEmnF/jz8/M1aNAgZWRkaO7cuXr99deVnJysK664QjabrcrzeIN/vb5Jm3cf03NTeuulf/RVny6N9c+XNmjvwbNvMmEWRZWVspaWVvmf2QXHtlFl/jHl/Py50aHUCZWVlSooKFClyTfKmT13l8NtXvxohxsicb0NO63nPshNcvPLtD89/9wHAkAd5St5EADMbF9arvILyw3r38jxuCNe/NDxzzcvf+z45yhv4wtjAeogVTNrbeydd945tcdqQkKCHnnkEcXExDh9vlWrVumjjz467bGSkhL997//rVWc7mTaAv+KFSskSYMGVb+mVkZGhqTTC/yvv/66Dh06pC+//FJXXHGFrr32Wn300Udas2aNFixY4N6g3aiiwq6bHvpBIcH+untsRyVvzNasD7YbHZbHzNizQ02XflXlf2YXd91DsgQE6sDTY7T9rnY6+OIEHV38qorTzT9wqcq+ffs0ePBg7dt35qbTZnH0eLHmL011uN3X36crPbvuz8bZtNvYO6q85QMNAFTFF/IgAJjdxl3GjoeN7r8m0jLztSg53eF285YckDWnxA0R1R2+MBagDlI1M9bG1q5dq59//lmSFBERoQcffFDh4eFOn2/VqlWnbag7ePDgU8tZ/fjjj1q/fn3tg3YD067Bn5aWJunkbRlVqaio0OrVqyWdXuBfuHChLrrootNuVerbt69at26tr7/+WldffbXDsfTs2VPZ2Y6t72VToNTwIYf7OpvcgjKVllUqKNBf3ySny5WrTLRt105+ct0MglA/P+3s3tdl57utRWuNadq8yueGr/m+yscd1a5dOxW76C4PS1ComsxyTbKN6NBXHf+9QYe/+rdyNyzWse/e0bHv3jn5XFJ/JUx+V8GxrWvdT7t2bWUvK671eRx1zTXXOHT8kSMnb7lcvHixNmzYUKM2o0aNcjguI5UGtFR5vQkOt7PZ7Dqv70iFlNftgV5O2JVSSI8qn0uZe6ViY6pfSzI2JvTUv+nLxp21n2xrkXpdf+YXu3fcM0VTSmu+/BEAuJsjudCZPCh5Xy4EADMrCO4thY+o8rlzjYelmo+JqxsP/+flt/TezKtrHrABigPbyR453uF2ZeU2dTxvsIIrfnVDVO5j1rGAs7WR2tRBLP6B8gsKdTpmV9ZGfL02Jp1cG7+6pddtNps+/PDDU///lltuUYMGDZzu64/F/d/W3O/QoYNeeeUVSdIHH3yg888/X35+Vc+Zb9euncrKypyOITY21qkvEUxb4C8sPLmbfHFx1RfVvHnzZLVaFRkZqVatWp16fOfOnbr22mvPOL5Tp07auXOnU7FkZ2fr0KFDjjWyBEkNnequWu/M6K+gQH/t3J+jhyZ21ydLUnUgwzVLTWRlZkp251/AfxTm7y91d9nplBgRoUsaNXHdCauQmZmpIhfd4uYXHCZXRhua0EUJk9+VJJUeSVPB9u9lXfamCnYm65cnr1LHf2+QX2D1u4nXRGZmpmylnl8X/bdrvaZ+e08oLi6ucVuHr1+jRdSXnNw3/NjxPCmvjv+88SVSSNVPxcaEKb7Jub+tD/D3q9FxVcnNzVfusTr+OwLgUxzJhc7kQckLcyEAmFl0vlTNULam42HJ+TFxUVGJiup6XoiKkyKda2o9lisV1PGf7w/MOhaoTW3E2TpI9MDxih7o+JdDv3FlbcTXa2OSFBwcXO1zW7ZsOfWFVadOnXThhRc63U91xX2LxaL+/ftr5cqV2rVrl7Kzs7Vjxw516VL1htyZmZkqNWDJI9MW+GNjY5WTk6ONGzeqb9/Tv+3KysrSAw88IEnq2rXraRsk5OTkqH79+mecr2HDhtqzZ4/TsTjKpkBlOdVb1e79U5IG9W6qaS+u11cr07Rx3tV6e0Z/DZzwjUvOH9e0qctn8Hubpk2bunQGv7sEN26p4ME3quGgG7TnH/1VuGu1ivatU0TSRbU6b9OmTQ2Zwe/orVe/DWBCQ0Nr3LZZs2YOx2WkMv9wHXWybXSDMIVE1u2fNyc0WNUNl7KtZx9IxcaEKsDfTxWVNmVbz/56re5c9aMiFB5St39HAHyLI7nQmTwoeV8uBAAzKwiOUHW76Z1rPCzVfExc3bnCw4JUv47nhZKAUDm7kFCjhuEKiqrbP98fmXUs4KraiLvqIFVxZW3E12tj0skZ/NVZtmzZqf89fPhwpzfAPVtxXzq58e6wYcO0a9fJJZ6WLl1abYG/adOmtZ7B7wzTFviHDBmiXbt26ZlnntHQoUPVrl07SVJKSopuuOEGWa0n11Du3r2722Nx5taKwqJyRVzwnkv6T2xRT09N7ql1247qmbe3ymaz67FXN+qpyb1075+S9NJHzt2Z8Hv79u5VeFigC6I9yV5SoorrbnLZ+Txh7969soRUM63YQcUVUn/XfPdSLYvFovB2fVS4a7XKXDAbee/efQo14B0lJcWxpVJ2796tuXPnavjw4erQoUON2syaNcuJyIxTXm5Ty2HzlHXUsVkDDaOClb5upUJD6nZqePqtLfrHf6p+X63qFuLfS182TvFNwpVtLVbzoR871f+892fr0gvjnWoLAO7gSC50Jg9K3pcLAcDMFien6/J7llb53LnGw1Ltx8SP/uMePXDLHIfbeVJRcYWaDZmrE/mOFdqaNQ7TwY1rFBDgXYVVs44FXF0bcXUdpCqurI34em1MOrnE+meffVbl41u3bpV0clL2+eef79T5z1Xc/02PHj1Uv359nThxQlu2bFFlZaX8/f3PON/evXsVEOD5mop3vWM5YOrUqYqOjlZ6ero6deqkLl26qG3bturdu7dat26twYMHSzp9/X1JatCggU6cOHHG+Y4fP66GDV28Zo4HWCzSu/8aIH8/i2566HvZbCdfsM++s00p24/qqck91TreyfvW4BXyNi+TvbLijMdtpcXK23xyUBjaPMnTYRkmMTFRS5YsUWJiotGhuE1goJ8mjmnvcLsJV7er88V9SeqRFOPT/QNAbfhCHgQAszN6PGp0/zURFhqgW65u63C7O67t4HXFfUf5wliAOoj5paenq6Li5N84KSmp2jXxz6amxX1JCggIOPWFWFlZWZ1bvtK071rx8fFKTk7WiBEjFBISooMHD6phw4aaM2eOFi1apL1790o6s8DfsWPHKtfa37lzpzp27OiR2F1pyk1d1O+8JnrklY3anfq/m/hsNrtufvgHBfj76e0Z/Q2MEO6W/tb92nprc6W9coeOLJot6/K3lfnxdO38S3eVpG1Xw0E3KjSh6luLzCggIEANGjQw5BtVT7rzug5q3LDm35o3jArWvX/yjgHO+R2jDeu7ZdMIRdd33WwEAPA0X8mDAGBmjaND1TzWuf2kXMHI8bgj7vtTJzWoV/O95mJjQjXxmprPaPdWvjAWoA5ifvv37z/1v3+/t2pNOVLc/03r1v/bmPnAgQMO9+lOpi3wSyeL9QsXLlR+fr7y8/O1du1aTZw4UYWFhTp48KD8/PzUuXPn09pcccUV+vHHH5WRkXHqsbVr12r//v0aOXKkp3+EWunQKkr/uud8/bzliP793+1nPL9z/wk99upGXdwzzmsKe3Bc8wnPq8EFo1W4Z40y5z6mtJcn6sjCFxXYsKla3vuWEu57x+gQPSojI0NTpkw57Ro3o9iYMH3zymVqGFX9hjS/qRcRqAUvDlWLuAgPRFZ70fVDdNF57t0YqDpXDWxhSL8A4Cq+kgcBwOyuGtTSkH4H9IhV/Xrn/oxRFyQ0i9SCF4cqMvzcywk3jArWotmXqkm0+/bDqyt8YSxAHcT8jh373y4bju4P4Uxx/4/9/L7/usC8X9edxY4dO2S329WuXTuFhYWd9tzEiRP10ksv6aqrrtL06dNVUlKiqVOnqnfv3rrqqqsMitg5u1NzFdrrv2c95um3turpt7Z6KCLPuzimscpGXnfWY871vLerd96lqnfepUaHUWcUFBQoOTlZt99+u9GhuF2PpBj99N4VmvLvdfomOV3/n7tOc9mFzTTzr73VpZ13LUF299iO+nHTYY/3e9dY77uTCwB+z5fyIACY2V3XddDsubXfT89R94zzrvHwRefH6sf/XqEHnl+npT+duaSGxSKN6N9c//5bH7VLiDIgQs/zhbEAdZDTmbE21qZNGw0ZMkRlZWVq1KhRjdvt3bvXqeK+JDVu3FgDBgxQUFCQEhISnA3dLXyywL9t2zZJZy7PI0n16tXTihUrNHnyZI0bN04BAQG64oor9MILLzi1nhMAGKl9q/paOPtSpWbk672v9+nZd7aqqKRSkWEB2jDvarVt6Z2D2NFDEtS4YYiOHC/xWJ+De8epQ6v6HusPAAAAqE5SmwYa2CtOq1KyPNZnbEyorh5szJ0DtdG1XUMteW2Y9h7M1fsLf9Hz7207+ZkoPFBbPx2lhGbsSwh4m549e6pnz54Ot2vbtq2GDh2qpUuXOlTcl6TmzZvr7rvvdrhPT/DJivXZCvzSyW+BFi5cqIKCAp04cUIffPCBQ98GAUBd0yo+Uo/edb4a/P/ttPUigry2uC9JwUH+mvnX3h7rLyDAouemeK4/AAAA4Fyem9Jb/v41K0y5qr+gQH+P9edq7RKi9K9JPf73mSg8kOI+4GMsFotuueUW/fWvf3WouF/XUeAHAHilG0Ym6ooBzT3S17Rbu+u8jjEe6QsAAACoiR5JMfrHrZ6pa1w1qIX+dHkbj/QFAO5ksVjUu3dv0xT3JR8t8K9YsUJ2u10jRowwOhQAHtaoUSNNnjyZu3JMwGKxaM4j/RTXKOzcB/+/bGuRMg4XKttaVOM2fbo00j8n8oUwAHMgDwKAuTw0sbt6dXZsIoqjY+KmjcP06kP9TFUM82WMBQDz8ck1+AH4rujoaI0fP97oMOAiTRuHa+lrl2ngrd/o2InScx7f6/oFDp2/S9sGWvTypV59KzIA/B55EADMJTjIX9+8fJkGTlikHftP1KiNI2PimAYhWjZnmEOTalC3MRYAzMcnZ/AD8F15eXlavny58vLyjA4FLtK5bUMlv3uFWsSFu/S8fbs11qq3Ryi6fohLzwsARiIPAoD5xDQI0ffvjFCfLq6dkd2yaYR+fHeEkto0cOl5YSzGAoD5UOAH4FMyMzM1bdo0ZWZmGh0KXKhj6/ra+ulo3TqqXa3PFRjgp8cn9dD3b49Qw6hgF0QHAHUHeRAAzCm6foiS371CM+45X4EBtS/13D6mvbZ+OkrtW9WvfXCoUxgLAOZDgR8AYApRkUF6c3p/ffvqZerbrbHD7f38LBp5cQttnHeV/jmxuwIDSZEAAADwHoGBfnr4jvO0/uOrdMWA5nJmyfwLuzfW0jnD9PqjF6leRJDrgwQAuBxr8AMATOWyfvG6rF+8Nu2y6rX5u7UyJUv70qq+/TQgwKJObRro8oua645r26tl00gPRwsAAAC4Vtd2DfX17Et18FC+5ny6W98kZ2jH/hxVVtqrPL5ty3oa3Lup7ry2g7p3iPZwtACA2qLADwAwpfM6xmjOIxdJknLzy7R5zzGN/styHc8rU8N6QVr86jB1bddAIcGkQgAAAJhPQrNIPTW5l56a3EvFJRXauve4Mg4X6vbpPyonr0wx9YP1y6LrFBXJTH0A8GasPwDApwQHB6t9+/YKDmZtdV8SFRmki3vGKTTkZDE/NCRAvbs0orgPwOeQBwHAN4WGBKhP18YaM7SVwv5/TBwc5E9x3wcxFgDMh8oGAJ/SqlUrvf/++0aHAQCAIciDAAD4NsYCgPkwgx8AAAAAAAAAAC9EgR+AT9mzZ4/69eunPXv2GB0KAAAeRx4EAMC3MRYAzIcCPwCfYrfbVV5eLrvdbnQoAAB4HHkQAADfxlgAMB/W4K+jwkIDVLDmRqPDqLGwUBe/lIKDFfDJf117Tndz4QY1If5S8uUuO51HhPgbHQEAAAAAADALn6+N+HhtTJL8/f01ZswYl5xr5px5yi8sVGR4uB64Y2y1j9WGv78xxTEK/HWUxWJReFig0WEYxmKxSCEhRodhGItFcvV3JgAAAAAAAN7C12sjvl4bk07+DgICXPMisEuy2U/++9s5q3rMG7FEDwAAAAAAAAAAXsh7v5oAACckJCRo7ty5atasmdGhAADgceRBAAB8G2MBwHwo8APwKSEhIWrTpo3RYQAAYAjyIAAAvo2xAGA+LNEDwKdkZWXp8ccfV1ZWltGhAADgceRBAAB8G2MBwHwo8APwKbm5uVqwYIFyc3ONDgUAAI8jDwIA4NsYCwDmQ4EfAAAAAAAAAAAvRIEfAAAAAAAAAAAvRIEfAAAAAAAAAAAvRIEfgE9p2LChbrrpJjVs2NDoUAAA8DjyIAAAvo2xAGA+FPgB+BQ/Pz8FBgbKz4+3PwCA7yEPAgDg2xgLAObD1QzAp1itVr355puyWq1GhwIAgMeRBwEA8G2MBQDzocAPAAAAAAAAAIAXosAPAAAAAAAAAIAXosAPAAAAAAAAAIAXosAPwKdERkZq2LBhioyMNDoUAAA8jjwIAIBvYywAmE+A0QEAgCc1a9ZMM2bMMDoMAAAMQR4EAMC3MRYAzIcZ/AB8SmlpqdLT01VaWmp0KAAAeBx5EAAA38ZYADAfCvwAfEpqaqrGjBmj1NRUo0MBAMDjyIMAAPg2xgKA+VDgBwAAAAAAAADAC1HgBwAAAAAAAADAC1HgBwAAAAAAAADAC1HgBwAAAAAAAADACwUYHQAAeFKHDh20bt06o8MAAMAQ5EEAAHwbYwHAfJjBDwAAAAAAAACAF6LAD8CnpKWlacKECUpLSzM6FI/KOlqk5WsOqbi0QpJUUlapQ4cLZbfbDY4M8IzjuaValZKlr1am6YvvDurbHzN0ICOPawA+x1fzIODr7Ha79qfn6dsfM/T58oP6amWaVqVk6XhuqdGhAR5ht9t16HChlv18+meibGuRwZF5HmMBwHxYogeATykuLtb27dtVXFxsdChuVVFh08IfftV/F/yitduOKuvo6QPXYydKFT/0YzWJDlXvzo10w8hEXT2opQID+d4X5mC327UqJUtvfbFXP20+otRD+VUe16BekHokxWjsZa11/fDWCg8L9HCkgGf5Sh4EIBUWleujb/Zr3pJUbdhp1Yn8siqPa9UsUhd2b6zbRrfXxT1jZbFYPBwp4B5l5ZX6ckWa3v/6F6XssOrwsdNz37ETpYobPFdNG4epd+dGuunKRF0xoIUCAsz9mYixAGA+FPgBwETKyis16/0demnuTmUcLjzn8YePFevr73/V19//qrhGYbpnbEf97eYuCg7y90C0gOvZ7Xa9+9U+PfvOVu1OzT3n8Tl5ZVq+JlPL12Tqb8+v04Sr2+qRO85T/XrBHogWAADXy8kr1YzXNuntL/cqr6D8nMenHspX6qF8fbhovzq2rq8Hbu6im69qS6EfXquktELP/XebXv54l7Kt5y5iZx4p0pcr0vTlijQ1jw3XfX/qpMnjOzH5CYDX4N0KAExi8+5j6v2nBXpwVkqNivt/lHW0SA/N3qDzx36plO1H3RAh4F5pmfm69I5vNeGR5BoV9/8oN79ML7y/Q51Hf65vktPdECEAAO616Idf1Xn055r1wY4aFff/aNeBE5rwSLIuu/Nb/ZpV4IYIAfdat+2ozh/7lR6evbFGxf0/Ss8u1APPr1Of8Qu0de9xN0QIAK5HgR8ATOD1T3er15++0pY9tR+E7tx/Qhf8+WvNen+7CyIDPOOb5HR1Hv2Flq/JrPW5Dh0p0oh7lur+Z9fIZmONfgBA3Wez2TX56Z91xaRlyjxS+zXFl/2cqc6jP9e3P2a4IDrAM55/b5v63vC1dh04Uetzbdp9TD3HfaU3P9tT+8AAwM0o8APwKXFxcZo+fbri4uKMDsVlZr2/XXfMWK2KCtcVIm02u+6fuVZPvL7ZZecE3OWL7w7qqsnLVFDk+EzFs5n1wQ7d9lgyRX6YihnzIODrbDa7JjySrBc/2unS8+YXluvK+5bpq5VsxIm6719zNmnKc+tcOm4rr7Dp9uk/6sUPd7jsnHUBYwHAfCjwA/ApUVFRGj58uKKioowOxSU+XPSL7p+51m3nf2j2Br3+6W63nR+oreQN2Ro3daVLv+D6vXe+3Kd//CfFLecGjGC2PAhAmvr8Ov13wT63nLu8wqbr/rZCqzcddsv5AVd47ZNdeuTljW47/+Rn1mjuN/vddn5PYywAmA8FfgA+JScnR/Pnz1dOTo7RodTar1kFuuvxnxxqkzL3SqUvG6eUuVfWuM1fnl2jX37NczQ8wO0Kisp14z+/V1m5rcZtnLkGnn1nm75fn+VMiECdY6Y8CEBasTZT/37PsWUVHc2FZeU23fjP71Xo4jvlAFfYezDX4QlPzowH73x8tTKyHd/nrC5iLACYj08U+K1Wq6ZOnarExESFhISoefPmmjx5sgoLC3XrrbfKYrFo9uzZRocJwAMOHz6smTNn6vBh756FZLfbNXH6j8ovdOyDVmxMmOKbhCs2JqzGbYpLKjXhkR9YpgR1zoMvpOhgpmMbADpzDUjShEeSKWzAFMySBwGc/KL71keTHW7nTC48kJGvf7y43uG+AHeqrLTplkd+UElppUPtnLkG8grKdfv0H2W3e/9nIsYCgPkEGB2Au23evFnDhw9Xdna2wsPDlZSUpMzMTL344ovav3+/jh8/uSFl9+7djQ0UAByw6Id0LfnpkMf6S954WPOXpmrssNYe69OVysor9fnygzqRXyZJyi0o03drMjW4T5wsFovB0XnG5t3H9OmyVFlPlCoo0E8dW9XX+BFtVC8iyOjQnLLrwAm9Mm+Xx/o7kJGvWR/s0D8ndvdYnwAAnM3z7213+Ivu2njpo526Z2xHtW9V32N9ulJufpk++ma/dqWeUFm5TY0ahOiaoQnq1j7a6NA8wmaza8W6TC1ZfUg5eaWSpKKSCpWVVyoo0N/g6Jwz79tU/bT5iMf6+3Z1hhb/mKHL+zf3WJ8AUBOmLvBbrVaNHDlS2dnZmjJlih599FFFRkZKkp599lk9+OCDCggIkMViUdeuXQ2OFgBq7uWPPVfY/F+fO72uwF9RYdPTb2/R7Lm7dPhY8anHC4oqNGTiYrVPiNK027rpxivbGhile61cl6mHZm+o8sPPA8+v040jE/X0X3p5XaHfk8X937w2f7cenNBVAQE+cQMkAKAOKy+3aY4B+yS9+sluzXrwAo/3Wxu5+WX6+6wUvb/wFxUWV5z23OOvb1a/85ro8Uk9NLCXeTcc/e9X+/Tkm1u0Ny33tMdz8srU8rJ5mjQuSX+/tav8/b1rjPPyPNduLF0Tr8zbRYEfQJ3jXe/eDrrvvvuUkZGhSZMm6bnnnjtV3JekqVOnqlu3bqqoqFBCQoLq1atnYKQAUHP70/P07eoMj/ebvPGwtu097vF+nVVebtOYv36nh2dvPK24/3t7Dubqpod+0EMvmfOW848W7dfQO76tdmZTYXGFXv1kty66aaGOHq/6d1QXFRSVu20zwbPJOFyohT/86vF+AQD4owWr0pR5pMjj/b67YJ9XLVl35FixLrppoV6bv/uM4v5vVm86rKETF+vjxebZRPX3pv1nvW5++Iczivu/ybYW66HZG3TNlBUqd2BfI6Nt3n3Mo7P3f/NNcrpSM/I93i8AnI1pC/y7du3SvHnzFBMTo6eeeqrKY3r06CFJ6tat26nHfvtCoHfv3goODvaZpRsAXxEWFqY+ffooLMyx9bfrkq9WphnW95cG9u2oe5/+WQtW1awY+8QbWzRnvudnwblT8oZs3fTQ96qsPPc6odv25eiqyctVWekdH+pWrM10eP8JV/niO++5BoCqmCEPApC+WGFMPsrNL9MqL9l4vrLSpivvW6btv5x7I9GKSrtu/OcPWr3JXGuSv/bJLj311pYaHfvlijRNfuZnN0fkOl8adA3Y7Se/YPNmjAUA8zFtgX/u3Lmy2WwaP368IiIiqjwmNDRU0ukF/l9++UWfffaZYmNj1atXL4/ECsBzWrRooZdeekktWrQwOhSnbdh5zMC+rYb17Yi0zHy98dkeh9rMmLPJq2Ytncu/Xt+kihoU93/z85YjHt3XoTa4BgDnmSEPAjA2HxmZhx3xTXKG1m47WuPjyytsevz1ze4LyMPKy22a/tomh9rM+XSPMrIL3RSRa3ENOI+xAGA+pi3wr1ixQpI0aNCgao/JyDi5xMXvC/wDBgxQVlaWFixYoCFDhrg3SAAeV1lZqYKCAlVWVhoditMYzJ7b65/ukc1W8+K2JGUeKfL62Ti/2XswV8t+znS4nRHr2jtjwy7jroFdqbletTQB8EdmyIOAr8svLNOeg1Uvt+IJ3vJltzPjmm9XZ2h/ep4bovG8L1emKdvq2BKMNptdr3/mHXe1bthl4IQPA8eirsBYADAf0xb409JOFmlatmxZ5fMVFRVavXq1pNML/H5+pv2VAJC0b98+DR48WPv2eX79blc5YOCajxmHC71ilruzSwl50xJEZ/P1986tE/9NcrpKy+r+QD/1kHHXgM1m169eMrMNqIoZ8iDg69IyC2R3bB6DSxk5Fq2pktIKp/esqukSj3Wds0vYeMNyhKVllco66vk9KH7jDdfA2TAWAMwnwOgA3KWw8OSH7+Liqr+xnjdvnqxWqyIjI9WqVSu3xtKzZ09lZ2e7tQ/AV11zzTUOHX/kyMmNmBYvXqwNGzbUqM2oUaMcjstd7LKovOFj1T6fMvdKxcZUv5ZibEzoqX/Tl42r9rhsa5F6Xb+gyudatkqUn8pqFK9Rsur/TfKLPPeBfzD/88Va+d6f3RCRZ+WGXiKFDnC4nd0uJbRJkr+9bhews6MmS/4Nq3zOVdeAVP11cPGgIQqqJK+j7nAkFzqTB6W6lQsBX1fmHydF3Vnlc+fKg1Ltx4O79vyi+Ph4ByL2vEpLhNTgAafaPjrjWf37HytcHJHnWSP+LAW1dbjdzr1pdf7va7MESw2mVfu8uz8TlZRWqll8vOrSjo2MBYBzG3XLXxQeUU9Z2Vmn3ueqesxIsbGxWr9+vcPtTFvgj42NVU5OjjZu3Ki+ffue9lxWVpYeeOBksu/atavbN9LNzs7WoUPesa4x4G1++zKvpn770q+4uLjGbevc9dvAJlmqvtsoNiZM8U3Cz3mKAH+/Gh1XlazMdMle4VRbj4kokYIcL/CXFufVvb+3Mxofl0Kda5qd+atkK3FtPK4WXib5V/2UJ66Bo4ezpFLHl0AC3MWRXOhMHpTqYC4EfFmIRYqq+qma5kHJ+VxYWV5a998T/EKlBs41zc89pvyjdfznq4kW+VKQ481s5SV1/+9rCTrr39ft40F7hTLr2O+IsQBwbrb/X5bKVll56vVc1WPeyLQF/iFDhmjXrl165plnNHToULVr106SlJKSohtuuEFW68k107p37+72WGJjY93eB+CrwsMdG5D9NoAJDQ2tcdtmzZo5HJc7ZdmLZbNUHXu29ey3qsbGhCrA308VlbazrslZ3Xks9jLFNW1Sp2arVOWYrCpRI4fbRQbmqV4d+3s7oziwSMedaOdfmaMmcdF1/u971K+s2ntIXHUNnO1csY3qyd9e139L8CWO5EJn8qBU93Ih4Msq/CJ1uJrnzpUHpdqPB4P8K9Sojr8n2CUdrsxRpb/jVf6G4cUKDarbP19N5AXlypmFZEIsVkXX+b+vRZn2cskSWOXz7v5M5GcvUVwd+x0xFgDOzc/f/9S/v72eq3rMSM7WkC12u5Gr97lPRkaGunfvrmPHjikgIEAdOnRQSUmJfvnlFw0fPlw2m01LlizR66+/rttvv73Kczz22GOaPn26TPorAkwhJSXFoeN3796tG2+8Ue+99546dOhQoza9evVyJjS3ufSOxU5toCpJ6cvGKb5JuDIOF6r50I8dbn9h98Za/d5Ip/r2pCWrMzTsriUOtfH3t+jXJWPVtLFzs7rrkooKm1oN/0QZhx27w+WZv/TS1Ald3RSV69z9+Gq9+olzG8DV9hpo3DBE2Sv/5Pa7/wBHOJILncmDUt3LhYAvs9vtanTxhzp2otSp9rXNhZOuT9JL/+h77gMN9tSbWzTtRceWOWgRF64D31wnf3/v35svI7tQCcPnqbLSsXrGsteHacgFxhe5zuWC8Qu0dttRp9rW9hoY1i9ei1+9zKm+3YWxAHBuT778ofIKClUvIlzT7hlf7WPeyPuzVjXi4+OVnJysESNGKCQkRAcPHlTDhg01Z84cLVq0SHv37pV0+ga7AMwvMTFRS5YsUWJiotGhOK1HUoxP9u2IoX2bqV3Lau5dr8aYIQmmKO5LUkCAn+4e29GhNqEh/rrlasfXaTWC0dcAxX14MzPkQcDXWSwWg3NhtGF9O+LWUe0UGlzNmn7VuHtsR1MU9yUpPjZcoy9JcKhNh1ZRGty7qXsCcjGuAecxFgDMxxyZqxodO3bUwoULlZ+fr/z8fK1du1YTJ05UYWGhDh48KD8/P3Xu3NnoMAF4UEBAgBo0aKCAAO9doWzA+cYt+9XfwL4d4edn0af/HqyoiJotPNo+IUqv/PNCN0flWX+7qYuG9avZJkF+fhbNfWaQGjV0cuF+DzPydegt1wBQHTPkQQDGjgcvOs87cmHj6FB9+PRA+fnV7Iv5y/vHa8qNXdwclWe98s8LazzppX5kkD799yU1/n0ZbUAPxoPOYiwAmI+pC/zV2bFjh+x2u9q2bauwsDN3Vv/000/16aefaufOnaf9f2d2MQZQt2RkZGjKlCnKyMgwOhSnXXphM7WI8/xM88YNQ3TVoBYe79dZXdo11A/vjjjn7+qCro30wzsjFF0/xEOReUZgoJ++mHWJxg1rfdbjIsMD9eWsIbpqUEsPRVZ77RKiNLBXnMf7DQiweM1dDkB1zJAHAUi3XN1W/v6eL8Re0qepElvU83i/zhp1SYI+f+ESRYSdvZD5p8vb6PMXhiggwFwlkpgGIfr+ncvVu/PZ96Zq2TRCP7wzQp0SndyZ2ABXD26pmAaeH7+3ahapIRd4x10O1WEsAJiPubJXDW3btk1S9cvzXHvttbr22ms1f/780/7/7NmzPRYjAPcoKChQcnKyCgoKjA7Faf7+frrzWseWX3GF28e0V1CgY7c5G61ru4bat/BaffzsIA3oEavgoJPxh4cGaMyQBC1/fbh+en+kGkd7x8x1R4UEB2jus4O06ZOrNfGa9moYFXzquQB/i2ZP66uMZeM0cqD3fHHzG0eXIHKFMUMSFBtz5sQAwJuYIQ8CkJo2DteowZ7/ct6I/FtbVw1qqYxl1+ulf/RV598VsC0W6Y5rO2jz/Kv14dMDT40TzSY2Jkw/fzBSy14fptGXJCgs5OSXHcFB/hrQI1bzZg7S3q+vUZd2DQ2O1DHBQf66bXQ7j/d757UdvH4ZJ8YCgPn45P045yrws6kugLpu4jXt9fz722XNKfFIf1GRQbpnXJJH+nK1oEB/jR3WWmP/fyZ7ZaXN6wfljureIVpzHrlIcx65SM0u+UiZR4vVJDrUa/+mknT1oJZKalNfO/ef8Eh//v4WTb257m9ADADwHQ9O6KrPv0uTzeaZz6+dExvoSi+cFCCdHMtOuj5Jk65POjUWatooTK893M/o0DzCz8+iIRc0O7V5rlnGw5PGJenlj3cpv7DcI/01ahCi28a090hfAOAI739Hd8K5CvwAUNdF1w/Ry9P6eqy/Fx7oo7hG5pi5bIYPM7Vhlg1iAwP99M6MAR5bJ/bBW7rqfC/ZZBoA4Bt6dmqkB272zJrx/v4Wvfv4AFMsYWOWsVBtmGU83KxJuJ7/Wx+P9ffqQxeedkcsANQV5nhXd9CKFStkt9s1YsQIo0MBAKddd1lrXXtpK4faZFuLlHG4UNnWohq3ubx/vG6+inXHUff07tJID97i2Kx6Z66BzokN9Mid5zkaHgAAbvfYXecpqU19h9o4kwv/PqGrevBFN+qgW0e302UXNnOojTPXwNhhrTRmqGOfvQDAU3xyiR4AvqtRo0aaPHmyGjU6+0ZT3uKt6RcpLbNA67YfrdHxva5f4ND5u7VvqA+fGshMJ9RZM+45X7sPntAX36XV6HhHr4FmjcP09UtDTbsuL3yP2fIg4OtCggP09UtDddFNi5R1tGbFSkdz4TVDEzT97vOdCQ9wO4vFoo+eGaSBExZp276cGrVx9Bq4oGsjvflYf2fCq5MYCwDm45Mz+AH4rujoaI0fP17R0dFGh+ISkeFB+va1y9S3W2OXn7tHUoyWzRmm+vW4DRV1V0CAn+Y+M0jXDE1w+blbNo3QyrcuV0KzSJefGzCK2fIgAKl1fD2teutyNY8Nd/m5r7uslT58eqBplnSBOTWMCtby14frvA6uz239zmuixa9cpoiwQJef2yiMBQDzIUsD8Cl5eXlavny58vLyjA7FZRrUC9ayOcM06XrXbZh6+5j2WvnWcDVqGOqycwLuEhzkr4+fHaTHJ/VQoIvWBr5iQHP9/P5ItW0Z5ZLzAXWFGfMgAKldQpTWfnilRgxo7pLzBQX66cn7euqjpwcqKJC72FD3NY4O1aq3L9eto9q57Jz3/SlJS18z34QnxgKA+VDgB+BTMjMzNW3aNGVmZhodikuFhwXqpX/01cq3Lleb5s7PNm7ZNEJLXrtMrz96kSLDg1wYIeBe/v5++ufE7to47yr16uz8GsENo4L13hMDtOCloabZWBr4PbPmQQBSXKOTy8q9+68BalDP+XFcr84x2vDxVfrHbd2YuQ+vUi8iSG9O769vX71MLeKcv6MlsUU9ff/25frP3/sqLNR8K1szFgDMx3zvVADgwwb2itPur67RouR0vfzxTi37uWaDtkG94nT32I66alBLBQbyQQ7eq3Pbhlr74ZX6fn22Xv54p75YkabKSvs5253XIVr3jOuoccNaK9xEt2ADAHyLxWLRTVe11TVDEzR38QG9PG+nNu8+fs52AQEWjb4kQXeP7agBPWLZfwle7bJ+8fpl4XX6cmWaXpm3S6tSsmrU7tILm+mesR11ef/mCnDRXaEA4AkU+AHAZAIC/HTVoJa6alBLZR4pVMoOqzbstGr7LzkqLK6QzWZXeGiAOic2UI+kGPXq1EjxblizFTCKxWLRwF5xGtgrTsdOlChl+8lrYMve41qwKk2lZTaFBPnrnnEd1bNTjHokxSixRT2KGQAA0wgPC9RtY9rr1tHt9MuveVr//+PBPQdzteznQyottyk02F8PTeyuHkkx6tkpRtH1Q4wOG3CZwEA/XXtpK117aSulZxecGg/u2H/yM5Gfn+UPn4li1LQxn4kAeCcK/ABgYk0bh+uqxuG6alBLo0MBDBFdP0TDLorXsIviJUnxQ+bq0JEiRdcP1nN/62NwdAAAuJfFYlHbllFq2zJK11/eRtL/cmHDqGBNu727sQECHtA8NkLNYyM0ekiC0aEAgFtwzxEAnxIcHKz27dsrONhcGyUBAFAT5EEAAHwbYwHAfJjBD8CntGrVSu+//77RYQAAYAjyIAAAvo2xAGA+zOAHAAAAAAAAAMALUeAH4FP27Nmjfv36ac+ePUaHAgCAx5EHAQDwbYwFAPOhwA/Ap9jtdpWXl8tutxsdCgAAHkceBADAtzEWAMyHAj8AAAAAAAAAAF6IAj8AAAAAAAAAAF6IAj8AAAAAAAAAAF4owOgAAMCTEhISNHfuXDVr1szoUAAA8DjyIAAAvo2xAGA+FPgB+JSQkBC1adPG6DAAADAEeRAAAN/GWAAwH5boAeBTsrKy9PjjjysrK8voUAAA8DjyIAAAvo2xAGA+FPgB+JTc3FwtWLBAubm5RocCAIDHkQcBAPBtjAUA86HADwAAAAAAAACAF6LADwAAAAAAAACAF6LADwAAAAAAAACAF6LAD8Cn+Pn56bzzzpOfH29/AADfQx4EAMC3MRYAzIerGYBPsdls2rRpk2w2m9GhAADgceRBAAB8G2MBwHwo8AMAAAAAAAAA4IUo8AMAAAAAAAAA4IUo8AMAAAAAAAAA4IUo8APwKZGRkRo2bJgiIyONDgUAAI8jDwIA4NsYCwDmE2B0AADgSc2aNdOMGTOMDgMAAEOQBwEA8G2MBQDzYQY/AJ9SWlqq9PR0lZaWGh0KAAAeRx4EAMC3MRYAzIcCPwCfkpqaqjFjxig1NdXoUAAA8DjyIAAAvo2xAGA+FPgBAAAAAAAAAPBCFPgBAAAAAAAAAPBCFPgBAAAAAAAAAPBCFPgBAAAAAAAAAPBCAUYHAACe1KFDB61bt87oMAAAMAR5EAAA38ZYADAfZvADAAAAAAAAAOCFKPAD8ClpaWmaMGGC0tLSjA4FAACPIw8CAODbGAsA5sMSPQB8SnFxsbZv367i4mKjQwHc7nhuqb5JTtf6HVZt2GnVvl/zdOT4ydd+trVYY+7/Tj2SotXvvCbqf36s/PwsBkcMuFZRcYW+SU5Xyo6j2rDzmHalnlBhcYUskiLDA9WlbQP1TGqkC7o20pALmikw0PxzX8iDvqW83KZlaw5pzdYj2rDTqm37cpRfWC67pPDQAHVsVV89O8WoV6cYDb+oucJC+XgIc7HZ7EremK3Vmw5r/U6rtuw5rsyjRZKkLGuR+t+0UD2SYtSzU4xGDGiuBvWCDY4YcD/GAoD5MIIDAMBk1u84qlfm7dLcxQdUUlpZ5TGVNrs+/+6gPv/uoCSpXcso3XVdB918VVvV58MtvNzeg7l69ZNdeverfTqRX1blMSfyy5SeXahvkjMkSU0bh2nimPaaeE0HxTUK82S4gMtlHinU65/u0euf7VHW/xcz/yg3v0yZR4r03dpMSVL9yCDdcnVb3XVdR7VtGeXJcAGXO5FXqne+2qdXP9mlfWl5VR5js0k/bjqsHzcdliSFhvjr+uFtdPfYjuqRFOPJcAEAqBXzT1MCAMBH5OaX6bZHk9Xr+gV658t91Rb3q7I3LVf3z1yr9ld+qi/+v+gPeJvSsko99NJ6JY36TLM+2FFtcb8qmUeK9Nirm9T2ivl6dd4u2Wx2N0YKuIfNZtfLH+9Uu5Gfavprm6ot7lflRH6ZXnh/hzpe/ZkeeXmDysprnkOAuuSzZalqN/JT/XXm2mqL+1UpLqnU21/sVc9xX2ni9B+VV1DzHAIAgJEo8AMAYAKrUrLUefTneuuLvbU6z5HjJRp9/3e6fupK5RfywRbeY8cvOeo57is98cYWVVY6X5wvLK7Q3U/8pCG3L1bmkUIXRgi416HDhbrk9sWa9OTPKiyucPo8lZV2/WvOZvUc95V2/JLjwggB98orKNO4qSt0zZQVOppTUqtzvfHZHnUe/bm+X5/lougAAHAfCvwAfEpcXJymT5+uuLg4o0MBXOaL7w7qsju/VcZh1xUjP/72gIbc/q2O55a67JyAu6zdekQX3bRQ211YjFyZkqWLblqk1Ix8l52zLiAPmtP+9DxddNNCrUpxXTFy274c9b95odZtO+qycwLucjy3VJfcvljzvk112TnTswt16R3f6quVbEQKc2EsAJgPBX4APiUqKkrDhw9XVBRry8IcFiena+wDK1VWbnP5uddtP6rL716igqJyl58bcJUte47psruWOLQcT02lHsrXJSabyU8eNJ/fZu4fzCxw+blz8sp02Z3fauve4y4/N+Aq+YVlGnbXt1q/w+ryc5eV23TtlBVasjrD5ecGjMJYADAfCvwAfEpOTo7mz5+vnBxuOYf3O3S4UNf/fZXKK1xf3P/N2m1H9Zdn1rjt/EBtFBaVa/T93ynXDcX936Qeytf4f3xvmjX5yYPmYrPZ9ae/r1KaG4r7vzmRX6Yxf/1ORbVY9gdwp/ueXqOU7a4v7v+mvMKmcVNXmurLXvg2xgKA+VDgB+BTDh8+rJkzZ+rw4cNGhwLUit1u1+3Tf3S4sJky90qlLxunlLlX1rjNW1/sZeYa6qRpL67XAQeX0HHmGliVkqXXPtnlaHh1EnnQXF7+eKd+2JDtUBtnroFffs3TQ7PXOxoe4HbfJKfr3a/2OdTGmWvgRH6Z7pixWna7Ob7shW9jLACYj08U+K1Wq6ZOnarExESFhISoefPmmjx5sgoLC3XrrbfKYrFo9uzZRocJAECNfbz4gBb/6HjRPTYmTPFNwhUbE+ZQu9se+1Elpd49e/N4bumppYwqKt1310NdVVFh0879OVqz5Yi27zuu0rJKo0OqlXXbjurFj3Y63M7Za2DqCynM3kSdkpFdqL/Pcrzo7uw1MOuDHVq/w7vX4y8tq9T2fce1ZssR7dyfowo33gFXVx08lK+y8pPv/95+Z1JxSYUmTv/R4XbOXgMLf0jXJ0tct8Y/AACuEmB0AO62efNmDR8+XNnZ2QoPD1dSUpIyMzP14osvav/+/Tp+/OR6kt27dzc2UAAAashut+u5/27zaJ8Zhwv16bKD+vMViR7t1xVWbzqsV+bt0vylqaeWMzp8rEQXjF+gu8d21HWXtVJIsHmHRNnWIr3x2R7Nmb9bh44UnXq8UYMQ3Ta6ve64tr1aNo00MELnvPD+do/2V1hcodc/3aPH7j7fo/0C1Znz6W4VlXjui1e7/WSR/4OnBnqsT1c5eChfcz7drTc/3ytrTsmpx+ObhOuOa9vr9jEd1CQ61MAI3auktELzvk3VK/N2ad32/31Jk2Ut1p//sUp3j+2oC7s3MTBC53yyJPW0vOYJz7+3XWOHtfZonwAAnIupZ/BbrVaNHDlS2dnZmjJlirKysrRx40ZlZ2frmWee0aJFi5SSkiKLxaKuXbsaHS4AADWSst2qjbuOebzflz92fLa0kWw2u6Y+v04X3bRQH32z/4y9CtZuO6qbHvpBA25ZpCPHig2K0r2SN2Qr6erP9MjLG88oghzNKdFTb21R0tWf6+tVvxoUoXOyrUX6bPlBj/f7+md7VO6GDa0BR5WVV+qNz/Z4vN/5S1O97v1ywco0JV39mZ5+a+tpxX3p5JfXD8/eqKSrP9OPGx1b6shbHD5WrP43L9LND/9wWnH/Nx8u2q9+Ny7U32eleN3yM6/M8/zSaeu2H/X6O1kAAOZj6gL/fffdp4yMDE2aNEnPPfecIiP/Nztt6tSp6tatmyoqKpSQkKB69eoZGCkATwkLC1OfPn0UFubYLblAXfLOl3sN6XfN1qPanXrCkL6dMe3F9Zr57rnvdEjZbtVld32r/EL3bdRqhA07rRp21xLl5J395yoqqdDo+5fruzWZHoqs9j5cdOYXNp6QdbRIS37y7v0oyIPm8O2PGTpsQKG9rNymj77Z7/F+nbXs50Ma89fvVFx69iXJjueWathdS7Rpl/s2ajVCXkGZLr3jW63fce6f65m3t+qhlzZ4ICrX2Lk/p8ovLDzB0TX/gbqGsQBgPqYt8O/atUvz5s1TTEyMnnrqqSqP6dGjhySpW7dupx779NNPNWbMGLVs2VJhYWHq0KGD/vnPf6qgoMAjcQNwrxYtWuill15SixYtjA4FcNqabUcM63vtVu+YtbZ59zE98/ZWB44/rmff8eyyR+5kt9t122PJNV6+o6LSrlse+cFr1qNes9XAa2Cbd1wD1SEPmsMaA9+LjcxBjqiosOmWh39QRWXNZqUXFlfotsd+9LpZ7Gfz9FtbtXXv8Rof/+SbWxw63kiGXgNeMhYCqsNYADAf0xb4586dK5vNpvHjxysiIqLKY0JDT66z+PsC/3PPPSd/f389+eSTWrx4se666y69+uqrGjZsmGw27/jQC6B6lZWVKigoUGWld28uCd9VUlqh7b/kGNb/Bi+Z3ejMbftvfLbn1MaD3m7t1qPavNuxIk16dqG+SU53U0SutWGn55eo+l/f3nENVIc8aA5Gvhcbef054uvvf3V4ffaNu44pZbt3X+O/KS2r1JufO76M06sGLHvjDCPfi7ftO26a8QJ8E2MBwHxMW+BfsWKFJGnQoEHVHpORcfIW698X+L/++mt98sknGj9+vC6++GJNnjxZs2fP1urVq/Xjjz+6N2gAbrdv3z4NHjxY+/Zxay28056DuaqoMG52oTfM7CsuqdCHixxfQuLwsWIt+sE7Ctzn8tYXzq3N/ebnxiz/5IiConKlHso3rH9vuAbOhjxoDtv2GfdF7y+/5qmo2HOb+zrrrS+cez9zpiheFy38/lcd/cOeAzXx/sJfVFJa9/++2/YZ915cVm7TntRcw/oHaouxAGA+AUYH4C5paWmSpJYtW1b5fEVFhVavXi3p9AJ/o0aNzji2Z8+ekqRDhw45FUvPnj2VnW3OTZsAo11zzTUOHX/kyMnbyhcvXqwNG2q2zuioUaMcjgtwl9KAFlK9W6t8LmXulYqNOftamrExoaf+TV82rtrjsq1F6nX9gjMe/2nNRsXH3+FAxJ5X4Relovp/dartzXc8oHtLfnZxRJ5njbxJCmztcLvF36UoPv4WN0TkOpWWCKnBA9U+f67roLbXQGb2ccXHxzsQsfs5kgudyYMSubCuyW4wTbIEV/mcu68BSWrTLkn+dsdmx3va4ah7JP/GDrd77+Nv9M0b1f9evEV+SD8p7FKH2xUWV6hVYlf52/PcEJXrHKl3pxQQV+VzrroGpOqvg8GXjlBwhTkmBcAcGAsA5zbqlr8oPKKesrKzTo3nq3rMSLGxsVq/fr3D7Uxb4C8sLJQkFRdXvfnUvHnzZLVaFRkZqVatWp31XCtXrpQkdezY0alYsrOznf5yAMDZ/Xat19Rv7wnFxcU1bsv1izolLEyqZl/42JgwxTcJr9FpAvz9anzs75WXV9T9ayKwVKrvXNO83HzlWev4z1cTrcqlQMebVVTY6v7fNyBKalD90zW9Dpy9Buz2upcXHMmFzuRBqe79zD6vviRL1U+5+xqQpOzsw1JF3S4AK9wm+TverLS0zByv90b5kpP7Z2YfPiyV1/G7lUIrqq1meOIasB61SkUmeJ3ANBgLAOdm+/9lqWyVladez1U95o1MW+CPjY1VTk6ONm7cqL59+572XFZWlh544OTMr65du8piqWZ0rJNvYA8//LCGDRum7t27Ox0LAPcID3dsUP7bACY0NLTGbZs1a+ZwXIC7lPnXV3Vbu2Vbzz2bMjYmVAH+fqqotCnbWvWX4Gc7V1CAXY3q+DVhU5Cy7DbJ4vhKhA0i/RQWXLd/vpo4Hlim6v+61Qv2L1ZMXf/7WoKVdZbnz3Ud1PYa8LOUK66O/Y4cyYXO5EGJXFjXZKlCNlU9g9/d14AkxTWJlp8iaxasQY76FavMiXahgeVqaILXe2GQRSecaWivVFzjevJTqIsjcq0jgVJ5Nc+56ho427kaxUQpqNL7XycwD8YCwLn5+fuf+ve313NVjxnJ2RqyxW63G7eQrxvdd999eumll9S8eXMtX75c7dq1kySlpKTohhtu0IEDB1ReXq577rlHs2fPrvIcBQUFGjhwoLKzs5WSkqK4uKpvAQRgnJSUFIeO3717t2688Ua999576tChQ43a9OrVy5nQALfILyxT1IXvy9nsnb5snOKbhCvjcKGaD/3Y4fa3jW6nNx7r71znHjTm/u/0+XcHHWoTERagQ8uvV72IIPcE5UGLfvhVV0xa5nC7t2f01y1Xt3NDRK4VN/ijcxZlqlPba2BgrzitfOtyp/p2F0dyoTN5UCIX1jUDbl6o5I2HnWpb22ugWeMwZSy/3qm+PenNz/bo9umO76H2zcuXanj/5m6IyLNy88vU9JK5KipxbD39ay9tpU+eG+ymqFxnwiM/6J0vnVs/vLbXgJ+fRXk/3aDwMCdulQPchLEAcG5Pvvyh8goKVS8iXNPuGV/tY97ItJvsTp06VdHR0UpPT1enTp3UpUsXtW3bVr1791br1q01ePDJQcvv19//veLiYo0cOVKpqalaunQpxX3AJBITE7VkyRIlJiYaHQrglMjwILVrGWVY/z2SYgzr2xF3j3V8Wb0brkg0RXFfkob1i1dC0wiH2jSoF6Sxlzm+br8RjHwd9ugYbVjfrkAeNAdDrwEvyQPXD2+tqEjH3tNbx0fqsn7Gr7/rClGRQfrzFW0cbudM/jSCka/DDq2iKO7DqzEWAMzHtAX++Ph4JScna8SIEQoJCdHBgwfVsGFDzZkzR4sWLdLevXslVV3gLy8v1zXXXKP169dr8eLFSkpK8nT4ANwkICBADRo0UECAaVcogw/o1dm4D7U9O3lHYWdwnziNviShxsc3bRymabd1d1s8nubv76dZD16gs6xCeIZn7++tsFDveG/sZeDr0FuugeqQB82hV6dGxvVtYA5yRHhYoJ69v+azTf38LJo19QL5+TnwxlnHPTSx+6kNZWvimqEJurindywva+g1YGDfgCswFgDMx7QFfunkprgLFy5Ufn6+8vPztXbtWk2cOFGFhYU6ePCg/Pz81Llz59Pa2Gw2jR8/Xt99952++uor9e7d26DoAbhDRkaGpkyZooyMDKNDAZw2/nJjZtu0T4jympmbFotFHzx1sa4YcO5lFpo1DtOSVy9TfKxzG+3VVVcNaqm3Z/SXv/+5i1Uz/9pbt41p74GoXOP64Y7PSnWFyPBAXXFxC0P6dhXyoDlccXFzRRg0g9io688ZE6/poGf+cu4if4C/Re/M6K+RA737+v6j5rERWvraMDVtfO7ddkde3ELvPXHxWfenq0t6dopR25b1DOl7/AjvuQaAqjAWAMzH1AX+6uzYsUN2u11t27ZVWNjpg5177rlH8+fP1/3336+wsDCtWbPm1H9Hj1a3rSEAb1FQUKDk5GQVFBQYHQrgtEsvbKbW8Z7f3PCu6zp4zQd/SQoNCdAXs4bo1YcuVJe2Dc54vmFUsB64uYvWfXSlOrdtaECE7nfzVe20+r9X6LrLWimgikL/FQOa67s3hutvN3cxIDrntUuI0tC+TT3e701XtjWsqOoq5EFzqBcRpBucWH6ltob1i1eb5sYUVZ01dUJXLX99uEYMaH7GXU0B/hZdd1krrX5vpG68sq0xAbpZl3YNlfLRlfrbTV3UMOrMjZm7tmuo1x7upy9mXaLQEO+ZzevnZ9Gd19Z87XBXSWxRT5f08Xz+AVyJsQBgPt6TwV1o27Ztkqpenmfx4sWSpKefflpPP/30ac+98847uvnmm90eHwAAZ+PnZ9Gk65P015lrPdZnZHigbvLC4kdAgJ/uvK6j7ri2g9ZuPaq9abkqr7CpccNQDbmgqVcVM5zVp2tjzZs5WFlHi/TDhmzd+a/VOpFfpibRIfp69qVGh+e0+/7USct+zvRYf35+Fq9Zmxq+4Z5xSZrz6R7ZbE7uuu6Ee//knUuXXnJBU11yQVOlZuSrx7gvlZNXpgb1grTjizGKa3Tu2e3ermnjcM2c0lsz7jlfy34+pKM5JQoM8FO7llHq07WRV315/3s3X9VOj76ySQVF5R7rc9K4jqZaxgkAYA7m/1RbhbMV+A8ePOjhaAAAcNykcUl67+t92rz7uEf6e/5vfVS/3pkz/7yFxWLRBd0a64JujY0OxTBxjcI0dlhrTXlurU7klynA37tv5BwxoLmuHtxSX65I80h/D9zcRR1b1/dIX0BNdEpsoL/e0FnP/XebR/obMyRBwy/y7g1oW8VHKiwkQDl5ZQoLCfCJ4v7vhYYE6MpBLY0Ow2UaRgXruSm9dee/Vnukv/M7Ruvusd75JRcAwNy8+5Odk85W4AcAwBsEBvrp3X8NUECAY7PIsq1FyjhcqGxrUY3bXHphM906up2jIQJuZbFY9OpDF1a55MTZOHMNdGxdX4/ddZ6jIQJuN+Oe89U+IcqhNs5cA9H1g/XyPy/02pneMK+J17R3eMkcZ66BwICT467AQJ8soQAA6jifnMG/YsUKo0MAYJBGjRpp8uTJatSokdGhALXWrX20Zk29QJOe/LnGbXpdv8ChPlrEhevt6f0p6qBOio0J03tPDNBVk5ersrJmy5Q4eg3UiwjUR08PVEiwOYbN5EFzCQ0J0NxnBuriCd8ov7Bmy5Q4eg0EBFj0/hMXq0l0qDMhAm5lsVj07r8G6MIbv1Z6dmGN2jh6DUjSfx68QF3amXO/HvgexgKA+fD1MwCfEh0drfHjxys6OtroUACXuGdckp6a3NMt527WOEzL5gxXsybhbjk/4AojBrTQB09eLP8qNhGurcjwQC2afam6dzBPziAPms95HWO0aPalbtkAOiDAog+fGqjh/Zu7/NyAq8THhmv568PVtLF7llx65i+9dBd7sMBEGAsA5kOBH4BPycvL0/Lly5WXl2d0KIDL/P3Wbnrt4X4KCfZ32Tm7d2ioH/97hdo5uPQDYIRxw9voy1lD1KBekMvO2bJphFa+dbkuOj/WZeesC8iD5tS/R6xWvDlcLeJc94Vsw6hgfTlriK67rLXLzgm4S7uEKP347hXq1t51s+xDgv31+iP9NHVCV5edE6gLGAsA5kOBH4BPyczM1LRp05SZmWl0KIBL3XFtB23+5Gr1reUmsgEBFk2/+3yt+/AqJTSLdFF0gPtdcXEL7fhijK4c2KLW57rrug7a9tko9UiKcUFkdQt50Lx6dW6k7Z+P1h3Xdqj1ua4e3FI7vhitEQNqfz0BntIqPlLrPrpSj955nsN7FP3Rhd0ba8v8Ubr9mtpfT0Bdw1gAMB8K/AAAmET7VvWV/O4IvfOv/g4XJkND/HXrqHba/MkoPXLneWwiB68U1yhMX/5niL76zxCHN13097fomqEJ+vG/V+iVh/opMtx1dwMAnhIZHqTXHu6n5HdHaPQlCQ4vXTW0b1MteHGoPn/hEsXGuGe5E8CdggL99djd52vTvKt1y9VtHb67sVfnGL37rwH64Z0R3MUIAPAa5tgtDAAASJL8/f1081XtdPNV7ZSy/ajmL03Vhp1Wbdx1TCfyy047tm3LeurRMUb9zmui8SPaqEG9YIOiBlzHYrHoykEtdeWgltqdekJzvzmglB1HtWGnVUeOl5x2bIu4cPVIilGfLo305xGJ7DcB07jo/FhddH6sMrIL9eE3v2jttpPXwK9Zp29C2iQ6VD2SotWrUyNdP7y12reqb0zAgIt1bttQb88YoOem9NGHi37RT5uPaMMuq/alnb4kSf3IIPVIilGPpGhdM7SVenVm01EAgPehwA8AgEn16tzo1AdVu90ua06JiksrFeBvUVREkMLdsCEjUJd0aFVf0+85X9LJayAnr0ydrv5U2cdKFBcTqrQl4wyOEHCv+NhwPTih26n/n5tfpg5Xzj91DRz67npZLK7foBqoKxpGBeveP3XSvX/qJEkqKCpXXkGZKirtCgsJUHT9YK4BAIDXo8APwKcEBwerffv2Cg5mpjJ8i8ViUaOGoUaHARjGYrGoYVSw/P1PLj/l5+ebBR3yoG+Ligw67RqgsAlfExEWqAgmOMDHMRYAzIcCPwCf0qpVK73//vtGhwEAgCHIgwAA+DbGAoD5sIMeAAAAAAAAAABeiAI/AJ+yZ88e9evXT3v27DE6FAAAPI48CACAb2MsAJgPBX4APsVut6u8vFx2u93oUAAA8DjyIAAAvo2xAGA+FPgBAAAAAAAAAPBCFPgBAAAAAAAAAPBCFPgBAAAAAAAAAPBCAUYHAACelJCQoLlz56pZs2ZGhwIAgMeRBwEA8G2MBQDzocAPwKeEhISoTZs2RocBAIAhyIMAAPg2xgKA+bBEDwCfkpWVpccff1xZWVlGhwIAgMeRBwEA8G2MBQDzocAPwKfk5uZqwYIFys3NNToUAAA8jjwIAIBvYywAmA8FfgAAAAAAAAAAvBAFfgAAAAAAAAAAvBAFfgAAAAAAAAAAvBAFfgA+xc/PT+edd578/Hj7AwD4HvIgAAC+jbEAYD5czQB8is1m06ZNm2Sz2YwOBQAAjyMPAgDg2xgLAOZDgR8AAAAAAAAAAC9EgR8AAAAAAAAAAC9EgR8AAAAAAAAAAC9EgR+AT4mMjNSwYcMUGRlpdCgAAHgceRAAAN/GWAAwnwCjAwAAT2rWrJlmzJhhdBgAABiCPAgAgG9jLACYDzP4AfiU0tJSpaenq7S01OhQAADwOPIgAAC+jbEAYD4U+AH4lNTUVI0ZM0apqalGhwIAgMeRBwEA8G2MBQDzocAPAAAAAAAAAIAXosAPAAAAAAAAAIAXosAPAAAAAAAAAIAXosAPAAAAAAAAAIAXCjA6AADwpA4dOmjdunVGhwEAgCHIgwAA+DbGAoD5MIMfAAAAAAAAAAAvRIEfgE9JS0vThAkTlJaWZnQoAAB4HHkQAADfxlgAMB+W6AHgU4qLi7V9+3YVFxcbHQoAeERhUbk27zmu9TuOKvNokU7kl0mS8ovKtSolS+d3jFa9iCCDo4SnkAfhi3Lzy7Rp9zFt2GlVbsHJ98DcgjK9+OEO9UiKUff2DRUeFmhwlADgGYwFAPOhwA8AAGAyZeWV+nJFml6Zt0vJGw/LZrOfcUxeQbkG3fqNJKlPl0a667qOuu6yVgoNYXgIwPsVl1Ro3pIDenXebq3bfvSM5wuKKjT5mTWSJD8/iwb0iNXdYzvq6kEtFRjIje4AAMB78AkOAADAJOx2u97+Yq8emr1B2daaz8pau+2o1m47qr8+t1YPTeyu+/6UJH9/ClwAvE9lpU2zPtihJ97YrJy8shq1sdnsWpWSpVUpWYprFKYn7u2hm69qK4vF4uZoAQAAao9PbgAAACaQnl2g4Xct0W2P/ehQcf/3jueW6q8z12rALYu092CuiyMEAPfanXpCF920UH/797oaF/f/KOtokSY8kqwR9yxVRnahiyMEAABwPQr8AHxKXFycpk+frri4OKNDAQCXWb/jqM677kst+emQS8730+YjOn/sl/puTaZLzoe6gzwIs1r28yH1GPuV1mw9czkeZyz+MUPnjf1SG3ZaXXI+AKgrGAsA5kOBH4BPiYqK0vDhwxUVFWV0KADgEht2WjX4tsU6dqLUpectLK7QiElLKfKbDHkQZrTs50O6YtJSFZVUuPS81pwSDb7tG22kyA/ARBgLAOZDgR+AT8nJydH8+fOVk5NjdCgAUGtZR4s07K4lyi8sd8v5S8sqddXkZdqTesIt54fnkQdhNrtTT+jqyctVVm5zy/nzCso17K4lyrYWueX8AOBpjAUA86HAD8CnHD58WDNnztThw4eNDgUAasVut+uOGatlzSlxqF3K3CuVvmycUuZeWaPjC4srdMsjyaqsdE/xDJ5FHoSZVFbadPNDPzg0c9/R90BJOppTojv/tVp2u92ZMAGgTmEsAJiPTxT4rVarpk6dqsTERIWEhKh58+aaPHmyCgsLdeutt8pisWj27NlGhwkAAFBjHyz8RV9//6vD7WJjwhTfJFyxMWE1bvPzliOa9cEOh/sCAHf693+3a+02x9bcd+Y9UJK+Wvmr5n5zwKE2AAAAnhBgdADutnnzZg0fPlzZ2dkKDw9XUlKSMjMz9eKLL2r//v06fvy4JKl79+7GBgoAAFBDlZU2PfLyRo/2+cQbm3XXdR0VFup9w8eS0grNX5qq9xf+osPHiiVJx06U6utVv+ry/vHy9/eJOS8+7ejxYr395V4tWPWrcvLKFBrsr+4donXXdR3Us1Mjo8Nzu8pKmxb9kK63vtirw8dPXgPWEyX6YOEvumZogkKCve+6Liwq15NvbfFonw+/vEHjhreWn5/Fo/0CAACcjfeN5BxgtVo1cuRIZWdna8qUKXr00UcVGRkpSXr22Wf14IMPKiAgQBaLRV27djU4WgAAgJr5dnWGDmYWeLTPnLwyzVtyQLdc3c6j/dbW+1/v0/0z156xCXFJWaWuvG+ZWjaN0NvT+2twn6YGRQh3qqy06e+z1uvFj3acsUb7xl3H9PYXe9W3W2N99PRAJTSLNChK91q+5pBufTRZv2YVnvZ4aZlNN0z7XvfPXKsXHuijP1+RaFCEzpm7+IBy88s82ueBjHwt/emQhl0U79F+AQAAzsbU05Xuu+8+ZWRkaNKkSXruuedOFfclaerUqerWrZsqKiqUkJCgevXqGRgpAE8JCwtTnz59FBbm2G3ZAFCXvPbJbkP6ffWTXYb066yXPtqhG//5wxnF/d9LyyzQsLuWaKETyx15I1/KgzabXeP/sUrP/XfbWTdg/XnLEfW94WsdyMjzYHSesWBlmobfteSM4v7vWXNKdMO07/Xyxzs9GFntvTbfmPfBV+Z51/sgAPyRL40FAF9h2gL/rl27NG/ePMXExOipp56q8pgePXpIkrp163bqseTkZA0ZMkRxcXEKDg5WfHy8xo4dq127GMgBZtCiRQu99NJLatGihdGhAIBTKittWrEuy5C+U7ZbPT5j1lnJG7I1+Zk1NTq2vMKmsQ+sVFpmvpujMp4v5cFn39mqed+m1ujYbGuxRt67zFSbSadm5Gvc1JWqqKzZxrD3PvWzftyY7eaoXON4bqk27LQa0veKdZmmep0A8D2+NBYAfIVpC/xz586VzWbT+PHjFRERUeUxoaGhkk4v8Ofk5KhLly568cUXtXTpUj3zzDPasWOH+vbtq4yMDI/EDsB9KisrVVBQoMrKSqNDAQCn7E7NVVFJhWH9b9xlTFHNUS98sF32mtU1JUlFJRWGzQj2JF/Jg2XllfrPh45tDL1z/wkt+emQmyLyvFc/2aXi0pr/ne12ec1m2ka+DxUWV2hvmvnu9gDgO3xlLAD4EtMW+FesWCFJGjRoULXH/Faw/32B/8orr9QLL7yga6+9VhdffLHGjx+vzz//XLm5ufrss8/cGzQAt9u3b58GDx6sffv2GR0KADjFqFmrv1m/o+4X+NOzC/TVSseX3Hnz870qKTXuyxNP8JU8+OWKNGVbix1u523L1FSnuKRCb32x1+F2X65M06HD1S/nU1cY/T5odP8AUBu+MhYAfIlpN9lNS0uTJLVs2bLK5ysqKrR69WpJpxf4qxIdHS1JCghw7tfVs2dPZWd7x+2ugLe55pprHDr+yJEjkqTFixdrw4YNNWozatQoh+MCAHfJD+knhV1a5XMpc69UbMzZ11ONjQk99W/6snHVHpdtLVKv6xec8fiMJ2fpPw8vdSBizysK6iRbxHUOt7PmlKhluz4KrDzshqjcx5Fc6EwelLwvF54Iu1wK6eNwu8U//KL4+FvdEJFnlfnH6XjUnQ63q6y0q+sFVyu0vG4vT3oibJgU0rfK5871PljT90Cp+vfBe/4yTX+/8ycHIgYA92IsAJzbqFv+ovCIesrKzlJ8fHy1jxkpNjZW69evd7idaQv8hYUnZ54UF1c9c2fevHmyWq2KjIxUq1atzni+srJSNptNaWlp+sc//qHY2Fhdd53jHxQlKTs7W4cOmed2X6Au+e1ar6nf3hOKi4tr3JbrF0Cd0qhQqqZ2FRsTpvgm4TU6TYC/X42P/b2CwhIVZNXx98UGCVLVKzSe0xFrnlRUx3++P3AkFzqTByUvzIXNKqQQx5vZFeR9P2tVwsKkKOeaHj9RJJ2o47+DpsXV/n1r+j7o7HugJOXlFSrvaB3/HQHwKYwFgHOz/f+yVLbKylOv56oe80amLfDHxsYqJydHGzduVN++p8/uyMrK0gMPPCBJ6tq1qywWyxntL7744lMz/BMTE7VixQo1atTI6VgAuEd4uGMfzH4bwISGhta4bbNmzRyOCwDcJT8kXNWt/pxtLTpn+9iYUAX4+6mi0nbWJUyqO1dEeIii6vj7YnFgmI472bZxTD0FVtbtn++PHMmFzuRByfty4Ykwfzmz0IzFXqamXvazVqXMv56OOtm2Yf0whYbX7d/BibDQav++53ofrOl74NnOVa9euCKD6vbvCIBvYSwAnJufv/+pf397PVf1mJGcrSFb7HZHth/zHvfdd59eeuklNW/eXMuXL1e7du0kSSkpKbrhhht04MABlZeX65577tHs2bPPaL9nzx6dOHFCqampmjlzpo4cOaLVq1ezyzhQx6SkpDh0/O7du3XjjTfqvffeU4cOHWrUplevXs6EBgBu8eGiX/Tnf3zvdPv0ZeMU3yRcGYcL1Xzoxw63f/6BPrr/hs5O9+8J2dYiNR/6sSoqHRvmxsaE6tcl4xQY6F3bVDmSC53Jg5L35cKvVqbp6snLHW436pKW+vyFIW6IyLPKyivVfOjHOnK8xKF2gQF+ylg2To2jQ90UmWs89+42PfD8Oqfa1vY9UJI+enqgrr+8jVNtAcAdGAsA5/bkyx8qr6BQ9SLCNe2e8dU+5o2869OLA6ZOnaro6Gilp6erU6dO6tKli9q2bavevXurdevWGjx4sKTq199v3769+vTpo3Hjxum7775Tfn6+nn32WU/+CADcIDExUUuWLFFiYqLRoQCAU3okxRjbf8doQ/uvidiYMI0ZmuBwu4ljOnhdcd9RvpIHR/Rvruaxji+/cvfYjm6IxvOCAv11+5j2Dre79tJWdb64L0k9kox9HzL6fRgAasNXxgKALzHtJ5j4+HglJydrxIgRCgkJ0cGDB9WwYUPNmTNHixYt0t69eyWde4NdSapfv74SExP1yy+/uDtsAG4WEBCgBg0aOL1pNgAYrV3LKEWEBRrSt8UinecFBX5J+usNXRTgf+YyjNWJigjSxGscL4h6G1/JgwEBfvrbTV0catMjKUaDezd1U0Sed+e1HVUvoubvFQH+Ft1/Qyc3RuQ653c0rsAeGR6oxBb1DOsfAGrLV8YCgC8xbYFfkjp27KiFCxcqPz9f+fn5Wrt2rSZOnKjCwkIdPHhQfn5+6tz53LeYHzlyRHv27FGbNtyGCXi7jIwMTZkyRRkZGUaHAgBO8fOz6NK+xqwPeWH3JooMDzKkb0f17tJIbz7WX1VstXSG0GB/fTHrEjVzcsNNb+JLefDePyXV+EubhKYR+uo/Q+TnV/Mvheq6+Nhwff78EIUE+5/zWD8/i96e0V89Ozm355inRUUGqW+3xob0fdmFzUz1OgHge3xpLAD4ClMX+KuzY8cO2e12tW3bVmFhYac99+c//1mPPfaYvvzyS61atUpvvPGGBg4cqICAAN1///0GRQzAVQoKCpScnKyCggKjQwEAp901tubrpbrS3dd51/IlN13VVl/MGqKWTSOqPaZzYgOtenuEBplo5vbZ+FIetFgseu3hfnp8Uo+zzmQfflG81nx4pSm/4LnkgqZa+ebl6tSmfrXHJDSN0BcvXKIbRrb1XGAucNd1Br0PmmQZJwC+y5fGAoCv8Mn7cbZt2yap6uV5LrjgAr333nv6z3/+o5KSEjVv3lyDBg3StGnT1LJlS0+HCgAAcIbBvZuqXcso7U3L9VifjRqEOLWuvdGuGtRSVwxorsU/Zuj9hb8o80iR/P0tSmgaqdtGt1O/85rIUpNp/vBKFotF/5zYXZP/3EkffbNfC1b9qmU/H1JZuU0RoQHa+MnVatsyyugw3eqCbo217fPR+nHjYb31xV4dzMxXZaVdTRuH6caRiRrWL17+/t437+vaS1vp/plrdexEqcf67NAqSgN7xXmsPwAAgJqgwP8HkyZN0qRJkzwdEgAAQI35+Vn01OSeGvPX7zzW54x7zldw0LmX+qiL/P39dMXFLXTFxS2MDgUGiQgL1MRrOmjiNR0UP2SuDh0pUlRkkOmL+7+xWCzq3yNW/XvEGh2Ky4QEB2j63edr0pM/e6zPpyb35AtBAABQ53jfVA0XOFuBHwAAwBuMHpKgccNae6SvS/o01R3XGrMcBgBU567rOnpsRv2fLm+jqwcneKQvAAAAR/hkgX/FihWy2+0aMWKE0aEA8LBGjRpp8uTJatTIOzaRA4CzmT2tr5o1Djv3gb+TbS1SxuFCZVuLanR8g3pBemv6RcxaNQnyIMzEz8+it6f3V/3Imm/+7eh7oCTFNwnXi3+/wJkQAaDOYSwAmI9PLtEDwHdFR0dr/PjxRocBAC4RXT9ES+cM08UTvpE1p6RGbXpdv6DG5w8PDdA3L1+mlk0jnQ0RdQx5EGbTKj5Si16+VEMnfquikopzHu/Ie6AkxTQI0bLXhym6foizIQJAncJYADAfn5zBD8B35eXlafny5crLyzM6FABwiaQ2DfT925erqYMz+c+lQb0gfffGcF3QrbFLzwtjkQdhRhd2b6LlbwxzaCZ/TTRrHKYf3hmhDq3qu/S8AGAkxgKA+VDgB+BTMjMzNW3aNGVmZhodCgC4TFKbBtoyf5TGDmvlkvMN6xevrZ+OVp+uFPfNhjwIs+rbrYm2fjZKl13YzCXnu354a235dJQ6tq7vkvMBQF3BWAAwHwr8AAAAJhDTIEQfPztYn/57sBJb1HPqHM1jw/X2jP765pVLFR8b7uIIAcC9msdGaPGrl+nNxy5SfBPn3sPatqynz1+4RB89M4hleQAAgFdgDX4AAAATGTO0lUZdkqDv1mbqlXm7tPSnQ2ddlzo4yF8De8bq7rEddXn/5goIYP4HAO9lsVh06+j2uunKtlqUnK5X5u3S9+uzVVpWWW2bsJAAXXphM90zrqMG924qPz82FQcAAN6DAj8AAIDJ+PlZNLRvMw3t20yVlTbtTs3Vhp1WZR4tUmlZpYIC/dUkOlQ9kqKV1LqBAgMp6gMwl4AAP101qKWuGtRS5eU27difow07rTpyvERl5ZUKDvJXs8Zh6pEUo/YJUfL3530QAAB4Jwr8AHxKcHCw2rdvr+DgYKNDAQCP8Pf3U6fEBuqU2MDoUFAHkAfhiwID/dS9Q7S6d4g2OhQAMBxjAcB8KPAD8CmtWrXS+++/b3QYAAAYgjwIAIBvYywAmA/3IQIAAAAAAAAA4IUo8APwKXv27FG/fv20Z88eo0MBAMDjyIMAAPg2xgKA+VDgB+BT7Ha7ysvLZbfbjQ4FAACPIw8CAODbGAsA5kOBHwAAAAAAAAAAL0SBHwAAAAAAAAAAL0SBHwAAAAAAAAAALxRgdAAA4EkJCQmaO3eumjVrZnQoAAB4HHkQAADfxlgAMB8K/AB8SkhIiNq0aWN0GAAAGII8CACAb2MsAJgPS/QA8ClZWVl6/PHHlZWVZXQoAAB4HHkQAADfxlgAMB8K/AB8Sm5urhYsWKDc3FyjQwEAwOPIgwAA+DbGAoD5UOAHAAAAAAAAAMALUeAHAAAAAAAAAMALUeAHAAAAAAAAAMALUeAH4FMaNmyom266SQ0bNjQ6FAAAPI48CACAb2MsAJgPBX4APsXPz0+BgYHy8+PtDwDge8iDAAD4NsYCgPlwNQPwKVarVW+++aasVqvRoQAA4HHkQQAAfBtjAcB8KPADAAAAAAAAAOCFKPADAAAAAAAAAOCFKPADAAAAAAAAAOCFKPAD8CmRkZEaNmyYIiMjjQ4FAACPIw8CAODbGAsA5hNgdAAA4EnNmjXTjBkzjA4DAABDkAcBAPBtjAUA82EGPwCfUlpaqvT0dJWWlhodCgAAHkceBADAtzEWAMyHAj8An5KamqoxY8YoNTXV6FAAAPA48iAAAL6NsQBgPhT4AQAAAAAAAADwQhT4AQAAAAAAAADwQhT4AQAAAAAAAADwQhT4AQAAAAAAAADwQgFGBwAAntShQwetW7fO6DAAADAEeRAAAN/GWAAwH2bwAwAAAAAAAADghSjwA/ApaWlpmjBhgtLS0owOBQA8Kq+gTLtTT2jLnmPadeCEcvJKjQ4JBvDlPFhUXKE9qSdUXmGTJFXa7AZHBE87nluqXQdOvg/uTj2hvIIyo0MCAI/z5bEAYFYs0QPApxQXF2v79u0qLi42OhQAcKuS0gp9siRV367O0Iadx7Q3LfeMY1o1i1SPpGgNuaCZ/nR5a0WGBxkQKTzJl/JgRYVNi5LT9eWKNG3YadXOAydUWfm/on62tVjNhsxVj44xurhnrG4cmahGDUMNjBiull9Ypg8X7dd3azO1YecxpR7KP+OYdi2j1CMpWsMvite1l7ZSSDAfkQGYmy+NBQBfwegFAADARI4cK9bMd7fp7S/36nju2Wfppx7KV+qhfH267KAeeH6dbhyZqKm3dFWLuAgPRQu4XkFRuWZ9sF1z5u9RxuHCsx6beaRImUd+1dff/6ppL67XdZe10tSbu6pLu4YeihbukJaZr2ff2ab3vv5FBUXlZz12b1qu9qblau7iA7p/5lpNuLqd/nZTFzWO5sseAADgHViiBwAAwATsdrvmfXtASaM+03P/3XbO4v4f5ReW6+WPd6nz6M/1+qe7ZbezfAm8z8p1meo65gs9PHvjOYv7f1RWbtMHC/fr/HFfasZrm1RebnNTlHAXu92u1z7Zpc6jv9Ar83ads7j/R8dOlGrmu9vUafTnmr801U1RAgAAuBYFfgAAAC9XUlqh6x9cqXFTV+rYidqtrZ9fWK47ZqzW8LuWsD41vIbNZtcD/16nwbctrnIZFkdUVNj16Csb1Wf8AmVkO/YlAYyTm1+mYXct0V2P/+RwYf+PrDkluu5vK/SnB1eqtKzSRRECAAC4BwV+AD4lLi5O06dPV1xcnNGhAIBLFJdU6IpJyzTvW9fONl3y0yFdcvtinWAzXlMxYx602ey69dFkPfffbS4976bdx3TRzQuVmlG7Lwzgfjl5pRp82zda+tMhl5537uIDGnnvUhWXVLj0vABgJDOOBQBfR4EfgE+JiorS8OHDFRUVZXQoAFBrlZU2Xfe3FfpubaZbzr9+h1UjJi1VSSnFLbMwYx78y7Nr9O5X+9xy7rTMAg29Y7GOHmcjwrqqpLRCl9+9RBt3HXPL+Zf9nKmxD6yUzcayZQDMwYxjAcDXUeAH4FNycnI0f/585eTkGB0KANTaix/t1MIf0h1qkzL3SqUvG6eUuVfW6PifNh/R9Nc2ORMe6iCz5cGvV/2qlz7a6VAbR6+B/en5uvuJn5wJDx7wyMsbtWbr0Rof7+jfX5K+/v5XzZ7r2OsMAOoqs40FAFDgB+BjDh8+rJkzZ+rw4cNGhwIAtbL3YK6mvbje4XaxMWGKbxKu2JiwGrd59p1tWret5gU01F1myoM5eaW641+rHW7nzDXw6bKD+mTJAYf7gnut2XJE/35vu0NtnPn7S9Lf/5OiX37Nc6gNANRFZhoLADjJ9AV+q9WqqVOnKjExUSEhIWrevLkmT56swsJC3XrrrbJYLJo9e7bRYQIAADjkL8+uUUmpZzZ/tNnsuvuJn2S3e+8SFYVF5fp48X49/942zXp/uxasTFN5uc3osFALj72yUVlHizzW371P/ezVy1WVlVfqq5VpmvX+dj3/3jZ9vHi/Cmu5Ga2R7Ha77npitceWzikuqdT9z67xSF8AAACOCDA6AHfavHmzhg8fruzsbIWHhyspKUmZmZl68cUXtX//fh0/flyS1L17d2MDBQAAcMAvv+Zp8Y8ZHu1zw06r1m49qgu6NfZov7WVeaRQT7+9Vf9dsE95BacXM2NjQnX7mPZ64OYuigwPMihCOCO/sEzvuGnd/eocOV6i+UtTdcPIth7tt7byCso0891teuOzPTp87PS9BKIig3TTyET9/dZuimvk2Ix2o/20+Yg27z7u0T4XJafrQEaeWsfX82i/AAAAZ2PaGfxWq1UjR45Udna2pkyZoqysLG3cuFHZ2dl65plntGjRIqWkpMhisahr165GhwsAAFBjr32yy5B+X5lnTL/O2nXghPqM/1ovfbTzjOK+JGVbi/WvOZs14JZFOnKMTVS9yYeL9iu/0POzz73tGjh8rFgDblmkx1/ffEZxX5Jy88v04kc71Wf8Au1JPeH5AGvBiL+F3S699sluj/cLAABwNqYt8N93333KyMjQpEmT9NxzzykyMvLUc1OnTlW3bt1UUVGhhIQE1avHDAzAV4SFhalPnz4KC/OuWWoA8Hsff2vMWuCfLk9VRYV3LGtz+Fixht31rTIOF57z2M27j+uKe5d69fIrNWWWPGjUNbBm61GlZeYb0rejiksqNOKepdqy59yz3NOzC3XZXUu85ouusvJKfbb8oCF9G/XaAwBXMctYAMD/mLLAv2vXLs2bN08xMTF66qmnqjymR48ekqRu3bpVe57hw4fLYrHosccec0eYAAzQokULvfTSS2rRooXRoQCAU7KtRTp0xHPrjv9ecUmldh44YUjfjvrPBzv0a9a5i/u/Sdlu1bxvU90YUd1ghjxos9m1cdcxw/rfsNO4vh0xd/EBbdhprfHxaZkFevGjHW6MyHV2/JKj0jLP7EHyR+nZhTp63Du+CAGAqphhLADgdKYs8M+dO1c2m03jx49XRERElceEhoZKqr7A/8knn2jz5s3uChGAQSorK1VQUKDKSmM+FAJAbTlSsDNj/zVRWlapNz/f43A7b1t+xRlmyIP70nINWZ7nN95wDdjtdr388U6H273x2R6Vldf914bRX7IY3T8A1IYZxgIATmfKAv+KFSskSYMGDar2mIyMkxvTVVXgz8vL01/+8hc999xz7gkQgGH27dunwYMHa98+z27MBwCusudgrk/3XxMr1mbqaE6Jw+3WbT+qAxl5boio7jBDHjT6NWh0/zXxy695Tt3lcOR4iVauy3JDRK5l9N9gz8EThvYPALVhhrEAgNNZ7Ha73eggXK158+bKyMjQpk2b1L179zOer6ioUFxcnKxWq/bv36/WrVuf9vy9996rbdu2adWqVbJYLHr00UdrtUxPz549lZ2d7XR7ANW75pprHDr+yJEjmjt3rq6//no1bty4Rm0+/fRTZ0IDALfIDxmgvLBLqnwuZe6Vio05+3qqsTGhCvD3U0WlTdnW6peZyLYWqdf1C854PLxkjeoXLXYsaA8rDOqmExGjnWobk/eGgisyXByRezmSC53Jg1LdyoVFQZ2UE3Fdlc954hoILturmIIPHQvaw0oDmsta7zan2jYo+ExhZVtdHJFrnQi7XIUhfap87lyvgZr+/aXqXwP1ipYrsiTZsaABwI18bSwAOGPULX9ReEQ9FRbk6Yt3ZlX7mJFiY2O1fv16h9sFuCEWwxUWnlxvtbi46gHbvHnzZLVaFRkZqVatWp323Pr16/XGG29ow4YNLosnOztbhw4dctn5APzPb9d7Tf32vlBcXFzjtly/AOqURiekampXsTFhim8SXqPTBPj71fjY3yssyFdhVh1/X6wfL1W9SuM5WY9kS8V1/Of7A0dyoTN5UKpjubBebLV/X09cA6UlxXXr91GV0CCpnnNNc45blZNbx3++uAIppOqnavoacPbvL0l5uSeUZ63jvyMAPsXnxgKAE2z/vyyVrbLy1Ou5qse8kSkL/LGxscrJydHGjRvVt2/f057LysrSAw88IEnq2rWrLBbLqecqKyt1xx13aNKkSerUqZNL4wHgHuHhjn0w+20AExoaWuO2zZo1czguAHCXguBgVbc4Rbb13JvvOjJ7uSqR4YGqV8ffF8v87ToqSXa79Lux3jnZKxUbHSR/e93++f7IkVzoTB6U6lYuLAkIV3WLz3jiGggNtqhhHfp9VKXSEqhsu02yOLAi6/9fL42i7AqKqNs/X15ogPKree5crwFHZ/BXpX69YIUH1+3fEQDf4mtjAcAZfv7+p/797fVc1WNGcraGbMoC/5AhQ7Rr1y4988wzGjp0qNq1aydJSklJ0Q033CCr9eTGWH9cvmf27Nk6fPhwrZbjqYozt1YAqJmUlBSHjt+9e7fmzp2r4cOHq0OHDjVqM2vWLCciAwD3+HFjtvrfvKjK56paSuKP0peNU3yTcGVbi9V86McO9//uq//S6CEJDrfzJLvdrvOu+1Jb9hx3qN11wxI1b+ZeN0XlPo7kQmfyoFS3cmG2tUhxg+dW+ZwnroHHHrxVUyf8x+F2nnbNX7/TZ8sP1ryBxaLzOkRrw7x1p02CqovmL03VdX9bUeVz53oN1PbvL0nffD5Hfbs1caotALiDr40FAGc8+fKHyisoVFxs3Km9Wat6zBuZcpPdqVOnKjo6Wunp6erUqZO6dOmitm3bqnfv3mrdurUGDx4s6fQNdq1Wqx5++GE98sgjqqio0IkTJ3TixAlJUklJiU6cOCGbzWbEjwPAhRITE7VkyRIlJiYaHQoAOKV7h2j5+RlXfOvZKcawvmvKYrHo7rEdHW7nTBtvY4Y8GBsTpmaNz77Ovjv1SKr714Dk3Ov57rEd63xxX5J6Gvg38POzqFu7aMP6B4DaMsNYAMDpTFngj4+PV3JyskaMGKGQkBAdPHhQDRs21Jw5c7Ro0SLt3XtyZtbvC/wZGRnKz8/XHXfcoQYNGpz6T5KeeeYZNWjQQL/++qshPw8A1wkICFCDBg0UEGDKG5gA+ICIsEB1bdfAkL6bNg5T81jn1qz2tAlXt9OIAc1rfPzk8Z10cc84N0ZUN5glD/btVvNNAV0pMMBPPZK8o7g7qHecJl2fVOPjR17cQrdc3daNEblOQrMIxcaEGtJ39/YNFRbq3dcPAN9mlrEAgP8xZYFfkjp27KiFCxcqPz9f+fn5Wrt2rSZOnKjCwkIdPHhQfn5+6ty586njExMTtXLlyjP+k6SbbrpJK1euZC19wAQyMjI0ZcoUr771CgBuHdXeoH7becXsXkkKCPDT/OcGa9QlLc957F9v7KznH+jjgaiMZ5Y8aNQ1MGZIgurXCzakb0dZLBbNmtpHk8efe2+xMUMSNG/mIPn7e8fHQ4vFoglXtzOk71tHGdMvALiKWcYCAP7HO0ZwLrRjxw7Z7Xa1bdtWYWH/u7U3IiJCAwcOPOM/SUpISNDAgQMVEhJiUNQAXKWgoEDJyckqKCgwOhQAcNoNVyQq3MMzSP39LZo4pubrtNYFoSEB+vTfl2jZ68M06pKWZyxtdMvVbbXuoyv177/1MXTZI08ySx689MJmatM80uP9etsyTv7+fpr14AVa++GVuvmqtgoJ9j/t+dGXJGj568M1/9+DFRriXTM5J17T3uPXbURYoP58BUtaAPBuZhkLAPgfnyvwb9u2TdLpy/MAAAB4k6jIIN1xrWeL7eOGtVa8lyzP83t+fhYNuaCZPn9hiI4n/1lNGp6csBHXKFRvzxigXp0bGRwhnOHnZ9GUG7t4tM8+XRrpovO9c2PV3l0a6Z1/DZD1+/FqEv3/10BMqD574RJdckFTr7kz5/daNo3U2MtaebTPO6/toHoRQR7tEwAA4Fwo8J+D3W7XY4895saIAAAAHDfj7vPVOt4zM5gbNQjRCyZYwiYqMkgBASeHv35eWNDE6e64toP6e6jgHhTop7dn9PfKQvjvhYcFKuD/l+Exw10rs6ZeoJgGnrnLuk3zSD1213ke6QsAAMARFPgBAAC8UHhYoN6e0d/hdtnWImUcLlS2tajGbV596EI1amjMhpZAdfz8LHp7xgCFhvif++DfceYamH73+UpqY8zm1qhe4+hQvTytr0NtnPn7WyzSOzMGKDws0NEQAQAA3M67Flp0gRUrVhgdAgADNWrUSJMnT1ajRizJAMD7XdwzTi880Ef3z1xb4za9rl/gUB9/v7Wrxgz17DIYcB+z5cHEFvX00dMDdc2UFaqstNeojaPXwHWXtdIDN3t2OSDU3LWXttKGnVY9+862Gh3v6N9fkl54oI/694h1uB0A1EVmGwsA8MEZ/AB8W3R0tMaPH6/o6GijQwEAl/jLDZ31zF96ueXcU27srCfv6+mWc8MYZsyDVw9O0IdPDVRAgOuXnLlmaILef/Ji+fvzsamuslgsevovvXT/DZ3ccv6Zf+2tyX/u7JZzA4ARzDgWAHwdI1UAPiUvL0/Lly9XXl6e0aEAgMtMndBVHz41UPUjXbP5Y1hIgF6e1lczp/T2+jXHcTqz5sGxw1pryavDFN/ENRtB+/tbNO22bvr42UEKCnRsCSB4nsVi0b//1kcv/aOvw0s2Vad+ZJA+enqg/sbdGwBMxqxjAcCXUeAH4FMyMzM1bdo0ZWZmGh0KALjUn0a00fbPR2vEgOa1Os+AHrHa+tko3T0uieK+CZk5Dw7u01TbPx+tW0e1q9V5OrWprzUfjNQT9/Vk5r4XsVgsmnR9krbMH6WLzqvd5ssjL26hnV+O0fWXt3FRdABQd5h5LAD4Kp9bgx8AAMCsmjUJ19cvDdWPGw/rlXm79NnygyqvsJ2znZ+fRSMvbq67x3bUkAuayc+Pwj68U1RkkN6c3l/3je+kV+ft0vsLf1FhcUWN2g7sFae7x3bU1YNaKjCQwr63atsySt+/M0LLfj6kV+bt0sIf0mWznXt/hsAAP10zNEF3j+2ofuc14QtOAADgNSjwAwAAmIjFYlH/HrHq3yNWh48Va+W6TG3YeUzrd1p16EihDqTnq9JmV1Cgn+66rqN6JEVrYK84NY+NMDp0wGW6tmuoVx/up2fu76Xv1mZqw06rNuw8pgMZ+Sopq1BggJ+io0J0fsdo9UiKUf/zm6h9q/pGhw0X8fOz6LJ+8bqsX7zSswu0KiXr1Pvgmq1HVFlpl7+/RQPOj1WPpBj1SIrW4N5N1Tg61OjQAQAAHEaBHwAAwKSaRIdq3PA2Gjf8f8tMxA+Zq0NHitSoQYhmPXiBgdEB7lcvIkijLknQqEsSjA4FBmkeG6EbRrbVDSPbSvrfe2BsdKhWvHW5wdEBAADUHveeAvApwcHBat++vYKDg40OBQAAjyMPAgDg2xgLAObDDH4APqVVq1Z6//33jQ4DAABDkAcBAPBtjAUA82EGPwAAAAAAAAAAXogCPwCfsmfPHvXr10979uwxOhQAADyOPAgAgG9jLACYDwV+AD7FbrervLxcdrvd6FAAAPA48iAAAL6NsQBgPhT4AQAAAAAAAADwQhT4AQAAAAAAAADwQhT4AQAAAAAAAADwQgFGBwAAnpSQkKC5c+eqWbNmRocCAIDHkQcBAPBtjAUA86HAD8CnhISEqE2bNkaHAQCAIciDAAD4NsYCgPmwRA8An5KVlaXHH39cWVlZRocCAIDHkQcBAPBtjAUA86HAD8Cn5ObmasGCBcrNzTU6FAAAPI48CACAb2MsAJgPBX4AAAAAAAAAALwQBX4AAAAAAAAAALwQBX4AAAAAAAAAALwQBX4APsXPz0/nnXee/Px4+wMA+B7yIAAAvo2xAGA+XM0AfIrNZtOmTZtks9mMDgUAAI8jDwIA4NsYCwDmQ4EfAAAAAAAAAAAvRIEfAAAAAAAAAAAvRIEfAAAAAAAAAAAvRIEfgE+JjIzUsGHDFBkZaXQoAAB4HHkQAADfxlgAMJ8AowMAAE9q1qyZZsyYYXQYAAAYgjwIAIBvYywAmA8z+AH4lNLSUqWnp6u0tNToUAAA8DjyIAAAvo2xAGA+FPgB+JTU1FSNGTNGqampRocCAIDHkQcBAPBtjAUA86HADwAAAAAAAACAF6LADwAAAAAAAACAF6LADwAAAAAAAACAF6LADwAAAAAAAACAFwowOgAA8KQOHTpo3bp1RocBAIAhyIMAAPg2xgKA+TCDHwAAAAAAAAAAL0SBH4BPSUtL04QJE5SWlmZ0KAAAeBx5EAAA38ZYADAflugB4FOKi4u1fft2FRcXGx0K4HaVlTalbLdq/U6rNuy0at+veSoprZS/n0X16wWpe/uG6pEUowu7NVF8bLjR4QIuZ7fbtWXPcaVsP6oNu45p14ETOnK8RJJ0NKdEk5/+WT07xeiCro3VtmWUwdF6BnnQ9+w9mKs1W49ow06rtu3LOe0auPNfq9UzKUa9Oseoa7uGslgsBkcLuF56doF+3nJE63dYtWXvcZ3IK1Olza6QYH+1bVFPPZJiTl0H/v7MgYT5MRYAzIcCPwAAJnP4WLHe+nyP5ny6W79mFVZ73NKfDkmSLBZpWL943TOuo4b1i+fDLbxeXkGZ3l/4i16Zt0s795+o8piycpte/Gjnqf/f77wmuvu6jhozNEHBQf4eihRwj9KySn26LFUvf7xLP285UuUxZeU2zZm/W//X3n3HR1Wlfxz/TnqlJpBA6L2D9KoiKEgTQYFFxIpddmVBRZdiYxV1VRSXVbCgIhYUpAqiC4LSQTpIiYQkQCCQXmYyvz9Y+YkkkJnMzJ2583m/Xr6QmXvueULmzjnzzLnPmfW/vzevX1EPDmui2/rXU3RkiOeCBdzAZivS0rVJmjl/r5avSyrxuHXbTuj9hQclSbWqRem+oY119+CGqlI53FOhAgBQZnyCBwDAJKzWIr04Z4dq3TBfT83Yctnk/h/Z7dKyH5PU/+GVumrYQm3dk+bmSAH3sNvt+mDhQdW6Yb4efuGnEpP7xVm37YRGPvmDGg74XN+uLzkZBHi7FeuS1KD/57rtyf+WmNwvzq5f0/Xg8+tV8/r5+nDRQdntdjdGCbjPlj1pan3L1xr46MrLJvf/LDE5SxPf2KyaN8zXS3N+kc1W5MYoAQBwHRL8AACYwP4jZ9X19sV64rXNyi+wOX2eXw6cUYeRizTprS2yWvlgC9+RmpajAY+s1B3/WKOzmQVOn+e3lGzdcP8KjZn6o7JyCl0YIeBeWTmFumfyWvV5YIWOpZbuC97inM0s0Oin12jgIyuVmpbjwggB97Jai/T0jM3qOHKRdv2a7vR58gtsevy1Tep6+2IdOHrOhRECAOAeJPgB+JX4+HhNnTpV8fHxRocCuMyGX06q86hvtHHXKZecz2az69lZ23Xr+NVl+rIA8JTDSRnqMmqxlqw55rJzvvPlfvW6d5nOnMt32Tm9AeOgOZ0+m6fr7lmm2V8dcNk5F685pq63L9aRpEyXnRNwl7x8q4aO+07Pv7NDNptr7j7ZsPOUOo/6RptcNL8CvAVzAcB8SPAD8Cvly5dX3759Vb68f2ymCPPbuidN19+/XOkZzq9YLslX3yVq+ITvWckPr3YsNUvX3r1UR467Pgm5Yecp9XlguTKzXX99GYVx0Hwysgp0w/0rXPYl7x8dTsrUtfcsVVIZ7ggA3K2wsEjDxn+vhd//5vJznzmXr973LdeO/addfm7AKMwFAPMhwQ/Ar6Snp+vzzz9Xerrzt+0C3uJsRr4GPrpSGVnuKyPy9epETXl7q9vOD5SF1Vqkm//2Xan3m3DGpl1punfqj247v6cxDprP3ZPXaosb905JTM7SkMe+48teeK1JM7do0Q+uT+7/7lxmgQY8slLnylD+DfAmzAUA8yHBD8CvnDhxQtOnT9eJEyeMDgUos8de3qDjJx2rj7xp3kAdWzlcm+YNLHWbf875xa3JI8BZ09/fqc27HXttOnMNzF9+RF+uPOJoeF6JcdBcPv/2iL5YedShNs5cAxt3ndKrH+5yMDrA/TbtOqWX3tvpWBsnroFjqdn6+ysbHA0P8ErMBQDz8YsEf1pamiZMmKD69esrLCxMNWrU0NixY5Wdna27775bFotFb775ptFhAgBQat+uT9J7Xx90uF1cTIQSqkYqLiai1G1sNrvueHqNbDbfXr1pt9uVmV2g9Ix8n/9ZnFVQaJOtyDW1iY22/8hZp+4uceYakKQHnluv9Axz1eOHbztzLl8PPr/e4XbOXgOTZm41xYajdrv9oj/9jc1WpDPn8pWZXeDz/wZWa5Hu+McaFTk4rjl7Dby74IC++znZoTYAAHiC6RP827dvV4sWLTR9+nSlpqaqadOmKiws1BtvvKFhw4Zp7969kqTWrVsbGygAAA54cc4vHu1v16/pWro2yaN9usrxE9ma/NZWVe/1qcp1nqtK3T5SRIcPdNuTP+inHSd8PsFxJQWFNn267JB63LFYoW3fV2pariTp5Jk8zfnqgHJyrQZH6Jx/fbRbBYWe+6LmVHqe3l/o+JdqgLvM+eqA0tLzPNZffoFNr3+822P9uVJOrlWzF+xX22FfK/nU+ffA5FO56nHHYn267JAKCs29obzdbtf67Sc08okfFNHhA1Xu/pHKdZ6r6r0+1ZSZW5V80jf3WFi85jftOXTWo32++N4Oj/YHAEBpmDrBn5aWpgEDBig1NVXjxo1TSkqKtm7dqtTUVL344otasmSJNm3aJIvFopYtWxodLgAApbLvyFmt3pji8X5nzt/r8T7L6j9f7FPtPvP1zKxtSjn1/+WMCgqL9PGSQ+oyarFuGbdauXm+meS+koOJ59Rs8AKNePwHrd168W3YhdYi3T15rRoM+Fzb9vpWCaZzmQX6aPGvHu/37c/2OrxSFHCHoiK73v7M8+/JH37zq89tOr1lT5rq9/9c90z5UVv3XrxR6tqtJzTi8R/U/OYF+vW3DIMidK+cXKuGPrZaXW9frE+WHrroi9GUUzma+u9tqnXDfM1esN/AKJ1jxLxk5U/JOpjo+3eyAADMxdQJ/kcffVRJSUl6+OGH9fLLLys6OvrCcxMmTFCrVq1ktVpVu3ZtlStXzsBIAXhKRESEOnbsqIgIx27JBbzJ7AUHDOl3+bokJSZnGtK3M/792V7d98w6WW2XT8h+ueqobv7bdyr04GpwTzh6PFM97lxyxaRV8skcXXP3Uu08cMZDkZXdp8sPK9uAOw8OJmbov5s9/+WaKzEOmsP3G1N0OMnz78dZOYX6dNlhj/frrB37T+vau5de9AVvcQ4mZqjHnUt8aowrjcLCIg3+2yot+O7oZY+z2uy6Z8qP+s8X+zwTmAscPZ6plT8ZUy7nXR/8MgT4I+YCgPmYNsG/d+9ezZ8/XzExMZo2bVqxx7Rt21aS1KpVqwuP/fDDD7JYLJf8RwkfwBxq1qypGTNmqGbNmkaHAjjtx22phvX9046ThvXtiEPHMvTQCz+V+vjl65L0xie+WXqiJHdNWnuhHM+VZGQVasTj3/tMuSIjr4F12317QzrGQXMw9hrwjXHAbrdrxOM/KDO7sFTHp5zK0d2Tf3RzVJ712ke79O3646U+/sHn1+uIAV8cOWO9ga9DX7kGgJIwFwDMx7QJ/nnz5qmoqEgjR45UVFRUsceEh4dLujjB/7u33npLP/3004X/5s6d69Z4AXiGzWZTVlaWbDZz11qFeVmtRdq+37iV1lv2nL7yQV7g35/tc7iUysz55im/sudQur7f5NhK892HzmrNFuOSho4w8nXoK9dASRgHzcHYa8A3Snp9vzFFew+fdajNdxuSHW7jrWy2IodL2Nhsds3ykVX8WwwsLbdt72nZbOa66w/+hbkAYD6mTfCvXr1aknTttdeWeExS0vnNAotL8Ddt2lSdOnW68F+LFi3cEygAjzp48KB69uypgwfZKBG+af/Rc8rLN24yvn2/9yc3CwptmvO142WMDidlatXPpV/p6M3+84Vz5QP+/Zn3J3Zy86zad+SsYf1v3+f918DlMA6ag5HvxXsOn1VevvfvW+JsotqXytRczsqfknU0Ocvhdu8u2O8TJeu27TXuGsjJs+qgSfdsgH9gLgCYT5DRAbhLYmKiJKlWrVrFPm+1WrVu3TpJxSf4Xaldu3ZKTfWNFXGArxk6dKhDx588ef6W2mXLlmnLli2lajN48GCH4wLcJT+ohlTunmKf2zRvoOJiLl9LMy4m/MKfx1YOL/G41LQctR+x6JLH//vjJiUk3OtAxJ5nDSinMxXGOdX21lF/VVT+zy6OyPPSom+Xgus53O6Lxeu19pNRbojIdWyWSNkrTijx+StdB2W9BhKTTikhIcGBiN3PkbHQmXFQYiz0NskVn5QsYcU+5+5roKjIrjr1myrQfvm69kY7Ue5BKaiqw+3efm+hPn/DsfmlN8oM6yJF3OBwu9Nn81WzbjMF2r27VM/JcvdJQdWKfc5V14BU8nXQ/do+CrUmORAx4F7MBYArG3znXxUZVU4pqSkX5vPFPWakuLg4bd682eF2pk3wZ2dnS5Jyc4uvPTt//nylpaUpOjpaderUueT5YcOGKS0tTZUrV9bAgQP1z3/+UzExMU7FkpqaquPHzbEiEPA2v1/rpfX7e0Jubm6p23L9wqtERkol7AsfFxOhhKqRpTpNUGBAqY/9o8JCm/dfEyGFUgXnmp7LyNa5NC//+Uqjrk0KdryZ1eYD73lB5aWKJT9d2uvA2WvAbrd43b+RI2OhM+Og5AOvC39TwSJZin/K3deAJKWmnpCsXr6COVJOfdrNz/eBca40YrMlJ/fPTD2RJhV6eSmm8KISf7+euAbSTp2RckzwOoFpMBcArqzof2Wpimz/P9YX95gvMm2CPy4uTunp6dq6das6d+580XMpKSkaP368JKlly5ayWP5/dly+fHmNHz9ePXr0UFRUlH766SdNmzZNP//8szZv3qywsOJXylwpFgDuERnp2KT89wlMeHh4qdtWr17d4bgAdykIrKBTJTyXmnbl1ZRxMeEKCgyQ1VZ02Q1YSzpXcLBFVbz8miiyhMmx6vP/r0J0sCJDvfvnK43TwVblOdEuJCBfsV7/+w2/7O/3StdBWa+BAItN8V72b+TIWOjMOCgxFnqbZNlU0o4h7r4GJCk+LkYB9ujShGqYk4EFKt32uhcLC7Gqsgle79mhQTrrZNv4quUUYA91ZTgudzJYJf5+XXUNXO5csTEVFGLz/dcJzIO5AHBlAYGBF/78/fVc3GNGcjaHbLHb7ebYTe5PHn30Uc2YMUM1atTQqlWr1LBhQ0nSpk2bNGrUKB0+fFiFhYV66KGH9Oabb172XN98840GDhyoOXPm6M477/RE+ABKadOmTQ4dv2/fPt1+++368MMP1bhx41K1ad++vTOhAW5x+myeYnp87HT7YyuHK6FqpJJOZKtG708dbn9b/3qa+8I1TvfvKb3uXabvNiQ71CY4KEBJK4erSuVwN0XlOZ8sOaSRT/7gcLt/je+ov45q7vqAXMhut6ty94+UnlHgVPuyXgOdWsbqp48GOtW3uzgyFjozDkqMhd6mw18WatMu51ZYl/UaiKkYppM//OWiRVLe6JUPdurvr2x0uN28F6/R8L6OlzjzNqlpOap5/XwVWh2rp399l+pa8e8+borKdUY+8YM+WXrIqbZlvQYkKf3H21ShnHd/CQL/wlwAuLIX3vpYGVnZKhcVqYkPjSzxMV9k2k12J0yYoMqVK+vYsWNq1qyZWrRooQYNGqhDhw6qW7euevbsKal09ff79++vyMhIp2ogAfAu9evX14oVK1S/fn2jQwGcUrlCmGpXizKs/7ZNnCtX52kPDW/icJtbrq9jiuS+JA3pXVuxFR276zA8LFCjBzVwU0SuY7FY1Lapca9DI/t2BcZBczDyvbhtk8pen9yXpDsGNVBYaKBDbapWDtfNvWq7JyAPi4uJ0BAnfpYHhzk+fhqhbdPKhvVdr0Y0yX34NOYCgPmYNsGfkJCgtWvXql+/fgoLC9PRo0dVqVIlzZo1S0uWLNGBAwckObbBri9MZAFcXlBQkCpWrKigINNWKIMfaNeM5OaVDLi6pjq3qlLq46MigjTxntLPCbxdaEignnnoKofaPH5nS1X0kYQF14DzGAfNgWvgyipXCNOEO1o61OaZh65SSLBjXwp4s6fubaXI8NJf613bVFX/HjXcGJHrtOOLXsBpzAUA8zFtgl+SmjRposWLFyszM1OZmZnasGGDxowZo+zsbB09elQBAQFq3vzKt6EvWrRI2dnZ6tChgweiBuBOSUlJGjdunJKSkowOBXDa0N6Xbg7vCdWqRDiUNDdSUFCAFr3RW60bV7risZHhQfr6td5qVv8yO7f6oPtvbaJ/3Ne6dMfe0liT7m/j3oBcyKhrIDQkUAOurmlI367COGgOA66uqeAgYz7K3XK9MdefMyY/0Eb3DmlUqmOnPNBGY4aWvlSFL2jeoJK+eq1XqZL8VzWprIWv91JgoG+kCDq3qqr4WCd3ES6jWwwagwBXYS4AmI9vjN4utnv3btntdjVo0EARERdPCm677TZNmjRJX3/9tVatWqVnn31Wt912m1q3bq3hw4cbFDEAV8nKytLatWuVlZVldCiA0wZfV0tVDSglc9/QxgoyKKHkjJiKYVrzXj+Nu725KpYLueT5gACLBl9XS+s+7K/rOlUzIEL3e+ahtvr0pWvVpnHxpQwa1ymvdyZ308ynu/jUnYptm8aoQ/NYj/d76/V1FONg6SNvwzhoDlUqhxuSaO/cqopal/B+4o0CAiyaNamrZk3qqka1yxd7zFVNKuuzl3tq8gOO3fXkK3p3rq51H/bXTT1rKSDg0vf5SuVD9ffRLfTf9/qpcgXfeX8LDg7QmFJ+eeNK8bERGnRtLY/3C7gScwHAfPzyfpydO3dKKr48T7NmzfTJJ5/otddeU25urhISEnTvvfdq8uTJCgm5NDkAAICnhQQHaszQRnp21naP9RkcFKB7bm7osf5cJToyRC//vaOefbitvlx1VA8+t06ZOVaVjwrWzgU3q0accfsZeMqwPnV16w11tHHnKa36OVkZ2QWKighW19ZVdW2HeJ9K7P/RQ8ObaOPTpzzeJ+AtHhrexOlNRsvSp6+xWCwaM7Sx7h3SSKs3pGj9jhPKyilUucgQ9epUTR1axPrs+2BptWpUWV+91ku/pWTpi5VHNHnmVmXlWFWxXIiSVg5XeJhvpgXuHdJIz7+7XVar3WN9jhnSSMHBvrPYAQDgH3xzJC+jyyX4n3zyST355JOeDgkAAIeMv6OFPvzmVyUme2blzaT7W6talUiP9OUO4WFBuq1/fT3x2iZl5lgVFRHsF8n931ksFnVsWUUdW/pGiaXSGNmvnmZ9sU/rt5/0SH+jBzYw1b8ffF+X1lV1W/96+mixZ5L83a+qqhF963mkL3ewWCy6rlM1096xVRo146P02O0t9OqHu5SVY1VEWJDPJvclqXrVSD19b2tNeXubR/qrUz1af7+jhUf6AgDAEX751fPlEvwAAPiC6MgQzZna3SN9XdWksh6/kzET3iUwMEDvPdNDYaHu3xCzWpUI/WtCR7f3Azjq9cc7Ky7G/SXbwsMCNeeZHsWWeAGM9OQ9rdSq0ZX323GFOc90V1REsEf6AgDAEX6Z4F+9erXsdrv69etndCgAPCw2NlZjx45VbKznazcDrtazYzVNuNOxlWSpaTlKOpGt1LScUh1fPjpEHz5/Nbejwys1rF1erz/eyaE2jl4DQUEWffBcD1UsF+pMiF6HcdBcKpUP1QfP9VBQUOkT745eA5I044nOql+znDMhAm4VEhyouc9frXJRpU+8O3MNPHF3S13TPt6ZEAGvw1wAMB/fvR8PAJxQuXJljRw50ugwAJeZNra9zpzL17sLDpTq+PYjFpX63FERwVry5vVqVr+is+EBbjdmaGOdPpuviW9sLtXxjlwDgYEWfTztGvXqVN3Z8LwO46D5XN8lQXOfv1q3TfyvbLYr1yJ35BqQpBf/2l533+z5zUyB0mrRsJKWvHm9+jywQtm51ise7+g1MGZoI73waDtnwwO8DnMBwHxYjgfAr2RkZGjVqlXKyMgwOhTAJQICLJo1qZvGu7gmbFxMuFa/21dd21R16XkBd3jynlaa8WRnh1YxX0l0ZLAWvHqdbr2hrsvO6Q0YB81peN96+uKVni4tHxIUZNFbEztrwl0tXXZOwF26XRWn1e/eqKqVXVuy6vG7Wurf/+hq+o2Y4V+YCwDmQ4IfgF9JTk7WxIkTlZycbHQogMsEBFj00mMdtOo/fVWrWtk3jh3Vv752fzVE7Ztz2y58x8MjmmrTJ4NcUou5d+dq2rXgZg28tpYLIvMujIPmdVPP2tq1YLB6uWAT2TaNK2vLpzfpweFNXRAZ4BkdWsRqz9dDNLJf2TeDrl0tSt+901f//Gt7kvswHeYCgPmQ4AcAwCSu61RNO78crKfubaXYimEOt+/RNk5L3rpeH75wtSqVN0e9cfiX1o0ra+MnA/XK3zuoTvVoh9u3alRJHz7fQyv+3Uc148v+ZRngabWqRevbWX30/rM91LKh41921U2I1qvjO2rDxwOdag8YrVL5UH007RotfrO3ul/l+F2IVSqF6ekxrbVzwc3q2bHsX5YBAOAJ1OAHAMBEoiND9Nwj7fSP+9powaqj+nzlEW3Zk6bfUrIvOTYkOEAtG1ZS19ZVdc/NDdW8Ackc+L6Q4EA9dnsLjR3ZTCvWH9fHSw5p0+5TOph46W3ogYEWNa1bQR1bxOrOmxqqc6sqrNSEz7NYLBo9qIFuH1hf67ef1PsLD2jDzlPac/hssTX6G9Yqr/bNYzTyxnq6oWuCAgK4BuD7+vWoqX49amrngTN6d8F+rd9xUr8cOKOCwqJLjq1VLUptm8Tolutr6+ZetRUSHGhAxAAAOI8EPwAAJhQaEqgRN9bTiBvP36Z+6kyufj2WoYGPrFTa2XxVqRSmYyuH8yEWphUYGKAbu9fQjd1rSJLOZRZo/9FzysmzymKRoiOC1aRuBYWHMR2GOVksFnVtU/XCXio5uVbtO3JWmTmFstulyPAgNapdXuWiQgyOFHCfFg0r6fUnOkuSCgpt2nfknK67Z6nSzuYrtmKo9nw9VDFO3PUIAIA34RMNAL8SGhqqRo0aKTSU8iPwL7GVwhVbKVyhIecT+sFBAST34VfKR4eoQwv2lWAc9F8R4UG6qmmM0WEAhgkJDlTLhpUuzIVCggNJ7sMvMRcAzIcEPwC/UqdOHc2dO9foMAAAMATjIAAA/o25AGA+bLILAAAAAAAAAIAPIsEPwK/s379fXbt21f79+40OBQAAj2McBADAvzEXAMyHBD8Av2K321VYWCi73W50KAAAeBzjIAAA/o25AGA+JPgBAAAAAAAAAPBBJPgBAAAAAAAAAPBBJPgBAAAAAAAAAPBBQUYHAACeVLt2bc2bN0/Vq1c3OhQAADyOcRAAAP/GXAAwHxL8APxKWFiY6tWrZ3QYAAAYgnEQAAD/xlwAMB9K9ADwKykpKXruueeUkpJidCgAAHgc4yAAAP6NuQBgPiT4AfiVc+fOadGiRTp37pzRoQAA4HGMgwAA+DfmAoD5kOAHAAAAAAAAAMAHkeAHAAAAAAAAAMAHkeAHAAAAAAAAAMAHkeAH4FcCAgLUpk0bBQTw9gcA8D+MgwAA+DfmAoD5cDUD8CtFRUXatm2bioqKjA4FAACPYxwEAMC/MRcAzIcEPwAAAAAAAAAAPogEPwAAAAAAAAAAPogEPwAAAAAAAAAAPogEPwC/Eh0drT59+ig6OtroUAAA8DjGQQAA/BtzAcB8gowOAAA8qXr16nrmmWeMDgMAAEMwDgIA4N+YCwDmwwp+AH4lPz9fx44dU35+vtGhAADgcYyDAAD4N+YCgPmQ4AfgV44cOaIhQ4boyJEjRocCAIDHMQ4CAODfmAsA5kOCHwAAAAAAAAAAH0SCHwAAAAAAAAAAH0SCHwAAAAAAAAAAH0SCHwAAAAAAAAAAHxRkdAAA4EmNGzfWxo0bjQ4DAABDMA4CAODfmAsA5sMKfgAAAAAAAAAAfBAJfgB+JTExUXfddZcSExONDgUAAI9jHAQAwL8xFwDMhxI9APxKbm6udu3apdzcXKND8ZiCQpt2HUzX7kPpysqxym63KyoiWE3rVVCLBpUUGhJodIiAW9lsRdp/9Jx27D+j7NxCSVJ2rlXrtp1Q60aVFBkRbHCEgOf44zgIQMrKKdT2fad18LcMZeWcHwtz8qzacyhdjWqXV2Aga/9gbvkFNu08eEZ7Dp1VVk6hLBaLoiKC1Lx+RTWrX1Ehwf7zmYi5AGA+JPgBwIQyswv00eJD+mDRQW3bd1oFhUXFHhccFKBWjSppVP/6un1AfVUoF+rhSAH3yC+w6cuVRzX7q/3asPOUsnOtFz1/NrNA3UYvVkCARU3qlNewPnV1z82NFB8bYVDEAAC4VsqpHL3z5X7NX3FYew+fld1+8fPpGQVqNniBIsOD1LFFrO65uZFu7lWbxR8wjbMZ+fpg0UHNXXxIvxw4o0Jr8Z+JQoID1KZxZY0e2EC39a+n6MgQD0cKAGVDgh8ATCQjq0CTZ27VuwsOXFiddTmF1iJt3p2mzbvT9OTrm3XnTQ303MNtSfTDZxUU2vTy+zv12ke7dSo974rHFxXZtfvQWU16a6uembVNQ3vV0fTHOighLtID0QIA4Hq/pWRpwr826stVR2W12q94fHauVas3pmj1xhRVqRSmsSObafwdLRUczKp++Kb0jHw9PWOL3lt4QLl5tiseX1BYpA07T2nDzlN6/LVNundII015oA2JfgA+gxEbAExi1c/H1WLIAr320e5SJff/LCfPqrc+3atmNy/Q0rXH3BAh4F7b951Wh78s0lMztpQquf9nVqtdny4/rGY3f6k5Xx2Q/c9LHQEA8GJ2u13vfrlfzW9eoPnLj5Qquf9nJ8/k6akZW9Rh5ELt2H/aDVEC7rX4v7+p2eAFmjl/b6mS+3+WmV2oVz/cpRZDvtLqDcluiBAAXI8EPwC/Eh8fr6lTpyo+Pt7oUFzGbrdr6ttb1XvMcv2Wkl3m8yWfzFG/h77V4//aSIITPuODhQfV/i8LtWP/mTKfKyOrUHdPXqsRj3+vgkLHPxgC3syM4yCA86Xphk/4XvdO/VGZ2Y4v9Piz7fvOqN2IhZr7zUEXRAe4n91u1/hXNmrAIyuVciqnzOdLTM7Sdfcu07OztpnuMxFzAcB8KNEDwK+UL19effv2NToMl3ry9c16cc4vLj/vS+/tVE6eTW880UkWi8Xl5wdc5Z0v9mnMM+tcft75y48oO8eqBf/qRZkCmIYZx0HA3xUU2jTkse+0ZI1r78C0Wu26/ak1Kigs0t03N3LpuQFXstvteviFnzRz/l6Xn3vSW1uVl2/T84+2c/m5jcJcADAfPq0C8Cvp6en6/PPPlZ6ebnQoLjHjk91uSe7/7s15e/TP2e47P1BWi//7m+571vXJ/QvnX3NM9z/nvvMDnma2cRCAdN8z61ye3P+jMc+so3wjvNoL7+xwS3L/wvnf3aG3Pt3jtvN7GnMBwHxI8APwKydOnND06dN14sQJo0Mps31Hzmr8q5scarNp3kAdWzlcm+YNLHWbSTO3aPs+arDC+5w+m6d7pvwoR+6aduYamPPVAS36PtGJCAHvY6ZxEID01XdH9f5Cx8roODoWFhXZdffktTpzLt+ZEAG32ronTZPf3upQG2fmg39/ZaP2HznrYHTeibkAYD6mT/CnpaVpwoQJql+/vsLCwlSjRg2NHTtW2dnZuvvuu2WxWPTmm28aHSYAOMRmK9Kd/1ij/ALH6oPHxUQooWqk4mIiSt3GarXrjn+soRY5vM4j037SidO5DrVx5hqQpPueXUdiAwDgVdLS83S/E3exOTMWpqblauyLPzncF+BOBYU23fGPNbLZHKuR78w1kJdv012T18pmK3I0TABwO1PX4N++fbv69u2r1NRURUZGqmnTpkpOTtYbb7yhQ4cO6cyZ8xvxtW7d2thAAcBBX6w8qp9/OeWx/nbsP6OPFh/SXYMbeqxPV0rPyNf7Cw9qw86Tysm1qXx0sG7okqChvWsrLNTUQ6Gk8yvvvl1/XJ+vPKLTZ88nqTOyCvRbSpZqxkcZHJ1ztuxJ07xlhz3WX2parl5+f6deGGue+qsAAN82/f1fdPJMnsf6+2jxIT02qrnaNInxWJ+ulJicqdlfHdDp/31hn56RrxXrktS7c3UFBJh/v6m8fKs+//aIVqw/rnOZBYqMCFKnFlU0elADVSwXanR4Tvlg4UHtPOi5MjPrt5/Ugu8Sdcv1dTzWJwCUhmmzGmlpaRowYIBSU1M1btw4TZ48WdHR0ZKkl156SY8//riCgoJksVjUsmVLg6MFAMe4s8ZkSd76dI/uvKmBT224m5tn1d9f2aj3Fh5Qbt7FdyB8tPiQ/jZ9g/4+urkm3NnSp34uR8xfflgT39isw0mZFz2emWNVnb6faeA1NTXzqS6Kj3VsRbvRjLgG3l2wX5MfaKPQkECP9w0AwB/l5Vs1+6sDHu/37c/26T+Tu3m837JIPpmtB59fr2/+e0xFRf+/0jsnz6Y+D6xQvRrRmja2vWmTtna7XS/O+UUvf7DzwkKP381ffkQTZ2zWXTc11PTHOig8zHdSRHa7XTM/8/x88O35e037WgHgu0xboufRRx9VUlKSHn74Yb388ssXkvuSNGHCBLVq1UpWq1W1a9dWuXLlDIwUgCdFRESoY8eOiojwrWTmH+06eEZrtqR6vN+te09r407P3TVQVtk5heo1Zplmzt97SXL/d2npeXritc26d8qPsjtSyN1HvP7RLg2f8P0lyf3fFRXZ9fXqRHUe9Y0Sk4s/xhulZ+Trk6WHPN7vqfQ8fbHyiMf7BVzJDOMgAOnzb49ckqz1hI+XHNLZDN8pWXf0eKY63faNFn7/20XJ/T86dCxTt/59tWZ8stvD0bmf3X5+/4QnX99c4uslN8+mtz7dq+vvW66cXKuHI3Tez7+c1PZ9Zzze7/ebUrTnkG9vTstcADAfUyb49+7dq/nz5ysmJkbTpk0r9pi2bdtKklq1anXJc1999ZW6dOmiyMhIlS9fXl27dtXu3eYb7AF/VLNmTc2YMUM1a9Y0OhSnLVl7zC/7dtRdk9dq/faTpTp29lcH9OKcX9wckWctXXtMf31pQ6mOTUzOUr+HvlVhoW/UFF29IVl5+cbsCbFkje9cA0BxzDAOApAWGzQe5eRZ9cPmFEP6dlRBoU03PvStjqVml+r4sS/+rOU/Jrk5Ks/65+xf9N7XpduE+cdtJ3T35LVujsh1Fv/XuDnZ0rW+/TphLgCYjykT/PPmzVNRUZFGjhypqKjiawuHh4dLujTB/8Ybb+jWW29Vt27dtGjRIs2bN0+9evVSbq5jm/gB8E42m01ZWVmy2Xx3w9gte04b2HeaYX07Yv+Rs/pshWMrrV/+YKfy8n1n1dKVvPDuDoeO333orL7+PtFN0biWsdeAcX0DrmCGcRCAsXMyXxkLv/ouUXsPny318Xa7NG22Y/Mnb5abZ9XLH+x0qM2nyw/rYOI5N0XkWsZeA77xmagkzAUA8zFlgn/16tWSpGuvvbbEY5KSzn/j+scE/6FDhzR+/Hj961//0ksvvaTrrrtON954o6ZOnap27dhUDzCDgwcPqmfPnjp4sHQrWbyR0R/ofKGUzduf7XO4zemz+fr8W3OUX9mx/7TWbTvhcDsj6to7Y+te466BA4nnlJFVYFj/QFmZYRwE/N3ZjHwdOmZcaT1fSW46M69ZsyVVuw56vuyLO8xfcVhnzjleTunfnzs+j/Y0u92urXsNXPBh4FzUFZgLAOZjygR/YuL5FYi1atUq9nmr1ap169ZJujjBP2fOHAUHB+vee+91f5AA4KTfUrMM6/vE6VxZrd6f4F++zrnbZpeZ5LZsZ3/+Hzal+MRdDL+V8lZ7d0k6YWz/AAD/VtqSM+7yW4pxc9HSysm1Or1n1fJ1x10cjTHMPB/OL7DpVHqeYf3/lsJcEIB38Z0t0h2QnX3+zbaksjrz589XWlqaoqOjVafO/+9+vn79ejVq1EgfffSRnnvuOR07dkwNGjTQpEmTNGLECKfjadeunVJTPb8hJuAPhg4d6tDxJ0+er8m+bNkybdmypVRtBg8e7HBc7mKXRdZKU0p8ftO8gYqLKXmzpLiY8At/Hls5vMTjUtNy1H7EomKfq1WnvgLk3SuYUyr8XQqIvvKBf7Jg4XIlfDzKDRF51rnw66TwHk61rVO/mQLt3v2hJbX8WCmwUrHPueoakEq+Dq7p2VshNsZ1eA9HxkJnxkHJu8ZCwN8VBFaTyt9X7HNXGgelss8H9x04pISEBAci9jybJUqqON6pts88P12vPb3axRF5XlrUbVJIA4fb7f/1N6///RZZQqWKE0t83t2fifILbKqekCCLAzG7G3MB4MoG3/lXRUaVU0pqyoX3ueIeM1JcXJw2b97scDtTJvjj4uKUnp6urVu3qnPnzhc9l5KSovHjzw/0LVu2lMViuei548eP68knn9SLL76oGjVqaPbs2frLX/6i2NhY9erVy6l4UlNTdfy4OVYBAN7m9y/0Suv3L/5yc3NL3dbrrt+KNskSWOxTcTERSqgaecVTBAUGlOq44qQkH5PsXr7KOzJXCnU8wZ+fc877ft/OiD0thTvXNDU5USpy/HZuj4rIl4q/BDxyDZw6kSLlJzvVFnAHR8ZCZ8ZByQvHQsCfhVmk8sU/VdpxUHJ+LLQV5nn/e0JAmFTRuaaZ59KUecrLf77SqJkhhTjerKgwx/t/v5aQy/5+3T4fLLIq2cv+jZgLAFdW9L99J4pstguv5+Ie80WmTPD36tVLe/fu1YsvvqjevXurYcOGkqRNmzZp1KhRSks7Xy+tdevWF7UrKipSVlaW5s6dq5tuukmSdN1112nPnj169tlnnU7wx8XFOf2zALi8yEjHJmS/T2DCw8NL3bZ69eoOx+VOKfYcFVmKT16npuVctm1cTLiCAgNktRUpNa3kzcNLOo/Fnqf4alW9arVKcc7ohHJVxeF25ULOKNrLft/OyAvK0Gnp/G5xltL/toJsJ1UlPsbrf7+nAgtKvIfEVdfA5c4VFxulQLvvv05gHo6Mhc6Mg5L3jYWAP7NZolTSfWRXGgelss8HQwILFevl7wl2SSdtp2QNjHWg0fl5U0xEpkK9/OcrjczgM8pwol24TqiSl//8dkkp9nzZLaHFPu/uz0QBylG8l/0bMRcAriwgMPDCn7+/not7zEjO5pAtdl/YLdFBSUlJat26tU6fPq2goCA1btxYeXl5+vXXX9W3b18VFRVpxYoV+s9//nNRvf1OnTppw4YNyszMVFRU1IXHx40bp/fff1+nTxu3iQuA4m3atMmh461WqzIzMxUdHa2goNJ9x9m+fXtnQnObfg+t0NK1ztXGPLZyuBKqRirpRLZq9P7U4fZXt4vTD3P6OdW3J63dkqoedy5xqE1oSKCOrxquyhXC3BSV5xQV2dVo4Bf69TfHPtbNeLKzHh7R1E1Ruc7Yf/6kNz7Z41Tbsl4D1atEKGmV82X7AHdwZCx0ZhyUvG8sBPyZ3W5XtevmXfGL6pKUdSz826hmenV8J6f69qTXP9qlv760waE2jWqX196FQy66099XnTqTq4Ten6qgsMihdus+7K8urau6KSrX6T56sX7cdsKptmW9BgZcXVOLZvR2qm93YS4AXNkLb32sjKxslYuK1MSHRpb4mC8y5Sa7CQkJWrt2rfr166ewsDAdPXpUlSpV0qxZs7RkyRIdOHBA0sUb7EpSs2bNSjxnXp5xG7gAcJ2goCBVrFjRoYmMt2nbNMYv+3ZEt6uqOhzrqP71TJHcl6SAAIvGjix5TCtOxXIhGtW/vpsici2uAcB5ZhgHAX9nsVgYC0th9MAGqhDtWI2asSObmSK5L0mxlcJ1m4Nzu/bNY9S5leN3wRrB2GugsmF9uwJzAcB8TJngl6QmTZpo8eLFyszMVGZmpjZs2KAxY8YoOztbR48eVUBAgJo3b35Rm0GDBkmSvv322wuPFRUVaeXKlXxTCZhEUlKSxo0bp6Qk51bAe4Nr28f7Zd+OsFgs+uKVnoqPvfwmc7/r0DxWr03w/pVojnhwWBON7FevVMeGhgTo69d6qbyDH4KNcnW7OEcqD7mUr1wDQEnMMA4CMG48slikHm19owRthXKh+uq1XgoNKV3a4/YB9XX/rY3dHJVnvf54J7VrVrpEeLUqEfr85Z4+8wXHtR34TOQs5gKA+Zg2wV+S3bt3y263q0GDBoqIuDjxM2DAAHXv3l1jxozRO++8oxUrVmjYsGHavXu3Jk2aZFDEAFwpKytLa9euVVZWltGhOO2a9vFqVLuEndXcqGZ8pPp2M35X+dKqXT1a6z/srzaNL7/C5qaetbTqnT6KjAj2UGSeERBg0QfP9dDfRjVTYGDJH9QSqkZq9bs3qkc73/mgUqtatCGvxbDQQN0+sIHH+wVcyQzjIIDzq9NDQ0rYcd6N+veoqRpxUVc+0Etc0z5eq/7TV9WrlLzoIzDQonG3N9ecZ7r7THK7tKIigvXdO3018Jqalz2ubdMYrf+wv2pVK36fL2/Ur3sN5zbILaMmdSuou498yVUS5gKA+fhdgn/nzp2SLi3PI51f8blo0SINGTJEEydO1MCBA5WYmKilS5eqZ8+eng4VAIplsVj04LAmHu/3/luaKDDQt4aN2tWjtWX+IP13zo0a1qeOAgPOf2gLDLTo4RFNtWvBzfrqtV6KjvSNleuOCgwM0KvjOylx+TBNvr+NmtaroNiKYaoRF6nru1TXl69epyPLbvWJOqt/9tBwz+8V8Jcb66lS+eI3cwMAwJNiKoZpeJ+6Hu/3oeGen4OWVber4nRk2TB98UpP9e5cTTXiIhVbMUzN6lXQlAfa6LcVw/Ty3zv63Dy3tMpFhWjhG72188vBemh4E9WrEa3/TYkVHhqoNe/106Z5A30quS9JQUEBuu+WRh7v98FhTUz3RRAA3+d3Bbcul+CXpAoVKmjWrFmaNWuWJ8MCAIfceVMDvfzBTh1LzfZIf1Urh+u+W3zzlmWLxaIe7eLVo128ErbO0/GTOYqrHK4ZT3Y2OjSPqV41UlMevEpTHrzK6FBc5oYu1dWxRaw27Dzlkf5CQwI14Y4WHukLAIDSeOLulvp0+WHlF9g80l/nVlXUu3N1j/TlasHBARrSu46G9K5jdCiGad6gkt6c2EWSlNDr/Jy4UvlQn16N/sCtTfTGx3t0Kt0zeybWjI/U6IG+sWcVAP9izq+oL+NKCX4A8AXRkSF6d0o3j/X37390YeUyvEpgYIDee7aHx8oTPPdwWzWqU8EjfQEAUBqN61TQ1AfbeKSvsNBAvfdMdwUEsHIZ3qNyhTC9/XQXj/U3e2p30975C8C3+V2Cf/Xq1bLb7erXr5/RoQAwQGxsrMaOHavY2FijQymz67skOLyqPjUtR0knspWallPqNiP71dNNPWs7GB3gfk3qVtBzD7d1qI0z10CX1lX0t1HNHA0P8EpmGgcBSONub6FOLR27np0ZC59/hC+64Z2G9K6jEX0dK1flzDXwwK2N1auTb97B8mfMBQDz8bsSPQD8W+XKlTVy5Eijw3CZN57opMTkLC1fl1Sq49uPWOTQ+a9uF6d3JnvuTgHAUeNGN9fB387pP1/sL9Xxjl4DjWqX19ev9TJtXV74H7ONg4C/CwoK0MLXe6v7HUt0IPFcqdo4OhY+cGtj/W1Uc2fCAzzi3SndlXQiW2u3nijV8Y5eAzd2T9Brj3dyJjSvxFwAMB8+rQLwKxkZGVq1apUyMjKMDsUlQoIDteBf16l/jxouP3fvztW0+M3rFR7Gd8HwXhaLRW8/3dUtG0+3aFBR38++UbGVwl1+bsAoZhsHAUhVKofr+9l91bx+RZef+5G/NNWbE7uwqSi8WkR4kJa8db16doh3+bkHXVtTX756nUKCPVMW0hOYCwDmQ4IfgF9JTk7WxIkTlZycbHQoLhMeFqSvXuul5x5uq+Cgsr+tBwZa9I/7Wmvxm9crKiLYBREC7hUQYNGbEztr9tTuKhflmtfsvUMa6ccP+is+NsIl5wO8hRnHQQBStSqRWvdhf91zc0OXnK98dIjee7a7Xn+8E3X34ROiI0O07O0b9PSY1goMLPtrNiQ4QC882k5fvHKdwkLNteCJuQBgPiT4AcAEgoIC9NSY1try6SCH67D+0VVNKmvjxwP1zENtTbVKBeZnsVh01+CG2rXg5jLd0VI3IVor/n2D/jO5m8pFsYkaAMB3lIsK0TtTumvZzBtUp3q00+cZcHVN7fryZt0xqCEr9+FTQoID9ezDbbXh44Fq07iy0+fp3KqKtnw6SE/e00pBLlhABQDuZq6vIQHAz7VoWEnr5w7Qxp2nNHP+Xs1fcUT5BbbLtgkOCtAt19fRg8OaqEvrKnyQg0+rERelb968XnsPn9Xbn+3VB4sOKiOr8LJtLBbpxu419OCwJrqhS3Xq7QMAfFqfbgk6uHiolv2YpLc/26tlPybJbr98m3JRwbpjYAPdf2sTNalbwSNxAu7StmmMtswfpHXbTmjm/L36YuVRFVqLLtsmNCRQw/vU1YPDmqh98xg+EwHwKST4AcBkLBaLOrasoo4tq2jWpK765UC6tuxJ065f0/XewgPKzbMpMjxIL/6tvdo2iVGrRpWosw/TaVK3gt54orNeGddRew6na8ue09qx/7TOZRXKVlSkiLAgNaxVXu2axahN48qs1gcAmEpgYID6X11T/a+uqXOZBdq277S27EnT/qPnlJtvVWBAgMpHBat148pq2zRGTepUUHAwX3DDPCwWi7pdFaduV8Xp3SlW7ThwWlv2nNbuX9P1wTcHL3wmmv5YB7VtGqOWDSuarhQPAP/BuxcAvxIaGqpGjRopNDTU6FA8Iiw0SB1axKpDi/NlexZ+n6jjeTmqEB2ih4Y3NTg6wP2CgwPUqlFltWrk/G3agJn42zgI4Hw9/Wvax+ua9q7fgBTwBRHhQercqqo6t6oqSfrmv79d+Ez0wLAmBkfnecwFAPMhwQ/Ar9SpU0dz5841OgwAAAzBOAgAgH9jLgCYD/fgAQAAAAAAAADgg0jwA/Ar+/fvV9euXbV//36jQwEAwOMYBwEA8G/MBQDzIcEPwK/Y7XYVFhbKbrcbHQoAAB7HOAgAgH9jLgCYDwl+AAAAAAAAAAB8EAl+AAAAAAAAAAB8EAl+AAAAAAAAAAB8UJDRAQCAJ9WuXVvz5s1T9erVjQ4FAACPYxwEAMC/MRcAzIcEPwC/EhYWpnr16hkdBgAAhmAcBADAvzEXAMyHEj0A/EpKSoqee+45paSkGB0KAAAexzgIAIB/Yy4AmA8JfgB+5dy5c1q0aJHOnTtndCgAAHgc4yAAAP6NuQBgPiT4AQAAAAAAAADwQST4AQAAAAAAAADwQST4AQAAAAAAAADwQST4AfiVSpUqafTo0apUqZLRoQAA4HGMgwAA+DfmAoD5kOAH4FcCAgIUHBysgADe/gAA/odxEAAA/8ZcADAfrmYAfiUtLU3vvvuu0tLSjA4FAACPYxwEAMC/MRcAzIcEPwAAAAAAAAAAPogEPwAAAAAAAAAAPogEPwAAAAAAAAAAPogEPwC/Eh0drT59+ig6OtroUAAA8DjGQQAA/BtzAcB8gowOAAA8qXr16nrmmWeMDgMAAEMwDgIA4N+YCwDmwwp+AH4lPz9fx44dU35+vtGhAADgcYyDAAD4N+YCgPmQ4AfgV44cOaIhQ4boyJEjRocCAIDHMQ4CAODfmAsA5kOJHi9lt9uVk2s1OoxSiwgPksVicdn57Ha75GvfJoeGuvTfAAAAAAAAwF/Z7XbZbDajw3BIYGAguSF4HAl+L5WTa1VUpw+NDqPUsn6+XZERwa47YX6+rLeOdt35PCDosw+ksDCjwwAAAAAAAPB5NptNX375pdFhOGTIkCEKCiLdCs+iRA8AAAAAAAAAAD6IBD8AAAAAAAAAAD6Ie0YA+JXGjRtr48aNRocBAIAhGAcBAPBvzAUA82EFPwAAAAAAAAAAPogEPwC/kpiYqLvuukuJiYlGhwID2O32i/4EAH/DOAgA/s1mK1IRc2G/xlwAMB9K9ADwK7m5udq1a5dyc3ONDgVuVlRk18qfjmv1xmRt3p2mrXtP62xmgSQp+VSuql03T22bVFa7ZjHq16OG2jWLNThiAHA/xkEA8C+bdp3SkjXHtGVPmrbsPa2UUzkXnks+laNe9y5T26aV1bNDNfXuXF0BARYDo4UnMBcAzIcEPwDAVM5m5OudL/fr7c/26cjxzBKPSzmVo8WncrR4zTFNeXub2jWL0YPDmmhkv3oKCQ70YMQAAACA6xQU2vTR4kOaOX+vtuxJK/E4u136bkOyvtuQrJfe26m6CdG6/5bGGjO0scpHh3gwYgBAWVCiBwBgGkvW/KZmNy/QhH9tumxyvzibd6fprklr1eEvi7Rj/2k3RQgAAAC4z7a9aWo/YpHunrz2ssn94hxOytSEf21Ss8FfatnaY26KEADgaiT4AQA+Ly/fqrsmrVH/h1cq+WTOlRtcxo79Z9RuxEL9c/YOavUDAADAJ9jtdr3wznZ1GLlIvxw4U6ZzHT+Zoxsf+lb3TF6r/AKbiyIEALgLCX4AfiU+Pl5Tp05VfHy80aHARXJyrer/8Eq99/VBl53TarXrydc3a+yLP5PkB2AqjIMAYD52u12PTPtJT83YIqvVdXPX2V8d0IBHvlVuntVl54TxmAsA5kOCH4BfKV++vPr27avy5csbHQpcoLCwSEMe+07fbUh2y/lnfLJHT7y2yS3nBgAjMA4CgPlMeHWT3vp0r1vOvfKnZA0d950KC4vccn54HnOBsjl16pTRIQCXYJNdAH4lPT1dq1atUq9evVSxYkWjw0EZ/XPODi1fl+TWPl56b6d6tI1Tvx413doPAHgC4yAAmMui7xP18gc73drH0rVJmv7+L5p4b2u39gPP8Le5QFFRkRITE3X48GEdOXJEJ06cUEFBgQIDAxUVFaXatWurTp06atCggaKioi57roULF+rLL7/U+PHj1aJFCw/9BMCVkeAH4FdOnDih6dOnq0WLFn4xmTGzXw6c0bOztjvUZtO8gYqLiVBqWo7aj1hU6nb3Tl2n3V9VVcVyoQ5GCQDehXEQAMzjzLl83ffsOofbOTMnnvL2Ng28pqaaN6jkcH/wLv4yF8jIyNAPP/ygVatW6eTJkyUet3HjRklSYGCgOnbsqN69e6tx48ayWCwXHbdw4ULNmzdPkjR9+nS9+uqriomJcd8PADjAL0r0pKWlacKECapfv77CwsJUo0YNjR07VtnZ2br77rtlsVj05ptvGh2mWzz/aFvZf7lbd97UoNjnv599o/I236Fm9c35pv7ftJMK+eYzvXpoX4nHhHzzmW7asNaDUQGeZ7fb9cuBM8rNP79JVkFhkU/Xlrfb7Roz9UcVWh27VTguJkIJVSMVFxPhULuUUzl66o3NDrUBAAAA3GniG5uVmpbrcDtn5sSF1iKnvkzwJna7Xdv2pik3//yeAoVW3/5MhOLZbDYtXLhQDz30kD755JPLJvf/3G79+vWaOnWqpkyZopSUlAvP/TG5L0lDhgwhuQ+vYvoV/Nu3b1ffvn2VmpqqyMhINW3aVMnJyXrjjTd06NAhnTlzfnf51q1bGxuom0yZuU0Drq6pV//eUd/+dFzHT+RceO6vtzXTNe3j9cRrm7T713QDowTgLgWFNn246Fe9/dlebd17+sLjp9Lz1GroV3pwWBPdMaiBwkJ9azjYuPOUNuz0bO3D9xcd1AuPtlMFVvEDAADAYOkZ+fpg0UGP9rl++0lt2nVK7ZvHerTfssrNs+r9hQc1c/5e7fpD7uPkmTy1H7FID9zaWKMG1FdIcKCBUcIVkpOT9dZbb+nQoUMXPd6yZUu1atVKdevWVY0aNRQWFqaioiKlpaXpyJEjOnjwoNatW6fMzExJ0v79+/X4449r+PDhKigo0KeffnrhXCNGjNCgQYM8+nMBV+JbGR0HpaWlacCAAUpNTdW4ceM0efJkRUdHS5JeeuklPf744woKCpLFYlHLli0NjtY9Cq1FGv30Gm34aKBmT+muPg+skCQ1rF1ezz/STj//clLT33dvvT4AxjiXWaDBf12l7zelFPv8zoPpeuC59Zq7+Fd9M+N6VSrvO4lrd20idjm5eTZ9sOigxt7W3ON9AwAAAH/03tcHlPe/u3M9aeb8vXrPhxL8p8/mqf/D3+rnX4pfHLRlT5rumfKjPll6SF+91kvlokI8HCFc5cCBA3rxxReVnZ0tSbJYLOrdu7duvPFGxcXFFdumWrVqqlatmrp27aqRI0fq559/1ueff66TJ0+qoKBAH3744UXHk9yHtzJ1iZ5HH31USUlJevjhh/Xyyy9fSO5L0oQJE9SqVStZrVbVrl1b5cqVMzBS99q297Smzd6hG7om6N4hjRQQYNGHz/eQxSKNfnqNioq4JQ3+IyIiQh07dlREhGMlWnxNQaFNN/+t5OT+H63fflIDHvlWef+7VdXb5eVb9dm3Rwzp+8NvfjWkXwBwFX8ZBwHA7OYuNmZe+unywyoo9PwXC87IzbNeNrn/R6s3pmjIY9+psNCxEqC+yIxzgUOHDmnatGkXkvvx8fGaOnWq7rrrrhKT+38WHBys7t2766WXXtINN9xwyfMk9+HNTJvg37t3r+bPn6+YmBhNmzat2GPatm0rSWrVqtWFx6655hpZLJZi/7v//vs9Ers7PPufbdq+77ReHtdBM57srI4tquipGVt04Og5o0PziBybTWn5+cX+B/9Ss2ZNzZgxQzVr1jQ6FLeat/SwVm+8cnL/d+u3n9R7X3v2Fl9n7TyYrvwCYz5U/HLwjM98EQIAxfGXcRAAzCwn16qdB40ps5uXb9Mug/p21OyvDpQquf+7VT8na/6Kw26MyDuYbS6QmZmp6dOnKzf3/H4UzZs317Rp09SwYUOnzhcWFqZKlS7dTDo4OLhMcQLuZNoSPfPmzVNRUZFGjhypqKioYo8JDw+XdHGCf+bMmcrIyLjouCVLlui5555T//793Rewm1mtdo1+eo02zRuoB4c10dqtqXrto11Gh+Uxz+zfrWf27zY6DHgBm82m3NxchYeHKzDQvDUWZ853vITNzPl7df+tjWWxWNwQkets2ZNmWN9Wq12/HEhXhxa+c1syAPyRv4yDAGBmOw6cls1m3J34W/ak6aqm3r3BqN1ud/oz0W3967shIu9htrnA+++/r7Nnz0qSGjdurAkTJigkxPlSS3/eUPd3n376qdq0aaP4+Hinzw24i2lX8K9evVqSdO2115Z4TFJSkqSLE/xNmzZVp06dLvpv+/btio2NVZ8+fdwbtJudyyq4sOp16dpj8qfN4u+pWVfLOl1d7H/wLwcPHlTPnj118KBvrFZ3xr4jZ7Vxl+Mb0O76Nf2ijXi91e5DZw3u3zdWLAFAcfxhHAQAs9v961lj+zd4Pl4am3alae/hsw63+2nHSdNXOjDTXGDLli1at26dJCkyMlKPPvqoS5P7I0aMuFCup6CgQLNmzZLdn5Jp8BmmXcGfmJgoSapVq1axz1ut1gtvAn9M8P/ZqVOntHz5cj344IMKCnLun6tdu3ZKTU11qE2RgqVKTzvVX0nee6a7QoIDtedQup4e01qfrTiiw0mZLjl3g4YNFaBCl5xLksIDArSndWeXna9+VJSui63qsvMVp2HDhsotMn+9Pm8zdOhQh44/efKkJGnZsmXasmVLqdoMHjzY4biMlBdUVyo32qm21/cbrvDCfS6OyLXSI2+SQtsU+9ymeQMVF1NyLcm4mPALfx5bOfyy/aSm5aj9iEWXPP63cU/qHw9vKH3AAOBmjoyFzoyDku+NhQBgZlmhnaTIvsU+d6X5sFT6OXFJ8+F3Zn+oL2Y49jnM03KDm0jRl5/vl6TrNf0VajVmzy9nmXUuEBISUmLZbUn6+uuvL/z/6NGjiy2tU1rFJfcHDRqkvLw8bdu2TSdPntS+fft04MABNWrUqMTzNGzYUAUFBU7HAfcZfOdfFRlVTimpKUpISCjxMSPFxcVp8+bNDrczbYL/9401fq/B9Wfz589XWlqaoqOjVadOnRLPM2/ePFmtVo0aNcrpWFJTU3X8+HHHGllCJOffly7xyF+a6toO1TTxjc1a+H2its6/SXOe6a5r7lrqkvOnJCdLdte9gUUEBkqtXXY6j0hOTlaOzTc2GzKT36/10vr9PSE3N7fUbR2+fo0WWU5yct/wM6dPS5le/vNWz5ZCi38qLiZCCVUjr3iKoMCAUh1XnHPn0nXutJf/GwHwK46Mhc6Mg5IPjoUAYGaVz0olTGVLOx+WnJ8T5+RkK8fbx4VyVaVo55qmpZ2Ssr385/sTs84FQkNL+OAn6ciRIxfuQqhZs6a6d+/udD8lJfel8zX5hw4dqpkzZ0qSvv3228sm+JOTk5XPfo9eqeh/Obsim+3C67m4x3yRaRP8cXFxSk9P19atW9W588UrwVNSUjR+/HhJUsuWLS9bb3ru3Llq0qSJ2rVrV6ZYHFWkYJV+e8zLq1+znKaNbaeNO0/pxTm/qKjIrilvb9W0se31yF+aasYne8rcR3y1ai5fwe9rqlWrxgp+A0RGOjYh/X0CEx4eXuq21atXdzguIxUGBOukJNntUmnr6f/v2NiKQQop590/79mIIJU0DU1Ny7ls27iYcAUFBshqK1JqWvFfAF/pXBXKRSgyzLv/jQD4F0fGQmfGQcn3xkIAMLPskAidLeG5K82HpdLPiUs6V2REsCp4+bhQEBioU5JTn4mqVgpRUAXv/vn+zKxzgcuV2/m9NLck9e7d2+m95C6X3P9dp06dNHfuXGVmZurnn3/WnXfeWeJ+n9WqVWMFv5cK+N+eEwGBgRdez8U9ZiRncsiSiRP8vXr10t69e/Xiiy+qd+/eF3bP3rRpk0aNGqW0tPObNLZu3brEc+zbt0+bN2/WCy+8UKZYnLm1IjunUFGdPixTv9L5cez9Z3soMMCi0U//V0VF52uFvfTeTt18XW1NG9tOS9YcK3OpnoMHDigywnU7itvz8mS91bkSI0Y5cOCALGFhRofhdzZt2uTQ8fv27dO8efPUt29fNW7cuFRtXnvtNSciM1bn2xbp518cqMNvsahlw0ra/vlGr99kd9bn+3T/s+uKfa64W4j/6NjK4UqoGqnUtFzV6P2pU/1/u+g9tW/OJrsAvIcjY6Ez46Dkm2MhAJjVzztOqvOob4p97krzYansc+LXpo3XPUPedbidJ9ntdrW4eYFj+wVYLOrapqp+/OAXt8XlLmadC1itVn355ZfFPrdv3/nSsoGBgerWrZtT5y9Ncl86/0VDly5dtGLFCtlsNv36668l5hMPHDjgdIlvuNcLb32sjKxsxcfFX9iXtbjHfJHvLZMupQkTJqhy5co6duyYmjVrphYtWqhBgwbq0KGD6tatq549e0q6fP39uXPnymKxaOTIkZ4K2+XGjW6hrm2qatLMrdp35P83iikqsuuOf6xRUGCA5jzj/G1MgK+pX7++VqxYofr16xsdils9OKyJU228PbkvSW2bVjas76Agi1o0qGhY/wBQVv4yDgKAmbVqVEmBgcbN242cj5eWxWJx7jPRrY638TVmmAvk5+dfSMYmJCQoPDzc4XOUNrn/uwYNGlz4/yNHfGuPBpifaRP8CQkJWrt2rfr166ewsDAdPXpUlSpV0qxZs7RkyRIdOHBAUskJfrvdro8//ljXXHONatas6cnQXaZxnfJ69qGr9NOOk3rlg12XPL/n0FlNeXurrm4Xr0f+0tSACAHPCwoKUsWKFU3/jfrwPvV0fZfS317Wo22c7hjU4MoHeoEWDSopLDTQkL5bNayssFBzv3YAmJu/jIMAYGbhYUFq2cCFm/Y51HegmtX3jQUvdw1uqG5tqpb6+D5dE3TL9SXv0WgWZpgLHDt2THb7+QoVl9tXsySOJvclqW7duhf+nwQ/vI1pE/yS1KRJEy1evFiZmZnKzMzUhg0bNGbMGGVnZ+vo0aMKCAhQ8+bNi227Zs0aJSYmlmlzXaPtO3JO4e0/UJdR31wozfNn/5z9iywtZ7ukDr83ujqmigoG3KrH6pV821nBgFv1dUfuYvAXSUlJGjdunE/felUawcEB+uKVnurdudoVj+3RNk5fv95LoSHGJM0dFRoSqGE31L3ygW4weqDvrnIBAMl/xkEAMLvbBxgzLx3Rt55Cgn3jc0NYaJAWzehdqiT/DV2q6/NXeio42NRpMknmmAtkZv5/memYmBiH2jqT3JekypX//84VRzYnBjzB/O9cxdi9e7fsdrsaNGigiIiIYo+ZO3euwsPDNXToUA9HB8CdsrKytHbtWmVlZRkdittFR4ZoyZs36IPneqhji0trxl/VpLJmT+2ub2f1UcVyoQZE6Dxnbrctq4iwIN0+wDfucgCAkvjTOAgAZjZ6UAOFh3k+0W7EPLwsKpYL1ap3+urdKd3UpvGlpYU6tYzVh8/30DczrleUC/cV9GZmmAs0aNBAkyZN0hNPPKEuXbqUul1OTo5Wrlx54e+lTe5LUnBwsCZMmKCnnnpKt99+u8MxA+7ku/fjlMHOnTsllVyeJy8vT1988YVuuukmRUdHezI0AHCp4OAA3T6wgW4f2EB7DqXrWGq27HYpoWqEmtWv6BM194vToUWsurSuovXbT3qsz7sGN1T56BCP9QcAAACUpGK5UN05qKFmzt/rsT67tamqtk0dWy3tDUJDAnX3zY101+CG2nUwXcdP5shikWrGR6lJ3QpGhwcnREVFqWlTx0tNR0REaNKkSXrmmWfUu3fvUif3JSkgIEBXXXWVw30CnkCCvxhhYWE6e/asByMCAPdrWq+imtbzjXqZpTHrH13VdvhCFRQWub2vhKqReu7htm7vBwAAACit5x9pq6+/T1TyyRy39xUSHKBZk7q6vR93slgsatGwklo0NGb/AniHKlWq6KWXXiqxogfgi/yyRM+VEvwAAO/XvEElTb6/jUNtUtNylHQiW6lpjn0IemdyN1bvAwAAwKtUKBeqdyZ3c7idM3PiZx66ylSLheDfSO7DbPxyBf/q1auNDgGAQWJjYzV27FjFxl5akx6+Z8KdLfXTjpNavOZYqY5vP2KRw308dW8r9emW4HA7APBGjIMAYC43dq+hJ+5uqX/O/qXUbRydEw+8pqbG3d7C0dDgpZgLAObjlyv4AfivypUra+TIkapc+dINluB7goIC9NnLPXVDl+puOf/fRjXTs5TmAWAijIMAYD4vPNpOY0c2c8u5+3ZL0Pzp1yooiPSRWTAXAMyHd2gAfiUjI0OrVq1SRkaG0aHARcLDgrRoRm+NGdrIZecMDgrQ9Mc66JW/d/TZjYgBoDiMgwBgPhaLRf+a0FEv/rW9gl2YiL//lsb6+vVeCgv1y+IPpsVcADAfEvwA/EpycrImTpyo5ORko0OBC4UEB2rWpG5a/vYNSqgaWaZztW0ao63zB+nvd7QguQ/AdBgHAcCcLBaLJtzVUps/HaSrmpRtZXaNuEh9O6uP3v5HV4UEB7ooQngL5gKA+fA1LADANG7omqDdX92sOV8d0MzP9upgYulXpXRpXUUP3NpEw/vU5RZkAAAA+KSWDSvp548G6tPlh/T2Z/v0046TpW7bsFZ5PTisse4a3FDRkSFujBIA4Eok+AEAplIuKkR/HdVcj45spu83puj7Tcnasue0tu5N08kzeZIki0WqGR+ltk1i1LZpZd3YvYZaN6YGJQAAAHxfcHCARg1ooFEDGmjb3jQtXZukLXvTtGVPmo6lZstuP39clUphuup/8+GeHarp2g7x3MEKAD6IBD8AwJQCAiy6rlM1Xdep2oXH7Ha7rFa7goIsfHgBAACA6bVpEqM2TWIu/J35MACYDwl+AH4lNDRUjRo1UmhoqNGhwAAWi0XBwXyQAeC/GAcBwL8xHwZzAcB8SPAD8Ct16tTR3LlzjQ4DAABDMA4CAODfmAsA5sMuggAAAAAAAAAA+CAS/AD8yv79+9W1a1ft37/f6FAAAPA4xkEAAPwbcwHAfEjwA/ArdrtdhYWFstvtRocCAIDHMQ4CAODfmAsA5kMNfi8VER6krJ9vNzqMUosId/FLKTRUQZ994Npzuhsb1AAAAAAAALhEYGCghgwZ4rLzTZ81X5nZ2YqOjNT4+4Zd8ndXCAwMdMl5AEeQ4PdSFotFkRHBRodhGIvFIoWFGR0GAAAAAAAADGCxWBQU5LrUpV1Skf38n0FBQZf8HfBVlOgBAAAAAAAAAMAH8fUUAL9Su3ZtzZs3T9WrVzc6FAAAPI5xEAAA/8ZcADAfEvwA/EpYWJjq1atndBgAABiCcRAAAP/GXAAwH0r0APArKSkpeu6555SSkmJ0KAAAeBzjIAAA/o25AGA+JPgB+JVz585p0aJFOnfunNGhAADgcYyDAAD4N+YCgPmQ4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAcFGR0AAJRF+/btHTo+ISFBkydPVq9evRQfH++mqAAA8BxHxkLGQQAAzIe5AODfSPAD8Cvx8fGaMmWK0WEAAGAIxkEAAPwbcwHAfCjRAwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLBDwAAAAAAAACADyLB7wWmT5+uzp07q2LFiqpQoYK6deum5cuXGx0WAAAAAAAAgGKsWbNGgwYNUq1atWSxWPTcc88ZHRIMsHTpUrVu3VqhoaGqXbu2Xn31VY/HQILfC6xevVp33XWXvv/+e23cuFFdunRR//79tW7dOqNDAwAAAAAAAPAnWVlZatq0qV566SXFxcUZHQ4MsHnzZg0aNEh9+/bV9u3bNWXKFE2cOFH//ve/PRpHkEd7Q7GWLVt20d9feuklLV++XAsWLFDXrl0NigoAAAAAAABAcW688UbdeOONkqTHH3/c4GhghFdffVXt27fXtGnTJElNmjTR7t279c9//lP333+/x+JgBb8XKioqUkZGhiIjI40OBQAAAAAAAADwJ+vWrVOfPn0ueqxPnz5KTExUUlKSx+JgBb8XeuGFF3T27FmNGTPG6FAAAAAAAAAAn3Hq9FmlZ2Rd8rjVZrvw54EjSZf8/XcWSfVqV1eAxeKReOF6vyWfVF5+wUWPFff7Luk1EB4aohrVqlyxn5SUlEvKM/3+95SUFCUkJDj/QziABL+XmTlzpl544QUtWrTIYy8CAAAAAAAAwBQs0twFK1RotRX7dE5unuZ8trTEv3dt21wN6pCT82XpZzM075vVxT735993cY+NvKmXaujKCX5vQYkeL/Lyyy9r/PjxWrRokXr16mV0OAAAAAAAAIBPia1UQf16dnaqbZXKFdTn6g4ujgie1qppfbVqUs+ptm2aNVCLRnVLdWx8fLxSU1MveuzEiRMXnvMUEvxeYtKkSZo6daqWLl1Kch8AAAAAAABwUsfWTdSwTg2H2gQEWHRr/2sVHEzBEzMY1LurykU5tr9phXJRGtS7a6mP79q1q1asWHHRY8uXL1etWrU8WpmFBL8X+Otf/6rp06dr7ty5atSokVJTU5Wamqpz584ZHRoAAAAAAADgUywWi4b27aGIsNBSt7mua1slxMWW+visrCxt375d27dvV0FBgVJTU7V9+3b9+uuvzoQMF4sID9MtN17tUJtbbrxGYaEhpT7+b3/7mzZu3KinnnpK+/bt0wcffKAZM2boiSeecDTcMrHY7Xa7R3vEJSwlbNoxevRovf/++54NBgAAAAAAADCBX/Yd1icLV13xuJrVqui+kQMVGFD6tdA//PCDrr322ksev/rqq/XDDz84EibcaNGqdVq/ZfcVj+vWvoX6O1HaacmSJZo4caL27dunuLg4jR07Vo899pgzoTqNBD8AAAAAAAAAU5q/eLW27S55VX1wcJDG3jlEMRXLezAqeEpBoVUz3v9Sp86UXCmlakxFPTx6sIKDfLM8EyV6fMyxlJPKycs3OgwAAAAAAADA6w3s1VXlo0uuxd6/ZyeS+yYWEhykYf17KiCg+AoqgQEB5/de8NHkvkSC36dYbTZ99NVKvfj2J/rt+AmjwwEAAAAAAAC8WnhYqG7pd02xzzWqW0MdWjXxbEDwuIT4WPXsclWxz/Xq1lbVq8Z4OCLXIsH/JzabTXPnztX111+v2NhYhYaGqmbNmurTp4/effdd2Ww2w2LbsnO/zmVmKyQkWPFVKhsWBwAAAAAAAOAr6teqrq7tml/0WER4qIb0vbrEvTFhLtd2bqMa8RdvolyrelVd3bGVQRG5Dgn+P8jIyFDv3r11++23a+XKlQoJCVGrVq1UVFSkb7/9Vvfee68yMzMNic1qs2n1+m2SpGs6tlZwsO/eNgIAAAAAAAB4Up8eHVSlcsULfx98Q3eVi4owMCJ40v+X4gmUdL50z639rlWAAxsreyvf/wlc6O6779b333+vhIQErV69WsePH9fGjRuVlJSklJQUPf/88woODjYktt9X70dHRahDq8aGxAAAAAAAAAD4ouDgIA0bcK0CAiy6qnkDtWhU1+iQ4GGxlSqoX8/OkqT+13VR5YrlDI7INSx2u91udBDeYMuWLWrXrp2CgoK0bds2NW/e/MqNSmnGBwuUmZVbhjPYlZmdK7vdrrDQEIUY9CUDAAAAAAAA4MsKCgsVHBREaR4/ZbfbVVBoVUiw970GoqPC9cjomx1uR52X//n6668lSf369XNpcl+SMrNylZGV7ZJz5eUXKC+/wCXnAgAAAAAAAPwNuTXkF5jnNUCC/3/27NkjSercubPLzx0dFV6G1qzeBwAAAAAAAAAzczaHTIL/fzIyMiRJ5cuXd/m5nbm14ncbtu/VVyvWKjoqQhPGDGdzXQAAAAAAAACAJBL8F5Qrd35ThXPnzrn83M7X4D+/el+SCgutmv6f+a4NDAAAAAAAAABgOGrwl1GzZs20YMEC/fTTTy4/tytq8FN7HwAAAAAAAADwRyT4/2fw4MF69tlntXTpUu3Zs0dNmzZ12bmdq59E7X0AAAAAAAAA8AfO1uC32O12u4tj8VnDhg3TZ599ppo1a+rDDz/U1VdffeG5EydOaM6cOXr00UcVGRnp9liovQ8AAAAAAAAAuBwS/H+QkZGhQYMG6YcffpAkVa9eXdWqVVNKSoqOHz8uu92u9PR0VahQwa1xWG02vfyf+TqbkaUB13VR13bN3dofAAAAAAAAAMD3BBgdgDcpV66cVq1apdmzZ+uaa65RTk6OduzYoYCAAN1www2aPXu2oqOj3R7Hlp0HdDYjS9FREerQqrHb+wMAAAAAAAAA+B5W8HuhbbsPatkPG3V1x1as3gcAAAAAAAAAFIsEv5cqtFplkUVBQYFGhwIAAAAAAAAA8EIk+AEAAAAAAAAA8EHU4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAeR4AcAAAAAAAAAwAf9HythznPooAd8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Sample circuit\n", + "n = 6\n", + "sample = [11]\n", + "test_circuits = build_circuits_uni(n, sample)\n", + "test_circuits[3].draw('mpl', fold=-1)" + ] + }, + { + "attachments": { + "64faac2c-cfe0-46af-a2e6-a30fce568e67.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGeCAYAAABYc/NxAAABYGlDQ1BJQ0MgUHJvZmlsZQAAKJFtkD9IAnEUx78XB0raP4iiaLjNIE05HVrNIgQDuxKqIThPO4Pz/HFehVtz0FRbQ2sRNDZF0NAeCAdNBQ21Rzr053o/rdTq/Xh8P3x57/0eD+jyq4wZIoCiaVvK3LS0vLIqeR7hwwi8GEdI1cosnk6nqATf2hk1BwLXaojPOt2dCgT2nVul3iMmj8Lzf+s7ojuXL2ukb5SyxiwbECLE6W2bcd4hHrRoKeIDznqTjzlnm3zRqFlSEsQ3xP1aQc0R3xMHs22+3sZFY1P72oFv78+bmUXSIcoxzGAWKXoSMoghChkRLNCN/u+JNXoSKIGhAgsb0FGATd1xchgM5ImTMKFhEkFiPk9GlN/69w1b3toWEHboq8OWZ3wAly9A30PLm8gCA7TD1RlTLfXnskJNLK9H5SaPXgO+ius+DQO9z8D7uevWq677egJ4vMDe3SfAzmOJAZs4vQAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAACqKADAAQAAAABAAABngAAAACyrcrsAABAAElEQVR4AeydB2AUVff2n91NIxB6b4beexekqggiSrOAXUHFAtgRsP7V1/Z+L4oFRUVAFBsqXUBAaQoIItJ77y0kIcmW754bJmw2u8kmW7LJPkfDzt65c8tvZmfOnHvuuSaHElBIgARIgARIgARIgARIIEQImEOkHWwGCZAACZAACZAACZAACWgCVFB5IZAACZAACZAACZAACYQUASqoIXU62BgSIAESIAESIAESIAEqqLwGSIAESIAESIAESIAEQooAFdSQOh1sDAmQAAmQAAmQAAmQABVUXgMkQAIkQAIkQAIkQAIhRYAKakidDjaGBEiABEiABEiABEiACiqvARIgARIgARIgARIggZAiQAU1pE4HG0MCJEACJEACJEACJEAFldcACZAAjh49ildffRXDhg3DhAkTcOLECYwYMQLr1q0LKTppdmDnCQf2nnaAi+CF1KlhY0iABEjArwRMXOrUrzxZGAkUOAKbNm3C4MGDERkZiRo1amDXrl0oVqwY/v33X6xatQr16tXL9z4lpQILttkwZ4sDZ5LU6swmoGKcCf0amdGpthkxlnxvIhtAAiRAAiTgRwJ+U1DXrl2LDz74QFteOnXqhO7du+Ptt9/G888/j0aNGvmxyXkvSj3WkHBRWWBO2RGlHnC1ypoQozbUJoUEwpLA2bNn0bVrV9SuXRtTpkxBbGws9u/fj6ZNm6JIkSI4cuRIvnNJTQPeW2HDLzvssLj8WB3qR31bczPuaG2ByWVfvjecDSABEiABEsgzgYg8H3npQBlm+/HHH/Hoo4+iWbNmuOKKK/Ddd99h2rRpSEhIQIUKFXytwi/Hn7uo2rnRjvnb7DiXkl5k6VjgxoZm9GpoQbEov1TDQkigQBFYsGAB9u7di++//14rp9J4+c02adJEW1Tlu/zGx40bhw0bNiAtLQ2PqN/6DX36yK6gyIbDdvy6K6tyKpWLUjrrXzt61jOjQnFqqEE5IayEBEiABIJAwGcFdefOnRg6dKj2VxszZgzMZjP27NmD5s2bo2bNmihbtmwQupF9FUlKIX1nqQ1rD4oN9bKcTgI+X2vHkfPAw1dZslhnLufkFgkUTgIzZsxAhw4dULly5YwOikKanJyMjh076rQffvgBW7duxaRJk7Bl82aMfu45tG/XDuXKlcs4xt2GlOOriAK6ZKcNVuV76mo9NcpOtAIzN9nxQAe61BtM+EkCJEAC+UHA5MehLJ8VVHnAFS9eXFtQRTkVKVWqFKpUqaKtMPJdLKliYU1KSsLp06fxyCOP4KabbpJdQZG1B+1ZlFPnipfstOOGxmbUKE0LjDMXbhd+Art379YKakTE5VvB8ePH9eSosWPHagATJ05E//79UbFiRf0nv+81a9agd+/e2QKKj49HYmJitnly2mmzJqPRIwtQokY7Zcn1nHvKj4sxtu8QlSGbTJ4P5x4SIAESIAEfCYhyOmvWLLRv397HktIPv/xUymNxMpw/aNAgFIuLyyjBZrPhwoULaNu2rU577733tNL64YcfYv369Rg5ciSuuuoqlClTJuMYdxspKZfG4t3t9DIt0uzAkh1m9XBTvqYe9M8UZZ35fkMaHu3o34dbdHS0l61kNhLIHwJFixaFKKkXL17UQ/ry+eabbyIqKgrVq1fXjdq3b1+mkRCxnMos/5xERk98/Q3YrSkogos5qp3FbBdQunSpnJrE/SRAAiRAAgEiIAqqPDv8JT4rqIcOHdIzf81O2t+OHTtw4MABtFPDgCLiozp69Gg96eLKK69ETEyM3p+dgipWV5m44auSar14Ac2fXKIsMO2ztcD88Mtv+L/+A/3FVQ9/CgcKCYQygRtvvBHPPPMMxo8fj8aNG2POnDmYO3cuSpYsqV8qpe2uQzYydO+a5q6P/gpRtXS3Ha8vtnkc4o9QAzcfPd8P1d/p764ZTCMBEiABEiiABHxWUOVBtnr1atx9991a8Tx16pSeuS/p5cuX10hkyFCGBQ0pXbp0jkN/FotFh7cRi44v4rCloUSUNUcLTFnLRdSVcDrZjSPmoiE5+efloihmJYGAEXjwwQdx8uRJTJ48Wf9G5Xdst9vx+++/K4tkaV2vhJk6fPhwRhskZmqlSpUyvgd6o0VlE1pVMuGvow648zLtUsOMKpwgFejTwPJJgARIIKgEfFZQJX7iyy+/jDg1xC8TLebPnw8ZEpQHmISsERHfVBn2N8Rqteo047u7Tzn2t99+c7cr12nL99rxysLsLTAfPnM9qrwavJnJue4EDyCBABAQ/3EZ0pc/Q/r27aujcZQoUUInPfbYY9rCevXVV0NipqampmaMjhjHBPKzRIwJT3S34OPVNmw85MiIwlFCedC0rW7G0LZmj9bVQLaLZZMACZAACQSOgM8K6qhRo7Q1dMWKFdpiKhMr5GEnky5EaRWpU6cOxBVARKwzrhZVvSOA/zSvbEbneDuW75WhycwVicG0lwpRI0G/KSQQ7gTEmioW0m7dumWg6NGjB7Zt24Y+KrSUjIp8+umnemJkRoYgbJSJNeHpbhG4qAL2L1QB+z9dY0c3FaB/aAcV/zQI9bMKEiABEiCB4BLwWUGVoXwJyG+IWFeeeuopyENNfE1FJG7iR2qClAT/njdvnp5wISvWBEskxuljnSNQLs6G31U8xVPJ6TWXKQJcU9eMQU0ZYipY54L1hDaBc+fO6SH/TmoSo7MMHz4c8pefImGmiiqraXyZ9AmP8p3KaX6eEdZNAiRAAoEj4LOC6to0WSZRwkk5rx51vQpHc1BNmhL/NrGmir+br7N7XevN6XucerANbW/BPW0tWLzVjvdX2dBJ+a7d2YZrJObEjvvDh4DELpaYp7LsKYUESIAESIAE8ouA3xVUYzKFBOo3RHxQH3roIf1npOXHp1hbItUsi0ol01egcR3uz482sU4SCCUC/g4TEkp9Y1tIgARIgAQKDgG/K6gytL99+/aCQ4AtJQESIAESIAESIAESCCkC7qK2hFQD2RgSIAESIAESIAESIIHwIkAFNbzON3tLAiRAAiRAAiRAAiFPgApqyJ8iNpAESIAESIAESIAEwosAFdTwOt/sLQmQAAmQAAmQAAmEPAEqqCF/ithAEiABEiABEiABEggvAlRQw+t8s7ckQAIkQAIkQAIkEPIEqKCG/CliA0mABEiABEiABEggvAhQQQ2v883ekgAJkAAJkAAJkEDIE6CCGvKniA0kARIgARIgARIggfAiQAU1vM43e0sCJEACJEACJEACIU+ACmrInyI2kARIgARIgARIgATCiwAV1PA63+wtCZAACZAACZAACYQ8ASqoIX+K2EASIAESIAESIAESCC8CVFDD63yztyRAAiRAAiRAAiQQ8gSooIb8KWIDSYAESIAESIAESCC8CFBBDa/zzd6SAAmQAAmQAAmQQMgToIIa8qeIDSQBEiABEiABEiCB8CIQEV7dZW9JgARIgATyk8CJRAdstuC1wGwCyhUzwaQ+KflD4Ny5czh9+rQ6B8E5CQ6HA1WqVEFUVFT+dJi1+oUAFVS/YGQhJEACJEACORGw2YGRM604dCGnnP7bH6uecj/dE4lIi//KZEm5IzBhwgSMHTs2dwf5mHvz5s1o0KCBj6Xw8PwkQAU1P+mzbhIgARIIMwIxkSbERjiC1usY9ZQLjt0uaF0qcBVFRkYGvc1mMz0Ygw7dzxXyDPoZKIsjARIgARIgARIgARLwjQAVVN/48WgSIIEgEVBuZbCqIeK0S/6L8l3+KCRAAiRAAoWPAIf4C985ZY9IoFARkEk1K/c4sPm4HcfOA6dkko1SVH/bZ8e5FKBxRRM61TCjaHSh6jY7QwIkQAJhTYAKaliffnY+HAnIjNqIiAgULVo0192X2bHJycmIjY3N9bG5PSA1DViw3Y7Ja2xItmY9+qSaaLN4px2/7gQ+Xm3D410saFvdzMkwWVExhQRIgAQKHAEO8Re4U8YGk4BvBDp16oShQ4dmW4gooampqVnyPPjggxg2bFiWdH8nnFZW0pcXWbXi6U45da5PRvklz5tLbfjvMiuSszbbOTu3SYAESIAECgABKqgF4CSxiSTgTwJiBZU/d7JixQq0bt0axYsX139dunTB/v37M7Jed911+Oabb3Do0KGMNH9vJKph+zd/teGvQ2oo330zte+pGuXPJOKbumy3A+8tt0LKoJAACRRcAqVKlUKFChVQvnz5bOOZymz9atWqFdyOsuUeCVBB9YiGO0ggvAhs27YNPXv2REJCAiRu4WuvvYY1a9agR48esNvT1cHevXtr1wDZHyj5YIUVG4950ExVpTVKmfBsNwuuqeX+9rVopwM//hvESPCBAsFySSDMCIiy+dBDD+GXX37BkiVLsHTpUv0n2++//77buKaSPnfuXNSsWTPMaBX+7rq/wxf+frOHJEACLgQmTZqExMREzJw5Ew888AAef/xxPPvss9i5cyeWLVumc0dHR2PQoEGYOHGizutShM9f/1QTn5bv9aycippcQrm/XlnTjPgy7quLUHe1+Vvs2HPacznujwyvVLEybzgkvO3680IIukZYL5zEiX/nw2677IRsUuf35OZfkHL2SHidsELcW7GSyr3m8OHDeH/C+7iyQwdtNRV/eXE3qlGjhlZc161bp+9Pbdu21X7w8hItLkeSJyWFwyaF7RKhglrYzij7QwJ5JLBgwQLUq1cPDRs2zCihV69eenvlypUZaUOGDMGZM2cwefLkjDR/bcgQfZrr2L1T4cYNK6fA68eT1HD/rmwKcioz3DZFbf9bKaZj5lrxwgIbXllo05/PzLJixe7QYpZwZDM2Tx8Fe0pCxmmyqKm926aPwPn9axiBP4NKwd2Ij4/XbkOvv/66nrw5dtxYdLrqKj2a06dPH8ioTbdu3XDjjTdi9apVuOmmmzBnzhz9J0rtnj17cOeddwbU7ajg0i3YLTfu9z71IikpCS+//DJq166tfUGuueYavPvuu6hfvz42btzoU9k8mARIIDgEjh49mmWYTB4eIqdOndKf8k/nzp3173z8+PEZQ/8ZO33YkBinaw/4R0GyKA124Ta7Rx9WH5pZ4A/deNiOsfNt2H4q/WVAWMlLwZ4zDvz3NxvWH/TPOfAHKJMyl0aIRipruKv/DTGbI4O2rrtRJz/9T0BeiH/99VeIr/uUKVP0y7FYRTds2IADBw7g5MmTOHbsGMT9aNasWeiu3I3uv/9+lC1bFl27dsW+ffu08rp161b/N44l5jsBnxXUtLQ0bXr/4osv8Oabb2rfkebNm+O5557Ts4C5Fm6+n2M2gAS8InD69GkUKVIkU96YmBj9/cKFy4unm5SyMHjwYOzYsQOzZ8/OlN+XL3tOOpDgMswsc7lc/+A0cu+6z1m1OnMROHreKbMvjSskx15UrrkzN3pW3JNUaK+Jq+ywBgib2UnJ9BapNS0FiUe34cKhLbhweAvOH9qtXoxUQ3Mh4hZAyT8Ccs9wlWLFiuHVV19FfHw8XnrpJa1HHD9+3DVbpu/iYiTD/SISZUTKKFPGva+PuzozFcYvIU/A5zioMvQ3ffp0bW6/9tprdYdFOZW0qlWrQtbgFT8ScXY+ePAgZBZwrVq1Qh4MG0gC4UYgLi5OT5By7re8gIrIrH5nGThwIN544w189dVX6Nu3r/OujO2vv/46V35hu1FfHdsy4/iiavnu1lVNzoYzrZvGq0lS8rirVsKEbjUzP/hOJQMbjzi0wU0KmjJzGaqY9qrjMufLqCTMNhJNJbDBfr3HXosesf+cA+9PX4hS1sPO7wIej8nNDjkPCdYb1CHFvD4s5dxRbJ32GEwWS/oxSttMTjjt9fFW5b86ZcrXMMP59cXrw5nRDwTWrl2bpRTRBQYMGKB1A7mXiB9pdiK6hOgWY8aM0RZVcTESa6t8igVW9Axn+eGHH1C5cmWPEUuc83LbfwTEJaNcuXJ+KdBnBVUspxJXUYb9DJE3lxIlSqBVq1Y66S/l2CyTKvbu3avfdvJbQTXerPhSbZwxfpIA9G/zyJHME09kCE1Ewr04izGklt1v+dFHH9WuAcbvzfl4d9u1r30MtQa0ULvSlcnSxUx4vGsE3FndLOrH20YF5W9VzelXrA5br3wr1x+2ISK9CHz40fs48Md3kNnB4S4SWqzMFU3Q/kXPCqowMjns+M+bb+PYxl9g8jM3s9mCTq/8gyJlvVdQY0pXQ4vHfoSlSAnVOgfMUUWw6vmmXp/OFLXiw7CHH4QtNZluAV5T829G17B28sL7zjvvaF928R/NSTmVkZ3nn38eTz71FNavX68VWzF4yf1Hhvx7dO+BH2b+kKnRosx6e+/JdCC/5JmA3GdlQm3IKKhiGX344YczxSmzWq16Nl779u11R7t17w75Gz58uNcXjJjvP/vsM0hZ/pYz5sqwR12PDX9vxIR1q/xdvC5PVum55557AlI2CyWBQBCQmbFiERXfLyOuoPh9iUioKWf58ssv9eiI/PY9ydNPP+21BVVGlM/GtcQWJ0vn+SQHvvzLpixfmaVSnAnd65qx9bgD61x8Vo8kOCA+lYbcevNAFL++idK6XEsxcoTXZ2pkKWxVKC47bGTtv0MZGB64ezAsFzp5fb/OWor7FLs60RtUfEvlfeG1iJIsSqklKn31sogoeYXx/nzKqmnjxjynXnTEgup0cXjdAmb0hYAop8uXL9fuf0Y5YrySe4w84+V+k53I+ROrqUyI+vfff3HXXXfpiVFyzNSpU3HHHXdgQP/++PGnHzP5xMsLsr8UJalL+kGFV0hkL8azI/tc3u312YIqMRNdT9pPP/2kze3NmjXLaIXEUTRiKWYkZrNx8eJFfUGeP68W3/ajyEVWrl4ntBjZU8dZ++Dbp/1YenpRUoecJCqofkfLAgNIQG78oqDKsJsR8kWG3uRFs2XLy0PvMmlh4cKF2g+1UqVKHlv0lLJ25EYOqEk6D/5g1T6nctw5FTXmm7+zDss2r6KG9rWCasfXbvbLMLUW9fnk0JtRXim0lHQCspjB/9REqCUeIhyoWxcalTPjhfvvCogqZ1Onc9i3VsiLRLAkWg8Nj1GTrYJVI+txJWDMTzHSW7SQkRLg999/N5Lcfsqw/osvvojRo0frYX15UZb7jyEyeUr8VmvWrqVHbSW6iCFiEJNJWJSCS8BnBVVm7svKMrfffrt+WxHzrviFiO+HODDnVWRyhjhOGz5wnspxVY7d5ROF0RB5VJ2JqIoNamboVVd1xj1t3syiYBt5jc+8vDn50nejXn6SQDAJSJB+CXotQ2mipEZFRekZsuJP7iwzZsyAzWbDqFGjnJN93q6kfErLqDlaJ1WIKF9F1NqqSjEtR+U0E8pIpaT1a2LGP2om/0k3Ln8V4oAHOloCopxmakguvshM/iyi0/jikYVLAUiQYWAZmk9SMZd3797tscViOZXoQPKy/Ndff+lQUs7KqRwoEztlAqfMdzEmdHoskDsKHAGfFdSxY8filltuQePGjVGyZEnt6yX+ahI01xclTR6OI0aMCAjQv9XNeaMKs9JSDTMM69A2IHWwUBIoiATE6iB/MuwmwbNl1qyrTJs2DV27doVhBXHdn9fvEmC/3RVmzFFB9n0Vk3on7d2AA7ruONYua8I7N0Xg3WU2bFGRE5JU5IRIxb6uSn/gSgtkf6hIydod0fGF9Zl8Ya2qve1f+CvdsHDZ9hAqTWY7ciAgBp958+bpuKXZKaiyIMjIkSN1tJCbb74Zu3btylKyGLDkpVqUUxl1pRQuAj4rqDJzX4LmysUTGxurfdX6K3+QOnXqoJiaFWyIXV2UcmE6WzONffwkARIILQKe/Ii2b9+ulz/9+eefA9Lg7rXNWKDil0pMVF+kcnETOsVzTNcTw3JFTXjhughsOmLXQfrbqGgJo6+JyOS/6+nY4KariA1uZsn5e/JWcPsU3rWJDiDh6XIKUffdd9/psHfiv+pOOTUoioJKKZwEfFZQxUdEQjzIn4gE1pWg3qK4RlwKCyKB/CWotwTtF3O85Lnttts8xi8rnKjZKxIIDQIydGYxQvbkskkyOUpePmWFl0BIgwom3NbMjOkb3Mfq1HqrsppZlS+les65FUkf1NRM31O3dC4nisVa/HNF/4tSTwLnyWWXc3GLBPKHgFhHP//8cxq18gd/SNTqs4Lq2gsJJSWmdhnyN0Qeho0aNULjJmo2rZIopdTGuBk6NPLzkwRIIHAEZD1rb3y33bWgdevWkL+8Hu+uTNe0QS0s2HfWgaV7VEghl53yfccJB56dbcWZZPca6uDmZlxdz/VIl4L4lQRIIOQJcMQ15E9RQBvodwVVwkLJrF8jBqq0XvzYPAXzDmjvWDgJkEAWAnm1nkpBN9xwQ5by/J0glr0RnSNQsogN87bakaqspRkz81VliWrtAFmm01nEalpcLXp1QwMzblEKrpRBIQESIAESKLgE/K6ginJqxD8tuFjYchIggfwkUEStIjW0gwWtVEipqevt2HVJIXUd1pfpPDKhu7Ga2HN7GwsaVwqdCT75yY91kwAJkEBBJ+B3BbWgA2H7SYAEQoOA+ES2UbP6W6sVo9aryBt/7XfggFqG84KaxS0G0mLKYhpf0oS2Ko/4rlJIgARIgAQKDwEqqIXnXLInJFAoCcjwfssqZvUHSKD5i2pxOVFQo5WVlUP5hfKUs1MkQAIkACqovAhIgAQKDAEJNC9/FBIgARIggcJNgApq4T6/7B0JkAAJhBSB9HjYwWuSq99y8GpmTQaB/JiNnx91Gv3lp38IUEH1D0eWQgIkQAIkkBMB5a5xbX0zzqfklNF/+2WVLHerpfqvBpaUE4F27drh0Ucf9Tr+siiXy9ZsRGxMNKqUL4ute/ajXnw1VK1ULqeq9P7U1FSULl3aq7zMFLoEqKCG7rlhy0iABEigUBGQiW+3NqePRqE6qV50RpZGlj9vxWp34KnX3kf5sqXRsXUTfD1rMW7u3Q1d2zXzqghRcAMZq9mrRjCTzwRkrgGFBEiABEiABEiABEKCgEyMlFXjZIl0tWac+k9/yL9eCZVTrzCFfCYqqCF/ithAEiABEiABEiABEggvAlRQw+t8s7ckQAIkQAIkQAIkEPIEqKCG/CliA0mABEiABEiABEggvAhQQQ2v883ekgAJkAAJkAAJkEDIE6CCGvKniA0kARIgARIgARIggfAiQAU1vM43e0sCJEACJEACJEACIU+ACmrInyI2kARIgARIgARIgATCiwAV1PA63+wtCZAACZAACZAACYQ8ASqoIX+K2EASIAESIAESIAESCC8CVFDD63yztyRAAiRAAiRAAiQQ8gQiQr6FbCAJkEChJCDLF6alqX+C9JqsVk9EJJeBL5TXkr87JWu5p6Sk+LvYbMuLiIxEhIUXaLaQuDOsCFBBDavTzc6SQOgQOJvsQP8pVsQG6S5UIgaYPiQydACwJSFL4NixY6hUqVJQ2zdt2jQMGTIkqHWyMhIIZQJBejSEMgK2jQRIID8IKCMVjL+g1C8mWwoJeEnAZDKp6zN4F43dbveyZcxGAuFBIEiDa+EBk70kARIgARIgARIgARLwnQAVVN8ZsgQSIAESKHAExDh45LwDNvWZbE23Zhe4TrDBJEAChZYAh/gL7allx0iABEggM4Ezyu9301EHFm+3Y/txBxKVYmpVI8trDzhw69Q01C9vQo86ZjSuZELpWJlWRiEBEiCB/CFABTV/uLNWEsg3AufOnUNERASKFi2a6zaIT15ycjJiY2NzfSwPyF8Cm444MGG5DQcuWU2dh8/EipqQCvxx0IE1B2yoWNyEB9ub0fYK51z5237WTgIkEF4EePcJr/PN3pIAOnXqhKFDh2ZLQpTQ1FSlsbjIgw8+iGHDhrmk8msoExDl8/uNNoybb8X+cw49Mc3TjV+nK8Pp0QQH3lhiw9S1NqRx7k4on162jQQKLQFP96lC22F2jATCnYBYQT3NTl6xYgVat26N4sWL678uXbpg//79Gciuu+46fPPNNzh06FBGGjdCl4D4mc75144v1tqRYsvaTiM2rNnNk0D8Ur/aYMf3G9wcmLWosE4xRiTKli2L8uXL699OpIpr6k4kOsBVV13FUQh3cJhGAk4E3NyWnPZykwRIIGwIbNu2DT179kRCQgImTJiA1157DWvWrEGPHj1ghMDp3bu3dg2Q/cEWs4phLn+uYnGvB7hmC8vvB886MHWdTfuZugNQIc6EqbdF4rGOFngylH7/jx1/H/a0112p4ZNWrVo13HPPPfqlbefOnThx4gQkhuph9QI3b948PP3002jUqFEmIIMGDcLSpUsxevRoiLJKIQEScE+APqjuuTCVBMKOwKRJk5CYmIiZM2eiYcOGuv8XLlzACy+8gGXLlqFbt26Ijo6GPGAnTpyIsWPH5smPNa9gDyydhItnDqFOvxdgv2TUs9us2PDBzWj2wNcwWaLyWrRfj9MTkZS/557TDsQq5blNdRMqlzAjMsjmgDTF6IMVNiTKal0eRPSjGNXGKDeKv3FIgjp+hrKkNq5khoX6lMZSokQJ3H777XjiiSdQo0YNnD17Vv/NnTtXrY6Whtq1a6Np06b6NyN5pk6dinfeeUe/7H3wwQc4c+YMfv/9d48jGQZ7fpJAOBMI8i0znFGz7yQQ2gQWLFiAevXqZSin0tpevXrpRq9cuTKj8bLajTxgJ0+enJEWjA1RTpNP7lFWp8u1ORw2JBzcBLuMZeezSAvWH7Tjmdk2vLjQhml/2fHxH3Y8+J0Nn66y4WI2imIgmr5NzdLfdtJ3LvKQ2HDYgX2nfC8rEP0MdpllypTBh+9/oEcZihUrpkcaxK9bFNXrr78eN910Exo3boxWrVph1KhROHLkiFZk//jjD8hLoPh3S55ffvkl2E1nfSRQoAj4RUGV4b/Fixfjtttu00OEzz//vLa4DBw4EFu2bClQQNhYEghXAkePHkXNmjUzdT8+Pl5/P3XqVEZ6586dIUOb48ePzxj6z9gZ8A1Z3SfgleSpAgnb9NIiGw6qiUjRyiIZoe6u8icK9aytdny40qZjjuap8Dwc9M8RO5L9qBTPVr6s4S5iOf3oo49w25DBWsEUX1IZSfj333+zoDlw4ADeffdd/ZInyqj8ZkTGjBmD5cuXZ8nPBBIggcwEfFZQZbKFDF/ccsstemijZcuWmD9/vvbLWbt2LSpWrJi5Rn4jARIISQKnT59GkSJFMrUtJkYtYK9EhvoNEb+5wYMHY8eOHZg9e7aRHPBPk5rJk7DvL2z99jls/+4Z/bfjh7Gq3tDQWH/eZEOKB4VQlOo1++04qkI8BUvExcCfsvmECuof5jrqvffei5v69cPChQtx5513Qvy2PU04NNjLC12bNm1w8eJFmNU1LKMSUVGh4Y5itJGfJBCKBHz2Qd28ebMexnjuuecwUg1nRFgs2L17tx7ekCGPUqVK6R+mTLywWq36AViyZMlQZME2kUBYE4iLi9MTpJwhiD+diMzqdxYZHXnjjTfw1VdfoW/fvs67MrbF6prdw/vcRTNMiMvIn9OGlBVVshLKNe4Jhy29XQ57Gk5s+CmnQ/V+u92BkydPepU3t5nOqr5sO1ZUWUs9v/OfuQj8vS8B0ZWzhu/KbX055Ref0oNnisFhsijG6RKp0mJcfE1jL+lJFtXs4mrbyGuUf1H5sYovq0ii+rLv6HmVr/BrqeLC4ioymiB+pDLSIAYZd3lcjxkwYAC+/vpryG9Bhv/Fn7t///4QpXXRokWZsov/d06/mUwHFOIv8luXP5tN+VBfSNQ9TUxKDNjvtxCjDHrXZJTBUwSL3DbGZwVVQs5IaI2HVHxEUU5FSpcujUqVKqFZs2b6uyiv27dv1xMsRFF96KGH0E+9hVJIgARCh4D41om/nLPs27dPf61QoYJzMrZu3aq/16pVK1O685cmTZpArLKeJLZkeXR+axdSUzzlcElXD6zoEhVRtmEXqLlRWhw275W9k6dPoXr1GsotwaVcp69i4RIRtyXZNj6d05y3jf1FlOLc9JHZKFK+tux2K6K7jnhkOA6snakqsOnyJaNRhnyKeKrX3X4jTR/o9I9NQe0wbjWKVW+pDcwKHa6uZcb97ZXC6qSkSm9Fme0Ub0Ybl6D8yr1Xhaey4Sc1tC9uCoeOHEbr5l2QdP64U02ZN3PTdjnSU98zl+r+m7tzJTm9bYP7Ui+nur5cyXNLRg9eeeUVr5RTsbBKtAtRaGWm/6+//gpZJGO18kV988030aFDB6SkXL74H3vsMYwcOfJyA8J4K0KF6Lpl+Ggc3r8H33zxEa7s2Q/PjX4W2/7+M4yphH7XLUoHFHfP9u3b+6WxPiuo33//PW699VZEOw0NylvP+fPn0bZtW93IZ555RseGky8yG/jJJ59E9+7dIZp2diJDIoGQ9HuCRT3krMq662FMzseK5UYmM54pJFBQCMjvVSyi4jtn+MvNmjVLN19CTTnLl19+qd+SH374YefkTNvNmzfXUQEyJTp/iS4O6yXrnHNybrZzMzkqMsKC1q3aQFwF/C2WiCgUVZZFq9IEPYUOMiuNL75icVRu00pV72qr9HOL7FYUjVZ1XBrld6jNMykO7DiZWTuPUdPy66jlTc+rffvOZHUJOK2WRjWkiDLBNmvaAPa0GkZSof2UZ8+ff15WhsRVTX4De/fuzWL5dIUg518spxLpQhRQcYdZsmSJziYuAT//9BNuuOEGPZFq3bp1GYfLy57EUKUIATW6omLKxarV7mrE11K/FjPi4+NRMkZdyJSQJuDPVQZ9VlCPHz+u/UzN6kdpyKZNm3Qgb0NBdba+yKxH1zdT4zjnT7G0SqgOGfbwq6gHSIlaHdD04Z/w0YcT8VSv5/1avBQm/atSpYq2Gvu9cBZIAgEicNddd2kFVR6uzz77LA4fPqyH8eVtWHzLDZE4j+KDJw9eGSnxJBJyJzs5neRA/ylWxPp8F8qulsv7SpUshXkqtE+g5KdNdrynwjqJRdKdVC0Vgf9O/QCxQXpv/VC15cfNdh0aSlTy1fsc6i/zG0EltaTphwMisP6QA/9Zqqy6bhpu3Nqb1a6M1xYtcJOj8CWJ1bNy5coZz6py5crhiiuugLi0SbzT7ESiXIhyKtZScQUQo4wh4sst4aVkFr+EcnNWUGWk8Y477jCyhvWnTT1DH3/1fdSoXhVX3T4IX836FaMefwJd26WPyoY1nDDqvM+PBvEnXbVqlR7CkAkW4pcjsxRluFB+1M4ib5PityZvojlZT8VULCFvnIdAnMvK87a68CMr1VSGBTNKlymHGJcgynku1+lAUVDF7YFCAgWJgATpf//99yFROERJlYkcEvt0+vTpmboxY8YM7RsmIXSCKbEV6iCiSAmlNFyu1WSyoFTdLspq6UErvJw14FvX1DVjxzE7luxNX07UqFDaWy4WeEitbR8s5VTqrqssoxHKE8OZl9GmvHxeWdOd+pqXkgreMfKck3u6RKXxZGARy6nERpXfkISSkiF+Z+XU6PWuXbv0pmvEDGM/Pz0QcPrde8jB5EJGwGcFVdb0ltUyZN1usZTKyjMStFi2iyrzvCHia/TUU09BfugvqAdgTiJm4t9++y2nbHnaL6uijJtvQ39lARr2Ht9Y8wSRBxVKAsOHD4f8yTC/DDe6c1OZNm0aunbtihYtWgSVQeX2g3V9RpB++WK2RKDJvZ/AkXnkOqjtMiqTCUcjukbgSjVb/0sVA3WPGjKXcaUBTcy4vqEZFZW1MpjSvIoJZVQQhpPJvtdaSgV3uLpO+CqoGzdu1BZP52gWrlRluVPD5UVWXHN2EXDOKyGmJE6qN5OsnI/jNgmEGwGfFdQHHnhAvy2uXr1aW1zefvttPVNRwtPIcL6IKKfiWC5DI1988QWKXkoPN9jsLwkUFAKGD6pre2Wyo7yE/vzzz667Av7dkyUwFJRTo/MyU75DvJpwVN2MB75NxYUUE+5uZ8mXFZjKxJpwk1KOJ/2Zvfaek9osQ/zX1zPrFaeMfobbpwzXy192IhEvZDKUjB56Uk7leFFMqZxmR5L7SCCdgM8KqoSfkSFBQ2RoQ9YjluFCw/ry6quv6tioH374oQ5jI3kqKx9NY9a/cSw/SYAEAk9ALD3iQpMXkclRderUQZ8+ffJyeFgcIwqdKKqG72Z+Lg/at7FFrwK19qD78VGrSj6mYrOey2Y+aoOyStFtlrfrJSxOuFMnuTCNEwxukoCPBHxWUF3rlxioSUlJaOTk2ykO5zIL8q233tL+O7It8eBy8kN1LZvfSYAEfCcgEzM8zTTPqfTWrVtD/vJ6fE7lc79/CchKVsOvtODNJTZsOubQK1s513AiwYF7v7VqVwSJheosYrGuXtKEx7uq2dSRznu4TQIkQAKBJ+B3BfXQoUM6Dp0RA1W6IE7jFBIggdAgkFfrqbRewuNQChYB8X19upsFn/1pw5oDDlxUMWQN6670RJRYZxGHgCiV1qqqCUOVe0LlEjk5ATgfzW0SIAES8A8Bvyuo1157rV7+zT/NYykkQAIkQAK+EhAl9bmrI7Bwqx2/bLdj41EVaUAVKoqq6KeilIrFVNwRGqrZ/xKR4Nr65nzxnfW1rzyeBEigcBDwu4JaOLCwFyRAAiRQ+Ahco5TOTmpFqWNqaH+zUlK3nXAgJc2hJkCZUKuMCQ0qmlBFKbNFZEifhtPCdwGwRyRQgAhQQS1AJ4tNJQESIAFfCYjyGV/apP96+1oYjycBEiCBABFw8T4KUC0slgRIgARIgARIgARIgAS8JEAF1UtQzEYCJEACJEACJEACJBAcAhziDw5n1kICJOBCIMJswhWlTIgJUojNYtGqAXpmkEtD+JUEXAhIpIv69eu7pGb/9cTps7CpRWlKFY/D6XPnUSQ6Wm0X05dc9kemL2ZTslSpnLJxPwmEFQEqqGF1utlZEggdAsXVMpyf3RzkWxAn/oTOBRDCLSlbtiw2/vNPrlo47v99hvMXLuCRO/rjf5O/Q8tGdfDArTfAast+JS+jErNz7C8jkZ8kEMYEgvx0CGPS7DoJkEAWAvm5ylKWxjCBBC4RkIUocrvSodlshkn9RVz6NJtlaCD35fAkkAAJpBOgDyqvBBIgARIgARIgARIggZAiQAU1pE4HG0MCJEACJEACJEACJEAFldcACZAACZAACZAACZBASBGgghpSp4ONIQESIAESIAESIAESoILKa4AESIAESIAESIAESCCkCFBBDanTwcaQAAmQAAmQAAmQAAlQQeU1QAIkQAIkQAIkQAIkEFIEqKCG1OlgY0iABEiABEiABEiABKig8hogARIgARIgARIgARIIKQJUUEPqdLAxJEACJEACJEACJEACXOqU1wAJkAAJkEBQCDgcwJ5TDqR5tzy9X9pkUqXUKWcCl7r3C85CXchff/2FlJSUoPUxLi4OjRs3Dlp9Ba0iKqgF7YyxvSRAAiRQQAnYlYL66mIbjiSojSBJjHrKfXNHJCIsQaqQ1RRYAv369cP+/fuD1v42bdrgzz//DFp9Ba0iDvEXtDPG9pIACZAACZAACfidgIlmdr8z9aVAKqi+0OOxJEACJEACJEACJEACfifAIX6/I2WBJEAC4UrgYhpw4IwDJxIdSE41wapGsv8+bEfFOBMqqD8KCZAACZCAdwSooHrHiblIgARIwCOBBDWvYuE2GxZtd+BMsgOJqdDKqRzw8i82FI8G6pcDBjSPQHxpEyI4duWRJXeQAAmQgBCggsrrgATCjMC5c+cQERGBokWL5rrnDjUNOzk5GbGxsbk+tjAeIFN9/thrx2d/2rH3rMOt4plsBeTvSCLw6x4r+jcy4/ZWFhRVSiuFBEiABEjAPQG+x7vnwlQSKLQEOnXqhKFDh2bbP1FCU1OVGdBFHnzwQQwbNswlNUy/Ku105j82vLnUhv3n3SunzmTkZmtRo/w/bbbj+QVWHA/iTHbndnCbBEiABAoCASqoBeEssY0k4EcCYgWVP3eyYsUKtG7dGsWLF9d/Xbp0yRR25brrrsM333yDQ4cOuTs8rNIWblOW0zV2XFTWUXc30lQbkKL+3MnmYw68s8yGhIvu9jKNBEigIBCoVq0a5IX/2muvRefOnSHfPYnkk7BSFO8JuLuven80c5IACRQaAtu2bUPPnj2RkJCACRMm4LXXXsOaNWvQo0cP2O3pkdV79+6tXQNkfzjLQTWcP2WdTXHxTOH/elowvq97LyqJZrPhiAM//etBg/VcrN/3WFUf3L+u+L2qPBVocvOU0mmcc5YnnjzINwKVK1eGjCRt3rwZ//zzDxYuXIhZs2ZhwYIF2LhxI3bu3ImHH34YVatWzaioRYsWmD59OqZNm5atEptxADc0Afd3T8IhARIIOwKTJk1CYmIiZs6ciYYNG+r+X7hwAS+88AKWLVuGbt26ITo6GoMGDcLEiRMxduzYPPmxFgawP/5rx/Gk9CF7T/2JL2VC0RhPe9OPnaWG+7vXMaFycTdamOdDfd4jSunmo3as3u/AOWXFLa7a2baqCY0qmREVQgHtk0/txbG136F690dgjkyHaVbt2z3v/6Fc014oWrG+zyxYAAl4Q0BipN5666148cUXUbduXZw5cwYy4rR9+3b9Ui8+/fXq1cOVV16pX/Aff/xxjBs3DsePH8fUqVNRokQJjB49GgcOHPCmOuZRBPymoIqFJTkpCXY1dBgZqVbtUH8pyo8tukgRtYJHCN3xeNpJgATcEhALgNxgDeVUMvXq1UsrqCtXrtQKqqQNGTIEn3zyCSZPnqwtBZIWTnI2yYElO+zanzS7fmdjXM047IJy852/1YF722YkBXxDlNNPVlsxc1Nmv9nvN6rzXdeBR66yIDJEbtkpZw7iwIovULXz/ZkU1CPLP0exSrVRtJJSUEPZ/Bvws8kKgkGgiNJjXn75ZTz55JNIUnrO22+/rUeYREl1FZlAKorpY489hi+//FK7U1mtVjzyyCP4+OOPXbPzezYE/PLaLrOCxZrSQFldateurYcJ337rLf39302bsqmeu0iABEKFwNGjR1GzZs1MzYmPj9ffT506lZFu+FqNHz8+Y+g/Y2cYbKzY57+15G1Kudpy1IGkrPPRAkJSdLmfN9kwe3Nm5VQqk9BXi3bZ8d2G/Hc7yNJ5J59pk+oEddIshJgQIAIS8USUzZGjRmHt2rXa3/Tpp5/WFlR3VYoCK5bSZ555BlabDWJ5FVcAsaJSckfAZwU1LS0NgwcPxowZM/DTTz/h0OHDED81OUFyYps1a5a7FjE3CZBAvhA4ffo0xFLgLDEx6cOqMtRviNxw5Te/Y8cOzJ4920gOm8+dJx0QK6Q/RG7AR9Vs/kSJ6B8EOa9itC7eoSbJeahL9MBvNtpxXsV1DRWxpSTizI7lOLVlsf47vnk57Gkh1MBQAVXY25FPPsetWrXC66+/jtMnT+khfhnW9zTJ1DgFcowY7exKQT1x4gSaKj2offv2xm5+eknA5yH+pUuXYtGiRfjll18gjsAi9913H95//33UqFFDf9+6dSvmzJkDsbSK43D//v1RtmxZvY//kAAJhAaBuLg47Uvl3Bp5ARWRWf3OMnDgQLzxxhv46quv0LdvX+ddGdt33HGHjpmakVAINhwwIa3FSKCC05i8enCO6mhBbBRg6K2ieJYqYtJD5aO7Zx4vtyslcMpaO45cCjN1OsmmJl2MginpaMAJOeKqIqXzW9nWk6q073tHvgScUGP+qr/+FFGMU64aDxQt73Wx9pQUnNu3DpaIaK1Ymy2RyjLlvck55WIKbrlliOqJcXa8rjpXGUvWagFzRBTGKZ/tklc0Uv6Jy7FgxmcKoX8Z5qpRBTazCaXrtcHu3aewZe0KFKtcS7kVfYwJbx0LWI/kxfvkyZOZypfh+rfUaHCS8s0fOGggdu3alWm/uy9ilPvhhx/0PVPC+cmkU7lPPvvss9iwYUMmy+vevXsh99LCJK+88goaNGjgly75rKB+/vnn2jfN+e1ALKfFihVDy5YtdSO3bNkC8cFo3rw5vv/+e21plRMoEy4oJEACoUGgTJkyOHLkSKbG7Nu3T3+vUKFCpnR56RSpVatWpnTnL/LS6s5HyzlPQds2mc1oVulWlM2MA62qmxAXnVkRiRQtVSW1vyLzQJVdjaD/oKyUhjiUxrpkyRJcOLbDSArYZ8mqDdG2c/bFiwK9auUKHN/8q9KtMrc9+yNz3iv8rmz9OorkYo2IyLjSuKL7Y4goWlJXEKHAHl4xJefKLuWwOuyYO38ebKmBtboOGFYXsXEWrF61Cj2vaIjDBw9i0cwf1EhipNdtZcZ0AmalQwxRCv/Zs2exZcNf6FSpJv7ZuAFbN6wJKCLjhdyoRO5vonD+9vvv+OOPP4xkj58SSuq7775DMTVhSiyoMnNf5uesVFZXCUUl/v1igTVEFOKff/7Z+FrgP0X3e+KJJ/zWD58V1FXqxyj+GTIxyhA5yfJmYCit/fr1M3bpSReiuB47dgzVq1fPSHfdSFFvzeKULIqtf0UNp8XEw1b1Xiz/fQV2/TjPv8Wr0sT8LxYnuUApJFBQCLRt21a/6cssUyOen4RPEZFQU84izv/ym5dwKp5EbuhGeCpPeQpauqiVX28ti5WHnVquFLrHf7bC7GIpe72XBcWU0vroTGWFdtl3KlFsiekSF2vBwgXzUCrG3/c6o4bLnwmpkXj/bxMOZrNIgNlixoLvP0es2f8KnVVpv6+sroJTuYn/qpR8k2qToSyLzpz5VeBy/9xtiZvKhg0bEWm+zNxdPl/TJn77Cy5cvIgvvvgCX81fjt7X98En77wCW3axyHyttJAeb7PZMeGruahaqRIG978Bi1b/jedfeBktG9QIWI8tajJ3x44dM2I8i7J19dVXa2PblClT3C5c4twYsRpKjOjy5cvj3nvvxWQ1idSQMUoXkImmAwYMyKSgNm3aVEdNycllwCinIHxKGC5/ic8KqjgEuyqR3377rR7aa9KkSUY7DyvfVAnH8OOPP+qAtpXUhZediIIqbgLiFuBvKVv/KrQecRfWrVuLzd+86e/idXnygKeCGhC0LDRABO666y6toMpNVIaj5Dcrw/jyommMhkjV8nIpsf/EDzW733F8fHyAWpq/xTZNsuOPIzbIBCdDjmsXXacEtUP229Wg9FE3+4zjROGtEmdGvdrVUUy5CARaxMe06wUbpq1XG260PNnfr7EZjWtXCUhTlN6BqHVKEb+oKgqSWNTLQa0aNVQ0mcBWKJFrTOq5VVmebarOomoU8YpC+hsILEn57ajrQ1nbo6KjUK6cuAOalFtguSyTOP3dDlFKDYmKisI111yj9Rtnq6ex3/lTLKcyD6e4cpMaMWKEtpw67//3339x5tQZXHXVVc7JkDpqqGuT4p7A5bPhfn+OqWICl2F+CVwrPmxirhbLp/iayjC/Ibt379Z+GcuXqzdLNYlK3layE5msIW8t/rfAOHA4rQzmnotEnxtuwKu31c6uGXneZ0wuyXMBPJAEgkxAgvTLS+Hzzz+v3/Tl5imxT2WYylnkRmxTzv+j1KzWcJTW1UyYug5ITHfP9QmB3AXrlVfKzOUBKJ/Ky+lgMeT2bWrB7jMOrD7gUPfXy0cofQBtVN8Gt8j+3nz5iCBsmVXIqyLK/9lJmZZZ/GaVZjYHCVoQuskqvCAgSmsQxWyO0FGJJI5pdrFLZXUouUeKi5SEoXK3iIkY8rZu34qSJUvqiaiylDQlZwI+K6gvvfQS7r77btSvX1+96ZRDlSpV9EmVdbwlcK0hYjpv36EDki4kolv3bjqWYnaOtDJ86GnyhVFmXj//PmzH/Pk25T9XGzd1qJfXYngcCRQ6AsOHD4f8yQ1Zhqrc+YnLaihdu3bNmBRZ6CDk0KHKJUxakVuyS02ZclKccjjM7e5YpWP1rC/D1253ByRRLLVjro7A8t12LN5pxxqlqFYqLoqpGZ3ildUqhPS+UrU6oOO4FbA5eT/IvL0rx6mZ/Eq5Vu6lFBIICIHExATI0s7OVlV3FTVu3FgrnuJ7KS/47kRe6G+//XZtcJPRYYp3BHxWUMU3Tayme/bsgcx4E1P39ddfjzp16miLqjRDfFLFYio+WhblSyT+Fv63jHrXYeYiARLImYDhg+qaU9x0ZPnTwuTY79pHb773b2LBuoNWJGQzmVzsPdn5lolB6Oq6ZsSXDqJ2eqlzohBfVUvVXcaE9YesqKtGUbvXUSbUEBNh5KycGs1zl2bs4ycJ+IOA/HZl5Dcn+frrr3V8VBnG9yTeluXp+HBN91lBNatxIYn5JX8i4p8mQb3lzUP2iYjDsEwakpnAixcv1paXesriSiEBEgg+AbEI5ORi46lVMjlKXj779OnjKUtYpNcuZ8KAZmZ8sUa8TN3LjPX2bJcNraWUw5ub569SqOwFynDgvv1MJQESyJmADNdLIH6K/wn4rKC6Nklm719UMxnF7G2I+KTKm4hYUmXpxKZNmnL5UwMOP0kgyATWrVunhpTzppW0bt0a8pfX44Pc1YBWd7Py5ZQVoL5XIaOcJ0wZlS5Sw+fuRFKrqyH1Z7pbdKxUd3mYRgIkQALhTsDvCqoAlWF+w6Iq32WWGmeqCQkKCeQ/gbxaT6XlN6iJhZRLBJSOP6SlBeWLmjBDLQ96Isk7Mt1qmHBXGwsqKiWVQgIkQAIk4J6A3xXUdu3aQf4oJEACJFDYCUSqCe+9G5pxVU0zJq+x4fc9dqSoCT0pykwqs81FxNMpWuWrHGfCfe3MaFE1f4f101vFf0mABEggtAn4XUEN7e6ydSRAAiTgfwJxMcCjV1kwuJUZB1UIp5PKmnpBTdaV1aRKxwLllbW0upr9H+hYnP7vGUskARIggfwhQAU1f7izVhIggUJIoEysCfJHIQESIAES8I0Ax5p848ejSYAESIAESIAESIAE/EyAFlQ/A2VxJEACJEACnglITEiJbxosCWZdweoT6wkMgWDHZ88uTnJgeliwSqWCWrDOF1tLAiRAAgWWgMRdfem6CNjcR+AKTL+Ux0UOK2sHpl6WWuAIzJ8/H96u9CSh9n79YwNWrv8X/Xp0xC/L18CsLrQn770ZqbLcmRfivNqmF9nDLgsV1LA75ewwCZAACeQfgWol6aObf/RZc3YEGjZsmN3uLPv2nriAHYfPok7dBtiw66heAKWRUwz4LAcwIVcE6IOaK1zMTAIkQAIkQAIkQAJOBC5pUnz1cmLih00qqH6AyCJIgARIgARIgARIgAT8R4AKqv9YsiQSIAESIAESIAESIAE/EKCC6geILIIESIAESIAESIAESMB/BKig+o8lSyIBEiABEiABEiABEvADASqofoDIIkiABEiABEiABEiABPxHgAqq/1iyJBIgARIgARIgARIgAT8QoILqB4gsggRIgARIgARIgARIwH8EqKD6jyVLIgESIAESIAESIAES8AMBKqh+gMgiSIAESIAESIAESIAE/EeACqr/WLIkEiABEiABEiABEiABPxCgguoHiCyCBEigYBBwOApGO9lKEiABEgh3AhHhDoD9JwESyB8CZ5McuHmaFTFBuguVjAGmDI7Mn86yVhLwMwGHetu6+uqrsWrVKphMwVkFPiIiAidOnEBUVJSfe8PiSCArgSA9GrJWzBQScEdgzpw52LZtm7tdWdKaN2+O7t27Z0lnQsEgYFfNTFX/RMhGEMQapHqC0BVWQQKaQGpqKpKTk4NGQxRUCgkEiwCvtmCRZj1eEXj88cexfft2r/J27tyZCqpXpJiJBNwTiLhkeAuO/c19G5hKAiRAAu4IUEF1R4Vp+UZAhqyKFi3qVf0dO3b0Kh8zkQAJXCaQagNOXnBg/xkH/j7igFiW950FVu6xo3opE8oWNSGGnhCXgXGLBEggXwhQQc0X7KzUE4H333/f0y6mkwAJ+Ehg7X47Fmyz448DDiSmARZlOo1QU2V3nXJg3C82AdfLYwAAQABJREFUFI10oE1VM66pa0b7eM6h9RE3DycBEvCBABVUH+DxUBIoiATOnTsH8SXz1lLt3EeZmCE+b7Gxsc7J3A5xAucuOjBtnR2Ld9hx0Zre2GjL5UbLHBv5brWbsGq/A2sP2tC1lgP3tbOguJpcRiEBEiCBYBOgghps4qwvWwKnTp3Ss0SzzXRpZ8WKFVGyZElvsjKPE4FOnTqhSZMmmD59ulNq5k1RQi0WS5bZug8++CASExMxbdq0zAfwW8gSOJ3swHu/27Bir0NbS71paJoa9l+olNkj5xx4socF5dWwP6XwEJBZ//KymZN4my+ncrifBPJCgApqXqjxmIAR6NGjB/7++2+vyr/22muxYMECr/Iy02UC8mDy9HBasWIFRowYoc+BKKjt2rXD1KlTUb16dV3Addddh1tuuQVvvPEGqlSpcrlQboUkAZvSQT5eYcNKD8qpDPGXKgKkKKtqQmrWLvxzzIH/LbPh1V4RKpRR1v1MKTgEihcvjmLFiqFatWqoWrWqbviOHTtw/PhxyKiKazSAMmXK4K677sLnn3+OM2fOFJyOsqWFhgAV1EJzKgtHR3ITX08UKIr/CEh4r549e2rFc8KECdpSOnbsWMhLg+wzm83o3bu3dg2Q/a+//rr/KveiJLtdze5RyrXZkvm2ZbOmwBIR7UUJwctiUxZI9T9EpxMlML+Uu0Vb7ViuhuwtHtxJyxczYXy/CKzeZ8fbShF1zSbt3qQmUs3caEO/Zhbdn+BRZE3+IFCuXDncf//96Nu3Lxo0aIASJUrAbperU65LE06ePInNmzfrEZWvv/4a58+fR40aNfT39u3ba+X1008/9UdTWAYJ5IpA5jt9rg5lZhLwP4ElS5YgISHBq4LlRkvxH4FJkyZppXTmzJlo2LChLvjChQt44YUXsGzZMnTr1g3R0dEYNGgQJk6cCFFe8+LHmtcW75n1MpJP7kGzB6bAdsmPUpTT5eMaotMrm0NCSU1TOvSWY3bM3WzH9pMOFI0y6QlHHWuYUCbIw+Tidzrjb5tSRrIhrhTQKPWeZ4SbcpfTqqyws7c60EddElGc3e8OUUimiZ9527Zt8eGHH6Jp06Y4evQo/vnnHyxdulS/cIpy2qJFC1x55ZV6f5cuXTB48GA89dRTePvtt/WxH330kR5BCckOslGFngAV1EJ/igtWB0XhCabSU7DoBLa14i5Rr169DOVUauvVq5dWUFeuXKkVVEkbMmQIPvnkE0yePBkPP/ywJAVHTMq+J38uYjaFhiVdlNNJq22Yv90O2U4XB3artB83AeOujUCN0mJTDY5sOOTAsUT/1HU0wYHf9tpxdZ2s/P1TA0vxNwFxxfnggw8Qq+6pr776Kj777DPs378fVuultztVobjvyEunWExHjx6NO++8E0t+/RVF1CRIeWEVZVUWA6CQQH4Q8PluI75shw8f1kMIjRo10kOEYm2RtzGGDMqPU8o6SSBvBMTCUrNmzUwHx8fH6+8yec0QWSBB/NjGjx+fMVRo7Av0p0n8Z1V4JIc1Vf+ZrOpLiMiynXbM/NdZOU1vmExFOXoBeFdNVEoO4rN+24n0GKf+wvO76h+lYBAQ//yJyvqZkpKCW26+Gc8//zx2796dSTk1eiJ5tm7dqpVYGeovqvxUZeRErKjySSGB/CLgswVVfNPkgSVDBQ899BC2bNmCu+++Wztejxs3Lr/6xXoLKIF77rkHMlHHGxF/yP/973/eZGUeLwicPn0aRYqoGTNOEhOTHmPI+UElQ4MyFCgTpWbPnq1925wO8XqzWKyyJuY8kTijPJPZggN/zMDRzfPTHTwv7YmKKZ6RJ7uNQNsuf1GWU4kp6kl2n1YWTTWjPl4N+wdD9qlA/M7NEb9YWVrWWVJk/F6JfEj4KdeWRaoCjD4d9M7zxrn4sNo2aeu+CUVi0n9DES6+0v6GIb9Dd374pUuX1i+PUcoy2lW55axduzbHquWYGTNm6NETuf/KIijffPMNxAdVFFhDpM7czBMwjsvtp0XVY1b/WdRvXiy8ItHRUbktJuD5DRYxUdHan9ek/PQp/iPgk4KalpamZ/zKxSzDATLrT+TGG2/EvHnzslhjdu3apSdaxMfH65Ppv26wpMJCYNWqVZCZpd6It7P9vSmLeYC4uLgs/r/yGxeRGcDOMnDgQK2gfvXVVx4VVLHGZudPHFm0DFq//A+UMdQrcahJUhWaXoe6A/8Dhy39IJstDRs/us2r40+cPIVy5Zp4lTe3mWKKV0Ddod8humwtj4dK6KbeA+7HiY2zlWLuoil6PCpvO+yKS+ORi1C0SjP9EqAMz+hVz4y72qqHvnr4GyITuMQHtUtNM9pWy/xwldGxaWvtyv/Urid57d9/EJXjeyIt8bRxOD+dCFx72wOIKVoM11x3LTr3HYxvv52BJ4fdpp55gXNBkQlNriJD+7Xr1MGE997DunXrXHdn+S7D+1OmTNF+qOISIL7l4sJzww036KWk5VluiNwPZNJVoEUmZPa5ZyQOHtiDb6dMRKtu1+OxEY9i7xbvIrwEun1G+fVbXYkGra9SrhG3o8VV18Jqs6GMUvbNYTqBV87bzz//rKO/GIx8+fRJQRVn67/++gu//fZbhnIqjZEJFuvXr8/kSyi+L6LIirP2rFmzMt6KfGl8Xo+NjUm/QUf51Pu81s7jsiMgN8idO3dmlyVjX+PGjTO2ueE7AXnBPHLkSKaC9u3bp79XqFAhU7oMCYrUquVZIStbtiwMC2ymgy99sRQpJZPycyWRsaVQvGp9qOeAFhnq91bMShsrV66syn5ZQfP22JzyRcWV1tae7PJJrSXiigHShtx2PLuC3e2zWxEpFrxLfB2qcrGWJiSr3pvSE0VFFgtprLLopinr6Rll3XVWUWV/SoYvLdRD14yyZcvAGhs4hctdVwpKmiglYmEsVbKUarJaLjY6BuXLVwioMUb8Q519ROU3N3z4cJxWLjkSacNTODmDqYSb+uKLLyCxkWUy1dNPP60nSsrkqAEDBmh/88WLF2epQ/oZSNHWaFVFZGSEfnGWuorHFQ+KcpybfhVVLyQiJUqUhEMpZxb1uy5XvlxAX0py075g55XrIjLSfzMpfVLR5s+fDwmWLn/OIj6pV1xxBYpdWlNdfiTijyp+MHPnznXO6nE7Ufm+dFCzCy9evOgxT153xFZthcq3TMLHn3yJ14a8nddisj2ufPnyWL58ebZ5uDMrge7du+u39qx7mBJoAjLjVyyiBw4c0D6mUp+8TIpIqCln+fLLL/WNKLtJUn/++afzIVm21SRzXPdRGmJzdT8zNK704uy5UPRKlyqN+Zu3ZGmHvxJeW2TF73sc2trorsyiqp+TvvwfKolrQxDkZdWeVZfaI4rnr7sdWLjTauisugVVVCCMSYMi1epRdry2WGmjTk2TTQlPJVZWkRrVKmPB2pXpX/hvFgJj/99nOKsikHz11dd4feI09FFhnX744oMs+fyZIHM9xEBkSKVKlSAv7t9++y1kxDI7kee2DON36NBBR+WQCVGyCIeIDPPLc7x///56IqShBEtkAHHjC4aM+r8PUCe+Bh4behe++GE+Xn7l/9CxZXp0kWDU700dc5b+gdlLVmH8u+9i+k8LEaFeUrZu3ebNoczjBQGfFNQTJ07oh5ThIyL1SUw1GVaQi16crUXEB0YC/Y4cOVIP/evEHP6RB48MX/hdQVXl2kte0Dfp1NQUXUcOTcn1blHIs7Mc5bpAHkACQSAgQblFQRXLybPPPqsfUOJnKn5oLVu2zGjBsWPHsHDhQu2HKg/EvEqSstg5K0Q5liPD4m6Gxu0OJzNfjoUELsN1DcxYvd+mlgvNWoe6JaB5FWXBvTR6kzWH/1NqlDRhhbrTGfZOUTRdRx4jzenap+xTxqpMFlTXFtUq7ZrC784EDGtlakq6UcVmmPmdM/lxW+oz4pkaxcoIpYiE68tOZORDLKfy2xbLqbNyKseJ36kM1crKcZJXRkoNEWXV8L000vz9aZO+qf9syq0nNS19lCQtNXQmRBr9NVygUpXrg5wP4xow9vPTNwI+KajiWC2ze2Ulivj4eMjJ+u9//6uD/t533326ZbI6xQMPPKB/BM7hLXJqtvjD7d27N6dsedq/U00eeHymFY88Mhx3T340T2XwIBIobAQkSL8x0iFKqjyEJPap65KoMplCHr6jRo0KKoIyja9DWvLZTHE9zeYI1Or1rBpS8+lW5pd+tKhixhNdgPfVyk2nlY4SdWm8XBTWLjVMeKRjRMaEI79UmEMhjSuaEKuwOA/T53BItrt7NTBU3WyzcWc+EohV4aHESGS44LhriviQinIqLneinMrLqGE5NfKLoiWh5WTluFKlxGWBQgLBJ+DTXf3uu++GrDxx2223oXnz5npoUH4cMrzdvJlyzlcisdfkhyAKrPi3yZuZWFNd3QKC2fVEsdwoCcEXsmBiYF0kkIWA+K/Jnwzzy+/YeXTEyDxt2jR07dpVR+4w0oLxWbJWB12NsxFVZvZX7Tw0GNXnWIfYIjvXNKNJZRMkJNOUv+zamvrODRGoXVb5ZgVZv2tUyYwrSqoFA06l3+9y7ICHDEpXQYPyJjRQCi8ltAlIbOIffvgh26VJz549q5VYUU6ffPJJJCUlZemUKKgymjJnzpyAjDJmqZAJJOCGwKV3fDd7vEgSpVR+DDLMJzEUZWav+KSJo2wLNSQoM9rEwipO1uIrI1YZmaUtD0DDNO5FNcxCAiQQZAIS59Sdcrp9+3asWbMGjz/+eJBbVDCqU7c+lC5iwo1NLCgZ40C0usM2qBB85VRoyez8YR0siPHJDAEUU9F9BjZVQX+on4b8RSjPVXnmug79Ozdc8kg4PxnWd6ecGnllxFNCz+Vm5NM4lp8k4A8CPt66oJdJEyXVEFmNQoYESpYsqZNkVuCIESP0tlhQxQ9VQlj4c6aXUTc/SYAEciYgEx3cxU/M+UhAJkfVUSFs+vTp40125slnAg2V1bN/YzOmb3DjGKvaJjP7txy14+DZzDP4jWaL9bS7sgpfWcMnW4ZRHD9DhICMYlJIINQJ+KygOndQhgU2bNigZxEa6TJZyJgwJG9issKFa0xFIy8/SYAEAk9AJjHmNUxM69atIX95PT7wvWMNrgRubmHRgfi//dueaQa/5DutRnefnZs+yUysv84iLgnX1jXj7jZB9k1wbgS3SYAEwpaAXxVUoSjxTx991P3EI4mzyKHBsL3W2PEQIZBX66k0X4J3UwoWARnqv6u1BdXUrP4vlV/ssQQ129ipC66KqewqoxZDEsX2hoa0nDqh4iYJkEAQCfhVQRWrikyu8OUBGMS+syoSIAESCAsCooT2qGPWoa7+2u/At//YcUAN6zsrp+IEULW4CQOUS0DbK0woHaR4rWFxAthJEiCBXBPwq4IqtdO3NNfngAeQAAmQQFAIlFFK59X1Teiuhu5PJTqwX4XcS1arSMUoK2v1UiaUKabWd1dGU5fR/qC0jZWQAAmQgDMBvyuozoVzmwRIgARIILQIiPIpSmj5OJP+C63WsTUkQAIkkE6ADka8EkiABEiABEiABEiABEKKAC2oIXU62BgSCB8CsrxmyRigSJDuQnGyzKjMDuL4dfhcZIW8p2XLltVxyL2NqiGxyRMSLyImOlKtGuxQq4xZEVckRq8h7w0qmV/C5Ty9IcU8/iAQpEeDP5rKMkiABAoTgRIqoP2Pd0cWpi6xLyQQNAKilM6cOTNX9R08egKvTZyOzm2a4XxCIjZs3Ynnhg1G1UrlclUOM5NAMAhwiD8YlFkHCZAACZAACeQzAZtVxcK122G3qT/9aVMrPrpfxCGfm8rqSQBUUHkRFHgC586dK/B9YAdIgARIgARIgAQuE6CCepkFt0KMwMGDBzFmzBjs27fPY8tWrVqll9Vdvny5xzzcQQIkQAIkQAIkULAIUEEtWOcrrForyudrr72GNWvW6H7v378fo0ePxtGjRzM4yDCViPGZsYMbJEACJEACJEACBZYAFdQCe+oKf8P79euHbdu2oX///rqzO3fuxH/+859sLaqFnwp7SAIkQAIkQAKFnwAV1MJ/jkOmh2vXrsWQIUOwd+/ejDa9+eabGDduXMb3ixcv4s4778TChQv1srkvvfQS9uzZg/nz5+Ott97S+V555RXcd9992LFjR8Zxp06dwhNPPIGePXtqK2tSUlLGPm6QAAmQAAmQAAkULAJUUAvW+SrQrS1RogSmT5+O7777TvfDpmLyyRD+66+/jrNnz+q0JUuWYOrUqZB4e4cPH9b5Dx06pGPvpaSkZByXmpqq1hG/HNDy1ltvxa+//oq4uDhtZR0+fHiBZsXGkwAJkAAJkEA4E6CCGs5nP8h9r1OnDurXr485c+bomv/880/IDHxRVBcsWKDT5s6di1KlSqFz586ZWterVy+MHTtWp7344otaia1du3ZGnltuuQXr1q3Tyu/AgQMxa9asjH3cIAESIAESIAESKFgEqKAWrPNV4Ft74403Qmbci2K6aNEi1K1bFw0aNIAopiLz5s3D9ddfj4iI3K0hcf/998NsTr+cmzZtitOnT3PFkwJ/tbADJEACJEAC4UqACmq4nvl86rcoqFarFb/88ov2M7366qvRu3dv7WO6detW7Nq1C5LHF4mKitKHc0k+XyjyWBIgARIgARLIPwJUUPOPfVjW3K5dO1SoUAEzZszA6tWrcc0112gF9fjx45DJT9HR0bjuuuvcsjF8TpOTk93uZyIJkAAJkAAJkEDhIJC7cdTC0Wf2Ih8JyDB8nz598Omnn+qJUN26dUNsbKye3CQTqMSaWqxYMbctLFcufb3ozz//XPutNmnSxG0+JpIACYQuAUewm6YqdJpPGezaWR8J+J1AMEcHpS7Dfc7vHcmhQCqoOQDibv8TkLimoqC2b98eMrNfRMJDyex+I+appMlMfhHjx9G4cWPtnzplyhTI3x9//JElj+SX4wxrq3ynkAAJhAYB9azDt//YcCGIgyAR6jYypJUFlstBP0IDBltBAnkkIM/PTZs25fHo3B0mk5ifeuopVK9ePXcH+iE3FVQ/QGQRuSMgVlKJU2r4isrRMuQvMVDFmmqIKLCSr0iRIkYSZs+eDXEHkElUpUuX1umueSQe6iOPPJKh2GYczA0SIIF8JWBXCur8zXYcSlAvnkFqSYx6yg1uobTU9PfdINXKakggcATEmGNEvglcLZdLHjx4MBXUyzi4VdgJOCud0lexkjorp0b/XfNJevny5Y3d+tM1j1hPY2JiMuXhFxIggdAgIL9Piyl4A/0c3g+N885W+I+AMarovxJDs6RgvcSGZu/ZKhIgARIIFIHg6WCB6gHLJQESIIF8I8Ah/nxDz4pJgAQKCwHRRdNswPZjdmw57sABtTDamYsmWO3Ap6ttiC9lQotqJpQqYuKEncJy0tkPEiCBgBKgghpQvCycBEigsBOwKe1082E7Plptx+YTDkSJu6PThJxvN9lhV4qqTNa5rakZfZuYUSLGKUNhB8T+kQAJkEAeCFBBzQM0HkICBZmArOIlk8yKFi2a625IyBGJQ+vOXzjXhRWCA04nO/DFn3b8ttuOZGVBLeLmjip+VHqRM6XITttgx+r9DtzTzoxWVc2gmloILgJ2gQRIICAE6IMaEKwslARCl0CnTp0wdOjQbBsoSmhqamqWPA8++CCGDRuWJT0cE1IUnnd/t2H+djtSlHLqzc1ULKt7zjjw4i82rN1nB91Uw/HKYZ9JIHQJSHSd3C41HqjeeHNPDVTdLJcESCAfCIgV1FOg5xUrVqB169YoXry4/uvSpQv279+f0UpZ5eubb77BoUOHMtLCcUN8S//3uxVrDjgyDec7sxh5lQVjuruPbSRD/v9PKbf7TlJFdWbGbRIgAf8REEWzbdu2eO655/D999/r0FSTJ0/G3XffjcqVK7ut6JNPPskUj9xtpiAlUkENEmhWUzgIHDx4EGPGjMG+ffsKR4ecerFt2za9YEJCQgImTJiA1157DWvWrEGPHj2UD6XSqJRIDFtxDZD94SzrD9ixcp8o+p4pNK5oQtMqngfxz6hg9ZPXKdNrPsqpJDWhS1l0TyWqvuRjOzxVnZJwDEfX/wS7zZqRxaSeWsc2/IyU0wcz0rhBAiRwmUDZsmV1LHBZzEaWFH/11VfVIjd90PHKK3HnnXfis88+w549e3T88V69emmLqRzz1Vdf4fbbb8ddd92FyMjIywXm0xYV1HwCX5iqFQvb6NGjcfTo0cLULbd9WbVqVYbi5jZDAU6cNGkSEhMTMXPmTDzwwAN4/PHH8eyzz2Lnzp1YtmyZ7ll0dDQGDRqEiRMn6rwFuLs+Nf0b5Uuakq6z57kcic+58YgD6w76WFAeWpCaBvx3qQ3DvrVixE9WPPC9FW8utuKM8qkNtOSmhuRj27HjhzFwpCZmNMui/Hx3fT8GCYc2qDVMM5Kz3/A2X/alcG/QCDiQESrXEconz6ltIdLOunXr4rfffsN7772Hli1bQpYQ79q1K6pVq4rqV1yBK9SfWFAPHz6Mm2++GT/++CPeeustfKaWEL/11lsho2iipKalqZtEPovfFFRZBUisSjt27NAr/YgP2+7du/WEinzuI6sPMAFRYP7zn/8USquiK7p+/fpBLI3OS7K65imo32Vlknr16qFhw4YZXZC3a5GVK1dmpA0ZMgRnzpyBDBWFo2w55sAOZXX0x83zojIMLt3h0OGogsXy4FkHRiqldNFONbFLPYOkDUnKn3bZHgdGz7GpEFm5USED3WoTzKLJO+kBUiOXMg40d5ZfEAmIe9a8efNQu3ZtiMFB7ueijIqB4cSJEzh9+jQOHDiAqVOnolGjRujbty/WrVuHxx57DNer0bH58+dDVo2S+3soiD/usZAhwYcffhjNmjVD8+bN0a1bN21S7tChg36Yh0JHw6kNI0aMwKJFi/Duu+/i2muv1eZ6ZwVDzPgvv/wyvvzyS3Tv3l0rlwafr7/+Wg8ByHFSjrxkGHLq1Cm9Ju8111yDgQMH6oteLmh5+xJ55ZVXcN999+mXFOMY508pS97MRKGVpUivvvpqyLKk8qMxROr86aefMHLkSN02eZsTkXWHH330UUjdMvwwa9Ys4xD9KcufPvnkk3qIWn5gv//+e8b+v/76S0/skWOl3pz6JAe666uky4/7pZde0sMj8t1gabx13njjjZg2bZrsypAlS5ZAlDrprwyvCCNR6ENNxAJes2bNTM2Kj4/X34WHIZ07d1Zv49Uwfvz4jKF/Y184fG48ZNcxT/3V191K2U1KCY5SKL6zMzfasdeDErpPtWXSH7ZsXRf81W9vy7GmpeDCke24cHir/ks4tFddd/lv3fG2/cxHAsEgUKNGDf3sFCupPD+HDx+O7du3w2q97B5jtEPmIMgS4fKclKgu8sInq1Nt3rxZK7JGvvz+9FlBlU6KmXj9+vWQB7E85GR4UPzXZKKFKK2U4BKQdXpvuukmfQ7EnP/rr79qP8ItW7bohohfiiio8mYlQ7bGhBcZzr3tttu0clarVi3tnyIvHOKrIiLKpQwXyAtIiRIl9FuYXOgpKSl6v81m0zO/PVk3jhw5opViectbu3YtKlasqJXonj176uPlH2m7XE+i+MlswpMnT2L58uVo06aNVrrr168P6Ye8+X344Yf6uAsXLqBVq1b43//+p9slQxfiKykix8qLklj2mzRposuXvKLQirjrU3bpUrYwMJgJS7nWRfmVdogCe8cdd2DOnDm6fNkviqm8xIllUpRvcVb3xEgflE//yIuC67KxxpKx0jdDpO3yEiBMZ8+ebSSHzaesI+/qeyqz+JPVcyDjT303VM6MNKf9zscfT1DDmVEuJsIA0UxS7fp9r2eXAjFWrj3owPEADfVb1BNH6siNpJ4/jb1z/w+7fxqj/3b88DRSks97XYTUF+Hzky7n6kziHKsk+tIyyxHiixBiYvyeI9XkGYvFolsXExt6y0JbFEvhaTFbEK2eAyLR0emf+kuI/BN1yU9T2ij3RZOOJxf4xhnnzqhJ6hY3u0qVKuHFF17ABx984NUQvbgByMRXMTSJcipuXfJ8dxXX54Lr/kB99/kXtHTpUq2YymeLFi10O8VK9M4770A0egG3YcMGTJkyJcPpVvKJrwMlcARE+RPlTD5FoRPl6NNPP8Xbb7+tKxVlUvwIjZBBonD997//1d8lXWTUqFFo0KCBPpcyKUYmzIj/ocwIdBZRcuXl5MUXX0S7du2cd7ndHjBgAGSmoLyxyRDE888/D1HkjGMlxqY4dsv1IyIzycuVK6eVWpmgI2+EVypnb6nvoYcewscffwyZvCRDG/JjExFfUREpW/qwePFiXd+9996rFVUZnn766ac99slTX3WhLv9Ie2Rmuwz7iyInNwlR3K6//nrt31O6dGnt1yk3FXlACGexHIeaxMXFaUXauV2GH5K8bDqLWNDfeOMN/SIhLwvuRM6bKOaFSUwmC0pd9zqianS53C2lAL3Tx4LYSLXhJOVj1QNL6QAT+2e+zUpg//G/2bD/XLoKm5RqQ49rbob17D6nowOx6UB02dooM3h69oWrCXEDhzyCC3tXaCUh+8y53KuAlB/yLczFq3h9YJFSFdDwjo9hKVJCH2OOisHKcU28Pj4p+SJate4Ihz2rJcnrQnLM6ECTbjciMroI7rzrbtRr1x1z583B+Fee0fedHA8PUoaiJcuiYceemP7Vl4iIikbpStUxSP2WE89eHiEJUlOyrcasFNOW1wzA5uOHsGTu94hv0g4vvfwSju/bnu1xwdwpxplq9ZqhUu3GeFLdz6s3aqWuMTuaK6Oc+ZLyH4j2iE61d+/eTEVXrVpV61RiMTWe35kyuHyRCVHyTB+gzv2K5St02EEx/ohhZdTIUfp5bhie5NBbbrnFq7jZ8kwX1wIxbPlDMt8581CiKD2iFIgzrrMUK1ZMW7UkTXz2BKgoCyKlSpXSn/n1j5xgkSC8VOdXFyG+g6KcioiCJhbRrVu3ZrRHLlBDOZVEeYkQZUQsioaIs7VcaP/8849OkvMsF78MCYjPSvv27Y2sWT5FAROlUUR4y0VriAzRy4UsIkqcXBdyjRgKqlhxDeVUbgJibZVhcSOwvITOEGVQ3hjFErpx40ZtCXZ+8xOrqYgM70s4DXEPcJZdu3bpr5765CnduQxju0yZMhk+qXLdS9vF8isiVuCzZ8/qdoriKiMO0o9QiTNn9EE+pR9i5XYWI1pBhQoVnJMzriW5rjyJXG9yrRQmkeu2YftTKO/SKVnKtFh0ZgVVW+1UUs0ymdNlmD3a6c5rs6Zh546tSDqxx6VU/3+Nq5CK4qkqNJY5c5uca7IrvXn7lr9xds9mvyuooniUUDO0ijhXmMO2QzEXpdQcmW7pi1CTi5Xqn8NRl3c7HHZ9vdqsytE2QPL/2zsPwKiq7I2fSS8EQguhg1KlV+lgAWFFQcW1rYB1xYK9/Xd1dQV73XVtu4jYEUVELIAURYqCVAFBpJfQEkgIqZP8z3fhhUmZtHmTvAnf1TAzr9x33u/N3Pfdc889D+1U6z5Djejbvn2rEaiI41uvbWfwSS+bnw5dpmrrxDdUgZoriYcOS5g6AiBQt23dJocSTrTVZarMnxvr96TTeZfIcZ3LsnvXbmmqAnXvnt2yWb18Tim45qE14iVeBerOXTulgYpVOH5wPwoLD/ebmThuwRzVGP2EgwFhbta9x5sBcADBgQjROf+7eTLqz5ebmFPcp+DY6dW7l3FoYVTcKgiLK+i1tdZ5vqJ9xD3OruLRTJavSogHxDt43nAxQQpxhpbgANDY2Fhpr0OsCHi3xElxR8SkKwiQgheiuH1Kuy4zpoW4z7hF5s1fJKve/6K0u5VpOwyBY+jXKQUpI3AdrFLwGlhB0RBYngXeUcuLNlln+cH7/Z///Md4zh588EGvsZS43tYXFQK14PGsY0DAoVhpjPDe84eA6496irIL28I2DE2jBwlbPQsaC3g0sdxziALi2Qor8HZO3pZ71u/tPc7JOh+EM8DD2rJlS0EPFQHpiGF1YkG+PIRWIEwBMaYoVqwvUk15FsQv4zuF2HNvZevJToC39YG6fMqqEPlq06khfIzlX6+z4QtKpv9cEiIxKlpHf1w4XhITk6zSoGa4rF25XGqWRbVZO5fxNS3LJS8sdsmahKJ3xOB/vWpBsvnn2Tosfqq9KHrrsi916wHGzwqVA/bdw0o0IjIi0sxY9vcw/4Q3PpKU1OM6ajJT3pg6Sy67dJTMev8tI1pKNLKCNtiZcEj+9d7ncv0NN0qKtqvrf98hc+bMlaYN6laQBaU7jFt7SY++MkWaN2kkt4y5Sj6bu1ieff4F6d+1XekqqKCtvv5hucz/aY38961JMnP+EnPvykjXh5xkefzAbbYF3lmE8M2ZM8fUDMGJUUlk01moI9nFFYyEITQOTqAli5fItWNG502IQgYXhJ9h5Kt9+/YmbNOqa+7cudJD72WlKeGR9jVkPgtU64kzOSp+LI8kYvQgLBDzhwKBgOFmuL4x3IlJNZZ49XbC2H/KlClGYHjbplzLIZZb9JEud96snsG1snn6f8tVTXE7QQg2bNiwUgWqZ3J1eLEQRzpo0CCvZjdr1sysg8fRCtWAMIQXbPjw4WYdBAnEHTokCNFAzOdTTz1lPKTYAN8FqzzyyCPW20KvnrbBc4vSpEmTQtthAb478ARD2HkW2IkfJryS2Bc/VvQAIYxRIE4hdCG0IF6t0AbPOvDe2zl5W15w/5I+Y8IUntx04403moYAE9cQnuDEAs82BCoaO/TIEW+LYXx4yj1HSPbv3y9osBCHCv7eSnSBzo637QJtefv6OfLt7+58M+/TC2tQgScSz4rCTPniSqMaQVI7tppEqmfQ3wUPtx3eLkfWH1T7NR61YInSkITre6qXszq2tL9AoAYF4+ZdOvGLzm1wSP4YSaQfcoWGa7ujxpaioA58F/0tUE0nXHsp0ZGWpzdEImy8WZfiVEvcJCriRLquUO1Eh6gnG9lv0Y467bfqVq83iks9qWHhJ3hGqBfdaXaGhp5wsCCOV90wxgEXqvbq19OvxdOJg5EvOGDWrFlTrEMP28Fz+mf1nC7UkLwrVaRaczEsY+FBxdA+5mlgpr9VcB+uDPY+C1SIUMQTIu4UNyucFAQohAG++CgYeoWyx0kiThDDrXgFMG8FHjOkvYHQsLvsSK0m728L0Qt1lQy5q5/d1Zv6LM+gXyovRaUzZ86UsWPHmhnviDXBlw69Jm8FHQYM1yIJPToRGBbHdYRnFbMBMYsbMZuYAIfwAIhehGqg8Ud8KAq8jrhe+E7ExRUcBD11ZIg1iEmkwkA8KwRk//79T21Q4B1mwCNuE1kCEBKA7xKyDWDGP24KEFTw6l533XUmywCCvf+hgeKIq4WIgojGDxOxkhDd+O4hBALHLeqc4JEtajnOtawFbKZPn244gRuGf9avX29s9Rx1KGu9/tgeXmVwRMgFmOI7jN8uOpyeZerUqeY6I0b5dCy9mwdJDZ3pfvhUf6zcGCCaujRyVYg4tYzsq/bfpRpxEs4h/USoE77aNfSmemXnYBnYwnI1WHtU3mtsy74yaOJyycw4ZQPSMw6YsFw0MkJHKk4t5zsSOB0J4D6CEWuE4lkjd0VxwH0QToifl/0kl2iIXFHhVwjLw/2zqJn/RdXp72U+C1QIAQgheN0gOBHviOFMDL1aMYPwalmeLcQ4AhRychUnUCE8MHPbHyVyb464driNZ65Xr4b+OESl1wnBCSEHLzR6V2CO9EAoYOvZA8MyeAwhpPAFtnJ8osMBjxo8aHD/I5wDT6BAQUwi4o9RMBwA4YiJcPjDhKfiBCqEEGJlIJqRZQBiE8dHgW348yyYDIW4GghUiCecD+JnJ0yYYDaDiML5ITMBkg5DWFnxtRDc+K5BCOOYKBDimOWPCUtFnZO35djX4mbZWBRLbGNtB1GKBsSK10UjAtsQ22nZj3qdUtAZwR+G+XEN0aksWOAVHqTeeMvTXnB9Vf8cqo67i9sFyaQVOXmjRuU957hol5zfSius4HJuyyDp0MAlK3bmymtLtFNZ3yV4NGvdamXvhPnTdDjSPMWpdayillnr+EoCpxMB3EusEenihCUyyOB+CwdRUeIUzOBRxb3KH47B8lwTnwUqPF9wC8MjBpGBHFwDdBlEKoJ2CxYMGWMIvGBMYcHt+Nk3AhD3GILHMC2Epqe3Dp5RCLqCpWPHjibuJDk52YhHyzOK7dDZwBACvsAQlghhsEQa1mPWOtbhOPDAFlcQJgCRgxneBZ8HjJ6gp62oB9+Vd3TWPTz1EJsQx5YAtI6DIen777/fTMyC3Zb3Hq+Y5Y+0Gxiahrj1tM/bOXlbjh8vvLCoB6UolghnsbytWA+v87PPPmuZan4bngHoeSsc9MaKQS1oEmaJIsMBPPSncxnSJkgWbs2VbYneh6qzVFwVNwAEr+XVXYM0TrVySNZVcdxJ++fw4sbqKGpcjLPEaeVQ4VFJILAIwGtanOfUOhvM0LfSH1rLCr5Cm1lzTgquq4zPPgtU3IghGKxZvsiDimFhpDWybtJIBQTFDpEDgXrLLbeY4dXKOOHT6ZgQcUUJDU8PX1E8CqYU8tymOM9oces868B7dF6K6sAU5bGz9kUHqKCgtdbhFeeFHmJRBaIXorqo4s1ub8stcYq6imJpeYOxHp0DiHGIZlwLJPSHCIeYrqwCFrC7PAWTo9D5tOKSy1NHVdineoRL7lWP49++zZajHsPPnuf2+By3hBSj+Ya1CpL+Z+YfLfDcn+9JgARI4HQm4LNALQhv+/btxsPmmaAfw6zwXkGZY1gfsYcs/iOAzkFRwtR/RyxdzchsANvwerqUr7/+2kw0mjZtmunlQkAjTtsznVdFs8CEM6vzWNZjIysB/sq7f1mP59TtoTvPqOuS+wcGy3+W5ci+5MKe1ARNwF9UCde+wfka53lTr2AJpT4tChGXkQAJkIDYLlAxpIoJFriJWQWTUfDHUjEEMMPaiQWxqpggdDoV5JK1YnWdct7l9Z7C/osuusgpp+EIO7o2CZJ/1wuSZxdmy2KN5yyQqz+fjTp6ZobTHz4nWHo2ozLNB8ffH4ruK/j7qKyfBEjABwK2C1TEMSLujoUESIAETgcCURpD+rfBIbJ5f64s2ZkjWw7myl59StQxzQuP+M44nXjURLOfdW4YJL2auaR6gYT+pwMjniMJkAAJlJWA7QK1rAZwexIgARIIdAIYqm+nM+HPig82eU/T9XmmJuennlho8Ik0Upj9z0ICJEACJFA6AhSopePErUiABEigRAKYmR8Vpn+FnitV4q7cgARIgARIwIMAA6E8YPAtCZAACZAACZAACZBA5ROgB7XyrwEtIAESIIHThkBGtj7+FU87rchSTLqvijSDxyIBOwjgUfAVWUqTZ9Uf9lCg+oMq6yQBEiABEihEIEiF4uujQjU+t+Km1eOYGgbMQgJVhsCnn34qpRWp+Oo/+so7+uTEUJlw1w3y8pRPZdvuBHn0ttESEa7xSKUo1pNAS7GprZtQoNqKk5WRAAmQAAl4I4AY3ermyVlUjN4YcTkJlESgrIIxKjpGn34YLtEx1fXJjLESGZUqdeL0iYtFPMq6pGNX5HrGoFYkbR6LBEiABEiABEiABCqawMlBC2vswmW9qWg7ynA8CtQywOKmJEACJEACJEACJEAC/idAgep/xjwCCZAACZAACZAACZBAGQhQoJYBFjclARIgARIgARIgARLwPwEKVP8z5hFIgARIgARIgARIgATKQIACtQywuCkJkAAJkAAJkAAJkID/CVCg+p8xj0ACJEACJEACJEACJFAGAhSoZYDFTUmABEiABEiABEiABPxPgALV/4x5BBIgARIgARIgARIggTIQoEAtAyxuSgIkQAIkQAIkQAIk4H8CFKj+Z8wjkAAJkAAJkAAJkAAJlIEABWoZYHFTEiABEiABEiABEiAB/xOgQPU/Yx6BBEiABEiABEiABEigDAQoUMsAi5uSAAmQAAmQAAmQAAn4nwAFqv8Z8wgkQAIk4CgCuWpNdo5IlvuEWbm6AJ/xykICJEACTiAQ4gQjaAMJkAAJkID/CbhVgCYczZVfE3Jl/b5c2XAwVzJVpK7cmysvLcyW9vWDpH28SxrUcEkw3Rf+vyA8AgmQgFcCp6VADXa5DBC2v16/F1xBAiRQxQikZoi8scQtP+/KkZTM/CeXousWbM2VhdvcEh0m0rm+S8b1DZaakSfayvxb8xMJkAAJ+J/AaSFQMXSVmpErm/bnyuZDufK7/rl12RZ9/WV3jrSsG2Qa5WC2xf7/xvEIJEACFU5g9Z4c+c/SHNl7JFeKG8XHEP8xFas/bs+VrUluuaV3kHRpGCRsGyv8kvGAJHDaE6jyAnWPDmd9uzFHvv4tR45ow4uGFn9woq7SYa7lX7klvppbLmwTJBe0DZLaUVSpp/2vggBIoAoRWKfi9Jn5bjmq7V9Zyl5tOx+f7ZYnhqpHVUUqCwmQAAlUJIEq2+pkqydgtgrTv32VJdN+zZG0bJHwYJEQPeOTI/xGqGJZUprIeytz5GEVq4u25XCiQEV+A3ksEiABvxHA0P2/l+R4FafVdDh/ZLsg6dm46I45YlZfXayeVxWrLCRAAiRQkQSqpEBFo/rpKre8stgtB467pDQnCdG6Wxvh5xe6Zf6WHEEdLCRwOhDYv3+/jB8/Xs466yzp06ePzJw5U0aMGCGPP/746XD6Vfoc/7fUbdo1bycZE+GSsT2DZcCZQaJRT0WW3cm58vFq7bgXuZYLSYAESMA/BEqj3fxzZD/W+rN6QT/SBtVbgRc1NkIksogAB6RdeeF7t6zVYTEWEqjqBPbu3WtE6erVq+Wee+6RCy+80Lz++OOP0rp166p++lX6/HYk5ZoJUaU5yeJuBFj3o7apSWmUqKVhyW1IgATsIVCERCt7xWlpaTJr1iz5/fffpVatWjJs2DD54osvpHPnzjJgwICyV+jDHrt1EsDL6jnNKkZftolzyWODQ+Sb39wyaXnRG07R5c1quziL1YdrwV2dT+D++++XevXqydSpU6V+/frG4IMHD8prr70mzZs3zzuBnTt3CsRsaGiotGzZUqpXr563jm+cSWCNpo46kn4qpMkXK9M1RGrW+hwZ3V1jolhIgARIoAII+CxQjxw5IkOGDJENGzZIq1atZNeuXfL6668Lhg3/9a9/VcAp5D/E3M2aQqWEyQDI7xcWKhJUjNtgk87wX6YzWYe1LTo2K/9R+YkEAo/AqlWrZNGiRfLKK6/kiVOcRYsWLaRatWpSs2ZNc1I//PCD/POf/5QzzzxT8HsfN26cDBo0yKzjP84lsEVznNpZVu7KVYFqZ42siwRIgAS8E/BZoP7jH/+Q1NRUWbx4sXTq1ElSUlKMB3Xt2rXSsWNH70f2wxqkk/pph32N8uxNOSpQi1GxfjgHVkkCFUVg2bJlEhwcLN26dct3SHQua9SoYUZD4E294YYb5N1335XevXvrBEJNU1TKxw2tWLFCsrPV9cZS4QRCXDmyee9ZOiE0Ou/YCGuqVy1/h7t2NfWw6hYxuq5tnfzrsOOB1FwzidS8T86Q7xev1smmvKbgUbCkZWRITk6OrN+w0TyS6/Dhw7J8+U/idtCEhsNHjplJwPv3J0haxolkuL/+uk4Sdm8reDqV+hlNTHaOW46rtti+TW3TBdt2bJcI0RnNDip79+wxtm3R0eOs7Cy9/i5ZsWK5tnsnH9HmEFuz1Tb9esqqlSsk+egR8z1dru1zWIj9IyLt2rWTmJgYW87cJ4G6ceNGef/99+Xzzz834hQWwbCzzz5btmzZkjcMCK/qY489JuvWrZOoqCh59dVXpX379racgGclh4/lyk6bZpti0tTmw7lyND1XauhEAhYSqGoE4A3FDRW/SaukHjtmOpsNGzaU2rVrm/cQpL/88ou88847JmxnzJgx+fax9i34ilAf3KRZKp4Arln/R36Sak276A3U3EOlT9Mg+Wuf4LwsJrAqSFdiJKmrppHq1CB/Zxwi4e2f3TJDs6CgPdx/YL8Mv2eEpCbtq/gTCoAjXnHrgxIVU13G3zlehl11o8z7bo48fOsYZeec+0d8o6Zy0Zjb5PPpn0lYZJSccVYnufnmm1Sg7nAU4aCQEBlz92Oyb9d2+fyDSdLvwlHy4vPPyPpfljnGTvzGug8YIl36ny+P/+NR6TVkhLi1Q96jR09HXXP8eEff85hkpKdJ1263yvCrb5a4Js3kT8Mu1A5Asq084fD4/vvvzbwGOyr2SaB+8sknEhcXJ23atMlnS4ZKddzgoqOjBTe8P//5z/ojuFmeeeYZSU5ONje+fDvY9OHXAkNaaGAzC4aYYtnJzk2Ovs8o0NFBWxJmtdO6/o8kbbxPhObZZCWrIQFnEMAQPuLH169fLwMHDpRst8Zkv/22LFiwQG677TbTyB7T3y+8qBgRuf766+WWW27RnniG3HXXXSWeBOrE/iyVQCAnW8JiogXp9lBytV07eFzzPu88ITZPLD0xUbRDA5cc0QlQmwu0nxC2CSnqMdd99X+JCI+QAf37ijvd3puaZUugv0ZFRevjYUOkW1fEQbgkvn4DuUDD3yAQnFLCY2KNbY2aNJHgkFC10iU9evaUjLOcNSHS5QpW+0LMSE679h0UYZC0bdtOGtZ2Tuy7SwVGbOOWxrYOHTtJeFi45CjTIYMHi6u4+MEK/zK4NKQxVEL0ezj4/POkdt06OnIWYtp8d3YJ8ZBltBWdsdhYfMfsKcoYMq58BTesNWvWmDg2ywuDm9yA/v2lif4APvzwQ5kzZ47cfffdMnnyZElMTDRxbKWZHQxh271HD3MDLZ112iD0vVFqnfNA3uaN9HnSjw9Wj4ElOE+uCQvJlVpRQXJcr02yPmHKs/x2IFee1KTWmOmPkjDzPjm8+vMyfeGAND4+Xn766acTlfBfEnAgAUx6Qvx4ZmamGfXA7xMhOps2bTJxqVdeeaXMnTtXhg4dKvv27TOdUUymeltF7OzZsx14RjTJk8CLmo0EMfmWPkJf3ZW/uZP61V3yxqgQM0v/mQXuQin5IE6t5rO1hgC8NNInn4aneVXu/d9efFuOHkuRu0ePkucmfyLd27eWGy//k6POc/feAzLxzQ9kQI/OknwsVVZt2Cx/G/cXaVw/zlF2wpg7J7wm8XVqSr/uHeTDL7+TK4efJwN7dHCUnV98t0S+XfSzXK/XedqsBSqqg+Wp+250lI0w5t4nX5fIyHCZcPf18sqUz2XLjt3y/EO3qKjWyTgOLj61NiHaw0H8KbwwlkD9dNo0423B8F6Q9iJ27NhhJlY899xzZvYvxOpHH30kXbt2LRZLjoq8pKQkSU/XaailLJHJR6WWx7YQptX1WdJBBTqwwSdbbFybGlbrfXK/6NDcfPkAk5OPyJGjidrIlw1VeHi4hyV8SwLOI9CgQQOZPn264Ld5/Phxk/u0h3YKzznnHBk0aJAxGCMkkZGRJhQACxhTarAExD9nahaSuR6WGqFZoC20mj+sw/sCq/N97qyeVpbiCJxQ/zm5J4btfPD9FHcQn9a5MWyoBbZZ9jkpRtY6ObcydOkfWFp25uL55A4rebYZnmqcvjq2nDTNshnhXU4vZVNdBc4GORMxeeKJJ56Qc88918SYIiY1IiJCOnQ40dMBhKysLHn55ZfNsH9YWJjxzkyZMqVAbfk/IpYVsatlKT/r5hPnn9pjl+YBvOqDrFMLTr7rWF/TTF0QIl9tyJFJGmPlWXDJ8ob49f2MD/8nbev9T2/QnlvxPQlUDQLIvPHf//4372QmTZpkQnMwAoCC5P19+/aVBx54QC7XUB2I2TvvvDNve75xLoFOKigxMaqsjzgt6ozCVcFe1N5I3KJWcxkJkAAJ2E7ApxbnwuHDZcKECSbnKW5gf/zxh5nxC+9hly4anK8FORYROIsbHjyqjRs3NkP9pTkT5Fwsy1+HBrp9gUlpmNlf8M+aVAkvbcF1nkIUj0FtUS9U7S+bHZbNpTlHbkMCTiKwZMmSfDHl+C7P+HyGGfH4fuFCeeSRR+Saa65xksm0xQuBZrU0vrCxT018Xs39zwhiTug8GnxDAiRQEQR88qCGqPC87777zJ9l7FNPPSUQqE2bNjWLkJoGXlPM9MdjFJHAH7P8/VGidVS9XT2XrNYE1b4WiNizm7gkooDg9bVe7k8CTiaA2foY4vcskVGRpZoU5bkP3zuDwK19g2VtQo4k6Fw1b1K1pIH7uprk4ZquQXmxrM44M1pBAiRQ1Qn4JFALwkFsA5J/Y9jQKng6zYcffiQvvPC8mVyB2FM899sfJVhb2n6aSmX13vzD9uU5VqTGp57X0luTXp4auQ8JOJ/AypUrVYiUJFmcfx608ASBCG3h7+ofLM/qBCg8VapgQRq9N5e4ZZ+m6CuqtUM7OE5TU9XTyVQsJEACJFCRBGwVqDAcuU5HjhyZ7xz69+8n+KuIMkhF5Wydufq75jAtb4H3tLd6T7vaNDxWXju4HwlUNAGE4bBUIQKqKztrjtMHzhF5caFbDqtI9ZzHcVxztX/1m05E0e0KXvm6msT/tt7B0lM7/SwkQAIkUNEEbBWo8LzgsYhROuu3skpUmMj/nR8s936ZLYnHi7YiXedN7Uw89YSUglvV14cgXHe25mGj06AgGn4mARIIQAIQqS+PdMnU1TnyjT4hL10fBoW+CKSnNXsf80ARg48Ue0O1oz+qS5A0oOc0AK82TSaBqkHAVoEKJHXr1q10MnH6OL97BwTLq0tyZF9yYU/qJk1IPe7z7LzG2dPgM3RiwX2DgiUumurUkwvfkwAJBDaBWtqm3age0YvaBcmPW3PkN20HD6aKIHtPsIrS2hpr2rauS/qfGST1YlyFJpwG9tnTehIggUAjYLtAdQIAeAS6NAqSFy9yyYS5btl4SHObwj3gUQp6R+FNGNDUJeMHhEiEs3PXepwF35IACZBA6QmEajvXKNYlV3Y9MfszXcP13epNhUBlu1d6jtySBEjA/wSqpEC1sNXQJP0TLwyRtXty9EkpubJmb47sV4+BFYOFBP54kkr3Ri7p3cwlZ9ULotfAgsdXEiCBKk/AZClhppIqf515giQQiASqtEDFBQnTxrd7kyDp0lgkKzvYPHP6kIpUDOBjEkBslMt4Dwp6VAPxYtJmEiABEiABEiABEqgKBKq8QLUuEgSo5tuX+FCXxFe3lvKVBEiABEiABEiABEjAaQQ08oiFBEiABEiABEiABEiABJxDgALVOdeClpAACZAACZAACZAACSgBClR+DUiABEiABEiABEiABBxFgALVUZeDxpAACZAACZAACZAACVCg8jtAAiRAAiRAAiRAAiTgKAIUqI66HDSGBEiABEiABEiABEiAApXfARIgARIgARIgARIgAUcRoEB11OWgMSRAAiRAAiRAAiRAAhSo/A6QAAmQAAmQAAmQAAk4igAFqqMuB40hARIgARIgARIgARKgQOV3gARIgARIgARIgARIwFEEKFAddTloDAmQAAmQAAmQAAmQAAUqvwMkQAIkQAIkQAIkQAKOIkCB6qjLQWNIgARIgARIgARIgAQoUPkdIAESIAESIAESIAEScBQBClRHXQ4aQwJVm8DTTz8t/fv3lz59+shbb71VtU+WZ0cCJEACJFBuAiHl3pM7kgAJkEAZCTRv3twI05CQELnnnnsEnwcPHlzGWrg5CZAACZBAVScQcAJ1/fr18scff5jr0rlzZ2nSpElVv0Y8PxKoMgSuuOKKvHNp1KiR7Ny5M+8z35AACZAACZCARSDghvgnT54sCQkJsmfPHhk3bpzs2LHDOhe+kgAJBAgB/I7T0tJk9OjRAWIxzSQBEiABEqhIAgHnQX3++efz+KxZs2vTM80AACg6SURBVEa+++47ueGGG/KW8Q0JkIBzCeTk5Mh7770nM2bMkNdff11CQ0OdaywtIwESIAESqDQCAedBtUht3LjRDPWPHDnSWsRXEiABhxN4+eWX5auvvjJxqHXr1hUIVhYSIAESIAESKEgg4DyoOAHEof7973+Xe++9V2rXrl3wnPiZBEjAoQSWLl0qqampMn78eAkODpbLL79cLrnkEmNtruSKS/9jIQESIAESIIGAE6gQp1dddZW888470rVrV8nN1Zuaizc1fpVJIBAITJs2zauZX85fJo3iakuXdi35m/ZKiStIgARI4PQgEHACddSoUSZu7YUXXhCkqrn66qvlggsuOD2uFs+SBPxIICUlRTZs2CDJyckSEREhjRs3lmbNmsm2bdvMxMTu3bvL2rVr5ciRI9KhQweJi4uzzZqEQ0myYOlKGdyvG8WpbVRZEQmQAAkELoGAE6iLFi3KF7cWExOTR3/vwcNSPTpKqkVF5i3jGxIggZIJIKb7rjvvlPUqUCMjI8XtdkudOnUEv7f3339fPvroI4FAXb16tWRnZ8uTTz4pdsV/YxTkl183qZG50rNT25KN5RYkQAJVnIDLBPzkO0mOlObDUd4PgTTeHHACFTfNokpqWrr8a8p0Obtja7lkyICiNuEyEiABLwTGjh1rPKc//vij8ZpiM2TIQPgMYkV/++03Qd5hZM4obUjNtl17tTOZ6+WIpxanZ2XJ/CWr5KxWzeXo0WPm79RaviOBwCCAjpv2tWT3/kTta+XKsdQ02b5rn7gdNBFwn45UqPKT5GPHJPV4uoJ1ya6EA9ohzXYUZDdA5rolU9uGg4fVZjX6UGKS/LFjj2PsRLz8kaMpxraEA4na1rkl2y2yY+9+yc5yDk9MQz1hm1v2JByUtIwM/XrmyNad+yQi3OYsKqp+G9arq/WG2XKdXOq9KPkOUopDJSUlmZm5U6dOlWP65Y+KipILL7xQJk6caCY0rVu3TsaMGSOYxZuYmCgffPCBdOrUqRQ1l26TZas3yAcz58rtoy+T1s0alW4nbkUCJCALFy40cd2vvvqqXHbZZYWIwFuKdatWrZJ69eoVWu9twb1PvyHp6bgJFl9ytAlCMxQcFLBJRYo/Qa49LQhYQjTIFSQ5KgDgqQpy2HcaN3tkzjCdTPzuYKPa60TnpOGpEIP0P/AMUiNL2zmuqC+c1XYFBbnyOuNObMes7yZsA0uoPr/Yqdfo3usulzOaNLDlEtjmQb3ttttk5syZMmHCBBOflpR0RH74YaH5MSC2bcmSJbJ9+3Z55JFHJDY21tYnQGXpcOT8paukXaszKE5t+VqwktOJAIb3MazfunVrr6ddv3590+n0ukERK/p0OUsyMrP09uK9pKgXZ+2mP6R5w/rSIK6W9w25hgQcTcAlP63ZIBnqRe2o96HVv22RurVqSrsWTU3nyymmJ6tXd+WGzVK/bm3J1N/moSNHpXPbFhoa56ywOMj7xb+slSiNha+vEyc3b9+toqehmUTpFJbwPm/bs089pgekVfMm6t3dLa6gYOnXpZ3RPU6xM1dF4+Jf1kmoztnpo7at3PC7HD2WKr06t5PQ4OJa57KfAY5VPSa67Dt62cMWgbps2TL55ptvTKzaiBEj8no5l156ielBoteDmLY5c+aYiRWl6QVlZGbKE6++J1n6gy+puN05ckyfSnM46ag8+OybJW3u//XaO4mpHiV/H3et/4/FI5CAjwQwhA8PJoYovRV4guDBKEvBUFdGRqbu4m2/XDmuoTnZ2jYkpxyXDB3OYyGBQCUARwl+R/sO6RC/lhT9bm/bk2C8VU45J+s3dvTYcbhSjVl7Dx6Sw0fsGZK16zzBEd5J2HtI7+sY4k9UMZ3loKFztGqJyanGtoOHj2goh2YUysmWbbv3qe12kbCnHrDMys6SrWrbcTPEnys79yaoPgu25wAna8EtIt20+fZUa4tA/fLLLyU+Pl569uyZJ05hnjW8gS9bixYtyjQ8iP1DQvXGWcKVhus6VYcRo8MjJCLMGT8yfDdDg21BCwwsJOBXApj8hMeOYggfcaZ2lQMaO5aeBoFadHGLW284bglTgXxER1kE4VwsJBCgBNDRQkk8kmxeM1QIIDbRScWtw7soCL3BfRklKSlZ79v2etJMxT7+A/vgoEpWbx9Ksorq48czfKzV3t2zNO4UBR5J66Ej+xx2zWEfbMtR9Ziw/7BkqlAF2/0qqjW4A6ttKxCoiBu2q9iiohB/ipjT4h5bGB1dNrdvmD4C8cbLL8z7EXk74a079sqMeYtl6KCe0uaMJt42q9jl+rsPDnHeD75iIfBogUIA+YR79eolDzzwgLRs2VJ69e4tWTqCgdn7144u/yjAE3frI4i9dDCDdWhp2tcLzXDjPTdcKbWqVwsUXLSTBAoT0BjEf7z8jpl8dOvVI+SV96abofOb/nyhjkycEDGFd6r4Jbt0VOO5tz+R3l3aS0rqcVmjoQjjx1wmTRqUPra8IqyGx+/BZ97UTCKxOmTeQaZ+s0AuHTxQ+vdoXxGHL9UxXDqqNPO7xTJ3yS9yzUXny/RvF5n7/tP33+QoT68OfclDz7ylqQPDZeI918tLkz+TrTqBdYK2z5E2TWbyBBYSYp9X1haBiti1WbNmaU8sSfD4QjsKYteem/SJzoYrWo2j7wftbwX/zpi7WD/9aMehfa4DHdNYveE+ee+NPtfFCkigIgi8+eabJnUUHoKRqeIUnU1MYrxuzFgTnpPl5XdYnG2h6hkVL21VckqqbNqxS3p0bCtxtWrkG3kprk6uIwGnEjARMHpTCjkZ14dQNvyFhtpym7XltINPjuxhdNMKtcMyJ9mIE7U8vZgpH3SSJyYiOc1Oa5Q4+KQos/yRTrMTTC3brOseqjY70U7YahVbfjmjR4+Wp59+Wt544w157LHHpHr16saljATfZ5xxhnWsMr3igvfv2t5r7xOQt+zcbdzUXc9qocP74WWq398bR0Y6I9zA3+fJ+qsGAczOf/755+XRRx81sahoeDHqERIWKvfcfbfceuutElXGUZDiyMRUi5KbLh8u1fTVajCL257rSIAESIAETi8CtgjUmjVrCp7sdPvtt8uMGTOkWbNmcuDAQX3SU7CsXrXaELXiXUqLF96XUcMGet08NT1D/j3lMx3Wbyx/GXlBXq/V6w5cQQIkUCwBeE1r165daJvoatUEf3YWiFLMzmUhARIgARIggaII2CJQUTEeOdq2bVuZO3euJto+KjVq1JA+ffoYv/K5554rbdq0Ker45V6Wq0G/bTXmtEObMylOy02RO5IACZAACZAACZCA8wjYJlBxal26dDF/BU8TqafsLnic6YjB/eyulvWRAAmQAAmQAAmQAAlUMgFONa/kC8DDkwAJkAAJkAAJkAAJ5CdAgZqfBz+RAAmQAAmQAAmQAAlUMgEK1Eq+ADw8CZAACZAACZAACZBAfgIUqPl58BMJkAAJkAAJkAAJkEAlE6BAreQLwMOTAAmQAAmQAAmQAAnkJ0CBmp8HP5EACZAACZAACZAACVQyAQrUSr4APDwJkAAJkAAJkAAJkEB+AhSo+XnwEwmQAAmQAAmQAAmQQCUToECt5AvAw5MACZAACZAACZAACeQnQIGanwc/kQAJkAAJkAAJkAAJVDIBCtRKvgA8PAmQAAmQAAmQAAmQQH4CFKj5efATCZAACZAACZAACZBAJROgQK3kC8DDkwAJkAAJkAAJkAAJ5CdAgZqfBz+RAAmQAAmQAAmQAAlUMgEK1Eq+ADw8CZAACZAACZAACZBAfgIUqPl58BMJkAAJkAAJkAAJkEAlE6BAreQLwMOTAAmQAAmQAAmQAAnkJ0CBmp8HP5EACZAACZAACZAACVQyAQrUSr4APDwJkAAJkAAJkAAJkEB+AhSo+XnwEwmQAAmQAAmQAAmQQCUTCKnk4/PwJEACpxGBzMxMcbvd5oxDQkIkNDT0NDp7nioJ5CeQm5sr+E3k5ORIcHCwhIWF5d/AIZ887QxVG0PUVhYS8DcBClR/E2b9JEACeQTuvvtuqVatmrhcLtm6dau89tprUqdOnbz1fEMCpxOBjRs3ykMPPSRt2rSRn3/+WZ555hk5++yzHYdg6dKlMmXKFJk3b548++yzcumllzrORhpU9QhQoFa9a8ozIgHHEnj66aclIiLCeE5vvfVWmT59utx8882OtZeGkYA/CTzyyCMyevRoI/jefvtt+d///udIgdqjRw/B30UXXSTwprKQQEUQCDiBOmHCBJk1a5bxwNxyyy0yZsyYiuDEY5AACdhAICYmxtSSkpJiPKi33367DbWyChKoeAIpqWmybPV6CQ46MdydkY6h+lxZueF3camIO3g4URYuWyNZ7ixpe2ZTaRRft5CRy5cvl0cffVSCgoJk6NChpsOWnp5uOnGFNi7ngp37DsqWbbtEb5qSePSoqMKUPfsPSkZGhqlxxa+/ydZde40N7Vs2kzq1ahQ6khWKg5EPFhKoKAIBJ1BbtGghkydPNnwwXNi8eXMZMGBARfHicUiABHwkcPDgQXnwwQdlxIgRctZZZ/lYG3cngcohEBEWKrsSDsovv25WA3I1tjrHGPL98rX6SXTdIZk2e4HUq1NTupzV0quRluiDSEWx20NZo1qkfL9ijRxKOgptamyDILXKgmWrJEeXtm99pvTr0cFazFcSqHQCATeL/8orr5S2bduav/r168uuXdozZCEBEggIAocOHZIbb7xRevXqJX/9618DwmYaSQJFEQgNDZE/DewlYTphyBKn2A4TnlAgNLF85Pn9pE7Nwl5JbNOqVStJSEjAW1m2bJnUrl1bIiMjzWe7/qkRU03GXnqBTmwKyWebJYTdam9MRJRccn5fCTkpkr0dG2LaEtTetrFrea7QW2sXy0CtJ+AEqgX6jTfeMD+UK1SwspAACdhLICsrywzB//jjj/LFF1/IqlWrbDnA5ZdfLhjex8zlt956y7Z6bTGOlZBAGQnEq3f0LyMH6wz8om+l5/TuKh1aneG11okTJ8orr7wiTzzxhLzwwgt+C1lr2iBe+nZtX6QdwSpKLzynl9SvW7vI9Vh44MABMzlq06ZNMnXqVPnwww+9bmvPChWnLvihtVivJz7x39OIQMAN8aN3iiH++fPny8svv8x0F6fRl5WnWnEEEBt3/fXXy5EjR2T//v3yl7/8xczitYYhy2vJww8/LGlpaSbVFOqKjo7OqypL009hWTDj3PKY8I3zCXRr31p+3bJDlq78NZ+xzRrGq4f17GI9jpixD5G6a/duE/LSsWPHfHXY9QG/q4vO7S3bdu/VvxMeW9QNLyrCDwae3anYQ4WHh0vr1q3lZRXT7uxsZt4olhZX2kUg4AQqepkrVqww6Wlq1aplfmAVNeRgF3TWQwJOJ1CjRg0ZO3asie8eNWqUIGepHWXIkCFFVoMb5QdffCdtmjeWXl0Yl1okJC50LIHhg3rJhs3b5OixVGMj7kmXDOkvMVElD9d37txZ8OfvEhkRLldedL68OOkTydARDJQ6sTWMnSUdG+0BYsZZSKAiCRQ9LmGDBStXrpTbbr/NpMxo1qyZIL2MHWXhwoXGq4MZ/FdffbV8/fXXdlTLOkjgtCOQkZ5hvKIjR46U888/X6666iozixgg2rVrZ/IzIlbUV69pacDu2HNAVq7fLGk6E5qFBAKNQO3Y6nL9n/9kEu0HqTi9+Ly+0qJZI8edRhPNJHBe726aeUBHKvTv0gv6C2xnIQEnErDHLVLEmc37bp4s+mGRyZ2G4cKjSG9hQ/nqq6+81rJ+83aJj6vFH5xXQlxBAicIIFTm9jtul08//dTkNmzfvr3s3r3HCNZLRl4irqATExRyMO3XzwWpeX5eu0Eiw8Oke+c2fj4aqycB/xBo1bSR9O58luw7cFjO7dXZkaEq8OxefF5v2apD/XVqxAjCEwKmBMKcKeXr9OJ8C08R1HRtvt2B9u3bJ3v27JFsjUvBE2KaNm0qyHWIGyBubrn6WrNmTbnjjjvkqaeeOnVkm98lHzsuj786RXp1aiujhg4sNu7H5kOzOhIIOAKYMdy7d2/jMYUHFTcuNAXIweg5izhb40Kb6W968ODBMmnSpDJ5U5/778eSdnIosThAaCsOJh6RKI1zi4k5FZNa3D5cRwJOJJCVmW1yoYZHOPsRvhkZWea3HBqiOVwdqFjQFiUcTDSTz6pFRskRnVhZQ9uG6FKETFTk9yIl5bikHD8uNavH5IV31FcnmW+qyuYzUB9DwqFEbeNFGuhEuP3a1mZlZZv0Z3aPjuEYYy4dKk3i42w5iXJ7UHFTee+99+Sll14SpI7B02GQUuPaa/8i//znP82XH/EDOSdvfLZYW0wlqzf+Lpk687iHClTGpBYDiqtIQAm8//77Aq9pv3798n4v+N14ilNfQSUeTVHBq8nA0Wp5K+o9TddE5mgrsrPdknQkxduWXE4CAUPguHb0WMpPwDi3VOVBUxzTSZUoqWkZmv0ju/yV2rwn0mBlZWeZWlOOp+Wl8DqcdEzX+H/kqbSnA5bQa2jfDyalqM1u44xIOnpMEI5iZwETt4pfu0q5Beoff/whd955Z94j2mBQZmaWLFmy2Bbb0IPaq0MlAFtSSdfjztNkw41VtSOP2659B0raxe/rgzU3XoM472k7/G4AD0ACxRBA/uC4uDgTM1fMZj6t+scdY0xDWFwl+9VL8tqHX0i/7p1kcN+uxW3KdSRAAqcJAXdujvz9+UlSt3as9NKwiU9nfy8jzusj/bo550ECEHyzFiyVeUtXypXDz5EvZi+WYPVIT7jnBvVQnhCuzrhcufL3FyZLRGSYTFTbXpr8qXly2KN3XKujVhG2mxiuD7Cwq5RriB+i8b777jOPHMWM+urVvQdZY1sM+Y8fP75MQ/zpGZny0Av/Na7o4k4W+h9iFsmGQ1QUOqLfokbEVo/WL8ONxZnOdSRQaQTwe5w3b55g0mHduoUfwWgZ5ssQ/4PPvVnipCe0DzhGqGYJ4MiHRZ2vJEACGBFFm4DJXGgjcH+3e0jaV8rw8LpzTtgGDYKx/fDQMPNkLl/rtnP/TPX0Ip1sWFiYEc/wqoaGhBY7uFWe4+N63TXmUmneuEF5di+0T7k8qG79sixdulS6d+8uUR55DAvV7sMCfCm7t2ttYlu9VQNxelyF7MY/dhhvZcN63m+03urw1/LIKPt7Jv6ylfWefgTGjBkjb775psyePdtkw0DDD7GYmJhonmZjiUUMAVnvrdfS0mrasH7e874L7qO1ytHUVDOhpGmDehKhE6RYSIAESAAEVD/J7zt2G0EVq7Gn+zWGsnbN6hKrT8VySkEbhtj5w0eTjaf3wOEkXRIkZzSOFzdOwEHl9x17TDxvi8b1ZdveA+o4SBe0u8HB9g7xI6A53Ma2vFwCFdytG5q/rgG8ogcTk0y8RHHHSMtIN72rTI2rOKBfFqeUmPSS8985xVbacfoR6Nq1q3nkKB43Om3aNDO5cceOHZKqeRznfjdXZ/TvNrHkx3UCAJL1L1q0SOPLr5XY2FiZMGGCeS2J2q1XX1zsJu/NmGNGSO4Yc5lUi2SHrlhYXEkCpxmBuye8KnG1a0n/Hu3lg5nz5Nze3WVgD+cM8eNyfPHdYvl20XIZPqi3TJ21wAzxjx87ynFX6t4nX9f5BeGCtvaVKdNliwrWO0aPlHD1qDq5lEugIr4Ss3rxRKcjSUl+eaoEBOqu/YcEsyK9FY1PkEx3thkCSNTJFfhzSqmhQ/wsJOBUAvCGvvTiS9K3b18TqgNBGh8fb5JxYx1iqPB4Qzz1qU+fPuY0Dh48aEY0MILia0lOSZXDR5JlQI+OFKe+wuT+JFDFCMADidknORqLiuFolFwdTndaOWma8Zia99YCpxkKe046dS0Tkd7P6aVcAhXe0xtuuMEMEeL13XffNXGoBw4c1KH/JXlPnDCxoXozww0P7zGEiFKaOJIwdRP/c/xYs31R/wS7gmT24uUyf9lquXvspVK3Vs2iNqu0ZWUdDq00Q3ng05YAfmN42AX+CpbmzZvLjBkzCi627XN1Hba7TtORRNJzahtTVkQCJEACVYlAuQQqADRq1Egmvz1ZJj45UVq0aKGxDMEaexAut467VVwjXfLZZ58ZEYshQnhjnnnmGXnxxRelWbNmsmbNmhLT2SAyoloxOc+OJh+TNb9tkU5tztRYivhSid6qdOF4LiQQ6ARqVHdOPFmgs6T9JEACJFDVCJRboMJDOHTYUOnVu5eJUYN3FDPE6tSpYxgNveAC+eWXX/K8phY4bIOcqb4WPFd4YPfO0uqMxhSnvsLk/iRAAiRAAiRAAiTgIALlFqjWOWDSBP4Klmh9qtSZ+uevEqa5tgbp4+RYSIAESIAESIAESKDiCTg/jrPimdh3RDzAhYUESIAESIAESIAESIAEHEOAAtUxl4KGkAAJkAAJkAAJkAAJgAAFKr8HJEACJEACJEACJOALATyqicVWAhSotuJkZSRAAiRAAiRAAiRAAr4SoED1lSD3JwESIAESIAESIAESsJUABaqtOFkZCZAACZAACZAACZCArwQoUH0lyP1JgARIgARIgARIgARsJUCBaitOVkYCJEACJEACJEACJOArAQpUXwlyfxIgARIgARIgARIgAVsJUKDaipOVkQAJkAAJkAAJkAAJ+EqAAtVXgtyfBEiABEiABEiABEjAVgIUqLbiZGUkQAIkQAIkQAIkQAK+EqBA9ZUg9ycBEiABEiABEiABErCVAAWqrThZGQmQAAmQAAmQAAmQgK8EKFB9Jcj9SYAESIAESIAESIAEbCVAgWorTlZGAiRAAiRAAiRAAiTgKwEKVF8Jcn8SIAESIAESIAESIAFbCVCg2oqTlZEACZAACZAACZAACfhKgALVV4LcnwRIgARIgARIgARIwFYCFKi24mRlJEACJEACJEACJEACvhKgQPWVIPcnARIoNYGPP/5YRowYIcOGDZO33nqr1PtxQxIgARIoicDhw4flzjvvlKFDh8qXs2aVtHmlrV+4cKGMHTtWrrjiCtm1a1el2VHcgfft2yf33XefYXnHHXdIQkJCcZv7ZR0Fql+wslISIIGiCDRt2lQeeughefLJJ2Xu3LkyZcqUojbjMhIgARIoE4Hc3FwjqOrVqyePPvqovPaf/8jixYvLVEdFbjxkyBDZsGGDpKSkVORhS32sxMREadu2rTz77LPSsmVLGTdunGRmZpZ6fzs2DLGjkoqsA19Cz+JyuTw/8j0JkICDCfTu3dtYl5OTI9HR0ZKdne1ga2kaCZBAZRCA58zynrlycY/X+34Jt3q3tinbt2+XZ555RuLi4uS8886Tb775Rvr27eu3U3B5GHXifQlGnrRk0KBB5t2LL77oN9s8K/a06sT7/DrKc1vrfbt27QR/KA0bNpSpU6cK2u2KLAEnUF9//XVZs2aNAYWeB76M8MqwkAAJBAaBp59+Wr777jupVq2aXHrppYFhNK0kARLwK4HN2/fIr5u3GcmXo4I00+2W5JRUWbXxd3PcNb/9IYlHU6RaVKQM6detkC25Kp5CQkIkNDTUrGvSpIls3LhR4NSyy5GFuhb9/KscOnpU6xT5fftuPVaurFi3SdKzMiXYHSRffLdEIJbj6sRKn87tJCjIUx4WMtsvCzIyMuX7FevkWGqaqT8jO0vc6bkya8EyOZCYJDm5OTJzwVIJDQ6Rls0aSodWzb3aAa/p3/72Nxk+fLiEh4d73c4fK6xOij/q9kud1157rfz73/+WN998U2rUqCGfffaZX47DSkmABPxD4L7775eZM2dK9+7d5cEHH/TPQVgrCZBAQBGoHh0ly1avl29+WCazf/hJ3CpQjx47Jut/32ZE5oYt22T2op9VXLmLPC9XUJBxXFmjMklJSUYj2CVOcVDUFR9XSxb8tFK++X6Z/LFzj7FtjYrozKwsScvIkK8WLpH5S1dItcgII2KLNNbPC8PCQiVH+X23ZLl8qzyzdKQqLT1dZs77UQ4lHVW2OTJv8QoV1hulft1aXq05qkIcIVmNGjWSe++91zah7/WABVYEnECNiYmRd955R26//XYBvMsvv7zAKfEjCZCAUwls2rRJMtLSzM3nmN580rXRZCEBEiCB+Lo1ZdSwQRKmHtAgFZtWsQQmXls1ayTn9upirSr0Cg/qzz//bOI658yZI3369Cm0ja8LWjVvKOec3VmCg4PzBJtlI+qG7ef16Sad27bIW1/wmPBKYgQYQ+bHjx+XDBW2dhbYM3RAT2nf4gyt9pQHF7bB84uC9xef20fq1KxxYkGBf2Hfww8/bGx84IEHjHe6wCZ+/3jqW+D3Q9l3gF69esn5558vWdpjWbdunX0VsyYSIAHjEVi+fLmZDYs4rn79+smYMWNk5cpVprHyBdG7774rV19zjWAkBMNl/3rlX75Ux31JgASqEIGeHVpL767tEXFaqNSsHiPXXTbUCNhCK3VBiArGCRMmmImXcFz16NFDLr744qI29XnZhQN7yxmN65s2rGBlDePryPl9uxdcnO/zLM0w8Kc//UkwEenuu++WN954I996uz6MGNJX6tYqLEChUXt0aCPdOrbxeqiffvpJYOfatWvloosukuuvv952Ie314CdXuPQmUdR3oaT9HLEeaWrQS/r0008dYQ+NIIGqQCBNPZwdO3aUxo0bCzqDYWFh5ne2bt1a+fLLWTJo0CC/nGaKehIiIyIkRHv2LCRAAqcngcMaZ/rK5E9NrKRFICQkWK648Fzp3629LjrlEbTWV8brjr375eV3PjND59bxozU+9o5rRkozFa9OKYtX/SofzJiroRGnpF49HdZ/+OarJKKCY0rLysRvk6Tgwj506JBxY0MDY0IEZoJ5usLLaiy2x6QopDyAW/yTTz6Rm266qTzVcB8SIAElgN8pBCl+oxjyiVCBiL/58+cL0rVAnKIgDx5E62uvvSZnn322REZGmuV2/ZOtQ12vvf+FeiXiZdTQQT63E3bZxXpIgAQqlkDtGjEy+tKh8tLkqSZWEsKqU5sWKk47VKwhJRytaYM4GdK/u3w5b4kZWcpVv++Qfj0cJU5xCpiotXXHXvnxl3WmXQ0NDZER5/VxvDiF7X5xVSB24brrrjOelsGDB5vh+IEDB5ocZcnJyThuuQsmViAZL4b3MRsYiW6tEsDOYOsU+EoCFUIAv5Wfl/0kl112mbRp00bat29vBOj48eNNIwbvqSVOYVDt2rVNBxOdTohau8sWncG7O+GgNGlQj+LUbrisjwQCjECLJvU11rSrtgUi9WrXlEuG9HfgGbjkgr49pH3L5qaD37p5ExnQ3VkiGtDgFByusaaN4+saOwf27CRdz2rlQJ6FTfKLBxWz6BD0iyTcVt5D5PvCUwlwI4R4LW9BTBz+iiprNQ1Fw/g4DfqtXtRqLiMBEjhJAF7TK6++yuQLXLlypdSvX1+OHDliwmUgXguOdOzevVu2bt0qV111lURFRZWKY1pahiBdTEnFne2WH1asMSlM2pzRVFLTOHGqJGZcTwJVncA5Ohlqw7YdMrB7J4kMD3NsuzC4fw/ZuWe/XDHsHDOM7sT2K0Jn9Q/WuNgv5i2WAV07+pVlpIYN2JVay6cY1BxNVfDxtE9ktibDxWxcpCK45uprpGu3rpKtKQ4QtGwVrMfQPCZcQLh6emesbXx5PXTkqDz5xodybs+O2lvwX2JeX2zkviTgFAJI04bcdt9//31eMubibEOncsaMGWZ7DPWXpjz43Jsan1U6bytStCDEwLPNKM0xuA0JkEDVJYBZ7ugsF+wwO+mM0aHHH9ovJxfYCJ7IPuDPctfYyzRUq4Ethyi3BxUe0htuuEFmz55tRGetWrXMjPop704xArXgjcatXlUMDeLpMXZ/2QB+5frfBZ6Yru29z0qzhRgrIYEqQGChPgsaQ/sNGhTfkKBjOXHiRPNElrfffls6dCj9ENaZTRpKRmZWsbSQj2/rrr1SI0Zj1OvV1bah2M25kgRIgARIwMEE4EG1q5RLoEIQLliwQKZNm2YSbuOZshCdUOeIPy2qTNUJTUipgHQF1pMeitrOWgaPylsff6nJb4tOymtth1cEUe9NOGRm/348a77nqkp7H1MtUm768/BKOz4PTALFEUAMN3IGltRZfPXVV03qlsmTJ8sll1xSXJWF1kVHRZTYW8fvHCVKt43WxNYOmaBb6Fy4gARIgARIoHgCwepgCLLRQ1sugYrHeE2aNEl69uwp55xzTt5NDi5uPN2pYFm2bJk8/vjjZkITJk2VpuTm5MofuxLMZKiStocwhkgNDQo23piStvf3ekTdxcZE+/swrJ8Eyk1gwIABxjOKCYexsbGF6sFvCk9sQ9YMzNy/RnOXlrVgVCMt3XsCajy72p1zogO6/2CS7D+YWNZDcHsSIAESIAGHEIDDY0APDQGrXfieUh4TyxWDCu8LJj+1a9dOJumwX8HhfE9DkOQVSfURe/rhhx+aFDae6729h5f2cFKyie3wtg2WJ6Uck0mffCVtz2wqwwb2kkp47G0h81RbK5Mgqc3JWoXYcIEzCGBCFH6/yIqBmHCIVEycQsjOcB3l+Hz6dPnrX/9qHm+HWNXylG27E7wm9sdQPp69PX3OD3L18POlSX2dYVqeg3AfEiABEiABxxBoWK+OprA6kZ7QV6PKJVAxAepivYlhtv7XOkHKm0D99ddfjdcUcW7vvfeexMfHl9rejIxMeeSVyepBzS52H3hzMUyIsAHHJPhWcV29RrQ8fkf5sxUUe9JcSQI+EkAHcO7cueZRdtu3bzd5TfF7RkcST3tCDlQ8irRg7uIzzzxTPvvsM5N2yhcTsjX2FCE8SUeT5Z7rLzcJ+n2pj/uSAAmQAAlULQLlGuIP1qF8DPnddtttsmb1aunWrZuhkpubo7P5M8zNDilp8GgsTJ764IMPTDqbsqCDq7h2bHUjgovezyXpGVn6tIlETSsVK1ERCMx1jg+mWnTpUvEUfW5cSgL+JYDfF2LHMSN/27ZtJpQGExibNm1qRjm+/vpryT4ZH+ppSaSmmIqJifFcVK736TrJ0qXDHef27kZxWi6C3IkESIAEqjaBcnlQgQRPcrrgggtky5YtMm7cOKlbt67JkwhP5kMPPWTWbdy40TxnFkm/rVI3Lk6GDRvm1etqbVea128XLZdvf1guj97+F6lVg7lPS8OM25AACZAACZAACZCA0wmUy4OKk0Ky7s8//9xMoEDcGuJSMZQPsYr3ELDIizpdY9kwnGgVeGyG6EQpb2EB1nYlvSanpMrydb9J9/atdEKS7x6dko7H9SRAAiRAAiRAAiRAAhVDoNwe1Ioxz/tRMjSn6uoNW6VF0/o6Galw5gDve3INCZAACZAACZAACZCAkwkErEB1MlTaRgIkQAIkQAIkQAIkUH4Czn42V/nPi3uSAAmQAAmQAAmQAAkEKAEK1AC9cDSbBEiABEiABEiABKoqAQrUqnpleV4kQAIkQAIkQAIkEKAEKFAD9MLRbBIgARIgARIgARKoqgQoUKvqleV5kQAJkAAJkAAJkECAEqBADdALR7NJgARIgARIgARIoKoSoECtqleW50UCJEACJEACJEACAUqAAjVALxzNJgESIAESIAESIIGqSoACtapeWZ4XCZAACZAACZAACQQoAQrUAL1wNJsESIAESIAESIAEqioBCtSqemV5XiRAAiRAAiRAAiQQoAQoUAP0wtFsEiABEiABEiABEqiqBChQq+qV5XmRAAmQAAmQAAmQQIAS+H8cImhm9qNAWwAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "e3e88181", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "#### Measurement-based implementation with post-processing\n", + "\n", + "We next examine the case where a long-range CNOT gate is implemented using nearest-neighbor connections of a measurement-based CNOT with post-processing. In the figure below on the left is a circuit for a long-range CNOT gate spanning a 1D chain of n-qubits subject to nearest-neighbor connections only. On the right is an equivalent implementable with local CNOT gates, measurements and which requires post-processing.\n", + "\n", + "![image.png](attachment:64faac2c-cfe0-46af-a2e6-a30fce568e67.png)\n", + "\n", + "The circuit on the right can be implemented as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8fb3b80e-240d-4795-9142-7b87bd24b5c3", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "def CNOT_postproc(qc: QuantumCircuit, \n", + " control_qubit: int, \n", + " target_qubit: int, \n", + " c1: Optional[ClassicalRegister]=None, \n", + " c2: Optional[ClassicalRegister]=None,\n", + " add_barriers: Optional[bool]=True) -> QuantumCircuit:\n", + " \"\"\"Generate a CNOT gate bewteen data qubit control_qubit and data qubit target_qubit using Bell Pairs.\n", + "\n", + " Post processing is used to enable the CNOT gate via the provided classicial registers c1 and c2\n", + "\n", + " Assumes that the long-range CNOT gate will be spanning a 1D chain of n-qubits subject to nearest-neighbor \n", + " connections only with the chain starting at the control qubit and finishing at the target qubit.\n", + "\n", + " Assumes that control_qubit < target_qubit (as integers) and that the provided circuit qc has |0> set\n", + " qubits control_qubit+1, ..., target_qubit-1\n", + "\n", + " n = target_qubit - control_qubit - 1 : Number of qubits between the target and control qubits\n", + " k = int(n/2) : Number of Bell pairs created\n", + "\n", + " Args:\n", + " qc (QuantumCicruit) : A Quantum Circuit to add the long range localized unitary CNOT\n", + " control_qubit (int) : The qubit used as the control.\n", + " target_qubi (int) : The qubit targeted by the gate.\n", + "\n", + " Optional Args:\n", + " c1 (ClassicialRegister) : Default = None. Required if n > 1. Register requires k bits\n", + " c2 (ClassicalRegister) : Default = None. Required if n > 0. Register requires n - k bits\n", + " add_barriers (bool) : Default = True. Include barriers before and after long range CNOT\n", + "\n", + " Returns:\n", + " QuantumCircuit\n", + " \"\"\"\n", + " assert target_qubit > control_qubit\n", + " n = target_qubit - control_qubit - 1\n", + " k = int(n/2)\n", + " \n", + " # Deteremine where to start the bell pairs and \n", + " # add an extra CNOT when n is odd\n", + " if n%2 == 0:\n", + " x0 = 1\n", + " else:\n", + " x0 = 2\n", + " qc.cx(0,1)\n", + "\n", + " # Create k Bell pairs\n", + " for i in range(k):\n", + " qc.h(x0+2*i) \n", + " qc.cx(x0+2*i,x0+2*i+1)\n", + " \n", + " # Entangle Bell pairs and data qubits and measure\n", + " for i in range(k+1):\n", + " qc.cx(x0-1+2*i,x0+2*i)\n", + " \n", + " for i in range(1,k+x0):\n", + " qc.h(2*i+1-x0)\n", + " qc.measure(2*i+1-x0, c2[i-1])\n", + " \n", + " for i in range(k):\n", + " qc.measure(2*i+x0, c1[i])\n", + "\n", + " if add_barriers is True:\n", + " qc.barrier()\n", + " return qc" + ] + }, + { + "cell_type": "markdown", + "id": "75c0cde5-1300-40ec-9fea-e3018b762ee2", + "metadata": { + "hidden": true + }, + "source": [ + "We utilize the methods `prep_P_ij_conj` and `meas_P_kl` to prepare the circuits for Monte Carlo state certification." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "df8920d5-68ea-4c6c-8c7c-787d23e4ed2c", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "def build_circuits_postproc(n : int, samples: List[int]) -> List[QuantumCircuit]:\n", + " \"\"\"\n", + " Args:\n", + " n (int): Number of qubits between the control and target qubits\n", + " \"\"\"\n", + " assert n >= 0, \"Error: n needs to be a non-negative integer\"\n", + " circuits_all = []\n", + "\n", + " qr = QuantumRegister(n+2, name=\"q\") # Circuit with n qubits between control and target\n", + " cr = ClassicalRegister(2, name=\"cr\") # Classicial register for measuring long range CNOT\n", + " \n", + " k = int(n/2) # Number of Bell States to be used\n", + " c1 = ClassicalRegister(k, name=\"c1\") # Classicial register needed for post processing\n", + " c2 = ClassicalRegister(n-k, name=\"c2\") # Classicial register needed for post processing\n", + "\n", + " # 16 Paulis with non-zero expectation value to prepare and measure\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " \n", + " for sample in samples:\n", + " P_prep = P_lkji[sample][0:2]\n", + " P_meas = P_lkji[sample][2:4]\n", + " if n > 1:\n", + " circuits = [QuantumCircuit(qr, cr, c1, c2, name=\"CNOT\") for i in range(4)] \n", + " elif n == 1:\n", + " circuits = [QuantumCircuit(qr, cr, c2, name=\"CNOT\") for i in range(4)] \n", + " elif n == 0:\n", + " circuits = [QuantumCircuit(qr, cr, name=\"CNOT\") for i in range(4)]\n", + " circuits = prep_P_ij_conj(circuits, P_prep) # Prepare control and target qubits\n", + " # in eignestates of P_i^* and P_j^* respectively\n", + " circuits = [CNOT_postproc(qc=circuit, \n", + " control_qubit=0, \n", + " target_qubit=n + 1, \n", + " c1=c1, \n", + " c2=c2) for circuit in circuits] # Add long range CNOT\n", + " circuits = meas_P_kl(circuits, P_meas) # Prepare circuits to measure the control and target\n", + " # qubits in P_k and P_l bases respectively\n", + " circuits_all += circuits\n", + " return circuits_all" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "db53b428-14e0-485a-9e9e-b17d59936c02", + "metadata": { + "hidden": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDYAAALxCAYAAACn7iZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC17ElEQVR4nOzdeXhU1f3H8c/MZA8hZEGSEDBACJtssomICoISFS1GUYtL1aKtUlEpWLHWutQN21qXWurWam0Ei1oEkUUUEZRVlDVhCTEhCTgQCFlIMsvvD0p+IhPIDDe5s7xfz8OTzNx7z/lOmEzufOaccy1ut9stAAAAAACAAGQ1uwAAAAAAAABfEWwAAAAAAICARbABAAAAAAACFsEGAAAAAAAIWAQbAAAAAAAgYBFsAAAAAACAgEWwAQAAAAAAAhbBBgAAAAAACFgEGwAAAAAAIGARbAAAAAAAgIBFsAEAAAAAAAIWwQYAAAAAAAhYBBsAAAAAACBgEWwAAAAAAICARbABAAAAAAACFsEGAAAAAAAIWAQbAAAAAAAgYBFsAAAAAACAgEWwAQAAAAAAAhbBBgAAAAAACFgEGwAAAAAAIGARbAAAAAAAgIBFsAEAAAAAAAIWwQYAAAAAAAhYBBsAAAAAACBgEWwAAAAAAICARbABAAAAAAACVpjZBQAAAADw3Zo1a5q8r91u13vvvaerrrpKycnJTT5u0KBBvpQGAC2CERsAAABAiLDb7Xr11Vdlt9vNLgUADEOwAQAAAAAAAhbBBgAAAAAACFgEGwAAAAAAIGARbAAAAAAhIi4uTmPGjFFcXJzZpQCAYSxut9ttdhEAAAAAfOPNVVF8xVVRAPgzRmwAAAAAIaK2tlZFRUWqra01uxQAMAzBBgAAABAiCgoKlJOTo4KCArNLAQDDEGwAAAAAAICAFWZ2AfDM7XZLgTREMDJSFovFsObcbumI07DmWkSUTTLwRwAAABDSAu58WDL8nDjUud1uOZ2B86bAZrPx/28Sgg1/VVsrx/ibza6iycJm/1OKijKsvSNOafhHhjXXIpZfKkXzGwUAAGCMADsflow/Jw51TqdTc+bMMbuMJsvJyVFYGG8IzMBUFAAAAAAAELCIkwAAAIAQ0b17d61evdrsMgDAUIzYAAAAAAAAAYtgAwAAAAgRhYWFuvXWW1VYWGh2KQBgGIINAAAAIETU1NRo06ZNqqmpMbsUADAMwQYAAAAAAAhYBBsAAAAAACBgEWwAAAAAAICARbABAAAAhIjU1FQ98sgjSk1NNbsUADBMmNkFAAAAAGgZ8fHxys7ONrsMADAUIzYAAACAEFFeXq53331X5eXlZpcCtLjDhw+ruLhYu3fv1p49e1RdXe3V8Xl5efr888+bqTqcDkZsAAAAACFi7969mjFjhnr37q2EhASzywGaVXV1tb744gtt2rRJu3btkt1uP2GflJQUderUSf369dPQoUMVERHhsa28vDw9+eSTqq2tldvt1gUXXNDc5cMLBBsAAAAAgKCxb98+ffjhh1q+fLmOHDly0n3LyspUVlamL7/8Um+99ZYuvPBCjR07VvHx8Q37HAs1jrW1cuVKnX/++bJYLM36ONB0IRFs2O12PfPMM3rvvfdUXFystm3b6qqrrtITTzyhu+++W6+//rpeeOEFTZo0yexSgWaxs6hCf//PNm3aUa4jtU4ltYnSVRedqatGZSgi3GZ2eQAAAMBpc7lcWrJkid5++23V1tYety0yMlIZGRlKSUlReHi46urqVFJSosLCQtXX10uSKisrNW/ePC1btky33HKLhg4dqvz8/ONCjT59+mjKlCmEGn4m6IONDRs2KDs7W2VlZYqNjVXPnj1VUlKi559/Xjt37tSBAwckSf369TO30GayzL5Po7/8TE/17KP7unT3uE/Eh7N16Rmp+mDI8BaurmXUlu1S2ZyndHjz56r7/jtZwyMVnpCimK6DlTzyZ4rrM8LsEptN6ffVmvjIF/poeZHc7uO3vbuoQO2SovX7X/bXL8b3MKdAAACAZsb5cGioqqrSc889p40bNzbcFxkZqeHDh2vkyJHKyMiQ1XriEpMOh0M7duzQkiVL9NVXX8nhcOjw4cN6/vnntXTpUu3YseO4UOPXv/51o9NVYJ6gDjbsdrvGjh2rsrIyTZkyRQ8//LDi4uIkSc8884zuv/9+hYWFyWKxqE+fPiZXi+ZQtX2t8h+8QJawcCVeeJOiO/aSq65GtSXbVbFhkWzRcUEbbHxXWqnhP5un70qrGt1n7/4a/fLxlSreW6XHfzWwBasDAABmiImJ0ZAhQxQTE2N2KYBhKisr9fjjj2v37t0N91100UX66U9/qtjY2JMeGxYWpu7du6t79+664YYb9MYbb2jVqlWSpE2bNjXsR6jh34I62Lj77rtVXFysSZMm6dlnnz1u27Rp0/Tvf/9b33zzjTp16qTWrVubVCWaU+msR+SqrVaPpzcoplPfE7bXl5eZUFXzczpdunzSopOGGj/0h1e+UY/ObTThssxmrgwAAJipY8eOeuGFF8wuAzBMXV2dnnrqqYZQo3Xr1po0aZJPH1y3adNG9957r+bMmaN333234f64uDjdd999hBp+LGgv97p161bNmjVLycnJevLJJz3uM2DAAElS377Hv+EtKCjQFVdcobi4OCUkJOimm27S/v37m71mGO9IyXbZ4pI8hhqSFJ6Q0sIVtYz5nxdp43bvLuP21Gvfyv3j+SoAACCoOJ1OVVZWyul0ml0KYIjZs2drx44dkqT4+Hg9/PDDpzUaPy8vTx9++OFx9x0+fFhLly49rTrRvII22MjNzZXL5dKECRPUqlUrj/tER0dLOj7YOHz4sEaMGKHi4mLl5ubq73//u5YvX67LL79cLperRWpvDtVOp+y1tR7/BbPIlC5yHt6v8i/fM7uUFvXXWVu9PmbTjnJ9sX5vM1QDAAD8xfbt2zVy5Eht377d7FJaXKieDwez/Px8zZ8/X9LRKSUPPPCA2rdv73N7P776SadOnRq2vfPOOyotLT29gtFsgnYqyrFEbcSIxtdPKC4ulnR8sPH3v/9de/bs0eeff66OHTtKktLT03Xuuedq7ty5+slPftJ8RTejR/M269G8zWaX0eJSx/9Wh79ZrF1P5Sgyrata9ThPsV0HqdVZFyq6Q3AumOlyubVkVYlPxy76co+GDwjOUSwAACC0her5cLByu9167bXXGkYcX3PNNcrIyPC5vR+HGsfW1Hj77be1cOFC1dXV6c0339T9999vRPkwWNAGG4WFhZKkM8880+N2h8OhFStWSDo+2Jg3b57OO++8hlBDkoYOHarOnTvrww8/9CnYGDhwoMrKvFvLIdpq1ZZ+Q73uqzE/79hZOWkdPG7L/mrZabeflZWlGgNHtFgiotXuudP/JKFV96Hq8cd12vvfP+rQugXa/8kb2v/JG0e39RyujMn/UGRK59PuR5KysrrKXVdjSFunw6VwORN/69Oxf37+b3rjqQUGVwQAAJrT1Vdf3eR99+3bJ0lasGCB1q1b1+Tjxo0b53VdpyvQzocl48+JQ11ERESjywrk5eU1vOfLyMjQ5Zdf7nM/jYUaERERuv7667VmzRodOHBAGzZsUFlZmVJSPH8QmJWVpbq6Op/rCHUpKSlau3atT8cGbbBRVXV00cSaGs9vNGfNmiW73a64uLjjhhht2bJF11xzzQn79+rVS1u2bPGplrKyMu3Zs8erY2JsNqmfT915lNmqlS5q2864Bn+kpKRE1QbO1bRGxsioaqMzeitj8j8kSbX7ClW5aZnsi19V5Zbl2vHElerxx3Wyhp/+QkAlJSVy1VafdjunzyIluCSL9zPNqir2q2qvd89VAABgrmPnvU1x7Ny4pqbGq+O8PZc1QqCdD0vGnxOHusjIyEa3LVq0qOH7yy67TDabzac+ThZqSFJUVJQuueQS5ebmyu1265NPPtGECRM8tlVSUqJapjaZImiDjZSUFJWXl2v9+vUaOvT4pLe0tFRTp06VdPSJa7FYGraVl5erTZs2J7SXmJiovLw8n2vxVrSHayz7s7S0NMNHbDSHyDPOVOTIm5Q44kblPTBcVVtXqHr7arXqed5pt52WluYXIzYk6XtHserCO556xx9JjD6o6NOYlwgAAFreqS5n+UPHwozo6GivjjuddQt8FWjnw5Lx58ShrrGrkDgcDq1Zs0bS0SuWDBkyxKf2TxVqHDNixAi9++67cjgc+vLLLxsNNtLS0hixcRp8ed98TNAGG6NGjdLWrVv19NNPa/To0crKypIkrVmzRjfeeKPsdrskqV+/fs1eiy/DadxHjsgx/uZmqKZ55OfnyxIVZVh7NQ5p+EeGNXcCi8Wi2Kwhqtq6QnX7jfkEIj9/u6L95DfqX/N26Mbp3g2pzEhrpR3zl8hmC7yTCAAAQtmxN3hN4XA49LOf/UxxcXEKC2v6ictzzz3nQ2WnJ9DOhyXjz4lDncPh0Jw5c064v6ioSPX19ZKOhhG+XIa1qaGGdPQSsl27dtXWrVtlt9tVUVGh1q1bn7Bffn6+V79XME7QvoOZNm2akpKSVFRUpF69eql3797q2rWrBg8erM6dO2vkyJGSTrzUa0JCgg4ePHhCewcOHFBiYmJLlA4DVWxYLLfTccL9rtoaVWw4OnwtukPPli6r2V09OkPp7Zr+KYwk3XNDL0INAACCXFhYmBISEnjzhYBWUFDQ8H3nzt6vl+dNqHHMD5cv2LVrl9d9onkF7buY9PR0LV++XJdddpmioqK0e/duJSYmaubMmZo/f77y8/MlnRhs9OjRw+NaGlu2bFGPHsF5FY1gVvTavfr2tg4q/Osd2jf/RdmXvK6Sdx7Rlnv66UjhJiWOuEnRGb3NLtNwUZFhmvfiaMW3alp6fcPlXfSrn/Zq5qoAAIDZiouLNWXKlIarAwKBqKTk/68A+MOLPjSFL6GGdPxFKX7YP/xDUEe1PXr00Lx58064v7KyUrt375bVatVZZ5113LbLL79c06dPV3FxsdLT0yVJq1at0s6dOzVjxowWqRvG6XDrn3Rw1X9VufULla+cI2fVQdli4xV9Zh+l5NyvpJE/M7vEZtO3W5JWvHm5xk9dqi07D3rcJyLcqskTeunJyQNltVo87gMAAIJHZWWlli9frokTJ5pdCuCzuLg4paenq66uzuOUkMbs3LnTp1BDktq0aaMzzjhDERERiomJ8bl2NI+gDjYas3nzZrndbmVlZZ3wpLz99tv1wgsv6Morr9QjjzyiI0eOaNq0aRo8eLCuvPJKkyr23QXJZ6hu7PiT7nOq7YGsdf+L1br/xWaXYZpemQna9N5V+nR1qf727ja9/8luOZxuhYdZ9cidZ+u2cVk6I6l5FmoFAADwB6F+PhyMrrzySp/em7Vr105paWnatWuXV6GGdHSk//PPP+91n2gZQTsV5WQ2btwo6cRpKNLRhWGWLl2q1NRUXXfddfr5z3+uc889V/PmzZM1AFdmBiwWi0YOSdPsZ0eq3f9CjDMSo/TAz/sSagAAACBktGrVStOnT1d2drZXoQb8X0iO2DhZsCFJXbp08TiFBQAAAAAQuFq1aqWbbw6sq+3g1EJyCMKpgg0AAAAgGLVt21aTJ09W27ZtzS4FAAwTkiM2li5danYJAAAAQItLSkrShAkTzC4DAAwVkiM2AAAAgFBUUVGhJUuWqKKiwuxSAMAwBBsAAABAiCgpKdH06dNVUlJidikAYBiCDQAAAAAAELAINgAAAAAAQMAi2AAAAAAAAAGLYAMAAAAIEZGRkerWrZsiIyPNLgUADBOSl3sFAAAAQlGnTp301ltvmV0GABiKERsAAAAAACBgEWwAAAAAISIvL0/Dhg1TXl6e2aUAgGEINgAAAIAQ4Xa7VV9fL7fbbXYpAGAY1tjwV5GRCpv9T7OraDqDF6CKsknLLzW0yWYXZTO7AgAAgCASaOfDkuHnxKHOZrMpJyfHkLZmzJylw1VViouN1dQ7rm30vtNhs/GGwCwEG37KYrFIUVFml2Eai0WK5tkJAAAQskL9fBhHnwNhYca8KXBLcrmPfj3Wpqf7EJiYigIAAAAAAAIWsRQAAAAQIjIyMpSbm6v27dubXQoAGIZgAwAAAAgRUVFR6tKli9llAIChmIoCAAAAhIjS0lI9/vjjKi0tNbsUADAMwQYAAAAQIg4dOqS5c+fq0KFDZpcCAIYh2AAAAAAAAAGLYAMAAAAAAAQsgg0AAAAAABCwCDYAAACAEJGYmKibb75ZiYmJZpcCAIYh2AAAAABChNVqVXh4uKxW3gYACB68ogEAAAAhwm6369VXX5Xdbje7FAAwDMEGAAAAAAAIWAQbAAAAAAAgYBFsAAAAAACAgEWwAQAAAISIuLg4jRkzRnFxcWaXAgCGCTO7AAAAAAAto3379nr00UfNLgMADMWIDQAAACBE1NbWqqioSLW1tWaXAgCGIdgAAAAAQkRBQYFycnJUUFBgdikAYBimovgpt9stBVKSHhkpi8VidhVA0HC73XI6nWaX4RWbzcbrAAAAAFocwYa/qq2VY/zNZlfRZGGz/ylFRZldBhA0nE6n5syZY3YZXsnJyVFYGH9WAAAA0LKYigIAAAAAAAIWwQYAAAAAAAhYjBkGAAAAQkT37t21evVqs8sAAEMxYgMAAAAAAAQsgg0gRNTXu+RyuSVJLpf76JV3AABASCksLNStt96qwsJCs0sBAMMwFQUIUlXV9Xp3cYG+WL9Xa7fYtXlnuRyOo2FGqb1G7S78twb0TNaAnkm66qIMnd0z2eSKAQBAc6upqdGmTZtUU1NjdikAYBiCDSDIFBQf1l/e3qx/zN2uQ4frGt3v+/Ij+nhFsT5eUaw/vPKNzunTVndd11PXZ3eWzcZgLgAAAACBgWADCBIul1sv/HuzHnh+rWqOOL0+/qtvv9dX3y7Ty7O36o1Hz1dWRnwzVAkAAAAAxuJjWSAI7N1fowtvna97nlnlU6jxQys37FPfa97XzHe3GVQdAAAAADQfgg0gwBWXVWn4z+Zp+fq9hrV5pNapXzy2Qn/4+wbD2gQAAOZLTU3VI488otTUVLNLAQDDEGwAAWz/wSMafccCbS+saJb2f/viOv3lX5uapW0EnpKSEq6mAwABLj4+XtnZ2YqPZ8opgODBGhtAALvzDyu1reBQs/Yx5Y+rdd7ZKRrAVVMCjtvtVnFxsXbs2KGCggIVFRWptrZWbrdbUVFRat++vTp37qwuXbqoY8eOslgsjba1ceNGzZgxQ6NGjdKNN9540n0BAP6rvLxcS5Ys0ahRo5SQkGB2OQBgCIINIED9Z1GBZi8s8OqYNblXKCU5RmX2ag26fm6TjnE63frZbz/XullXKiLc5kupaGG1tbVauXKlFi9erF27djW639atWxu+79ixoy6++GKdd955ioqKOm6/Y6FGXV2dPvroI3Xs2FEXXnhhc5UPAGhGe/fu1YwZM9S7d2+CDQBBIySmotjtdk2bNk2ZmZmKiopShw4dNHnyZFVVVem2226TxWLRiy++aHaZaEYOh0tLV5Xo3/N3atbHu7Ruiz2gh9TXHHHoridWen1cSnKM0tvFKiU5xqvjNu0o15/fYkpKIFi9erXuvvtuzZw502OoYbFYPI62+O677/Tqq6/qV7/6lVauXNnw+/HDUEOSBgwYoPPOO695HwQAAADghaAfsbFhwwZlZ2errKxMsbGx6tmzp0pKSvT8889r586dOnDggCSpX79+5hbaTJbZ92n0l5/pqZ59dF+X7h73ifhwti49I1UfDBnewtU1vwOHavVi7hb9/T/btGdf9XHb+nVP1J3je+iWn2QpLCywMr5ZC3dp34EjLdrnS+9s1ZSbegfczypUVFZW6vXXX9fKlccHXp07d9Y555yjzp07KyMjQ61atZIkVVdXq6CgQAUFBVq1apW2b98uSTp8+LCef/55ffXVVxo2bJheeuml40KNe++9V2FhQf+nAwAAAAEkqM9O7Xa7xo4dq7KyMk2ZMkUPP/yw4uLiJEnPPPOM7r//foWFhclisahPnz4mVwuj7Squ0CW/WKgd33leWHPDtgO6/dEV+uDTQr377EWKiQ6cX4e/ztp66p0MVlRWpfnLi3TliDNbvG+c3MGDB/XEE0/ou+++a7ivf//+uvrqq9WlSxePx8TExKhXr17q1auXLr/8chUUFOj999/X6tWrJR0d+bFmzZqGkRuEGgAAAPBXQf3R6913363i4mJNmjRJzz77bEOoIUnTpk1T37595XA4lJGRodatW5tYKYxmLz+ii+/4uNFQ44c+Wl6sn/7mU7lcgTE1JX/3Ia3ZZDel77c+3GFKv2jc4cOH9fjjjzeEGrGxsbrzzjs1bdq0RkMNTzp16qT77rtP99xzj6KjoyWpIdTo06cPoQYABImYmBgNGTJEMTHeTUsFAH8WtMHG1q1bNWvWLCUnJ+vJJ5/0uM+AAQMkSX379m2471gQMnjwYEVGRrLyf4D645sbtbPocJP3/++n32nhiuJmrMg4qzd9b1rfazab1zdO5Ha79dJLL6m4+OhzNykpSY899pjOP/98n1+7YmNj5XA4jruvrq5OVmvQ/rkAgJDSsWNHvfDCC+rYsaPZpQCAYYL2TDU3N1cul0sTJkxomFP+Y8c+lfxhsLFjxw7NmTNHKSkpGjRoUIvU2hKqnU7Za2s9/gs2tXVOvfpevtfHmTG9wxfrtpgzWkOSviutkr28Zdf2QOOWLVumDRs2SJLi4+P10EMPKS0tzef2ji0UWl9fL0kKDw+XJG3btk2LFi067XoBAOZzOp2qrKyU0+k0uxQAMEzQBhtLly6VJI0YMaLRfY59yvnDYOP8889XaWmp5s6dq1GjRjVvkS3o0bzNSlv0X4//gs3HK4p9evM9f3lRQLxp37LroLn97yw3tX8cdfDgQb355psNt++44w6lpKT43J6nq5/8+te/btiem5ur779nxA4ABLrt27dr5MiRDYtGA0AwCNoJ04WFhZKkM8/0vNChw+HQihUrJB0fbDTHcOuBAweqrKzMq2OirVZt6TfUsBp+3rGzctI6eNyW/dWy024/KytLNS7XabdjhMrIQVLs5V4f53ZLvfqdq3Dnvmaoyjjfx90qhXt+Xq/JveKkl3JNSY5u+Fq0+LqT9lNmr9ag6+eecP9V11yvqHrW2mhuERERjU6jk6TFixeruvrolX7OP/98nX322T735SnUOLamxujRo7V48WLV1tZq4cKFuuGGGxptJysrq6ENAEDLufrqq5u87759R89zFixYoHXr1jX5uHHjxnldF+BPxt1yj2JbtVZpWanS09MbvQ/mSUlJ0dq1a306NmiDjaqqKklSTU2Nx+2zZs2S3W5XXFycOnXq1Ky1lJWVac+ePV4dE2OzSf2MqyGzVStd1LadcQ3+SElJiar9ZUhjYqYU69uh+/aWSbWlxtZjtM61UrjnTSnJMUpvd+oHH2azNmk/T/bb7VKld89neC8yMrLRbQ6Ho2FUmtVq1bXXXutzPycLNSTpmmuu0aeffiqHw6HPPvtM48ePV0REhMe2SkpKVBuE09sAwN8dO+9timPnxjU1NV4d5+25LOBvXP97r+JyOhuez57uQ2AK2mAjJSVF5eXlWr9+vYYOPX7kQ2lpqaZOnSrp6Gr/zb1AqC/Dw6MDbKG+tLQ0vxmxcSRc2u/LgW6nUtvGyOpub3RJhrKHS429dSyzV5/02JTkaIXZrHI4XSqzew79TtVWclJrRcb7988oGDQWHkjShg0bVF5+dErQgAEDlJSU5FMfpwo1JKl169Y655xz9MUXX6iyslKrV6/Weeed57G9tLQ0RmwAgAliY5v+YcWxMCM6Otqr49q3528/ApvVZmv4euz57Ok+mOd0plUHbbAxatQobd26VU8//bRGjx6trKwsSdKaNWt04403ym4/ugBjv379mr0WX4bTuI8ckWP8zc1QTfPIz8+XJSrK7DIkSQ6HS52yZ6t4b9M/hZCka7Mz9c4z/j/FYtqfVmvGPzZ63OZp6sgPFS2+TuntYlVmr1GH0e/41P/2bz9Vm9aNjyaAMRwOh+bMmeNx27Zt2xq+P//8831qvymhxjEXXHCBvvjiC0lHf9cbCzby8/O5JCwAmGDNmjVN3nfbtm3Kzc1Vdna2unfv3uTjnnvuOR8qA/zHEy+9rYrKKqWmpDastejpPgSmwBoW4IVp06YpKSlJRUVF6tWrl3r37q2uXbtq8ODB6ty5s0aOHCnp+PU1EBzCwqy645puXh935/gezVCN8Qb2Sjat78yOrQk1/EBBQUHD95mZmV4f702oIUldunRp+H7Xrl1e9wcA8B+ZmZlauHChT38/AMBfBW2wkZ6eruXLl+uyyy5TVFSUdu/ercTERM2cOVPz589Xfv7Ry4ESbASne244S2f3aPrw/J9flaXhA3wf+tSShvRuG5J94//t3r1bkpSQkKCEhASvjvU21JCkmJiYhqGBhYWFcrvdvhUOADBdWFiYEhISGGEHIKgEbbAhST169NC8efN0+PBhHT58WKtWrdLtt9+uqqoq7d69W1arVWeddZbZZaIZtIoJ14K/XqLBZ536jfit47L08m+HNftaK0Y5My1OFw5KNaXvn13Z1ZR+8f/cbnfD1VASExO9OtaXUOOYY33V19ervr7ey6oBAP6iuLhYU6ZMYdg9gKASklHt5s2b5Xa7lZWVpZiYEy+N+Z///EeStGXLluNuZ2RkaODAgS1XqAEuSD5DdWPHn3SfU20PVGckRWvZG5fq3x/t0l9nbdW6Lfbjto+9oKN+Ob67xpyXHjChxjF3XttDn61p2au3ZJ0Zr5GD01q0T3j2xBNPqK6uTuHhjVwepxErVqzwKdSQpJtuukm1tbWKiIjgUz4ACGCVlZVavny5Jk6caHYpAGCYkDw73bjx6MKLjU1Dueaaazzevvnmm/WPf/yjWWuDsaIiw3TruCzdOi5L+bsPadhNH8p+sFYpSVGa+8Jos8vz2U9GnKmMtFbaXVLZYn3ec0MvWa2BFQAFI4vF4vMlqidOnKi6ujrV1tZ6FWpIR4NdAAAAwB8RbHjA/PHglJURr8iIo5d0stkCexZWeLhVrz0yXBdNXNAi/Q3r3063X+39gqzwLzabTXfddZfcbjejLgAAABA0AvvdnY9OFWwAgWDkkDT94pqmX6ZNksrs1SreW6Uye3WTj4mKtOn1R4YHfBiEo2w2G6EGAAAAgkpInt0uXbrU7BIAQzw7ZbC+yT+gL7/Z16T9B10/16v2LRbpjUeHKysj3pfyAACAn2nbtq0mT56stm250hmA4MFHsEAAi40J1/yXLm6Wy7BarRa99shwXZfdxfC2AQCAOZKSkjRhwgQlJSWZXQoAGIZgAwhwCa0jteSVbF03prNhbSYnROn9P1+kW36SZVibAADAfBUVFVqyZIkqKirMLgUADEOwAQSBVjHhyn1mhP7zx5FqmxB1Wm3ljMrQ5veu0hUjzjSoOgAA4C9KSko0ffp0lZSUmF0KABgmJNfYAIJVzuhOGjE4Ta+/n6+XZ2/VruLDTTrOZrNo3Mgzdee1PXThoFRZLFzWFQAAAEBgINgAgkxifKR+/bPeuu+ms/Tp6lItX1+mdVvs+nrbfpVX1Kne4VJ0lE1d0ltrYK9kDeiZrLEXdFDaGbFmlw4AAAAAXiPYAIKU1WrRReek6aJz0swuBQAAAACaDWtsAAAAACEiMjJS3bp1U2RkpNmlAIBhGLEBAAAAhIhOnTrprbfeMrsMADAUIzYAAAAAAEDAItgAAAAAQkReXp6GDRumvLw8s0sBAMMQbAAAAAAhwu12q76+Xm632+xSAMAwrLHhryIjFTb7n2ZX0XQsQAUYymazKScnx7D2ZsycpcNVVYqLjdXUO6494bYRbDabIe0AAAAA3iDY8FMWi0WKijK7DAAmsVgsCgsz7iXaLcnlPvo1LCzshNsAAABAoGIqCgAAAAAACFh8TAcAAACEiIyMDOXm5qp9+/ZmlwIAhiHYAAAAAEJEVFSUunTpYnYZAGAopqIAAAAAIaK0tFSPP/64SktLzS4FAAxDsAEAAACEiEOHDmnu3Lk6dOiQ2aUAgGEINgAAAAAAQMAi2AAAAAAAAAGLYAMAAAAAAAQsgg0AAAAgRFitVvXv319WK28DAAQPXtEAAACAEOFyufT111/L5XKZXQoAGIZgAwAAAAAABCyCDQAAAAAAELAINgAAAAAAQMAi2AAAAABCRFxcnMaMGaO4uDizSwEAw4SZXQAAAACAltG+fXs9+uijZpcBAIZixAYAAAAQImpra1VUVKTa2lqzSwEAwxBsAAAAACGioKBAOTk5KigoMLsUADAMU1EA+CW32y0F2qdJkZGyWCxmVwEEBbfbLafTaXYZXrHZbLwGAABgAoINAP6ptlaO8TebXYVXwmb/U4qKMrsMICg4nU7NmTPH7DK8kpOTo7AwTq0AAGhpTEUBAAAAAAABi2ADAAAAAAAELMZLAgAAACGie/fuWr16tdllAIChGLEBAAAAAAACFsEGAAAAECIKCwt16623qrCw0OxSAMAwTEVBUCvZV6W1m+1at2W/tu0+qP0Hj0iSDhyq1Yw3vtWAnska0DNZ8XERJlcKAADQ/GpqarRp0ybV1NSYXQoAGIZgA0Gnrt6pD5YW6qV3turzdWUe96mpdWran9dIksLDrMoZlaE7r+2h885uJ4vF0pLlAgAAAABOA8EGgsrcTwt15x9Was++6iYfU+9w6Z2Pd+mdj3dp8Flt9doj5+msronNWCUAAAAAwCissYGgUF5Rqxunf6YrJy/xKtT4sdWbvteA6/6rJ17ZIIfDZWCFAAAAAIDmQLCBgLdnb5WG3TRP/5q305D26updevCFdbp26qeqrXMa0iYAAIA/SE1N1SOPPKLU1FSzSwEAwxBsIKDt3V+jET//SFt3HTS87fc+2a3rpn3KyA0AgCTJ7XabXQJw2uLj45Wdna34+HizSwEAw7DGBgKW0+nSVfcu0fbCimbr44OlhfrNc2v07K+HNFsfAIDm5XQ6VVJSosLCQlVXV8vlcikiIkKpqanq1KmToqKiTtmGw+HQiy++qCFDhmjo0KEtUDXQPMrLy7VkyRKNGjVKCQkJZpcDAIYg2EDA+vNbm7Vywz6vjlmTe4VSkmNUZq/WoOvnNumYP721SVeNytC5/dr5UiYAwAT19fVatWqVli5dqh07dqiurs7jfhaLRe3bt9fQoUM1cuRIj2/0HA6H/vKXv2jNmjVavXq1LBaLzjnnnOZ+CECz2Lt3r2bMmKHevXsTbAAIGgQbCEj5uw/pty+u8/q4lOQYpbeL9eoYt1u65aHl+nbOOEVG2LzuEwDQchwOhz788EN99NFHOnz48Cn3d7vdKi4u1rvvvqv33ntPgwcP1oQJE5ScnNzQ3rFQQ5JsNptiYmKa9TEAAADvhMQaG3a7XdOmTVNmZqaioqLUoUMHTZ48WVVVVbrttttksVj04osvml0mvPDsPze26MKe+YWH9O6ighbrz0hHah16c+52nXvjh2o99E1FnP2GUkf+W3f9YaU2bT9gdnnNbpl9nyI+nK0/7dzW6D4RH87WT1Ytb8GqADSH3bt368EHH9SsWbOOCzWSk5N1zjnn6Prrr9edd96pO++8U7fccosuuugide7cWRaLRdLRKStffvmlpk6dqqVLl6q+vv64UCM8PFxTp05Vnz59THl8AADAs6AfsbFhwwZlZ2errKxMsbGx6tmzp0pKSvT8889r586dOnDg6Bu7fv36mVsomuzQ4Tq9Pd+YK6B44+XZW3XD5Zkt3u/p+Hxtqa6eslTflx857v4ye43+Omur/jprq67P7qzXHx2uqMigfzkAEMQ+++wzvfLKK3I6j4beVqtV55xzji6++GJ169atIbzwxG6365NPPtEnn3yiiooK1dTU6O9//7veffddlZeXSyLUAADAnwX1Oxm73a6xY8eqrKxMU6ZM0cMPP6y4uDhJ0jPPPKP7779fYWFhslgsnKgEkLfn71D1EUeL97tywz5tzD+g3lmJLd63Lz5bU6pLfvGx6upPflWX3AW7tP9Qrea9cLHCw0NiEBeAILNkyRK9+uqrDbc7duyoX/7yl+rUqVOTjk9OTta1116ryy+/XG+++aaWLVsmSYQaCEoxMTEaMmQIU6oABJWgfhdz9913q7i4WJMmTdKzzz7bEGpI0rRp09S3b185HA5lZGSodevWJlYKbyxbV2Za35+vN69vb1RW1+uqe5ecMtQ4ZtHKPXri1Q3NWxQANIO1a9fqtddea7h98cUX64knnmhyqPFDsbGxmjhxojIzjx+d1717d0INBI2OHTvqhRdeUMeOHc0uBQAME7TBxtatWzVr1iwlJyfrySef9LjPgAEDJEl9+/ZtuO8///mPcnJydOaZZyomJkbdu3fXgw8+qMrKyhapG6e2bos9JPv2xr/m7VB5hecrADTm5dnbVFffcuuWtLRqp1P22lqP/wAEpoqKCr3yyityu92SpLFjx+qWW25RWJhvA1KPLRS6Y8eO4+7fuHFjwzobQKBzOp2qrKxsmLYFAMEgaION3NxcuVwuTZgwQa1atfK4T3R0tKTjg41nn31WNptNTzzxhBYsWKBf/vKXevnllzVmzBi5XE379BvN59DhOu0sOvUq981l3Zb9pvXtjZdnN75QZmP27q/R+58UNkM1/uHRvM1KW/Rfj/8ABKZ//OMfOnTokKSjH1b89Kc/PelaGifz46ufhIeHa+zYsQ3bX3311SZdZQXwd9u3b9fIkSO1fft2s0sBAMME7RobS5culSSNGDGi0X2Ki4slHR9sfPjhh2rbtm3D7QsuuEBt27bVhAkT9MUXX+j888/3upaBAweqrCwwpjD4O4c1QWpzT6Pb1+ReoZTkxueMpiRHN3wtWnxdo/uV2as16Pq5J9y/aVuB0tPTm16wCdyyqCTx9z4d+/NfPaopNUsMrcdX0VartvQbalh7P+/YWTlpHTxuy/5qmSF9ZGVlqcZPA9Bxt9yj2FatVVpWqvT09BNuA/4mIiKi0RGXkrRr1y6tXLlS0v9PITEy1Jg6dap69+6tkpISrVu3TocOHdK8efN0/fXXN9pOVlaW6uq8Gy0HGOHqq69u8r779u2TJC1YsEDr1q1r8nHjxo3zui7An3g69+F8yL+kpKRo7dq1Ph0btMFGYeHRT57PPPNMj9sdDodWrFgh6fhg44ehxjEDBw6UJO3Zs8enWsrKynw+Fj8S4ZDaNL45JTlG6e1iT9lMmM3apP1+zOW0+P//pSVC8nF908qqI6os9Y/HF2OzSf2May+zVStd1LadcQ16UFJSomo/Hdrr+l9dLqdTe/bsOeE24G8iIyNPun3RokUN31977bVq06aNT/00FmocW1Pj1ltv1YYNG+R0OvXpp5/q6quvVnh4uMe2SkpKVMv0NpigqqqqyfvW1NQ0fPXmOP5WINB5OvfhfCh4BG2wceyF+tiL94/NmjVLdrtdcXFxp1xg7NNPP5Uk9ejRw6daUlJSfDoOJ3JY47X3JNvL7NUnPT4lOVphNqscTpfK7J6fGydrx2Z1KaV9+6aUahq3pBK3Q7J4/+sdFxum1n7y+KKtgTdTLi0tzW9HbFhttoav7du3P+E24G8iIiIa3VZZWdnw4URMTIxPoymlU4cakpSUlKQhQ4Zo5cqVqqio0KpVq3Teeed5bC8tLY0RGzBFbGzTP6w5do4cHR3t1XH8rUCg83Tuw/mQfzmd981BG2ykpKSovLxc69ev19Chxw9nLy0t1dSpUyVJffr0OenQ1T179uihhx7SmDFj1K9fP59q8XU4DU5UV+9U3DlvNnq1D0/TR36oaPF1Sm8XqzJ7jTqMfsfr/s8b0l2fvV7s9XEtLefeT/TeJ7u9Pu6z/z6ns3smG1+QD9xHjsgx/mazy/BKfn6+LFFRZpfh0RMvva2KyiqlpqSquLj4hNuAv3E4HJozZ47HbZs3b1Z9fb0kafjw4Yry4feuKaHGMaNGjWqY9rJ+/fpGg438/HyfFy4FToc3i9tu27ZNubm5ys7OVvfu3Zt83HPPPedDZYD/8HTuw/lQ8Ai8j0SbaNSoUZKkp59+Wvn5+Q33r1mzRiNGjJDdfvTqFicLKyorK3XllVcqIiJCr7/+erPWi6aJCLepT5aP8ywMMMBP3vSfyp3Xej+6aEjvtn4TagDAyezatavh+7POOsvr470JNaSja2ccm35SUFDgQ8WA/8jMzNTChQtPuKwxAASyoA02pk2bpqSkJBUVFalXr17q3bu3unbtqsGDB6tz584aOXKkpOPX1/ihmpoajR07VgUFBVq0aJFSU1NbsnycxEAT33wP6BEYb/xHDknV8LObvp6ExSL97hf9m7EiADDOD8OFU00n/TFvQw1JCgsLU8eOHSUdHfVZXX3yaY+APwsLC1NCQgKjiwAElaANNtLT07V8+XJddtllioqK0u7du5WYmKiZM2dq/vz5DaM4PAUb9fX1uvrqq7V27VotWLBAPXv2bOnycRJXXNjRlH4jI2y6+NzAmHtnsVj0/nOjmjy65cUHhurS4Z6vGAIA/ubYqMvIyEglJSU1+ThfQo1jfjj3+sCBA15WDPiP4uJiTZkyhWH3AIJKUEe1PXr00Lx58064v7KyUrt375bVaj1hCKvL5dKECRP0ySef6KOPPtLgwYNbqlw00SXD0tWpfZwK9hxu0X6vvaSTkhP8c/0ET5LaRGn5Py7TtD+v0Vsf7lD1EccJ+/TumqDHJg3QlSM8Xz0oGFyQfIbqxo4/6T6n2g7Av5x77rk6cOCAbDabV5d4feedd3wKNaSj5xRWq1URERGKjo72qW7AH1RWVmr58uWaOHGi2aUAgGGCOthozObNm+V2u5WVlaWYmJjjtt11111699139Zvf/EYxMTH66quvGrZ16dLF4+Vg0bKsVot+Ob67pv256QtlGcGXdSvM1rpVhP720DA9NXmg3pq3Q795bq2qjzgUGx2mj1++RMP6t/PqTQEA+IOrr77ap+PGjh2rb775RmVlZV6FGpI0YsQIjRgxwqd+AQBA8wraqSgns3HjRkmep6EsWLBAkvTUU09p6NChx/2bP39+i9aJxt11XU91PbN1i/V3fXZnDelzRov1Z7Q2rSP1q5/2UkLro5dPbBMXofPOTiHUABBS4uPj9dvf/lbTp0/3KtQAAAD+LSRHbJws2Ni9e3cLVwNfxESH6Y1Hz9fwn82T2928fZ2RGKUXHhh66h0BAH4vPj5e8fHxZpcBAAAMxIgNBKxh/dvpgdu8+z8ss1ereG+VyuxNW9HearXotUeGK6lN4KytAQAA0Ji2bdtq8uTJTK8GEFRCcsTG0qVLzS4BBnn8VwO070CNXn0vv0n7D7p+bpPbtlikV39/ni6/wJyrsAAAABgtKSlJEyZMMLsMADBUSI7YQPCwWCya+bvzdO+NvQxtNyLcqn89caFu+UmWoe0CAACYqaKiQkuWLFFFRYXZpQCAYQg2EPCsVov+NPUczXtxtNLOiDn1Aacw+Ky2+nr2T/TTy7oYUB0AAID/KCkp0fTp01VSUmJ2KQBgGIINBI3Lzu+oTe9dpbt/2lNxseFeH98hJVZ/mjpEK968XD27JDRDhQAAAAAAo4XkGhsIXgmtI/WX3wzV478aoLfn71Tugl1av3W/KqvrPe5/RmKUzulzhm4bl6XLzu8gm42sDwAAAAACCcEGglJcbIR+Mb6HfjG+h1wut/ILD2lbwUFV1zhls1kUFxuuPl0T1b5djCwWi9nlAgAAAAB8RLCBoGe1WtS9Uxt179TG7FIAAABMFRkZqW7duikyMtLsUgDAMAQbAAAAQIjo1KmT3nrrLbPLAABDsaAAAAAAAAAIWAQbAAAAQIjIy8vTsGHDlJeXZ3YpAGAYgg0AAAAgRLjdbtXX18vtdptdCgAYhjU2APinyEiFzf6n2VV4h4XYAMPYbDbl5OQY1t6MmbN0uKpKcbGxmnrHtSfcNoLNZjOkHQAA4B2CDQB+yWKxSFFRZpcBwCQWi0VhYcadprgludxHv4aFhZ1wGwAABC6mogAAAAAAgIDFRxQAAABAiMjIyFBubq7at29vdikAYBiCDQAAACBEREVFqUuXLmaXAQCGYioKAAAAECJKS0v1+OOPq7S01OxSAMAwBBsAAABAiDh06JDmzp2rQ4cOmV0KABiGYAMAAAAAAAQsgg0AAAAAABCwCDYAAAAAAEDAItgAAAAAQkRiYqJuvvlmJSYmml0KABiGYAMAAAAIEVarVeHh4bJaeRsAIHjwigYAAACECLvdrldffVV2u93sUgDAMAQbAAAAAAAgYBFsAAAAAACAgEWwAQAAAAAAAhbBBgAAABAi4uLiNGbMGMXFxZldCgAYJszsAgAAAAC0jPbt2+vRRx81uwwAMBQjNgAAAIAQUVtbq6KiItXW1ppdCgAYhmADAAAACBEFBQXKyclRQUGB2aUAgGGYiuKn3G63FEhJemSkLBaL2VUACBJut1tOp9PsMrxis9l4HQQAADABwYa/qq2VY/zNZlfRZGGz/ylFRZldBoAg4XQ6NWfOHLPL8EpOTo7CwvizCgAA0NKYigIAAAAAAAIWwQYAAAAAAAhYjJkFAAAAQkT37t21evVqs8sAAEMxYgMAAAAAAAQsgg0gBFRU1mn5ujLV1DokSUdqncorOCiXy21yZQAAoCUVFhbq1ltvVWFhodmlAIBhmIoCBCG3263VG7/X3+fk6Yv1e5VfeOi47fsP1ar7lXMUFxuu/t2TlDMqQzeNzVSb1pEmVQwAAFpCTU2NNm3apJqaGrNLAQDDEGwAQcTtdmvO4t168rVvtH7r/lPuf7iqXp+vK9Pn68r0wF/W6obLu+iRO89WSnJMC1QLAAAAAKePqShAkNi3v0bXTFmqa369tEmhxo9VH3Ho7//JU69x7+nf83fK7WaaCgAAAAD/R7ABBIEvv9mrXle9pzlLdp92WwcO1WrCA5/pxunLVFfvPP3iAAAAAKAZEWwAAe7ztaUaNfFj2cuPGNru2/N3KufeTwg3AAAIIqmpqXrkkUeUmppqdikAYBiCDSCAbdp+QJf/arGqjziapf15nxfp5w9/wbQUBAW32y2Hw6EjR47I6fQ+sCsqKlJeXl4zVAYALSc+Pl7Z2dmKj483uxQAMAyLhwIBqr7epZt/+7kOV9U3+Zg1uVcoJTlGZfZqDbp+bpOOeWveDl1+QQeNv6Szr6UCpnC5XPrmm2+0efNmFRQUqKCgQNXV1Q3b27Rpo06dOqlz587q37+/unTpIovF4rGtoqIiPfbYY6qrq9MDDzygbt26tdTDAABDlZeXa8mSJRo1apQSEhLMLgcADEGwAQSop99o2pVPfiglOUbp7WK97uuuJ77UhQNTdUZStNfHAi2tqqpKS5Ys0ZIlS/T99983ut/Bgwf19ddf6+uvv9acOXPUuXNnjR49WsOHD1dY2P//eTwWalRUVEiSZs+erd/+9reNhiAA4M/27t2rGTNmqHfv3gQbAIJGSExFsdvtmjZtmjIzMxUVFaUOHTpo8uTJqqqq0m233SaLxaIXX3zR7DLRjPJ3H9IjL6/XLx9boUlPrNRzb20yfE2KlrRvf40em7mhxfqzlx/RozO/brH+AF+tW7dOv/71r5Wbm3tCqJGYmKju3burV69e6tq1q2Jjjw/5du3apZkzZ+rBBx/U7t27JZ0YanTu3Fn33XcfoQYAAIAfCfoRGxs2bFB2drbKysoUGxurnj17qqSkRM8//7x27typAwcOSJL69etnbqHNZJl9n0Z/+Zme6tlH93Xp7nGfiA9n69IzUvXBkOEtXF3zW7v5ez3wl7Va8lXJCdt+85e1uvaSTnrmvsFqF2AjEV59L0919a4W7fPND3foyckDFRcb0aL9Ak1RV1enV199VZ9//vlx9/ft21cjR45Ut27d1KZNm+O2ud1u7du3T5s3b9bixYtVUFAgSSosLNSDDz6o0aNHa+XKlceFGg8++OAJgQgAAADMFdTBht1u19ixY1VWVqYpU6bo4YcfVlxcnCTpmWee0f3336+wsDBZLBb16dPH5GphtIUrijXuniWqqfW8SGBtnVNvfrhDn68r06evXaqM9nEtXKFvnE6X/vbuthbv93BVvf41b6d+eW2PFu8bOJna2lo988wz2rx5c8N9/fv3180336yUlJRGj7NYLGrXrp3atWunESNGKD8/X6+99pq+++47OZ1Offzxxw37EmoAAAD4r6CeinL33XeruLhYkyZN0rPPPtsQakjStGnT1LdvXzkcDmVkZKh169YmVgqjbd5Rrpz7Pmk01Pih3SWVyr5zoaprmufKIkZbv3W/isqqTOn7/aW7TekXaIzD4dCf/vSnhlAjMjJSv/jFLzRt2rSThho/ZrFY1K1bNz3xxBMaNWrUcdvi4+MJNQAEjZiYGA0ZMkQxMTFmlwIAhgnaYGPr1q2aNWuWkpOT9eSTT3rcZ8CAAZKODlU+Zvny5Ro1apRSU1MVGRmp9PR0XXvttdq6dWuL1A1jPPPGt6ryIqjYVnBIuQt2NmNFxlm3xW5i3/u59Cv8yn//+1998803kqTo6Gj99re/1YUXXujzGhilpaVavXr1cfcdOnSIy7wCCBodO3bUCy+8oI4dO5pdCgAYJmiDjdzcXLlcLk2YMEGtWrXyuE909NF1FX4YbJSXl6t37956/vnntWjRIj399NPavHmzhg4dquLi4hapvTlUO52y19Z6/Bds7OVHNGthgdfHvfTO1oB4025msHHgUK0KSypN6x/4ocLCQr333nuSJKvVqmnTpqlr164+t/fjhUKTk5Mbtr3yyiuqrOS5DyDwOZ1OVVZWyuk89ahWAAgUQbvGxtKlSyVJI0aMaHSfY0HFD4ONK664QldcccVx+w0aNEjdunXTnDlzNHny5Gaotvk9mrdZj+ZtPvWOQWDRyj2qrfP+j/XX2/areG+VOqR4DsL8xa7iw6b3HyjrkSB4ud1uvfLKKw0n5ldeeaV69PB9/RdPVz+ZPn26XnzxRW3YsEHl5eWaNWuWbrvtNkPqBwCzbN++XTfddJPefPNNde/ueWF5AAg0QRtsFBYWSpLOPPNMj9sdDodWrFgh6fhgw5OkpCRJUliYbz+ugQMHqqyszKtjoq1Wbek31Kf+PPl5x87KSevgcVv2V8tOu/2srCzVuFr2Kh2NqYwcIsVe6tOxA4dcoHDnXoMrMtb3cbdK4Z6f12tyr1BKcuNzZlOSoxu+Fi2+7qT9lNmrNej6uSfcP/66CYqq3+5FxfAH4265R7GtWqu0rFTp6ekn3PY3ERERjU4jlKQdO3Zox44dkqT09HRdddVVPvflKdQ4tqbGxIkTNWXKFB05ckTLli3Tdddd1+haG1lZWaqrq/O5DjSvQPsdALxx9dVXN3nfffv2SZIWLFigdevWNfm4cePGeV0X4E88ve7zt8C/pKSkaO3atT4dG7TBRlXV0cUVa2pqPG6fNWuW7Ha74uLi1KlTpxO2O51OuVwuFRYW6oEHHlBKSorGjx/vUy1lZWXas2ePV8fE2GxSP5+68yizVStd1LadcQ3+SElJiar9ZUhjwveSj2v87SvbI9X5d7ChTkekcM+bUpJjlN7u1A8+zGZt0n6e7Lfvkyq9ez7DfK7//X66nE7t2bPnhNv+JjIy8qTbFy1a1PD95ZdfrvDwRn4pTuFkoYZ0NNi+4IILtHDhQtXV1WnZsmW69FLPwWlJSYlqg3B6X7AItN8BwBvHznub4ti5cU1NjVfH8XuCQOfpdZ+/BcEjaIONlJQUlZeXa/369Ro69PiRD6WlpZo6daokqU+fPh4XmbvgggsaRnRkZmZq6dKlatu2rc+1eCvaGljLn6SlpfnNiI062xF9L0lut+TFAoIWV41S20bJovbNVpsR9kc4daSRbWX26pMem5IcrTCbVQ6nS2V2z6HfqdpqmxiriHj//hnhRFabreFr+/btT7jtbyIiIhrdVldXp6+++kqSFBsbq3PPPdenPk4VahwzevRoLVy4UNLRBaYbCzbS0tIYseHHAu13APCGN1dtOhZmREdHe3UcvycIdJ5e9/lb4F98ed98TNAGG6NGjdLWrVv19NNPa/To0crKypIkrVmzRjfeeKPs9qMLMPbr18/j8a+99poOHjyogoICzZgxQxdffLFWrFjh0wrSvgyncR85Isf4m70+ziz5+fmyREWZXYako3PvB173X63fut+r4ybfNFB/nra7eYoy0GMzv9bvXlrvcZunqSM/VLT4OqW3i1WZvUYdRr/jdd9hYRZ9l79SUZFB+9IRtJ546W1VVFYpNSVVxcXFJ9z2Nw6HQ3PmzPG4raioSPX19ZKks88++6QhSGOaGmpIR6e6pKenq7i4WN99953q6uo89pmfn+/zlEU0v0D7HQC8sWbNmibvu23bNuXm5io7O9urNTaee+45HyoD/Ien133+FgSPwBoW4IVp06YpKSlJRUVF6tWrl3r37q2uXbtq8ODB6ty5s0aOHCmp8fU1unXrpiFDhui6667TJ598osOHD+uZZ55pyYcAH1ksFv3qpz29OsZms+gX1wTGAloDeiafeqdmclZmAqEGTLdr166G77t06eL18d6EGsd07txZ0tFpit99953XfQKAv8jMzNTChQuVmZlpdikAYJigDTbS09O1fPlyXXbZZYqKitLu3buVmJiomTNnav78+crPz5d06oVDJalNmzbKzMxsWKgO/u/mK7rqprFN/4P98oPnqlunNs1XkIGG9G6r8DBzfnWHn+378DDAKD/8RCUjI8OrY30JNX7cD5/oAAhkYWFhSkhIYIQZgKAStMGGJPXo0UPz5s3T4cOHdfjwYa1atUq33367qqqqtHv3blmtVp111lmnbGffvn3Ky8vz6ZNBmMNisej1R4dr0vUnH7kRGWHTG48N18SrA2O0hiQltYnS1aMzTOn79pxupvQL/JDL5ZLtf3Ni4+KafulhX0ONH/YTHh4uh8PhQ9UA4B+Ki4s1ZcoUQloAQSUko9rNmzfL7XYrKytLMTHHXxrzhhtuUGZmpvr166c2bdpo+/bt+vOf/6ywsDDde++9JlXsuwuSz1Dd2JNfzeVU2wOVzWbVCw8M1a+u76m/vbtVb8/fqX0Hjvxvm0VP3j1Qt/wkS8kJ/rE2iDfuvLaHchfsOvWOBjp/QIrO6prYon0Cntx222267bbb5PJywWKbzdYQiHgTakjSsGHDNGzYMFkDbGFnAPixyspKLV++XBMnTjS7FAAwTEieoW3cuFGS52ko55xzjj766CPdcsstys7O1owZMzR8+HBt2LCBuYgBKisjXn+aeo72fjZBaW2jJUkpSdGaekufgAw1JGlY/3Y6f0DLTguZ/vNTT9sCWpLVavUqaEhLS9NDDz2kAQMGeBVq+NIXAAAAWk5Ijtg4WbAxadIkTZo0qaVLQgvxdGnfQGSxWPTaI8PV5+r3VHPE2ez93fKTrrpkWHqz9wM0t7S0tIbLfQMAACA4hOTHTycLNoBAkdmxtZ6+Z5BXx5TZq1W8t0pl9uomH9P+jBj96ddDvC0PAAAAAFpESI7YWLp0qdklAIaYdH1Pbd55UDPf3dak/QddP9er9tvEReijv16iNq0jfSkPAAD4mbZt22ry5Mlq27at2aUAgGFCMtgAgoXFYtFfHzxXVov08uymhRtNlZwQpY9fvkR9slgwFACAYJGUlKQJEyaYXQYAGCokp6IAwcRqteilB8/VS9OHKjbamKxy+Nnt9NW/xmpAz2RD2gMAAP6hoqJCS5Ysabj0NQAEA4INIAhYLBbdeV1PfTtnnEYOTvW5ndjoMP3l/nP02euXqUuH1gZWCAAA/EFJSYmmT5+ukpISs0sBAMMwFQUIIp3TW2vJK9las8muv87aqnc+3qXaulNfNaV7p3jdeW0P3TS2q+LjIlqgUgAAAAAwBsEGEGQsFosG926rwb3b6i/3n6O1m+1at8Wur7ft18HDdap3uBQVaVOX9DgN7JWsAT2T1aNzm6C5FC4AAACA0EKwAQSx+LgIXXROmi46J83sUgAAAACgWbDGBgAAABAiIiMj1a1bN0VGcil3AMGDERsAAABAiOjUqZPeeusts8sAAEMxYgMAAAAAAAQsgg0AAAAgROTl5WnYsGHKy8szuxQAMAzBBgAAABAi3G636uvr5Xa7zS4FAAzDGhv+KjJSYbP/aXYVTccCVAAMZLPZlJOTY1h7M2bO0uGqKsXFxmrqHdeecNsINpvNkHYAAADgHYINP2WxWKSoKLPLAABTWCwWhYUZ9yfKLcnlPvo1LCzshNsAAAAIXExFAQAAAAAAAYuPqQAAAIAQkZGRodzcXLVv397sUgDAMAQbAAAAQIiIiopSly5dzC4DAAzFVBQAAAAgRJSWlurxxx9XaWmp2aUAgGEINgAAAIAQcejQIc2dO1eHDh0yuxQAMAzBBgAAAAAACFgEGwAAAAAAIGARbAAAAAAAgIBFsAEAAACECKvVqv79+8tq5W0AgODBKxoAAAAQIlwul77++mu5XC6zSwEAwxBsAAAAAACAgEWwAQAAAAAAAhbBBgAAAAAACFgEGwAAAECIiIuL05gxYxQXF2d2KQBgmDCzCwAAAADQMtq3b69HH33U7DIAwFCM2AAAAABCRG1trYqKilRbW2t2KQBgGIINAAAAIEQUFBQoJydHBQUFZpcCAIZhKgoAv+R2u6VA+zQpMlIWi8XsKgAECbfbLafTaXYZTWaz2XgNBACYgmADgH+qrZVj/M1mV+GVsNn/lKKizC4DQJBwOp2aM2eO2WU0WU5OjsLCOLUEALQ8pqIAAAAAAICARbABAAAAAAACFuMFAQAAgBDRvXt3rV692uwyAMBQjNgAAAAAAAABi2ADAAAACBGFhYW69dZbVVhYaHYpAGAYpqIgaB2uqtNHy4u1drNd67bYtW33IZXZqyVJZfYaXfGrxRrQM0lD+56hi4akyWYj5wMAAMGtpqZGmzZtUk1NjdmlAIBhCDYQdLbsLNdfZ23Vmx/u0OGqeo/7OF1ufbjsO3247DtJUsfUWN2e010Tc7rpjKToliwXAAAAAHAa+IgaQaPmiENT/7havXPe10vvbG001PDku9Iq/fbFdeo69l29/n6+3G53M1YKAAAAADAKwQaCwvotdvUf/4Ge/edGuVy+hxIVlfW67eHluvTORfr+AEM0AQAAAMDfEWwg4C1bW6oLbv1IebsPGdbmxyuKNfxn81VcVmVYmwAAAGZLTU3VI488otTUVLNLAQDDEGwgoK3e+L0uu2uRKqubPu2kqfJ2H9Ko2xdo335GbgAA4Ha7VVVF4B/o4uPjlZ2drfj4eLNLAQDDsHgoAtahw3XKue8TVdU4mq2PvN2HdMvvPte8Fy+WxWJptn4AAGgObrdb+/btU0FBgXbu3Kny8nLV19crLCxMbdq0UadOndS5c2elpKTIam388y6326233npLGzZs0EMPPaSEhIQWfBQwUnl5uZYsWaJRo0bx/wggaBBsIGDd9+wqFe/17pOjNblXKCU5RmX2ag26fm6TjvloebHenLtDN1/Z1ZcyAQBocZWVlVq2bJkWL16ssrKyU+6fnJysiy66SCNGjFCbNm2O23Ys1Pjoo48kSY8//rieeuophYeHN0fpaGZ79+7VjBkz1Lt3b4INAEGDYAMB6dPVJXr9/Xyvj0tJjlF6u1ivj5v8zFe67PwOSk6I8vpYf1FRWaeCPYdVc8Sp5IQodekQxygUAAgyDodD//3vf/Xf//5XdXV1TT7Obrdr1qxZ+s9//qMxY8bo2muvVURExAmhhsVi0eWXX06oAQDwK0EfbNjtdj3zzDN67733VFxcrLZt2+qqq67SE088obvvvluvv/66XnjhBU2aNMnsUuGFP725qUX7O3S4Tm98kK+pt/Rp0X6N8PVWu/46a6ve/minao44G+7v3TVBd17bQzdcnqlWMcF7grrMvk+jv/xMT/Xso/u6dPe4T8SHs3XpGan6YMjwFq4OAIxTWFiol19+Wbt37z7u/h49eqhnz57q3LmzUlNTFRERofr6epWVlamgoEDbtm3Txo0b5Xa75XQ6NX/+fK1fv16/+MUvtGrVquNCjdtvv10jRoww4dEBANC4oA42NmzYoOzsbJWVlSk2NlY9e/ZUSUmJnn/+ee3cuVMHDhyQJPXr18/cQuGV3XsOa/7yohbv9+XZ2zTl5t6yWgNnlMOz/9ioqX9a7XHbxu3l+uXjK/XcvzZrwV8vUaf0uBauDgBglG+++UZ//OMfG0ZpWK1WjRo1Spdcconat2/v8ZjU1FT1799fkrRv3z4tXrxYH3/8serr61VaWqrf//73cruPXkKdUAMA4M+C9qoodrtdY8eOVVlZmaZMmaLS0lKtX79eZWVlevrppzV//nytWbNGFotFffoE3qfwoezND3fof+dZLapgz2F9vu7U85T9xV/+tanRUOOH8nYf0kUTF2gvV38BgID07bffasaMGQ2hRnp6uh577DHdeuutjYYaP3bGGWdowoQJeuqpp9SlSxdJagg1JBFqBJGYmBgNGTJEMTExZpcCAIYJ2mDj7rvvVnFxsSZNmqRnn31WcXH//2n0tGnT1LdvXzkcDmVkZKh169YmVgpvffXtvpDs2xvFZVWa8sdThxrHFOw5rAefX9uMFQEAmkNZWZn++Mc/yuE4eoWwwYMH68knn2wIJ7yVlpamrKys4+6zWCzq2LHjadcK/9CxY0e98MIL/J8CCCpBGWxs3bpVs2bNUnJysp588kmP+wwYMECS1Ldv30bbyc7OlsVi0e9///vmKBM+cLvdWrfFblr/ZvbtjVfm5Mnp9G5Yy78X7FR5RW0zVWS+aqdT9tpaj/8AIBC5XC797W9/U+3/XscGDRqkyZMn+7yw57GFQhcsWHDC/S+//LLq6+tPu2aYz+l0qrKyUk6n89Q7A0CACMpgIzc3Vy6XSxMmTFCrVq087hMdHS2p8WBj9uzZ2rBhQ3OVCB99f+CI9h04Ylr/3+aXm9a3N157P8/rY2qOOJX70c5mqMY/PJq3WWmL/uvxHwAEokWLFmnbtm2Sjk4lueuuu2Sz2Xxqy9PVTyZOnKiMjAxJUnFxsd577z1D6oa5tm/frpEjR2r79u1mlwIAhgnKxUOXLl0qSSedC1pcXCzJc7BRUVGhe+65R88++6xuuOGG065n4MCBTbqGPE7NYU2U2kxudPua3CuUktz4nNGU5OiGr0WLr2t0vzJ7tQZdP/eE+3cUFCk9Pd2LilueWzaVJP7Op2Pvf+hZPfHrRQZX5Jtoq1Vb+g01rL2fd+ysnLQOHrdlf7XMkD6ysrJU43IZ0pbRxt1yj2JbtVZpWanS09NPuB3sQv3xIzCfAxEREY2OPHU4HPrggw8abt9xxx2KivLtkuSeQo1ja2pkZmZq+vTpcjqd+uijjzR27NhG12bIysry6hKzMM7VV1/d5H337Ts6rXbBggVat25dk48bN26c13UB/sTT634g/C0IJSkpKVq71rfp8UEZbBQWFkqSzjzzTI/bHQ6HVqxYIclzsPHggw8qKytLEyZMMCTYKCsr0549e067HUiKqJfaNL45JTlG6e1iT9lMmM3apP1+zOV0+///pSVcSvTt0MqqKlWW+sfji7HZpH7GtZfZqpUuatvOuAY9KCkpUbWfDu11/a8ul9OpPXv2nHA72IX640dgPgciIyMb3bZ27VodPHhQ0tF1NXr16uVTHycLNaSj51IjRozQkiVLVFtbq+XLl+uSSy7x2FZJSUnDtBi0rKqqqibvW1NT0/DVm+P89fcEaCpPr/uB8LcATROUwcaxF+ljL9w/NmvWLNntdsXFxalTp07HbVu7dq1eeeUVrxLsU0lJSTGsrVDntMTpZGNfyuzVJz0+JTlaYTarHE6XyuyNXwWksXZsVqdSmrjCvJlKXDVyW6O9Pq51jBTnJ48v2hp4M+XS0tL8dsSG9X/D0602m9q3b3/C7WAX6o8fgfkciIiIaHTb4sWLG76/+OKLfWr/VKHGD9tfsmSJJGnJkiWNBhtpaWmM2DBJbGzTP6w5dp4cHR3t1XH++nsCNJWn1/1A+FsQSk7nfXNQBhspKSkqLy/X+vXrNXTo8UPZS0tLNXXqVElSnz59ZLFYGrY5nU7dcccdmjRpks+ffHji63AanMjlcivhvLdUUel5ATNP00d+qGjxdUpvF6sye406jH7H6/7HjOireS8We31cS5v0xEq99M5Wr46xWi3a9MVr6pDieV2aluY+ckSO8TebXYZX8vPzZfFxKHhze+Klt1VRWaXUlFQVFxefcDvYhfrjR2A+BxwOh+bMmePx/vz8fElS27ZtfTpnaWqoIR29ikaXLl20c+dOFRUVqaKiwuMV5fLz8xUWFpSnln5vzZo1Td5327Ztys3NVXZ2trp3797k45577jkfKgP8h6fX/UD4W4CmCbyPRJtg1KhRkqSnn3664Q+/dPRFf8SIEbLbj17Zol+/fscd9+KLL2rv3r1cBcWPWa0Wnd0j2bT+B5jYtzd+Ob6H18dccWFHvwk1AACNKyoqarhCSVZW1nEf0jSFN6HGMT+8BGxBQYEPVcNfZGZmauHChcrMzDS7FAAwTFAGG9OmTVNSUpKKiorUq1cv9e7dW127dtXgwYPVuXNnjRw5UtLx62vY7XY99NBD+t3vfieHw6GDBw82zF09cuSIDh48KJefDjEPNYN6mRcuDDorMIKNXpkJuvPapocb8a0i9IdfDWjGigAARvlhsNC5c2evjvUl1PhxPwQbgS0sLEwJCQmMrgEQVIIy2EhPT9fy5ct12WWXKSoqSrt371ZiYqJmzpyp+fPnN4zi+GGwUVxcrMOHD+uOO+5QQkJCwz/p6MiPhIQEfffdd6Y8Hhzvp5d2MaXf5IQojR4aOHPv/nL/Obr5iq6n3C+hdYTmv3SxenZJaIGqAACn6/Dhww3ft23btsnH+RpqSEcvJ+upfwSe4uJiTZkyhWH3AIJK0Ea1PXr00Lx58064v7KyUrt375bVatVZZ53VcH9mZqY+/fTTE/YfMWKEbr75Zv3sZz9jEVA/0a97kob2PUNffrOvRfu9bVyWIiNsLdrn6QgLs+qNx4Zr9NA0vfDvLVq18fvjtreKCdNNY7tqys1nqXP6iXOlg8UFyWeobuz4k+5zqu0A4E8GDhyopKQk1dfXn7AI+skUFRVp4cKFkrwLNaSj65fdfvvtioiIYIG9AFdZWanly5dr4sSJZpcCAIYJ2mCjMZs3b5bb7VZWVtZx12Fv1aqVLrzwQo/HZGRkNLoN5rj7pz1bNNgID7PqjqubvsCWv7BYLJpwWaYmXJapDdv2a+TPP1J5RZ0S4yO0++NrFRfb+Ir7AAD/1L59e5/ChY4dO+ree+/Vc889p9tuu63JoYYkxcfHN0zlBQDA3wTlVJST2bhxo6Tjp6Eg8Fw7prNGD01rsf4euqOfOqXHtVh/zaFf9yTFRB3NMqMjwwg1ACAEDRw4UH/5y1+8CjUAAPB3ITdiw9tgw+12N2c58JHFYtGrvx+us656T4erPF/61ZMye/VxX5uif/ck/eZWgjAAQHBISkoyuwQAAAxFsIGA1TG1lV5/ZLjGT12qpuZPg66f61UfifGRevupCxUeHnKDmwAAQBBq27atJk+e7NXCswDg70Iu2Fi6dKnZJcBAV1/cSa9VD9dtDy9vcrjRVAmtI7Twb5eoR+c2xjYMAABgkqSkJE2YMMHsMgDAUHwMjYB3y0+yNHvGSLVuFW5Ym5kdW2vZ65dpYC8+zQAAAMGjoqJCS5YsUUVFhdmlAIBhCDYQFK6+uJM2vXeVLjn39C5BZ7FI99zQS9+8O069sxINqg4AAMA/lJSUaPr06SopKTG7FAAwTMhNRUHw6pDSSgtevkRzFu/WC7lb9Pm6siYfGx5mVc6oDN1741ka3JtRGgAAAAAQKAg2EFQsFouuvrjT0REc2w/onY93ae1mu9Zt3S97+ZHj9s1Ia6UBPZN1Tp8zdMPlXZSSHGNS1QAAAAAAXxFsIGid1TVRj3c9Op3E7XbrwKFaVR9xyGa1qFVMuFq3ijC5QgAAAADA6SLYQEiwWCxKahOlJLMLAQAAMFFkZKS6deumyMhIs0sBAMMQbAAAAAAholOnTnrrrbfMLgMADMVVUQAAAAAAQMAi2AAAAABCRF5enoYNG6a8vDyzSwEAwxBsAAAAACHC7Xarvr5ebrfb7FIAwDCssQHAP0VGKmz2P82uwjssxAbAQDabTTk5OYa0NWPmLB2uqlJcbKym3nFto/edDpvNdtptAADgC4INAH7JYrFIUVFmlwEAprFYLAoLM+ZUzS3J5T769Vibnu4DACAQMRUFAAAAAAAELOJ5AAAAIERkZGQoNzdX7du3N7sUADAMwQYAAAAQIqKiotSlSxezywAAQzEVBQAAAAgRpaWlevzxx1VaWmp2KQBgGIINAAAAIEQcOnRIc+fO1aFDh8wuBQAMQ7ABAAAAAAACFsEGAAAAAAAIWAQbAAAAAAAgYBFsAAAAACHCarWqf//+slp5GwAgePCKBgAAAIQIl8ulr7/+Wi6Xy+xSAMAwBBsAAAAAACBgEWwAAAAAAICARbABAAAAAAACFsEGAAAAECLi4uI0ZswYxcXFmV0KABgmzOwCAAAAALSM9u3b69FHHzW7DAAwFCM2AAAAgBBRW1uroqIi1dbWml0KABiGYAMAAAAIEQUFBcrJyVFBQYHZpQCAYQg2AAAAAABAwGKNDT/ldrulQBoiGBkpi8VidhUAEDTcbrecTqfZZXjFZrPxtwAAALQ4gg1/VVsrx/ibza6iycJm/1OKijK7DAAIGk6nU3PmzDG7DK/k5OQoLIxTCwAA0LKYigIAAAAAAAIWH6sAAAAAIaJ79+5avXq12WUAgKEYsQEAAAAAAAIWwQYAAAAQIgoLC3XrrbeqsLDQ7FIAwDBMRQGC3N79NVq3xa4N2/brUGWdJOlQZZ1e+c82DeyVrF6ZCYoIt5lcJQAAaAk1NTXatGmTampqzC4FAAxDsAEEof0Hj+iND7br73O2aXthxQnbK6sduv3RFZKkiHCrrriwo+68tocuHJTKpRoBAAAABBSCDSCIVFbX68Hn12rmf/JUW+ds0jF19S79Z/Fu/WfxbvXo3EYv/GaoLjonrZkrBQAAAABjsMYGECQ+W1OqPjnv6/l/b2lyqPFjW3cd1KjbF+iXj63Q4ao6gysEAAAAAOMRbABB4K/vbNHIn3+kgj2HDWnvb+9u09AbPlTJvipD2gMAAP4hNTVVjzzyiFJTU80uBQAMQ7ABBLjn396su574Um63se1u3nlQF9z6kcrs1cY2DAAATBMfH6/s7GzFx8ebXQoAGIZgAwhgcz8t1OSnv2q29nd8V6HL7lqkunrfprYA8A9ut1sHDhzQ5s2btWHDBn377bfauXOn6uqaPuWsvLxcM2fO1JEjR5qxUgDNrby8XO+++67Ky8vNLgUADMPioUCA2n/wSMOVTZpqTe4VSkmOUZm9WoOun9ukY9Zv3a8nX/1GD//ybF/KBGCSuro6rVy5UqtWrdKuXbt06NChE/axWq1KT09XVlaWLrroInXq1MljW+Xl5XrsscdUUlKisrIy3X///YqKimruhwCgGezdu1czZsxQ7969lZCQYHY5AGAIgg0gQN391Ffau9+7a9CnJMcovV2s1309/soGXTniTPXrnuT1sQBaVlVVlT744AMtXbpUVVUnXyfH5XLpu+++03fffaclS5aoa9euuuKKKzRo0KCGfX4YakiS3W5XZWUlwQYAAPAbITEVxW63a9q0acrMzFRUVJQ6dOigyZMnq6qqSrfddpssFotefPFFs8tsFsvs+xTx4Wz9aee2RveJ+HC2frJqeQtW1bKqaxx6/f18jZq4QGeNm6O+V7+vnHs/0YLlRXK5DF6YooVs2Vmuf3+0s8X6czjcenTm1y3WHwDffP3115o6dao+/PDD40KN2NhY9e7dW5dddplycnI0btw4XXjhherYsaOs1v8/Fdi+fbv++Mc/6rnnnlNFRcUJoUbbtm310EMPKTk5ucUfGwAAQGOCfsTGhg0blJ2drbKyMsXGxqpnz54qKSnR888/r507d+rAgQOSpH79+plbKJrF3/+zTff/eY0OHj5+Hvm3+Qf03ie71aVDnP75+AUa1r+dSRX65uXZjQdVzeW/n36n4rIqpad4P+IDQPNyuVx688039fHHHzfcFxYWpqFDh2r06NHq2rWrLBaLx2Nramq0YsUKLVq0SN99950k6auvvtKmTZsUFRUlu90u6f9DjTPOOKP5HxAAAIAXgnrEht1u19ixY1VWVqYpU6aotLRU69evV1lZmZ5++mnNnz9fa9askcViUZ8+fcwuFwZ78tVvdMejK04INX5oZ9FhXTTxI33yVUkLVnZ6qqrr9c+521u8X5fLrb/PaflABcDJuVwu/e1vfzsu1Ojbt6+ee+453XXXXcrKymo01JCk6OhojRo1Sk8//bR+9atfqVWrVpKkyspKQg0gCMXExGjIkCGKiYkxuxQAMExQBxt33323iouLNWnSJD377LOKi4tr2DZt2jT17dtXDodDGRkZat26tYmVwmgLVxRr+vNrm7RvbZ1LV923JGAua7p60/c6XFVvSt9LAigAAkLFv/71L33++eeSji4Getttt+k3v/mN19NFLBaLhg0bpoceekgRERHH3X/rrbcSagBBomPHjnrhhRfUsWNHs0sBAMMEbbCxdetWzZo1S8nJyXryySc97jNgwABJRz/ZOuazzz6TxWI54V+gT1Wpdjplr631+C8Y/fHNjV7tX1FZr1ffy2umaoy1bst+0/rekLdfDofLtP4BHO+bb77RRx99JOloqHHPPfdo9OjRJx2hcTLl5eX6y1/+ctxlYN1ut3Jzc+VwOAypGYC5nE6nKisr5XRyKXcAwSNo19jIzc2Vy+XShAkTGobV/lh0dLSk44ONY1566SWdffb/X94yNjaw1xV4NG+zHs3bbHYZLSJ/9yEt/tL7kQUz383Tb27tq7Aw/8771m2xm9Z3zRGntu46qN5ZiabVAOCo6upqzZw5s+H2zTffrMGDB/vc3o8XCk1OTlZERIRKSkr03Xff6f3339c111xz2nUDMNf27dt100036c0331T37t3NLgcADBG0wcbSpUslSSNGjGh0n+LiYkmeg42ePXvqnHPOMaSWgQMHqqyszKtjoq1Wbek31JD+JennHTsrJ62Dx23ZXy077fazsrJU4/KPT/KrIvpJrcZ5fVzx3iqld+6rMFe58UUZ6Pu4n0nhnTxuW5N7hVKSG58zm5Ic3fC1aPF1J+2nzF6tQdfPPeH+ERf/RFGOXU0vGH5h3C33KLZVa5WWlSo9Pf2E28EuEB9/REREoyMOJWnu3LkNC2CfddZZuvjii33uq7Grn1RVVem3v/2tnE6nPvjgA40cOVJJSY1f9jkrK+u40R7+JBCfA0by9HhD7WcQzK6++uom77tv3z5J0oIFC7Ru3bomHzdunPfnVoA/4XXQ/6WkpGjt2qYtJ/BjQRtsFBYWSpLOPPNMj9sdDodWrFghyXOwYaSysjLt2bPHq2NibDapn3E1ZLZqpYvaNt+VP0pKSlTtL0Mak7pJngfpnNLe7w9JR7z7v2pxnZ1SuOdNKckxSm936tFFYTZrk/bzZP+Bg9JhP/8Z4QSu//1+upxO7dmz54TbwS4QH39kZGSj2+rr6xsCfJvNpttvv/20pp94CjWOralx6aWX6sMPP5TT6dTSpUtPOmqjpKREtX46xTEQnwNG8vR4Q+1nEMx+eHnnU6mpqWn46s1xPEcQ6HgdDG5BG2wce6E+9uL9Y7NmzZLdbldcXJw6dTrx0+9rr71WdrtdSUlJuuKKK/TUU095vRDbMSkpKV4fE2317+kQP5aWluZHIzaidNDHY9u1jVeYnzyOxnwfYVVjn4eeagHUlORohdmscjhdKrN7/t04VVtJifGKat2+KaXCj1httoav7du3P+F2sAvEx//DBTx/bNWqVaqoqJAkDR482OeFPU8VakjSmDFjNH/+fLlcLn3yyScaN26cwsI8nz6kpaX57YiNQHwOGMnT4w21n0Ew82bK9LFz5OjoaK+O4zmCQMfroP/z5X3zMUEbbKSkpKi8vFzr16/X0KHHT+koLS3V1KlTJUl9+vQ57lOu+Ph4TZ06Veeff75atWqlL7/8Uk8++aS++uorrV27VlFRUV7X4stwGveRI3KMv9nr48ySn58viw8/m+awe89hdb50ttxu747r1D5OOzZ8K6vVt089W8oND3ymt+fv9LjN09SRHypafJ3S28WqzF6jDqPf8an/5Us/VI/ObXw6FuZ54qW3VVFZpdSUVBUXF59wO9gF4uN3OByaM2eOx22rV69u+H706NE+td+UUEOSkpKSNGDAAK1Zs0YHDx7U9u3b1aNHD49t5ufnNxp6mC0QnwNG8vR4Q+1nEMzWrFnT5H23bdum3NxcZWdne7XGxnPPPedDZYD/4HUwuAXWsAAvjBo1SpL09NNPKz8/v+H+NWvWaMSIEbLbjy7A+OOrnfTv31/PPPOMLr/8cl144YV64IEH9Pbbb2vz5s3Kzc1tsfrhu4z2cbpsuOf1RE7ml+O7+32oIUkDevo2csgIsdFhyjqTSyMDZtu16+g6N5GRkT4t/tfUUOOYH07ZPNY3gMCUmZmphQsXKjMz0+xSAMAwQRtsTJs2TUlJSSoqKlKvXr3Uu3dvde3aVYMHD1bnzp01cuRISU1bX+Pyyy9XbGyszwuZoOX9+me95c108+SEKN3yk6zmK8hAA3o0vnBfc+vfPUk2W9C+bAABoaKioiGcz8jIkNXLqYvehhqS1Llz54bvCwoKfKgagL8ICwtTQkKC346uAgBfBO07lPT0dC1fvlyXXXaZoqKitHv3biUmJmrmzJmaP39+wygObxYO9XVhNrS8Cwam6sUHmnZVmVYxYZr7/CglJ/jHVJpTGXRWWyW0bnzufXMaM4zVogGz7d27t+H7jh07enWsL6HGj/v5Yf8AAk9xcbGmTJnCsHsAQSWoo9oePXpo3rx5J9xfWVmp3bt3y2q16qyzzjplO3PnzlVVVZUGDx7cHGU2qwuSz1Dd2PEn3edU2wPVndf1VFKbKE15dpX27PO8EGb/7kl6/dHh6tfdvFEQ3oqOCtOtP8nSH9/c1KL9hodZddtVgTGqBQhmUVFR6tOnj+rq6rxa6Kyurs6nUEM6+glv9+7dZWNxNSDgVVZWavny5Zo4caLZpQCAYYI62GjM5s2b5Xa7lZWVpZiYmOO23XDDDercubPOPvvshsVDn3nmGfXr10/XXXedSRXDV9eO6aycURn6cNl3env+Tn247DvV1bsUE2XTJ69cqiF92gbkSJxfjO/R4sFGzqgMpSTHnHpHAM2qQ4cOmj59utfHRUREaPTo0frnP//pVahxzO9//3uv+wQAAGgJIRlsbNy4UZLnaSi9evXSv//9bz333HOqqalRenq6Jk6cqIcffvikl96D/woLs2rcRRkad1GG0kflas++aiW0jtQ5fX27PKI/yOzYWhNzuumVOXkt0l9khE0P/7J/i/QFoPlkZ2crKipKvXr18vkSsQAAAP6GYONHHnjgAT3wwAMtXRLgtWenDNbHK4pVVFbV7H09dtfZ6t6pTbP3A6D5jRgxwuwSAAAADBW0i4eezMmCDSBQtG4VodcfHe7VJWrL7NUq3lulMrvnNUc8Oa9/O91306nXogEAAP6vbdu2mjx5stq2bWt2KQBgmJAcsbF06VKzSwAMMeqc9nrtkfN0y0PLm7T/oOvnetV+764J+u/zo7nEKwAAQSIpKUkTJkwwuwwAMBTvVoAA97Mrs/SvJy9QWJixi6AOPqutPn3tUiXGRxraLgAAME9FRYWWLFmiiooKs0sBAMMQbABBYMJlmVr1ryvUu2vCabdltVr0wG199fk/LlNSmygDqgMAAP6ipKRE06dPb7j0MwAEA4INIEic3TNZa9+5Ug//or/i43y7gs/Qvmfoq3+N1ROTByoywmZwhQAAAABgvJBcYwMIVhHhNv3+zrM19We99c7Hu/T3/+Rp7Ra7XC53o8ckxkcqZ1SGfjm+u/r3SG7BagEAAADg9BFsAEEoNiZct13VTbdd1U3VNQ59k79fX2/dr4OH61TvcCkq0qYu6a01sFeyzkxrJYvF2PU5AAAAAKClEGwAQS4mOkxD+7bT0L7tzC4FAACYLDIyUt26dVNkJIuDAwgeBBsAAABAiOjUqZPeeusts8sAAEOxeCgAAAAAAAhYBBsAAABAiMjLy9OwYcOUl5dndikAYBiCDQAAACBEuN1u1dfXy+1u/IppABBoWGPDX0VGKmz2P82uoulYgAoADGWz2ZSTk2NYezNmztLhqirFxcZq6h3XnnDbCDabzZB2AAAAvEGw4acsFosUFWV2GQAAk1gsFoWFGfdn2i3J5T76NSws7ITbAAAAgYqpKAAAAAAAIGDxEQ0AAAAQIjIyMpSbm6v27dubXQoAGIZgAwAAAAgRUVFR6tKli9llAIChmIoCAAAAhIjS0lI9/vjjKi0tNbsUADAMwQYAAAAQIg4dOqS5c+fq0KFDZpcCAIYh2AAAAAAAAAGLYAMAAAAAAAQsgg0AAAAAABCwCDYAAACAEJGYmKibb75ZiYmJZpcCAIYh2AAAAABChNVqVXh4uKxW3gYACB68ogEAAAAhwm6369VXX5Xdbje7FAAwDMEGAAAAAAAIWAQbAAAAAAAgYBFsAAAAAACAgEWwAQAAAISIuLg4jRkzRnFxcWaXAgCGCTO7AAAAAAAto3379nr00UfNLgMADMWIDQAAACBE1NbWqqioSLW1tWaXAgCGIdgAAAAAQkRBQYFycnJUUFBgdikAYBimogDwS263Wwq0T5MiI2WxWMyuAgCCgtvtltPpNLsMr9hsNv4OAIAJCDYA+KfaWjnG32x2FV4Jm/1PKSrK7DIAICg4nU7NmTPH7DK8kpOTo7AwTq8BoKUxFQUAAAAAAAQsgg0AAAAAABCwGCsHAAAAhIju3btr9erVZpcBAIZixAYAAAAAAAhYBBsICfX1Lu0sqlC9wyVJcjhdR6+6AQAAEEIKCwt16623qrCw0OxSAMAwTEVBUHK73Vq5YZ9yF+zU2s12fZN/QEdq//+ScXv3H1HS8H/p7B7JGtr3DP3syq7q0qG1iRUDAAA0v5qaGm3atEk1NTVmlwIAhiHYQFBxOl1644PteiF3i77NP3DSfcsr6vTJqhJ9sqpEj/99gy45t71+/bPeGnVO+xaqFgAAAABwugg2EDTyCg7qlt8t15ff7PPp+IUr92jhyj362ZVd9eepQ9SmdaTBFQIAAAAAjMYaGwgKr7+fr37jP/A51Pihf/x3u3pd9Z5WfXv6bQEAAAAAmhfBBgLec29t0m0PLz9uDY3TVbKvWhdNXKDP15Ya1iYAAIDZUlNT9cgjjyg1NdXsUgDAMAQbCGhvfJCve2esapa2q2ocuvxXi/X1VnuztA8AAALLtm3bAv6qavHx8crOzlZ8fLzZpQCAYVhjAwFre+Eh3fXESq+OWZN7hVKSY1Rmr9ag6+eecv/DVfWa8MAyrZ91paIi+XUBACCQ1NfXa9OmTdq5c6cKCgq0Z88e1dbWSpKio6PVsWNHderUSV27dlX37t1ltTb+md/ChQv1xhtv6NJLL9WNN94oi8XSUg/DUOXl5VqyZIlGjRqlhIQEs8sBAEPwTg0Byel06ZbfLVfNEe+mn6Qkxyi9XaxXx2zddVC/f/lrPXXPIK+OAwAA5rDb7VqyZIk+/fRTHTp0yOM+5eXlKikp0VdffSVJOuOMMzR69GhdeOGFiouLO27fY6GGJH300Ufq3bu3+vfv37wPopns3btXM2bMUO/evQk2AASNoJ+KYrfbNW3aNGVmZioqKkodOnTQ5MmTVVVVpdtuu00Wi0Uvvvii2WXCS2/N26EVX+9tsf5m/GOj8nd7PjEKBG63W5+tKdWLuVs0441v9cYH+dq3n+vXAwCCi9Pp1Pvvv6/Jkyfrgw8+OCHUiIqKUmJiohITExUeHn7ctn379untt9/W5MmT9dlnnzVMOflhqCFJ48aNU79+/Zr9sQAAmi6oR2xs2LBB2dnZKisrU2xsrHr27KmSkhI9//zz2rlzpw4cOCBJ/HEKMG63Wy/8e0uL9ulyufW3d7fqT1PPadF+T5fT6dLLs7fppXe2aFvB8Sd34WFWXXNxJz1wWx+d1TXRpAqb3zL7Po3+8jM91bOP7uvS3eM+ER/O1qVnpOqDIcNbuDoAgFFKSkr04osvateuXQ332Ww2DRo0SIMHD1bnzp3Vrl27hikkTqdTJSUl2rlzp1auXKlvv/1WklRdXa2//e1vWrVqlbp166Z33nmnob1x48Zp/PjxATsNBQCCVdAGG3a7XWPHjlVZWZmmTJmihx9+uGFY4TPPPKP7779fYWFhslgs6tOnj8nVwhtrNtm1fuv+Fu/3jQ+26/FJAxUTHRi/NrV1Tl037VN9sLTQ4/Z6h0v//min/vtpoeb86SJdMiy9hSsEAMAYBQUFeuKJJ3T48GFJksVi0aWXXqrLL7+80ekWNptNHTp0UIcOHXThhReqtLRUc+bM0RdffCFJ+vrrr/X111837E+oAQD+K2inotx9990qLi7WpEmT9Oyzzx43V3LatGnq27evHA6HMjIy1Lp1axMrhbfe+XinKf0ePFynRV8Wm9K3L25/5ItGQ40fqqpx6Kp7P9H6LVz9BQAQeIqLi48LNdLS0vToo4/qxhtv9GoNidTUVE2aNEm//vWvFRUVddy27OzsoAk1YmJiNGTIEMXExJhdCgAYJiiDja1bt2rWrFlKTk7Wk08+6XGfAQMGSJL69u17wrb3339f5557rmJjYxUfH69hw4Zp8+bNzVozmm7tZvPegJvZtze+3mrXmx/uaPL+1Ucceuildc1YEQAAxqurq9Of/vSnhlAjKytLjz32mLp27epzm/v379eRI0eOu2/Pnj2nVac/6dixo1544QV17NjR7FIAwDBBGWzk5ubK5XJpwoQJatWqlcd9oqOjJZ0YbDz//PMaP368zjvvPM2dO1e5ubkaNWqUampYaNEfuFxufb3tgGn9r9vS8lNgfPHy7G1eH7Pgi2LtKq5ohmr8Q7XTKXttrcd/AIDANHv2bJWUlEiSMjIy9Jvf/Eaxsd5d/eyHfrxQ6LGRG99++60+/fTT0yvWTzidTlVWVsrp9O7KcgDgzwJjsQAvLV26VJI0YsSIRvcpLj46peCHwcbOnTs1depU/fnPf9akSZMa7r/00kubqVJ4q2RftSqr603rPy8ArozidruVu2DXqXc84Thp9sIC/ea2E0cxBYNH8zbr0TxGXgFAsCgoKND8+fMlSWFhYZo0adJpTa/wdPWTrl276plnnpEkvfXWWzr77LPVpk2b06rbbNu3b9dNN92kN998U927e15UGwACTVAGG4WFR9cVOPPMMz1udzgcWrFihaTjg43XX39d4eHhmjhxoqH1DBw4UGVlZYa2Gaoc1kSpzeRGt6/JvUIpyY2f1KQkRzd8LVp8XaP7ldmrNej6uSfcX1hUovR0/15k060wVSY+5NOxjz/9gl58+GODK/JNtNWqLf2GGtbezzt2Vk5aB4/bsr9aZkgfWVlZqnG5DGnLaONuuUexrVqrtKxU6enpJ9wOdqH++CV+Bjz+Ex+vv/8MIiIiGp1SLEnz589vuCTrNddcc1qPwVOocWxNjQsvvFCfffaZampqtHTpUl111VWNtpOVlaW6ujqf6/DV1Vdf3eR99+3bJ0lasGCB1q1r+jTUcePGeV0X4E8C8XUw1KSkpGjt2rU+HRuUwUZVVZUkNTp9ZNasWbLb7YqLi1OnTp0a7l+5cqW6deumf/3rX3r88cdVVFSkrl276ne/+52uv/56n+spKysLqrmZpoqok9o0vjklOUbp7U49BDXMZm3Sfj/mcjoC4P/SJvl49daqw4dUVeYfjy/GZpP6GddeZqtWuqhtO+Ma9KCkpETVfjq01/W/ulxOp/bs2XPC7WAX6o9f4mfA4z/x8fr7zyAyMrLRbRUVFfrqq68kSa1atVJ2drbP/Zws1JCknJwcLVu2TG63W0uWLNGVV14pm83msa2SkhLVmjDF8di5b1McOz+uqanx6jh/fI4A3gjE10E0XVAGGykpKSovL9f69es1dOjxn/iWlpZq6tSpkqQ+ffoct7p1aWmp9uzZowceeEBPP/20OnTooNdee00//elP1bZtW40aNcrnemAMpyVGJxv7UmavPunxKcnRCrNZ5XC6VGZvfN2UxtoJszrUrn37ppRqqjJnuZy2pq8Ef0ybmDrF+snji7YG3hJAaWlpfjtiw/q/k3Crzab27dufcDvYhfrjl/gZ8PhPfLz+/jOIiIhodNsXX3whh8MhSbrwwgtPuu/JnCrUkKS2bdvq7LPP1rp163TgwAF9++236t+/v8f20tLSTBmx4c26IsfCjOjoaK+O88fnCOCNQHwdDDWn8745KIONUaNGaevWrXr66ac1evRoZWVlSZLWrFmjG2+8UXb70Stb9OvX77jjXC6XKisr9dZbb+knP/mJJOmiiy7Sli1b9Nhjj/kcbPg6nAaepV2Uq9LvPQcPnqaP/FDR4uuU3i5WZfYadRj9jtd951w2WO884/+XfH3ilQ168AXvrnLSKiZM3335ruJifTs5NJr7yBE5xt9sdhleyc/Pl+VHlwj0F0+89LYqKquUmpJ69NKIP7od7EL98Uv8DHj8Jz5ef/8ZOBwOzZkzx+O2/Pz8hu/PO+88n9pvSqhxzLBhwxqmbezYsaPRYCM/P19hYS1/er1mzZom77tt2zbl5uYqOzvbqzU2nnvuOR8qA/xHIL4OoukC7yPRJpg2bZqSkpJUVFSkXr16qXfv3uratasGDx6szp07a+TIkZJOvCJKYuLR8fs/DDAsFotGjRqlTZs2tdwDwEkN7JlsYt9tTevbG7dd1U0R4d79et80tqvfhBoAAJxMQUGBJCk8PFwdOnheP+lkvAk1JCkzM7Ph+127vF+g259kZmZq4cKFxz0mAAh0QRlspKena/ny5brssssUFRWl3bt3KzExUTNnztT8+fMbUv4fBxu9evVqtM0fX88c5hna94yQ7Nsb7ZKi9beHhjV5/x6d2+jxXw1oxooAADDGkSNHtHfvXklHF4pvbL2LxngbakhHp6Mcm7ZxbJH6QBUWFqaEhARTRpYAQHMJymBDknr06KF58+bp8OHDOnz4sFatWqXbb79dVVVV2r17t6xWq84666zjjrnyyislSYsWLWq4z+VyafHixRo0aFCL1o/G3TQ2UzZb4ycfzaVbRrzO7RcYwYYk3fKTLP39d8NO+bM6u0eSPnklWwmtG1+kDQAAf/HDD5u8vfSqL6GGdHQEb3x8vKTGF6cPFMXFxZoyZQrD7gEElZCLajdv3iy3262srKwTrnU+duxYDR8+XLfffrv279+vjh076tVXX9XmzZu1ePFikyrGj7VvF6ufjDhTc5bsbtF+77y2xylPfPzNxKu7a+SQNM18d5teez9fBw79/0rt5w9I0Z3X9tC4i85URLh3n3YFkguSz1Dd2PEn3edU2wEA/qN169b661//qvr6eq9GHbjdbuXl5TXcbmqoccz9998vi8Xi80Kl/qKyslLLly/XxIkTzS4FAAwTcsHGxo0bJZ04DUU6msbPnTtX999/v6ZPn66Kigr17dtXH330UcO6HPAPU24+q0WDjeSEKN00NjDnonbp0FrP3DdYj/9qgDpe/I727j+ilORoLXvjMrNLAwDAa1artWFdNG9YLBbdddddkqR27dp5FWocOwYA4J8INn6kTZs2mjlzpmbOnNmSZcFLQ/u2069+2lMv/HtLi/T31wfPVZsAn6oREW5TmO3o7DObNbBGngAAYASbzaZJkybJYrEE3ChMAEDjgnaNjcacKthA4Hjy7oHqnB7n1TFl9moV761Smd3z5WI9uebiTrrm4k7elgcAAPyQ1Wol1ACAIBNyIzaWLl1qdgkwSGxMuD54bpQuuHW+yivqmnTMoOvnetVHv+6J+vvvmn51EQAAAH/Wtm1bTZ48WW3bBsYl7AGgKUJuxAaCS++sRC2aOUZJbYyfJtK/e5IW/W1MwE9BAQAAOCYpKUkTJkxQUlKS2aUAgGEINhDwBvZqqxX/vFwDeiYb1uZ1Yzrr09cuVdvEaMPaBAAAMFtFRYWWLFmiiooKs0sBAMMQbCAodOvURl++NVaPTxqg8DDfn9ZnJEZpzp8uUu4zIxQfF9iXcwMAAPixkpISTZ8+XSUlJWaXAgCGCbk1NhC8wsOtevD2frrpikz9/T95emVOnvbur2nSsb26tNGd1/bQDZdnqnUrAg0AAAAACBQEGwg6HVJa6bFJA/TQHf302ZpSrd1s17ot+7W14KCqjzhks1oUFxuuvlmJGtAzWef0OUODzkpmhXQAAAAACEAEGwhaEeE2XXxuui4+N93sUgAAAAAAzYQ1NgAAAIAQERkZqW7duikykqu+AQgejNgAAAAAQkSnTp301ltvmV0GABiKERsAAAAAACBgEWwAAAAAISIvL0/Dhg1TXl6e2aUAgGEINgAAAIAQ4Xa7VV9fL7fbbXYpAGAY1tgA4J8iIxU2+59mV+EdFmIDAMPYbDbl5OQY1t6MmbN0uKpKcbGxmnrHtSfcNoLNZjOkHQCAdwg2APgli8UiRUWZXQYAwCQWi0VhYcadqroludxHv4aFhZ1wGwAQuJiKAgAAAAAAAhbxNAAAABAiMjIylJubq/bt25tdCgAYhmADAAAACBFRUVHq0qWL2WUAgKGYigIAAACEiNLSUj3++OMqLS01uxQAMAzBBgAAABAiDh06pLlz5+rQoUNmlwIAhiHYAAAAAAAAAYtgAwAAAAAABCyCDQAAAAAAELAINgAAAIAQYbVa1b9/f1mtvA0AEDx4RQMAAABChMvl0tdffy2Xy2V2KQBgGIINAAAAAAAQsAg2AAAAAABAwCLYAAAAAAAAAYtgAwAAAAgRcXFxGjNmjOLi4swuBQAME2Z2AQAAAABaRvv27fXoo4+aXQYAGIoRGwAAAECIqK2tVVFRkWpra80uBQAMQ7ABAAAAhIiCggLl5OSooKDA7FIAwDBMRfFTbrdb1TUOs8tospjoMFksFrPLAAAAQJBwu6UjTrOr8E6UTTLqlNjtdkuBNrImMpL3BAZyu91yOgPrl8Bms5nyHCDY8FPVNQ61OudNs8tossqvblJsTLjZZQAAACBIHHFKwz8yuwrvLL9UijbqHVZtrRzjbzaosZYRNvufUlSU2WUEDafTqTlz5phdhldycnIUFtbyMQNTUQAAAAAAQMAi2AAAAAAAAAGLqSgAAABAiOjevbtWr15tdhkAYChGbAAAAAAAgIBFsAEAAACEiMLCQt16660qLCw0uxQAMAxTUYAgVrKvSis37NO6rXZt2HZA+w4ckSR9X35EN01fpoG9kjWgZ7KG9G6rsDByTgAAgl1NTY02bdqkmpoas0sBAMMQbABBxuVya/GXe/TXWVs17/MiuVzuE/apq3fprXk79Na8HZKk9mfE6Paru2tiTjelto1p6ZIBAAAAwGd8RAsEkY35BzT4p3M15pcLNfez7zyGGp7s2Veth/+6XmdeMkuPvLxe9fWuZq4UAAAAAIxBsAEEAZfLrSde2aAB1/1X67bYfW6n3uHS71/+WoMn/Febth8wsEIAAAAAaB4EG0CAq6936cbpy/TgC+tU7zBmpMWGbQd07k3z9PnaUkPaAwAA/iE1NVWPPPKIUlNTzS4FAAxDsAEEMKfTpZt/u0z//min4W0frqrXpXct0pff7DW8bQAAYI74+HhlZ2crPj7e7FIABCCXyz+nrLN4KBDAnnljo3IX7Gq29qtqHLry7iXa/P5VapsY3Wz9AACAllFeXq4lS5Zo1KhRSkhIMLscv2P/5B/av/Qf6vaHz8wuBTCM2+3W3r17VVBQoNLSUtXV1clqtSo6OloZGRnq1KmTWrVqdcp2du3apRdffFH33nuvOnTo0AKVNx3BBhCgNu8o1+9fXu/VMWtyr1BKcozK7NUadP3cJh3zffkR/eqpL/XOMyN9KRMAAPiRvXv3asaMGerduzfBBhDkCgsLtXjxYn355Zeqqqo66b5paWkaOXKkLrjgAsXFxZ2wfdeuXfrDH/6gqqoqPfbYY/r973+vtLS05irdawQbQAByu9269XfLVefl1UtSkmOU3i7W6/5mfVyg68bs1k9GZnh9LAAAgL/b/cLPVf7FO3I7HXI76/X1tUc/ve7370Oy2GwmVwd4p7CwUG+88Ya2bdvW5GNKSkr0r3/9S7NmzdKIESN0/fXXKzr66IjtH4YaktS+fXslJiY2S+2+Cok1Nux2u6ZNm6bMzExFRUWpQ4cOmjx5sqqqqnTbbbfJYrHoxRdfNLvMZvGHuwfI/e1tuuUnXT1u//S1S3Vk7c/UK5PEPpB8urpUqzd936J9Pv36ty3aHwAAgK9qy3ap8KXbtenO7lp/TYw2/DRBm+/qoYLnbtbhbz89Yf+MX72q/rMq1fGXf1OrnsPVf1al+s+qDIpQY5l9nyI+nK0/7Wz8TW7Eh7P1k1XLW7AqNAeHw6E5c+Zo+vTpx4UakZGR6t+/v3JycnTffffpwQcf1PTp0/XLX/5SY8aMUWZmZsO+9fX1WrRokaZOnaqNGzeeEGr06NFD999/v6Kiolr88Z1M0I/Y2LBhg7Kzs1VWVqbY2Fj17NlTJSUlev7557Vz504dOHD0kpb9+vUzt9D/a+/O46Oq7/2Pv2eyTHYIazaTsEhIQEKACBggiSKEBEVQsdVb6MXij+pVtFaxuIBVAYViLdftAlaIlqsXKeUqhKWIYEQRJGhZ5eIGJMEoEMIWkpnfH5SUmAQyk0nOnJnX8/HgAWf5nvP5HoYh857v+Z5mMv2l7bohM15zf9tfazYf0qHSUzXb7v+3HspKj9Yjf/xUO/cfNbBKOOult3a3+Dk//vx7fbarTH1S2rX4uQEAABrr5Jdbte/RTFn8A9Qma5yC43vIXnlaZw9/qfKiNfILDld4r2yjywTc6tSpU5ozZ4527dpVsy46OlojRozQoEGDFBISUm+7zMxMSedHbKxdu1br16/X2bNnVVZWpmeeeUaBgYGqrKyU5LmhhuTlwUZZWZluuOEGlZSU6MEHH9S0adNq7hd67rnnNGXKFPn7+8tisahXr14GV9s8zlXZNf6xjfrkjRu1cPpg5fx6tSSpW2IrPXNvP338+RHNfv0Lg6uEM478cFrL3//GkHPPf2evXibYAADAtEJCQtS/f/8GP+R4g+K3npT97CklP1ukkE6pdbafO1piQFVA8zlz5oxmzpypL7/8UpJktVo1atQojRkzRgEBAY06RkxMjMaPH68RI0bo1Vdf1c6dOyXJFKGG5OW3otx33306ePCg/uM//kNz5sypNQnKww8/rNTUVFVVVSkxMVEREREGVtq8tu/+QTMX7tDwjDhNvDlJVqtFi58ZIotFGv/YRtntDqNLhBM++eJ7VVcb83dWWMSjXwEAMLP4+HjNmzdP8fHxRpfSbM4c/lJ+4W3rDTUkKSAyqoUrApqPw+HQCy+8UBNqhIWFafr06brtttsaHWpcrEOHDvr5z39ep+2gQYM8NtSQvDjY2L17t9566y21a9dOM2fOrHefvn37SpJSU//1ppeVlSWLxVLvr0mTJrVI7c3hqf/arqI9P2jOg1dr3u8Gqv9VHfTovG3a9/Vxo0uDk7btKjPs3LsOHNOp01WGnR8AADRNdXW1KioqVF1dbXQpzcYW1UXVJ37Q0c3LjC7Fo5yqrlbZ2bP1/oJ5vf/++9q+fbskKTQ0VI8//ri6devm8vEOHDigmTNn6ty5c7XWv/nmmzXTOHgir70VZcmSJbLb7brjjjsafCbvhVleLw42XnrpJZWXl9fa77333tPTTz+tkSNHNl/BzayqyqHxj23Up0tu1N23JWvTZyX64xv/MLosuGD7nh8MO3d1tUP/2H9UV1/V3rAaAACA67788kuNGzdOixcvVvfu3Y0up1lEj31MJ3as1YFZN8sWc6XCkgcp9Mp0hfXMUvAVyUaXZ5jf792p3+/daXQZcKOysjLl5+fXLN9zzz1KSEhw+Xj1TRTaunVrbd68WadOndL8+fP18MMPy2KxNLl2d/PaYGP9+vWSpOzshicGOnjwoKTawUZKSkqd/Z555hm1b99eOTk5LtXSr18/lZQ4dy+fXQFSm8dcOl9DjldU6mxltQID/LRy03dyuPFuhiu7dZNV5y6/I5rs+/B/lwIS69326ZIbFdWu4Xtmo9oF1/z+3dqfXfI8JWWnlP7zFXXW595wi4Kq/q/xBcMjjP73+xUaFqHikmLFxcXVWfZ2vt5/iWtA/+v219evgTf1/5Zbbmn0vkeOHJEkrVq1Stu2bWt0u9GjRztdV1NZAoPV8Y9fOt0urPtAJf9hm0r/9gcd37ZKP/z9z/rh738+vy1lsBInvy5bVOf6z+kXIGtgsMs1d+t2pRyVp11uf7Fgq1W7eg90y7Ek6VfxnXVzzBX1bhvx8QduOUe3bt102m53y7HczYzvg4GBgQ3efSBJK1as0OnT519vmZmZ6tOnj8vnaujpJ1VVVdq9e7eOHTum7du3a9++fUpKSmrwON26dauZl8NZUVFR2rp1q0ttvTbY+Oab85MrNpRYVVVVqbCwUFLtYOOnvv/+exUUFOjuu++Wv79rl6ukpESHDh1yrpElUHLzo4H//PvBCgzw067/O6rH7uqtt1d/pQMHT7jl2MWHD0sO117AcFLnc1IDt8tFtQtRXMfQyx7C38/aqP3q88OPR6UTTr6eYTj7P4cc26urdejQoTrL3s7X+y9xDeh/3f76+jXwpv5f+CDSGBc+BJ0+fdqpdkZcI6stRB1dbBuceJUSJ78uSTp75BtV/OMDla1doIpdm7R/xigl/2GbrAGBddq1zbpDbbPucLnmw4cPy3721OV3bIQQPz+pt1sOJUnqGham69q7ekUb5/Dhwzrlobc5mfF90GazNbjt9OnT2rRpU81+v/jFL1w+z+Ue6frzn/9cL7/8siRpzZo1lww2Dh8+rLMG3N7ktcHGhb+UC2/eP/XWW2+prKxM4eHh6tSpU4PHWbJkiaqqqpr0QomKcn6CIrsCVOzyGeu69/YUZV8do6l/2qq/vf+NPnvrJr32+8HKmrDSLcePjolhxEYLKQu0qqG3ipKyS/9HGtUuWP5+VlVV21VSdulvExo6Vrs2EbJFxDamVHgQq59fze+xsbF1lr2dr/df4hrQ/7r99fVr4E39Dw1t/JcVF35GDg4OdqqdEdfI0oSRExezdUiQ7dpxapP9C+393WCd3F2oU19uUVjKILcc/2IxMTFuHbFhNjExMR47YsOM74OBgXXDtwsKCwtrPutmZGQ0OP3C5Vwu1JCkgQMH6o033tCJEyf08ccfa9y4cWrVqlW9x4uJiWnSiA1XeW2wERUVpaNHj+qzzz7TwIG1h3AVFxfroYcekiT16tXrkvcI5efnKzk5Wf369XO5FleG05w8dU5hAxa7fM6LdY2P0MzJ/bTli+/17Gufy253aPrLn2nm5HTde3uK5v1l1+UPchlf7tun0BDnZ92F8yY9VahX/2dPvdvqu3XkYt+t/ZniOoaqpOy0rrj+v106/2cfF+iKKNfeOGGcGS++qfKKk4qOitbBgwfrLHs7X++/xDWg/3X76+vXwJv6/+mnnzZ63z179mjJkiUaMWKEU3Ns/PGPf3ShsqY5XSUNds93cJIki8Wi0G79dXJ3oSp/aJ5v5/ft+1LBbvqE5ThzRlVjx7vnYC1k3759snjokzPM+D5YVVWld955p95tO3bsqPnzdddd59LxGxNqSOcDliFDhui9995TdXW1du/erQEDBtR7zH379rl8p0NTmC8GbKShQ4dKkp599lnt27evZv2nn36q7OxslZWdf7JE7969GzzGnj17tHXr1iaN1jCaxSK9/tQQ+VktGv/YBzWPdn3uz1/o0398r5mT+6lzXPhljgJP0je5rWHnbh8Z5PItLAAAwHhdu3bV6tWr1bVrV6NLaTblRWvlqK77FDf72dMqL1ojSQq+ou68eoCZfPXVV5KkoKCgS96B0JDGhhoXJCcn12rrabx2xMbDDz+sv/zlL/ruu+/Uo0cPde/eXWfOnNH+/fs1YsQIJSYmavXq1ZecXyM/P18Wi0V33OH6fXZGe3D8VcpI66iHn9+iPV/969GudrtDv3x8o9tvSUHz69ejnWHn7pvSziNnQQYAAI3j7++vyMhIo8toVt8tfEBVJ35Q66tvVHDCVbLaQlRZ9p1+/OAvOnt4n9pkj1Nw4lVGlwm4rLy8vOaL+sTERFmdvG3J2VBDkjp3/teEu54YbHjtiI24uDht2rRJeXl5CgoK0tdff602bdro1Vdf1XvvvVcziqOhYMPhcOjNN99UVlaW4uPjW7J0t+neqZWeuqePNu84oj8sqvto113/d0zTX/5Mmf2ide/tpNZmkZrUVl2uMGaUza3DnE+DAQCA5zh48KAefPBBjxx27y5XTJiryAFjdHLvxzq8ZLq+efEuHXn3TwpoE6OEexcq8b4/G10i0CRHjx6t+XN0dLRTbV0JNSQpMjKyZjLTY8eOOVdwC/DaERvS+b+kd999t876iooKff3117JarerZs2e9bTdu3KhvvvlG06ZNa+4ym82er44rOH3RJfeZtfBzzVr4eQtVBHewWi369dhk/fYPW1r0vK3DA/WznPofjQYAAMyhoqJCmzZt0sSJE40updlEpA1TRNowo8vwGJntOqjyhrGX3Ody2+FZWrVqpbFjx6qysrLWSIrLqaqq0vPPP+90qCGdn6Nm5MiRcjgcHjnqy6uDjYbs3LlTDodD3bp1U0hISL375OfnKzg42KnnggMt5d9v6qbHX9ym02da7nFaE0Z3U4i7ZsMCAAAA4JLWrVtrzJgxTrfz9/fX5MmTNWPGDCUkJDQ61Ljg1ltvdfqcLcUnP6V88cUXkhq+DeXMmTNaunSpbrrpJoWHM7EmPE+bVjY9c28//Wb2Jy1yvuj2IXrsrt4tci4AAAAAzaNr166aNm2aOnbs6FSo4ekINuoRFBTkkfcNARe77/YUvbPuaxVuL232c/3XExmKjLA1+3kAAAAANK+EhASjS3A7r5089FIuF2wAZuDnZ9XrTw1R29aNDxxKyk7pYOlJlZSdanSbu29L1shMc06gCwAAamvfvr0mT56s9u3bG10KALiNT47YWL9+vdElAG7RNT5CBS8P1/V3FejYicrL7p/+8xVOHf/23C760yMDXC0PAAB4mLZt2+qOO+4wugwAcCufHLEBeJN+Pdrrgz/n6YqoULce956fJWvxM0Pk58fbBAAA3qK8vFzr1q1TeXm50aUAgNvwiQXwAr26tdEX74zRr8Z0a/KxYjqE6L0Xh+k/p15DqAEAgJc5fPiwpk6dqsOHDxtdCgC4DZ9aAC/RKjxQ86cP1tr/ytF1/WOcbt+2tU0P//tV2rlsjHIHX9EMFQIAAACA+/nkHBuANxs6IFZDB8Rqz1fHtOCdvfpwe6mK9v6os5XVdfaN6xiqviltdfPQRN06rJOCbLwlAAAAADAXPsUAXqp7p9aa89v+kqRz5+za+/UxHS2v1Lkqu4KD/NQlLkId2gYbXCUAAAAANA3BBuADAgKs6nllG6PLAAAABrPZbEpKSpLN1vjHxQOApyPYAAAAAHxEp06dlJ+fb3QZAOBWTB4KAAAAAABMi2ADAAAA8BF79+5VRkaG9u7da3QpAOA2BBsAAACAj3A4HDp37pwcDofRpQCA2zDHhocKCfZXxcfjjC6j0UKCeSkBAADAfYL8pE25RlfhnCA/Nx7MZpP/24vceMAWwKS0buXn56ebb77Zbceb/epbOnHypMJDQ/XQ/7utzrI7+Pm58x9B4/Fp1ENZLBaFhgQYXQYAAABgCItF8uXvziwWixQUZHQZMJDFYpG/v/v+ETgk2R3nf/f396+zbGbcigIAAAAAAEzL3LEMAAAAgEZLTEzUkiVLFBsba3QpAOA2BBsAAACAjwgKClKXLl2MLgMA3IpbUQAAAAAfUVxcrKefflrFxcVGlwIAbkOwAQAAAPiI48ePa8WKFTp+/LjRpQCA2xBsAAAAAAAA0yLYAAAAAAAApkWwAQAAAAAATIunogAAAAAmlp6e3uh94+LiNG3aNA0dOlTR0dHNWBUAtByCDQAAAMBHREdHa/r06UaXAQBuxa0oAAAAAADAtAg2AAAAAACAaRFsAAAAAAAA0yLYAAAAAAAApkWwAQAAAAAATItgAwAAAAAAmBbBBgAAAAAAMC2CDQAAAAAAYFoEGwAAAAAAwLQINgAAAAAAgGkRbAAAAAAAANMi2AAAAAAAAKZFsOEBZs+erYEDByoyMlKtW7fWoEGDVFBQYHRZAAAAAIBLWLlypXr37i2bzabExETNnTvX6JJazMaNGzVq1CglJCTIYrHo6aefNqwWgg0PsH79ek2YMEHvv/++tmzZomuuuUYjR45UYWGh0aUBAAAAAOqxdetWjRo1SiNGjFBRUZGmT5+uqVOn6pVXXjG6tBZRUVGhlJQUPffcc4qKijK0Fn9Dzw5J0qpVq2otP/fccyooKNCyZcuUkZFhUFUAAAAAgIbMnTtX6enpmjlzpiQpOTlZO3fu1KxZszRp0iSDq2t+ubm5ys3NlSRNmTLF0FoYseGB7Ha7ysvLFRoaanQpAAAAAGAq585V1fklOf651XHJdefOVelcVVWjzlNYWKicnJxa63JycvTNN9/o4MGD7uqO06qr7Y26Bg32/1yV7A5H/Qf3UIzY8EAzZszQsWPHdNdddxldCgAAAACYyuqNn+rDrV/Uu6284pQen/vaJdflZQ/Q4Kt7XfY8xcXFdW7BuLBcXFysuLg4Z0t3i5Lvf9SL+X+V3V5/OPHT/v50OaZjW939i5tk9fNr9lrdhREbHuall17SjBkztHTpUsP+IQAAAACAWQ3PTFeHtpEute0cH6OM9KvcXFHLio1qp6EZfV1q6+/np9vysuVvolBDItjwKHPmzNFDDz2kFStWaOjQoUaXAwAAAACmE+Dvr9tuyJaf1bmPu7bAAI3Ny5LVYmnU/tHR0SopKam1rrS0tGabkTIH9FZ8TAen2w3PTFfH9m2aoaLmRbDhIZ544gk9+eSTWrlyJaEGAAAAADRBbMd2GjrIuVELo67PUOuIsEbvn5GRodWrV9daV1BQoISEBMNH3/tZrRo7MlsBAY2ffaJzfIwy+plztArBhge4//77NXv2bOXn5yspKUklJSUqKSnR8ePHjS4NAAAAAEwps3+qEmI7Nmrfnt06Ka3HlU4d/4EHHtCWLVv06KOPas+ePVq0aJHmzZunRx55xJVy3a5dZCuNvHZAo/Z1drSKdP5xr0VFRSoqKlJlZaVKSkpUVFSk/fv3u1qyywg2PMALL7ygM2fOaPTo0YqOjq75NXnyZKNLAwAAAABTslqtGpuXrcDLjFoICw3W6OGDZXHiQ70kpaena/ny5Xr33XeVmpqqJ554Qs8884xHPer16tRkJXW+4rL73TRskFOjVSRp69atSktLU1pamoqLi/Xiiy8qLS1Nv/rVr1wt12U8FcUDOJx4lM6pM2cVbAt0+h8dAAAAAPiatpERGnndNVpWsLHBfW4ZkanQkCCXjp+Xl6e8vDxXy2t2FotFt4zI1POv/Y9OnT5b7z5XJXVW75SuTh87KyvLqc+yzYkRGybicDj057dX6ZU3V+hI2VGjywEAAAAAj5feK0nJXePr3da/d7K6d6l/m7cIDwvRmOFDGtx20/BBpv/inGDDRPZ9dVDfFR/R4dIyBQfbjC4HAAAAADyexWLRmJwhCg2uPSqjbWSEcrMbNweF2fVM6qQ+PbvVWX/LiMw618WMfCbYqK6uVn5+voYNG6b27dvLZrMpPj5eOTk5WrBggaqrqyVJ06dPl8Vi0fTp03X06FH95je/UdeuXWWz2ZSVlWVY/Q6HQ+s+3CZJGpDWQ+GhIYbVAgAAAABmEh4aojE5/xq1YLFYdFtetmyBAQZW1bJuHHpNrXk0BqSlNGr+DTPwiWCjvLxc119/vcaNG6e1a9cqMDBQqampstvtWrNmjSZOnKgTJ07UalNWVqa+ffvqhRdeUFBQkFJSUmSzGTdK4sJojQB/Pw3p38uwOgAAAADAjHp0S1Tfq86PWsge0FvxjXxiircIsgVqbF6WLDr/xJTcrP5Gl+Q2PjF56J133qn3339fcXFxWrx4sbKzs2u2lZaWauHChQoIqJ3UvfLKK+rTp4/Wr1+vxMRESdLp06dbsuwajNYAAAAAgKa74bprdPbsOV2X0dfoUgzROT5GQ/qnqke3Tgr0otEqFoenTGPaTLZt26Z+/frJ399f27dvV8+ePS+5//Tp0/Xkk0/KZrNp//79iouLa3IN8xYt04kK10ORquqqmhlsw0NDTD+xC4CWd+LkKTkcDlksFoWHhtRZ9na+3n+Ja0D/6/bX16+Br/UfwL9c+Lfvqzy1/+Fhwbp3/BiX2nr9iI3ly5dLOv8YnsuFGhcbOnSoW0INSTpRcVrlFSfdc6yTp9xyHAC+yeFw1Ho/+umyt/P1/ktcA/pft7++fg18rf8A4I28PtjYtWuXJGngwIFOtUtOTnZbDeFhwS63ZbQGAHfw9W8qfb3/EteA/jNiw9dfAwDg6Zryudnrg43y8nJJUqtWrZxqFxoa6rYaXB1O43A49FL+33Tq9BENTu+lvGt941FEANxvxotvqrzipMJDQzT1njvqLHs7X++/xDWg/3X76+vXwNf6DwDezOvn2Lj55pu1bNkyzZo1S1OmTLns/hfm2Jg2bZqmT5/ulhpcnWOD0RoA3MXXv6n09f5LXAP6z4gNX38NAICnY46NS+jRo4eWLVumzZs3G1aDO+bYYG4NAO7g6/eW+3r/Ja4B/WeODV9/DQCAN/L6YGP06NF66qmntHLlSu3atUspKSktXoMr9woxWgOAO/n6N5W+3n+Ja0D/GbHh668BAPB0zLFxCWlpaRo7dqzefvttjRgxQosXL1ZmZmbN9tLSUr322mu677773DqvxsWcHU7D3BoA3M3X7y339f5LXAP6zxwbvv4aAABv5vXBhiTNnz9fR44c0YYNG5SVlaXY2FjFxMSouLhYhw4dksPh0K9//Wujy6yx76uD+q74iAL8/TSkfy+jywEAAAAAwGNZjS6gJURERGjdunVauHChsrKydOrUKe3YsUNWq1XDhw/XwoULFR4ebnSZNb47fEQWSQPSejA0EgAAAACAS/CJERuS5OfnpwkTJmjChAmX3G/69OluexqKq4YO6qurkjopNNT1e4wAAAAAAPAFPhNsmE3H9m2MLgEAAAAAAI/nE7eiAAAAAAAA70SwAQAAAAAATItgAwAAAAAAmBbBBgAAAAAAMC2CDQAAAAAAYFoEGwAAAAAAwLQINgAAAAAAgGkRbAAAAAAAANMi2AAAAAAAAKZFsAEAAAAAAEyLYAMAAAAAAJgWwQYAAAAAADAtgg0AAAAAAGBaBBsAAAAAAMC0CDYAAAAAAIBpEWwAAAAAAADTItgAAAAAAACmRbABAAAAAABMi2ADAAAAAACYFsEGAAAAAAAwLYINAAAAAABgWgQbAAAAAADAtAg2AAAAAACAaRFsAAAAAAAA0yLYAAAAAAAApkWwAQAAAAAATItgAwAAAAAAmBbBBgAAAAAAMC2CDQAAAAAAYFoEGwAAAAAAwLQINgAAAAAAgGkRbAAAAAAAANMi2AAAAAAAAKZFsAEAAAAAAEyLYAMAAAAAAJgWwQYAAAAAADAtgg0PkJ+fr759+yoyMlLBwcFKTk7W3Llz5XA4jC4NABq0cuVK9e7dWzabTYmJiZo7d67RJbWojRs3atSoUUpISJDFYtHTTz9tdEktavbs2Ro4cKAiIyPVunVrDRo0SAUFBUaXBQAAfJC/0QVA6tChgx5//HElJSXJZrNp06ZNuvvuu+Xn56fJkycbXR4A1LF161aNGjVKv/3tb7VkyRJ98sknmjRpkkJCQjRp0iSjy2sRFRUVSklJ0e23367777/f6HJa3Pr16zVhwgSlp6crJCRECxYs0MiRI/XBBx8oIyPD6PIAAIAPIdjwAMOHD6+13LlzZy1fvlwbNmwg2ADgkebOnav09HTNnDlTkpScnKydO3dq1qxZPhNs5ObmKjc3V5I0ZcoUg6tpeatWraq1/Nxzz6mgoEDLli0j2AAAAC2KW1E8jMPh0JYtW1RYWKjs7GyjywGAehUWFionJ6fWupycHH3zzTc6ePCgQVXBSHa7XeXl5QoNDTW6FAAA4GMYseEhjh8/rtjYWFVWVsput2vatGm67777jC4LgMmcOHlK7/59c505ek6fOVPz+1/+tq7O8sXysgeoVUTYJc9TXFysqKioWusuLBcXFysuLq5J/WiKvxd+ptKyH2utc6b/yV0TlNbjypYpthl89V2xNn+2s876xl6D4CCbbhyaIT8/5777mDFjho4dO6a77rqrCdUDAAA4j2DDQ4SHh6uoqEinTp3SRx99pN/97neKiYnRnXfeaXRpAEwkPDREEWGh2vTp5/VuP1dVrc/3HGhwuX/v5MuGGp6ue9d4rf/oM1Xb7XW2Xa7/4WEhGjVsUIvU2VziYztq1YYt+vZwab3bL3cNfnbDtU6HGi+99JJmzJihFStWGBpqAQAA38StKB7CarWqa9eu6tWrlyZNmqSHH35Yjz76qNFlATChYUP6qWO7SKfbtY2MUF72gEbtGx0drZKSklrrSktLa7YZKbZjOw0d1NeltreMyFRocJCbK2pZflarxo7MUmCA899d9OreWanJXZxqM2fOHD300ENasWKFhg4d6vQ5AQAAmopgw0PZ7Xad+ecwYQBwRoC/v24bmS0/a+Pf4i0Wi27Ly1ZgYECj9s/IyNDq1atrrSsoKFBCQoJHfGOf2T9VCbEdnWozIC1FSZ2vaKaKWla7yFbKu3agU20iwkJ007BBslgsjW7zxBNP6Mknn9TKlSsJNQAAgGEINjzAtGnTtG7dOh04cEB79+7V/Pnz9eyzz2r8+PFGlwbApGI6ttP1g/s1ev/sgWmKdyIIeOCBB7RlyxY9+uij2rNnjxYtWqR58+bpkUcecaVct7NarRqbl93oUQvtIlspN6u/U+eoqKhQUVGRioqKVFlZqZKSEhUVFWn//v2ulOx2V6d2V/cu8Y3e/5YRmQpxYrTK/fffr9mzZys/P19JSUkqKSlRSUmJjh8/7kq5AAAALvPpYMNut2vVqlX6/e9/rxtvvFHR0dGyWCyyWCz6+uuvW6yO8vJyTZo0ST169NCAAQP0yiuvaObMmZo7d26L1QDA+wy5ulejRi3ERrXTddf0cerY6enpWr58ud59912lpqbqiSee0DPPPONRj3ptGxmhkY0YtWC1WDR2ZONHq1ywdetWpaWlKS0tTcXFxXrxxReVlpamX/3qV66W7FYWi0U35wxRSLDtsvsO7JOibk6OVnnhhRd05swZjR49WtHR0TW/eEw5AABoaT49eWh5eblyc3ONLkPPP/+8nn/+eaPLAOBlrFarxo7M1gt/fkeVlefq3cff30+35WU7PVmkJOXl5SkvL6+pZTar9NTu2rX/G+35v28b3Cd7YJriYzo4feysrKw6T5/xNOFhIRozfIjeWL62wX3atWmlEVmNm1vlYp7edwAA4Dt8esSG1WpV7969NXHiRL366qvasmWL0SVd1t8LP9OnO/aourrubP8A8FNtW0fohkuMWhiR2V8dXJho1CwsFotuHjGkwQlB46La61onR6uYTc+kTurTs1u926wWi24b2fhbdgAAADyRT/8kExERoe3bt9csV1VVGVjN5R0rr6h5hGH7tq2VGBdldEkATKBfryTt2v+1du+vPWqha0KsBvbtYVBVLSc8NESjcwbrjb/WHrXg7++nsSNdG61iNjcOvUYHvj2sY+UVtdZfe00fXRHt/GgVAAAAT+KVP81VV1crPz9fw4YNU/v27WWz2RQfH6+cnBwtWLBA1dXVRpfokvc3b1e13a4uCTGEGgAazWKxaEzOEIWG/GvUQpAtULfmZsrqxBMwzKxnt07q+5NRC7lZ/dWhbWtjCmphQbZAjc3L0sV/23HR7ZU9MM2wmgAAANzF64KN8vJyXX/99Ro3bpzWrl2rwMBApaamym63a82aNZo4caJOnDhhdJlOO1Zeoa2f75UkXZfR1+BqAJhNeGiIxuQMqVm+adggtYoIM7CilnfD0GvU+p99vjIxVgP6eP9olYt1jo/RoPRekqSAJsytAgAA4Gm87laUO++8U++//77i4uK0ePFiZWdn12wrLS3VwoULFRDg3Mz3nuDi0Rqdr4g2uhwAJtTjykT1uypJlefOqXdKV6PLaXFBtkCNHZmtN/66RrfkZvnMaJWLDRvST/u++k4D0lLU3kdGqwAAAO9ncXjRtObbtm1Tv3795O/vr+3bt6tnz55Ota+qqqoJPb766islJia6pa55i5bpRMVpl9s7HHadOHm+fWhwkPz8/NxSFwDfc+Et3+KDH+ovsNvtslp9d6SC3W6vebS5Lzlx8pQcDocsFovCQ0PqLHu7+vrr69fA1/oPAJ4uPCxY944f41JbrxqxsXz5cknnH0HobKjRnE5UnFZ5xUm3HOvk6TNuOQ4AAL7I4XDU+j/5p8verr7++vo18LX+A4A38qpgY9euXZKkgQMbfrShEcLDgl1uy2gNAACazte/rWfEBq8BAPB0Tfnc7FXBRnl5uSSpVatWBldSm6vDaSTpr6s36ZOi3eqSEKOJPxvpxqoAAPAdM158U+UVJxUeGqKp99xRZ9nb1ddfX78GvtZ/APBmXjXHxs0336xly5Zp1qxZmjJlitPtPW2ODUZrAADgHr7+bT0jNngNAICnY46Nf+rRo4eWLVumzZs3G11KLe6YY4O5NQAAaDpfn1+BOTZ4DQCAN/KqYGP06NF66qmntHLlSu3atUspKSlGlyTJtXuFGK0BAID7+Pq39YzY4DUAAJ6uKXNseNWtKJJ022236e2331Z8fLwWL16szMzMmm2lpaV67bXXdN999yk0NLRO2+a6FcUVzK0BAID7XJhPISIstNb8CheWvV19/fX1a+Br/QcAb+ZVIzYkaf78+Tpy5Ig2bNigrKwsxcbGKiYmRsXFxTp06JAcDod+/etf1+w/atQoFRYW1jlOnz59ZLVaJUkZGRn629/+1mJ9OFZeoa2f75UkXZfRt8XOCwAAAACA2XhdsBEREaF169Zp0aJFys/P144dO7Rjxw5FRUVp+PDhuvXWWxUeHl6z//Hjx/XDDz/UOc7Ro0dr7dOSPvikSNV2u7okxKjzFdEtem4AAAAAAMzE64INSfLz89OECRM0YcKEy+67YcOG5i/ISddd01cB/v5KuTLR6FIAAAAAAPBoXhlsmF1YaLByswcYXQYAAAAAAB7PanQBAAAAAAAAriLYAAAAAAAApkWwAQAAAAAATItgAwAAAAAAmBbBBgAAAAAAMC2CDQAAAAAAYFoEGwAAAAAAwLQINgAAAAAAgGkRbAAAAAAAANMi2AAAAAAAAKZFsAEAAAAAAEyLYAMAAAAAAJgWwQYAAAAAADAtgg0AAAAAAGBaBBsAAAAAAMC0CDYAAAAAAIBpEWwAAAAAAADTItgAAAAAAACmRbABAAAAAABMi2ADAAAAAACYFsEGAAAAAAAwLYINAAAAAABgWgQbAAAAAADAtAg2AAAAAACAaRFsAAAAAAAA0yLYAAAAAAAApkWwAQAAAAAATItgAwAAAAAAmBbBBgAAAAAAMC2CDQAAAAAAYFoEGwAAAAAAwLQINgAAAAAAgGkRbAAAAAAAANMi2AAAAAAAAKZFsAEAAAAAAEyLYAMAAAAAAJgWwQYAAAAAADAtgg0PkJ+fr759+yoyMlLBwcFKTk7W3Llz5XA4jC4NAAA0YOXKlerdu7dsNpsSExM1d+5co0tqURs3btSoUaOUkJAgi8Wip59+2uiSWtTs2bM1cOBARUZGqnXr1ho0aJAKCgqMLgsAfJK/0QVA6tChgx5//HElJSXJZrNp06ZNuvvuu+Xn56fJkycbXR4AAPiJrVu3atSoUfrtb3+rJUuW6JNPPtGkSZMUEhKiSZMmGV1ei6ioqFBKSopuv/123X///UaX0+LWr1+vCRMmKD09XSEhIVqwYIFGjhypDz74QBkZGUaXBwA+hWDDAwwfPrzWcufOnbV8+XJt2LCBYAMAAA80d+5cpaena+bMmZKk5ORk7dy5U7NmzfKZYCM3N1e5ubmSpClTphhcTctbtWpVreXnnntOBQUFWrZsGcEGALQwgg0P43A49Omnn6qwsFCPPfaY0eUAAGAq56qq9NV3JXXWV1VX1/y+76uDdZYv1r5NK0W2Cr/keQoLC3XnnXfWWpeTk6M5c+bo4MGDiouLa0o3muRg8fc6deZsrXX19beha2AL8FdCXFQLVet+5RWnVPL9j3XWO/MaiI/poCBboFPntdvtKi8vV2hoqIuVAwBcRbDhIY4fP67Y2FhVVlbKbrdr2rRpuu+++4wuCwAAU/H389OWot36x76v6t1+6vQZvfb2ygaXQ0OC9MCEWy97nuLiYkVF1f7wf2G5uLjY0GCj4tRpvb60/rkeftrf+tbdMiLT1MGGLcBfy9ds0o/HTtS7/XKvgU5XRGviz/KcPu+MGTN07Ngx3XXXXc4XDQBoEiYP9RDh4eEqKirS1q1b9Z//+Z+aO3euFi5caHRZAACYisVi0ejhgxUWGuxS+5tzhrjc1lN07xKvq1O7u9Q25cpE9b2qm5sralk2W6DG5mXLYrE43zYwQGPzsmS1Ovcj8ksvvaQZM2Zo6dKlhoZaAOCrCDY8hNVqVdeuXdWrVy9NmjRJDz/8sB599FGjywIAwHRCQ4J0y4hMp9v165WklCsTG7VvdHS0Skpq3/JSWlpas81oedcOVNvWEU61CQsJ1picwS4FAp4mMS5Kmf1TnW5349CMy96G9FNz5szRQw89pBUrVmjo0KFOnxMA0HQEGx7KbrfrzJkzRpcBAIApde8Sr/69kxu9f5tW4brh2oGN3j8jI0OrV6+uta6goEAJCQke8Y29LTBAY0c6N2phzIghCgsx92iViw0d1FfRHdo2ev8e3RLVp+eVTp3jiSee0JNPPqmVK1cSagCAgQg2PMC0adO0bt06HThwQHv37tX8+fP17LPPavz48UaXBgCAaeVmD1DbyMuPWrBIGjsyWzYnJot84IEHtGXLFj366KPas2ePFi1apHnz5umRRx5pQsXulRDbUVkDejdq3/Re3ZXSNcGp41dUVKioqEhFRUWqrKxUSUmJioqKtH//fheqdT9/Pz/dNjJb/n5+l903LDRYo4c7N1rl/vvv1+zZs5Wfn6+kpCSVlJSopKREx48fb0rZAAAXWBwOh8PoIozyww8/aNmyZVq7dq22bdumgwcPyt/fX507d1ZeXp4eeOABdezYsdnreOCBB/S///u/OnTokIKCgtS5c2dNmDBBkyZNkl8j/jMGAAD1+/ZQqV5+c4Uu9eNOZv9Ujcjq7/Sx33vvPU2dOlV79uxRVFSUJk+erN/85jdNKdftqqqr9VL+ch0u/aHBfdq0DtfkX97sVLAjSRs2bFB2dnad9ZmZmdqwYYOzpTabTVs+13vvf3zJfX55S466d4l36rgNhSDjx4/X66+/7tSxAABN49PBxuDBg/Xhhx9Kklq1aqUuXbqovLxcBw4ckN1uV7t27VRQUKC+ffsaXOm/fFd8RG0jWykkyGZ0KQAAmMKajZ9q/ebt9W6L7tBW9/ziJvn7e+8XCaVlRzXv9WU1jze9mMVi0f+7/QYlmvgpKJdjdzi04L/f04FvD9e7/erU7hqTM6SFqwIAuJNP34ri5+enf/u3f9OHH36oH3/8Udu2bdOXX36p3bt3q1+/fiorK9OYMWN0+vRpo0uVdP5blzf+ulbPvvwXfXuo1OhyAAAwhesy+iq2Y7s66/38rOdvVfDiUEOSOraLVE7m1fVuy+yf6tWhhiRZLRaNzcuSLTCgzra2rSOU58TcKgAAz+TTwcY777yj/Px8ZWRk1HqsV7du3fTOO+8oICBA3377bZ3JwYyy7Yu9On7ipAIDA5yaDAsAAF/m52fV2HoCjOFDrlZU+zYGVdWyrunXU10SYmqti+7QVkMHec6o1ObUOiJMo67PqLXOconAAwBgLl4ZbFRXVys/P1/Dhg1T+/btZbPZFB8fr5ycHC1YsEDV/xyK2bZtw+FAfHy8kpPPz6a+d+/eFqn7Uqqqq7X+o/PDaLP691ZAgL/BFQEAYB4/HbXQ6YpoDUq/ysCKWpbVYtGtuVkK+uc8Gs5MrOkt0npcqZ7dOtUsZw1IVYKXj1YBAF/hdcFGeXm5rr/+eo0bN05r165VYGCgUlNTZbfbtWbNGk2cOFEnTpxo1LEuPG41JCSkOUtulAujNcLDQnR1anejywEAwHSu6dtTXRNizz8KNS9LVieegOENLh61MHxIus+MVrnAYrFo9PDBCg8NVkzHtrouwzdGqwCAL/C6yUNvvfVWLV26VHFxcVq8eHGt2bpLS0u1cOFCTZ48WaGhoZc8TlFRkdLS0iRJ27dvV+/evV2uad6iZTpR0ZR5Ohw6cfK0HA6HgmyBCgxgyCQAAK6w2+2qttsV4O+bIx8dDocqz1UpMMDfqUebepOqqipZrFb5Wb3u+z0AMLXwsGDdO36MS2296n/1bdu2aenSpfL399eqVavUs2fPWts7duyoqVOnXvY4VVVVuueeeyRJw4YNa1KoIUknKk6rvOJkk45xwZmzlTpzttItxwIAwFed1lmjSzDU2Up+lgAAeA+vCjaWL18uScrLy6sTajjjwQcf1EcffaSIiAi9+uqrTa4rPCy4Ca0ZrQEAAAAA8G5N+dzsVcHGrl27JEkDB7r+2K45c+boT3/6kwIDA7V06VIlJiY2uS5Xh9NI0idFu/XX1ZsUHhaih+/6GZOGAgAAAABwEa/6lFxeXi5JatWqlUvt58+fr4ceekh+fn5asmSJrr/+erfU5focG+dHa0jSuXNVmv1fb7mlHgAAAAAAPAlzbPxTRESEJOn48eNOt33zzTc1adIkWSwWvfbaaxozxvVRFj/ljjk2mFsDAAAAAIC6vCrY6NGjh5YtW6bNmzc71W758uX65S9/KbvdrhdffFHjxo1za12u3SvE3BoAAAAAAN/QlDk2vOpxr9u3b1efPn0UEBCgoqIipaSkXLbN6tWrdeONN6qyslKzZs3SlClTWqDSy2NuDQAAAAAALs+rHuCdlpamsWPH6ty5cxoxYoQ++OCDWttLS0s1c+ZMnTx5/raQjz76SGPGjFFlZaUee+wxjwk1qqqr9f7m7ZKkrP69CTUAAAAAAGiAV43YkM5PIDpq1Cht2LBBkhQbG6uYmBgVFxfr0KFDcjgcOnr0qFq3bq2kpCTt27dP/v7+6t+/f4PHzM3N1dSpU1uoB4zWAAAAAACgsbzuE3NERITWrVunRYsWKT8/Xzt27NCOHTsUFRWl4cOH69Zbb1V4eLgk6ezZs5KkqqoqFRYWNnjMrl27tkjtFwQG+CsiLFSZ/VMJNQAAAAAAuASvG7HhLc5VVckii/z9/YwuBQAAAAAAj0WwAQAAAAAATMurJg8FAAAAAAC+hWADAAAAAACYFsEGAAAAAAAwLYINAAAAAABgWgQbAAAAAADAtAg2AAAAAACAaRFsAAAAAAAA0yLYAAAAAAAApkWwAQAAAAAATItgAwAAAAAAmBbBBgAAAAAAMC2CDQAAAAAAYFoEGwAAAAAAwLQINgAAAAAAgGkRbAAAAAAAANMi2AAAAAAAAKZFsAEAAAAAAEyLYAMAAAAAAJgWwQYAAAAAADAtgg0AAAAAAGBaBBsAAAAAAMC0CDYAAAAAAIBpEWwAAAAAAADTItgAAAAAAACmRbABAAAAAABMi2ADAAAAAACYFsEGAAAAAAAwLYINAAAAAABgWgQbAAAAAADAtAg2AAAAAACAaRFsAAAAAAAA0yLYAAAAAAAApkWwAQAAAAAATItgAwAAAAAAmBbBBgAAAAAAMC2CDQAAAAAAYFoEGwAAAAAAwLQINgAAAAAAgGkRbAAAAAAAANP6/6adopnj4XgfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Example Circuit\n", + "n = 6\n", + "sample = [15]\n", + "test_post_proc_circuits = build_circuits_postproc(n, sample)\n", + "test_post_proc_circuits[1].draw('mpl')" + ] + }, + { + "attachments": { + "1d5e0458-5431-44b6-9bcd-13d142c7b7c4.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAADYCAYAAAA6V+1qAAABYWlDQ1BJQ0MgUHJvZmlsZQAAKJFtkM1LAmEQxp8NwVL7giiIiL1rJav/gFlE4WEzheoQ7K6mwbq97G6Ft/6ButSte9gl6NIpgqC6BYHgtcBDQcdID31s82q1Ws3LMD8eZuZ9GKAjoDCmewAUDNtMzkyKi0vLovcBfoyiCwJ8imaxmCwnqAXftT1qFeqjKI/xXZeHN3PRp9T1brD7pFSt7/3tbwtfJmtpVN8oJY2ZNiCEieUtm3HeJh4wyRTxPudck0uc1SafNXpSyTjxLXGfllcyxPfEIbVFz7VwQd/Qvjxw94GskV6gOkg5gilMI0FPRBpRRCAhjHm60f8z0cZMHOtgKMLEGnLIw6bpGCkMOrLEszCgYRwhYr5PQoTf+vcNXW1lE5io0FcHrqZ/AOcvQG/V1YIq0E8eLo6ZYio/lxVqHms1IjV5+ArwFx3ncQjoeQbeTx2nXnac1yPA2wns3H0ChMNl0FenyKkAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAl6gAwAEAAAAAQAAANgAAAAA104GMwAAQABJREFUeAHsvQmYHcV1/n3ufu/sMxqNdmkktIAAGQRiM/uOWR3wEm+xYxOv/8RJHCefE5v4yZPE8ZM4xku8xbsdY2OMMV7BLDIgIQwIEAiEhED7NtJo1rvf+/3e6unR1TAzGmAkzUhd0p3u211dXXWqus9733PqVKhMsiAFEggkMCYlMJqPp19WiUc+HAq59oYqtv75MSmIoFKBBIaRQCkkNVbmX8T6dq1cLlrIChYKR6wcCnM6ZPy1IuNfz0Blcs+B90j0HdaXsoVCeQuTtcy1fGOfsixvukkoFHF5S3qGyBMuhzm2XyGVtzjs+2O5boddOIe4AtFDfL/gdoEEAgkcRglks1mLRqOWZptIpSzf9z0Wix3GWgW3DiTw2iRQtiLYp0AhSeCRB7DK5QwAK8OPDLN8EcBUSphFkpbx4NjLbqjrKlMklLOEtXG0yOEqtkmwW8TyhR62vRaJhq0ElCuVE4C5uKXIHeNfkAIJHEgCAfA6kISC84EEjiAJRCIooIpf+/oVrGNBCiQw3iUgeOSP5JL2YblCoK5QqGRRwSexXqWCRSNpzsJaueSBrXKpaMWSrtoHvkoArpLlLCKWq6TnJiZiyzFd0UjCSvmM5fKwapEoZcbc1isz+BtIYHgJBMBrePkEZwMJHDESEMgKA7IK+bxF+xiucHhsm0eOGOEHDTmoEpAJ0Qdd/o0K5ZIVikUYXpkIYxbOM/YLZYuHS5aK+KZGb1t0psT9S+AnCf8SFirBYoktw5ToUrjKysUoXFfUqoX28gmLhIF2SUBbQHj54g+2w0ggAF7DCCc4FUjgSJVAPB5HCRWsxK98/dKXz9eBfEDElPn+YQfKe6TKLWjXWJWADIXywwIj8ZF5UT8yYvh3lfIcLYWASWEAErlKtXL06muIx3BFfKJLF/qppDx8B5T1F6zTmC2N0ixa5RFkOb7yA8YSur9fLseCFEhgCAkEwGsIwQSHAwkcaRIQcNrd1mby85o0aZIVYQPEeCmNBEgpv4BaBNAWpEACY0kCgjwaySKghJNKAkAFIBibaDhupWzItm3utJ0vtVuouwAxRe4BGAmCrI8244QKwURZjOaBXioHU6PDXyWeFeE4Od3rBwusWCFqqbpqm3jiREtNSulhGkuiCeoyBiUQAK8x2CkjqZKU6EiU5UjKCvIc+RLQWBHguv322+2FF16wD33oQzZ16lTX8Egf+KqUgliwHPkr/b8ee+wxW716tV166aU2c+ZMy+VyDrzpumQyWXl5sB9I4JBLwHFeAk/gHhFaRWY1xgBMoVDcunenbelvltvyu5+27C7wFabCfoBE3n6s5GMmB7wK4K02K0UY5zjQl0JRD3BFcc8v41yPX1jSqq3Um7CWydPtqo9ebCdcMM8isSiYzkN1wTv6kA+DcXHDAHiNi24avJKVTtKD59h31M8bvAj2yeRo2fNBeh7frgcffNBWrFhhb37zm621tdWZG/3zA+XhjxUxXWWA2MqVK+3mm2+2TCbjgJvylziXx2SpmZKaGemPs4FlBd8DCRxMCYQASi5kBDeRhbAEG1XGfhjGKd7yYSv2FG3n+jZL78nZ/Na51tzU1A+ONNdEPz7CmCX9hOcjuwJeHVgWi+zFAF2YLWG6ygCxKM75caG7npi98NQO695ZsPTeHM+JQByO/DwvSpF+ROe+Bn8CCTgJBMBrnA4EPdxSpGIkfAU5XFNGkme464NzR4YEBIx8k+FwY8KxYJgUBayU5Iw/d+5ck2+YWDOxXvPnz3dlJQFdSgHocmII/hwuCTifLM+CWJLd0QEwmRQxLJaiFsklbUJDs5137SI7btFMjpHB++9M7m4GpANcXgPKzvbocVdlgSkOF52FsiwPL4tyIL01Y3dnV9pzaze4mY+6kiKDFEhgWAloeAZpnElACm7v3r32+c9/3p5//vlhgZd+eYmh+NnPfmarVq0KlOM46+vRrq7Alvy6fN+uA5WvseY74Z988sl29dVX27PPPmu//OUvnanRL0+M17hK0o6BhhxXXTZsZWG8GNn4XdGtMjWS2eOc+CJKi4PRgqJsxSzZkLdUSxp/LD6TM1bFJ9WctiSfeP+n1xLNefKapRrilqxPWFVTypITiNbVyCzGuqgl6jhWX2XxWILiFWpCLFmQAgkcWAIB8DqwjMZkjj179tidd95p69evP2D9xIzdeuut9pnPfMbSvb39NPgBLwwyHBUSEHgSwNLW3xfYknlRxwWqdLy2ttbe8IY32PTp0+3nP/+5Pffcc5ZIoHSk2Ej+9QP33cnD+Mf5/qAU3T/a4fSj3nyOvVAbZR9S+702+FV17elTpi9TqS874F8VbA8kAX+cHGh7oHL2P0+HOPDlXOG9PiZulzMZangWZXZkHJeYzUuIiGwoab2llAG3LK39aNx6wjFLExYirS1xujKEoSgme6yYaLdsqsc6o2nbS+DU3niOPHkXrpViLcc4CkXisMLeczJwaAzVzsr6K0+Qjh4JBMBrnPa1HtSRsBYKEyCF+ba3vc2eeOIJe/Chhwj2t8+X4XA1X68ZKUKcJryfqIerIkfpfTU7UckHXBpLinkkh3kl+WvpI2ClczI16pzMi1deeaUD/AL+ctjXWNQ5lakyVKa2/j1U3qFSLLpP5b00uy1fzqEk+YeztasTdEg5zZkMMiA2k8xIBZqd6c3TDi0H4wHRnIJqihbTMKVNAmgCoxTiPmrnWP2I6R74UV1Hml5JuwbeR9+HupeOa2yM5DNYuX7ZA+unYKfFkPqLWbfcP0IXFfnxkKcPFVsiHAtZDB+tKM72RlyuIubHAoCrAPjK51OYzGvA3jWMhxorF3CYLxAqgk8pi7md+F9l/MQUiiKqOF0hfpSECcXCp8yNNC6K3CdPu4rsy7/MT4O1Vz+E9dyoLf541bgcSmZ+WcH2yJHAOLMPHDmCH62WDPWw6qGujM102WWX2S233GLf//737cwzz7SaGl40KJhDn3gx4Zia5tdntIzSxjaA9wUvLCnMGPvBb4GD1Se+spJfoPy8lPIApp07d1o6nXYhJqQAtm3bZg888IADU+ecc47NmTPHjRUBMIH4yy+/3O655x779a9/bVdddZUtWrTIent6XB6VU83YyrIVWIv0mSD9tSEHrpE3mm2VP5rGtD8TU/cqFPPWE+3leMSyBRZ9ycWshk8swzjLMf5BXKVYyWI1SWJkwnaku12cTPnyZAr4UOJwHYvwhaxai8/59hCEU6nMl30qdjRbMvKyfLmO5Aon+1cAvl5J2YPdf+D7ReNvNPp/YLnqnDygS2szahZjnO8JqKg0jFcBJjNXLDBDN2/53ozFCx2WjG22FBFRQrkGK+dqLUxcrnVPbbcnHttgXe1YBABFYS03hA9YOVxtqQQgrNhrx75uih13+iyL1nKvOGEm4rytAGKxKJNLGEdhgF5lEvDTOo6V9Q3xDOkZ8/0sc8hEYF7va80MDpbuqpTgkbsfAK9x3LeVLzL/4dZDLQWpl6a2Ssonp+gb3/c+u/Ev/sLuuusuu+6Nb3QQx7/uUImB33gswsHLKh+yl5busU3L2vC3CNv8K2daQ2ucl1AQJuNg9YXGgcyGlb+uMyiZ+++/33oATu9///sd6Pra177mTIlisZYsWeJM1PNgusJ9kznkZC+T41e/+lX76U9/aq2trQ6QSamKIVMS4NL9pFScsmH/YCeN5YH34hCcFQo/z7w0QgjUAJ1iPSXb/ehaW7/8Kduwdp11xUvWeuoJ1nrG8TblZJyui2IiwlYVTVqOJWa0qHIUE5SSfIjEoKg53A1g5g4ftj+V7wC/Er6J2P/ub335+N+H2wo0eNB8uFzeucHeIQKkbqwN6Peh6jbYXdS2gWXrmOqlbWXKw0LBOTnmKcaPOvV6UawUP+bA3BZNRi1ZHae/8MWC0SqX6wTPeAfqXQn+LuZ4BvZYZ+dei9LnYZXHjYh7by88v9327HjJqhOn2fGnzCaOHbMkmekoMpRpi5SgcaCxx6xHxrsYrXCfeV713K+unFfSjwOtICHmT+9mBXvVJ0hHhwQC4DWO+rm9vd0aGvD2rEh6kSk99dRTtmvXLjvv/PNt1ZNP2r/8y7+4F98nP/lJO/74490DfgZMlxiML3/5y27bxJTqQ+0UHQJYRbJhW/alp2zpVwio09uIiaDblt22yd7x+TOt5fg6WjOymZqu4cGfEUtAQLyS7dKFAlxylvfHlUJGLFu2zIWbUJDV//mf/7F1xP069thjHYMlxSJFcT7j7Fe/+pVzstcMx9e//vWOPRPw0q953Ut+Yk5x9o3RgUp0xBV/BRnLfayXLnEKD6Ual2lJCo5/xXba+8tH7I8/+Z3tXrPJCumsZeIh2/D0Wnt6+WN2/U3vscnHz7ESE1JCmJFS+O04govHTBjLe9o8nStA54DYK6jfocq6n7Lvu6mOhQYAlqHqo7yDlVGZ35UnsNv3GXhO5rSBSeNiJOPAzzNYHQbez2FhwWBnSqSXhKRIBddWQFQk5YCR+q8IlZnP1/Cpcz5f+oEKLLdZCybZ1NkNVkwXWJuREhkT4jdfeGaP3f7jpdY6Zzqga56lauNc24uZsf82jg2FyuNHhjfe3Y8OxnylfFyF+v7ouMajWC49T3pO9EwJ7IZhif22V14T7B9ZEgiA1zjqT1HReij9B7qy6g/hu6UXnYCXlGVLS4t1d3e72YwCXgoPEE2lHKvxPpivu+++297xjncM+XL17zHaL4EQv+q6Xuyw5d/pskJPLT4SWg1tsnU+s9se/c5LdvXnTqls1qjtu5cdLzm9aEe7TaNWyYNckECX2u4c551SwtTIr24B+mnTpjnT4vLly12ea665xrZs2eKAWoxf71ISYsA0BiXLefPm2XXXXWdf+tKXXHiJ4447zhoaAdECPoy1IuUqv8pXfn2UDoXsB95LsZTU74VSr3VuarM1Sx+zLU8+by3FhE2I1RsQy/Zsz9jejjW28vf32rkTawmaqYWRUYxRqWuv7nJHlEpXU3TUB2HsHtbkt9evhL6rHwYmnwEfeHyo7wPLHSyf+nMk+Qa7djSPAXPcP8ElHwwXQpiRkUWkCvMeJkf5XkVw0lJA1QI+W2GxVSKZuCDM+o31dSn6F5XY19FtW/faylXPAOCydsH5SwBn07mW++ga2q1hoY3AbBiwF4UlzfSmLd8D84b8h5KL3z96lqp4J+t50bFD8WyMpsyDsl69BALg9epld8ivTPGQDpWkJBWJfOOGDbZu3Tr713/9V/v2t7+9n8+AHu7TTjvN5O/1gx/8wM4HpOmagQ+88kk5i0XTR98HJilVfQZeOzBf5XfeWY5FyK+psXT7cYBBGBfKxrOGuUURW3n/Gtv4XyuswKwhmXpw29BEpdeU/Bfa2WefbSeeeKI4/tdU3ni+2AEJwIQvE7VFYF0+XgLp2n/ppZds1qxZLs/Xv/5150wv4C6fLf0610epqqrKrrjiCrvvvvsciL/ooovs4osvdufSsGi//e1v7ZFHHnEsrMaJA2RoKd//arAx5S5+DX98YKGxqyTTTRSlVhOLW32s2hKFuCX2wGis2WMTgPstoZRVYfJOsJZfAmWcyhXtnp/dafc/8qDFkilcwJhsgHLOU2/5CmksOqXe9zg4Z/vXUN/RuHQwBS95d3Z2ur6qfD79iRIjua/6ZyR9pPJVB39c+GXr+GBs+mB5K6/x97Udyf29/OKsvH9hqKhI32LW5UTZUqkau/icy+ySRYxN+jCHz18GX7ACr4EwjGY0zEumlKGYDNMv8DvF4T4UTlhnW9ru/f0KW/X8c7bktJPt5NfPs1gc30jKCPFDRMsJaUA4P3pkFQN4daU77Naf/cSW/uEP1tXdZdmMx/hV9oFXXy5HPgsXLnSTnk444QTHFuuc2LIg6KovpSN3GwCvcdq3enD18V9O2t+8ebOL1aUXryKUP/PMM/bBD36wv4XKqxffu971LhePSbGY3vve9zplqOv9pH1R39dee63t3r27/x7+eX878GXrHz/QtiU0x66tu8mmx15nuXIPPzCZPWRZe2Dtvbb0H37AD8mX/1o/UJnDnZcivv766+0b3/iG1dbVHbUvNv36V/8r+eNGv7obYaq0FJCWBFJ/Cxx98YtfdPs33XSTc7qXDPWykF+KAI3yiFVtbW21xx9/3NasWWPnnnuuVVdX29atW+0nP/mJY8LczQ7zH0HtxmiNJfCGn1aqs/Maj7MZ0RarBYhF8sx4RHtWwYRI/W58cZOtWPY7fhAwY43nII9CLWorcKFfDn2ga6wwXn4/HmYRj9nbV1VXAbhTtmTKKZgWPeYTdOXWYCwDnsL4gYXDcJ74eBUBbeAyBnmBMfC8PbJinc2ZO8vOunChNbTIwZ7/+Hbl8RcsYYqM6Ick2cWmam8vYPeRNX90k07EIh8oaRKLJjqJLRbrJaA62PJdByonOD/+JBAAr/HXZ/vV2H/xim341Kc+5RgqKcFvfetb9olPfML5dwkg+cBKD7f8eDSrUX47gyWVqc+//du/ubzK49/Hz68ypXyluF9Jkt7SwrITnotZx4o9VoMyTDPdv9jUbpe/cbEtrpvgitNqZxit9NPwlRQ/aF61XeyeWJqjPan/xQz5oHnChAlONl/4whfsn/7pn2zjxo2O+RLrJZO0mKzKpJmKulbjYRVsqMDaMcccY6eeeqpjVwX6xcyKXZTPoWRf+VFZ/lisLHc09geOUXcv/jifHY1XoOPMXI3Vt1Vb717FYcLRGto1Fk1YD/45nYWMTZoxxc6YXWfdjL0sPwcUpylEnoNV59fS7kHbO8zzojb4rOBrue/BuNZnQl9t2SVRkQDjKD5ccnZXKkb5nkzYqUtOZaZtNeBZPliALdZaDEfUw3KixxQJeaXwEqUiQJwxseqJjXb/75/G73G6nX/JGTZt1kRnfpS8ZWqEjHf4u4hfl7sXchX7WVddY2efha9jtoD5fo/7kaMfOr7M/f5SP+gZEePV2trqxpbyBM71r7b3x991AfAaf33majxQEciE+NnPftY+9rGP2QUXXOBA14IFC/Zjs/Rwy4fnP//zP+0jH/mInY2j/WA+TypbL4l3vvOd9pa3vGVYCQ2sx3CZUcGwBvg+8MuxzMvp0a9ut3tubrN5ryvbJZ87wybMuoAp+uISRj9pmvYrqevo1+Dwl+j3tfrWB08CzgJX27dvt+9+97vO2f6ss86y97znPe54pdxisKCe8gm5/N/HXK3rPv7xjzsTtlook6Uc9W+88UZ705ve1C9zyf5wyV/Aq5zD/MgMt/jeom379Upb/bOltrmtEx+vauvC96utlLYmHKjf99FLrPH4mcyII24ZsZnkRB1ygTFpnH419P0O0K474O24b4f6z1Dy9BX8wPro+R/qmoF5D/V3Bzyon5/8HwY6PpLk2Ej6BlctusjrJLwMYbHK1lw70aI7mTXIP7GfsVDGfVxeAFeoANNUSiimvW16sc1+e+dDzIIt2eUXnmTHzG+2UAImTDHfAHeRBGwvQF2zIL21IQW+GF8A97qaOjv1smvtkksudW4YqrfaMZTMBb5q+8L6+Hn852skbQ7yjF8JBMBrnPbdwJermAxN81c644wzPPoaZecnmYq0dNB3vvMdpxgVf8lXxH6eyq3/IvDDA1See7X7eiEqyKFeatFEyCZMTRLgMGu1LTBgcxLMmkMxhAmwE6SDIgGZGn2F5jMM+kUuk6EWzX6B2Yua0SjQpJmKcoxXPl2jrcaQxoVYLcXwkn+XZsnKJC0FqTGZ6mNAJ06c6PwHB2uI6nGokrx/CoQG0GzaEIEw49mITUu2WKoYsxV33GWbu3qstypiMxe+zhZfc57Nu2ixRZoJpIk5SvXME8tLayFHxHoJuOiLvtOAEv5fTscfuuaMSGye6WtEWY+ATN47Tu8V2QIjCq7mfLzw51IsLo7K1Ni7u9viCTxJCQsSgcaMuvUbCcJVhLHPMS7wst+zvcvuuPVua8NUftVFF9tx8yYxBjKWzhCOp0zIB72/CDVSkn+XS9699dcf01WY2uubNPN836AYCB71nPgAS5NW5HupsTXc+9i7X/D3SJFAALzGaU/6wMgHYAJeco7esWOHU3jy0brjjjvslFNOcTPWxFwo0rhmM4rx0rIvfhmHXgQOgqG0Mi6GpZbcKEnRYQqSQgvSwZGAwJPPYPnKwB8DAmAC5gJhCpiq8z7o8msjIKZVDzR5Q0tQyTdMPoKaoKHAqRqDKcy5AmhKKnOgQvHHq1/maG4VQFX3rExSkr0EUMW+5GadhcNJi89qsmOuOtOeWLPa1q58wlpxbr7gQ2+1CYtnWrk+YmkFw5TjNO3B9x4fMNqBchRDQsgvtzgyqhI2hZOe7q285WHfL/f1nd+3qpAvdx8gHPZKjqACAiR+vYfKLjDkfPEics6ic8A7MQKiciFrY/MF06MCocoRPl8kdEgxDdCB3SoSTgLAVcbLPgRQy3TmbOldj9oO/GQvu/w0O+uSY62qEWf6erqYH4RhgFc5XWTJNWYtAvLcMfU9HzlFRBhnUcCb3ACLmDRVb5/tquyHynboeZFPl+qvNFS+ymuC/SNDAgHwGsf9OPBB7ejocCxFfX29C26pSPXy3ZFilCOnpv6LnVDwy8OVeE1ya70geSE6lAV9zzFFBT+6fqkfnh4QMJFCEIhSEljRvmbBaXajALui02urGY5PP/20MzkqGr3AmBZn1zqNOvehD33ITgXY97L+p5SID3rkq1LZlwPH6cF0IB54r7LQEvXWnLcCdSxhQsS1x0KpqOUgO7o1q21C0urnT2PhYw7gFxTB4RpV6hRhKAJgg+3SUOUUx9jK+sV+mB1KHxdJchEYqOyXsVbxyr5zwIV+8yDJ8DVVHhkSRXRFCJKroKaabcgbhZCqMJ2clw9WIS83B8YAi2Xn86yqACjTWNAQWPX4C/bwQ0/a7BnTbN7s2ZZLZ1jpoJPngtmOPC8JSxHTrcqqWRg7Sr9nKavEIyS8pxAUmgmpN5naoB8nCoyq52U4vy3/h4m/4oKeoSAdHRIIenqc9rP/kqr8RSjn8cWLF9vkyZNNfjpaSFsPtxiIm2++2cVrkhlJDtL+9Yer+fKMkPO8/srpS34SQTq4EtA4EOiSb4nPJihyvaZH6JwYL5kI5ad12223ObN0a2srPiuXsORK1oGrFYSI+PGPf+yc59/I6gfxhBcwVUrDZ1OGM5kczHHnAB3Kbr+Ewm3CrJhldmKBSPQKoFmOw4aImmAJmep81lIAkijnFX1cyjscYUkhTgtUxYS0GJ1KnHa7/kjV1/HE0B5M2Us+o5lU11cSVkHQuKxZi3zKOOaFANzwZUJF7Mu/MGyJiEZ6yjowR7ZHiR/IPcDf1rurbE88udVeXNNuO9dlbe3DvyUXazTidb+nei/BbnrJG7Eli0+yS6490ybMbWQc8AYTUArnOFtve0q1lhaQIwnqiS1WG/R+Hkzu7r1NHiVXjtsL/hwtEgiA1zjtaSk6+V/pAffTNMyHWsZFjJcYC6dgefA1tVlO9R/4wAdsPg73Y+VXrxRXWcGR9HYM0kGXgICJfoX7bJcUQpIxpF/l8tsSSNdsV33qCLvR2trqlIbPZInl+jKsqcbWhz/8YZs5Eyd0rvGVjGJmVf4QOOgNGuENIihirEUoYpmz2brhhjLGX0uq0gG2yiHYh6x0zj/sg60R3jLIdoglIAOzi7HW12O89pxfn3pQ/a7/AtslZlCHYl24NuyxDL6mEcULTIXtlHOnMzv3aguzhmcYZ/so5kqFm0gnMvw0zMFslWzKjMnWNDkFo9ULQGdmJO74misbCnVSTjtb4na5AXPg0VIJxnyAdohFFtzuMEogAF6HUfiv9tZ6UJubm124hxkzZvQXIwWi437yGY4JHPve975nWiJoODbCv+5QbfV6cq+oA7+nDlWVjuj7KDijzIhivZKwXhpH8sGSqUMg66Mf/agDXTJNK5yExo8CoQrAy8SopaYUFPWv//qv7bzzznOAS0yYwFblD4CxIURpwH0Dq9Ik2H9UrJdjQ6SU98ve34T+vP1Hgp2xKgEB6n0/Q/swUF9lNeuxIAf8cNZipZxVs1+OApvw/0rVxezEk6dY+IRpAC6c6OUD4aazcnFKNksKZn1PZ1ssdrHYNuCtIQELjJme2dmlYicrDHUBvjzfxlcqn7H4Y+WVtiHI/8okEACvVyavMZNbTtIyK+qhHerBVUBLKVH5HPjRyCt/aR3uxkjX6ROkQycBsaSK3aXxIwCmJMZLxxXdX8lnuNwX/rigqQA0hZ6QCVsmRp85E5hzAA4QN7bSASCTnIBImuahxY2VZCoda61wFQv+HFgCdFyfNxd5K3uRcUCk0xCfclROWQVM6zHiB1Y7E6QYL42UMKxXKOUBLrFlPmYvF8SMUqIsCxonMkNHYLaYISurQ7iqiO8Xs2DL+HjJTh2kQAIjkEAAvEYgpPGYRWDsFIJaiuHygdlYAl2SacX7bTyKeNzU2e93+fbdcMMNDrBrVqsYLZ3TVmBLPoJirgTIfEAv5aIp7wJdiu2lmbOKD6c8PnDTNcrv32dcCMYNPtUZhYsMRH7tFyVA54M0riSg2YVycFcKQWHy5uvzHS3gQ1+0LCbCnly3bV29F+JrG75gfZ0snMacCwG0IuNYywK5iZBCYISPiLOuYxKn/IimuIr4isJ0xSkPVqzcHbFNG8vMhCXwMytwBCmQwEgkEACvkUhpnOZxvitjuO5631X+Nh3DVR33VRMw0nhQeJGTYUplXlTy47QJoIvFUvJ9tsSKyZ9LPmEyUSrStm++FtMVBnwNZMdcAWP8T+WYk3oWuBRbIokoNFeQxp8E4LP6J3cIRCspdpthThRaKuIonyA8xJ7udvvtLY9YdarBevPy34IFY5ZiDiasCPImvJeFE/zY4Jp0sdcKsaxV42jfkK+xVC8/StLEdYuVLBPBqR7LYjzUaLn2KmtumshEkypGUTCAnPCDP8NKIABew4onOHkwJaD3Y9878mDeJih7gAQEsiKAKiWxPQOXffIZ0vnz5zvgJfAldksgS1t9d+wWQM2BlnHDdlWMNnYdzERPxgFe+gkgZ2oxYCI6gjT+JOD89Pxq6wtjW28Y8V3JuridfNYJsFcp697Gwuhh4s0psC6R6Eusv9hV7rVYddx29e6xbbt3uAWxmydOsS5mNXa07WEN7YS1Nsy0RE6gDJDG41Nk/IcwWSYLDTZ5EgGDZzc5s7W7bV89xhUL7Msu2B50CQTA66CL+ODfQIrSNxtJEVYmnZPvih8deayzYJV1D/ZHXwK+IvC3PsiqvJPO6bhCS0yaRPRuwJZCTWimo5J/rX/NwO/+8bG57UNVsCGu7dLPcp4moUbHZpWDWg0rAfWaeC31rD6uFxm/Ym6LgKtcOW/JhqQtPHOBzV0427ARerl4VeZZkVPBUEMEcM5gPrxvxf22bfkGSzXW2+Lz5tjT+U5bs3yNNUdm2mnnX2wLpsxniSGYMRbJ1o0UgNUUE4z3bryRGZH7v365T5ACCbxcAsEweblMxtURKQ8pxRUPP2wnsDBx5axGvyECXYpoL3ORrzz9c4dzqxekPkE69BIYDHANrIUPqMR0aWajtr4ZciTXDyxvTHzvG3CKRF/Gf0dfw7Bcjv7Sl37Nfbhr2wcQ96vGUE/LSCt9oHwHOr9fZcbMF09SHvTy9r2qyc9L7G5UkeaJfhurJX5hLG/pMLMQ2d+4fYMtfWSp1U1otNMWn2ntzE58OPugrQyvtKpSDf6MOVuVX28PlJ6B3eq0F0PP26z6ZquNEYKFgQIHLIcvlqJiJmSI0D6xJKxpoFLHzMAYwxUJRskY7pyRVE1+OZtZ5uIv/+qv7L//+7/t4osv9n7J910stqunp8c++clPuvUb/4p8+nUWMF8jke6Rl8cHU2rZgcCT2FP5d2krfy851usa7Y/F5LeNKlYAeg+s6EWHNw9JLtdSz2KCXRQmDsF4OOcu8qKovSu8XL65yl3irlYZXqpU8v6x0dmqBl4tKsvzTFi6a8U5V4mK75UXvGy/Ip/vCOXy+MfFdPoX9e/4B0Zn69+K0rwq+Ad8eXOCW3u9MFQd/OPetfLP0xGFkwiLvczzTf/l48UqBLpRmSDNCtScAy61JdK2LbvRfv/svXbXU0stXBO3i6q7bNbMVlsd67RHazM2vZ5F0sNdtiXKDEZWNthcYAFt7tMOvoux2HqUMkOK48X7V6ArrlmNmvkYpEACI5BAALxGIKSxnkWmIEUbVxDMwVI1C7fOmzfPfvCDH9g111zjZqUNli84dmRLQKDJX5RX+wJUAiva90FLpQRkvnYR7jko8O77eim/AL+2hyuJ39iXvHo4Z2p30FPirm2wEllMTXimsYdvG1mlHlX3YkneP7BegC6ZG3UsUy6wAAxx0OUAppu4G6HMhXr4Lwd8/97K4vzE2O6XBhML144s6WLNzvML0d24i+pbJlgnCzwXtXakqkOdNSVAMdpHlIR0nCMUwNmLIkuxmp3KyhEKuUB5ihYfkr3M3X7ElR7R7V0mD/0CUrxLSlrSiXsBX9zWr6L4JCdw33HLr4ovFne590WyEogWA5WnR90kES7X0k5a/TVP/+eLrL9JOIgyC6Kvz3TbnU88aI8//5x1NzVaBjbs1uces9NrI9bdWIvTX8K2sVRUVzTOWrIJ7hSD7Yrh5lVjxVSzpUMsH8TRqGSlejC7UeLsGyI6EqRAAsNKIABew4pn7J+UspD5xzk/A8D85BQLpiEFyJSC/fM//3P7zW9+48DXP3/60wHj5QvqKNvmAecaD4rdJTa0wHcBqsGSFJjGlsaS1mNUPoWkUNKxw5U0yv1QlWHq0cd3wM4pPAZKPBZ1C1urjgoosIN2xDEBhYk+XpXPWTkbpt15zE84SoOwQoQ8L6eJRo6i7YwVYITDmJpixHviHNHtpVjLKO0CAI3A5tbLPQTiJrrSJQyUbqU4hM4GJAc0nJYecGKQr+VQB0Xie+Q4OrU0jg9nknhqNRZj2SMHnmio8kRZsiYU6kMzg5RVeYg3AaBNQIJGSFAkMBegAbnhYF6iPMkrwoLQIe6pNQhd41zOUfgjObFeueRFnFLrjWWsm5mDWqe1LlTL2olenQqEa8jSLoWGiLj6VlZj3zsuBNjy+p4C873kLVlHKGN5+k/Haym3ho/6soi5scQMxSJAL7e9zWIdvXbKrHm2c+8ea5460WqaGy0K4NrJckJG6IjG7qJNL+StvdBtGzBBTg7v4B27iVL3WFVoEg71cQKxchdE6Rg1ZkWGWFbIyZa/QQokMJwEAuA1nHTG0TmnZABeAmD6pb97925bv369tba2WktLizXjKP2ud73LmSOvu+46O+nkk53/w2BMx6FqtnSVPkE6+BLw+1mgS1HoZTaU83wRVqsEmBpsXTzHHFA1jSmFnRD4amhocOPrcAIvSWv/cYMyRgN6wVxRfehvqWdnaWK/DsVbykqNE4icRbLBYZYECdWzdl81TEYNCxxHYimuQ0mj/EtFwJeiZsa4whUEA8VukfN92ADFLpDg/d2/LhyWMq5M+7BC5dEh9vFLAviUdH93c4FH8TYAL5ay6emBuQGYKKpnvkgUduoY9umjIUr0Dyt6u2Fsc7DVIQa/okA85BNPJpyjeTpHf8snijaPKr5Wv+CULhNgL8FMu6JpHN8zznSXA0onogL1LGbNv2woZ3UwTQlXTw5L3EhiP4DrRoEn/VAYmfE9Cwh1rQRgxQBOVcxeFJumtThzrrlhm9U8w6448yLb3dtp9yy/35qTdbZkzsnWXcrY06ufoQrUJRW3egZKp5ApN40ATPHKB7gKCJe8LhYbx820FJHu6arINkiBBA4kgQB4HUhC4+i8lKGU5X333mv/9u//7hSlGIu/+/jH7cLzz7crrrjCvvvd79o3v/lN+9znPueYDyniQ5W819P+dwu7N6leW/4neH3tL6HR+eYDcoGnb3zjG7Z161b71Kc+5SZjyEQdAVhVJo0jTdr4/e9/b1u2bLHrr7/eLSckwObH/qrMf6j3NUpkjtKoEdIRgRNBSct0VsTHR+e1dmQYpFSVhb+BBQvBePVu3GXbn91i7Y89bz2bdlu4M297nt9sWx5fY01zJlmqpdrC9QTChOkqaGkYGLGoVlKWjRJl7sAbZQtLRbS0jO7Ef2cRI4vq4VvHOOklH9/43w+wLZWqKQNKyC1Bw50ILlUoxGzlyhdYwmmZdextw62ApWuKaeo3BVwgw5dqpFZ7EvH2979RKbyJNmTIqkXSxZwB2gCTERYNr2tM2MUXnm2vf/1ix5K7xabV5lFNmHJhhrojGWuP7LF1XS8yxmC8YI4iGaCl2C2akAbg5PjEwWEpRYt3rKZXkf63lWMzvVaG2I+LEYTJ7KHOBQBcY22TzaubiFQAsioUJ3gaBlPJeqSpRjumqsGKW9aZlldkZUYYYPIAuAvpHtizLHJRyBTMlhKp61TMiZSjEedGHccdJmSrLEEKJPBKJNA/jl/JRUHesSMBn8nQVp/Ozk77EmvqXXXVVfbmN7/Zbr/9dvvSF79opxI4c9q0afYXf/EXbo3HlStXuuVfBmMudExmKC01NNpJ5gtIB5di/MJm4Q0XUyoK43CwX2GDtXW02zeWy9P46OjosHsB5pqQ8XEAeWXS+UoZycdLazUKfCmsxJ/8yZ9YV1eXA14D81aWcyj2pWx9hSd4oH3njwabItNVGD+lEMu9KPJ4kkiX29assWcfe9peAmClX9xp8b1Z62nrgu1osE3PrLUX/v1mq5s3zRaedLwtPO9Ua57X6piYAmbIPOBLwTXlQ6RQq9ypr4lCVDx3fHVgS7fjQ9VcDlcnl8PzK+u7aPiNipbDEKa+Mg8K6wq45zrLuoArHn7KvvG9H2FyFJAk6GehnTwzyMO6m9RuqOfHk5QA3Aby9VBXfJUMdqvPnFgkZAIclCUitbbk1JMsEQfA6hn1m8nu6KSQZTEvtpd32/Oda+07D/3ENu/YBK/FzXYXrJoYWwI5YsMy0Yytrc5bB8FKnUCprUM6aqY+1E2LYjcgeL2lju1NWXMn4Ks2ZRnIqdNOOtVmXvJWYnUhewB4GZAZYlyI2Y2VMJnzbqsCsNaGa6w+WmVJzIQZCq1PxGwqpspoLm31ALFd4ra4T4T7SBweHwcDymH3m5FjSppBqfOqZpACCRxIAgHwOpCExsl5X2E+++yz1t7e7pzoJ2JiFPj65S9/aWvXrrUpU6a4dfZuu+02x3yddNJJLnimlOjApJfVH/7wB1N5ftkD87ya72K99AIUe5B+kvXSQrNs3doX7atfeZTiqMfLq/JqbrPfNWJ7lixZ4iK2a3r5YO3d74Ij+IuYLDFWCg+hj1Kl31ZlXyuw6hlnnGF33nmn/eQnP7GLLrrIhSSpzHO4RCXzjtI+5Ue/ArakjL3hzECC4Uq3ddiTd9xt9991n+1if3bLbDvplNOtJVRtTyxdhqkubK1nnWQvde+0F3Zusntv/bWtfnilnXblxXbi5WdaoqnKMviOWULMCcMW1StfIqlZJKka8PHqImOUQJfDBX3PlBvvHHc/YbxsfDtQosz+vCqfnycRIk7l5NNVY9dedbFdfNHrAGBpiJwqiCte47qpUv+z3F9A33HVtxd5ARrki8QzGMJ3LUfTli9/1u741Z2WTeP/J6CJb2isqHsKiHuXj8ZftSSH31pvKI2Zr91WPv+s9ZTTduq8Bc5kmoKJE4CpZSHrdDxnNTHMqWEc//vq4IAT9Y5Rb5Fx9LhFya+9amYhRifgSI+f1tNPr7bqzWthA4njJUDEx/NXE/cVAVDLXT5qKQBoHGezSJqFskHMGJitFuDeAOAqEusrRTiJqEAwSwYlGCd4O3K9XDlkblRva0T4qXLfPxZsAwkMLoEAeA0ul3F11PfFUaXb2tqcT47idQlkNDU1OXCl40qa4fi+G2+0j/3t39p9991nl156aX9sJpeBPwImYjuuvvpqS6fT/mG3ldL1gYu/P9zWv7j/Gr28+PUpwn5+/Hy7uu4mW/bUH+3Xy7/IEb3UvCv8MvVtJPv+fQbm13eFRLjsssvse9/7njWxQPRg/kyV1x/J+4rFJXn6MnV9jakxjYwEyOR0L78vmRQVNuLyyy93DJlYr1/96lf2tre9zc2elYlactXY077KUZmHJglE+IZrb8C4O6MkQwVGFuxQGAel7m1tdu8tv7A//PI3NnHyVLv6hutt0etO4ZmYiplprz3++JMWq0vZomuusJOa4ta2Z4e9cN8fbcWKZfaTb/7QtnW02YVvuRLzYy1txdkbvyphlhCK2Y3nPl3rdD8NV020oDhzQZEjDv5utiBMi54n9iNc7K47gJDksuUcx+U0r2j6+se9SvhDRVH6C+bNssuvOIPnm8C2MFjhhHyOKJtyi9ynBHhwZtaoJkbA0eQBUtjt8mmAosyLwmn4P4ltLuRClu4u2O9+Lx8pTGv4diUoT9d7LTpAZV/BafWR/K1SAFaZFcU0zZ8209526ZtYkqfeUhwTMCLkKZMYsuQx5yCveurdoPGVwCevwBa3e456x7W/o9Ru7dgN2wGPz7Vvt15mMspvjAV+4PVg1RkbZeyGZUzIJQG3OAvD40gfA2BFoMjiYKlqOrIG/7aa3rylaqI2hWdhRw9y6CxaLetg12N+jHHvYkFBKdQ3kq/XN074/svrFcgkyHp0SiAAXkdQv+vFJMVamfSi18dXijIh1hFIVSYnOeBr1uNQ6eabb7Y1mGj8a4fKN/LjqAaUBWt0OMYrvJao6A+V7MTZC+3Yy//a/Wr3mYyRlzl8Tr/tZ5111pgKHjt8rQ/eWX88iAVUv+q79uULqFmL8vfSMe0LgAnAv/Od77SlS5c64HrOOefYlKlT+0OXCHy56wFfhyo2nBuxAAqRPHJ4lzoXUyJmpATIUGRxLaS37I677IHf3WMLFi+yKwBd0xbM5wJeefiX9+wmqDCwJVpbZ4UqGA2Wi2luarWJ9ZNs8vzZdvvPf2p33flr1j2O2uXvvBb2J2xpfL6iOF2XFCSTeymcgMCEn1QTgR/NtCwCXLNy7oY1lJe/nkpFSHd5Kp5HyXq/pK8ObGmmomY2Oo8id32xxNqB+Q6YLz4ZAoGqnfFuypQvksrGuTxL6AT6JIZPm46pb4rcP4EJrZxtoW+Z2ZjtpYy0xcIwnszOy+SYCYijfll14X+U2FXOfOpmFFa2cL+avqovAlyN4QZAT9KaClXWWKizGfFp1hRvsgTsk8BUDsCZZXZinH9JzILlPrueJwnMvgDfCOgxQvvyAE31f5L9ukgnZswOZqrKkR5fL6QmGFzSLE2+a7wIxiIZ96NUTv5JZrKmNMECDqw2Vm3HNE22TbUN+DPGbH5yAgCVeYzhrXZsbYvNqZ/I7EueE8ae61HAnfObcH3mRuWrkklw0dEngQB4HQF97itTNUWzzgS+xFgIZKWJv6QXsZgupW58dL70pS85pkuM1lDKUiyGZkEOFRvMFfYq/ngvLA8MPvOzzXbrQ1thIU6wKz/5FpQCLy+9xA5CEpB4mZI7CPcZ60WKxZIcKsG0jikOnMDVo48+6hisM8880y2oLRCxaNEi5zN466232i9+8QvnJ6h2CqxpbMm3SsyXTDuV5R5cWQgQOI0H+IInEe1EXaVYxWhueWKN/eHn99iiuQvtqve+zRpnTCNGF8oY5iqJ6i1iq0pjyurVbDXMWQVMcA6gVIds1knH2nW1b7Hbbv+x3XvHL23GjCn2uvPPwvyGh1eRdibFDgFouI/Ajkva8ImpLhRZBBQBDZhZB+OagS0D+MiVaSRJLuAyfAl4uV8jlCNgGQKQhcOwjCz4LOYtLPBZroPhI8xFb9o2bNxg1bX1NnXqdPJjMsRUJhmJ7drT1mk7tm6yic1N1jiBqiQIIyLWspc2SXTU1o+6Ln8vfT8Yj6ImJMSJg5UoJaya9Q+rcoTtAITFmXkaywC8YKFcEFSYtzBm1V7AWBZnd43RCCApjWkyj8N9DOAlIJVj3OnHGosCgafbbW96L7gVOdGfSuJF3TuHmYqO8RI+4hpJt7q6xhYuWMjs3hpipFY7Jm3xjLlWl81wfdqSRRhgwFf9gpNtasM0m5NstHr6Qnx9TLMbXSdISjpyMKRF0UE6IiUQAK9x3q0+a+ErUwVKraqqstWrV/MCnmqrVq1y7Nbs2bOtACDTjMYnn3zSfvjDH1pjY+OwilJlCrCMZnK/Q/kVGUPxafApiCULnuFgjxLTVH/ueTBSALo8qbqgqChljRsfJCm8hHy4fvSjH3mxulDIv/vd7+w973mPc6iXCfJP//RPbdmyZXbLLbfYhRde6FZBcLMhAVv+UkJ+eQej/waWqVEi0FNE6fpcg4CTQiBsf2az/e7231hDssYuveIaq5vUZOkcLA9KP8xyLyGcp0tRQAsz7EqArjJsiJaVKQuMxWExONd64ny7PHOl/fi737YVP/+9zZk112pnThRZRggEzGH4KOqnjJS/EkU4lkgBTsPcJxrjufEoFmaMAlBVPoAAtOpdMNxfZ4qXWVJIDbOmWqofJWJ+XKvVeoAY34vMBgzDxm3csMO++rXb7aTXLbL3vvvNlgf4lVjKJiLzGrP91jyz3n586x128QVn2BuuWexFyigpVlaSkvQkIhfFsHIlC772AUp3ZJT+SEZ9/xCxcDJJRlLM1frI9KcleDhKABBLYQKtZTanIGwxyzsiiXM+9crjcF/CFJkrYyIvwY4RHDWE31gBgFlNaJBqABrN5t2CsRG5SYLqnBxm2iwmxxw3lo9Yqo71G48/zur1ioOd3M3s3UhHzk6YcoxVJ8K2fddWq4tX2ynHz7NCN/6Cm7dZdy5pE5pm8K6Sfx+NoFyKdOBVIvPHIieDFEhgSAkEwGtI0YzPE3Kgv+GGG+yzn/2sU5KK5SU/nZkzZ9rqZ55xwOvd7363nci6jgJiQzFefutHE7DopVviRahf7l7i9a63bN8LizOc04EgHSwJSL76iK3SVmNAQFygS5Mt3ve+9zm2VKyofOJ07LjjjrOFCxc6ECbz809/+lP7u7/7O3e9wITv46XyBL4UHf9gJpnfFPnTTVrkRnh0uUCnWkGvRGDUx1c8ag8/uNz+/Ia328TZxwBCOqyAma9ImIEIvldSyqKl9CMAYxXjD9WM304Mxb+7FrMcgCYB2TR31gw7c9FJtvqpp237E89Z7WRCpqKQc8yUVBxQQQIBLilbf9TKnJjt7bZtW7dhztxj1dyvBbYtNXMKjt5iqLjAQxwOiA1u6teTAkBzwEv9xL5EqpAI5Sp0PcBC2l7fyRnDl6uQz9iTTz1qk/BHE7nd3UMJKbGbZOHiPXva7JE/Pm3HLzie/ApXQbjUNKAkD1uDubEAc1ZUmAmAY0kPJb5QyuMeThUxCknPt0x/ChaRZrJAEcZRAU2zgBeZjN27AGFqGR4JlFCnNJEeoq+yJWJ+0WOburbYqvWrbEdmD2VwHexfdyFjzfiLLTnuJGuO11sSoFlHjLaJ4TprwKMsBhADTbupEDV0vrgw9b76rbmhmjNp27juSevcutMm4fM3cUI9ZBby20tQ1lTEmidMs0Jj0rZv2W07122w5Jxaa5hc3ycRD3jpixN139FgE0hgOAkEwGs46YyDc74iVVW1ryQToYCVQgaI9dK+TEFay3HGjBkuiv1oM1nuxq/iD+/cIB1iCThwBODSNk1cr+eee87VQKyWAJZYsbe//e32D//wD/bQQw/Zscce68aP4sDJwf6OO+5wYP7UU091sb5ijC2ZHOWYL8ZSYN4fiweHBaN8zWBEeUYdo8HYR4uCeax7R5c9v2o1tFTR5i0hSDBtjGdgOJKwR3KbgtkoA2jCAIsEMkgAosLkldYvMHuxFy9rKf46yk/BHM9dcKI998SztnH1Opuz5BQLT6mhnV4wThkExc9EuIcbx7S9Y8NWe+J3S23lH5bZri3braGq1o498Xg7/V3XWctxxzigAJTysBf5nZz6NLZ7FKiHX5ZMWZ7xVEAsA9YEPCoYLM7hBdg9MWBlgEsPkwmEsKgW7GPZ9nYTCytdsCQzMXO0KQabXCRCfAmzXThUBRMGS6l700YJTkvpyMzPIcE95MrsQgFUB01G8QFVlQFzIRoYZcsiZ/hMicMSe8UkHqpTpH8K5SytzdveOrOdQKQ03zLkzcKOr9i11r636pe2oWe3m8mYIsJ9B1HrZ2cbWF+xxRpnTgcUp+mTiD3Xtd7q8lFnxpQsCzQwS19l6XM1tooBkxQMAyh3du6wZkKmTMYUG6duhZ5OzmH6lEM9fmaJeJXNmpK0bZkd1t22k3tPsBixwHxgKtNloEwRQpBGJIFgrIxITGM7k17eAla+Y738IRQGwE9iNW6B0Xj44Yft85//vIvJ5J8LtkefBPwZiTIVyvn6pZdesvr6ehfnTUBJY2nBggXO7Lhx40aPxWIMHXPMMY5N/SJx4X7961/bQpgwhaTQMkQCa3IoF6CXaVKzYXXsYJiOS9BMYkEcqNIsPUIfyK8qBMvRsWWPdW3eafOOmW8NM6aCxgARcby6MP/VAszcLDT0bhLWqIYgojUAkRBr8FlNLcCtaLOodwSHeE0oJJS7TZ11jDVMmGxrMUOdgkKvStRiZiSeFz5EGPL4J0OgwBJgahvMyfcfthe+/Rur3Zt3EfOLRGDf8vgq+8P2brvqY39myQWtMEqAD8U04LmVwkbklOCBHvE8cnKX+7b8tMTLOMd5WJt4KgF4AJTgZF+C7cmz1QzhGA7zhTyz/YrNXD7RWI7QYszKi4DEUsTkSiQIlxDDFwwfNYVXUIyzIuAtRFlaHimc6LJUZAc+X12YYjmPD1bI8UN6NlSzUUoUFYWlS1Hn2fh3FeiP3TBZNfjdWbnLdmM+jMIotgCwdkdythdQBeyxKurSAAySX1eseZEllhD0NrzXVu5dY/esf4wqZmxvsYvgrGXbHWq3dVParXvPc3btb/4eUB216iKyYcz0xlgmCkAnxrMMk1UD2KwlgO4sWMSrT7jILppxtnUnmQUO+5ktZqwtCjiL11oNLBpitCiTMKZPr7fdzJbNbl9jMZYcCkUmIFMYQ8oUaA1SIIGRSCAAXiOR0hjOI0Wpj5u91MdiCIj5TIPMPm27dtkXvvAF51B/7rnnunM+IzGGmxZU7SBIQMDIOSrDTvkATI71AlD6rvMaO34eRa/XWIkD5hXvS2brBx980ORov5igvJddSjgSrtM1Ml/u2bPHBV1V/DcBO//HwGg2RT5ZWZgpgZ4oLFCKOEtJlOspcxfZTPxv5DNUz2zMZ+99GGaiwXIJTFooZbFisp7FuaaMs3mxO23d7Xtt29PEk8JpvYBprhqn7igMEBP7CDMAAyMH9QwBDniONFHl0bvvsRWrH7cOFlpW+AGBy2QkZU3haqvajOP3oxst1JG1ZpR5JASfAijqJljWs398yjpu/qqliYrfEQclMjuyAMiQf5JCPlA9ai3fI5n6kCf/sH+6tsgPa+KEGYS76KYPxE4RHgI2K12gHLIlAIoJ/MgizMrLwH7t3t0JoOtxJtEk4CHCMj1dPUS5F5UGUyY50F0kmRIxf1KHbJ62PbbSvvKN7yLVdu6LmRI/Jt4ko9J1gm8qaQ+AJhIrA7Z2YSLMW20VAAxfrBiMUpb3VwSzKdMsbUPnZnupYxdsFGFOFHoiUWeTGiZaU1Wjnb7wZHto4wrb/eRmucAR56EakIuJNVFtWZzHilrrMUv8+00v0YEsn8YnQtuL3JeG8Z99rutihYPN6ZK11DRYw3Ela4RNTPYAqmFAwYD0qRhCngfAooLnhosAtwQcJ/XtJdRIKjuNMd/o5EktghRIYMQSCIDXiEU1NjMKWNUSHkJmorlz5w5aSc1o/Pu//3sXRFRBMYN09EpAAElgwWdJJdMNAEkAAEAASURBVAkfpAtsad93llcezY5VcvG9UIwKL6FJGTt27LDNmza5vMrnAy8F7/2P//gPx6K5Cw/WH8CDcIPDEihSsU+nzTvR/t/177WO7i7btXWHtfFR7Kx2fLxKAJCy/Nq4plqxmmhWur3D9u4idte2LSx9jDKFKqrBgRv0YrWwPqms2CRiOe1usylzZ1rP0xvs+9/5st2x4m7wAA7dahu6XIyXIp+3wn5cWHOsHRNtsi5AJ7ekggAsmKcOmJ377/iprWrfZN2iXKi/B3s8YOPKUnkuybRI0XIgI1OESSdNTbNs8tSTWc8QnyWYvQxBP6MRfJcAEj29GOJg6EKlrN19z922/oVnYMMAT4BIhV5IAsja9vRYN2xemDI90EV+KuFCTug2mN/uu/d+e2jZzxgbhKiAlVIODy65Sr32PxQn5klTBuqa47b9wmZrWTADPy9Mn7Rzbw9mYsyzux9/1JZ2v2id+N7l27sxpWatrippkydNtmkzp1m8Kmb3PvGgbe1ut+suONs27d1lGZaCIswZ8bjiVlVIWEdNnTXPxkkes2oCtlNrX/bCoslvbDaxyxqJ3dWAn2Bjumizw002k0WxM8+sYRHvKCCeWeCwm4nuNuuoZlIGdYgAthLUPcWPjL1tey1a08SkUyqdQp77d95rl1NQwhEvgQB4jfMulimnnhASn/70pwdtic7LV+VaFsYOUiABASSxo0raiuUS4NJSQDIPCkQpCXwJoOmckvKJ/Vq+fLk99thjdt5559mFF17ojudQjHIS17UK2KsI95pVK78vleMDO1fQaPwRe6GQCpQVUTBMHM2jAIXTTzzN6qa0wKDkbdLkSXba4iXOrNbBkjhy0g6h4MMwPnFm1ZZ3dtoLjz8FWxSzSactsjwMVAYTYjhM2AEYlxRslcyTURR0COf6OD5PMUyPsydOsmMmTgHMZfrMhBgDAXS1AKKpxQbAFkvW9JasClk4toi65jBLSuU3NE+0uTBTvdBbvdQ/BwoscU7QS20RiFRyyx05ecJocQb3eWbSzST+XgMBkrvIzz25gFCprg/hcziieF15LKY11jp7OnKv5ZhMaywWHSO6Pd5S27YqGLLX97oPB7kZsuNeQnC19SyhU91ImfiR6RyIYrQYL0rzEnhOIBiLLaZNABf7mo360tZN9hOY1M0btlgLLGT3lKhNmz7NalnQWqbd7nKvrd29kWDLzzJZIm9RmNlrz7vYzjv+DHvg0eXWxlJB9ZhTexhvVVlYqVDCFrVMt0ivxgbtA3hlw70QYAWbSL820bYm5F/bkSF4a40lYXzdpB/ylfCbywP6csQ202SNCMyixnBOQmFbYMxFAdplyQ1QPeoy8mUVbI9YCQTAa5x3rZSd4hYNNTvRPz/OmxlUfxQlICXiAzD5Yyn2m4LpKqiuxovA1i7M0z2Y1sSmKglAabKGZjoKkL3//e+3OXPmOHAlU6PvYyhfsX/8x39018uEqeMqc1STQAcmJZUq4IVediBp2qRp1rG5zaobazHNNduF111loXoACItAy7zm0IpwB5/Muk22c/Mmmzx9il144zssTr4SDBFa1QNA8oHCHJXdgT9Putc6cE6vZy3H9/3l/7OLt15tews9+BSRHTNhIpog+CYzArf12Eu//aNtXbYadoTo7EAzzWLsJOxB/dSJdimzLOPNdW4Wn2YCFDVjD3bFc6CnLeSVGg9RnkQWBgTwlw9+TsSQuv/ep2zVc2sBHpjmMDVme/CrA7glkpiIwceS9YXnnm3/8un3cl85qXMloRfivOVvu325/fNNX6XposYokqS7KS6ZZk9GuOd5515ib3nz2Qizg4bROMd6VQA177JX/Vct6UHGOSLjZ7vX2+d2rgB8snA2IKe9o9N2bt9lLc0tdt05F1puVhO+dY0wTIAcgsFu6tlqP3r4Dlsl8yJgaH7LLFswZa5Njk2y8+eeY6lpcZs+cbKt7l5n8TRwc3uH3dP9CKZK5KpJCW6QQHOyDqRrF+O5BdayCXPjEpaRmtl6qh0za4HzB4swQzTfu91sa9YmJiYD/qZzneSEQPmxUgxtgchkMfUEgBYANnoSetWiDS4cZxIIgNc467Ajqbq8xtyP7iOpTWO9LQJcPhDSVmZoASiBLC2ePX36dMd8aX1PsVya5SjQJZOjFlxX6AnNmj399NMdA6byampwTif5gG7y5Mmmj5J/L/dllP440OiPHJgLKXSZEMtipzD/1E9stNXr1lpvbyftS8B0AKZgtkKwO2InYjBfOfyr2onjVYu1TsvziFXBsmghorinqlJW7ILFA61tYhmhZ3dvtTnHzbMEZtaG+dNtyuJ5KFv8spCPoBFXufAOYcxWL9VNtUdAZHtWbyBYMc7iAJopzCQ+801n2hlvugQbG7EepMCpNNjOycwhQVeKK4waUhH+Op8s5At0QP55Fsl+1gVmLcHg5HPivQCgsFxlsWywkWUAXgEmTusvZjgfx2za3Q1IA0jL5FjAGV9TO8O6vwRGuZ708A8j1MbCY+exlusbWGJMdwfQunqQbZSS7tjJ/bWs0YZtj9j//OIJwl4QoR5z7NzZ8+2t1020yfhxnVhXYy9FNNORCQxymO/daQ8/86g9t2mjzZwMIAPcd2zptMdXrrTj6ufbgpYFOMQDHpFnVU/KJmBahU+zqV1cX8T/DQbP8YMg0SwMVTdADpKSgLisRgA43s4qAOs79toc+jRWA9MJU9vDmNgdyyEDWERJGvkIvGd3tyM7TNJ1TSyvlFAvuX+jJKKgmKNEAgHwOkI6Wr5eMisOpuikqPw02Hn/XLA98iUgVkRO8EoaC/L5U5R6Aakf/OAHLuCugJZMhRdccIEzKcpJftmyZY7tUkwvAS+BLYExlSeTokCI75gvlkfxvWR+RFeNelL5JQXeJWk5GQEVgSc0utXjfzYbAPHUo0/Yc6ueslMuucwKScxGzJBTEFItii3TpEyVvThhdwG4SkxZy7HtprKaBSgOQ4xameWHnt74gm0BsJy1aAHAqwbmBDMhzui6f01YJjzNk+MvZSZp76wzXseSOFX22A9/ZaseW2X1hCc450+usKlXL7EQsxLLOG57cUqpNwBIscQEc2iIaw+9wjcYGtguF32dZon9UvPCKHxFdZdpUMf0UeujmOtksowAUhQ0VP5SAnOazSyQ53GDAA2YPzFjYAjwl5zqKddl8ZivLL5virgvZ/cIDu0Kl+HqpuJeY9I4kKy6mEmphXzU8gTm2zh9koiwXE9to51QMxWgBOMK+BWDr2s6iT+29Inldt+jy6y2KWmXn3WJTapqtrt67rP1BIVtX9iOb+sxVgA8lTX1EPYulA/Zwqmz7OrTL2XtxSqrhXuM0G8EC7E001V7yBMFjNdgAG5A7E34zNXiF5bdvMdKTYDQlIy3hByBDStpIgRslyRR6s3ajrZ2+i1ujXWEkqA/+MO/iv5TpwQpkMABJBAArwMIaKyfFqiS6cd3fhZLUZkEyKQEpWylsI7mBaIr5RLs75NAa2urfeADHzCxXHKaV7rqqqvs+uuvd3Hg1q5dawohIQD24Q9/2E3i8EGXwJuAmpbK8UG9G2MozoOVxNNEmXEmqKKPgIVjaFC8sTKzG88+0x5d+hDhUx6yhafgkN4y1dLFNHk8k3wBVgz+B7CF4Q2AU5afEY9NCVCmEBXyd0smq2zrlq32MI7eDdOm2OzFC61UzSxErinwLDnYh9O7VK+DETApwk6RGky3C2Zb/ewp1vnYIzaxNmZTFs21UF2Vu59mTCIsuQbxAX4IhTn2aZ+0+AlFTT2VLvShkBHKK5CrE2A8oTD2kbnELJAGUOzu3o0ZMm3gO75jisQklwBpCawV8FfKEb2/J90B5oLJgR4qEc+BsF+UL/k5qbofb0Rt8AK0utZJwq89uSpTTIwKC6q4+Gc0TtZdrXkJLqJhQoL41WHmTCVYK5R4XssJgXPv/UtZ2meOvZ5lmxbMnGtxHOY7WzvtoXXL7LnVz2JynMcqBQQ05SYFzJYFwONkfA3fcPyFhKJIESusCuhFe2EH6WkXSiQGOxgl1IeW/okghJ4NO60b4JXettmiE1nSCLBeSz0iKUJ1IN+u9jbb29HFzMi41U+YYpEqWDX2Ne5U75DqDpB0lXjt4gpKOMIloJESpHEuAc0kUyTxD37wg469qGS41DQBs29961s2e/Zsu/Cii4Zkxg61GPQy1idIh1YCA8eH7n7iCSe42F2dnZ2AgbLz7dLsRQEshY5YiVnnz/7sz1xIEuUXCNBHoMvfH6xc5T0YSRHW0dc4OHvgS3q7CJgIw+pMmTXV3vqut9sP/udrdvcdt9kFLe+wGvy+ZDosKk4XqEkKH1cjgmuyg9KMwm4Q7cmiBB5NsW7fXkxKv2Gdxu2Arz99zztsxjGTYLvkqg5wAHDprgoDoTJVEZFMcpdyXCKoqhcn/Y5cjwtjQbwJy3GihDO5QBDZuNob+27860tf0i44aNDnQrG9+hO7ulZYrFjCQRxgt2DBsTZ9GiCTCBgFTIshWD0CaRguYTYB5u2kk06wCRPq3BqOYtvCMp8BLgRI+5MAnb67/xXH+zO8lh3diQ9AU4onCVYhxBigSw7wAmP6DgvGMTzmbG+OkB+Mr0VzjrMrzrvcjgV0deNvp/ynzzzVNjS8iOn7KVswb4EtmncC4JTo9KyJGQdsFtMsFE6JNZRUX9BfjVcK5kdoPKP7adWCHoTHVEjKi9XNtNp0rXW1bbeu7bupSKf1ZHqJLdZuu/eyeDxgvYyJsnnCJKud0EIcNWoI46UxqDZFeWa8UaDeDVIggeElEACv4eUz5s9K6Wk2mhY4FkMxVHr88cedKenkk0/m5csquUE6KiWg8SL2U9t+horvAk1ytBfYkulQcb2k9B544AE3bhS9/t3vfjdmqphjvrR15kRpHtLQoGug8kb5jUKChHCgS6UL8IDDnI+PgrkqSOrrXv96e/rBR2z50gcsOXWCnXr+OdbUOhO2iIkAKNQojlBV+E2l2IYwKSadPxFBSgFVWRTvsl//1p596FE75+yz7OzXn25hAIoCmiZhq2TezAO4IJnwDfM+VMeBLkWJF+DB4MfqPtyL2GAKZSA2TXGkBMwcuzOEDDxpOXgi7LN/4n5qm9P2nBHmE7uYx0Q4dco0+/u//Yg10X9lgKRmrGrdSoFDmShPPGGh/c1HP2QtLU0O+KSz3bRVy3hTCO0pwRT2wUYHDPe/8eh9E7umBXxiAF5FK9OEghgUXgKmi0hygC5ishGNVDIKxyN29lnnWE2ZOGmpJot0Raw+2kgYjbA11TXb8XOPtyfWs9QPgV97wxnCrCZZuxEzsDOvCkgTl41/tUVCgzBIPNMugJmxrzU6S5hbQwAwRekvV8OJTWVWJwB9Z8cG20oIEQHlaDJhvfg/xnGmnzJ5htXWTKDvESzMpWQvwCWuUGFLODh6ggpKOqIlEACvI6B7pUClSMVs+UmKUKZFJSnUG2+80a3DpyVfpECHVpR+CcH2SJSAQJUcscVkaV9J40dgTGNCYMsPxiuz41e+8hWX/2/+5m+ciVFLDGk8lfryCYBpXybtwWfWCpL4EELj0d93d9afivQKQBmsiUxWYppUpFN5KNE0LFNciANK6/J33ABI7LZf/PTntoP4UOdfdonNmDMXOqUB0NFp9UQcb0JdRwjeGSUcRLkrbesfe9qW3nmnPfvCC3buGWfZFW99I4E5q4i2iTmJ0PdRZhN6reB5Ax3on4Kfan1DAugDsPhCPUrMVpRjVpb9AghN5juZ9YSbHHZSvVWQPmoAYMFPMofJd4vS+Hh7yqMFryNCnJoJCXDRLfIwNmVAQAzT64Jjp9EP8HYyJXLPdFbO9OrbhFURUmb+PGJmcUTBUkE15IlbOoPpVOADsxtOTWqIGwceL0fmUU3ITv1GGyQLlmp0Zj8BPoJ4IAvO4aAmcCnH9xSmvKqGZqvBQT7Sq4WMxFyx5BHjTcjszJPPtJnzZlnjFGakMgU1y78C2xhjWf6uCcBQTCFBKFo+ePqIIc1his2JHWV9R/lyacJijpAReSZgZGtD9nBbm9277lFrbEnZkokN9uLz6zA7t9mSxWfZ4hPOsNqE+DOAF4W5lRD4VqIPKHFUpRUUduRKIABe47xvfQClbeW+mqWXj5IA2ClEGb+UKONyoNZWs858xsNlOgx/pFr0CdKhk4BAlfp+7969Dqj7IEtgSuCpBqUlp3ixWWJSxYC9853vtAsvvNCNLz/yvcaaxpUbY32K7uWtkMZDobte1liUYtJH+3yEQNw+G8pycSHYPWDSpUSjVxL0ijvQwvVo8kgjZizKKuNM37ikwa5ofKsVv/OAPblytT278mu2ZOEiW3TsiRYhwnsUt+teFpPe9scXrL19jz3//Cp7ZPWDRFYP2dmXn23nXHOlNc5pofaYkZgFWSYCfA6UJTikmPIFQjYk+K1TxXqAMnNqxlwOLZ4gXzUR0ScwuxFIZ2Eiq8ukFlM9+a/Ut6EBFTLoO0NJtEt3BcmRUTm0lVN8jAkBqHnggpguFruuIkQClSjj25UDzRSgwWLECpPDvcxu8G4O6DAlgP6SfxXniLIfZxGesEBJivKSGUtGN5NvOy5W+IoByGsIQ8HdRz0Rpx6fuILtYBik0lHiadXZVuRSFSG4K/G5mH5q7dS7Lg8DBY3Zw3GBsTCAtxROg3/x1dNYAcBNa2yyKU2NTjjbC7usLYKPG/ljmI1TAFBCzTLEiMoPcxbWpAroSbGWMcaGZnaW8YeNAr4F4OMsO1Ti01Fut4faVtkPdzxKnVL2x8Zue2nnRltDmJIbJiasbt7r7ITqKfBozH4kWKu6lLBhyB15U5NAoY76kDkiCwzGyRHSrVKgPvDy/XK0wLHMilKc8+bPd7PR7uTX/I9//GPnJC3gNdAZ/1CKY6DKOZT3Ptru5YPsiRMn2nve8x7nRK/4XWK/fLOjY6wEulBOIZRSa2urffKTn3QhJwTMdNwPqOrGTl/eoSdsCKLI9wXt5Pa0FWDyVbrOO1jhbURHjChJ8eo6lScw0XcPjoXww5FSdlwYJrdJ82bbmz88w55e+pQt+9099sjDK+zJPyxn/b2E7dy5yyKb4/bExvUs68M6k7UJm3vyAjv70gtswUkn41gN0sHBO1QN44Xjvu9jpVoriaWRP5KCsqLJ3THVSFULAxZ0Lq4vmLKokqxTXpVdTv+Pd53/TYJQ3QW7+uXErmZRlvNZnMHFsCkOFjG8MMmVS3WYSimcPPJh0sQ++b9hPaUelAW4VUkCYG4dHIBZAed0MWYys5VEPXEshFlN4SvUOyXCU8icqqrr2tFLckVXWNcSwWph7WQGpfBMtICcwI+AvTAfmXHl6xWDGUsyg1C1UD2yAF3l98cyBThzn9inGABK6zpqkpF8+MIKt8HsUzF7Cohaor2a0OB82xzrJplINgJjYhN1P5XEwvGA273MbNxLt9exbtTeFPJlYsUezJNd1N6t5YB8wnx8+WgsSJkGChUhBOmAEgjGyQFFNLYzOCWpFywfH3h9//vfdw7RcoaWb5fMRN/85jed8/Sb3vQm++53v2vXXnuttba2HtbG6aXlv7gOa0WOkptrfIixOoPwEc5cI/lzTGNHwN1XaP5YEsiaNWtWP7MlhkvmbB338wwvOjSdU7UDc0m9c06n+0cAqIQ18foO6sQwSaOmAqTx1SPP+kaTvutqyle8rXhdzE6/+kw7/vXHsy7jetu19iXbs2mH1W3dhumQ4KTE/Zo8Z5ZNZDmaWSdMt5oJ9fiNoVRdFcXsoaK9L65OqqWM+q76/X90R/fFKfkCpiuMtlSzr55s+FZZa74NlgQyPDDptcZVwmXUXMyezG675777bPsOwhoAXHKhOpg3AIeoF+8C4RHMjdRQO311oosBV7vwZ8I0WYKbAdgAC93s0A0bNrDGZg/1oxyAWJQZnSqbRg9Wwdd0jChjBJQlmhesU4nZDTvSO+2F7WtZKQD2iGEhLq4KtirJWEizYGIv+STVfaZPAVMd8MCYX5lC3wzVnfhmZTszVo+PomZuau1L8Kgnd8lAnUAa2DIf6upO7hpmRqqTtaB3t8Ap5Yh5C/GcCD+rDl4NXG28OqngIAUSGIEEAuA1AiGN9Sw+4JIy1JT/u+66y9797nfb29/+drvmmmsc4/XII4/YdSwbJDB2991322233WYf+9jHeMF6inewNvrl6pzvLzZYvpEekzop8ubTS12/QLV1ry3q4ByCFVRoBKpppPfz8w0V38w/fzRtZU4sYErSWBHYigHEfBBWKQcfWCmwqsBaGLAlx3WfHavMO/S+eldqSkkaT+rO/+hYH1Pl9nTcz+spM+UYPA1y3hXrH9eWA/oP8MkkFcMJc9bkBlsw6WRbcO5JBIjCBIW/WggTVBT2K9QEGEFRFwEsOTloE3pAQUXDoqlgs8rIS4rWh3t6cfaRXPtVET3ttHsRgCrcIwbGN/mrPgdOqrvupeS3h6rBmk2ZMolldCba2vXP2pq16wgwCigMaaKMDI/7CpdUBcT6MAbfvLqHSts43ku9FPiTUAgCO/h/ySeqoaGFZZZmYWrENCqgwTX9jVVVRiUBapjcIEerCLG0EuyvWfeC/fSXtxPwlbHFfavw7YozkUHAq4e1FXuilaZqrxJ+HDq/SmqfnNvD8uNiuaa2rW02Z+E02CfJxYNsHpeHHGjWPqn6JfRteR78VBJSpbPzelfpIJ2dgyHMyb9OX/2MwTaQwKuQQAC8XoXQxtIlUpBShkoCSnKI1lItCnSp71rUWNHIX3zxRZdHUcrFemnplyuvvNLmzZvnHKtVjp90ne+/4x8f2pzkXzWyLV4V/NgW2EOZSKFD74cxDykKtFNyQ78WR3aDQXKpPUM7fw9ywRF+SIpL6yvKMV6goNCncHywpeZLZkoKsCpztAC9jilQqn/OZRj2j8aUPr6q8hWbD7gEZbQvAE4fYRbykndv7Q+u4HR+Xx43mFDmLvmHua2Urrs7kdgzKOUSs//cEvGA/mI15+prLK7I9sxsVOAFOa93ZdOwYPhJ4XheAAjo0YooDETl/Yasl9PPnOUHhhzAkZcDqn0IbfC2eNXe/69qXZFAC+qzM85aYv/ccBP+aJ30m9fQEksTaZFpXLP6EhKlTwcGr9XpEAt1lzC/hpyJTLXRfQQ8o875ft78VgcUc8T/iuEXRcv5jGYiyGypCpe0lE2ummynzz3FGqrrXQDbTBS5Ux8tAaW1FaP0VzzCckgRxd7aJw/33qC9+46ofpRbxEkeG2CKOGrHTpzLjMeFMFdqHVcLbfWPC39nQLucgFSqNya9G+haD7LpHmX6NA8gV3FeeSpr/5oMKDX4GkhgUAkEwGtQsYyfgz4wUo2lEOUQrZe+fHL8JMZCilNJAETO9f/1X//lmLFjjjnGvdT9vP5Wv9i//NWv2tatWx074h9/rVtP0eIvA/MVf34SL8aTiZb+jD36Tz93DMxQ7zGxM5qF57fX346kPrNnz7Z3vOMdpnUEj+akvu9nrUAUbskbxorPYg0EVDIrSuFrK79Bt/QM+2K/Rix/B4jQag4oSNmL8RTMkspCabnjgCLHLOBg7QbAPuXo7Q2m3PblkXrVtwK+TgKJKjedxmE8kWScsVwfdYjAZsVYQgf3bUxu/IkCOGkLDkBWBO+V+AGgWYkRos5rgWT5/yQI4qlyi9RNflA+cFJt9q+X901/wXSOvZUs1SYHvpAhBaqaI0wD2ouMFP9r5szJNpvArL6I5KdVwhTXbz+rLF0IpT959SMQFZf6YGrfeZ1VdmdK1ngAxUle/n36i3nNO4QsASA1FRqtOdVsjWff4ALbyjEqA8uod4MgruOoGCMZosxniYfmS9u7vVqwP/BS/RMwaPKrc2c4kIwlca7H6wsKUi1WAFpncxR/ta/pXpH8lXzVx87k6DqRgxzS3d0QpW7prFYF8PzSNK4GLUiHgxRI4AASCIDXAQQ01k9XOtWrrgJZUopSlH4SEPPp+ShKQBHKNbPt/PPP7/fX8fNqK0WsQJof/ehH3X7ludHa10v2uPjl9saGxfbHFx633zz+VYrmpXiANBAcHCC7Oy2W76yzmAq+eLEDpyO55kjMo5mKAuACUAIo+q6x4Y+ZgbLVOND40kdJ32WmHLmPl65yar1/41gUDumoAE1Ii1Erlxx8mLWm45VJfJhLA4eGA3R9OVGYrkTYCPf7gvGfwxE9jAN3kf14vMaNLHzRSah1Zi1q4WVFhHdqnTzCRTLO6XgU/ycpYKERDyv11cFd7fFAyi+A5yCkawAHXO3FjIjR5Uq1EwBW5plz7erPp7xDJeX07uqeB6f1AV6gB7erP/qPPMqY5stisQS+qMl+yd1wvyPUqYoy9MpXXv8eZKRMgS5Jwc2aVEgMMdODlLF/ia/8Wxz/rRh1CGFSrK2mX3BYLwKwBHWdT1xf3SRZrSpQcE5ZAyuyT5Da85zkBYgIi8F39ZoilMXpX8FlBWf1jmsQ6c0zyJuGvtZ7U8yn829zV5CvT/66KMMEjCJLPu2THbtBCiTwKiQQAK9XIbSxdIleFv5H9dIsRgW/lMlRx5W2b99uS5YscfsPPvig/d///Z/95V/+JZGsT3KKwZ2o+CNlIXbolltucYxXxanXvOteeyhNxRnKPtxk7fcU7LzTzrSLLpvjFErf+27I+/gAcsgMA04ILMycOdMUAPRoTzI/CWSpf8X2yIwoFlH7Oj4wyRQpoO7W/OOkrpPP0sgT2soBBY1DARG2+u9AicCJQJ3K9cCQaQbbAB0rABRyDETlCYGGinpQLzdbDf+kPOv85fHDqaJtihclnyIZMj3V69VctfFZLO+ImBYlqWwPNPkvRuXte4xcDtVC6tsdd38r6+WyODm5WYjK55gUtqqjy+/lGf6vSle5qlXfHfuec/+6kIJTqb7lKtqiuFK6Rsmvj//dO6rjmrUYIs6VV3sdUV4+DlyoVV6oCncGPzD5jrnz/B2VpCpBFQljIyR8stjSlSH8syIaE9RD8dBkGlRWreVYlL3wQIly8g7ACWipSBhOSpC50k/9e+rM/i/+2b6tk4N/zJONyvMSsuOQA+T+oWAbSOBVSsB/v7zKy4PLDrcEfHDlb2tra13MLs1iVOgAAa1NmzbZaaed5lisz372sw6IaFajFOrgQS955aJ0r7/hBseKjGYb3euMP1FeqCsiL9qtv1/vlqs5/yNvRInwuqzUcqN0YwEOtVPA4WhOkoFm62mVAwFz+fqJ+RLrVSkb7asfCtBHL6xb58zX8wlHouPKr1SZf3iZInMpOoEu7aAkBUbUzVKPLviRK0DlouyVbWDap/0GnnnZ9xixvDIEUdUl0uWakahYWwLsHtDwoQQn+4aDd0vvi6ubcvpDhZPaVR7/kPDCYNVEjC5XiVgOJZm93LhjTHN/j5kWUNLFFYXyVeX5yQEoJysdIZ8PBtzWY1sUhNQlyioBkMAcB06qMMySnMTVOAfC/EJcy/zWSS4CfLpglJPqS9Hc3RWsYLAy7rmvijDrdvbdV30Qc47+w9SDPBKnwk/A3XpFiA7kLg5Eg+wlUxGkyueZZdXWfffZV7rLwJnBzu3fT/uuCfYCCbxyCQTA65XLbExd4StAbf3997///S7i+Gc+8xnHZNx0003Oif7rX/86QSKft//93/8d0bJBDpShPEYt6cWrmDooirAiTPOqjOB3ksM/I+YcZnklax08vXHdW3J07uzLZXRKG5+lSAZi/zTxQjNaV69ebeeff77NmDHDAXABLV9OyqekGY1f+9rX7LnnnjMB9mOZsKHlU2pqaugeTzn51wwtFSlBKXJP1cmktXnDdiZ7bLdMb4bFkJOWkeMV4ETmNK88TxlLAeZRvA4Y9oMDqW3uTdwmgTk/EnqJGE9FFoKuq0vZnLmzWNx7ogM/RbFfjKmy2A9/TOlyVyPvj9cSTuugY5LYat+d0D28fMI3leDN3wf9uHo4PzKATbwWto2gUapbTDHAmpg8wnqNbskaQIGc372Zjh4E8Uidvpto48yoKr2yluLtuBb/Mwfe3Dn6VGCqr55eLYf4qzz4V8nPy4MQKl1lAk9oOLX15OOYJ2URUhmirAGHh8tW2QJdlokxm5R3AOsdcGetl+iMmoxNdT7qqCTmldogdKA/xw6MKt3rglmQ3pLlXNIvP+J+qfPccFZN+kAeewJjGpn7J+VRX7IZ2CgOyntQJ15+na4KUiCBkUsgAF4jl9W4yTmhudk+8YlPOKZCzJU+a9assW9/+9sunMSpp57arzgPaaP6FJ/UsDMN8brSNPCCwJZe9MxicslXkKNUOR8kjFJx47oYmRb37NnjPn5D5OuFinMMjWO6POrGzXRraWmxH/3oR3b77bfb/wfwcssFoemc6UwajzScfL0c6ldPk+Uxa/7qV39g0fZbbAtrIoYA3XmAixSkgj4oydFdyV2B4pWlUd/0T0qvDCNTDhECgnqXoXtYOZEP/kkwKC0Ta+zDH7mRECrXERwWny05iYvlUQwmtm7Gn8rzquPaodJd4ji4xlO8qoJrp74DUQROGJe6VODR1Ud1VuVYoihC5NIkILF3Z6ftXrfRuvZ2wUSFrbe9wzpf3GKpyARLNgFYARhlZleG+PVRZuag/M68US8ZwJJRpidPVZCy1WD/vuxq3UWyuOp7wEnASyV4MmOnL+0PDwRzqCHn9PT9/+y9B7Rc1Xn3/Uyf27v6VUMNCYQAUQQIEGB6LzbuxP5sx078LTuJU5ezsl4ny29iOytfkteJXyeOgxs2Ns1gIKKILkBCBVRQQ126urq9TJ/5fv995khX4l7pgiQkodnSzJw5Z5999n7OnrP/9/+0Yt1913ZX0nCLal1vLnh7/faG/pQ0BisH9sC7qlL6pMNEiddvn5dYKdVzykHJ2zWEEwDPA8eG+c+EwS6wbx89ENgiDIWK2vBs1iQor8X97wKbxeLmnLftQLcEq+Lurzb47gbHG82nAdKSnPrls4zeYW8sh/odqLVSKUnAl0AJePmSOMk/xRT4hvaeigMvLgCX9ovl+Na3vuXYL0WxH8ye53gNX4862Xd4y+rx6sWpc11/cZDqzZ8HYpSgi8C+3oIsmy/fBuz2228HKD3msh1cd911zkFBBvpBbMJ0ntS4WqgcO3qQGLXEKXegA1QwM/IsU+iKbcRZWre11WbPPNMaasm9F0gA8uA/CFqpxCuBIJHTib6ey2Uxdk9bDG/EHEAlm4PVIN2NOJIsqWNkIxaEPdFyHSKswtrVm2zD5nXW2dHr1lslWY7EWegtwTmy/5Hlj7c4Yxjlxuy1wfgFXhhKVjZTjvWhXbFJLLIKwSDiJUZcL/nIFehnAVAVycBu4fmY5uCWN7fY6udX2NYX3zBbt9PKWxPWEKiyjtc22O9+/3vWNZ+kzvPOtnNnzSVA6yjaLQBA0tZeGbb+OBfGESAOY1cJkMtHKnC6DLBNNYEJ5EbYU+tmXzfX6s2nnBef2sjLLs4VBwH2bXsG4t5XD06EMFb3gpH6pJ5gbgKwmwBtaiFoCMVtBGl1yhMZqyDNURGGFNsc/ENX7ad/aV6qr5dmkT7h+Xj3oJ4+NZwYqlHFmMd0X7uKNdwmb5zlgBLnadie+6l/8DCfnKuB8aGWFTJDbXlXcTv0xkH2C8zTX6mhBf1UyZsVzGNYN8UYVN0Y86AcMNyrWB0Ql2tJUyWgX01KoggBcvPMB5IAcD4pivCodUwx3rKlUpLA4SRQAl6Hk9AJftzFp2IRVU49GdW7v8p5EPhFf/lpodRxBU8dNRp39BOmwGDooS9Xch5ozsi69Nw6pndH88M3qPfVhDKil7eiPGEF3n2WVMBKMeDuxNbv7//+700ZEWbPnu0Am4CZK9TXOYrJNljRcuzd0v2qM83JynjMPnbHTXbrHfPwQGS+AqI8o/uQ5ZVTj9VQa3CQxTRCPpkUsaWU6iaO12E2q/rey2FFWCR5m/3i50/av/7fe5nv4lEKhJOQ3Q+eaGwrXIAWWa2TeuXEdrAIh7huAV2fbJ5U/F6Cs9h2S7VjvEIsqKoiT8Ig1xczFkuErGdnqz311DP2/NMvWqC115oLFTa7+TTLRjpt144dNuOM2dYFUHpj1Rpb8fprtrz2cbvx5jvstMsuJIcjEIR2BAtZ/lGVAeSQZR+LvQzOuZRLR1Sg77LNW7tri/321RdsS8su11/SewMgcCjgHF/KNFMsfu/97xigM1aNKgao1T3JMKA+5Zfk4nWoj2+ee7FdO+kM7PgElinq1DCKVJ9qz7vPxRO0T/ev+NU/FqXP/vbBTbtruoNuq9jiULUPOtvNh4Mupiv5TRV7KECqXd47/Sse13f9E4jyfhcEc6XNsANh7McZSBNHM8sBV74Kw4moV4ySkOp5BnwHdaz0tSSBd0ugBLzeLZOTao9sRerr6x0j0YiK0V9MBw5CHorf/va33YKp+j7rMbDO8dkGeMEqhIkWnuWBGJH9if+kPj4d+tBfdbD5oWCqUjfKy9GxWMwR/fXugytlPHjhhRdcGBJlQrjyyivdMdURc+bbhB1aeFpAvbkXFdDLweGQB7GmBlaoK0U7YiBYw5J4XsIiYZpFYR+gJYt9VoSgplJLK6eerpnVHxcsjFlCSMg+MAw4U9BT5VbsJwiqO+yABteFuaC2ty5qg5c0WAJiCjygKOWO5XKX9ECJIzL0XQs219W6nknB2qEbjCjieypv3W9ttCfu+7UteuMVmzR5ml3xiRttxuSp2MDV2uL7HrZ1vbtt5t3XWtW0Zpu2d52tW/WmrXziJfv5v/4fu2z7drvwntusvqGatDS0TW5BpQSMZFCcMgwnLf0W6Ke2NaAN69fbw4/9FoYK1oW0PmUOOCILMY+MwS/uXLF2FA1X38XwSE4acQR5anyI2vqQa2t/r3XDik+PVttNE06HJSQoqwToXZnPQxfZqFWq+sDCd2l5392EgzcDax5m++CGD1Ndhw9ximRxiMNe46oAMBc4L/554b7rxIFydpOCARZF7Z1bei9JYBgSKAGvYQjpRK6iB4FURr7X2cF9dUa8LFQyiFY54MFxcOXj8d09BQ/7KDwePTtlring1NHVZa8+9ZTLcKD5pIwGF1xwgQNVsvO67bbb7NVXX3V5PmUjKO9ZMWfDLbrDDv4wX130e5gaWcb09qDK6UpbdR0AIqPEPlKRA4ZY8cA5gCwYJkBAHkYrm+VxxTGhsjSsDTiRxNEZjPNhTYl63ycAyVIZR8WoBZbdqERl/SW44S2k8pILyLAKlOdMetgUxsjDaKE9dGyG8ALN7yvubKmW8AIIBT07qbaNW+3F/7zX1q9Ybtd/5HK78mN3WWVNvQNKBijrj+ZsL6qp7rKc1TRV2GmjzrBJ2Midd/Yl9tR/3WfP/s9TlioL28Ufv8Hio2osKrsvMV2wW8KLWszdr0Lf1Uf2JVNJqyivsCsunmfzzp6L2g4QKAiljqvTxcLt9NpxA+RcjYXGlARaBuIR5SGkpGG7+jl98dpV9vCTv7NEMkUiaiSIilc1QiFxcK4Xrv6gbxwW0RPyBTZAbu4mDDx9QB8Hbesk2TlwSCdJl0vdPMEkUAJeJ9gNeT/d8cGU/zmwjcH2DTx+/Lc9tVBxmTn+3TkFenDwnJANoGK23X///U5dLUYpmUy6XJ+y8ZJB/TwSa19xxRX2/PPPo1p7yu644w4PQEnNpZWe4rcrVs0nYASa9i9UHoJIkl1BauUIqXgi0CIxPP4UVysC09Wys92eeeY1mzxxks2aOcXtT2f7aCMH0Cq3LVtbbMWy1TZ58jg746zpVlYesyQ2SQIXEeI+AQHwjuQL/50KlA2niIMdkgF/UGpN4UWOQwBR6Dv7C6hOpTrSGNRfMVwFR2UIEAERYZ5CxEIIwqold7TZcw89bm+te9MW3HKtXXz3HRYkNVcBL00nC4HFSsZUF7FEPA+zlDaGaLlU1hqnTrLrvvI5K/zkl7bw8YUWqC63y+681iLYejm0A4pRt/SroIuuaEuQNEUf1X7zyLF2/nRi8MH2BWC7ooDOgUym0nDJw9I7fz90KgCoZBQeLd4QyDWAV8DaerqtJlrm7O+kljVSCEW4HyHdu2LdYlcG/Qg6IOuBOXdRybDYeX8MxYEM/Bi0reO2U90H5B5Y3j34d+858IzSt5IEhiMB74k5nJqlOiUJHAMJFGA+cjJ0dqX48D4G1yk16UlAC7QAiQCGM6Jn4VYCdXkuKrL/d7/7XfvmN7/pYr399Kc/dd6wit2lTAd3EvdL9l8KwLt161bvjtGWioCabAn9jAnK96c4YClopxzsktLnyKMxA7MjzzwVGdMLJAmA5ZkDin21Yf1G++F//JhYY684YCSbHIUficC+CECtXLnKfvjD/7IVK1YyDsbgbGsALaz0+idE5czPmFJOBcp4ZQcJgrMAORkDqPQsARja2WVtb262rg27LNvRh/oNFSZIRABL8E0PRoEvFTFxeQBbmDqBnqxtXbrWljy32JovPsfOved2S4+rt73ZLktWM5fJFZiPR0hTlLWeRI8LKxEABPXyPU+YiRyNVk4YbZfcfpM1jBltL73wkm3fuJmLBi1NRP2EbMkEZOmyY77og4KIZjkvT51kNmO9iV5TSq9sot8ygL0cQDZTfGVJlZTtx2Se/TqWAFSnCQGSISF4op/PTNqljcom+aRuor/H+hN97t7JgUH+hn207RJOwzIGiUl2uJe7QZ7onbzcG20levsgJz1lnVTYeTFtRZnur3iCbPmgi9+F9wcEtrEDwO8J0stSNz4kEtAzplRKEjhuEnBKIf+hd9x6cepc2LfLEgDTYqi4XCtXrnTbd999t5199tlOhSgg9Y1vfAOAs8IF3xVYOxdgtmDBAnv88cdhpZ6xj370o05wOqb6st1ybvxFUJcDSMl2Sg4UusUKA6G4XMJHiuHkeY95oMwZvwOkUqmCdbR3kgi6z23nUaMFsKlSW4TqYiEv2N62TmKM9VsZ3o6d3TlCRhARDtZFBJWiLfnR9cX1JLD36udqkQJ5G/sAcd152/raWlv29EvW2d5hofKo1U8ZY3M/cpmNmj7R8uVCPEIR9B3AI7ZLVFgeVaOYstSODlvxzGKrDVfYBbdeb4XxTdYG0ElUwDoBsCr68DhksAJtUc6Lc46M2ftpJxiXsT+sG+BvNMzX/KuutAcevN+WvPCqjZ4xHtAWxYMui60XQV/phjCl2slwvpSoWL0zNvqCvIFdyBvbNgCnPC0d6UgVyZaru3+iq0hDD0snFhBVLn/khCNEuWcsEd1/0irJozioILowbWK7RAZ2o7KtiMRcH9TeoEX7dT1eynHpjMz5KsAq5lBAV2E4xNTlYdrotBuPPB11vROtcFcYqrhFtjSRkE9E6mjXUe/9ROtzqT8nrwROvF/AySvL49pzl7x1319r7+6Kr4rw1UHvrvHB72Gd5fnGg9gtdB/89U/VK4q10uKtoqTqe/fudYzWaDxeNU/EuCh5umy9tmzZ4vapbg3qNGU8WLx4sXPmkIfjrFmznEekDPNV8rAl/bAr1dQVyNOSxZLrFmRdMQMQErPCZTxUweLsgmUyGQIhYAJxvZSoOhYrBxTILguwBssjYBGPwY4RasECeO8CbsAgrl0HNZhLIQEMwkLkYXXUfCxK4mS8DGWIL+umKOlLty5dZk//8Be2fc0mSCZUgTkSHy8OW8+mFrv565+3ijkjOBPQxBkKNepwBwH1c4ARsVJtW3bZRlSd8y9dYBNnzrQ+WDQlTw5H49THKh5QE0jkrJLM2yPCVRZPIs9++k7IiFwihT0aYIiQBWLwTp8+zUaV19jmN9dY7+4OK5s6FrurPJH2hboYuwRGBwTAJKM8QDmL7EIykocOi4g5hCFTHml3NwV4OCEsuQv0whbGCFDb1r7XWlv32iYgKEpZqyS+mey8Qshn9JRJeDV6wDDDefKmDGJwD8yUQD0Qpe3BirsotmK4+QlgqUheAi+OriTEh4aSxjatLEqEfd1P6um++s8jd9IJ8CaF9MHFN1vzRnXw0dL3kgTevwRKwOv9y+6EOFMPMLEMrXv2uIVSHo6DFamVVFeL7okCvmSUmw+g3PBXmOIyOlj/S/uOjgQcsBqw8Ek92NnZ6TwaKyqI3cQxxeTStoCXQNTAInWk7L0U/V7pqJQDU2yKzpP6S/NLRXZjra2tqMaULxEwAkAoA0yVxWq9hXlgowJf7M0RRqKAHVUE77oaPAOb6sAxgJRkphJPR2EMxc2q5HpeaiEBEq9oo2jTRFshVHay99q1pxXQ1kN4BmAXBu/lrWlb9j/PW8uajdYcoE3igqWIK9XZm7KNzy21DdNOt3G1F1oq7BmXi7lx8mIFLsewvzJaYVvXrLdIOmDTZ55NUNRyCwNiKhhzGDDkwgyE1D88LWk72gf4A0SCcCwOcOLnBxhU+mZkTOO1dU129mkzbcnSxdYBoGuYNc4SBIYlyoSgy74iiYqJigDuFEnD/Y4dzwXgodEcwMmFQxBDo9hUqERVJ8t2oqfLnsMj9Qns8tbHAKSVcavDezjUm7SG+ga741N3M16YLtSjuRhZJFD9VsF29Rav6QDYvp4cuMFtd3ArRW+lUPQXE++TjhKCoUzm/wxGycp1v7zo7we280F+owv7ilTXGoEU3wP3D9zeV7m0UZLAUZSA/1s5ik2WmvogJSDQlYK1UFqgmfwF/pWvfMXl0/PBlb/Q3nvvvS5noyLanyjgS4yXC1bkHnsDl5oPUoKn1rX8XIsatT9HpHKUh6LPgmm/5o1eMrRXcSpKjOz3bNpkGzdudF6NivGl/TpPdQXAFBNMAOzh3/6W6PT/hSqQYKYswFUVZXbm7LPtnt/78r42XcN6A5RIp6a0PmK0IqEqe23pOvv3H74AeOim/RTtwoyyiC9dvo1rEoATMOOtlpo3biI5Wy4to3nSzqyDwfrX//Nd27N3o2UwiK9MBqxhV8rG7DUbzfFKbNBqAXAKQBoDEaQAV6//4jH7t1d+ae0AFBUFBdXiXAELNzZWZ2c0TrbMunYbUdFgwbZ+C7y2BXUfgEixxcRGoV6LAtDygLxAa78DZb3b26ysdi/xuWhTlu0VlWRqABTBisUAcJOjdbaKutsWrzAbW2Pboxmrh3wJcT9EYIl1SYhpQ4abW3c6xiqLy6dAjCQCFYcYAHPU0e/aC+8ByAHwCor2JROmMDOzpk+3XiKyvtix3YLbWmHhMjYVMNyHHVeOEB2Kor9+1xZ75JVnbVSknGCtaUvCqkmyhyuuDvdcoCpGv6L0X7HOqpH7tPGTbPyYZgYED8Y8iSh9E3PleBWmNoW+8Cn1YoS5F5SQRZ8WR6vsAa6Oe1df/f7yu5DMhyyu8SGPlg6UJOBLoAS8fEmcpJ+i72W0LJWQ2C491ATGROeraBHVS8FVZUB99dVX20UXXXSSjrbU7SOVgLMPYr6o+PZeivMmdkrslwCYFm99ai75YUh0nnI3/vKXv7RVq1bZF77wBbvqqqtcO2JTNb9UnNE3IET5HZ9++im3T29SDYJ17PbbevStuJ+5yZomJU8EAAd2cKEgkumUvUToivUbNjG321CZ6RwW9lANDBxpeDLyHvRxl84W30ObqNZkjN/dk7G33lpnP8M5INHXyaIqzAPwSkfsmtrTbGx8plUDNvJZAayQYuWjcszY8nVL7b/ffsuBLXVMhvDyhNS/clSD59dPt/OqplhdJm7P3vdLCz9IKAvYogTsWhIwpYdpGaxdlIj2/d191tfVZ7/91W8s/1DIykje3UPy7mwZqlLYsRgG/o3kTsz39Fimp9cee/Ahe+e5B6w1LlUl6ljuheyhZDuVov99ZUHbWwGorasC7GHzht1cNgW7Rb9Ckj197ZMzAzG5MnhPFlBJVlRUWQgW68IL52GfN9fSO1fY4od+5dSV9dWVVlFXYzEAcaGfTATYYb26bKmtXbYSVacYMJ4jRNPff6/YHKrIXCCMDZ28JvWP+1+FvOsjcZtP2IvP3vpRmzyuWbeHOaf7NFRDx36/GMG8gCvzLYdXqCJxCDgrfREQ1HUgRzYEZrLz/lSKJ3rtdQwZe9yeBqBxCIip8M4xb2D+3HYHSm8lCQwqgRLwGlQsJ89O35jZB1iOeQBo+QBMI5Hq6GMYTi9cuNB5rf3whz90IE3nlMqpJQGxWyq69wJTUinKY1G5PGXvJdClOrL7UlHGAxUBqjfeeMMFUT333HPtnnvusXLOFdsqFs3NO86VMbrsvT7ykY9YW2eH9WB4XoCxkoveRRddbhMmjucay9QBZ8OkKPTKy6e+ZAh+miR0RCDYaddedb596pM3AhLwjMOqPih3Q1Rkr76y3v773vvwXMRkHuP3YIg0OCyUQVR7IfIAhqyLEBNJmzlrgt1461W2a9dGwkBUAtrKSMlDrPfuqL2xpd8mYWw/EtCi/Ijb8t22O8o4MHC/Ol5HImes0vhpZAAJMl1XiptyQNKlU862vtXbLdXSa/HR5dZSjT0bcSKyLM4Z2okwTFzhLASoKpDSiJSEVo2XYy/BXd9uxKuQBboWm7XqPGmJegvW3g94AgDuACg9v2kJKY/aAHFcE/kLSmq5FwRQKZQDACaPtcozZ8CsCWDyx1U8ajtQ425t227rN663NwHEW3Zstx4cDwRwmhrr7bTJU+x8mMbWrg771QPIDceFj14433a99bYl93RaAAN7lRyG+jniirUD6hC4EDD3yB06zBt1QdQhwEsOsBWQQwLyaMe4ayOAMtix227kGtMEyBCqY5dkY3Acih53+iM1ifo5lq20FLLbFNtpmzJbbVJgpJ0WaXYsZ2856nWcLGJyRuDeK78nguIFcOZVwKiuwDNVf75I1Rtm3hnzUCplWQeWSkkCh5NACXgdTkIn2XG3oOphUFwE1X3tE/hSEEx5qi1btsxFHz/Jhlbq7lGQgECSD5S0eIvRUrDUBx54wH73u9/ZxIkTXUgIbYvJkpG95k8LNoQ/+MEPnO3W5z//eVdPDh1l5dgwUVTX/xR4u/DCC+3MM890Xo3BAkwMbEhleZUDTwJZB6zqgDJBDII5AMDEtOUJZzHWLrnodIAXHnzo1ZQ2SAFGu9thVQAV8ogUiybr7yAveQt6UEWG6yGbTMiGb//d/+Yy/YSIKLOyihoXHX7nis328vcfsf5X1wFglJaHM2vjds4VF9j5X7jN6ibWAbjAHoxZEe2lbAuzAEdTqEHJ7fPo935kfcFtdvldt1p07kTLY4ieB7QgSgsoKTegC/rMXv/1I5Z4abFd/4m7LD5rkrWNZsGmbnVv3KL9AD7WaQWFXYb91bZH7rNLJl1uV46OWxofhSQAMwdrJq5F1m9pNvqqorY5n7TNHQBiGdgDCTZu3my/XPKyLV73tq3euR2TKliuunqrr6q0XuS9acc2e2XrZnti+RLbC4OJF4T9wW132aXTz7QHyJe5N7vXagCku/sIR4Gcx06banPOnGMVtN4hGaMqDMAQDV0AUlCPid5ue3XRQivg3GBNDRaYMd1yhPuwHGwl9nZEG3NNaDxFHenQTR7LI9wjzX3NM/2BEIBiXdW2zv7rrfttXmyWfXH2JywAQ5jBs9TKNN84QXiLeeAKQE1uBB4o9hxHBCH1Xbk+NT/lyckXr37pvSSBISRQAl5DCOZk2q0F1C/aFjvxK1RCUi3qQfPFL37RqYUUCkCL4T/+4z+aiz6O59lgyY39tkqfH04JiNHSPBEAkl3QnDlz7LzzzjPF7ZIaUQFTxW5pjojdUmwuGdM/99xz9pnPfMauvfZad76ks29RYltqb6kvpbKMEQw1jkcdkbO4RsziACody+DVJ/ZLKpuAFjKBJ+yJ5KWXLVTxiaUQbBREGiElUHnRR3nnhbFxCmJ439OvuS5WgUeXMEFBwUNh3GBTcthuZQvVqNowvqdabc2HFniZAABAAElEQVRo1HJiwfhNqA6gpg7GaNTHo7ay7xFbR+7EsSOb7JaPX2ejrptrZWeOYjGGbcLexzXNEq2eykMwggoxgNF886Rme/aVpdad7LcxAJw8DJ2WXmg+C2KHJmakEGF5htXpzsJxVTP2ukqrZV8YmUQBZwGAIV4GAJW0tba0OPD6ma982qbOm8m5aYBcNU3KBJ9hMI4MtlgtmYT9+NnH7P6Fj6PWjQNkMy6Y7UvPPWPlZBb49DkX2cyzzrTmseMtWllGCArCZpDT8RdPPGIria5v8TIX8X7BxfOtkcTbCy6/wtLE8WpoqLc0tmM5PDMLvf2W7uxyrJ3AbgFA6XAE/Riq6P7lM9i79accK6k4Yg29fdaWAFnKpZH/JxIMUV9kDxdEx/jOzs323NIXbNE7b3PbemxKy0ibeeEMVM+aWwAveY0yZwc+X/ePRvNwf9E8ccBy/67SVkkCQ0qgBLyGFM3Jc8Bf/PSAkCfaE0884diJT37yk0599A//8A9OtagUMAJhX/va12zRokWOATvwoXKsxzzgYeUMWPUY01/NbolheeSv0GPdhVL7TgKaMz7zpTASmhPNzc22ZMkSN4c+9rGP2XXXAUhQQypP449+9CPnwfilL33JqRIVt0vMlhgpfao9qb2juB9qDgrcZQEHGQE8AR90cDE89hQ8NQAoEQ+iVV2cEhE6AWAwBlrlmQBBjkcAGxHYEgWJEvPgYlEBrtgNGmGZO2CiFL/QVAEgpmsI5Om8NIt/HrsnRZwPWjkhGCI2atpE29DYYFkAVvP0qTbpqkstMA37sSxG/PRZaYYEGNOwOeKWpGXK4AVYhXH/pJnT7VEYvJWrl9mYq+dYHi/FbBqABdCIYfQvLVqA1EJ56mQJIZEGlAghCozKkigL8FRUeDmVtG/ZYZu3bLLakY02ekKzxcrKuSZRuQC+IQCoQ12cHWGwVaggFZIhi9G8ZC6bsxkYzH+uaaRNm3m6NY8ZD9Atc0E/wVWkF8qgPl5jfXtxBhg1hutnbMe2nbZn504b0+ypHzPYOmXLAIOMoYKxbn97ve3c8I4R+ZVBaGlArodFXlRD1RsYozyx3MOWVmtr2Q02BvyichxYDrhlAw98gNuacWHmQEdLpy1+8TVr6WqxCQDoyoSyImw1G0U0/wI6YuaOJCD21MnhgD6eCCM5oEOlLyeZBErA6yS7YUN11wdfWnAee+wxu/766x3IUn15ocm+S8Dr8ssvt0svvdR+8pOf2Pz58w9p63UsQJn/HHcQCxVRgAe+pzJST4FePPCORXEOB8imVLSmeN6KmjN6CThNmDDBgS+FgdA+5WIUgNq+fbt9//vftx6MwP/8z//c5QQV6PKL2vIN8RU/ShHqC2JL2B8l/EFeajHFpiqqeGSfJMaLHD00wacrKKNALEEW7kKApNi5Ltrpc+t2APuZIB6BURBXHhVcnlCi6VQndfpl20xbUvEIIGCLRXLnEPY3WItxgHlEfXkdZlGBRdhQjLA8jFMOcJWAZcOE3bppO8s1GLIlUGdWKvyBGC/adIbgAkL0LQwDIkvsphmTbPrcOfb8ay/ZeRsutobZp9Nu1DFzGoogpgCkvASDBETNA75ATgRRRcVLG+6PjBj2UISwWL5yqb2zZ4ctuPkqq0JFl8WpIIesAozBxSkDYElCCvEgD8Ow7K+Qaxp2KsC+uRjMR7ArCnOfpOrtI5K9AqHKOeGZl1+0+5941OIwmnfecBMAo8Pue/IJW/TcIpv1sWZriFVZb7qfSPV4tIoBBdQ21TfZ6FGwhAkcGaTC5Z/kMlTRL5XuWCfM3aZEt6UYk1UShqS6ytLd3XgFyH7MN0AfqpUPbr/6y93n3matF2/buopqu2jaxdbX8qKdWzvHrmmcbz3hLgvtZtDcNj2rlFFhf2H/wK/7D5S2ShJ4TxIoAa/3JK4Tu7JUR1IL7d692y677LJ9nVUC7TVr1rBY4anDQ/pzn/ucfepTn7KHHnrIPvvZz+5jLPwTtGiKsZCx9aZNm/bZ7/jHj+yTRUnRyPHy2rkz4R7uLcRbWrYSw26nzjnEk/59XljjkS3T5MmTnWrNB6nvs7mT8jR/zPqUQb0Wat8uS0mrVTR/5OHomCyOt7W1OS9G5We8+eab7dZbb3Ugy7FJtKNAq7pbWeyHPLst1iv2s4y7BTkEWIrCzBQAR9JfFQAP2lIgUNljie2Uqkp9EmAJYo81Zkyt3XjDZajET3OAKBhM4rkH0IN4CKIrnDipgdRF12A8T+DPHGq+UD+LqZgmQF5B8ykJu8XqSMe0wAYw2C/DUDwLkMoLvEDEJLHhSQC4SKwDMKJhDNelzksAQGtkOwYIEeLQHwVugHwGAU8F5BOtr7QLrllgq9e+ZY8+8rDdXlNmVZMnWQHVY8GFcODatIWJFqEc6DcyUk5FxRELAUIZDH0O2uYdm+3lN5dYzdhGO/PiuRYm8n0OJ4QITFFeTBF1JB/JRl8DnCuwpXujtb8fRq2c/oSI2RV0EegJcAur19bTaYue+h/73TMLbWRtrV19w3U2f9586+jrsndgwJa++rqtOv0sGzl3HgIC5GHQhiUX/QzZeWfhNLHgWqsBoCqZeFRAmmsdqoS5f28ChP/6J//XWmgvSOiK2dj3LSFumOHVKRs6ZoNrx+FjRHq8CqP0CgIcMarJLm2ab3WxTfb8nlesAlXsjNNmWHehw2J70ElrDuD44FhYJ3FO1dwQ0iyVkgSOUAIl4HWEAjzRTtcCKNAkNZJfZLOj/Vo4tPAJiI0fP94ZU0sdqYf5wUW2PzKm/va3v+3UJAIvR6/QNxbjOYFr7ZLQF+zhJx6y55/4iVPTiJk62kV9F6BQLLNTOZSG5KD7KuClbT+vooCQ9gcB5ZK/XvreDWuxCJW05ovAulgwz34L9DKg6DwVgQT/JaREM9xTLbuadR6GcXZgTo0lQ3rAEItZXl6NqASDoV5rntBoX/zyPZwdAdCJ1erlBRPE3BWImjat2b72R78P+wNwSnazDw8zUROAo6ySaYspUyh3dkWiYrJoo0ACaIEM6kVJ2yMAlkbNVoAdKqsgCCpMUj/bAUW+h5XSDBQ+8EOyFAAhaV2fIxGYrEnnnG7zr7vSFj76W6tEZXn1xz9qVY11qDSxa1K0U0Arl4DBUj8AUBBwYcItGOEVQK62ac0qe/jRR20voS5uvft2Gz/rNEy6YCFJ5xNQvDLGAtwqCkzcMMdALQV5gNK8mMUoFxIzliPnophFCTtP292oFtevXmujaxrtZpxpZp51hht3c3WTXTH3YvvvVT+2Nxa/ZpeceQ7t8DuE/SvHlivOvRtB+Ikzmk+zOu59uYCx5OquyMfBRYcoEdl4de7lGaKBkyKJMUxqbLIlMIUCKg5kIz8BOL3Ak06+bH7gRV1WeqUAscTisJFiNqP9fEeuOUJz5MlLiSkgoqQmfc9leF7quekQG/tgZD0Osjj4D3wEpQt+WCSwf3X+sIzoFB+H2AgBKbFVfhm4rYVPHmvbtm2zr339686QWovlwUVATTY/U6ZMcXn4Dj7+fr/rkSUz1Hw4YyM66y3flrO6ynqbPHKyTEWOyUNZD1LZKjU1Nb3fbn9ozhOgUj5GMZ/leCRKNv7Lt4vyByuW8C4SY48cOdIZ2Qt0DQbSB84ft2gVG9CCtX+J0hwTnBF4wNCdLfCexVn8+vMADkBPgdARCkUQjRJbCjCWg5UKESNLRu0CHzKil4dhJBDnm4CbgocKpLB4atHHXimI2jBHKAdvniWxFYMV4ouHIbShC+u7BwY9+zMPVCnvod9HVXR4TrvENPFdGRJFhJSNqrV5AK+9O/bYiy+8ZtuJ2XXjnbfZ5IlTYM8AIKQhigfjVklqo3iQGFtE7A/ye8r09Nu6tavs17+6z3a0t9oNeEaet+BiSDAAHzjF5ZhkwS9wPad+1yg0EPWlCGq90AZuD/XFLqpXyFTbAIhGotFfveAKAGWFTT99BrIsR/VIHk2i8Z85aapNxt6rfVeLdbW3W+PIEYAO7Ou4ZljAFDswqYaVH1NjlpeeJw/1YaiCXJQIm/Ml1zTbLr2SwItK8UObalbw7LgWPesAw7qRAuzqnru7AEXJXHt0y3VA4NlV0HcV9rn6eiuVkgSOQAIl4HUEwjsRTxW7NQIvp50Y0fpl8+bNbp8W3Xfeecf+7d/+zS2oVxNraeCi6dfXPv2lJ+NqeUL6aiT/+JF8ugebHmAYU7/1nzvssf+9y26+4Vr7+2/9PgskD79BQOCRXE/nCgyIAZRsTvUSAXAp36IC6dYTo8sFTC2yoweAJmTmAy+BLclPqkl/Lug+Daw/lFy1lOUdgvFWK0Ev2VpZoBrGpQIVD6ETCjWACI4Ha2kT1ZxU0Q5sYLMVqYTiYQWkDcX70uotwBbAfqsQ5Bjtu/AS7IsDMkxAR7QFJcfiquvrmj5gUS8UrsKFkQC0CBCxA5WdQIH4DLG/Ok8V9cY3ri1ySAu0mLMwoKSemFo33fNpq378aXv02adtxeqNds1lC+yC2edYU1ktBmNG6p1KS+ztscDmFtu7eb0tW7LYlq1dbTnUijffeatddtt1FqvCoB6mJQrAzAkA8YcT/92lXR/cCDyA4PXGdZfj3r4M/SogOwWglXqzqq4Wb9TzHEDW+QUYsTLdK0JXjG0awW/tRguSM7ISQ34dB2s4UInTJQFDCRTLPtJocw4Bbd1vUbUOVXCCoJFoUVZSW+7zlHb7vAPCMCdC8fGg+qK7HOTGRnlFZNPG+HkHiDJmvTheHFax6wd+K+4sfZQk8J4lUAJe71lkJ+4JWghlxyXA9C//8i+OsVKuveXLl9v/+l//yy2y3/ve9xyD9fnPf96xHkONxqmEWGylXjqaYMgtenr6wUzEca/X8hEFEFZzHfgMHoQsfId71g/V6UPsHw5IOMTpH5pDUv3onkr16ttmSTYhANnBYEqAyzekFxsjFbbPeA1fntgmAWe8JYstNgrkR0zmym39+i6cPrZi05QEzOD5p5ATgj/YLQmrURPApITXMDECXoAtqFLAEuwYKkFFlpe6zQEr6q9+sxX1qYAXOSc5OwjrpNAqeVGpgCW1R1e8F2OWGjRMh/QZQh0mb0PBLhE9wngqHKINPAn5jKGSC8PQaQwh+jJixBi79q7brAHHhOeeecGeX/iiLX/kBTutotHSAK4OgtA++eOHrBsqqKtzu0VqIjYVL8pzb7zcpl10toXKYxzh2mWCfFwL8Jjl4mLe3G+O66jXHhRUb/imDrkCQwUIzBMaoQ+GrQz1WYpI/PrdKoZfiHpx1H9pkpLLE7KMcBcEfbC5c862WrGGHMsA+MIEPpWsxe6IjZLvZxzQEaYfDnb4lyte9eCPAkyRAItws8SrItjsb3v30dvvvRdB7cBdR2HbwVAJS+UQfRaWdGpc3WDQdgGVcy8q7TTsqrsJ0hg4wMk4AGMupZDXqncz/G190hbTkHr6coiL6nCplCQwQAIl4DVAGCfzpg+OtJgqlYvYiWeffdY9wP/4j//YeTTqu0JN/O3f/q0DZWK19v11etDg/fa0e/iL7EGNvOsrj3I94Vm5Avp0XL4uoIo8Otkvu5vSM+xdgjuqO3RvpVYU++XUW8XWB95n1RHLpZe2Bdj08oHXcDokwCX9sX9LvXVR9xfPslSH/fsvf24PYKAuD0ZFBXeqPEATllcALUWVl4oROy48GVniHGDLktw6iApPqkgsr9wxKdyATdaLN16+QNR2wIDs2JVaJ5MnBAPHBf0cgAGsaLEN8hkRguJI3rEdAjiCGjB0dFhHHKCg0zo3R4M5wFkQ4OX+eODJGQH0VJXX2KU3XGKnX3CGbVv6Dq9VltrSiqNIzppio1x0+dH12E7Nn2UT50yzUadPtvioSgsQwiENUFLKH4FCec8pfEbe2RWxq4i2hLNQ5NFH9cGzXRMuCONJKQcVOTgoL2MBNleJwTWKMOOXnZlCpsXKSQ3EuAS+aNzKSVkkyWVgwMLEA4sCPsKyKfNE4e6VA2JU12/RgRRaHaqoL/rBCqcKwLqiaw1SVEd3wr8X725djRXbKJ7PDBpWkdG78259V23XwX171UXZuiI1h2HlkVoP+1qG+lqD0P5QkfES2M/ykocruzlRoJF7pCZ5KfWm8Ly+6t2xqsVvblfprSSBISRQAl5DCOZk2q2FUS8VfUZ5CMsDTYEuVZTCRR5q3/nOd5zqUB5qWlCPb9ED1n8d356cSld3iayLYEpASwu6WJLBij+XdMwxKZyn+jrPn2+DnefvE4wJu3hd2qMli8UeTHDe+WPt7tsvxPu2ndhUALtgFalc8GqUjQ0gwKObvD6FgkRCd0CI81n4tMSrTjrGqseiqAU3rP6wMMpAf9TIs3CgmKYfgutGikSH/eWwqoCRSuG3HsAKAC0K6AkBCrOKiE8eRNXOwLZm8RaUBRq9cmyHGA+cFLFBox79yMPUgtNYkGF5RlKLNgsAvBG1jTZiYoOdef1sy3YlLNnRgwoRj0qSYpfVEqi4EhZKaXjE6DpsIRUdjC9jFhASKpTaLwv4ynAdLK8IwsqYuL5UiFmoFTFhFYSPSGAI3iEgTP/Z5LdMWqKsRsAJAg5qX7LE8UDsjVwfUmpLnBbntHMfCKkGUCJ0BzZZUp9WBolxRgw02Yt1cw7uAezzbPE4/d0FmbtCXQWcTbu+YowOU5bIwB5pMAcVYZcUOtgEQnNG7vQXvowr7f/ntergL3t1H4ZXwjChCnLrirt0cS6xQ627oj4CoDO8gtz3ArIkhbd9ZebvWV0cMIxKO5NPYOuGnGhrWxT5xBTAhBMVQYUM4BlQVx9oS7koowwTU1XeGA1sqK5UlIq7XOmtJIGhJDDceT3U+aX9J4AEtBC6RZS/5PTpFwEuqYdkFC27rl27dplUjdpfKqemBKSGUvHBk69WGUoaA+urzuHqH9yOQIVmpBY/bYVZpK64Yp5dfNE5gC1YHlgjFTdtWR+9RXL/HNYe/R9Y1I4Agl9bhzUqBfCUd51CMriI6qz0MtpPAjnEiZEFRuiDF4svbFoaEJImWGoesKMUQeLXFEFffI2qYkXGp2fDBOpyOwVABYRUCoStECDzYBvvsrVCfR6vK7fKCQ2czXHqS9Y5/UY5R8FhfRbJRUbXFTR42tRHiEVdDJeAl7oqxkVKP10yBguYJUL8y8+/ZJ1d3ahr4fIATrJREouk+q5rNJRljO4LbQos0w2+AjhUjzYdOwNIEiDt7eiy7radBICd5Y6J8XMn6yR1arAy8BjVJDMxXlLJCkT7wFenqk+6y3qJVQyJYdQ/PjUygS/V8kbJJfWP9qUu9YJncPiQRVegMC4a0YbeisWTu2sbASnVEhPEqQhVoRG7wlFTz4GETVs6jFo2KY9UZhMgV5RWH/NBvKpuSgMgS7IUKBXrFWaw7vcAyBRrygQ44Mp+D0qfJQkcLIES8DpYIifhdxnNKwCmvM+cVyPqB79INSSDaIUQkMpxxowZ7uHxXhdQv73S58ktgYHAfDgjea/1D25TDJW3DOrdW1yD2COVV8TAMkABVGsCIIq9JZLEX3z9dnR9AYoDi8csaPHzYKS31ArAKNWNVENabgVgAjARjhnie5oLlBPQNIMleQ9Pvh4AV5LrynQsC+CB67A4Ly32ghsCYhGnhjsQfPi/LvfJIfW72APOZS/7pI5UoUueBAASrprbW3xzzXrXchd0J1Cf/XTNW/vZJzCj0GSjauttRvNEe2fHdltBPC71D4Ul7TNS1aeuXjpfQM/7tv+6DhYwHklU4St0XAb08mgcXUeMtLGVFiPZcwVgkvwDHH5Xjzln8OKAb3GEQ7GhYiXj+TiAllAOimfmusA1AEySob4KO+myDvfw3Q1j8EsesFeBdvOoXl0j+44wt2hAd9QVpyOUqJh33B8vVASsGxcXoOY/RXeVTugLnYhzPsSW2ydwqSr+y21QXc3KQ9KblapbKiUJHFoCJeB1aPmc8EdloyUGS8bzAmB6DSxOXYQtz1e/+lVnzzOUTdfAc0rbH24JDARTQy2SAyWg+sOpN/Cc/dtaprSUOZjithUGQbhEca48fAJYQlel4KZu0XO1vDfXV63IAwtNqj9aGwVvdFifikjvkmdj6+SM4GF7cxiQi+TTccE0OTxmYMYSLJSKCJ91TJa4ILEWtOF11wNtbKvX8jT0FnSvI9pXXMq9VVhNqxTPdX0TsBi4b7gIgnPEtAkYeCyKB1yr+F2fO2OWNdU1WntvD/0DNDHOUFChM6Tv3C9f5YLUH1w+5BUbpkJMfgkOWQh6CfDJ/o5PqUQ5fRIhV8qIj1bI9FKvnhN4lryHfruLHOZNORIVT1eeomLynJpV3QP8FMXnPt22AzOHaZDDYsfSoDqs2tw9UEs+oyYZaMT67s8Wta1U2QpdIucAxUjLy7PB78C+S3rzwv+6756zQ8CweDE+NIB3nawKpVKSwKASKAGvQcVycu3Ug76hoeGQnT4YkB2ycungh1oCYkX9MhCE+fsO/nz/oEvXcUsrn96ypetlYbkUnyuCGlCsgwtVgSW4syyiGrv2FYErljle/sLmVmkM4/nO6qcFULkJddQBFdXli9iJKO3L0FzKQ9kyRQEzCkkhI3kFRXVUhSpDGEWglcrcqQJ03lItYKCr6VJq36kIvebddx0brBwg06EqDXZicZ/iZ4l1k/R0XQ9AEeC0qsYaqvFGdfu8Y3qAa4SSnle8C+rs/XfZO6LvOqqX5KNPnSUrJmUWiGHfRk4lB1rlWHD0i3dFd029gcByqHs9sOuN1x+rhK79CpVxuKL7knQpoJQXU/IAxPOKKt01alipLMVAesyXc+EAcGv8/ONTLGlAqHugwAQ4AVQxPjVVZOI18LC7kP9GG5qygngDwZl/uPRZksDBEigBr4MlcpJ+f/+L40k64FK337MEBHIy2PspH6PivE2cONGFllAsLwVUHVgEHmQbqHmlCPflqKpVpJIRcDsAXAw88V3brEr7liwP1ARYcKXeUeiTHGquIEbNZLvZV8RQHVjUhl+0zUqoaJz65Kv2CEjopWjkAYV8AGgRK4FFF8PxNOwRwCrG+MUGxWCHIukCKXcwuA8SK0wMGStnvi+LzRd2WsqzyD+FaxDIKTDekJgxtc8l95WB3SruHOp3OHx5CQ4wJoEBLilVmdg4hoEXZMYB1TxG8y4vpva7f5LEgZ1xdmN+R4uHhC38ol36mkEmKQE99JOaA0EqyckhiCOFsMdRLbrnCnqL3jQNO5UndZNUzLpv8nVUn4DjSN5j68TqSf4DcPi7uuODIWWdRDpF4AO45p+ss7D2Q4hylaCmHBv2FY/102Gmi1N1ygtUV9svO1TN7HFnqR7b7nrSmaoULy45OQbSSdQ7VHovSeBQEigBr0NJp3SsJIEPmQQUEuKll16yn/70p/aFL3zBrrnmmiFHKLCgGHCPkt7mjjvucBHvBcIUiFYAY3hgYsBi51gUmAgM2lVCLIQy3ldbLj0Nn+8qbjEcsFdVYEM8QkbneQDCfeeLY9BYF2XDGCJkAmHbLSZ6g9AJ2a5+62ppsR3L37Z0R6+VE0ogu7fXOldvtoqxTVYxqgZbSAyvtZKioswAvBTuSXZiAiNOozSgK96VD9jhZHKwbIYCYweeuf+b4JQrAoos95B2liHv46uLl9jrb6y01r1tjoURmAgo6LBwwADROcCkN7fhHVOLYYdwADogOqlYsw5A5wk8G7Rpk5vtuqvm26TmEaAIKgJGBxmw69aRvKWCaXJlpiwFs5ZmuyfVbd28AmKm6FMUg7sI8Etj84CXB0QPdU0NXZ6K8ifQPYnjrSh7tjHlI/AQ9UQjCCUfTdUVrPNCP3hzkzvLEclS7GwRkKkp5lCMOZrUDQCQxuif/vDweoRENY35Llt8T517KIioBkulJAFPAiXgVZoJJQmcIhLQoqGE2OvXr7eXX37Zrr/+ejdyqaEFog4GCFIBtgBUfvzjH7u8jTNnznQ2hMMDXGqaZc63dRpExix1LF4eyHDvHpoapOaAXV51t1S6RY9DWm+llnJMFyElpKrTgunUZYRIyLR32ub1y23V6yts5+p3rHdbuxU6+7Fritnapctt887NFp861qZcNMemzzvD6ieOw86JBZZr5QBcuOkBDOA+tOjuu/6APh20ebB8Dv5+UPV3f9V1UMH5RUt9d18vqb4W2m/uf5BQCESdpz8Z5YIMlHtxp/zKfApeCMiqq/R+32fEJQ2XrGKwQ5yPjFxqolyvjRvZaGNGTLDJzWMBF8wHMW7CJcXxsnXkhSER9cFSGMJ3Em9tU+smW7T8BdvctgWAS0+5VhlGeNF8FI9BT4HqomQccOWDO8R5ukXoAxUDTWyZQkPUxWvsE9feaU3VDailBbVUPMs2yUQvvetT91Sg2t+3/wqEjIAtCwqE8gdCGb8HeZAKceWlruc+6SRNW92t/efxpVRKEjiEBErA6xDCKR06RhIoPqiOUeulZoeQgA+s5OWql/99YPWDQcJZZ51l55xzjj3++ON2G7HhFlxxhVMRDt9Jg5t9QPGXJ336L9XRy2MgDqg+1BfWPS12aU7R4qxwEQqdEic8RSTJ2AgLIFVj69ub7LlfP2Br3lxN+AU8AxvH2PSzZlv7+u3W39puk6dMsi6CMW3Zut1ef3uljX+ywW75+F02lQjvkcq4Z3zOU1I4SOyX7L3UbS3kWsYdeByqj+9rPwyKrM91ERCBtpx0WN07iQ0WJgn1nR/9hE2aNMH6yccaC9FH16n9F9N9FUNXRBLeAZqL0J6YQKJ78UIdR50E+rUnn1xkG9avtq4eBbH1xra/taO8BRAPKlgpeTnf3rzJHnvuOctVBq26ttxlUsCvEoaSFOAZGb4jAkczSgLFIrDDWFzRbrb1kaFeGgP5GKFEWtv2WrYzadfOv8oaq+s9YKSxF3Wt++3G9rNpHtPlNeu9exeJgz6VQFwgqwx9eBRQ6nJ6OprR66NkpleplCQwXAmUgNdwJVWqd1Ql4C1YLCywEx5Nf1SbLzV2CAn4wXOV3UBFnz7rpThFKorurf1jxoyxL33pS/bFL37Rfvqzn9mF8+ZZWRmR46k3ELgdDNhcI4d907X8JUtQZvjASyBIvVfMTH06pRzMhEv/o2+Ari2o5h6/9xe2ecNGm3nOXJt9wcU2dsx4tI6V9vRPHyQQacbOvvkGq5rcZO1te2zZquW2btHT9rNv/3+24LYb7dI7b7FQQzVIhIWXlz60dovs0ILv7L48cbnV35NJERew3+NTqOuq+xW970O9+4u4R/7JyN8DFvqexMYriq3dBRfMJQ7aXJdeSN6IcshzUuQSrm+CIg61FPtCG/qdlQXl9QczBHhIwwIJsHb3JWz1mjW2YdMKA9O5W+A8Q4vX5WPYRcycd32NlddBQ3ahrmCygjBuFVZnwVTchZc477zz7Kwzz2S+EVmfgB7xQhxwg90d80HPCbrJy1cBMlKBMcbnmncHA8TFzcCi9QG8w+5+v/TUi87KS5ZeOYCsO9t1Tid4MtVt9F8OrHpC5yB19OKGC/im9ZvQuTIGwxPWnT3Ai1RtqLh74G2W3ksSOKQESsDrkOIpHTyWEtCD0z08S4+sYylm17YPjDw2xFsqfOAk9ssHX/4iItWK9inX59lnn23KdiBbr8cee8zuvPNO16bOU1E7evnXcDv9N+8Ge9+8Nc8/Utzn76SiYyT87wdWO/ibwLrUi1oYZXyuiRSQsT5G9HniUPWu2WS/+g9UpC2tdsdnPmmzLrzA4rVNDqWROcesMmZ9GD0FsG+qqKm2ijH1NnL2RDtv6hRb+MBv7NHfPGgZFtmr7r4D98gqzuMC4EL1zhsnDAuLfVQpfwQLhAfYUqR5FanwVE+5F51DgjvqDh3mTQPRcPgnVkWqWnZhbkZ7nq+jupIEcUq1phhlwgMKLeHUjwoEKhstriuMIMwQwDYpJA9S+eblEtafIyVTqJzv5IiUowGxu0IYoodgC0WeKYF9RI36QOQwPRYO0kslywUL7jwaUlvehzsmh4EYdnU5kGKaqxNqFqBUbs3142zmyJkwqeSc5J9iiIVREUfoQshvmH7qXstD0UExN9/0XeMza7Ueawm0W3mhzPpgBjOSuwNHGgfwjY64JOucn0cw4ioVCFVFMdPkSiuDfCd3zUPkHUZ9qaC7ZfoudTNydemZCL5bCHggVsMWuKO6A3F8lEpJAoeVQAl4HVZEpQrHTALec++YNV9qeHgSEICSB2Nra6tt2rTJga2mpiYbP348f+gHHcP16U9/2p5DLfSjH/3I5s+fbzouQ3s/d6NYNB/IDe+quvl6ael6r0XLI6luOC0JZBDwkuF0CO/FMmicnp0d9sDPHrGdrb1296d+j6TUF4MIiFRPOphgDDYlAdAs9JIuqM9yEUIQREmSDIDpIY5Y7uLptmDal639B/faow88TiLs8Tb7ugWACZblChbtGACAdEOimTqye8jVWG2RHMbcOYzCUaEVUgBC7NYKALoUKswk9kxCJXVicViaDz9a/0chDs/jghUYAesi2q9DXViP6qscAGPWj4E6V4CpKueeZS0JSI6xHQGxhJwlfQY7MIBFOI6NHsl6OrLc0zowRNrKY0AfgE4WMBclP2Y+XU0kCbxAwSlBjN4DsGIu6Nlhbo16qwTj8gB1XoPMJZdoiPkg1CcTPpr0Xmxn2Q00tN5cp3XHO60/1GMF+lMD4IpkK6wsEwdMcU8BTvlICyl7umkHoFioAhuRxzNfbkH0y3KYCDMDgiS4Dgsy4XSbjZU5e7eadMyqs4Rp5Z7EaTeajRGEnvHgyUqYVetDeBn+sEhyNwSaFD4ul+vHfov5zL2qR73Y2Ivasj1hp43rs/p0r4U60zarqcaagxXYoDFfxKLFCF8L+s9hkxYMFenCw8irdLgkAUmgBLxK8+ADlYD+XpU6yz2ch7EMfaCdO+hiLrI1C4nAxXsDFQc1VPzqM0JHo63BrzC8vf71fZWjxifvxX//93+3tWvXmsJLyHPxrrvuss985jNWU1NjU6dOtVtuucV+8Ytf2H333ec8Iv129Kl7Omg2BJ+xGKprjh0pHnSY4/DQhJWYxVmG1CqeJ5pUUuWoFwMAyBcfWWjLX15ql195pZ234ApYnD4PAJHOh6D1eL/BuEB7SQUF6iCcOmCKqOdpXinYoabTJtg1N95sv970n7bowf+xCVOmWs20sQAEgBANaF4o/IISXXdk+oxMjFYBsMr0AgSEXAAiylcIjqB9MStK062HrQY4vPE5UQAKxM2IfhHLUwC15DNe1PcorF4+LjUasAPM88yiV235G6vsuuuutvPnTbc0alTFpwrRRxw07XdPLrK339xs/+9Xf89qGqQqxp6LcQRIIi6L9wLgUe55XmBT2B3Aj2OWhtFf3WKFYMgzDwKM3QFq5OhO1TH2qIgVUlG+xCyMUQ6AlwsiMypUAVrFdMUKeMwyJzIAxzz2a4UCLJ1kC4TKkxydu2yhMoAUMo0o/hjBX8M4DVQQRLoGcjCJ96eYsxz3N0HoCuA2daXeZDxKTyV8yPwO5ZLcGr7DFCpDZQDwF1MMs1TS5kRr7Zr6iXQqaKcB2NrCldYwotIubJ5t46vGAHy1bCqpE8CSbTGNIXojT8xSKUlgOBIoAa/hSOkUr3O0AYhz2OIhqb/neVwj3RPzgSUVUR8P8r1797pF6kingRa6urq6wwa7PdLrDPd8X1W4Z88e+/nPf25vvvmmA1rNzc32xBNPuJATY8eOtTsBYLW1tSzq19lvf/tbe/jhh51H5JQpU9xCJ+A2KOgabkfeRz3F2VLoL8Vp0sKuaO9hVvCOHa22/KVXYHRidumCy1kYSeBMzK8CCalzLKIBFkrlIszxnZCqnEUr2BMpzRBrszWh4gq2dtqksePsCoDb0w8/ZitfWmzzp93mQJUCcSrfpPOghHnSXI4ADAppgBEgI4JaS/kYqwFcGeZPCnUtqztqM+b44UDoPjloRB6AUZseANJBffFsIvWrkW2X6zTX2bB+o/3uiWdsDs4QgfzpAC/9uoAcUYGCoK1c9qY9/9xi+8wn77Ix4xutr5d4ZXizZgFmbhC0Gyz2TyBW7SOOwxb10vFyTp3nVX/XMFWpWKQaVOJx4BXehgQ61YUoMoyXihPai37DwCLYWB5T+6xAoqy9og7YJQFb7ak99k4n3qkh2LBIyvphL0PtYasCMI1sGGmdkV5rjyetB0aztdCJA0LSqsM1QDbYL36DlYC1HOpCQXexkEGAOBnNLb1rpwXbt9uF5G88/cJrLFMXsZZUi0Xq5wDI6iyQqbHeXb2cX2ENtTUOdOUcUCynLUlL98cNp/RWksAhJVACXocUz6l9UIBLJYEKQ0E3y8vLXcBN7fPZDm0Ptwz2TNKi4uW1G+zocFs+NvWkZtuyZYt97nOfs/b29iO+iNR5f/qnf+qM1Y8Wi3bEnaKBjRs32ltvvWW34rX4la98xS3Is2fPNqkXn332WbvpxhshBsIuz6fAlxivRx55xP7wD//QzQN5E/qZEXxW72j0a8g2hEawt1EibIEKgS4t5FB1tn7Jm5bq7rMLzpprDY2NTN4M6kUecwJAjoUBVhDcKZBjMc8DxHIsmDA+8ngL4OEXgikJopIKAwpmzJxlaxa9YutXrLLZey+zmuYmWCTUlIAUxwyhjosTd6pAewLp+Z404Sq2uNAb0bqoNUweaVWj61GZAU1CsDzOMHvIUXGAMYBaXPoaV40/TLgeV2SEA9CLO0ZdAEwOo6wA7YYJjVFgLGIqXTwrAcgQwVEhhQQJItEKmFvYMkByKgUDxzhjETwiCSmxz5ZLl+CVow8CT94fRe5iQ765UxzS8tg5QVkPiO0/Rd91yxSiQqBL4CeqoLl86lfvcZaAYdpJ8ZLjhIBXQOpZ3R/OFfOXhwVL5HrsycWP22MrF9qusi7rqcvZ3lCflXeE7NK6mXbzjTdYd1nauirztrvQgep5LwAubr1k4ow5+zGFiOgHFKcAcuaC6FYjlzDMZXfbLtTQ/TYOFfvkMXXWlmizSEvKRjdOstry8daxJ21tO3qtp3uX1U6Gn6utpl+AdoB9jrFJlEzGUilJ4LASKAGvw4ro1K2g4JZLly6173znOy72k9iPb3zjG87Gx6kpWGyOpOhsqRX0YD1Ri+yYtm7d6uJZHY0+Hg0AdzT6MbAN2XbJiP6cc891C7fUNaPI2yejegHP9o4Oq66udqzX7bff7gKwPvjgg7ZgwQKbDcOSBfAIcAmoCpAfe/DFnInI5ollj+u6yPIMKNGXtE2r11pdeaVdNO9ityiywrPQKnUQQA22SwBJwTPLAF0VsgOCtbIgXAjHZS0WggkJVbIvk7TaeDVxrSbYmzvesc5de61m6ggj2DoFxotVewRMjGOj2Ne3odVWP7rE3lq01DoB6YqYMO28GXbhDQus4fxJ2CABL7CKH84fLFrMvaL6sDIY8AecMXdxt/8hMYSIyaXwGcAKIr26NExVqDjzOaAowCuL6i8H+1VWhi0aqrus1KX85gS4UgSXzclDoVgUgkIZBcKo9ICg7BUTfegfp86OR1BV0k96CyilvzBpIEHXqsZbjvq1goo57OPUmgzg09hrlRfvoUAld8cxXmKidD8FvBQyK6g3zoU/dKrhbBq7vIqklY2KWbyq0nb37zLr7bL+vqCtzWy187Ltlqw02xxL2q9WPGZ1kSoXF0wqzCj3XCUdEvBCVcl8KIf5PKN2rJ0GKBsBoJ48caxFR9ZbLh61/q69FkZ9HIsR840bX1Y7wmqxRmvZvt16duywWJwo+6ivCzkyCWhuSWSlUpLAMCTg/8KHUbVU5VSTwO7du+3P/uzPHOtRX1/v7IAUUFNRzydNnvye1Ut66OovV/dMd9t6ourRfeIWjVtgo7sbtcYRFnkJnnHGGRAv3qJ0hM0d0ekCRwLP+hTQEhtXhp2MigCUGKzRo0fbGkINiO1shD1S3WnTpjlmTPZgDzzwgE1mHlRWVTlDe523efNm07wZCL7E2hzNkkfdFwLsBUhxk6FPZbFyGzd6rFWlQta1s8Uq2d/P/WqjH3kWUzFjERZ5qRODAI1AAtVSW8KqkkFLvLMHI2/UjuVYDcWRSSGF9go1l1isPtIKYbCd7O2zLmJ+bVq9wRYvW2z9qYRFYhHCUSAzmKXaJP14vcW2vYJ9XFu3Y9+yAIe3d++1vo3bbcRF023nKGVElDrvcPOdPvAPpOV+K2Hs1hqJPTZu3OmwVfuBkGyq1JLG5AqqvhAeg70Ehu3pht9JYCCPXi8slq14j5Pc4wyemDGpFwUzxfLJQIzfpLwwW1o77PWlb1kqvYek5eqHAOah753m8vKeNjR1JNdWS+kUDOp6wFCf61Y/NlMvr1hmiV2tpGnKERiVWjCAnbBVaza+7XnTwqbCB3I94GMUcMhWBruttnyPdSf7scfC0J19UdILlZeFbO55Z9vo2ePshV0rbffyHkvI9ZA5EMBbM8X4EkLHMFpPrXjFw42i0PQSe6ZeRvBIlCujVLUY6Z9e0WR3njbHbjnzQovAUKqL8opUHiv9ImJ5L4elFXqsvKbcanpD1t+zw/KJMqoAVgNVgESuL0a1VEoSGIYESsBrGEI6FavoL9U1q1fbG2+8QdygC+y73/2ufetb37KnnnrKsWACXlpch/MX/KDyc+uFe3N/0XpPyEFrHredGt+4cePse9/73lHrg8DJ8IOPHrXLHtCQxqWXb+PlH1S/lD9R+RxVpEJUUb2IwExfnwNkFcSSElDbwV/9Am1iw1Sksvybv/kb5xmp77rGsSgyzpaaSgFSlWswjsps/tnn22c+crtlexK2e1uLPfabB6xQDhABCMQASJUkmE4JdBGYsxxQ1bF5B+Atay//8kHLVoesO5q1dl6paNoaYIbqErA0MGK7+EOjN5uwzpa99psXHrOfPXq/JdIJVK8hNJv0A7AwIVBjl6RPsynWYHUBZEH/MtgsJQAau1ass4VvPGnPhlphWQQtinN+SMF490bV9NvSfGkaOd7uuvP3AV6wKtAqym+pIulmYVvKAR6Sya7OLvvxTx+2519+mZASnVQQAJH9XYUtW7mN7wJ+up/AHFS1AqNJ1x8CqQKQHnzoUXvgoS2WTAGcOdULC+EuNeSbAOBegFTbjAkE0ccAfk+rvbllEwbwhKsAiGztaLfv//M/W3UvxuvIX16OAoTJirTtiXRbYRwm8oAleRdqMUr0J2zTnq22Yfc79kb727ajZ6dTK0cwfi8DIE8f32zjx06wLubi8lfeBGzHbN6ss+2dbdutTx6OsIOpHvSrkFt1jQ1EDQFwIy5lMQj4EexxopAg6LZVk6Ggvj9iDQC6EWUY96fxdcSeP8AcqEyJ/QNYYXRfyHR5IDTYRz8SgPEu7Oh202e8GbknBdm4OZhWAl9DTpbSgX0SKAGvfaIobRwsgTiBMmUTIvXYqlWr3KcWgzjMiP5yf9+gy79QcV0+kf9SlOef7/3nd/tIPo8VGDmSPvn3UaBL4EuqogRR0QWqxHxpDjgbJkCOGK2HHnrIxATKJkzOAqqnOmIFdXzDhg2uOwINx2K8rk2RGMwfeVMqltaYilrrPq+T63mApWncGOtMJqyitsIqWYgjceayPPUAXXEW2wrsFcXKxGG0MsT0igO6KrD9yVeELV5RY7lWvOP6UZ9q/AoJQcMx2QKxvCpemAzRw3izVQeJRdVLyA1ARiNtlcurj/+9hK9Q/2L0LZhgbYY6YW1m8ZZi7dAlSJJuha/IwCJFUSXKNktqfwU2defqzW0AHhSfC2SRBUyl89hu0c8kNlxJgFQYj03JKp/upw4MIWBDKkEBEbXvbXtt5ujvLozLu7vWABjbNErUe8MAEfSjpy5uueZGC9US8qENW8jeHrxEo6hby60XG7scCdnb9nQgf7WqyPkwWrBOydGogFHrqd9iuNYyb1YuW2Vvb15v7f1dtrc6YYFRUYBOxDqs3zp6W/hDcL01rasldAj3sitrH593jc2ZMcd+tesB25DdYZXyeuTvhiByO23mDGtsqHNqTAE+LXZR5kAV44+gci3jhjRho9fcH7DpSe7jFhjSVAcgC7u9SIVlU6gwBWAJJxFt0xyXTRdqUJBZZ2+7BbujVo4xfyFSjjylxpS7xzBkRq1SObUlUAJep/b9H3L0emArN5+MqX/yk5/YV7/6VadOuu222+yiiy5yC9778WSDI9NTX++sQt7CMGQnPoQHfJBzogzNB9LqT1sbCy6AWmBLbFcHtl1RmC6Fk9B+qUp//etf22qYUDkcyMZL9XxmTCEn/uRP/sSpJwe2o7b1/WgVQQXZ02TRCfUDGCpY4M+dNMMmjD7N3qpabKNGj7KrCX1hTcR9KmdxR7VYAKC4eQfrkU9m7MX/fMA6N261Cz9+i1XOGmvpMnk6AgDAY3FsgQrdGNn3p23NwpfspaWvWN3IJvvsFZ+30y8409pYdCOAmH4W7jERUtKs3m0tj620vbs6bQxqp4DUm1yvPYMhdjRv199yu101b5z1s+3S+xxCFBobGi6gCaEtUKfGw2XETJtgY0ZNhWm+17GPvijBUDBghF4AF0axqWqur7G7P3ad3XLT2ZYAdEoN6Gy4YCe/888P2aKnnvNgAQ2oDbFVzqYLO6qayjq76YbLYXivt97kdo4BMWHLBJT8sg9E+x3Q75jtDVBHj21Za62APWtsspozZloXf6wVelM2AaZx/mc/bROCBEYl1lgMQNaH0rUt3mHr0u/Ylv6dgMqgdfV22sqVy231W2ussq7SLpg7x0ZNGWWVTVWAOMAk4GxL7y77xRvP2ur126wGFe/VMy60K86cayNi9XbdGZfY1lSrjY2PsDbbQ9iNkO16e7O1lcH06TnDMASJZGfXgBa0HkosDgPYiVo5Q4qiSWNOt0pU60FinglEhQjjH82mODVugQoChuAxiXcELfAScO3jE7kVItjSYSdmxPLKI68S7PJnS+nzUBIoAa9DSecUP1ZRWWl/93d/Z7NmzXLqxTNJ6/HZz37W6hsaHAPyXsXjP8KlJQrJr/wkKPsWm6PY16MJQt5Pt3R9sVF6qYwYMcJ5q77yyismYC3PuO0YECu8hAzsFUpCsb2WLFni7Lpkp/bJT37S1RMzJnAmUKZUQjfddJNdeeWVrl2xYL78juaYHfACEGgGZWTYzAJYjn1TqCVpY0aPsdU73rQ+nAUa68Y6tVYEY+usFl/Z+WiR7EtbImbWHoIJG1FmFQ0VFo5hWVWNrRYsUaAT+y8CYqYDCWvv6nQMoNRWYyc22w0TR2IDpBhTRooarKDYqJzbaUtbzJY+tNDqMNTXZfbk+mwXaqkJM2bYxffcbtVzJzoAUFz+nXze/aZfCKPC0D8P0OBnwj3CYJ4+74WB87x/OSwwxD0M4I0ZUDwvvkew28pji1QWjxGuBPDR2cfYFYE+ZmmM7+PsF5BytFvxp6c8iAJeUv1p11lzZsJinkM7PXyTQf+BMMK/l7q2K0Xgtbavx177/j/Y3u3vWHj0SJuLk8bTS5eQj2iHNVZV2ydvucPOHzfJggDeAGxenuvusS57eONj9uuFSt1E4Nc4XrOnT7Vp4yfZSNqoqq92hvFYUVlrmLyO6R32wnZY9+42AHXUuvBK3d6z3ba0rsYWcZZdNPVMmwhQwm3SNmPrNTYVth0bd0BzoVbUs8bpOOk3QXbfIfRHJX9chGUnCBg8N15h08Y22+wx1dgLjkCu3MNQpWU69sLekcZoFL+PyhEECUNW2HT1dLSgvk6S8YAQE4C0HCrpPKFKZE7naDVPOqX3kgSGlEAJeA0pmtIBqZ1k4/T1r3/dLaxaSLXIHp2iv0JhBlxjxQf50Wn4qLYi9dnKlSt5uEIrHGGRWkzG6BMmTGDtOj5j1uIphkp2WwJLKuqT8uUtXLjQ/uqv/somTpxoixYtcscExGTftRXvxv/4j/9wrKdCTmgM8oQU2FLRXFG7Uklqjmiu+ADPVTiKb4IJiUIa2yDSzpRXABG4FmRLqKrMJp0xw159+TV7/fXFdtMZU53qLV9esAz9I8MOXoyADQU1LY+QHDtnfeQvrGFhzmNs3Y9BfD5NQE/JBcanY+s227Jji9XAoNWOId0QizajZIHFOJv2sLHG8DtrDfW1Nvu2Ky2Ksf62l1daH0BEKstpZ82xeZ+5yeqnjKfHnMl8F+s2dBETTIgI1G5JIqnrG0s64AlgW1QzauwOcgL+0JvywrZIuAIAJfWnmEAFTJU3Yww1uagepRoKCRXIUxAAonpSNwqT5PHOLPDKM4481FkUYIRZvlNxBpGBeqv2VXRtqTLFdOveai7pM4RdVIrzC3g35oiR5Qr7mRCoark3lRXYfynaPnVgt5LIXDk2M8Tt6saLUU4HZaj2Zk2b6QC08F6W4KdVfWGrJVp/Px1dsmS5PbJ0kdnIqF10yTyzjj5b/Mpym7b6VZsmlg2GSv+kCiYAvVUAiM+Zfjr0JddRoFz1h/4rTVAvtRQoN0qfx+GNeHr9KMvEm2xTstvidaNhD8PWyTj2lsHm0odckpHLiD4qD1gM6/GkzADuQuE65ktMMwLweiBI9YRQei9JYHAJlIDX4HIp7R0gAame9DrS4i85rFnOviTgDFJ5JrrH+5G2fvTP16KicAp/8Ad/4NRw/kKjK+376794WdX1y8HHtF/HxRr9xV/8hVPb+sDEP+eD+BTw84v6KAN5FXksiskUYJIzhUKIyHZLAOuSSy5xcdzuv/9+lzLonnvucepnnSdbP7FjrvDpj1uATuM9Zt6bABjFLpe9lICEAwQAnRAL/9jzZlrtYyPshSf+x6664iNWNWY0C2jKMT5VMB1yeHMgGoPpIOrFIOelSSGTArgIpFS3w6CxcCdRCy5ds9y2Zlvt2osvsYrRtQQbFdPFQoxaTzZVNQCHchbuEMxT+WWTbVZzpaW+l7G1jz9jzeMn2AVfusNGLjgD+y5Ul8x55R48XNGfIrQIcaPQsAJGLOowegK2MtoPFBKAhwSsEfZooQ4zAntGCSORzXRbKrEbxIKKkTHG0FeGARey26ssp9VMO04TWwAJ7YAwwiWgNisovATYTfG1goDPMOEewsyBIM4CQCZAFvZw9KEguzXEkwTsdWHkntfzQH+ECdxxbgJkBj4BhQIUASD9zqCK/vJdHqUB+h3j3kShAjMEM9UrRfqmvnjW3o6k7VKcIFDqEdqBEB8AmhgANwbk3F2GLHNbbeFrz9jvXnzJzhoz0a699EqbOmaStVXstWB9ylZu7bLXWrts/gS8DaE2+8lSkK0s2E6i4v/F+TfZlMbJgLByotSXOQN7qRwlX8lWP4cKZDQGdW52yzZLA7RBn7B2eaunjxbsIFRHB6psoJVU1ahJ21sTluhJWkPVNIsFJyO3SkAXf8TglBGh1wyaV6mUJHBoCZSA16HlUzp6lCXgQJbWOP7tj+ElpcqJWcTiKLK7Xkej9OGNdTyKgJDWfX2KpRKQ9tkqAabp06fbX/7lXzoHCjFZUi82oFJW4NSXXnzRfvaznzmbvy9/+csOoIkx89lPH3BpXGrf36/vA4/p+9EqAl4RAaAibJcaTqCoGmbq3AUXWcu6d+zFR5+waz7+CQuOpDbG1EFyNKKbg/iBRZJtGGAgAigSQEnBMhWwBYsp12KswjasXGbPvv681Y8ZaTMvPIcQWTgKAPgU5DPHGAW+wrA1QV4h2kwLtIyrs9jYOlevjLQ2NRicZ7ExE8uGYIY9dKkO1U/FOwiIwqIIFzrbMfZ5vx7GIwCKJ14/saYChE8Y2VTJfcVjkcuR7tpp1+imi2JfURm2MWMaORtDe9SYAs1R7JnCqFuJsQHISnCvJE3NEwzIkUkYsCcM5ReB3DwgcE9/t7V3dtjEhlE2DkcEgaugGE4YJMnFBWXVSfyhkQPcB6EaNRoHJi9zzgAAQABJREFUxmHXIgAyMVPAYICi2DdtA7Ww24pn8SYkIGkUZ4AQtmOb8XBc9sZym4na+I4rb7YpY0+jLt7G1XXWOeY8e3Ld04T52GnzMdSPw2T2wdeFAZGV9GVSdITNLp9q1YVaI2qYY+rccJjveuKIO9RGBRRhqLacMCgJa9uwnQO1FmkuB7SicgUghkiSniVIa3tXi7V2pawsOsZqRk6yUAUBegGa+RBAmJko1S2NlkpJAoeVQAl4HVZEpQrHQgIEVXAPeKkt+KP5hCwCF2KDvva1rzm12pF2Uu0pwbTYruNZ1A8Vn8UUONKiKPZKQXLlxelnLdiBrdc//dM/WWdnp/31X/+1U0uKRfG9HHWeX/ztYwW2/OvoM8RiLR0YJk4AIbeHGcUCzqJ+/mWXWJoE2a888bRVNtbZueNvcZ5xWVSAYcBKAUal0I+6i0jz1qecf6Sbwf4pAYhSOqGtm9bbg/f9DMCStRtuv81GoG5Xfh6N2anstLryH2JpX1G4AtcuORLd+svxHKBCaXEcetkvpn3nDLUhYAEccQt5UCpF90thuHzK8LuAIXdAjFihHJUXLBx9vvrqy2za9Ek2Y9p0jgOiUEMmub6IsiCA9MabrrXzzz+LJNljYb5gxWg1ne31VIHQgCEcCwKoIt2BAHLBZk5xvNwfSMWOut8sIG3bjm32+pLX7YrzL7aR02a5kBbgXq45YJDuN839UAeK+7UrQmBXzNUJqooHaKbMxpESqAawVcH1yhhXhNyREEjuj7JG2LgLyiZZ9Tk3W31jvU0dPdUJXfO3gNH7ZSNmkUfxbaveRlT6rqTFGitc2woD0YT3ajUXrOKaVdzXKPZvun9Kvk24N5fBUQBXNm55RdGvJtfj2JHW0dpjG/bssL1dfYA48nCSSqiju2CtHVuspavXJo8700bVj4FS5D5wo50tnuYUYE8MWqmUJDAcCZSA13CkdIrW0QIq9ZRc2f2ih5726SHmL7T+sffyyaPKPai9h/WAB/Z7aeQDqKsI7n/0R3901K4kmR2J3I6kI7qu7qmi8YvJUxgIFQEwgUGpQqUm9FWFOvbkk0/ay8SF+sQnPmE33HCDU10d6b1Xu0dUpC9icXaG4dpmcRfY0SKYxXgpPqLBrvjozbZ9x3Z74IlHbBMsz1VXXIFn4DiAGY88GBulookqbRChJRRYUzMwiK3SymXL7JGHH7Ld7R320Xs+ZbMvuoAL6ahAhKCPB4TEmTjGhD0qHHUAQ+yPNiVPGbyHhQzp6/spwCx+I8AD7plXBITkQQfLQt/zpMIRAlSsqRlTp9l0DPnzjD8tdSD3Nxol7Chqvhz39YyZ2DvhpZxBlZYjQXQeBjDPtuzB2Ci2rw9BLbdTwzig6LeqFEs9fQnbvHMHIRW6HaaS0b6GPXjx+85RNuXVqT+5QjgMxFF3VvCSWtHxbPKkdFdVBHyYMTwTp9c222nnjnRNy9ZK45KyMANjeUbTJMtfcJWTd32syvVb5xNn1cpgzSqQVTWvcrwWQ8hLf+FFAKkhsXncH6z5hBa5WdxJGLKKESMt2hiyNau225MrXrZe1KBzRo+3jYTCWLppLd6sKbuzkThiNXjL0j76ZvdbVhOuE+/3RrvRld5OJQmUgNepdLffx1j7iFou+55XX33VsR3yZlNEc1aW99Eap/BQ1GNezyr9pe4V/7P49QT5EFA5mjG8jvewfGZLrJaM45V7UyBM6kQHpgVgtLjyEnBQjk593nzzzXb33Xc7I3ulBxqoSjxuYxLjxbQJ0L+QgAgdycJmyJYqi5FTbES1XfnJW7H5ydmLTz1ju9dssPnnzbPJU6dYBfY+Uf7FsSlK9CZsz9ubbPO27bb2nbW2YsVrSt1od93zabv0WhZ1qfpEySrSOUVJt8WwyT7xgF+A9nlVHHjQ4q4d/j538nt604jEydCOBlr8BmygTUJk0HfiHFgUFWgO0NADKAiTk9LVx5he0elD1BFwS+bw4uyXnZKgHGQNeRsVzFUqRUWuL6Diw3CLI7qWoAuxxxw80jev6DxBMvlaBjCYDwHWhT1QhrpK+6GbV7N42uAfnAfs414JRKEahY2SmjOLVXwaeYtJwgKRG8kx4oBpznlZFbRffwgyToFghHsOXreKO5eJE5KCgGlKfS2FqSZCGCCnkQTlgurAOtdj3CGArEbLn49ut95yQo6onpMwirvJXvBGx07bke3Btq/J5Zd8DU/GnkTWprfvstNJJxVFtay4ZAJwsv/yfFC9+zT4oEt7SxLYL4ES8Novi9LWQRLQwvvNb37T7r33Xuvq6nLMyIvY+/zgBz/AXgS6/QiK+IKToQiEfJiKQkhcfPHFDnTNmTMHsojFp8h4CGSJCVPRpwCZwkMollsVaYG0APry0OcHoVIcUvaAC9C/1m238DuvPsaiaBEs1Y69G3/2NLt7xP9jM554zZa/+Ko99bvHCXJaQcLjStuxbRsBOXtt4YMPW3cuZa2wN0lUbVPOmmkLbr7WpsyawcIuhgmgoRQ7otQ0Z/kvr0CxXUpd5ICOZFH8LrkJxCq9j8CBuic4896L5p2uqRYUgoEucN0wi3yIoKzaD1ZhpHBgAIZ8TPko2QsCygM6xJIlsVnT9FXsrDyG8DruvO9oNo+jgdLdSIWax/i8EKi0bJp2uJzLaQlI06hcF7iaihwKkrBkUrHKO1G2brKpEhAVKRgs2gxIOu7C7qwD3zKAq75CL+NJIe8Ecc5wFiCvItCQsFiac+KzxLQz19Rn/gkYZVGHZgCQsgsNA4Il92SGcwBcEY71ci/SzNcUADJLtPp+gC8hT5ESKlkAKGfRJ08tK9WvQKd3d727k6FdSVu+pLthBHfS5jrqbyQsSJTzd8QD1oYcd+FN2wHQrWduxBi08LXut2fjxTVcKwjj/2fvPcDkuqp831W5Ore6lXO0JNuSbdmyhRMOWDbGNgaMwTBjhvDeZS5zmTcJeDPfN998d/hmYOYOPIZhhguYjC8zYAwGZ5xzlLNyzupWB3Wqrvh+/3XqSK12y5JsBYezpao6dc4+O6y9++x//dfaa0UpksBrSEAzJUqRBEaUwNp16+ymm27yHW4CYGK+brvtNnvwwQft2o98xBeUcCEesYDXODl0MRp6/Bq3RJfeoAQ0VgJXchEi1iscu5AJ0/eh55R3zBjcKFSTrknVrM/jCrq8PSxurHpaLrUrT0nsJOsvCyLKLGnhaOeYGRPtoqsvsxNPOck2r1wDu4VTzW2EesFJZwte7UugkdFjJ9j86WfYmHmTbRZgrbG1xcsTLyOgwpqsonyR9Q1+1BenIsWBTOoiE1jXFb6niLf5IogoDkASONCijNT8uFroQT4oyHslcKHDgEvSAp9ip2X77q32Xzf9xh5/uhVg1Q0hhwsFMUBej0sDgIRMnMlSD0L3Dxxrh6Tkhf2XjzlgpFTI2NPLVhFrUSpoNitgF6Yg1dBlDjD3a6w3DcCFii1HX8vIWd7akwA/qSHlWV8jIpcT3LzfrfqieZPHt1gn4XdyGKTn8JOWrynbQKoflgnfWMS8FBcpEAfXxR1ilQSagDOIIfRjxk4Ixzfa6EAHhT5pD+XDZA4IzJE5Tzgp7TOEz4WslGqRbHSriDyztEPcnwM8yYcaymxmKLA7tICMegBmfcTuFNptQ1aKDjAAw5Wnkj6AqqoX4NU/Jd2vQOwCc1GKJHAoEoiA16FI6R2YRw9JqaHkckDhYUTpP/DAAy4JBU0Wzf+6kj9Fgzs9fArMhYx4g1+KwYPsdZUb3XRIEtC4Dk/OerFYDgVTYb7wnL77Yj3C/cPLO/rf6QMLnU8bFket8+qVXrJlD6AOIECLNYtzogk3Ewtm2sT50yzfoyDS3bgE6A1AWn3WahsbrL4Z7/y4NSiwk05Lvtgq31FI2ZqV+q4jX1o5ofW+eioAfjRH8hGz5DJTE4WWdLOn4P7w22t9Ku6fd8ZvVgO0u9Fs/PgWwGXR7nnoTqt7AnBSxJkonvItJjcG6mxwWwCCOFaVnPQmqBg5hxAbFidCI9fKblPVSHtTNnnieH5gERKHC2xc5BrlDRlrlSGOKIU9VDrJLlHAlkBrW3c7YYFQSQusuVQESjkcci/fPKklKdg6KQDz1sPYACSJzXgfZgxta9vwbI/LCdSeMkEoJMSsMbYMqECl8G3QO7F6yMPP+UnvYSKfpQ0ZG8ygOu7bjT0WcRv5DofmgEusHLiSFgpwsauV83rqqAThN0Ex9VA+zOQeo19qUNqXx9K/wEDnhQY5jxtb2iUWMkhhGSohgMpBm8Lr0WckgZEkEAGvkaQSnfPFY+rUqSZ11COPPGLX4+dJzkQVFkZBs5XCxflwxaVHXPAgDx5XWiijdPwkEIKrkVrwesd4pLKO1DnNnQqLfohr5ARUDMa+FBxrAdcrjwpLrhES2EOla+oI/1NnjWLudE6e1FnExWQlWFiLLLLauehlC8twTbNT1lMOtqqVaMGFRyGDZ3J2iKxu3B/Ik7soS4u6GLmYo5F9LXytI3ezolr9z0K7GwmEXZ+yq6682KbAVA4SDDqbkRsGfJGxGxAURHFBn1VuCABCKBQ0grMwOkGhgpZKSK0E0MFIf6LccJwxExnJ4J5wP6geU3jhD8r1htievj22bNMaAl/vQKWbtZeXr7AVzz1vY+fOc6ejcQkgaPTQ5qiivSlZxOVHuckKmZLNbJhqF2Ag397Rbbvat+OAFrs0VIUFWLHBJFsasfeSz60g7SvbGUhOajzClKbceJEfi/jTYuukLRw72Rrwz5UiszgzN23QWDAg4eYBBjfYcMp5t9lz1TKqasa028EVeTlWzcHOWcrB7kxAWLIV06Vs+g2g71IFRymSwKFIIAJehyKld2geqZm++tWv2r/+6796+JhFixa5U83589kh9QZT8KAKHuhvsKjo9tchgTcjoDqcbgSKKC2kwWvvgj8EgGixlM1SH7ZBWRyKKtiyB4cGZcnJaFwG87yK+JnSzr8YzkNjqJXEZ4jNEviSkpDD/Rb5oJ0Ce7Axbh8XLLhAJFfFamn39lCAynE8Etx0yO9V03fyUxaNTWPDddrps+yUhTO9PUIM/bDR9dgzvZGxBBPSPhmJ00/hSFR1MWywpLYLIGfQN8GPrq5uu/O+e2x523ZXta14+SU7/YR5NpPQYkXkUKa/gbQO0E2KEpFUgwuJumyjLZxwon3m8o9ZjmgBLfxLY2uG8Rg2enizR8UnVaLAnNSj+xLAWAOjQRmSkjBjKeUFBOWwH9MGickNY4i3SN8A5gLg0owGoC0sMwBVGly120No0T7Z6bk7FQdSUkWivuY16OpbzQ7dz8ygWf4SAiTTsCZxMkqRBEaWQAS8RpZLdBYJ6IEuxuub3/ym+3Gq5wGrgMliCN5Q0u16Sr3BYt5QG97hN4eLtdiZkPEKzw0VTXhN53Rd30fKN/SeocdePvcJaA9NQ9mK8LyW7f0nRfB9eF4tnniqwhooyB5OJy2QXkZ1wVTdBRbcEh7qc8RglJJItk/yN5DAZgeUBGAQ4OJODOjzLPjaqZaCCVMdarM0aFUzK9W2N6ll8t2ltkntpaT8UtHJpYO+yKeYt516pD6U9k3fg37qjpGTlvWgNF3XHbQcAyW5fogTe1EAIYZn9hrKT2c1frBDQ5J6KrcLZVCf2qSkUhLlmmDsCNnjVA18UhymaBDgmQOMJuK9vDpot9xEoHbc7+9TtnBj7byzz7VXfvMLW7d5o13MLtGPfODDsFd4fne/FNSh+aQK1QUdSJBh4rBCvMMssQ3HpJoslZlmYye2wjCVrCHezHjWAHrjjK188+OXiwJqht5fLSfsU1isPhOUUaz0Y7A/aL3lXsYwY6MKScviLkQmDWIxNeQiHrU5Imicxi54qcGSllrvm018DAPgl6FPclHBpWAXKOMptkuqbISvW31jgTTEOo5SJIGDSSACXgeT0Dv8uhZZAS69wiSnp0c8VRevI15uVOBeCQiIyG5PjlLDOI0yoNfxcLcZDlqquxh1XYtRBo/3+tQ9hwK+iqhlCixg6TQ2PQI4rFRSx7iqZ9gU0lexS8NTMC206u2fcGbga55uEQEiHqLkjIvgF2bTYk7yUtOZNaNy0poYh9JxrRzH4jrUljIZPHg057KsnAodFKiVyO8rLfmwawpSYP+lYxmQdwBWstiFDeCssxaP5uk97PCDMdpVQzicFgzrUYeWcuziY4dclr6rDVqZxZT5wu3HnBIoqwIMAQOF3NGOwRTe1uX2IsH1JPVlkb0CLArOlQFLMWI4xgEXvmPPy66+kU/jt19CDopXKaCRYveiU0JkqIjpkr0WfUwSFzFRqkNfyninAHiccxDIvZJqE225fN6pNgVI9OQzT9kZp5xmi1um2D1dbb6bMob6Ub7g1kv9iu0c4QGsxGuQvgujxPCSn8CDvnZNag41E5qojn9qFNZjjJp2gfK84Ugck+TvjCHfhiaa86qkfARx4o6Stfo8k0sNlIwwYYEksC9D1apHFzMRaEfUAUqBA+VGVLD4xpB5fG2slnz0VmPOOCSRRQHnshBngHNYP+zjigDdJCUECYYUG7sB+sNoUF6UIgkcXAIR8Dq4jKIcR1ECerTLZiJ4OB7FiqKiXQIKeK3FcWCArfgsxLV1BJnGD9JIKQRXyicP6aEPL31/1cI+QgHa2Sf2KIdKTH6aUnIDwGono/PhrI8WeJX5qnngJ151loVPBVUrFSoghW3SzssSgE+Lu1wtCOQoazDXPGu1fiCLFtngCuUFqkHllauBIAX3VqGa53WigxLl6iCfh3kjawagkusZtEL/oKVqAR0qpA8brH7iGjZJvkAC+gfOIQmIqN59jJSu+01+XUeo1PSOh3qBJdFuJQBcRYblaq/LijIYl7Cl5NqbZLPm91XPCHDInZX8kKWEUtQJT+IBA0Cp9slpaVphCiUBb+y+0rVYNACuzpx/sp04JfADV8NO0ka5a8BQX97uBaHqee2U7ZnUuQAayUcgB/zCG19SvPgv+Wl0OPT+6qS6L5ssnTmcpDKCWSyAFdytc17x3oIkb80cqZPFrVEfz57wTk4BNjG6V19UPwWA4QCVKklfUDe6UKvfdU5XkKc2Agg4RimSwKFIIAJehyKlKM+RlUDwTNtbJr9r/REWPbb2iuSoHAhIyZZJu1Lll0tJvtoUt0/gKwQuOh+CLoEYARi9BNhk/yLgdShJhskCXWVcD2SzeFFnYS/AIIhRKAnwCIVVF6tg7F89A+R5PXQXEdaptnk0Bcrbl1hEpRPkmgzZ0wKHHMv26LU87e8P9bTjLWjD8B4KEoSAy1ELZePIgV16gC7UgLE+FnwMw7MCH3hYrxCKSNvpkuwAlGcLGZuJZUvQb6kovZ3e+KF9Vn/EdPkyDzwIAKDnYMGX2AWoygDaCuMhFlEyHgrfvEjd7wzaUPloVx85KUPyc9aaghXqRs77BwDGiqvYSK1pHLHKT1fQirBE7uPmktxl0JdGTA7EhBb43sDfbwqAFadxMYyrxgPe+vATtoP+x2GcMrRFauEK3ysSWDUNlf3+x8qwf9vDe17rc+gdQ4/33SNJ6aV3mETeK4wH4pDYA1qPD13PMNhEHvIUtFgljlxqkCt6jyRw6BKIgNehy+odm1MLshbN11rADlc4wx9h1Wfc4RYT5T8MCWgcBZqkVrzvvvscfL3rXe9ylyFDQVdYpDzUSzW5ZcsWD6g9ms0WmgMj5Q3vGfopYiXJTkJ0PphTAVxYgOOKMRjCm2GTQEs9a97eJOyQwkeV3BsMT8rmqslw4nhZqE3pY442x7BjaiBkTh6v6GW8qorpOdjCqRxpsRuU6SCrWrZAl04G/9REgA+Apw4HpbL9cYYGucRBMApBVIOaLIXvAtxU8Z2FnXwVYvuBQVDlCRjyGkpHqWVhP5COGBslxSwMUxFmRsbmFcakH2N7+aPqJ45gBfmISRSoC1PgUUrv+5KK6uWlc2oHzXFgJ3AxIKoH9V8MhCgXE4UcOwMpTmrOoYBIpSWoT0C4MEgewF8cf1n62ZRFrVvCs3sW87EmxroBv2A76HuSl1S4Kk+sWCBLlXQ8Eo3gv3yDSSUZ/NyjHT431HeecxIQ7a3hYJBcmg46FaVIAkdSAiM80o5k8VFZb2UJhAu1fHlt2LABP0Lj3bhezIcYkJAVef19ZLHSL04KUFk89/z49ZcX3XkwCWjc5Bbk61//ujtRPfvssx1IhWMdgqrwUxELFKlAYO3zn/+8O1QdnvdAdcrQvIIReBkDmSKAowZbq46OHtu4eRfOKFE/MtriHkJ8ISP1UHEW4hCFw5FjTiWd2wcEWDa5MXDToLMVwETSps+YYGPGN7tqtCDv56AX1XGoyQ3ltdiKBuFT9l5izpS0AMv0R6lCn9h452Xne3PWvb3DelZvsj3bOz0OpNRVndvwTVVbsYapre7nSlhLakLhnKrOUSUNm/SAY4CLp2pdar5uERDYk+u1jR278CAvpZ5C1ZCq2f0efwMw8LkXWOgceXASwUEZYGRWy0tMjlRnJeaEcqfo5+TGUTY6mQU8vjppp18JlkvgPQ4A1DyIyYif83m50QccyqlqFtuqLABNf9AePFyV8z+U46tLPoZnHPwLACIJebIHwCaSgEieQ9qQIF7SLzpYZIz3IWLueJWgj2HDo6reThKIgNfbaTSPQl+efvpp+9u//VtbvXq1jWVX0xe+8AV73xVXHLGagkdZ9EA7YgI9SEFaNAW8duzY4epF2XoJVEltFKobdRwmLa5r1qyxZ555xsSOKVC2WDCpJ33LfTXjSGyogwwAQmBXhHoRu6v773vU/v3bN9ju9n5AE+FdqMtBt6928rfFokidvnOW1bFUAjzBSHCKFyDKF3QAAAuiPLbL2D/QWJatvjZlf3j9tfbJT15j2TotrvxAgF3ye8MOHewzBHkBScNai3qWdksFKfVcZRCmhOkq56oDu7tt8/rN9sLDz9nGZ1+x9G72Wu7o8v6uWrHcVnxji8VmtNqUJSfZ/NMX2LS5s/GoD9WkHYCoC1nVwTsUJtzDsVgrAT8HaCH4UntRncrNhQKAP798uf3oll/alu5OHJhyI2DBnZeqk9WkvyapBYendmyrVMfoQSM4tUCRDO7RiIqNw56rDmbwynMvtA+e/x6rT7GRYkiZKkv1yKu91M2KjygQRk3u+yyPAZcsnXDhjjNazONRVwqIQXhZH3V4OHYqFLh7dcuGt/TofVeXytjlKcZnCWe0RbmtoN2K81nAoCvPfBt0sE8raav6JxCrTyEy/zFBIUP7IMnru3JEKZLAoUggAl6HIqV3aJ5du3bZX/3VX5niM06ZMoUAws/bF7/4RT+Wm4kjkfYtF0eitKiMQ5FAyFQKhOlYi3QBMCXDYgEZLbi6JiZj1KhRdu2119rjjz9uP/jBD2zx4sXOegp8KWkRFoumBflVOyO1yAo0sCyJd5JPpo2bNtmKlatt6uT5NmP6bBvIEVGP+2WflQQYpLCJKhQwIidvAMgI8cIuTIGfErsk04AE7ZbU0pdJZW1wIO+L/PadW+2ll56x9eu3sLKKH2Ip1Io5dIVUg18raTKKRqN0tVq7JAXwVE6Ffhaw3VJMSOGLja8st7tuutnWr9lk5VzZZrZMtFkzTrSOFYQkWrvO5p+80PawYW/twA77Nfkevvchu/DSi+3sd59n9WMISSQ507aY9IoCXl6n3vmqJlQBoPLorOyq8E5lW2G7Xly31jKto6x13Gjsy1DzKbD03j8kDijSx3jvOZUBJiKuIResBeBRC1snXCEv7fgttY7eHlu7cbNt2L4Zv2d4jee8jOKHJ41xyHbHAV9u94W+NdmgQmDhKgPYf9VZtobvSTqCcVceu649FFSGFWuSGo8Oj1D08KqO/Hf6CxZUyEafFx7TU5CQMS3ShwHU0t2lHnfgmhMqdbqTe/T3IAHTHbFigq8aIk/V+UXRhzXVqndHH+9QCfDXEaVIAq+WgB7c69evtxdeeMF9ed1www325S9/2eM1iv1YeMop/qDxB/yrb4/OvAUkEIKbkK3SrsXwnECXjpXOO+88u/TSS+03v/mN3XHHHXb99df7rkiNvRgrB3AAr5GSGBYtSsG7Fi4WqGSzXXzRUvvEH17hxuIFjK7TAJAUgZkLGGjn83JBIUZLgI31WwCI+IBog2DlUI/JeN3hHHY4g3h1r03Yb2+7x9avXUVFAElvSPCumg85iWpyFwrBXXLpEDoXLQ1QP2xXkkDJa5982W7839+3zW0bAKJn2VnnnGfTxk6zBlwRPP6L31kf4Gj+eUtszKI5tr2/3eZseNlefOQ5+9UPf2HbUEde+0cfs9rxrc5uOejyJoofBFzyLlHGYLwC0OU4z1V48pElIKgQR6e/60w7l3pb8etVy1/iXiBwgM6qih71jT5J1ZgW+CANUBemaPbky8/Zze03o3pkTHkVykXLYPc1kvTCv/lA0owX/rNSeLw3xmGgDINawW0EwaS1JbBUyIEx5RIV+QFutNO1Oq28/mP6RmfiMHuKelCo5GhTgQDpfbZm+2rrHxi08RMn41kCv2Y43MUxSICkfBrtk4Jm+YFkfaDzx7SPUWVvCQlEwOstMUzHvpFadOtwNSCVkpivn//8565yUkuam5u9QeED+Ni3LqrxSEggHD+xVrLjk3+vGnx1hUmslnZAivX66Ec/6sznT3/6Uzv//PNt+vTplhNbBUqQykmG+K+ZxBxVl3GxaklYkJbWZhgTXDIURb+wMINCxIw54KNNCvGTJLafbLy0uzEJC+EuD6BitIAm8cskkNZQhzF3nVgUuVpQPb5avmZzDnSxDPiSlk++nsoAEKUygEu2Plk2CWx6/GW7+d9/bKXdPfbx6z5iC5ecbqMIsg0dZdaF2ipLrD9UWHkBkVEZGz95kp03d4wtPOEUu+em2+2xhx51luia6z9mdVNGIRLAECt2BZDidSMBdzUhxkWrPE0I7czcNxnMn8BubU2tjR893iaRKSuQpoYeJO2hTPWtHnkSscfLlc+wfhgzldefHwR0YOdEYXCOlBYY7asZI6cgTy1ybxzYY5Xd221eS71NANg0A7gaGbNRUEx6WjSIaoJJS8CYBRTfobR45FrfyFkNqTYmyIWG1KPPrnvJbrr3Juvt77Vzz77A5s07mc0LYsFoH4IYvqP2jdQd3RtJIJRABLxCSUSfr5LA7Nmz7YMf/KB997vf9dBBYjbe//73+8LrxsevuuPwTkS/EA9PXkcrt1RHAl0CX88++6zt3LnT7flOOukka2xUEOWKLViwwK655hr74Q9/aL/85S/tT//0T13lJGZMKQRxw9sYYIeqnYyvtVI/Kj4iu/IGUE1l0Nuh4kmwWGdgkwSwYjBdRYzXBdCKpUClmUrLRF7qShyd1hC0mF11Je4TDTYAGyXw4kGp3eBLEE91aIn3Svc2Swvv3jPVgyq+ciamyBwX7yQYqJ6R3VOa9u1as8Pu+M/fWm5Xh33so9fZrMsWAA6h4artKAO6BgmyPYC/rVKau9EZulIKNm/y+Il25Uc/5H7NHnv0SRs7ebwt/fBVOBQNjNTFDHq9AD/5hVL4HTVPQEmfapEDUL7JRYZaJvCQQtVYU5R7DnGA+hd0KmQY1XhK9EJqUP0JSNSAgdQ8OVTNy6cWQtXftn5kuRqRQQudJA8HXYE8gncBQm2NGZ+ptfnMky2A9LGMS++K1ZbYzhzqHbCx1NVMvkaEXGB+xWDRjPBHxyNpjoo5VZDtAmOzbN0Ldvvjd9iqXevZLJCyW56805bntlh3LfMKIK9toBoLuujjcDzaHNX59pRABLzenuN6RHqlB/Hf/d3f2ZIlS+yVV17xXXBXYFjf0oKNyhFIwx/qR6DIqIjXKYHNmzfbz372M/vd736311+Xdjz+xV/8hc2cOdMBmAzr77rrLrv55ptt6dKldiLATKxY6Ak/tPFyEObrv8MOVi0t/H4iQDKwHykYK5FrJex+ciWM0lnguts6bcfOHdba0mpjxo1z0FKWKhNwlef+trY262FjwKjRo2zM6NEs5GwISDfgxZ3iHT0JnAjCkKrVaVcdVQWJc+7XywEKp7hHuRVSxkEL3+W2QUBFQEYG/ro1LR3nYMGW3f+YrXlphV153iU2+7QzUJuhQCP4oHu/l+EXfYnBopRh5EoEeta2xzw7Kwu4XKgMlq0l1WgXXP1e29G1yx648x6bc/IJNvvMhQ5sneWrtpOS1LS9STBLCWwE0JEosakigz+8YfxSuG5QGBz33cV9ujXoPu/8FzuoTQmJeBacihE9eRMwW4MqDNWfDOC1CcEN5um/716s1uOgjeMwiXH0XaJUEv74ShC0e8kJs2xCtsZmzp1rdTUN1nriyXZCss5G1zRZjJ2x7OgAdFIR9w0hP8Nij9GnZASwB0Tv6NxpDz/5qBUZp4kzJ1oim7YW3KXUjq63cmcHc5bxQ3iKWiAeVQBYDGQ4Ft5gCVnnoxRJ4DAlEAGvwxTYOym7FlCpmT7+8Y/v7bYe+nodiOHYm/EQDvY9xIJl4hBuibIcAQmI3VAK7bikMrznnnscdF199dW+c3E5u+f+5V/+xb72ta/ZV77yFVdBKjj6VVddZf/2b//mtn5/zoYLgS2pKpX0qTL1KdWju3pgrhRRMZVgsAS2fGccS5kvgGoDq7AM6rVj78mn1tlPb/yZXXLpu+3jf3iN5QsDXC+xkCtUUcwefWK5fe+7P7T/508/z87a8dh64WCB63Fsw+TvM47aMomNjpivIqBMaQ+2StsTnThLTxKcJmUNOTyrl2hbD3OORTPREMO4vGwdqAa7AVEtlFmfrXUnpXl2t2Xw55SGUdqxapM9cvvdNnHGRDv58nOsPDppPTGcibJ7T2FpagnCjVKUWIEwSVK7AkIqCpWEQftANml7RhWtFVeqY8uoHs9/t/38P//THr7rEZs6b47Fm9LSwnmb4YUsVodLUpqXhs0SZlU4nxwArhPbox4swwVgMoQMakUFWhxk72YNuwgBUHKGG2c8iqhuBZAy/HByh7UwmmvXrbPfd2y0PTBccTYkpJFVV0eH1eCJfvGiM5B/3Pqwc+oGcLQBOMYimzT+whKEXgIVO5DrA7ANIM+Y9Vs91xqor2PDGtvWuc3On3eSTVxyvmVzBRjTNovPbbX0mafjvD9n7dvW2Oq1bTZj1jzA2hgM3LWZQq8AtTjoZKzC7z5wR+NNjxnkI4ex41MNdu0ZS21HfZ/d9MKDVjtQsGvnXGKDTRn7/7puRugMJFMoL8TF/xJjgQ8PG8041QnMq71kUZHqhRZSvkYpksAhSSACXockpnduJj0MwwdjKIUj9YDc96DSoytKx0oCGj+plASS9Orq6vJNFFIrfuhDH7I5J5zgLJd2sQqQiQ0Tu5XE+F5M1/3332+33367if0866yzXEUZzhPZe8kGSWyp+KQ8ACgBUFC8Ri3fwdyRQgyABjgQhaDdlEkWM/n7amvrwddXry/O2s1YYJEewOdXLeWlU3W2cUs7rJcssIIkeyRpg8SiqE9MVuqE0aGPKQW/BuQVsTeS362WNLEIiae4+bHl1vb0GsvBxNRPxt3D0lOtaeFkGwD9pCljsIBtG/ZOCWzIFH8PS2zbxY6/PDv/Fp7zbmucMhEGhDpQWyWLCumjsDg8SkFJSRynZtkskMKDe6ySBrjBetGeuroay5YAhr15mz1ztp00cYbtXrfDOja325gM5QGsZHkUB7TGsig6xQ55L7W00wY5TeUoB6jSzso6bN+0aTCJXCsE+O4DEMlJq1SlA3iTdwAKGFOYoN6+fnvo2afsO0/93tq0szFHSchWLN5k1IQN7LKULV2Cc2VAY3txwDb05bEFY5MDzkYTeOTXRoNebKMkm7L12GhiMOb79ljf7q02tqXRxk6aYDWpWqt091kd9ScUCHvcKNwzMBdiALrNO6x361prnt4I8KljTtAvylQKnTP7l6P8Jue1SrXZBps1cZYl0l2WBYSlkVEzDN0AvuaYjeRQPs3TQHnr0Qb4fZEGiIGDg6brAab5x4dUrkHJfIlSJIGDSCACXgcRUHT56ElgH+N19OqISn61BELgrE+xX7Lp2rhxoy1cuNCmwmLJFkfASSpm2XPJBYSAl1RL8+bNc0bsG9/4ht10000mFkzhh6RylKoqzeKtTznZ7enZY2nUiWUMxysAhgoUgdwPuEsGmqUFy7kyJoI8uccxppdX+wpsgxiuMuF3RM4NAIKk+SniHV3LoNRmDky4J0wqS24mBgYHUA+VrDaTdUCnUMuzAA/u16ojby/c9IA9ceMdVt7SaTE8v+dQF459Zp6d++kP2LSLTgXIsFmAOjDV4k7UbzA+ecpc8/IrboM2fdYszuOxHZCmEEH7OsGyS5icumLSGga4rxdqBPO0NL7KGrABy9I368Foe8+gNdeMshMnz7R7H3vQtq7ZaOPnT3Zv9zWKeYjsBSYFJMFupIBdqQECNgIKpfZUP6UOTBMkOwfjV8oPOMuVlOwBm8l0Hf2NWQ8MloBBhvGZv+g0+8i0VmtH/bnsqadt5ep1tB3mjHGuydYRAB2gDGh9ZNkztrFtu9UPwmoxBinYvmRZGycSGJ0DvOKDsGQlm4w69awJY+x8VItTpk+iPYwvQIyGYHPXY3W1NB6QhlbPJo+bYLGuHkDaLlR5PRZrGQ14kxXesU+ab3pV6LuAcRrfZR7NUwZrB0r7ptmBcuj3g0+FA2aILkQSGCKBCHgNEUZ0eDwkENhdHI+a3+l1hkymjOqVJkyY4MBJ58VCNROPT0lATCpCBdhOA74uvPBCu+WWW+y2227zzRbnnHNOwKDB1uheZ78ABgJvUhVC5gCGsEVCJVguox6UUdbwxOJWYvErwhYpLE0tzIxC/6CB9B13Ch0EHGKxhIEBoIjZEqjYl1g4VRf1Vrhp1Zo1tmXbRtb+Psv2059eVJI7crb+zmetsHqbTarUWwM2Tx29XbbtoZfsOWDAri3brGc0aj0QwSDW+hWYrImNrTatptU6d+yyRqkgYUa2LV/pfq7qoD48zAxAMUm7kugZY239hBJCYbiuzfpa1ttAPe4JCPyXYuNAhk0A8e6cxfrpU45dmv15VHVbbf2Tr9jmbeshogQawWc1vNGdlNRcHBRhh3oAr90YfG/euc3Vu4qRWKCNcoCaBDRliJjYPdhru3ZstZ7ePe4fLQYbVsNuxXHNo23yifPtvPxUu/Oph6xrd6dNbmq2elS4uT7Uudq9hwquLLVs+07bvnsHIBLLcmzT3AAMpk7qRjeWy6hN/Ta1p8P2TJ9ip2DbFasB8AnwwgCW8/2wXbByApqoRePSAaNinoDPsY71G60XW6+mFkFbzh+HpPkpkESPkSzjBbCOwYYq3JMAJiPJefVRSRMsyOlfo7dIAkdIAhHwOkKCjIo5dAnowadfu64i0gIapWMugRAgqWKxXrLL6sdmR8yQnIUGLh8AOgAt5VUKj+ViQnnFdAlcKYW2XfJ+r40Y8vnVgZEyHAluGOpsImqdyy97L6CBxVzGMcOSbL2KMEYlwEZnV69t2LCZMjG6p/4E+aWu27mzHf9Kih8ZqEhp0N5SxKDINUUGiq2/f9C+853v2223/9pyPV3WjPovg7OqqdlxtiA51WbFm22UAloD0pIJwBSL74qHnrIb77vJlsV3414BFSnXtANvSss4u37pVWZte6xt23a79Vc3YyyPzRb2Z3XCFizVJcBiFuDVkMe+ameH5Xv67LF7HrL80w9bezpvnWwhrKOtKYDXKMBjso+dj9hCdfd229qXlttP7sDe6/nHGIO828F1Alikhk0DCCTzEsCrhC1ZemyTxWdOtsYx+ABDJikxhDA36wFj6zdstBVrV9qKNauso6vbBmCetGEhDSiaMWOGnX7GmbZ+90774Z2322xswj542WW2Y9tWu//Rx3DACiDGH1oe4NU0drSNJX+pADOF6jQBqIyJ8QJ4SdxlGLM6sYRcnzSqGdVkyjp37cTAH0Dd3W9p4jXGi/jB6uqw3vZaSEAgFvMpTX/LREkows4dz6TnjmZNnL65nSFyjqGPZVQAXuIyBbuq82rf9DqeTY7qfhtKIAJeb8NBfTN3Sb8zS3qg8wQs41BRHs8rPPikWnF10Ju58W+jtoUgyhkAsURVcOXx6lgoBcZkdB8CNH3mYaB2Y5B94403Wmdnp4ePkssJqRXlfNXD/CCjJ554wr7xjX/FVmu3Ikg7cTBz2nwbN34aJAoqQEBDWJ+LVACGOaHzfX297Jy8x9atX2Pd3W3ME+YKgMpQxnV2DmB0DpBjsRcIAAoEfAT3ByBe3qeqLAXs10BvH2wdKk8ml7ysBzsfYTawZ3KDKbIq3qHUgSnUmmjSYJG0MxGbLeqkSQCkfmyk+nBUmnLGq7V1tKVamjxAtZSSYueKsCUZgFc9wLETY/dBXCrUsTMzOwY9az3G2MRrTAOE4r2DqB1xmdHLzseeHupEvnUZ68ZIv1sGW3QiKd0cOkaJDXF4P9VXUKgVYNtSUkXKmawAGQ18AtXgbffdY2vXr/f7G1pbbMKMaZaCzeoHAHX09dijq1fZU6tW2q58zua0ttonr77GTj3hRHvw4fth9JoBqynrBkiK9WqEmZo+fx67/eR2oYi6ETArNg85FaivVKQPqbyNA3hNABDuofwtvR3kK1qSYOC1ALQ8Mst3Yicnf1geRJsPjNeLzJmGCXLUEXBJfHgKHfiG34/mZ3V2+C5FzRnRX0kxltgSJktBPxOiHXXRBa/WwJIpL6/g/v3brxxRiiRwOBKIgNfhSCvK+4YkoGeXknwURen4SUCLtoCVG9cDsurr6/H+Xmvbt293tWLYMjnOlcG6G8pzTz+MhVxJ3Hrrrfae97zH3vteGCwAjQCZkhZQ5Z88ebKdeeZia8OmR9vzBHSmTp4L6zXWdrPjTcvWUOCl9ohRKcE8NdZjqD22zpaceRqG3H3kY6F2tiVja1Zvx5lvJ+cLlKnQNboH9R2sDxWxLuofhuz1Wfvsf/uMnYS7hiKAIpODbepj3m3vt7V3PWdbcX6awMs8mMhVitsLvTZx4Wz71OJL7fLWnBUbMOqnTYjGxjW22NxxU23lHY9aAmBx0XsvszGzZ2C8BZDDX1cFA3bt0kvR9nhf0e7/6a+t5/EBW3T1ZTZh8TwbJBp1HzZRWdqVYkFPtGOvhuf9ZY89bqvuuc0mL5pnf/7hC+3dK15gB+IAalXtEgWo0Z80AEsAAFyHSyl2jBIDcU1/lz3y5OPudFZhnl5Z/or1de2x00462U48eYHNnjfXMo34ssd2STscX9m6zn74q1/YS88sk4hs9imLbO6MGTa6rtHOPuk0mzFqnE2bMNVe3LgW1o7dj5u24pGfccMJLMIEoCbwE4Z6l5v76UMZI/9mwgJNQoV72fzZtnTOXJs2CiYOu64MP6DKsI0C4XWtTdY0aSyAN1hiKj3sgMT1RZL5IbZu6BPAx5+qjkXSfJKiU3Ze7moE0D2hdTybFWSHV4/7D9zXaj5pTno+cuqQ472fOo5SJIE3IIEIeL0B4UW3vj4JhM+x4O6A2GeJidIxkoBAl5KzWRyPxifWtGnTnKlaRTD00047zUMCPfjgg+5OZBw+tWTMrUDpv/jFL9y56qc//Wkbg98jLbJyKeGMGGyMwJz8fwl89Q/04gl9AIyStabGcTZpwnh7+rHn9jJje7vLOiazrRp282k33mmLTrHP/ffrWd4KME5idwAhAJxbf/eY3ffwU+x0BBTAYmnOyL4+tLFPYGwuuywxZCedeIJNnwnzwxrqAbUHY9axapvd0WO28+Hl1gnr1E+w6gKG+JlJo+3May61+R+6AG/zADQCWStOIzbshNZhtmKX1fXKJlv77Arr7O6yiXW1kp7lceRaxv9TDFVjTLsYYYmKGJUPsGGwSJBua2THY7aIahImi4VcxvMFdjVqUd/cts3knmE8bZx33iI76fzFtB2DfYBqHe41UvpxovVdL5rQB1TYCdv08wfutKdwcuu7Url/6dnn27vPOtuaYbqaRuFfDyC8BwCnjQxtXZ32yKOP2kvsyDztlIWoa/P2/MoVxFx9wWac+x6bPma8zRkzATAVs9XauNALQyVVoIB0viuovEB/ClI10ghstRTAsYv4hi2DPZYfO8biCtnUiC2gdpCyEzIB+EqwUzLJK9s6FkHQX1gv/5ARP2421CFKOi7JWU8qF0wX+qqlnYtPPMPqemD3so3sDu0FZOoaFwV8JX9PnNt7HJ6LPiMJvD4JRMDr9cktuusNSCDO4szTzRfMpP/2ZcHlwS6v2lpvonRsJaAQUDKQf5RF+ktf+pJdcMEFtnLlSgdiH/jAB2z69Om2u73dfvzjH9umTZvcqeoZZ+BAFNAmdaTsunQsR6oCXgo1dfLJJ+OHC7sfbLwqsC8lmJPAG3qAJljGhiVxVYCUIsbZ+NOK4+2dzYwkzrIAioUYFCgodzkrFLoFCErzbAA6PMZXHV8WmUtaP+XOoI/zWcBM64wJ9t5PX2MvNz5oz91yn+WwpZp98lyb98Fzbfrli63YBItFe2W4XgQAJmg3HlUBOWmbMmcO/rR+by/BMM274F24FICJwidWBRWhKzwBXhWpztkOWU7BqYgxkjNV6ijCjPWLtsKNQxagthsD9hWo/8ZPHG8zZk+HeWGHIpcHFRwc+7IS9Um1mNLCr66J9QIgsm/QYygKeEqlKnnPmDAFwEadMmKvqoPViy3sTPz1nXfYI48/amfOnmYf++B11o1a8N++9x178IEH7YL5C1Ez4kYCdx/SMrfCdo1OZG3CrMm2AP9bjZSZ4UISw/qM+kZ/B2mH+peNFwgF1GezsDvL9uVsDyxm3agGS9RQM6CPcOvIhPYITePqIt/bb2072q1GzCqqzpBN8s4d67fqxBMwhX5zkDWxAcaLpiZgGktwiwL6TGheNK6a/1g3M6rv7S2BCHi9xcfXWQt+sSqJldDus6EpVOnIeNr9HHHxWFL7Q9sSHoO59iUe6Fq4gmfc/m3flyk6OhoS0DzQSwv4BRdcgPuHHrv77rtNQdCVPvWpT3nIKDlDlT+v3/72t6gQz/S4jYq5N4jqUepF+e6SMbriPKoszUPZe1UAQYO4UpBasAQTkmThltG4wNJ+ielbAeDkACZxVFlarwc4VvigimyuqKOCoXsCxkUgo4IRusCCn1dB1cWRarlf6kf23WHMHWwQUBDngmUodJDyRuP6YPJpc+35ex/ClKpoJ5x/hs1eusRyzbBcGMHLi1ORNvRzDwSWUA+xn1GfzpphU2bMsJcBXoteWG5zziJIPLZZNJxKmdH+idoTForNm/yAoBG8FBia2ykVWzBsv0CCturZF6wXA/iLzz/HWvAnNcjGgbiCgtPHOG10AakzEhSvCsZnArRS0NWmYZMAheobtBwG/lJ1Kri4NgRgZ4WMB7Cluu2mm10lefZZi+0DV33IJk+aZO24iDh9wUJbh9px5csrbN75F2Hw3u9ybsCwvJ6/xVljJ9m1Z11sE9gNWU/lcqehv1c58tBe1BxHSfrdiG+ump42a3/+Gdu6aYuNS0yzFtSXMQ2egAssp+SSZ27s6ui0Pvo+asJki9c0UKoGTJ07PgkJBzsb1U7agXSZS5Ip8w1Z+zNU7B4DqTmmySbTu3CeHZ9WR7W+nSQQAa+3wWjKFke7zCbxcB0OvNQ9qRgEwEKP4m+WLuvRq7WNtSJKx1ACDliEXEg61qIuO68Pf/jDdskll7ixvEC6mDDZd61bt86+9a1vOZP1uc99zlWNznQByEIVYzjv5Dw13CQRLFos2JxLxjO+4MZkxA6Y0X0a+zKDL4xCQzhH+CDAQQl3BMF6J46HhVB2VDriehnQ1TfA8g/IqHaB9VBIR+uj/FvBlgEgsrhv4Bt198J2yXkrwAUWLSaXE/p7wF9XHs/vZT7JTDDwLivUNoIV9DNAYEN1UqjWZsBULbJYct65tuYnN9rtd91uo2GRRk3MokoFjgAGpWJTGzHJR01IG6oLtc5mYN/yqGTradPmdSvskd/fZ1PGTbIz8JMWZ8HPCikCPLUrU/4kiGjo2AW6jMo5jzBSbDIAwzmzmEIealgOVW49zkiz3CcGMEb+OEKRy4Z+7L7OPX2xXfn+D7KpYTxgFC/8tRk7+8wltun5l2C9HrCLTl5ko6SeVRdxphrHAL4eR7D1ySwG9KigBbp4QcLh0gIP/8hB7QTpWYpxyKQzNnHKTFvTgV0YOz7xo2GNSXaJCmSSrxO3FVvb2q2P9kxDrVkzajQDDuxRR1TpcUmaKAGgFy8nFlaA1mNIeqMCebtqlfZpjgYpaPOBmq1pEqVIAocqgQh4Haqk3qT5pOL5T8KPPPfcc+wk+4bb2/iCV22vruvaP/zDP9g//uM/usPL490VB1veCD3khjyEo6fXMRsaqQf1CpOAlvx0SU2o+SOwLkDWwS7Gb3/72656/PznP2/nnXee36K8Altit+SOIARbQ3eoxckTx4dVkd1iCffsrt2SYtkC1kvvFQCJ9GyxRMGaR5Vs3iyM61tSloFVyXJ/P4xMCWOrDIGVG+tKtuDEiQC/kuUKOx18pRLNoAYBD9iiBKGHsNvS9sQS96ecsipYLeqyPKq4HGq+eL2WTsDRHtSWMHH51hortRJGqExMQS3BhP4RWEqKDeG/MEJRzkHryjb7sjPsvF1r7Lc3/cruuDFlS//wE9Y6Gfu33WwCQD0pp689Pb3WA9CSAhKKDRkm8eiesuauvO1av8Fu+fF/sdOw297/qY9a04mT8G4KiwQgLCCXPCrWIrLJgkRlZ4RYSQJf2gTAOeSQ7Mclwx52DQIq92BXNYpdm+pmDY3NMm7ye3YKxuJTrrsep6g11tBUbwUAlQBGkTEe2zrJdk2dZQP47+rIdRP6qBUSjjiY+MZoZ7dBdxbmEaTlTmK1u49UAYzqqIYysikANGAMgfBJvqkTrHbCFHv6lcft1mXP2uSx45zh7Nm0wXpfwmdXbYOdt2iJJVtGWQdybYARw0yMo6BfXsExetPIJ5Fji+pG5mInaxjnDHMzTR8LCsRO3+rYjAGiZpoAuJGnwikVAPMyGGznow9paCNIBfWxYLrGOg+7p7+mQGLHqENRNW9ZCUTA6y07dPsaLr9K3YQ/EaM1PBU5J8eYW7ZssR/96Ef293//977gDgVnw+852t/1ANQDixXYf1EKe0Xp2EhATJNYKc0VASupCeOwWkNBmPJIvah8L7/8sgfGXrBggTNiyqfr2p2mT2e6AoTw6g4wvlrjpP7SUuvLLecScRR6MC1attLECoxjN6SdfIsXn2KnLvwK4K8W435YLwBIClYlw6I3AMv17gvOIc9CS7AAlsuyLcvAWgFuuLeMqkxwxY9pl/w0KRhySoASbWCBBVZrJ8QUbQLwSfXOzkTLAnEELLRw+pTEqJ6SwhbrIEYoHiL8cZiw8993MTER99jdt95hG7sH7YPXXGsnTJ8Z9A9QlBaDhT2Ze9bHe34KEDiAf6uVjz5jv7rpl7ZzT5d99P++3k66eImDrrJ0WDSjTF+lzgv+goM/CCe8KFlJvsxqUX1lKV9tUggfxYkEKRJqCQDsf0TqAAbjtTBWjZNdHakxqhWLx1gr0PhkDOKvJt5mP64lmjjOI48ioFQhh+SbrJ/wSlLxCnjKjk17C/jvyXEgRzFCKUkf7CGfaH+esm599El7Ef9tY3G3ccG551p722574sGHbfqkyTb/pNNtQh0+v5B5TK48NBA+H4Jyj+W7+qApwHTxTQVaANUabxF9ick1CHOnGcDVRR4PZRUMh2fC962PExwnXeAC/6uEZaCO5HqUIgkcTAIR8DqYhN4C18VqhUmASg/boWkKYWA+85nPeHDj6667zk499dShl4/bsR52PN/4Yan3KB0LCWhuKCbjHIzFW1panJVDd64AAEAASURBVBURAFMKwXg4h7RbcdasWfbHf/zHNnv2bD9WIOYaXE8cThKAcHWi6vAXDALxD3MwC6zvuE5ApZXAPgwgVKNYgp5HALEEsNJ8lp8xAI12yhEOpyBVpPb5wWSVQA41tZSK+qgssKUCBfhEVzG7fI3Xd/+bgOUgz0jJfwhQqt+pLDqofsQAoFpgKzBA9VOn2qUfuYbrcbvl1ofshk3b7YKzltiiU0+35kZiQXI+Be1U6Oi2jrUbbPW6dfbsc8/a6udeYGdno33yTz5lp17ybppH+3CvIANvsWrOkFGpmC4BA+DJ3qTmFGm/7Ojcoay7sgB4cdcAKki1vdpchzOSlxXZoehy4GYVAPgtymYJVmf8nJl+bwVbsbw84POthF2bAGMSAMoWB8QlCKiW6Ob9k/OVnJZaU3UMEJpo/dad1g4TF0/3Ex98FGO703YQJihbs8e6AM3AGdrOxgU2DKSOo6oxlNNQUBv2Tr7kwoHHJdu+5HMn+BrMzn2XoqNIAq9HAhHwej1SexPeEy6aUv0oKcyLFlktnvLnc+2113psvZ/85Cd24oknHnfWKxRhMAFF10c0fSiTo/WpOSIWS+pEMZ9SL8odhNgtgffhgF155Rbis5/9LKCm7DsYFUoonGuH2s4A1OxbwIvYGylI8ugm7KwATzmcjgpQZJinOt/TJ9suVD54XRebIFus+oaE5QAqOWyRmvFTVa5kbJB8MqZXGKFSwRWENIkZxT1SlgFT+K7zQ1fR12i1sjMRwTLCKUHiU8yOdhLKtkrMUf3YVrvys5+2ExedbY/ecrfdf9dd9vjtd9mYZoJCA0K6errt1pt/hVNSdvyViFcIA3XmJefb+UsvsonzZ3kdUodWUJ8KJ+pvQISVqwNpbxYAgNaRRgRZBRJSMF15VIAFAFFRf+MgyqxUq8itj+sOMKtN1o1SFQ7vdpH2D9IPjZ9s2HLy8aDxhIUqM/5pVLGyjZNDWd+BKnkcJClLL5swM2PGWs/2XdacqbFemLhuxnIQ9xHJ+mbs7Bs94oD+xrXJIWjsIRR+kLqjy5EE3qoSiIDXW3XkhrRbD1Itmnppp9m3/v3f7QGMZ7WYauH867/+axuPge0nP/lJ+5//83/6TjX5WnozpOAXJICAxUMLXpSOrgRkiyXGavr06YCXQOD6VIDkoUlzSnnFcMnAXrsVZfel3YzhfBua/0DHDGuAKsLiAVYxGJlt23faU8+s0kVcJOA5HADgu3IxTNcOxjKskeC474h0sABIxJC9FpcFK3HSWQB8FPAhlSYcEXDN2toHAAuBOwtHXt4gZhf1ukJbDeFYi/9+aVi/lUeZBIjCFHc/VBj+U38aYBLDJi2BPOYvOcNmwgiuJ+zPqmUvWgd96unstmwtIGZsg01vnWLTTySI9Lw5NmH2dEvhpV79ihHvULsQS/Qj04SzUyoTtyRA4qAP0OWaQz6TnJA9u67LTUQG1aJAUTcG61u3brN+QJPbo6ndSvRTfXTWy08Eb+o+1nIO1OJsbpBaVaGIxGxpx2UXOyGhv7C/Qv1LIQH3FxY6pKARDqV6LKA+7qOcHWC5dtTEA4Ru2g6gnoquEjN8Wu68JoCwOhAjlHO8T8lth4i+/Xu9/7fj3cao/reHBCLg9fYYRwddAlr33Huv/frXv7Z//ud/dlXSF7/4RfvpT39qf/Znf2aXXnqpifGSsfRpqBtlfBvuRjsWYnAVxUgV6VnM405LrVQtUTp6EpDxu9t4VQGHQJRY0QMlgS4xY8on0CU7HYV5OhTwJa/ycieQUvkgCRE1YsyKOFW98+5b7cmnngLMDXq5Key25K9LgEHxHCvYHAkQpgAWimEoo/eSnLViEF/EBklMnXwxZdONTB3YFXyG7eltR7WFtbqoIpJU2OqZfpA4yKQNmu+QTQGwYKFV3wR4pKKki/uS0IuKYd0VYycXDkXKK6uM+hq8R2hnHAzO1NE2b+K5NvfCsyzX32f9nT2+K7S2sd4yDTgMhZ0DKfHSRgTuQc0mazTtnoxnsQVTpV5HwHzJX5YKduCl1kB3oSF0/12Sp1hA1f04Pteee+VF1Jq0DfXgXuBc7cNwuKDTA+xUlIF9GVWtfOnVYGdXxneYgFYJdw+D3b3WiE1dlu/Aa9VelaQfuhyDowDcSTzKpY2d2zt72Slaa120v4MA4GxtQIdcYwOAsj7GlSw4mmXjAB2Tt//jlUK5SL4aSx/m6kkPW0WP9RyVw1td9B+0NNbdd2igSMHs8sPoLZLA65LAgZ+4r6u46KbjJQGpghQz76GHHjIZQp9++unOVFx++eUe4uXz/+N/uKdx2evISebjxNO7+OKL93uYhm3Xw0YPn6ORpOKQcbQeXykWU3+WsShlcVbJMng0qvQyJR9f5I5aDW+NgiUDAa2hwOlAchlqOK85oe8Cbkr6ftBElrh2fwEO5M5AAOnkBSfa1VdfYTtxqKng1AFgANoIBAlAqGwVXC0feBKcEQUV1kkbND11TW4AvBzuamo+3S5Zeg7zHmbJqQvp6wBV3Kcltgx75EALIKCydOwMFnkqqMCCTXxqtBqwL4n9UWgkzU4Zscuw3YGUjLGdnRJwYxNAC69JeI9XO5WH/1rYgVvUxRHnHNJwKCzm39XZ8KVTvHQRjBUc6ztJhu4ZZDBt/CQ7j4DXuwiw3QfiKcFCChR6GUFWikUykteQpCry8i6P4OSvSmZWcl4sp6ECWfrra5o91xbMnoMxvnah7n+/ihJ49c0Y1WeD+oXuk82bFetXRykjyXGXQJwqBDEqAkB/DuDM1zSgWaBTfdTloelAc3Bontc6PqT5qAKo2OeCVL3+HT6UA4FxqafFHqZoZ0bjR1I4Kql5UcbbIOekbpYiN0qRBN6IBCLg9Uak9ya5NwRJYjLa2trcCFrnBDYmTpxoe1BLyI9QLQ/Oyy67zMO+fP/732eH2GL33zT0oSd1j37dKdDx+vXrWUOGPyLfYKd5nskmJ4En7u4nMqwx42zdmq32nzeu5Dw2wdV9XW+wlr23q2/q54yZM6kreJjuvfgOPQjHO/w8HDEczj0CUujVUKvhT0sLPOJfvPhkmztnGkyXDOR5/AwZErFOaL/2neO4ujzut1DLakvgPVjCq61n4RSb1gAbpULkE0xQSfNZDzkNvapyRom8gmI6EwTOrpah69V8fnnfaT8KmhrsxBXOwMsAdQWZQsZJINN5FGVWh6lD/zJa2aupwg8NP08T/EjZwn7rk+QgsHqs74KkKf4W50yaZp/60Ecsx3EBdCYwGCfzkKzkVOn7J9UzUAVMao/uo/dBuQIUoA/d09RQ7y4jdC1o3b6SHXRX2VE9I4qwZZKr/q72AnL+iNE2un82Fei9ro6BNgyo3pHSEX/OjFQJ5zQ6wdiPnEHzzZ+Beu4hNAewITMKYPX5ScckzyhFEni9EoiA1+uV3Jv0PoEtga5wgdT2//BYTZatjmLzPfvss9bV1eXAa2hXxGps3rrVDaqXL1/uZQ29fmSO9fit2EnZpXZlzf9rdz12v917/7f51XlkYVcoB20suOGGG45M06NSDlkCVaUaIBuIBSgSAEviOmLs+AZWfS3z1SR2RYs3/4acZYawcMMogWX2S1r0KkkucF5OQwUhlAJoAw/DTU6qslOvgOd89uppBfU8fpNyjvCDQtX4bjayihESSbU38T0EZV6/XxDdJUZrX/HyfC5j/KB7ABzAZMC4yVnE3tq9p1KVOvBTxbqoF3Xq3v0ACtfdTxpAp5Z75oyZ5LEb2ccJGBuZfxkODVQ0jiIQmUYlaIcco6ptAhNpPTOqz40SNnUOpAQQ1bYhSYBL+cQWyiWJu+sQQwcIDMGnVHghuBHDhU94t11Ly8m/ilQDRkghyB7h0kFP7T9zDpxdoHNYlzyz5CPha+xK2N95yCnkU+CZJCe5OVGQhFfqGcwBeLWfdKRSvJDoLZLAQSUQAa+DiuitkUHgSkCjoaHBOjGUFfulh6P8ewl8heolGd0r/Itsvibi6X4oKAt72oqbgU9/+tPuw0llHtFfozzhYqic4oRrqVs5x8ovAsCmn2hT3/VHPPdQB/HvSKWwb1dccYWrSSLGa59kwzENZbTvyshHyn+oeYeWIDWgYh9qt2ISBkguH7Rlz90+KCNfS4AVGXwHvqiCJTAsQ+yQmNChSYySAmgLqDhwqYIqAQmWTs7JPky8C0wOrFsF1RGwgO8URP1up1ZdOBUfVCmAChi9+zfeyO7ElKajXoAFb8fe5skjfQBk5H0/BBquflNtGJULPCXpm+SmPZbCiFr4BdUCriosOCjUW6J6yKFjV0eSRd8FhNL8PYv1EjflPrQoNS3gRTuGp+HwQuXJoJ7G7J9V5wSaKCOhMUZeaV5i2MI5Et4goCVVYwq7PwHXtH7U0SbJNC1g4i2Twk4iU8GSelCuy4JTe2UoFKs8yqYj71f1S3DqsN5156vmp3e1Ws/e0g5ch65o/kgtLoe1PuZCiqQUkyGH7GRf6HPYR8UvRW+RBA5bAhHwOmyRvfluCB84cgsgVxG/+c1vbHCQWGoYz0tlqJ2NenArtNCXv/xlO+GEE+xDH/pQ8Kt2hO7U4m5ALgQE3o584hclhSqsyvM/2Wo3v7DTzibu3UX/6xoYBjETR75GAc9QFXLkS39rlRgCKAHqMA1fYIef1/zSa2i+cM6FeUf6FKgpF1h4xY7g/V1LoDRVOnZj9/1u0lIf+gfbtzgmQFMBWBmaWcujXFmS1I+QQtHqzpyVZ/wY9lw0GfUj9zs5poUUkFIDIMIPlqCQ+pCuwboJ2ycVI7bYbZMoRtekKXTwo3qqGClQNQVftctQPxYEhNRivQI1lWCVgJfkxkluEqiUxJUnSPo70MXg3L7z4dXg/N4HNP2Kw8RUJEuM41MAADFmSeQ7tNTgbnrnFQffwvckbXC8E57gM1C1wmAJ+KCydI2ohMH/oHX7Stc4iu3q3t1h6zesd79k02bM9NIC5x1iANWe8KUeShaBuleyE2ws04jA1osaJBSSxrh6GJw4Eu/V+oKiqr1BLoiBuuSsVlLXa2hS+2C8HEgG59Uu2appMDVHhMmC+0IJBfmi90gChyqBvX/Xh3pDlO/NKQH/xcgT4QMf+IAHOpbDVLFf8jz+ta99zeqIxfeDH/6QLehbXe0mJ5qvtXiGLNmR7K0eriVWwQK7mzKEiIm7syLUEDyR0yyGqQrG9ntXuiNX82v188jV8uYvSXNELiFkKC43EQqKLTcjAkFaqIfLSXnFcMj9hK4pn3sf51gMqso70L2ShuIHptlJ58Gt3WU8J7knwU63oSBOeQVeZLYcpCEL2vB1kQxAK9sTyxrRbaxBNvuwSwVAQQcgq0CcQS2atQCSZupM9QkEEG5IzFcPKqOtbbZ7/VZ23+VsVLzW8qu2Wd8zYy07Dn9TzXXWgKuIMsAwQ1sqGIcP0qR+npLizwQo6njVUGQcA/1NKfgxrhG2mt16KdoDw0bT1WR5vw/cN4jdwvAfi7MkAHFodwTMgjT0rECIfppIIiRkWKTcQfojVV4aQ3o0gUZ1umTan3KkkqvYSigkSz3YrzVjTC6P/bIDqyb1jb5vHey1W59/3CZOnmIXTZtinbQ3541BxuRROCPXANPeAuC7DzDWz/kYsYIy+GIr5XutPdNl3YmcbSm0YZhfhjFjpyjsKFASlxc8I2AtE+VBzksWAraCcMGnbAOlYNWGgyBxTEzOZp4hnYxdgfvrcMg7NT3aWokRWpNnn2YFUI/vN3mszyWJ9ckcTvC8SRVxc4F+WbLNUlwd86gxUWetiXrbwU7ZLvqV5wLbGEBfBFmnwqxmQ4wfEqjNQcLsIQh2a4Y7QauNij4iCRxQAhHwOqBo3joXQvZCqgAtpN/85jddnajA2Yqvd8opp9jzzz9v3/ve9+wTn/iELT7zzFctsiP1dvhCPFKewzkn4OVl6iGt/zz8PGlR1zkepHvPHU7BUd5DloBYC/l6+9nPfuYxPL/whS/YzJl4MmfuDFXFChhpLMRw3Hvvvb7R4sorr/QA2QJbuhaCpwONmWCUwvGQfci4asyBHNWh39fw/cHHvvOvPhKPgpmz75bUCh9jNVU7k/zbw5UEgbjrQECV3YMslinLi6F5YYWteGSZrXn6RevctMt38Smu4s//9/et8LOYzT79ZDv93WfblHNOIfj1WNAD7cGmp1yLc1HQBtjOQYW3EiCh3XvO7EgO3kR1SDwKiTct5EkAgDM8fkrXBGGC3NVs+nhV8jKqZ3U/nfP+9eIBfuVLa+255zcAmlHf4g4iG+9ztk47RsWpOUzi78jHhvpR4HJOzDVQsCiOTuUN0hdJkfxl3HXANFcAhXX1STvv/JPxTcbOTLVWWavt0FgCs3U3iZiUMOo9ABMi7ABKKJUMIoWUNN77kmoPWoBQyKe+pABbffZ0+7P2fx691dZ1d1pzsoUdlgAhxlDBzfvjeUtTfhbAWUbeZQoPgBeVMOYCXs5c6ZnBKwVgbKhLWhsOa4sY+I2qbbI/X3qd1bTM9DBLUqWqB2oafBY1KOETjXv3JmQi2FghxhR+fZk72pDAPa5z5jt5tfvTPfZTiobTcSGXlH1ISXyLUiSBA0sgAl4Hls1b5kq48PlCyUIwCdutj3/84/6wFkOhXY3/9E//ZM3NzXb99dcf9375A4onoB6D4gOUNBEDw929v6/9fPR2ZCUgVYl2uD788MP22GOP2R/8wR848BqpFrfpYf7IRYk2J0h9/Sd/8icOKpRfAExjFqz8I5XAmO63CId5RjwZXjzoZzhD5IKixCIs5iiuxRj/VvXoB6WKSxSxVaLyzQCt2267xV546jkbVcnauSeebhPPPNdWPf+K9fT32klnnWY7Bjtt9eZ19j0cDzfdN8suv+pKO+usxZaAAUvTP0x+WIwDHkqNc1UZq77Camu5Vf0Z6hIE07sAgYIxq53aySfA4r8rOH69KYYasB+v+L+95U77wQ0/JUg4/U3VwWDyNyQmh+tlACdnqU0t0t+VXqgo6UCigg+02AAvwvoQ5xIezfNZrBbghGd5ZDahtdYaav+a8FAzHVjW0BH1QZsbhKkE4wRCRbKlKTqpV/Uap/alAyEQgVSM1QXQ0oDGXe0d9vxLqwBZBKvGFUeKqAQKpu5K2DixOBnTDONY0q5NypRsxVglpBKt1iHbQFmVyYlrd65AWXFiThJjdMNq++wFajXRD3AHoR2v3hux7Bog7tJolWFJyyVs2jiXh8XK2SDs3aB1JgHtjL1s9OTA1pPfF0i1ema/jzDbfiejL5EERpBABLxGEMpb7ZQWSNlj6VduyFSEqqAkdl+/+93vfJH91re+ZePGjTvu3UtoseaJznOV9mLvwwNQBsJ6NEYPr6M7PCFIF/OlpLlzoKQ5JDb1oosucie8N998s2mjwvTp032eST2pUDPHIwFvWIypn5d2Doq5qAEgpVglY6h/MoW4vXLv4/br7//ENu1px3nwe+3sU5cQMH46uqZY4Edsd8xOunKpndlSb7u3b7GnX37Wfv/k4/Zf3/mB9W3cbBe9/0pLjG4CaAAFAF6D1KmJ68CAOpv4VoL5kk1ZAK/4ThYBsDhUSBzZxrDF8qVaaikAw+tLOJJFZVuHc9M8LFwMdepl71lqC05caJUc6lQYJCGTEv1W+9RKtcLbERffBLjgXypDu/QdgFE15kJ2eM5HgfrAA0/ZMy/g0JbySgPIFESVoM9KYatlq6XC1V3vMcfOBHquA79phqgkHk+84K0AX1TsJ8Y0NdsZ+Bx8z6kXoRLED5rDOlSNSJvonf7P69LNjLU2YgQ8YtAGn70UVYCp6uddas2Xtm6wn//2N9YPYpQj1wI+AsWHlgFpul+KSkknaBWjA/BLuJxQkrIpoxDL4WiWkum4+helSAJHWgIR8DrSEj0O5c2dN8/j6NUOC16sRVZAbP78+fbv/Jq/8MILvXXh4nscmupVhku1f1YfbDzS9z7gj1e73gn1CkwphWyWGFGl0MYrBO86J3ZMNl4Kqi4V9X/8x3+4D7i//Mu/9HmleaQxlEG5O1vVTccsienQ4svqSDsEPLJ8y/ejggN87Vy+3n71g596bMD/6y/+jD4swv4KOx/svCzXh5f1hO3B1cQgzj0zgKTWk+bapfOn2wlnLLLf/fyXdvfNt1oGr6DnX/t+S05sZgcjIE9VqX9iYFis1XvhB7VDUlTYK113FR3ATMDHXSyQAdd1wUWhiNeRsKvHHQfuMVC/1eMV/z0XX2QXXfguYMUgTj2FaGiT6qFNDis0MGoPQKPiSAnoVcbrvZyPCUlxXjKTmnZwsGwdHT32Ip7w+wf0A07zIWik36pjvcQwIus8RQzQ8RxTqYDtnBhPivIkpSaN2D9pfJT4EFulnaOCgyWcr5aIw9la12TT6ycwDthjCRbREQGpVDkb2H5Jwg68yE+DpHpUuKMin6pPspfDXOCS9XNvW32vNQlQcpsAliQS6EK9E5Ys4WCEBgNnnSlNuNpYAF7WY2IvsfNiMPcA3NR/qTgPJR1arkMpKcrzdpdABLze4iMsb/UXX8RD+IILRgx8rYV0DrsY586dy0P4zfFo4HmoR6En2We86kFdvRZ9HHkJhDtVQ1CeghFVkhpRoCxkuXROPt/6AV76vPrqqz0Cwk033WRXXXWVzyfdE5bj2xW5JwRwul8pZGCDb0foXQsqi6WCv5cEBphDAlsxtiRmQDhrn37OfvW9H1lztsE+/Mk/spZzTyLQNm1FlZXMANjSceshslAPRtOVhpQV69jliIcEqZxmzJpt1330Ovvdj260B2+/21omT7CTr7zEN4CkuEeG+0UWZM3fIm4yUhnxYbBELM5F/tbk5iHF35nYLrl+UDgfh2YygjrEJNyieJb6DGpS23Rz3ApseBjE1itOv9PEfKxU9oC5sLWC4UvjsT+OMXmhIDs3ykCtJraLWD3kw25pcAwyw4hdNl6EbTKYoESiljyAmFIfBvxdqKEJ4YTfiYpUtgKa3C71nsBbjkYMArLz2FAN1iSth8/V3Ttta0cb7QOe6EXf/aV+c6yyy6iAwyTTAqkuBXHS7Awo4uW+KLBMBqkvpVpMAHLTYgeLzEfsz+I0QmXGBbb4J59aMdi4POcLqAoF4mIwgVnkXaDtiV7AKZrCWkqtUU2U67s2xWzRmWSBOS+6PWQgaZ7madw3+KCizifZtJFBZdnvbkH8Bwj1qz9lgTH+Kcm+y59fQme0IUjBteqX6COSwIgSOPSnwYi3RyePtwS0UCqennaehWzG0Db5A4sHhj7fLKlUVU/JK7QeYno8R+nYSEBzRHNBrkeUgu3xhH0BmEj9KL9vq1atsrVr18KCdPgOSLFe06dPd/C1efNmN8zXjkfFS8zl2AXHYqxjsWcCdipLLx27HRiLWsikveFP6pKDVLcxYtpoSS84xcQXqJTi7h57+o77bM0rK23pZZfbhJPmW3txAJCg3WmomnAnUWxIshOPtmcxnK/FtghbrgFYox523RUANKMmTralV33ADbQfo6zOtRuNTbiG6zmr5AEf2BApSPcAC/og7Eg/i36e+ITgG16AAvLKsauU5yUMs8uEmZFj1QPJwgdi7xuyAlRKTrzxn/7yEo7JZPhbryW+Kn7JBAL0ZyMVmZzSJpLaJaxx6AWoEKInLpcdACwYMb3UuDKG56UiOwXxZJrMSK3Whfx6wCDYVrHTLxHvt0wWcAo7l0ceOeTaz2c/n32sFN3I/fHVr9jvHn/Y2gsD9squTXbDXb+0ZzescGbPd7wivwqNjSnAJH/nklMegCqzf/9bRx4xKhDuCdTU7GREhtoYkQI0ZzCwr4WZq+Gl70Bq+kl56PwqMrYC3KXTSavNEEMU9as2VWhjDqewVIvb2HjWGpFNHepM2fhRE/0KODZa4zJVeQHtVxW6qnA5UweMYBamra4EOzpI2wC0Uicz1H6vA0yNjb6KKQsO+Qj++YXoLZLAQSQQMV4HEdBb4fLBQNXBrh/rPvqzigdv7DBYgGPdxrdjfeE8CD9DEKTvYrWWLVtm3/3ud23FihUmtfWcOXPsk5/8pPuGKwOkFGT997//vfuJe+9732tnnHGGDbBDUnZgKkMvBwwIL6xDoG0f33GkpMpCi11THvZBXsSzGE+jNHLWZOsLK20dOxhPOfkUm3HqQiuzOJehf+Is+CXUR45nABBSmZUFDlg8FXxaC6v7yNKPAgDOWNwknHHmu+zeB+6xlY89Y0vmTGHXHfCARdvBFNmKuKPACQogC9ADtqkB2MnY252BZdhBGE9aDk/ncVCBxz7U4j6CCLhjSFIOvfgD4VNgRUkMlgzABW4E4KTbK+EGoRRrdnWdMrz4wjp76ukX7IJ3n2OzZ02zImGZpBINiijYU08+bxs2rrPzLz6dsGITbDAPowNbJncuNJox025HOc4Qi4S81A7q1VXJR05vd3butoeeeMQ29XRZB0Bu/oKT7PSFi3z+iPX0nbFQQSXZcSlxcxWn+NfAEF6H6jUvyYuXGDDtzJRxvZqjPgqYyfsb2I9rAFvZX6Eebm/fbavbNuLuodsG8Cmi4N8TAEnTKnU2du4MQWrUkPwwYDPBID7+fXMBOxbzbD4oMyYVXHKIqQp3SsqJhVTBJRjCIoiwprkR9S30JmBPNrK1MGFJ/ahgvqUZV80lkVzByKgvQVIzoxRJ4FAkEAGvQ5FSlOcoScB/Rx6lsqNiD0cC69ats69//eu2ZcsWe9/73ucA6o477nDXJF/96letDqe6U6dONYVf+vKXv+zG9nLWKye9Alliy5zRYYESmyYbMrkzERsbgrDDac9r5VW8xQqsk8yVSgAOqf+I6oLhUcE2LF/jrNSZS862ZEujDQwOWAp6LFOMWyaH6g+/q2WoqjTMVRZEKDsg2VFnAGOUgvsAzLspLwOImApwq3/iMVv7IkCuu9dqxjRhM5ZwFZdYL/n7zfflrVlgAeDV+9xGa1+zyYHKqFkTrWn+VEBXgh2IBfxvUcnwlZomSzb7y0fLtxSXwTIu6CWwkgAk6q9FLKJYqzLtjXMuXsKzmIJ+833Zc5vtJz+51SZPnGfzUZkOSlcIkIAQopS8Pf74Srvn/rttxoypdsLs2YwxOxyBq6E6M2DZgkYKFoVJhKIYqiT1nT1vgfXs7rQf3/JLa25qtE9ccIU1jh4DYAvuc/9YyCiAXfugSPiXHqhQxSBxjXFUy1Q/ylHmD6AW9Z/OlkBCvQxqP4xeHTLMiM2jjz39XXb3svvttifvtbY0rF1TCmiVs9bdZVsybo69f9Z11geb11Vf5LNgPZUBN5SXFIFigGVBPIeUfFNEA5nd6yXGatB68e/WV1eGIc2h++RclvbwcpcSAOgGfpBoR6bSvt75V293cBS9RxJ4bQlEwOu15RNdjSTwtpeA1IKPPvqoSY0ohuvD11yDk9ui++z6yle+4q4nrsCHVwK14rnnnutMl8JOyR3F0qVLHQxI5ZiGNROIEAOmV1OT9v0dnQQfwV48gAgvMWrSnA609dgWdiNOnTzZ5p+ywBIN7ItDDVcLkNJOR/dummV3H8CrhYUd/5wwGUAPjLoTGHDJS/5uVIKu+AKANU8eb+MmTbYd7W3WtavDasY2u8NS2W3VZgRYgA1qyIZ+W/6L++2ZX99j/dvbnWGrmTHOTn7/BXbKFedZ07R6Mh2JBHiko8kE9IzUXLJxUlxFihZnJADW29fDdeCaTsIaCQ/JNkoArphPW0837GCyAblg1AZoK8EcVty5raz/sVcDRAoQycBd7hzUSSnmBIak6ZtY12jvW3y2g9amcaNt4dSZtglWTxssmAheT2BCUIVu3OhzgvuVpBoUc0YN/qlzgbcxwBfni4wTo6WbHPDEAawlxkUOTOXKIgZjNXX+NDuz8UzbjJr0hc6ttm1bp20DfE0udXNm0HYm+2x1osfu2fKsrWxbb7XYisWxZxuE8coLasGEyZFzHqZUOx3T9DlWzPPKWQ7Q9kTXWtuU7DE87No2nL1W8jnvFwZ7AF4kWQWMavvQpPkQpUgChyKBCHgdipTeAnmGq3jCJofnxUYMN3wO8xy3Tz3NSeGv4eBb9H4sJaD5IXXhmjVr3EZwyZIlsCssVDBYixYt8ugHTz31lBvUi92aMmWKR0d46aWXXOX4rne9y9VMYrhkwK7g63feeaf19fW5ulK2YEc6aeHLYgOUgwnpRc0k1dS8sRNtCUzPjq3bbExtnbV1ttvq5+FCGlM2vh+7JtifFIbbNdjsWBeqqB0dADD8Wq3bav1d7W7/lccB55raJIAuZa17sHvq6LZsXY0N7By07m27LNvSbFu68LQO4xSXDVRn3gZ27LYBmKb2u5dZceNOG43HdNmJbV22xm7bvctWb99s6Rkt2JMBEaUzk2U5ScBU6twW4qIqhX+nOo6jx5JaUUkMkjYPpLL15B/FMdcwahfbJUCTQFWYRHU2gIF6MtXLBpte1HF9smbCLYIgDAwZgEXwphKroaJW4g7Wo57k/koTsiMHgKlcBrni5ywJkkxTPnsQXpVSQLAagFrT6IyNv/R9zjjWZOusr9ztbZHrDG0qEC6RzVQA/FALEymB2AfuGR7fF5SS4XsN53HzANjy/NSGtzG0jahzAUgUJP7JdvR22GDfHkQ3aKMaa6y+Lm2Tp0+2xIQa69j2rK3f9BQ6XqD3+DrbygaB7ZVe21OH6w/YsP/z6J2WZAumgFcCID2Ar68C5cbT3dSDGlbsmkCnqFOGJybXNqhbB+qRfTMNog/d27dbZUDPTvqDn7DdXV0Qq2xMcNnuL6Lq42z/k9G3SAIjSCACXiMI5a12qq2tzb2QL1682J2kDm2/AJcWxO08QEaPHu0L6f6qjaG5j/1xaMNy7Gt+59UYLu76HOrHS6BJjJUM7+sJLRXODzFWY8eOtd27d7vqUCpE7aKVe4lzzjnHGS/ZfMmjvUJMKQSRfH0pQoLKVDlhnUda2nJLIFghE6ESC/7Y+mb7k8s/4Ybty/Hu3rv7F9bR048vJ8BRpsdG1zaibmQBzpUBbSnbjZ0QK7x971vfte4SHqAwwK5gdL8lJlcEWZuQS1ldDzXI5QGG6ff88Jf2dMdq25nrtJ19XYAVgAFMycyelJ09MMqmx1qsNtloXbSlnlA0J/Fav3a3PXbDr+0e22I78ztY6Pf/iSG7OqlwhyftIAyMysVCCcigFMMgfdrUBXxnd3JxBv67AFHlAfoPw4aiLJVqRea12G3VowprsFENqNRgxoBsMv9iHLSTEQCaCYBYP4C4Yl2UDdPHuEv5F8Nofzdg8le/Wma9Pas518N9Ynlk4E8O2J4CzJDG1nf6AUziMFAvy+9Vj1x0KFxTxe5/cZmlUTODVqwPNuyX//ULe+GWezB8h3HqzRHWqWjbEjttTWEzOxRz1phpAGJhjwW7tbvUaas61trDq56wdS+9YuWuXjZE8AzjnnJDwkZPGWfzUHH39A7YXfc+apPKTbZo4VLb8PTL+FUD1IHCsymozDqcoHZIr0zn5YxLKleYwLIArX4LMK6gp+ClD1TP/guQHa8gtOA+CS4JUIO4rQiw94rt0l5JBY6KWx5wJxWmGEGNlEz5oxRJ4FAkEAGvQ5HSmziPFrfly5fb3/zN37h3cXmnH57kuV5Br+Wl/GMf+5gvuuHiOjxv9P3tK4GQ9VQPRxp/sTACUFqIlQS0xMrIVkusiMCawJnCUk2cONHDUr344ot2ySWXOGDTvYqaMGPGDGe8tEDrvpHq8goO8W34/XJ4WcBASz6XYr0AKULhLJg422bCeq3f1m8TZs60GVNm2xzaU0QV15fugSmptwTMBYQGsfkq9tJzL8AMFW02i3gMwNWHe4U8DkanpnNWjz1YC9v4MnvKtm3TNuvqbLON27ba/euetm5AVw4v74oXCYphwU7YBXWn2Jh0o23HFUMxkQF8cA37pNEAIMttt+19u6wLQBGs7Pt3OgTA+58Nv7HYOxoIvg8O1FhL61T6xI4+2JsyYXJiCVoCwOrrxpYNJituDfbAg8/ZQK4XH2V9fqNiZsZxo7BixWp2GPYDokqoLLE9wzhf6tW0dkWCHvpzA3j5v9Vu+P5W6+h8mT50BxWTB17RwZZOCLKEEFIWWgPEuUyeuxj/DTBY2t367DOWhymM1TbDWPXZjoefsXs3bLEGAI+8/jMhrB85F8fDhJ0yDt9r/UCWiq3duMbufOJ+e2D9s7Y13mPzcH0xl7lWhIHaUe7h1WfPv/yM3bNuOY0t24zkKLviwvfZzNYZVn6pi8gFMJgALPdNB8Caf9HpNhZuLQ1okqPdHOC6gNF9LWDSDeqr/XBsBmBkcjN+Zls6dtvWjdssgX1gbEqtFbHxspW9AMm0jW0ah82gPMZpnyZJYJqyeQsEo3NRiiRwEAlEwOsgAnorXNbiJnWRFrqRkgJia4fad77zHd+ZJhYjSu88CUjVPFIS4BK4CV9JVmExW7L9EhMWsmCaX2I+BLbuuusuN7bXTkcZ0EulWE9QdgH7888/3+fjSHUd7rnhoEv3S43Vi1opgx8o4ixbDWqzMc3jfIF95eXV1jy61c677kqrxfFpGTcSCVmH8z8G8BLzUeros/ZvdVtXT6ed/QcfsOYZ/D0odAz5StiAJfrYpcg6W8Qf1FO/vM16Vi+3sy5ZYrNy77ZVbRtQNe5B3ZeE8WIh3kqMwOe6bNuuPnbRwegAahSQpwdw2JnI24TZM+xDs0+C5YG58T16+8ZAQezHjBnjcheDxAjQSFiZJKos3CqUS81cY18fjcnUpGx00wJ77JE91g6QEWDL4FJhgN186bTUdjWWRRWcyw/abXfebbfeeQvsVwcAQ9AI2ASLVyq34HcszpiiVwOMldwoHzYJAJaiPFmtFWHFRAklhVBhBAUoFK5ISXUOHQ8/RqRJxr+XuSLg5S4WALyxjIJew6wCqmpQKWYaCBMOq+SqRcrNNNbZ4CTtGqQffB/sH7CXl71g659fbScA6i9bNNPmT5lhs1vHu3qwr9JnG3I77DdP3WfLngUUAnCnL5hli6bOtZp0vS296EJLMm5j0mNszcAW2ClYwh5YV8B1DHCsuZ/UrkXGuA9WMnDC5RpGdjoibiFJHH7lkX9PL9fFcDG3ioDvWAFGkGgH+NcA5CMl+iUmMWAlBY6Rjw+rv0lUUYok8JoSiIDXa4rnrXFRDxV/GAxZWGXsGsQ+xC8ND8bPfe5zzngpfNBnPvMZz//W6F3UyqMtAS2gAl8CT2K3fC5Vv8uv1wk44NWiK4C/detWZ1Z37dplX/rSl1ztqPMCanq1trZ6WKrh8/GI9kELn7YxarHUqqkXWCXf0WvjTphhLy1faTtQk7XGGqycL8N2kREP9UlYooScdmLfswfbqD2o3Sq1uCwoYBPFAi1bqjILaxIHpJBf1tXVacvWv2KF5owtvPRsO3v6WMzDAFCwJinUcj2AuDHtsGI33m8P/+C32JX1YbguP1sp2wUASo7FEP0T19jYq8+wGmyTBKqGJrGHYgllcB4m4BDyZ8UXDKqgTgTAxfge47N3Twb/ane4Qf0gHt+1/CfiABhAQYl259nVWYsT1f/+3/7QLnnP6daHYbiSAyfa+u3/v73zAJPrqPL9mU7TPVmakTTKOVhZlmw5SrKcMw444oexMQ+/BR7wLRt434P9zO7H7r63LHyAeWCMAxgb1uCAbRmMjZMs2ZIchIIlW9FWTqPJ3dPh/f7Vc0et0Yw8kmZGM9It6U5331u3btW5dav+95xT//OjBfb6oiUodljFhxlNfk9BTJg4U6E1Q4EH6Lz4wnPt1JkTrKZ6K3XT0oUsINf99zb1F9dnOKrzV2Hy/D8AvZ3EgAwURq3v9HmWhrtrD6bCIWisrrviOruUGJkyNToyVLjUdgV326vrF9rTr7+ANi5lffOL7KzJswBbE6xiWD8rJoyTAnknWAFRQF0TmIjXAKq3bdhlg/tUsMow33Z8tMU2bl1vM0dPw+9rvBUmI8RYZBEEn4FQkf31VQAaoCki4EQ7mlwYIECVJ+4srpSAhOazG5xrAqXSfqUCyH89z4NAaDxssaqAFdWFMGlizhXwwmQt2WpFpw+51NP81FEJ+MCro5LqBfk02QlwSWOxbetW27Rpkw0fPtw5RE+aNMk5SD/44IN2wQUXOG2FmuTeWru5bW6QkskhZwTUWKg3cz91vwTkayTzoYJhr1q1ykaMGOH6kFY5CmDJoV4AQaBMjvMKsD137lzn2yXAJvJUmSSltdEmIKaUCyiOtlUuCHerkxWGJ6QXC5jo8YcGNGLyYzVcpKTAJkwZb28sXWJLli21CwZc5Bz/UUxB2slQh4+XnKgzML6nCgOO+DQJ2IhjgsJBCxMhZkvKikEjkMdKth0fbbYd+3fb9FnnYuLrgxIlZQVFxUAiNCMAq4ICWLwo95TLz7E0oYhee36hVRN6pwZer7LKPjb9ijk24bzZFsQUJ+DUOul5lfn34AT4w3xIjR2gFO2CcFmS9jYAIuvRbAsouAUQyoOfmUg/CzCHiX0rBfipHFwBWB5ktY2KLklbhKq4TkW/PtSDYnHwT7FEUStXBZzk+6TA4hn84QYPKbcrWYmppzOEtpBLcWrrOmZrnAXXARu8f4/dv+hl27m9yvLQvo3tP4CVgAlblF6JNi5s48eOtTNnnmqFmPiSmAObCIA9IFBuGzMsPHgLwA+IFpnH5JGngDNDWBEbMOdC9srtCgejtq1quy18d4m9CQ9Z//Jiu3T+eVa9bx8m1cW2ZsVKm1Q5Gib7YsuDLiQPIB2J51lFMgr1A8TSyZgVwlQv8cuxPg74El53DaRxGoa81rn96lcAZAelnIkWIA1WK5DfHNeeMmCc9cvvC4EvC1C0UlYCpYBsGV5JWfn4f30JtCcBH3i1J5letF8TnAZBb4CUGeg73/mOa4FMkP/4j//oQNett95qCvnym9/8xr761a+6wdsRHrbTVrdEvJ1jR7ubqYZZhL+MZvJvTbOkW7xMmoAy0vd3Efbq/liCRyuhrj1PcvY0FrqStKVaragVjOLteuCBB5z2S8ceeeQR5/wt0C5AJV/CRx991C3SkM+gAJkc6uULJmCm/udpWqUdyfUpU3lHlSinddLKPjyEsDGiwdLyO5ynMZai3TIbPm6UDcTU+OpzC+zcU2dZX4hEqyHajKEJkj1J/k0KlFwnAEAZIs7ERYz6s7qPlYGBOJ5jaK3idY22ARAawaQ4fvJ4/HoiFqPPipghBVM95O+cTz9mMg8M7mMTPnMxYK7AXvzV02hpUjblivNsxmcutLz+RWjUCB8UEZQ5NB1q/s22N/s8kF+mR4CRnMaliBEgkJO7wvAIjGFA41gUs7AAGuATIKVQRhDpw7APQSp1DLI/DWWGAtJD/24Bwup4SdQOgg36p2ckDuDUKsh8Vh8KdHnJG1u83zI7S4GHb701AJxELOp8pLhWAiCulZGgOTRfaEPF7E9dY03SrKJ5Qu77CXXUQP2aAHtp6pTPfc5Di6eVpyWEMVK8xFqO7a3ab6+/+oYtXvqmjR85AvqSeTZqyHCr6YOpeP1u27Rmg20Zt8kRxobQQBXnFaGPKrAiHOFvvfBaG182hsUURIAE9HHnMQdzv5wUJRmq2Nwg9VsBUYRAHdF2qXHkjahu5I/QUQoBX6PKR7NqttyR6crvzaG4Q7uoJyb/05dAmxLwgVebYumdOzWh1tXWumDGcqS/Hj6mxx9/3H784x/b7NmzbdTo0XbjjTe6CVWx92RCai9pIKqHEqD1gNte/o7u1wCvwUpvnikmwhB1TvEGXlursCJMDLytdmZS/aWVKGS1Xme3pTPr2d1lCRgpeeBaKxVvvvlmR4z67//+78yhABDuzd133+3MidJ8CbCLaFVBsk8//XT8gbJkqcrnydYB3OYXAYGKXJDXGW3UZCk+p33MeSo7jIYkBnDHasiy/4QNGj7ILphztj1230P2DrEWB9/+GYv0izgfaNVRjuiOgBX/pgKc4xUGKI++nqEPyhcpglYsjQ/UOy++Yiugxjh93jk2fvo0JmQmX14ShPcCgJgUPmFiSBcLerwoRKibEisfVimqJ8cVVYzfWGgg/F3yMXMgxqGmg0TgyeygnQJAaKg4CyAjoEW7aKf2hQEzYYCVyFOBXjritIv5IvkEdGYDYsfR8sHBBXVFUHGOKIFvgggk+YvJrshTiOkxhFktBShsUtRrZCgglwQkieTUvQEhL8lbSbLOTV7/0UufatuIY75SiLq5xRlO68nZ9CP5fTnuLmSouoTQYuWJRw0Q5iILcHmBISV5moW4ByGZ8JBt7b5NVrVlj40bONIuPu8iGzUMRn5WVvYpLrLpw6fYphWb7UNMkHMGn2WFrCpNssKyiHDprGG1sQNG2oyBU6wQk3OU34rzCGxm1Sn3i+upldqUEAf9St+QLN9pOjm1Q3EvHbyljviqoT6VVk40HC0SUbaWHyrDT74EDi8BH3gdXj694qg38elT4V4UY09Oz+IIuu666+zpp592PE1DIJYUQeaCBQuc5uJb3/qWa1/rQVW/F0Go+Xd/93fOr6PtCeLoRKOh3PlGsEx7UPV0FsffZM//6UX7/sqvMRgzLOpNs5OT5HDPPffYjBkzWgBCJ1+i1xTnaVi8hRjevY3hB3j11VfbKaecAiElK7oAZgMHDrRRrBCUE7hAl/qReL4E0ATM5HyvfF4ZnhBa96fWx718R/upHtLYDASkvdJ0HcBBO0LgZjlTnz73TEvv3mevPUeQ66ICm/HZyy3MqkbxTBkO2AbIL2Hy3w8vU6a+yaLEatRnhDiIAQDMkudfsD89/YyNGDHUzrxonoXKRIAqbRlXknmJGVrmp3xMkmkcshsBOVK8KYYkKh5youVhpaDLKvzEbgeUAB5uLu9Qw3lOmvNlQQkXZ7LPneGDaKskf9bsAbTQPNVDH5qoY0VjHVUUJxXaHZ3jgBamRVYG5gXrrLaeSJVocqJoDBPNjufitBI3h9qYe43mKhzy4e4xmbM1ymrhEADX1T4AllAM33XvW+CbQ39UFODioigC2pLcRxka4eIXxRdt0T80Y9Rbchs5YKB96sLLcMIP2LChwzgP06SxyhbQP3rQWBtRMcyacKRPYoYNYy5W/1bYJkeMC4IKA5ZFHxLFv09M9Snkks/viNqa21SuLf2hk5U7QDU5nkROaoPgpf4pzJm7hvpfcz4VQ5aOiE1Z/eRLQO9UfurtEsid6Hbv3u3eTjVZasAQ6JApSFxMSlruf/vtt9v3v/9956MjMNJW2rFjh61Zs8ad29bxo9mXM04xxBGgJTPQTsE0sa9+r32w7gMNe7lj2dFcos1zxGG2ffv2No+djDvVLzzgJROikjQXhfhpzZw502lHdVz+WwJX6gcyO6ofyUQtKgnt13F3LpOQ+qDKVfI+3Y8u+KNBqxCHemkmZH7TZCmi0Qwr5FI4mBcPKLcLbr2OmH677A9/esbW1O+wefPOt1GsLgSdQQKatBg8XfWsUmPpiUXzIWrCaX7Pxh32xoLXbeELL9kIzKiX3PJpKx5aCd4hRqBMkYCcEGZyMJXrqwXIro5vccBfGmd7EZ9G2CezINgCbY70JdBexNEiAQo0fXd2D0fnhdYSMInj+sxZp9h/v+t2GzN2iDMzyriG3ZRLSkhBm3/+2TZ4aJmdMn4oT1+jC14NSVa2Xop/hMP40XFRCVrpGgdStmdk5XRgL78xC7sA2qwAFf+YFg82gfkwSjqgmESWAm7AViyVCSvFRFwyeowzdUvTlEBDh3EcQJW20f1H21Xzr6aVLKCIFvMpkAT1Bd0wRJvh+CcnXGnuL1pK7k8ajZXunwOkuWCJ7547QrYXq9bi6Mqa0NUSYS3Hyi8g61rc3GZOYFdWzLmN9b/7EmhHAnra/HQCSMADX96EqklR+7zNmwz1W/44ognQKjbvvFwRKK/i9cmRuq3juXmP/LtGKM6CFHLzc0321o/jdul5F9s3/vZaBjlGYY1unZwEGEajufETUwn31usD6iMeeJJsxFYvDiQXQBoA4TnLC3QtX77cvvzlLzuqCO2XOUkTlWeq9PpXd8hYE2sJ/kKODFMzPDxTMsc14r8VLiI0DL5awT4xu/CLt5g9FrPFLy+yDUvet1mTT7WZM2ZbnwgO8jWAL7y3U9uqbNPmzbYGyog331lm2wg7dBqO4Jdedr71n44pvlhEmSmrA3gpYHNMtkRN6tRBq/Gc2VIwgZmXajCpA100C6uS+GbJkTEP4JWRDxQA45iSHo1Wz4ec9lPweck6OG7CSLYhvNAQn5DwN+LvymqxdOEQgHqaTZ0x0kpg8xfHV1NcHF5wyvPyw3IF+gYgQ0CNdrqkD5rQmUlabSFmBSQXEFWMxjjykp4QalZAGA0BnAl4yR/MGfz4nQHwasVnlLFLq0+bcFMQg/+UcdPcooiwTMQcJyfn6GyVLt8/xWFEV4WmKtscwTovKW/2F9Rt5CSxi8u5JHOvMylSJYfw2Z9HXZ32kr6G4FxfyOb2//oS6LgEfODVcVn12JyaSD3NRZ8+hBVh8lTIFjGP1+LzpVVm4vJSWrt2rd1777122223Oe1Ge40SBYWY8Ds/MWwxkAXQOgRWbjGmRCvvW2qnnzYNUxAThBtsu+CqDPjdCQ46vwWdV6LAllYhykwlUKqkPiNALidyB6w4JnClxRnKr5WwMlPnrlgUfYT6nmdu7HyQ3nabhWvy5VLEvCecIM0SPtnQLPEc8JmMYkbCV6ls7FC74HM32bhhk2zj4vds5aJ38PtaZANL+1s1VBF7G6vtse/9P9u0c7NlYgEbN/0UO//6T9v4qadYeQVExPhOpaIZq4dbAg53sS4QZJlrcj2n9XLmNCZggRZVhz4W1qYKerO7QgQJfIGMBAU6nrwCsmdQCv2XjQvp+dH3rFkPt0g5t+OQ3tgQhzpGICtLDRIExIh5XosKdGKA1ZIRHOsb0e7pWH40hmWUgnDUl8+XgyrKr4u5PwfXQXvbSg7S6DwaLX+vrMO+zs22twXqSEhSUwJYMmgI03wmsz85i7w4tjswg3O7zsxXNAFWOKbQbuY7Fn5BKBZJoN1rlAmQsuK0K8yYEVV/RYsnXzgBNg0jqkFLok3CwoJmTgnYfFTVUdJdhM4s23S+SwTCgMRXbylHWbVfzRAAwzFQpekXG0kyaP6a3eH/9SXQtgR84NW2XHrVXg9QaMKUw7xA08qVK00+Xe+99x4ml91uBZq0XD/84Q+df464vOSnc7jklXu4PEdyTIOU88nR6jLecb1VVjIPJJk8pC3IvnEfSal+3iORgOgZBLDuvPNOu+KKK2wizO3qNwpdI+Ckey4QJtOjfFlksv7KV77iAFf/AdAEkFdAyyU+lae7AFdLO3VN4ipqJpUehJ/OAbpQE7rmQ7RLeflZQFk+vNL63lhuEy89zU7f8JGtXr7CNm7YYHXbAP4wwEeG9bc5Q0/FDDnChkB7UMRvBcFWkhZNMRmL0LAQUtpN2npiQky6+NdbIygvCQrLEL+QK+OUT3giJuO4eLK4foLZvymGVgmHsDw0Zm7WVsGfkCiV9shbXqdo1S9aHuxxSeghgpld1jcGlQXXLyEuZLoIYlQApwBPPBHNQp28As4VRCBRdweA+CmaGRAm91BC0kGeR8BOBuAVwBE/CBttJkDoHo6noahQEQIwYZ5PyVgl6TQBJhdDUt/Z9uE31lhSDZt8NaZDwFRgD2CI+qf3kBftemoHqxoJswSHWk0mAbksIIdIAaBZK00WAQTzbEN6lytcPlROS8eFw5C5BgBeqr98rFzCcU6t1b0X7NGKSJ1TDcFqin1pkNQ6ZLSH86sBlXi7AdW416CtEKgZlzy3ktWhMFdytlh3X51Msr/dXxrc3BWa7wV7JRMnZUFDfkoo2vzkS+AIJHD4mfcICvKzHl82EDsPAAAzqElEQVQJaMLUBCpWeq1clA/XU0895ZzqNcGOHj3a0QWIQPVf//VfbSB+Ot0+YbYSkVuF5YZuRjPNmH7qUgnofgtQhdjGjx9vY5tXtUpz4vm3KE8uIJdGTE72LYlzvaRylDoboHvlt/vJRJcRkPFmPDcZKncWhAkltPQm0EMAbVaMINND+02wATNGOzN7Eid8tTMCh1mQ1YweL5Zjr6doAUqXmFmBcWxc010h+0eeSBkAiHO6BgwE0CoLwGh1pMxaYWZsF2gHjJAHeDuaJGghbZq0QZK1nM9DEaIJJHbAYfWK1dcQ4RAiWAXf1uPT8jxrLDjkeSIDwazlmp4h3qCc0ARYpBGDUN6Wr3iPfQ1owbLAWwXqegJfLbxWkol7OZIpUC9RMv5JUwRjfQg/uYzKx28rgykX0lcjdmQmU4hpMIY5kFWMupa6DKqkglTYAcc8HOPfW/Kebccfrx4OMizIyJn7yL8ILwARKCkOl7gF1CnPPubae+BkKyXYdwSsVkfUgShs/ipHvl1OHLoNAp1Sc+m8nNTq54Ejzd3gwA7/my+BY5eAD7yOXYbHvYSWAZeaaBIUlcSsWbNcYOwBaCnGM8HKuV7aLq1c09YysRyn2rupkbpKZe+Pbd13E7z7njsxe/vaqoX6kwescvuZ8nr72zqvy/dpEm0jHbobkABAyLYRQgAAUSjCsEdGOUrzx5WSEmjiWx5mLtfOnIJyvro8OkFnxZjAQ5wPt7mb0EPYzaICM4IfaFbAMJjPpTmSY31Hk54MQT1BG88hn32UJ36psrJiQEy1Pf6HR+2p5560KpVNoGvXoOZLuGfL7RHs4P7xV59FqQ/RpCnwNZoy9EBpTHZaeimm/TRAtE8ZQdJRpaXRNAW5lgCsMEqwRa3jUA4ly7go1REHJVtp0RKVhNaBud7FqhyAhhRAmGZhQrIScFbJtWKG9ReHd85Gu9aE/9ug0gqbMGC4fVSzw2q37LZ6+MeooANGzieLRutl0l2eK0rqzkeMthxI2s+9wOmuCKb9FFr9kmiZDa4Ybn2hl4giQ9jeHIB0GXW/20VZLof/x5dAl0vAB15dLuLuuYAmC2+TlmLatGmOf0kDl3xx5Nel1X3ShOl460m0e2rZxlUYVRnC/dRNEsgFXN4lncaL/tNe6jF9pb0KHma/wGGCVX9aOKBQOfKJBmM50KjVhwJe0iap+WlM4PpsXxIHX8gZ+Oi/EaETNCniAwvyKZ96URq4+Z3PLHJQqbmA4eCyDvxSHjRIbocAokoRxxarI9HyzYcJPxYN2b591Y6oNZiP3xNcEh4I1lUEs+RYnwUsriBnqAuHAEN60WFlX0arGAFdMivLzC8W/iKc7s8661TKE1iDOd61QGQVABdAqqPjoGy5xbv6sbJQhr9I3h5Mu6txytpkyRiM8RE0pMk66N7Xsvx0v4WKNgCoRmEKBO6hAYtyfbH2nTpkovW56U7HVJ9P4Okm5zOF3ERtwXFNTgcga1Yial3rxC3GvIkfnsyzfC/KEMSaskaWjnDfWRvh7om7A66fe2W1Lsn/7UugeyTgA6/ukXOXXUUDriZGASxtSt5E6R0Tt9fDDz9sf//3f39Y0tQuq+QnFOy/gH6CgDrx8OG0W514mR5TVAYAEsTfSrxPTWhU9GyECWOTwjQYB2jJMTvJxkzttDsyKXY0ZURACiBRrGnN52mQDt5EYCV8oOTozz4nb2cP62ipyufVQlBBwK35XADRxIkjbcLEUcAPHUM3VoivJOz5uSCrvecpT45paMhcxVyRAChMo0nkIPeveBOaLsizpPFSkolTplT9zV5PMIvrcjFd3Zs88gE6kSa40JqKADiF1L4MPzFdp8SCyVJ0a6WUAIEx9yBMXnGhpQm5VAzYGl8xAoDHfohhpXMEHrvNu6Yg2Ce9mKl29UC5OsybMcyeYcpwPGW0V99Dkj/3N9NMVZErK7XTT74EulsC3rPT3df1r9eJEhA310033eTi7bVVrI7/5Cc/4W32LOcY7QGztvJ25z5vPvE+u/PaJ+u1PI2X59PlaUrakoeOKb8XbD0XtHn7c/3B2iqjJ+yTL5IYRkX3oKSVdNrSgCMdknVLMEOAqaNJOp/aOOF1wji3y5+LMkQC2gCIS2nFHlQH7hqYywJolMR43rHnjoKcloua5DwYATnsU5bASUQoSQf5z6W4ak5GNSB7SN9yEm76FO0woNdMEIiAqU6QhqwAFlhxYYlOwVWBe6+j0ozliXCLz+ylALMckC5M+UKw9vdNj7GNIqeNFFlJhpA+8b04Wg1C2zUI2o4hMOuXQqtBeU3Ig3MKAGggLBbUECMzD8d+wTj2a2Wzwvu4gnVz+Np8UX1pMwkGSj8WSwG0kE0Srq8YWkPRTTitJGfpfqm4jLSc+uInXwLHUQI+8DqOwu+MS4tHScDqm9/8JgOaG6UOKba8vNwugsleE2fHBv9DiujCHRo2W00cXXi1k7loASlpeqQZTfDdA036VL/IBWH6LuoIfapfCXzJkVpJ5+f2I/VBD8hlc/Swv26epZ81gwzVLqTQO3xmnxgy0H4RoNLcLNj4hCbIR7sWfyLFGhXoKmZCT3J+CllGi0tYDRmBIJ8VdziSRylU11J4rFwZt3uJNh4HMS3IrJhNWQQpWJQGbOSlicPYfERN1XfX5OZ9LR9qLHXMZs7mkI9lPkHDm6EJ8EVO8OIsQzuIQ3wArg4XhDyLIrPqJ9ojSgZHG8GpRazqHBUps3X19CmcuIZECm1Lpopln0krhiutAq6wYkAWLB8Wknc9Cj2nfaOWEey+kRCaOLRuLYhPwCurLuQGeS1raUWbX8LUWRQfKseBODXSlUHfpY15WXTt2tlmAf5OXwLdKAHvSe7GS/qX6kwJaMLL1US0V3ZPAl1aci7zgDyGA1qOL92/m5Q0M/ipqyQgsCT/Pk3+ohYRsPKoIVoDAuX1AJl8BOULpN/adJ5HNyHQJdLVngy8BO0FLZoRh/um9h3c2zo2wbuTvT/QFYQLWKknzRGanAyaFq1sFAuVgmsHAXoK61MYBhwJvArVdSRlK5uTU+eBKgSaWpJgF7hEMQ1btSSbJTevzkYGAiAtZWfBW1Ymygs5Q/MxcWFlmohJCELKQEwar8b0CKjKQ+Pl4kjqecWRLQ2odKtkE1U2KFwF+KojAHee9UnusUSw1kYVJq1/uNryE7ssXD/E0g1Ja6yibEyAGWggcA4jP7EDKkBr8uvS9VW2quM2/uh3R5KX3zPrutPYqU9utDRearHugXrDwfe+Ixfw8/gS6DwJ+MCr82R53ErK1T60V4mO5Gnv3M7erzHSDYh8ONDlfmiE7OAgq/P9dFQS2L9/v4tYUFZW5jRXAlRK4vZymq0ccOCRpSqPjimPl1chg3SmaBh6Ut9yFcz5own2SAa5jk7IylcKXUEAjY6AVz6+UwVwbRXCzVAEpijLi8KQT3zAJkAqYYwyorqX1sV1/pwKtvUVX6RsxtzMud+9k8gXqAJ8KRj24ROwhvecvvwRI5mSrsEmtKUVB6qYLuF+8zWOWztxHHd9tNtehnR2+7q9Fkyw2pJVmgFMq/BnNG9p24UNc91GTIv7IGwGkC1u/MAakk1WuLPS6naFbcGet+29/HXQPCQsXS/tKAC+EPhTErBJp0+0+VfMxjmf2ujaCNbrgmLlb7EPU7X2kkYNJzKd2wwu1TphOSm9BLrUNPF+sfeI+gMn+MmXQKdL4EjGpE6/uF/gySeBAy/tDLwaV50Ict/ZNThqmPRTZ0pA4Egs9Pfdd59t2bLFvvCFL9iECRPcilcBKh3P1ch437VfbPZNhJd67bXXXBB28cJVVlZm4zVqssSvxmkS9L0Hpg5aq46g5vRP2loIRQIe3RbfU2171my3ulWbrQLwFaxqsH3LPhDDqZX1B+yUkg/tl/zinKb3sFfKQoQsMMp9DjzZZp+YbBGUJgJRB7y8420V3mxCRcPsHi1XhJdf1/Cuwz5ApGBKGF+rDH5de7ftt1cWLLaa7QkbPmBcFm/pEk7blQVf+0NRGxAcaf0qx1tVOmGJalzyAeuVxYOhsMDnbUeT7aqtsb5BabYI08QNqUNm63d+iI9cwOZeMttCBVlOMHBdi5IrgFNeHoG+O5J4Lzjw2uZMyvjxsUdgTiBMR/WZKz232//jS+A4SMAHXsdB6CfbJTV0ysFZ4TcyDMTpDKFmeGOWoyuc1wQgJgQIY34iL26FmCFErBrAy4RAIZzpTRAnm9Q6r70eKJLJUJEMlixZYtdee+1BGi4BrFzfLQe4AGSK5ykzos5944037MEHH3T57rrrLmemdGCCc3tyOgD2P7mWuZYtr1UOljT/yLYXrQ879/11rb358uv27nurLPp+lQ3fnrQhONFv2b3Hnv7Zw1a7IGaTifd46qyZNuS6ORaEBsLpXlRgTuH66kGf7AFBBj01AkE66uXQZw584KRMutwFnubAYVP2Fknv5SVBEF0jC0uye72KYRYVcz3qIq1pDCUiNnvKNLvhystZBUrd8KPKsMLSCQHhNhJFoBETo8IpNcW0wjDJwoOUFXBuCWqnAsyUUfy98hULknITlLth21574IlHrb4+68wvZSBkECxMoLV8d60EdOUR0/WTk7RYBzRZMqsKYmkhgv55mi6Voxb6k54k4afjKQG/Dx5P6R/Dtb3JtLWm4hiK7NJTA1qRxWwVxKyR2FhtH66stdUvxS0WKLLqFQHb+vguq5jFSqQRBQAwJpx0jJVJDKAaQ/3UKRLwwJX8uoqKWN6PBkZgS6AqySZQIR8wmRVlXpQjvpjddUzga/bs2fbQQw/Z448/bvPmzXPUJF4sx3zy9dSUC6YOW0fan5eO0//QYtFecU3JaTsAOIhiUgxBxh5kdWG8ttpee3qBPfXYY5bG6XzwgKE24ZyZ1h+m9rcXLraygaNs9qkTbOWWD2wJIYpeWvy6TX13iV1zy81WPnwo6ASfqcKwNeHU3gjrfJIXjXyejyge+zBDwPgAQFNAyDbTwTob9/wf0Sgu6EFyz5VOFMRp3ud2ckA/C4mRiAmxMR7FbDjEon3724DTiq02s9fS0WKCVIflomUFoaQVhPdBHwENRaI/iwrQaLE/xUtUyrZaSTH0pfiLJWqLMV9GibnYYH1oQsM7/ViFOMxi1QWWTwDsTChBecBN6CBUgSDSF+hLiwKjpX58bSflahIlIQFWD2ZmW+ca7M729rdTlL/bl0CXS+CIHtkur41/gQ5LQAPu66+/7ibPc8899yBtRetClFfM9QqcrfiN+t19CZMik1mASaX6o6S9eP+79t7TOGQTd64iv9DKAlHbsS1gP/+H7awGa7BZ15bY/M8Ps8gA3lcBZb4bbOfeKYEt+WcJbKkfyMwo8CWAJUdpJUcfoWOAMB0TAJMv16RJk+xTn/qU03q98MILNnLkSOdo7znsd2+/6ly5ZEtjigZwZgBD8prSJuNgIXIJNnCMeDaNm3fZAoDnCy+9ZJVjh9v8c8+zKRNnWGFpmX24fLXtWL3EBk8eaaffcrVNTzTY+g1rbNHSRbbs9SVWhb/UDTfeYMMICJ+pB9hyL1JFcE4JaAD2xDMF0uCiWvYneJCFDNm6tfP3mB/lg4Gcu4rqElEsVa2ChQYjXUg/IF8hmj440RoAo0lMkQE0UnEZ9PDrCohqQnUGOIq2Iy9CmKZ8qDZ49kWzEWalZyY/aA0igiWD4lsGm2IWTcrnTCZFxafEvEl7uDxaKU/X10E5tBLPMYulVXn+T18CnSmBNp66zizeL6srJfDkk0/aE0880aFLPPvss3bbbbfZ5s2b3YDaoZOOIRNDK2OwVhJpyX3K1i/cbw/cudA+eCFjc24YZHf/fIpd8A9DLF6wzz79v/vbl38xxOZeXm7Ln9hoP/v8Ytu2DMMDvitJWMdBAtREm5+OVQLSdkmb5TnOC2wJMHlaL4+zS1ouz/FeeQSu5JB/1VVXOfD++9//3tavX++CaOt8actOiCR5ALayfzGP8ysEGhAVRe22Hfbso4/Zn/74Z5uJ9u8Lf3O3nX3hXCsd1A9WeVYxIttoIQSegI4Aq0ajhN+ZNHuW3XrnZ+3GW2+1DZs22AMP3G/b1n6Aq1PWLy5I35Zuy70BCy0IdfSAFKDNAlBi4tdLk0Ig8TgjCwAXKzgLwEPAcvi5oIyNF1kkUWaBBGCJYwqjGUni65YsQ6M9CBeDcrRdcGqpHOTpHOFVHG3VGEGjD2qx96tnSOKgqvk/fAl0igR84NUpYjw+hWhilPaiI+mcc85xGq/HMI90h2aiCbCFXoshNWFb3thvj3z5r1ZZ3tc++4PJdvodAyw2rsjCJUxqOHWE+wYtNrHMZn9ppN1177lWgjnnl19+w7Yv2w3eSojSkeHZH4Y7cp8/KY80WAII2rykcDqeg70AmaOHQMOlJE2Xjmm/trFjx9o111xjGzZsMAF/7XMBpgFfvT6pDWwCXqKEkKlLm7Q56ep6e/3ZP9rrr75u8+bMtRs/+1mrGNKPRYIaQhWqhl4aTFlNst6qm/BywpSYyU9jRmy0vIKQnXXpfPvMf/us7du1x37/8CNWvQUNLxqhsIAM/xz4cOoevjtRHt/+Lpwls2cQfywtyJRPmwGq0nUN/MY0Sh0zrOCs3VflHO/DjRHDPx7A1Uhg6yaL0ZZ0TdA2rayxqi1EE0KSMbRoAeIpZn2wKM9PvgROUgn4wKuX33hNpG0lmQm0Kelz1KhRjt1e/jmrV69uOdbWuZ2xD3ICTAf4yWwJ2p++u9FGjim3C74zxkpHathlRFfSBKOJDm1Chrdheefmjw3aVf97pg2IFdkfv7vZ0vuSWHhwxG/x2HBn+n+OUgICXALeHvCSGXHf3r22fft2x+0lzZdA1SOPPOLCTC3HGV8aL/UzcXiVovW65JJLbPTo0fbMM884Z335f3UHmD/KJh/Raepnglv6l883sVkFYS/dsHqtLXltoY0dNcYuu/paKyoscrEFpc1NqX86NQ+6K9jSDQb4PF4exAOaApA1YHJsqk/YzHlz7dJLL7d1lPXaghcs05jAWV2M9DwDAl06weOhOqJad35mafyUBLi0YU0kQZvBQpggKxPjOMzv39tgb7z6qj3721dt69oG16eiON2HWTzThF/cWy+vsz/8drF9vG4f5LFov5sgVc3oRTFbtko8kA7ed/CvA7n8b74ETgQJ+MCrF99FTXYeuFIzvMlP+/RdTtJK+q2J84YbbnD7HnzwQaepyD3XZezEP3l42GrAXvrUOtuzJW3nf62/lfbl3R6zRKZ5cslaL6gbo6xqmmCCSyeiVjKo1C7++hTb9uFOW/HiTsKL0DY38HdiBU/Sorw+IoClJCLVv/zlL/b0008TKLnAdu3aZT/4wQ/sRz/6kQsz9W//9m+2bevWlj4kbdiIESPssssus63sl8mxtrYWXx6My81A3xOt9mlVpHdMn9KQ6bMzNl1Pm1e+V7ZXD+94Rz9TgP8UJKgpnL1lFgvQMQOIqamqzpa/sdSRpM45e44VEQkC1JXVwfLSEIAmQS8Pij+YwodJKaO4kNQtIBOkFiwQ2ycSitmZ5+ITNgbH+4VLbPeHH+HnBKjhmrAzOP+uJr6nWYDS0Tp3RT7JoYm2KKVUF+65G0mI65jm/ikYeJiHu29J1AqjMVu6cBVAcpXFdzVgixTzfcY+/nCLPfP4QnzZ8mzQAMyQANBMpg5wJvm0epjRoKXVT1gtSdHWJGd7d/Xs2NUVbexomc3VOOQj93yvL2tfR5LyeX1V5+p7R8/tSPl+np4vAR949fx71G4NvYdfGTTBLV++vMVx+te//rV96UtfsoULF7qBUIPh0KFD7XOf+5w99dRTtmrVqhZg1u4FjuGAgtTW795vy/+w3U45o9QqxpXyxovJRjMMzsOxDBNTHEMkA3EQkBhisA+6gSvAcnSz8tNKbfCkSlv55HaL78+aLY+hOv6pSEDgW4O8ALmnKa2urrZ3333XgSeZFNesWWNLly61uXPnOn8uUU+or0jbpaTzotGoXUwIqlNOOcX+/Oc/u37nQgo1+47J/O2ZwAX0pBHTNUNo21SO+81+RVM42s0r0yvXfXplcy3vxUP729uUJ3dzmjsgRtbMqJiBHJc5bctu27BirQ2uGGCjTpno9mU4N4nGKgQ9AlGmLQNJaoiXjRhnBx0ZFdfFjBjE7ymilxAAmFBFcUGxTZ041ep37rX1b75H3CEm3TigFbDBYUCHQjrJxx9wijy7f6MuVCBN5O+0iF/RQkcBV87rHVOjwgSF0eiFeElSfznz7LNs9oyZ9s6ipbb6jTU0IGLVVY322ouLWbzZZHPPnWFDB/KyBStEPiGP6HmAqtb6LNrOi0CCBTeN0E6kdG3an0zIz5Df3SAHjY8d9VPUuKt+o6S66WVEm6snsvOAWLuf5NVz2FBf7zY9U7q28vsAzIn1hP+THU1P+GaemA30Hn61bi/moocffti+9a1vuYnw/vvvt/Hjx9u//Mu/ONLMyoEDnRCuv/5655D/y1/+0k2c8s/RhNNWyi2/rePt7uPFL4835apNSdu5odrm3joCKgkmFHqbPvPRJCgaXDpUz8QL8zYFpcJ6629yzsx63c1jefmoM8vtz/dtsertjdavD0F1Dxmw263BQQeSDHRK7bXzoMwn8A8BENE+5L5hiw5ix44dNmjQINdygXcBq+uuu845z+scTQwyTSqvaCg0wQjEX3TRRfbDH/7QacumTp3qjglwKb8mZSVNJNonDZv2q0/pPnR0knOFtPFHZalslavy9V11VH29pN9qr9rTui/rfG2tUwCNUyPaniTs6kVRmKhYvVe1c7c11dbZyMnjLVY5wGmm8tDsFIWL0PAUAMTq6FzQTUSiUE5gnsSxPAyrvUXRdNGno/ImR9tl0qQVFtqgceOsb7TEPn5/vQM0sWKPTR5LJX5fPSKFIX7FPy0cbrAE4KdeGrAI8qVN6LygmMCkyGdhnz528ZWn2e4PdtlLf3zDBg2rtPUffWTL3/3ALr/80zZ2/AAwG5Ql6ST55VfYFi8XfYLFBvkEegwDUEUogcAk0h6ZvL6kz9z+1uHK0i/1fDhtMM+SypHJX2XlNb/gdLgsP2OvlEAP7dq9UpbHtdKbNm2yqqoqN8lIo3X22Wcz8F1u3/72t1veojQ5KWD217/+dcdcLnPR3HnzDqq3N5n913/9l4ky4Ej5mTSZKWj35+/+vDXuZCl+IwPxK0224/1tTLgsEmdezGMySxPRdu82aAwSg23FM1VWurQJtuwkS88VvJnj5KtfB2CqStjGlTvsR7/9gX28eTuT64GJ9aCKt/ND7RHdxk033eQDr+aJwtN6SWT6rjBCAi/6FMHqgAEDHHfXr371K5s8ebJjuPcAlTfRCMzI1+uVV16x559/3vU3/dYEEmJSEZh79NFHnT+htFwCSN51VYbuy7EkDzTJVKpN5alcN3nRTv3WddV/ZUL1Jktd07u2V4ZXD70OyJE8iUkNRZWVFRbbpMFjrGg/dcdHKy+Rtm2QpQYLoobyVjZCQBhgicxB+Keq124hLiGrFavo78vX4VRPX8U5qolRtgF29yKCQQf3A2R2VVkZVCrxfTW2hBWSK7ast92JGmtIEVLHAUoBwmOTj9emo/nMyrLOzp52rvVLzQEqAQpiNBiajTjavTjAAWYN9xqUwkxYMaDQLr3+bHvk4Sft0YdfBKQlbNjQsXbu+ROsoEwvW4BxXrjicH9J26W/ByXulfZsA+B+sGmV1e0nviN8X268AIB1ZfL6jTS/+/bta3k50DV1zOsruXXw+o3Ak/pWLBZr4b/Lzdfed++afQCtI0eOdGXoZUbPlJ9ODgl0ba8+OWR4XFvpDQwaDGpqamCCrjeBME2CP/3pT+3UU091QEiVdG9W5Js1a5abUH/2s5/Zaaed5jQV3sQkTYQm4F/84hfO9+doGtefifvsc8+xUemJTLYJW/PuFrQBvCdjusHqwjCuReX4ddWWWLipwla9vAHuJEAWjlxa86RhmHViFquV+bHJ3lm5177/vf+0alaWHU16//33HQjt25e3+JM46d5mJ/YsSJEoCtHAVFRU2LJly+zUGTOcyVEA6Xv/+Z/O3+uLX/yi6z/igIs0a7E0SWglpOQpkC0+Ocn4ggsucPvVl6Q5+8lPfuL6osCPzvH6amfegtwyvT7cunwPLLber9+tzxeeEggQx1YU361pg8fbecOnW2JftS1+daG9+toiS0ITUcuSv0x9rRXlx6yQuIzxvfUW0yfmx3d2vWWL/vKaBUsjEI8W247aPVYVA3hFYlayr85KMC3GG2qsuKbc3vzhT+0PH75p+1P4R+nazZgEER5UN3ewm/44OQKoXh271u64eLSF0XI1YDYUqI5DmBoHOoVY1ijzqLRhUQDvmKlD7IwzZtmDj75kI8eOttvuuMSBLgvDOhvhdYqXqmQSHRlA9BDgRWOr9tfYQ7+43x781RPOzy4ssIYwDjVLdo0Q9GLQXh/N7SO5V/eAvjSr2trLl3uO913nilNRESAUgsu9HLDPTyeHBHzgdYLc54kTJ7oHX47RWpUmUFVSUmLf/OY3nRbAGxTkU6MBRhOpjreerHS8L1qxf/qnf3JkmYebtNoSnSb2fuUVdvqsKVbzNhNYNG7Xf3WKVc4QUzoKApxy5aqrjvfxWyyt/84Ku+F/nWpFkyBLxTwp3iD5keAeY9v+uN8e++kqO2vuePvxmHtt7579ri1tXbe9faqPZwZrL8/JtF/3W/fUA2DqA/PmzbPvfve79rff+IZ769+5c6dbtfi1r33NgSnFafTexmW21SSjPiTfsEWLFjmN2HnnnedIWOOYI6VpkulS+5RHSWBOyTP9qYxjSerPKlOO/dJWaOJUUvtUNyVdS8BSGokOJYEeTI0hNLNhtA+FmAtPHznJxsUqbcPe5TZm1FgbMHYcmil8dKQAaog7s3kIz64mfJMSe2ps44rVVtav3PqNG2GBQq2QpI74Me4ti7KKMW7lDWh5AXHr1ryP2S7fKqGd6P9xqTWBu+pkao8qsDZAhWu0fjY71IZOyQTqAzBVDCy0gUPLYPFHpmxBOMqCuABIHyeNtBbFhLWKE4trkODXTaj2guFKq6ktsOo6TM2ArJRV87JVA61GAQIrZ3Uj+ZvvT0tVuWdpXrq2bdtu69biJ+agb1smyZYzTogv6rvSDHt9WYTFfjo5JOADrxPgPuvBFbnlV77yFbvnnnuclkErGPV72LBhLW9iyqdJV75gUqv/x3/8h5uYcgd4fZez+1mYKs8444yjkk62vIRlhqK3Kjb7aHu1VfSHRJGxtAngFUKLFWS5WJpwIim0CsF+IUtUYhZKxhioswNuGJvPNrQDZQOjNmR0Xxt31k3URXqyI08CArltPPISTowznCM79z8XTAuUzJ8/32k5pSFVhIMLL7zQvYnPnDnTgReBmlDzeXIIVjm7ySdTpLSjd999twO32i8GfIEqsdzLv1D9zJtYJEWZZ0TGeqzAS+BKwEsmUPnKaPOSrqdNYFH3Xp/6fbikniVAsTMB8Sn174NZMJ8wQSWZmK17bYl9+Ne3rd+ZY232VZc5gvZ6WNjj9GXIOSxfYIqT1y5baUtrP7Qhp42xs2+90hKY50Q1Uc98uhVn8WHBsFVsbbKalZstsXe3ZYb0sSu+cL2dG/+CVTVUw5uVwhwZciAEZHy46nbZsWz0AmlG62xEvxFm2/FZS+9AW1eC7Z/2AhYthL9XME7bqWucwF5o+dasXmFvvvOsXXjxbNuyHTPzb39m35hyhxVVFFqiHjAehc8ssAU1N2UzKEhjStBHpMd9wVRbWlpsd9xxl00/42Krr6m1RMMupyULAIK7OmlskLVAfVn9RL8P11+8Y54ZW8+Q+vWRjDHq/zLpyyIhbZeXvOt7v/3PE1MCXd+rT0y59ZhWeYOAVsSIJPXSSy91GgA52cuE5GkadFxOzVqx9sgjjzgfL02s7SXl1UR6dAnXeTRX0cFm46b3tzUv1dqp1zDAxkJWkADY8TWMySLK9wj+NIrfGON7PsSLGoq1Yiq+J23vv7LLJp9RbgX9YAWDF0kDvYwPR5qOZEA80rJ7U36PpV51lky0CYRJw3nllVe6FY0CKjIvatWizNbSJgm4COBoclGSCejll1+2t956y+bMmeOoJTQJqS/qfCV9amLR1pXJ6/+Hu0ZH7z/GQytlwxXf+moBCCZB2FCtbnClBUvy7eNtmy3eVIv2JsRG/EFeDqIZYhPi+5WXlmwIEJ2WdocQWcQ5zIPTKgmLfRP+jLzyMLknrR8rAmtq99rWnVts3LTh1m/MEAsWD3fPhGhTREzaE1KGVccB/NXW4raQl6nnZYxagW3zqGBxjAUatCgNpUYYDdbu7fX23HOvWSma7quuOss+3LzFHnrsSXv26bfsihvnWUFxf/rPPpbTNLjg2igCs0kcMQLEbGEWMkyfNtmmTJ2eXRWolzNkJu13dyT1I61MzALPw19Rqz6VWj9Phz/r0KN69vSceP1TdfC+H5rb33MiScAHXr34brZ+SKWZ+IgVRQJceqh//vOf27p169zEKO1VPZOneJk0GWrVmgfG2hNB6/Lby9fW/iDoKoAvzOmfHWgPfWmpffCHCpt4SzkDNsArmY+2AJ+IZk4fxYFzK/DxAeNdGhNPoy177CPbWbPfrr5+kvMxcV75HGM6a+ty/r5jlID6jt769fbu+cIJeAm4a3LQZCPwpbfzFStWOG2X9t9yyy2uP+l8AbPWQKj172OsZrunCwy2Tt6LQ0frIFBP6Gqn8UXH53yRFNqnfMQQqxg8yNZCtbF3224bMmqUNeAYX8qLRD7PGTZCZ6KM1qasX13ABsBdFdYGcCgipE4p7PZhysljZWSamI8b319te7EtDj9tKkCGK4pKQmY5gT3ATCr/0La0blvX/qYeUDqI0DhPpkFkAUR3lxTRsWgiGonBWBIiWDaLDp5bsNjWflBrd/2P26wcM2sQ+okpk+faH//4VzTdw3CyHw+dRhRNJxQRefsAcmpf83OsD1c0dAxArSRLGQPIAj2a+8frIhm6Rx4eoHINPcyfjoCzw5zeckhAT8+UxlmN19ICytrgpxNfAj7w6uX3OHdS0eQnBnI5PL8Ko7QoJqTJUDzHGThO/+53v3M+Nz/DpNTVmogAzrmZZJ4NO7OPzbx2mD33i7etpN90G3g+y8vh8tI7o1aPZQd0qfZhRmfVUyHL1997Yq+99MvddtbnJ1jl9JjzR2JYahmre/kt61HVV//RhCMzi/qOQLv6hpzjFd9Tx7VPwbFFJaE8WvEqvq877rjDziBmoadVbathxwLe2yqvvX2dMWFp/i8U5xZfUFjxhy9RQMCgchs9a5q999Aqe/vFV21w5TArQsOlPsy7QlZLoZPxgwKrsOKRnRSi3u0mVcBKnxr8t3C+3776PXt3+TLrgw9YxfRxFsdyp0LCTLhhPQ8UKk1PN+INKnBwUrvy0OrBbcD956XIAS+1SabigDWy+rIA0ClfrddefssWLnnd5l92tk0/e4g14utVUhGzeReOtTdXLrMXX1toQ8aW2cBhouGAEwzzq2I/StmlB1paRtdWyRq55Ql8Avo0HqCiB4zoRnR9EnDvDEDlgf1PqrFM5eobnl+XzuuuZ+WT6uYf73oJ0Nv91Fsl4D2oHvjytBKlpaVu5eKdd97pnOiliVBw7Pvuu89uJViv/Ld0rnd+V7Rfw3WQCSVJKJV5/3OMTZ03wH55zypb+tP1OBlnrJCBO4CppinQiJMxxJOF+dbAAqhXfrDR/vB/N9pZN/exc+4axvEoPi96P+iet96ukEVvKFNv3tJ4yWSoSUFgXX4o06ZNs5UrV9qCBQvcb5mqBeDlw6Wg6wU4ryu/3ta9ftgb2tteHaP02XzAl7OCoXlJYyrMwNA++ezTbNzkifb2ojds88uvczxk9dBK1GM6bKT/JokanYgFbD9+/Pvp1ym2JJv8u+rovvm4Lsa37rA3XnrRanCiP+vKCyzSr9TRVgjkqYfj/qTllPw5vn1dk4J0fwJGeVrlotrJk55qidVfS5Nhh7At67fa228us1Fji+38KyewMrnGQkXQQBQnbOT4Urvqmqm2q2q1LX7nNcyuDWiuWUEAs7/oZFxbKV+Bsh3aJJRQGvOiWxYh7Q9bljmme2Qh4CP3io5suXk9oOVpywTgOrI5M2Xz9VSGzvEJVOlqJ0nS8+6nXiIBaSVyVyJ6wEkPrVIMM9A///M/O3NRZWWlmyy1qkxLluUIrZVs0lJ4vjpd2exMHjMQMwoLzy1dHrIL7pltpQNX2Vu//siWPb/Lpp/WB6fcYgabqL3//B7b+9uNMHnXOqLGeX8zxs753HAL4XzvVAqqaPe8+HalSHpU2U7TRb/Rp/qFtFb6rlWA+hwzZozJB1DarsWLFztqiY8//tgeeOAB58h+++232/ARI9yqQs9RXv1R5/bWJDAgjYtQl3SyCfyLMvhpZTCt9cHUeNE1V9vTP77f/vzUM5YfK7TIJdMsWipCWXF84QKF9qqa/PtDsJfDedUUAZDhhJ8KoFH8eKstfeJZW71mlc0871ybOOcMfL8wrSEvyS3CZxhfxyzoEtg5fkm3MAlNRAT1XZJFATBBUC3gGJ8BgGkEolMQmBVHCuyaKy6xsvI4AcP1gNayqhEgDq9aiBWQ51882UZOiPFSJTMjYaVYaIBNlXN5rilXz7Sjj5GaTzEv+XD9Rz/VjdB2BdAiuoz87Ukpt5874CSwyH08kuSBLZ3nneuN6UdSjp+390nAB1696J5pNVjug3nzzTc7jZZCsXgDwVhYsfUQP/nkk47YUk7SWrIsn65rrrnGBjYz2Hd9sxmEmsehCG/NkeIAmq9xNumyIbb2z7ts7eL9tnfDRzjSN9mbf9pplcOCNv/GwTbs4jKrGBNBY6D37gNldH19T/wreCsBtQJQZmklgS4lmRc//elPu0+R7IqVXpQjIuPdvXu3nX/++aYA63KoF3i/AnJeJfVJJWkKvD7odvTKP+qwbJr0+XDRgPiiOIxBANS4GVPssus+ZS/9+gn7zUMP2MT4xcRenGNlxf1AJFqVG7BiVjiWwq4aieRbBD/G+h07bdOGtbb88Rftw5WrbNo5p9u82661PK32Y5mvTHrQBQM0HOrDlqeLN/f94yRDSUGmvgz3NJlCE4VGMyywRdUURskBMXyx+vfFLF3an521dABx7AGqAGhioRf5aWlJOdxwHOcEBQtXHEu5IKD+Yoyi7YEIi3CIbwn8wl1QV0XoMrdSA23gUKdwk2x6UGrdzzUme6bu1sfaqrY3hnvnKI/2deTctsrz9/U+CfjAqxfds9Z8RFqKrJT7wGoClMpaE6li6cknR0l5O7Ks3mXu5D+MKQws0EsU4Hw8rcj6TwrZrDsHWBwbTJJYeCEoJaLFODMX416Lrwf6AgZ4vWbrzV/TgJ+ORQLeQC9neAFvhfvxViF6TvHFxcX2mc98xvUlgSmBdUUukAnyBgCZeOJefPFFB8AEvKRd1TFpu3L737HUs0ec29zdsnO91iLSA2ljOp6CYytiUy+ew2fMXvrdU7boF49a1QvLbOq006z/8FEW2rzNRjWGrXxnne19fTk+lrvsg3eX2jur3rM0KwHPuuICO/PaK6yQsDr1aMlSaIQjaHvkDSbwJS6rFvaE44g1nNIP9V/aaaJYqYq7AHAIFwH813CQT0AF4/oUvF0hViMnAVDpAHQK0oo5iWWBo557pQwrQC2TBegWZoEBhxsaNSgAONFqZTX2egGQ9k/gDGf+49h+V+nD/PGep7ayHO5YW/m9fSfUM+Q1yv9sVwK8aPWw14l2q+ofaEsCbd0+7XNqbMxHShoMcpctt1VO1+/Lalb0RuzqzMiqQMNis89jAM7wqdGWX81VUf7sAN71dTs5riBAvpyQQIpsIBoIrVAUeBKglxlbIEr7FHrq3nvvdX42V199tTM3CrRrsYbyjGRVn7Qg0pZ5wKs7zNfdcZfEsK45XyFxHOzC3Jjm5UDEvjCguH4qvq1dq9fbhmdesXWL37btrHQsCBfwshCyfXv2WmlZKZorqCVS9da3X5kNGzvCKuefZiPnnGYRjlXH6/BrDPMilA/IyJoXBb54CtwWBqhgfOqO5rZ7jWQacyFB7Fe99LHd++3HodYI2ZSZY/BZ22GNQTjHODOSLLD8eAmywtzqASv3+PIcI0Q92/xtaQkwyzLRDbxcEWXj45G29J1Vdsbckfb1711ogUoCRpMzk+xjMRjuQ5gy5WaWiaAb6MEgrF0B9sADRwsKe2BTen2VfI1Xr7+FhzZAD5jU2AGc6pV6xgPXPJEwFmfr0wyx3ECtZeuupq6+2T/H188lpyInzFeZoOUUP2HCBNcmmRyl+VKgdGm85OeleyNGbTna6/ORRx5xzvPz5893YM1pygBccqYXmBfAd7fuBJCSoH6T8ynSXC9+OaA/OwPODqb4jfzQvqJ8K502zk7vO9Amnn2m7dmwxfbs2GNbNm618L4q6DjKrE+/PtZ/aKWVDx9kfccMtVT/IgiDI4TcQVoEzNYivjxAHhRfvItktUtJro1SyYq5hgbm44k3QtQpQ1ikPoQ8Goe/38bVW1hk8YElY7stFYOPi3pHEyVsjVBEyH9LgYAAkdJYAR9Vf5kc2ZHtH64xAUuEII/FvFiY7GfDhwy10WNGEk4MrjMAqMKJCYC6/kT5fvIlcKJKwNd49fI725bGq5c3ya9+F0pAYCuJf5e0X9JSaTm7VmR5fF0yPep7bhge9TFpwqQZEzAT+NKqMyWtztL5+pSZuzcnzfX1AAd9IhXIfQECsNdnsL1p9Z1AWQOApAFtjLQ3pRCsFoCgko2cgQN+fX0jmkAYwEL4MGE+j7A4RM7pwYKwNaLVrQNc6GUI1y/8wVLEeITfC00aajT8zTNWB9Kr4drlmXxIXAVBjleS5q3aEjVxi+zva1Xv1Fkd35sAYiAms4ImQhpB/slqgkgDMAu5pADiziAp8yQALA95iQoCcbmUBefIKkSQcBY3RpNQ1eITVziMIOZTMV9Gd2DGpNXJcitsChN/nOuwWtTXeHVeH+gZL+Cd157eXJIPvHrz3aPuPvDq5Tewm6uv/uI4hHKAkvZJcyWNmECXkkCZwJmXBNaUz+Md8vafSKux1FppumT8k8bGM5dpnyYt5+8NUGpqBprS8YhaVDoa/RVAO6CnkvoGuYqTCjwqkyxejgCaLBIRIMmXdk3AS2eRR0ZO8VoRUAnYlYUq7mC3/1F/IKQX4CecZnWy1HCAxQxASgsNXLuotnBYlv6CfR1VUKtZoqRQ0vmclwLhpghDJLJaS8u/SwsOyKO8yN1PnSMBH3h1jhw7oxQfeHWGFI9jGT7wOo7CP8kv7Q3kJ1If1DTfDAs65e7mlpf7va3CP+l4W+d01z6B0hycyHdJSY7x7dUge/zQo94Jam02eXrSg9p/0A8vp/95LBLwntdjKcM/t3Mk4AOvzpGjX4ovgS6RwIkEarpEQH6hXS+B9jDUsV75UAx2rCX65x9GAj7wOoxwuvmQ71zfzQL3L+dLwJeAL4FeJYEDyqnOrXZXldu5tfRL8yXQ6RLwtLydXrBfoC8BXwK+BHwJ+BLwJeBLwJfAwRLwNV4Hy8P/5UugR0nANw/0qNvhV8aXgC8BXwLHLIH/DzcApHtkJBtIAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "1439e5e6-af49-4b7a-95ba-ac7cc75a31e7", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "#### Long-Range Measurement-based CNOT with Feed-Forward\n", + "\n", + "We next examine the case where a long-range CNOT gate is implemented using measurement-based CNOT with feed-forward (Dynamic Circuits). In the figure below on the left is a circuit for a long-range CNOT gate spanning a 1D chain of n-qubits subject to nearest-neighbor connections only. On the right is an equivalent implementable with local CNOT gates, measurement-based CNOT with feed-forward (Dynamic Circuits).\n", + "\n", + "![image.png](attachment:1d5e0458-5431-44b6-9bcd-13d142c7b7c4.png)\n", + "\n", + "The circuit on the right can be implemented as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "5c864fcf-0b77-44df-9750-0cd510640305", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "def CNOT_dyn(qc: QuantumCircuit, \n", + " control_qubit: int, \n", + " target_qubit: int, \n", + " c1: Optional[ClassicalRegister]=None, \n", + " c2: Optional[ClassicalRegister]=None,\n", + " add_barriers: Optional[bool]=True) -> QuantumCircuit:\n", + " \"\"\"Generate a CNOT gate bewteen data qubit control_qubit and data qubit target_qubit using Bell Pairs.\n", + "\n", + " Post processing is used to enable the CNOT gate via the provided classicial registers c1 and c2\n", + "\n", + " Assumes that the long-range CNOT gate will be spanning a 1D chain of n-qubits subject to nearest-neighbor \n", + " connections only with the chain starting at the control qubit and finishing at the target qubit.\n", + "\n", + " Assumes that control_qubit < target_qubit (as integers) and that the provided circuit qc has |0> set\n", + " qubits control_qubit+1, ..., target_qubit-1\n", + "\n", + " n = target_qubit - control_qubit - 1 : Number of qubits between the target and control qubits\n", + " k = int(n/2) : Number of Bell pairs created\n", + "\n", + " Args:\n", + " qc (QuantumCicruit) : A Quantum Circuit to add the long range localized unitary CNOT\n", + " control_qubit (int) : The qubit used as the control.\n", + " target_qubi (int) : The qubit targeted by the gate.\n", + "\n", + " Optional Args:\n", + " c1 (ClassicialRegister) : Default = None. Required if n > 1. Register requires k bits\n", + " c2 (ClassicalRegister) : Default = None. Required if n > 0. Register requires n - k bits\n", + " add_barriers (bool) : Default = True. Include barriers before and after long range CNOT\n", + "\n", + " Note: This approached uses two if_test statements. A better (more performant) approach is\n", + " to have the parity values combined into a single classicial register and then use a switch\n", + " statement. This was done in the associated paper my modifying the qasm file directly. The ability\n", + " to use a switch statement via Qiakit in this way is a future release capability.\n", + "\n", + " Returns:\n", + " QuantumCircuit\n", + " \"\"\"\n", + " assert target_qubit > control_qubit\n", + " n = target_qubit - control_qubit - 1\n", + " t = int(n/2)\n", + "\n", + " if add_barriers is True:\n", + " qc.barrier()\n", + " \n", + " # Deteremine where to start the bell pairs and \n", + " # add an extra CNOT when n is odd\n", + " if n%2 == 0:\n", + " x0 = 1\n", + " else:\n", + " x0 = 2\n", + " qc.cx(0,1)\n", + "\n", + " # Create t Bell pairs\n", + " for i in range(t):\n", + " qc.h(x0+2*i) \n", + " qc.cx(x0+2*i,x0+2*i+1)\n", + " \n", + " # Entangle Bell pairs and data qubits and measure\n", + " for i in range(t+1):\n", + " qc.cx(x0-1+2*i,x0+2*i)\n", + "\n", + " for i in range(1,t+x0):\n", + " if (i==1):\n", + " qc.h(2*i+1-x0)\n", + " qc.measure(2*i+1-x0, c2[i-1])\n", + " parity_control = expr.lift(c2[i-1])\n", + " else:\n", + " qc.h(2*i+1-x0)\n", + " qc.measure(2*i+1-x0, c2[i-1])\n", + " parity_control = expr.bit_xor(c2[i-1], parity_control)\n", + " \n", + " for i in range(t):\n", + " if (i==0):\n", + " qc.measure(2*i+x0, c1[i])\n", + " parity_target = expr.lift(c1[i])\n", + " else:\n", + " qc.measure(2*i+x0, c1[i])\n", + " parity_target = expr.bit_xor(c1[i], parity_target)\n", + "\n", + " if (n>0):\n", + " with qc.if_test(parity_control):\n", + " qc.z(0)\n", + "\n", + " if (n>1):\n", + " with qc.if_test(parity_target):\n", + " qc.x(-1)\n", + "\n", + " if add_barriers is True:\n", + " qc.barrier()\n", + " return qc" + ] + }, + { + "cell_type": "markdown", + "id": "d278d6c6-b46b-4be7-8419-942f92f9a63d", + "metadata": { + "hidden": true + }, + "source": [ + "***Prepare circuits for Monte Carlo Certification***\n", + "\n", + "We utilize the methods `prep_P_ij_conj` and `meas_P_kl` to prepare the circuits for Monte Carlo state certification." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "4486c01c-c3ca-47e2-a11f-58134d86806b", + "metadata": { + "hidden": true + }, + "outputs": [], + "source": [ + "def build_circuits_dyn(n : int, samples: List[int]) -> List[QuantumCircuit]:\n", + " \"\"\"\n", + " \"\"\"\n", + " assert n >= 0, \"Error: n needs to be a non-negative integer\"\n", + " circuits_all = []\n", + "\n", + " qr = QuantumRegister(n+2, name=\"q\") # Circuit with n qubits between control and target\n", + " cr = ClassicalRegister(2, name=\"cr\") # Classicial register for measuring long range CNOT\n", + " \n", + " k = int(n/2) # Number of Bell States to be used\n", + " c1 = ClassicalRegister(k, name=\"c1\") # Classicial register needed for post processing\n", + " c2 = ClassicalRegister(n-k, name=\"c2\") # Classicial register needed for post processing\n", + "\n", + " # 16 Paulis with non-zero expectation value to prepare and measure\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " \n", + " for sample in samples:\n", + " P_prep = P_lkji[sample][0:2]\n", + " P_meas = P_lkji[sample][2:4]\n", + " if n > 1:\n", + " circuits = [QuantumCircuit(qr, cr, c1, c2, name=\"CNOT\") for i in range(4)] \n", + " elif n == 1:\n", + " circuits = [QuantumCircuit(qr, cr, c2, name=\"CNOT\") for i in range(4)] \n", + " elif n == 0:\n", + " circuits = [QuantumCircuit(qr, cr, name=\"CNOT\") for i in range(4)]\n", + " circuits = prep_P_ij_conj(circuits, P_prep) # Prepare control and target qubits\n", + " # in eignestates of P_i^* and P_j^* respectively\n", + " circuits = [CNOT_dyn(qc=circuit, \n", + " control_qubit=0, \n", + " target_qubit=n + 1, \n", + " c1=c1, \n", + " c2=c2) for circuit in circuits] # Add long range CNOT\n", + " circuits = meas_P_kl(circuits, P_meas) # Prepare circuits to measure the control and target\n", + " # qubits in P_k and P_l bases respectively\n", + " circuits_all += circuits\n", + " return circuits_all" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "f9277469-cc4e-464c-b803-e11f6ad3603a", + "metadata": { + "hidden": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfgAAAJxCAYAAAAeptNwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvLklEQVR4nOzdeXhU1f3H8c/MZF+ALEACIQQIYYfIjoICBQWVReNaqlgVba2KVoG6VaUosqhUtNattdoaQXHBBQUElCpK2JR9TSIhCTgQloSsM/P7g5KfkQQyyWRu5s779Tw+MHPvPec7OJnM+cyZcywul8slAAAAAAAAAADgU6xGFwAAAAAAAAAAANxHwA8AAAAAAAAAgA8i4AcAAAAAAAAAwAcR8AMAAAAAAAAA4IMI+AEAAAAAAAAA8EEE/AAAAAAAAAAA+CACfgAAAAAAAAAAfBABPwAAAAAAAAAAPoiAHwAAAAAAAAAAH0TADwAAAAAAAACADyLgBwAAAAAAAADABxHwAwAAAAAAAADggwj4AQAAAAAAAADwQQT8AAAAAAAAAAD4IAJ+AAAAAAAAAAB8EAE/AAAAAAAAAAA+iIAfAAAAAAAAAAAfRMAPAAAAAAAAAIAPIuAHAAAAAAAAAMAHEfADAAAAAAAAAOCDCPgBAAAAAAAAAPBBBPwAAAAAAAAAAPggAn4AAAAAAAAAAHwQAT8AAAAAAAAAAD6IgB8AAAAAAAAAAB9EwA8AAAAAAAAAgA8i4AcAAAAAAAAAwAcR8AMAAAAAAAAA4IMCjC4AQP1kZGTU+ly73a733ntPV155pWJjY2t9Xb9+/epSGgAAAAAADcqdMbHEuBiA+TCDH/Ajdrtdr776qux2u9GlAAAAAADgdYyLAZgNM/gBAAAAAGjkXC6XVFoqFZ2UnE6jywHOzWKRwsKk0BBZLBajqwEA0yLgBwAAAACgEXI5nXLt3C3X19/K+c13kv2w0SUB7mvWVNbzB8hywUBZunaRxcZiEgDgSQT8AAAAAAA0Mq7SUjlmzJHr+81GlwLUz9Fjcn66VPp0qSwpybI9/pAs4WFGVwUApsHHpoAfiYyM1KhRoxQZGWl0KQAAAABqQLgPs3Lt2iPHo0/IVXTSsBoYFwMwG4vL5XIZXQSAusvIyGjwPvr169fgfQAAAAA4peLZF+Ra+ZXRZQANxtK3twL+PM0jbXljTCwxLgbQeLFED+BHSktLdejQIbVo0ULBwcFGlwMAAADgF1zFJXJ9/W3VO8PDZR0zStYB/aQWzaUAhvLwAY4KyX5EzrXr5Pz4M+noscpDrg0b5So4KktUM6+XxbgYgNnwrgDwI5mZmbrxxhv1xhtvqHPnzkaXAwAAAOAXXOs2SGVl/3+H1aqAvzwsS3J744oC6ioiQrakRFnPH6iKP/5JKik9db/TJeeatbJderHXS2JcDMBsCPgBAAAAAGgknBkbqty29OpOuO+nXC6pxGF0Fe4JsUkWy5n3WxJaydKvj1yrv6m8z7Vug2RAwA/f4XK55HD41g+BzWaTpbofAqABEfADAAAAANBYFBRUuWnp1cOgQmC0Eoc05FOjq3DP6kul0BqSJmuvHnL8POA/UlD9icD/OBwOLVq0yOgy3JKWlqYAllGDl1mNLgAAAAAAAPzPyeIqNy0RER5reuXKlRo4cKAiIyNlsVj0+uuve6xt4Jwif/Fc/sVzHQBQN3ykBAAAAABAY2V1f6mHoUOHat26dSosLKy8r6CgQFdeeaUSEhL09NNPKywsTOeff74nKwXOzsocUwBoCAT8gB/p3Lmz1q5da3QZAAAAALwsIyNDR48e1WuvvaYrr7zS6HIAwzAuBmA2fHwKAAAAAIDJ5efnS5Kio6MNrgQAAHgSAT/gR7Kzs3XzzTcrOzvb6FIAAAAAeElSUpImTpwoSRo2bJgsFossFveX/gHMgHExALNhiR7AjxQXF2vLli0qLmYzIwAAAMBfzJs3T0uWLNHLL7+sBx98UF26dDG6JMAwjIsBmA0BPwAAAAAAJjZ+/HgdPXpUL7/8skaOHKmhQ4caXRIAAPAQlugBAAAAAAAAAMAHEfADAAAAAAAAAOCDCPgBPxIfH6/HH39c8fHxRpcCAAAAAIDXMS4GYDaswQ/4kaZNm2r06NFGlwEAAAAAgCEYF6M+XC6XLBaL0WUAVRDwA36koKBAy5cv14gRIxQVFWV0OQAAAAAAeBXjYv9UVFSkzMxMHTx4UOXl5bJarYqIiFBSUpLi4uJktZ57kZN9+/bpP//5j+655x5FRkZ6oWqgdgj4AT9y8OBBzZkzRz169OCNDAAAAADA7zAu9h8HDx7U8uXLlZGRofz8/BrPCw0NVadOnfSrX/1KvXv3ls1mO+Ocffv26YknnlBRUZFmzJihhx9+mJAfjYZfrMFvt9s1depUJScnKyQkRG3atNHkyZNVVFSkW265RRaLRc8//7zRZQIAAAAAAACohwMHDmjWrFm655579NFHH5013Jek4uJibdq0SU8//bTuuusuffbZZ3I6nZXHfx7uS1JYWJgCAwMb9DEA7jD9DP5NmzZp9OjRys/PV3h4uLp27arc3Fw999xz2rt3r44cOSJJSk1NNbZQAECDqKhw6pPV+/W3Bdv13eafdLK4Qk0jg3TJ+a11x7VdNKhXC9ZQBAAAprJq1aoz7rvpppt00003eb0WGG/9uNq9102ZsVKRPYY2bDFAA3I6nfrkk0+0cOFClZeXV95vs9nUvn17tWvXTm3atFFISIicTqcOHz6szMxM7dmzRwUFBZKkI0eO6PXXX9e3336r3/3udzp58mSVcL9Lly6aNm2aQkJCDHmMQHVMHfDb7XaNGTNG+fn5uu+++/Too49Wfn1m9uzZmjZtmgICAmSxWNSzZ0+DqwUAeNr2fUc19u5l2vPj8Sr32wtK9J9P9uo/n+zV0H7xevfp4Yppxhs0AAAAmE/SvW/WeKw0f5/y0h9VQJNYhbTu5MWqAM8qLi7W3LlztXXr1sr7YmJidPHFF2vo0KFq2rRpjdc6nU5t3rxZS5cu1fr16yVJO3bs0P333y+bzabS0lJJhPtovEwd8N99993KycnRnXfeqblz51Y5NnXqVL311lv6/vvv1a5dOzVp0sSgKgHvCQsL04ABAxQWFmZ0KUCD25F5VIMnfqwjx0rPet6qjDwNvflTrX79MjVrEuyl6gAAAADviBn6m2rvd5ae1I6pgySrTe2mLFBgdLyXKzMG42LzKS4u1hNPPKE9e/ZIkiwWiy699FJde+21CgoKOuf1VqtVvXr1Uq9evbR161a99NJLOnTokCoqKlRRUSGJcB+Nm2nX4N++fbsWLFig2NhYzZw5s9pz+vTpI0nq1atXlfszMzM1duxYRUZGKioqSjfeeKMOHz7c4DUDDS0xMVHz589XYmKi0aUADcrlcumqP35xznD/tC17CnTnzDUNXBUAAADQeGQ9d7OKs35QwsRZatJzuNHleA3jYnNxOp169tlnK8P9iIgI/fnPf9YNN9xQq3D/l7p166Y77rjjjI1209LSCPfRaJk24E9PT5fT6dSECRMUERFR7TmhoaGSqgb8J06c0LBhw5STk6P09HS9/PLLWr16tS6//PIqG2wAvsjhcKiwsFAOh8PoUoAG9cV3udq696hb1yz8PFP59pMNUxAAAADQiOS/N0cF/12gqMHXquX4+4wux6sYF5vLsmXL9MMPP0iSwsPD9cgjj6hLly51bm/fvn2aM2fOGc+Pf/zjHyorK6tXrUBDMW3Av2LFCknSsGHDajwnJydHUtWA/+WXX9aBAwf0wQcf6PLLL9fVV1+tt956S99++60WL17csEUDDWz37t0aPny4du/ebXQpQIN6ccEOt68pr3Dqtfd2NUA1AAAAQONxfNNyHXjzAYW27aG2d71mdDlex7jYPA4ePKi33nqr8vY999yjtm3b1rm9ffv2VdlQt3Pnzmrfvr0kKTc3VwsXLqxfwUADMe0a/NnZ2ZJU4w92RUWFvv76a0lVA/6PP/5YgwcPrvJVrUGDBql9+/b66KOPNH78eLdr6du3r/Lz892+DqiNq666qtbnHjp0SJK0ZMmSyo1jauOKK65wuy7ASPlNJ0u2aLevm/HMG3px+uUNUBEAAEDtfNCpp3qFR1be/uMf79O7Rw4ZWBGMYgkKVct5ng2hSw9mad/c62QLjVSHB96XLSTco+2npHSUq6y42mMjmkbrlQ7/P7M6OztLQxMS6t2nO2NiiXGxLwkKCqpx2W1Jevfddys3wB05cqR69OhR575+Ge6fXnP/8OHD+tOf/qTy8nJ9+umnGj16tGJiYmpsJyUlhZn+qLO4uDitW7fO7etMG/Cf/oEsLq7+F8uCBQtkt9sVGRmpdu3aVd6/bds2XX311Wec361bN23btq1OteTn5+vAgQN1uhY4l9PP9do4/fNQXFzs1nU8f+FzIq2S7dyn/VJJSQXPdwAAYKiydp2ln2WuBUcLeH/ip6zBYWrpwfacpSe1d+YVchQVKPnhjxUc38GDrZ+Sm5srZ2n1y14ernBJP+uyosLhkee2O2NbiXGxLwkODq7x2PHjx7Vmzal91CIiIvTrX/+6zv3UFO6HhISodevWuvzyy/X+++/L6XRqxYoV1eaGp+Xm5lZ+6AB4i2kD/ri4OBUUFGjDhg0aNGhQlWN5eXmaMmWKJKlnz56yWCyVxwoKCtSsWbMz2ouOjtbOnTvrXAvQUMLDaz/j4vQvq9DQULeua926tdt1AUY6aC1TRR2uCw2Wonm+AwAAA/1yU8ioZlFq7Sw3qBoYyRIU6tH2sp+fpOLMTWo14S9q2me0R9s+rVWrVjXO4I9pWvUbtgEBNo+MNd0Z20qMi33J2TbJXbVqlSoqTo36hg4dWrnPprvOFu6fNnLkSH344YdyOp364osvdMUVVyggoPpItVWrVszgR53VNUM2bcA/YsQIbd++XbNmzdLIkSOVkpIiScrIyNANN9wgu90uSUpNTW3wWury1QqgtjIyMmp97o4dO5Senq7Ro0erc+fOtb5u3rx5dagMMM60Z9dq9j83u33d68/do2suea4BKgIAAKidivselGv33srbzzzztOaNqHlvOZhXcYU05FPPtHXww2d05Ku31HTAOMVd/ZBnGq3Grl27FVpD0uT8bp0cT8ypvN22bZJyPq//XofujIklxsW+pKKiQosWLar22IYNGyr/PmLEiDq1X5twXzo16bdPnz7KyMjQ0aNHlZmZqY4dO1bb5q5du2oM/4GGYtpNdqdOnaqYmBjt379f3bp1U48ePdSxY0f1799f7du31/DhwyVVXX9fkqKionT06NEz2jty5Iiio91fzxloTJKTk/X5558rOTnZ6FKABnX71Z31sy9n1UpcbKjGD6/7hkwAAABAY3Tih5XKeX2qglt3Urt73qiyioE/Ylzs+5xOp7KysiRJsbGxdZr1XNtw/7Ru3bpV/j0zM9P9ooEGZNqPlBISErR69WpNmTJFX375pbKystS1a1e99NJLmjRpkjp0OLXw2y8D/i5dulS71v62bdt04YUXeqV2oKEEBAQoKirK6DKABtc+oYkmju2o1z+s/aZkD97aS0GBdVi4HwAAAGikyo/kad+caySnQ1GD0nR0bc0z5kOTeiosqacXqzMG42Lfl5eXp5KSEkmqsq9mbbkb7ktS+/btq1wPNCamDfilUz+gH3/88Rn3FxYWKisrS1arVd27d69y7PLLL9eDDz6onJwcJfxvN/fvvvtOe/fu1Zw5c85oC/AlOTk5evbZZ3XvvfdWPr8Bs/r7Ixco76eT+vybc2+G9ccbu+vO67t6oSoAAADAe0oO7FTF8VNLFOe/++RZz42/7lG/CPgZF/u+08tuS+7vjVCXcF9SlefK4cOH3eoTaGimDvhrsnXrVrlcLqWkpCgsLKzKsdtuu03z58/XuHHj9Pjjj6ukpERTp05V//79NW7cOIMqBjyjsLBQq1ev1qRJk4wuBWhwwUE2fTT/Yj324gb9/Z0dOnKs9IxzklpF6E+39NJtV3Xy+68qAwAAwHwiewxVnw9dRpfRqDAu9n3R0dEaOXKkysvLK1foqI2TJ09q5syZbof7khQcHKwhQ4YoMDCQD4bQ6PhlwL9586mNF3+5PI8kNWnSRCtWrNDkyZN13XXXKSAgQJdffrmeffZZWa2m3bIAAEwpMNCqJ+7uq4dvS9WCz/fpzifXqKi4QuGhAVowZ5hGXZAgm43XdgAAAADwFW3atNEtt9zi9nVhYWGaOHGiXnjhBXXu3LnW4b4k2Ww2/eEPf3C7T8AbCPir0aFDh2qX9gEA+KbQkADdNC5FD89fr6LiCjWLDNJlFyYaXRYAAAAAwIsGDx6siIgIde7cudbhPtDY+eW0xXMF/AAAAAAA+Krf/va3SklJUa9evXTBBRcoIyOj8tjQoUPVrl07TZ8+XdKp5UouueQSxcbGqlmzZlXa2bt3r1JTUxUUFKRNmzbV2F9ZWZkuvfRShYWF6b333qtTzStWrFD//v3VtWtXdevWTVOnTpXT6ZQkrVq1SqGhoUpNTdWhQ4cknVpq4/rrr1dycrJSUlL07rvvVrY1ZcoUJSYmavz48XWqBYC5paamEu7DVPxyBv+KFSuMLgEwRPPmzTV58mQ1b97c6FIAAAAANJArrrhCr7zyigICAvTxxx/r6quvVlZWVuXxZ599tjL8DgwM1LRp0xQdHa2hQ4dWaadDhw7atGmTkpKSauyrvLxcV111lTp27KhnnnlG48ePl81mc3sPu6ioKL399ttq3769SkpKNGLECL3xxhu66aabJEmdOnWq8iHD3LlzFRwcrD179igzM1MDBgzQsGHDFBMTozlz5qhbt2764IMP3KoB/oFxMQCz8csZ/IC/iomJ0YQJExQTE2N0KQAAAADqac2aNRo8eLB69eqlnj176sMPP5QkjR07VgEBp+bzDRw4UAcOHFBFRUW1bQQHB2v48OFnzN6vjYqKCl133XUaPHiw/vrXv6pz58768ssvNWvWrBqXvS0rK9OUKVPUvXt39erVS6NGjZIknXfeeWrfvr0kKSQkRKmpqVU+lPilBQsW6He/+50kqV27dho6dKjef/99tx8D/A/jYgBm45cz+AF/dfz4ca1du1b9+/dXkyZNjC4HAAAAQB0dOXJE48eP17vvvqshQ4bI6XTq6NGjZ5z317/+VZdeemll4O9JAQEBWrRoUZX7WrZsqW+++abGa2bOnKldu3Zp/fr1Cg4O1k8//XTGOfn5+Xr33XfPujfejz/+qLZt21beTkpK0o8//liHRwF/w7gYgNkwgx/wI7m5uXrwwQeVm5trdCkAAAAA6mHNmjXq1KmThgwZIkmyWq2Kjo6ucs6///1vLVy4UC+//LIRJVbr448/1uTJkxUcHCxJZyyTcvz4cY0ZM0ZTp05V3759jSgRJse4GIDZEPADAAAAAGAyCxYs0OOPP65ly5apZcuWRpdTKydOnNCoUaM0btw4/fGPfzzruYmJicrOzq68nZWVpcTExIYuEQCARoeAHwAAAAAAH3P++edr9+7dWr16tSTJ6XTqyJEjkqSFCxfq4Ycf1vLlyxtd6D127Fj99a9/VWlpqSRVLtFTWFioUaNGadSoUXr44YfP2c7VV1+tv//975KkzMxMrVq1qnLjYAAA/AkBPwAAAAAAPiYqKkrvv/++/vSnP6lnz57q3bu3vv76a0nShAkTVFJSonHjxik1NVWpqak6fPhwjW317NlTgwYN0vHjx5WQkKAbbrihweqeNm2aUlJS1Lt3b6WmpmrixImSTu0VsHbtWr333nuVNT/xxBM1tjNlyhQVFxerQ4cOuuSSS/T8888rNja2weoGAKCxYpNdwI8EBwerU6dOletdAgAAAPBdAwcOrAz1f668vNytdn744QdPlXROQUFBmjNnjubMmVPl/oceekgPPfRQrdsJDw/XggULPF0e/ADjYgBmwwx+wI+0a9dOb775ptq1a2d0KQAAAAAMEB0drQceeEDTp08/57l79+5VamqqysvLFRgY6IXqqhcUFKTDhw8rNTVVhw4dOuf5U6ZM0cyZMxUVFeWF6uBrGBcDMBtm8AMAAAAA4Cfee++9Wp/boUMHbdq0qeGKqaXzzz9f+/fvr/X51X1DAAAAs2IGP+BHdu7cqQsuuEA7d+40uhQAAAAAALyOcTEAsyHgB/yIy+VSeXm5XC6X0aUAAAAAqI616jDdVVFhUCGAh/3yuWwzJpJiXAzAbFiiBwAAAACAxiIivOrtQ3Zj6oDhQmzS6kuNrsI9Ibaaj7kO/VTltiU8vIYzgVNsNpvS0tI81t6clxboRFGRIsPDNeX2a8+47Qk221l+CIAGQsAPAAAAAEAjYUloLdf6TZW3nd9lyHrDdbJYLMYVBUNYLFKoiVIb17cZVe9IaG1MIfAZFotFAQGe+yFwSXK6Tv0ZEBBwxm3AV7FEDwAAAAAAjYTlgoFV79h/QM53PmA5Efg0x5Jlcm2vuua99ZfPdQBAnfDxFOBHkpKSlJ6ertatmSkBAAAANEaWlGQpNkayH668z/nvt+Vc8aWsA/tJzWNlYaYpfIDLUSEdLpDzuwzpx5yqB8PDZEntaUhdjIsBmA3vCgA/EhISog4dOhhdBgAAAIAaWKxW2a65Uo6/vVL1QG6enO8tNqYowMOsaeNkCTQmkmJcDMBsWKIH8CN5eXmaMWOG8vLyjC4FAAAAQA2so0bIettNRpcBNAjrdVfJdtV4w/pnXAzAbAj4AT9y7NgxLV68WMeOHTO6FAAAAABnYbt8tGx/uE1q0dzoUgDPiI6S9eYbZPv11YaWwbgYgNmwRA8AAAAAAI2Q9ZJfyXLxcLl279XzH61SYXmFIhwVuuPYQf2taUsVWqyKcDl1x7GDRpcKnMlqPbXWfnycLOcPkKVziixW5pkCgKcR8AMAAAAA0EhZLBZZUpJVGPKdjlcUSc2iFPDQnSp84T86XlgkRYQr4KE7jS4TAAAYhI9OAQAAAAAAAADwQQT8gB+Jjo7WxIkTFR0dbXQpAAAAAAB4HeNiAGZDwA/4EavVqsDAQFlZ9xAAAAAA4IcYFwMwG17NAD9it9v16quvym63G10KAAAAAABex7gYgNkQ8AMAAAAAAAAA4IMI+AEAAAAAAAAA8EEE/AAAAAAAAAAA+CACfsCPREZGatSoUYqMjDS6FAAAAAAAvI5xMQCzCTC6AADe07p1a02fPt3oMgAAAAAAMATjYgBmwwx+wI+UlpZq//79Ki0tNboUAAAAAAC8jnExALMh4Af8SGZmptLS0pSZmWl0KQAAAAAAeB3jYgBmwxI9ABoll8sl+dqMiuBgWSwWo6sATMHlcsnhcBhdhltsNhuvAQAAAAAAryLgB9A4lZaq4pqJRlfhloCF/5JCQowuAzAFh8OhRYsWGV2GW9LS0hQQwFsrAAAAAID3sEQPAAAAAAAAAAA+iIAfAAAAAAAAAAAfxPfIAT/SuXNnrV271ugyAAAAAAAwBONiAGbDDH4AAAAAAAAAAHwQAT/gR7Kzs3XzzTcrOzvb6FIAryouqdB3PxxScWmFJKmk1KEfdh1RRYXT4MoAAAAAeBPjYgBmwxI9gB8pLi7Wli1bVFxcbHQpQIPbvu+oXnpnh1aszdW2fUflcLgqjx0+VqpeV72vkGCbeqVE67IL2+jWKzspvnmYgRUDAAAAaGiMiwGYDQE/AMBUvlyXp8df3KiVGXnnPLek1KHvNv+k7zb/pOkvbdSVv0rSX/7QRylJTb1QKQAAAAAAQP2wRA8AwBQKT5brrplrNPTmT2sV7v9SRYVLCz/PVK+r39czb2yWw8HyPQAAAAAAoHEj4AcA+Lw9Px5X6tXv6/n0bfVuq6TUofvmrtWI2z7TsRNlHqgOAAAAAACgYRDwA34kPj5ejz/+uOLj440uBfCYnZlHNXjix9q7/4RH212Vkafht36qo8dLPdouAAAAAOMwLgZgNgT8gB9p2rSpRo8eraZNWV8c5nDwcLFG3v6ZDh5umA2yNmw/rLF3L1N5Ocv1mIHL5VJZWZlKS0vldLr//3T9+vUqKChogMoAAADgLYyLAZgNm+wCfqSgoEDLly/XiBEjFBUVZXQ5QL24XC79fsbX2p9fVOtrMtLHKi42TPn2k+p3/eJaXbN6w0HN/ucPeui21DpWCqOUlJRo7dq12rVrlzIzM/Xjjz+qvLy88nhcXJzatWun9u3ba8CAAWrRokWNba1Zs0bz589XXFycHnnkEV5DAQAAfBTjYgBm4xcz+O12u6ZOnark5GSFhISoTZs2mjx5soqKinTLLbfIYrHo+eefN7pMoMEdPHhQc+bM0cGDB40uBai3BZ/t0/tfZLt1TVxsmBJahisuNsyt6x7/+0Zt3nXErWtgnPz8fP3rX//SHXfcob/97W9avny59u7dWyXcP33emjVr9J///EeTJ0/W7Nmz9f3338vlclU573S473Q6lZubq+XLl3vz4QAAAMCDGBcDMBvTz+DftGmTRo8erfz8fIWHh6tr167Kzc3Vc889p7179+rIkVOBTWpqqrGFAmgQX9oPaeSaVXqqa0/9sUPnas8J+mihLm0Rrw8GDPFydd5z4GCR/v3JHv2YVySXy6WEluH6zeXJSoyPMLq0Oikvd+qPc9d6r78Kp+5/Zq0+//sor/UJ9zmdTn3yySdauHDhGWG+xWJRXFycoqKiZLFYVFxcrP3791ee53K5tGHDBm3YsEH9+/fXzTffrGbNmlUJ9yVp2LBhSktL8/pjAwAAAACgOqYO+O12u8aMGaP8/Hzdd999evTRRxUZGSlJmj17tqZNm6aAgABZLBb17NnT4GoBwPP25RzX1Gcy9MHKbDkcVWclP/LCBo25qI1m3dNPndo1M6bAOnp/RZbyfjrp1T6XfnNAu7OPqWNb1upsjOx2u/76179q9+7dlfcFBgbqggsu0ODBg9W+fXuFhVX95obD4VBOTo7Wr1+vL774QocPH5YkrV27Vtu3b9fQoUP1ySefVAn3J02aJKvVL74ACQAAAADwAaYO+O+++27l5OTozjvv1Ny5c6scmzp1qt566y19//33ateunZo0aWJQlQDQMH7YdUQjJi3RTwUl1R53Ol36cOWP+mp9vj7/+yj1697cyxXW3d8WbDek37+/s0NP3z/AkL5Rs/z8fM2YMUN2u13Sqdn6l156qa644gpFRNT8LRWbzaa2bduqbdu2GjdunNasWaN//etfOnHihE6cOKGPPvqo8lzCfQAAAABAY2TaUer27du1YMECxcbGaubMmdWe06dPH0lSr169Ku87/YFA//79FRwcLIvF4pV6AW8ICwvTgAEDzpjFCvM5dLhYo+/4vMZw/+cKjpfpsj8s1YGDtd+s1khHjpXqy3X5hvTt7pr/aHhHjhypEu63aNFCjz32mG644Yazhvu/ZLPZNHjwYD399NPq0KFDlWPdu3cn3AcAADAJxsUAzMa0I9X09HQ5nU5NmDChxgF+aGiopKoB/549e7Ro0SLFxcWpX79+XqkV8JbExETNnz9fiYmJRpfidScdDtlLS6v9z4xeeneHcg/VfgmbnwpK9Pzb2xqwIs/ZsN1uWN+ZB07oyDFzPmd8kcvl0osvvlgZ7ickJGj69Onq1KlTndvcunWrMjMzq9y3Z8+eyj17AAAA4Nv8eVwMwJxMG/CvWLFC0qmv1NckJydHUtWA/8ILL1ReXp4WL16sESNGNGyRgJc5HA4VFhbK4XAYXYrXTd+5Va2Wfljtf2ZTUeHUS+/scPu6V9/bpdKyxv/cWL/NuIBfMvYDBlT1xRdfaPPmzZKk6OhoPfTQQ2rWrFmd2/vlhrotWrSQJJWUlOiVV16Ry+U62+UAAADwAf48LgZgTqYN+LOzTy2j0LZt22qPV1RU6Ouvv5ZUNeDn6/cws927d2v48OFVNqH0F7cmtteSgRdV+5/ZbNh+WAfcmL1/mr2gRF9vPNgAFXlW5oFCQ/vfl3PC0P5xyvHjx/Wf//yn8vbtt9+uqKioOrf3y3B/2LBheuKJJxQdHS1J+v777/XNN9/Ur2gAAAAYzp/HxQDMybSb7BYVnVpLuri4uNrjCxYskN1uV2RkpNq1a9egtfTt21f5+casFw3zu+qqq2p97qFDhyRJS5Ys0fr162t93RVXXOF2XfUVarVqW+ogj7WXHBGhXzVv6bH2qpOSkqLi/4WDRioJTJYib6jTtVdfd5NCyxv3Uj0F4eOl4POqPZaRPlZxsTWvpRkXG1r55/5l1521n3z7SfW7fvEZ90+d9rCm3/Nt7QtGnQQFBdW4h44kffnll5W/4y+66KIqH9a7q7pw//Sa+7feeqtmz54t6dRr5wUXXFBjOykpKSorK6tzHQAAnM0Vv71H4RFNlJefp4SEhDNuA/7KnTGx5FvjYngWr6No7OLi4rRu3Tq3rzNtwB8XF6eCggJt2LBBgwZVDQnz8vI0ZcoUSVLPnj0bfCPd/Px8HThwoEH7gP86/WFWbZwOw4qLi926zojnb5jNJqV6vdt6yc3N1cnG8DXP8Agpsm6XHjmcL51o5K9XrQul4OoPxcWGKaFl+DmbCLBZa3VedY4dPaxjRxr5v5EJBAfX8D9ZktPp1LJlyypvjx8/vs79nC3cl6TzzjtPbdu2VXZ2tvbs2aN9+/apffv21baVm5urUpPu6wEAMJ7zf+8znQ6HDhw4cMZtwF+5M7aVfGtcDM/idRRmZdqAf8SIEdq+fbtmzZqlkSNHKiUlRZKUkZGhG264oXJDvtTU1AavJS4ursH7gP8KD699SHn6zUtoaKhb17Vu3drtuuor1AeXy2rVqlWjmMHvsLiU73JIFpt7F7pcatnMoYAm3v//7Y5joRbVtEhPvv3sSxPFxYYqwGZVhcOpfHv13/A6V1tRTYMVFtq4/43MICgoqMZjO3furJx51bNnT8XHx9epj3OF+5JksVg0cuRIvfrqq5Kk1atX1xjwt2rVihn8AIAGY7XZKv9s3br1GbcBf+XO2FbyrXExPIvXUTR2dc2QTRvwT506VW+99Zb279+vbt26qXPnziopKdGePXs0evRoJSUl6fPPP6/XV/prqy5frQBqKyMjo9bn7tixQ+np6Ro9erQ6d+5c6+vmzZtXh8rqx1VSooprJnq93/rYtWuXLCEhRpchSbp2ygot/DzTrWsuvyhRHz2/tYEq8pz0T/fq139aVe2x6pbU+bn9y65TQstw5duL1Wbk23Xq/9sVC5SS1LRO16L2KioqtGjRomqP7du3r/LvAwYMqFP7tQn3Txs4cGBlwL9nz54a29y1a5cCAkz71goAYLAnX/iPjhcWKT4uXjk5OWfcBvyVO2NiybfGxfAsXkdhVr43RbaWEhIStHr1al122WUKCQlRVlaWoqOj9dJLL+mTTz7Rrl27JMkrAT/QWCQnJ+vzzz9XcnKy0aWggd15XVf3r7ne/WuM0KdrrGF9R4YHKjmxiWH945SfB/wdOnRw+3p3wn1JioiIUIsWLSRJ2dnZcjSGpbgAAABQJ4yLAZiNqaeZdenSRR9//PEZ9xcWFiorK0tWq1Xdu3c3oDLAGAEBAYqKijK6DHjBkD5xevyO3nr0bxtqdf7U3/bQJRf4xqZCyYlNFBcbes4ldhrC4PNaympt2H1bcG6nZ9fYbDa3N8NyN9w/LSkpSYcOHVJZWZl++uknlt8DAADwUYyLAZiNaWfwn83WrVvlcrnUsWNHhYWFnXH83Xff1bvvvqtt27ZVuc1SO/B1OTk5uu+++/zqq2cXxbZQ2Zhr9McONX/1smzMNfpgwBAvVuUdj9yeqtn39pPNVnMgbbVa9Njvz9NT9/TzYmX1Y7VaNCmtkyF933517b/Ci4bjcrlktVoVFhbm1pI4dQ33JSky8tTO1UFBQayzDwAA4MP8cVwMwNxMPYO/Jps3b5ZU8/I8V199dbW3J06cqNdff71BawMaUmFhoVavXq1JkyYZXQq8wGKxaMpve+rXl3bQK4t26vXFu5Wde2p7WpvVoj/d0lO3XdVZifERBlfqvtvSOuvJV7+Xw+HyWp9t4sJ12ZA2XusPNZs9e7Ykub1UTmBgoCyWUx94uRPuS9LNN9+sW2+9tfJ6AAAA+CbGxQDMxi9n8J8r4He5XNX+R7gPwBe1bhmux+7orazPrlWr5qGSpLjYUM24q69PhvuSlBAXroljO3q1z2k391RAgF/+2my0bDabW+f37dtX9957r0aMGOFWuH+6L8J9AAAAAEBj45dJxbkCfgAwKzMFlE/f11+tWpy5zFpDuKhvnH5/TRev9IWG1bdvX916661uhfsAAAAAADRWfrlEz4oVK4wuAQBQT82aBOuVRwfrsj8srfU1+faTVf6sjbCQAL32+BA21wUAAAAAAI2OXwb8gL9q3ry5Jk+erObNmxtdCuARlw5pozl/7K8pz6yt1fn9rl/sVvuBAVYteuZX6tCmSV3KAwAAANDIMC4GYDYE/IAfiYmJ0YQJE4wuA/Co+2/qIZfLpanPZni03ZBgm959erhGDU7waLsAAAAAjMO4GIDZsAAt4EeOHz+u5cuX6/jx40aXAnjUlN/21HvP/kotokM80l7XDs20+vXLdNmFiR5pDwAAAEDjwLgYgNkQ8AN+JDc3Vw8++KByc3ONLgXwuCt+laSt76fp+tHt69xGQIBFD9zSSxsWjFffbnxlFwAAADAbxsUAzIaAHwBgGrFRIXpr1jBt+yBNd/+6q5pEBNbquoSW4frLnb21f+l1enJyXwUH2Rq4UgAAAAAAgPpjDX4AgOl0ad9Mf/3TIM2c3E8bdxzWuq0/acP2w/qpoERl5U4FB1nVJi5CfbrEqG+3WPXoGK2AAD7zBgAAAAAAvoWAHwBgWmGhAbrgvJa64LyWRpcCAAAAAADgcUxXBPxIcHCwOnXqpODgYKNLAQAAAADA6xgXAzAbZvADfqRdu3Z68803jS4DAAAAAABDMC4GYDbM4AcAAAAAAAAAwAcR8AN+ZOfOnbrgggu0c+dOo0sBAAAAAMDrGBcDMBsCfsCPuFwulZeXy+VyGV0KAAAAAABex7gYgNmwBj+Axik4WAEL/2V0Fe5hkybAY2w2m9LS0jzW3pyXFuhEUZEiw8M15fZrz7jtCTabzSPtAAAAAABQWwT8ABoli8UihYQYXQYAg1gsFgUEeO5tikuS03Xqz4CAgDNuAwAAAADgi1iiBwAAAAAAAAAAH8SUNcCPJCUlKT09Xa1btza6FAAAAAAAvI5xMQCzIeAH/EhISIg6dOhgdBkAAAAAABiCcTEAs2GJHsCP5OXlacaMGcrLyzO6FAAAAAAAvI5xMQCzIeAH/MixY8e0ePFiHTt2zOhSAAAAAADwOsbFAMyGgB8AAAAAAAAAAB9EwA8AAAAAAAAAgA8i4AcAAAAAAAAAwAcR8AN+xGq16rzzzpPVyo8+AAAAAMD/MC4GYDa8mgF+xOl0auPGjXI6nUaXAgAAAACA1zEuBmA2BPwAAAAAAAAAAPggAn4AAAAAAAAAAHwQAT8AAAAAAAAAAD6IgB/wI5GRkRo1apQiIyONLgUAAAAAAK9jXAzAbAKMLgCA97Ru3VrTp083ugwAAAAAAAzBuBiA2TCDH/AjpaWl2r9/v0pLS40uBQAAAAAAr2NcDMBsCPgBP5KZmam0tDRlZmYaXQoAAAAAAF7HuBiA2bBEDwAAjZDL5ZJ8bVZRcLAsFovRVcAkXC6XHA6H0WW4xWaz8TMAAAAAwKsI+AEAaIxKS1VxzUSjq3BLwMJ/SSEhRpcBk3A4HFq0aJHRZbglLS1NAQG8vQYAAADgPSzRAwAAAAAAAACADyLgBwAAAAAAAADAB/EdYsCPdO7cWWvXrjW6DAAAAAAADMG4GIDZMIMfAAAAAAAAAAAfRMAP+JHs7GzdfPPNys7ONroUAAAAAAC8jnExALNhiR7AjxQXF2vLli0qLi42uhR4QVm5Q59/fUDfbT6k9dsOa8ueAuX+dFKSlGcv1iW/+0x9usSqf49YjbogQSHB/EoAAAAAYG6MiwGYDWkOAJjMj3mFeumdHXr1vZ06dKSk2nOcTpeWfnNAS785IEmKaRasm8en6PfXdFG7hEhvlgsAAAAAAIA6YokeADAJh8Opp/+1WZ3GvqsnX/2+xnC/OoePlmrO65vVedy7evKVTaqocDZgpQAAAAAAAPAEAn4AMIGsAyc05KZPdP/Ta1VS6qhzO2XlTj00f70G/uYj7c4+5sEKAQAAAAAA4GkE/IAfiY+P1+OPP674+HijS4EH7cg8qgsmfqw13x/yWJvrt9k1eOLH+n7nYY+1CQAAAABGY1wMwGwI+AE/0rRpU40ePVpNmzY1uhR4SGbOCf1q0hLlHjrp8bYPHSnRyNs+087Mox5vGwB8UVFRkdElAACAemJcDMBs2GQX8CMFBQVavny5RowYoaioKKPLQT1VVDh1zZQVDRLun/ZTQYmuum+F1r09TsFBtgbrBwAaSlFRkTIzM5WZmakDBw6opKREFotFoaGhSkxMVLt27ZSUlKTg4OCztrNz507Nnj1bt956qwYNGuSl6gEAgKcxLgZgNgT8gB85ePCg5syZox49evBGxgTm/muz1m21u3VNRvpYxcWGKd9+Uv2uX1yra7bsKdCMlzfpL3f2qUuZAOB1TqdTP/zwg5YtW6YNGzbI5XKd9fzAwEANHDhQF198sZKTk2WxWKoc37lzp2bOnKmSkhLNnz9fkZGR6t69e0M+BAAA0EAYFwMwG79Yosdut2vq1KlKTk5WSEiI2rRpo8mTJ6uoqEi33HKLLBaLnn/+eaPLBIBa27v/uB792wa3r4uLDVNCy3DFxYa5dd3M177Xlt1H3O6vMSkuqdDmXUf07feHtH3fUTkcTqNL8oov7YcU9NFCPbN3R43nBH20UOO/W+3FqoCGs23bNt1333166qmntH79+nOG+5JUXl6u1atX65FHHtGf//xn5eTkVB77ebgvSd27d1dKSkqD1Q8AAAAA7jD9DP5NmzZp9OjRys/PV3h4uLp27arc3Fw999xz2rt3r44cORVYpaamGlsoALjhhbe3qazcewG1w+HS/PRteunPg73Wp6fs3X9cLy7Yrn98sEsFx8sq709qFaHbr+6sW65IUfPoUAMrBOAJJSUlevvtt/XZZ59VuT86Olp9+/ZV+/bt1bZtW4WHh0uSjh07pqysLO3du1fr1q1TYWGhJGn37t3605/+pKuvvlodO3bU7NmzK8P9nj176v7771dQUJB3HxwAAAAA1MDUAb/dbteYMWOUn5+v++67T48++qgiIyMlSbNnz9a0adMUEBAgi8Winj17GlwtANTOyeIK/fOD3V7v998f79Wse/qpWZOzr1PdmCz4bJ9ufOjLaj8Mycot1AN/Xadn39yiT164WH27NTegQgCeUFhYqJkzZ2rv3r2V9yUnJ2vcuHHq3bu3bLYz9xBp0aKFOnbsqJEjR6qsrEzffPONPvzwQ+Xl5amiokLp6emyWq1yOk+9fhDuAwAAAGiMTL1Ez913362cnBzdeeedmjt3bmW4L0lTp05Vr169VFFRoaSkJDVp0sTASgHvCAsL04ABAxQW5t7yLGhcPliRraMnys59ooedLKnQO0szvd5vXS1ema1f/2nVOb/pcOhIiUbe9pm27S3wUmUAPOnkyZOaMWNGZbgfGBioG264QdOnT1e/fv2qDfd/KSgoSEOHDtWsWbM0ZsyYyvtPh/s9evQg3AcAwCQYFwMwG9MG/Nu3b9eCBQsUGxurmTNnVntOnz6nNozs1atX5X3vvvuu0tLS1LZtW4WFhalz58566KGHKr+2DfiyxMREzZ8/X4mJiUaXgnr4dvMhw/r+bvNPhvXtjpLSCt386Go5nedee1uSjp4o0+9nfNPAVRnrpMMhe2lptf8Bvsrlcmn+/PnKysqSJDVr1kwzZszQZZddJqvV/be5QUFB6tu37xlBfnx8POE+AAAmwbgYgNmYdome9PR0OZ1OTZgwQREREdWeExp6as3lnwf8c+fOVWJiop588kklJCRo06ZNevzxx/Xll1/qq6++qtNgEWgsHA6HiouLFRoaWqsZjWic1m+zG9f3duP6dsc7SzN1+Kh7wfVX6/O1dU+BuiVHNVBVxpq+c6um79xqdBmAR61atUobN26UJEVGRuqRRx5R69at69ze6Q11y8pOfUvKYrHI5XJp2bJlGjRokLp06eKRugEAgHEYFwMwG9MG/CtWrJAkDRs2rMZzcnJyJFUN+D/66CM1b/7/6zBfdNFFat68uSZMmKD//ve/uvDCCxuoYqDh7d69WzfeeKPeeOMNde7c2ehyUEebdxu3lMyWPQVyOl2yWi2G1VAbr72/q47X7dQzUwZ6uJrG4dbE9kpr1abaY6O//dLL1QD1d+TIEb3xxhuVt3//+997JNz/+Ya63bp1U3p6ulwul/7+979rzpw5zOQHAMDHMS4GYDamDfizs7MlSW3btq32eEVFhb7++mtJVQP+n4f7p/Xt21eSdODAgTrV0rdvX+Xn59fpWuBcrrrqqlqfe+jQqaVdlixZovXr19f6uiuuuMLtutAwXJJORD9e4/GM9LGKi615Lcm42NDKP/cvu67G8/LtJ9Xv+sVn3F9R4VJCYntZVV77og2Q3/ReydbM7etefO1dLfxr7X+mGlKo1aptqYM81l5yRIR+1bylx9qrTkpKioqdZ9/zwChX/PYehUc0UV5+nhISEs64jcYnKCioxmUWpVO/y4qLiyVJF154oXr37l3nvqoL9++//34FBARow4YN2rlzpw4ePKj//ve/Gj58eI3tpKSkVM7+BwBP43cZUD13xsQS42J/xusoGru4uDitW7fO7etMG/AXFRVJUuXA75cWLFggu92uyMhItWvX7qxtrVy5UpLq/LXs/Pz8On84AJzL6ed6bZz+eSguLnbrOp6/jUx0zYfiYsOU0DL8nE0E2Ky1Oq86eXl5krORr9se6ZLq8G3bkpLSRvN8D7PZpFSjq3BPbm6uTjocRpdRLef/6nI6HDpw4MAZt9H4BAcH13isrKys8v1ZQECAJkyYUOd+agr3T8/Uv/HGG/XQQw9JkpYuXaphw4bJYqn+W0y5ubkqZV8LAA2E32VA9dwZ20qMi/0Zr6MwK9MG/HFxcSooKNCGDRs0aFDVGZB5eXmaMmWKpFODuJoGadKpF/BHHnlEo0aNUmpqap1rARpKeHjtQ9rTb15CQ0Pduq4+Sx7A83JdZXJZql8iIt9+8qzXxsWGKsBmVYXDqXx79R+AnrUdl1Ot4pvLotptXmuUQ5aTKpf7a+mHBVUoqpE830N9cM+XVq1aNdoZ/Nb/ra9qtdnUunXrM26j8TnbUjjfffedCgsLJUkDBw5U06ZN69THucJ9SerQoYPat2+vffv2KSsrS/v27VOHDh2qba9Vq1bM4AfQYPhdBlTPnbGtxLjYn/E6isaurhmyaQP+ESNGaPv27Zo1a5ZGjhyplJQUSVJGRoZuuOEG2e2nNoo8W2hfWFiocePGKSgoSP/4xz/qXEtdvloB1FZGRkatz92xY4fS09M1evRot9YanDdvXh0qQ0Ppfc0H2rjjcLXHqltW5+f2L7tOCS3DlW8vVpuRb7vdd6d2Udqxeb/b13nbvDe36N4537l93Wfpj2pInxcboCL3uUpKVHHNRKPLcMuuXbtkCQkxuoxqPfnCf3S8sEjxcfHKyck54zYan4qKCi1atKjaY9u2bav8+9n2Wzqb2oT7P+9j3759lX3XFPDv2rVLAQGmfXsNwGD8LgOq586YWGJc7M94HYVZ+d70wFqaOnWqYmJitH//fnXr1k09evRQx44d1b9/f7Vv375y/dSfr7//c8XFxRozZowyMzO1dOlSxcfHe7N8oEEkJyfr888/V3JystGloB76dI0xsO9Yw/p2x8RxHRUa4t4aPd2TozS4d8OuUQ/AM06H7RaLpU6/09wJ9yVVThT5ed8AAMA3MS4GYDamDfgTEhK0evVqXXbZZQoJCVFWVpaio6P10ksv6ZNPPtGuXbskVR/wl5eX66qrrtK6deu0ZMkSde3a1dvlAw0iICBAUVFRzC70cf26n7kZuLf07eYbAX9Uk2A9cVffWp8fYLPo2akDzrpkG4DGoby8vHKGVUJCwlnX6q+Ou+H+6X4CAwMlSZmZmXWsHAAANAaMiwGYjWkDfunUprgff/yxTpw4oRMnTui7777TbbfdpqKiImVlZclqtap79+5VrnE6nZowYYK++OILffjhh+rfv79B1QOel5OTo/vuu4+vnvm4K3+VpOCgOuwgW082m0XXXHz2Tckbk3t+002P/u68c54XFGjVW7OGacRAc665eFFsC5WNuUZ/7FDz14/LxlyjDwYM8WJVQN2dPHlSjv9tiNa8uXsfeNYl3Jckm82m2NhTH3CeOHGiDlUDAIDGgnExALPxy48rt27dKpfLpZSUFIWFhVU59oc//EHvvPOO/vSnPyksLEzffvtt5bEOHTq4PZAEGpPCwkKtXr1akyZNMroU1ENsVIiuvaSd3vhoj1f7HT+srVq3dG8DKyNZLBY9dkdvDezZQs/+e4uWfnOgyvGgQKuuvrid7ruxu87r4hvfTABwakO8u+++W+Xl5YqKqv1m2i6XS//+97/dDvdPu/baa1VWVqaQRrrPBAAAqB3GxQDMxi8D/s2bN0uqfnmeJUuWSJKeeuopPfXUU1WO/fOf/9RNN93U4PUBwLnc9euuXg/47/q1by5XNmpwgkYNTtDu7GMaMGGxCo6XKapJkHZ8eJVaxIQaXR4ANwUFBen88893+zqLxaL7779fM2bMUFRUlFvhviQNHDjQ7T4BAAAAoKER8P9CVlaWl6sBAPf17dZcv7+ms15cuMMr/d04JlkX9fXtzcY7tm2qsJAAFRwvU1hIAOE+4IeaNm2qRx55RCEhIW6F+wAAAADQWJl6Df6anC3gBwBfMevefmrbKsKta/LtJ5VzsEj59pO1via+eZjmTWPmKgBzaNKkCeE+AAAAANPwyxn8K1asMLoEwBDNmzfX5MmT2UvCJCLDg/T2rGEaPulTFZc4anVNv+sXu9VHUKBV/5l5kaKaBNelRAAAAABoVBgXAzAbv5zBD/irmJgYTZgwQTExMUaXAg8Z2KuFPvzrSIWG2DzedlCgVe/MHa5h/Vt5vG0AAAAAMALjYgBmQ8AP+JHjx49r+fLlOn78uNGlwINGDmqtpX8fpVYtwjzWZovoEH36wiUaO6ytx9oEAAAAAKMxLgZgNgT8gB/Jzc3Vgw8+qNzcXKNLgYcN7h2nLe9dqYljO9a7retGtdfW99P0q4HM3AcAAABgLoyLAZgNAT8AmERUk2C9PuNCffHKaI0dmiir1VLray0WafTgBH324iVKnz1MsVEhDVgpAAAAAAAAPMEvN9kFADMbPqCVhg9opezcE/r3x3u1dstPWr/NrgOHTlY5L755mPp0iVG/7s014bIO6tCmiUEVAwAAAAAAoC4I+AHApNq2itRDt6VW3j56vFRFxRVyuaTwsABFNQk2rjgAAAAAAADUGwE/4EeCg4PVqVMnBQcT7PqjZk2C1YxQHwAAAIAfY1wMwGwI+AE/0q5dO7355ptGlwEAAAAAgCEYFwMwGzbZBQAAAAAAAADABxHwA35k586duuCCC7Rz506jSwEAAAAAwOsYFwMwGwJ+wI+4XC6Vl5fL5XIZXQoAAAAAAF7HuBiA2bAGPwAAjVFwsAIW/svoKtzDRmXwIJvNprS0NI+1N+elBTpRVKTI8HBNuf3aM257gs1m80g7AAAAAFBbBPwAADRCFotFCgkxugzAMBaLRQEBnnur6pLkdJ36MyAg4IzbAAAAAOCLWKIHAAAAAAAAAAAfxHQlwI8kJSUpPT1drVu3NroUAAAAAAC8jnExALMh4Af8SEhIiDp06GB0GQAAAAAAGIJxMQCzYYkewI/k5eVpxowZysvLM7oUAAAAAAC8jnExALMh4Af8yLFjx7R48WIdO3bM6FIAAAAAAPA6xsUAzIaAHwAAAAAAAAAAH0TADwAAAAAAAACADyLgBwAAAAAAAADABxHwA37EarXqvPPOk9XKjz4AAAAAwP8wLgZgNryaAX7E6XRq48aNcjqdRpcCAAAAAIDXMS4GYDYE/AAAAAAAAAAA+CACfgAAAAAAAAAAfBABPwAAAAAAAAAAPoiAH/AjkZGRGjVqlCIjI40uBQAAAAAAr2NcDMBsAowuAID3tG7dWtOnTze6DAAAAAAADMG4GIDZMIMf8COlpaXav3+/SktLjS4FAAAAAACvY1wMwGwI+AE/kpmZqbS0NGVmZhpdCgAAAAAAXse4GIDZEPADAAAAAAAAAOCDWIMfQKPkcrkkX/vKZHCwLBaL0VUAMAmXyyWHw2F0GbVms9l4DQQAAAAALyPgB9A4lZaq4pqJRlfhloCF/5JCQowuA4BJOBwOLVq0yOgyai0tLU0BAby1BAAAAABvYokeAAAAAAAAAAB8ENOsAD/SuXNnrV271ugyAAAAAAAwBONiAGbDDH4AAAAAAAAAAHwQAT/gR7Kzs3XzzTcrOzvb6FIAAAAAAPA6xsUAzIYlegA/UlxcrC1btqi4uNjoUgCvKTheqg3bDmvDdruOFZZJko4Vlun59G3q0zVGvVJiFBbKr0MAAADAHzAuBmA2JBoAANMpOlmutz7dq7+/s0Mbth8+43jhyQrdNXONJMlms2h4/3jdcW0XXX5hogIC+HIbAAAAAADwDQT8AADTKC93as7rP2j265t17ERZra5xOFxatiZXy9bkKqFluGbd00/XX9peFoulgasFAAAAAACoH6YpAgBMYfOuIxr4m8V6aP76Wof7v5RzsEgTHlilK+/9Qvn2kx6uEAAAAAAAwLMI+AE/Eh8fr8cff1zx8fFGlwJ41EerflS/Xy+udjmeuvhgRbbOu+YDbdl9xCPtAQAAAGgcGBcDMBsCfsCPNG3aVKNHj1bTpk2NLgXwmMUrs3XFvctVWubwaLv59mJddPOn2rqnwKPtAgAAADAO42IAZkPAD/iRgoICvfPOOyooILCEOWzcbtc1U1bK4XA1SPtHjpXqkt99piPHShukfcBbnE6nDhw4oC1btmjjxo3avHmz9u/fL4ej9h+M7dy5U2+//bZcrob5eQMAAPAGxsUAzIZNdgE/cvDgQc2ZM0c9evRQVFSU0eUA9VJW7tBNj6x2a+Z+RvpYxcWGKd9+Uv2uX1yraw4cOqm7n1qjf88cWsdKAWMcO3ZMK1eu1Pfff6+srCwVFxefcU5QUJDatm2rnj17avjw4YqJiam2rZ07d2rmzJkqKSlRWVmZbrjhBjaiBgAAPolxMQCz8YsZ/Ha7XVOnTlVycrJCQkLUpk0bTZ48WUVFRbrllltksVj0/PPPG10mAMANT7z8vX7Y5d4a+XGxYUpoGa642DC3rvvPJ3v14cpst64BjJKbm6v58+frjjvu0Ntvv63t27dXG+5LUllZmXbv3q1Fixbprrvu0tNPP62srKwq5/w83JeknJwct2b+AwAAAAAajuln8G/atEmjR49Wfn6+wsPD1bVrV+Xm5uq5557T3r17deTIqXAoNTXV2EIBNIgv7Yc0cs0qPdW1p/7YoXO15wR9tFCXtojXBwOGeLk67ygvd2rxqmz988Pd+jGvUC6XlNAyXBPHJuvKEUkKCrQZXaLbjh4v1Zx//eDVPh+ev15jhyYyaxmNltPp1JIlS/T222+rvLy8yrGYmBi1b99e8fHxCgoKUnl5uQ4ePKh9+/bp0KFDlddnZGRow4YNGj9+vK644grt3bu3Srjfs2dP3X///QoIMP1bSAAAAADwCaYendntdo0ZM0b5+fm677779OijjyoyMlKSNHv2bE2bNk0BAQGyWCzq2bOnwdUCgOd9/OWPuv0vXyv30Mkq92/ZU6DPvs5Ry5hQPf/AIF11cTuDKqybfy3ereIS784g3rKnQP/dcFBD+sR5tV+gNoqKivT0009r27ZtlfdFRkZq6NCh+tWvfqW4uJqft0eOHNGKFSv0xRdfqKCgQA6HQ4sWLdI333yjI0eOqLT01B4Up8P9oKCgBn88AAAAAIDaMfUSPXfffbdycnJ05513au7cuZXhviRNnTpVvXr1UkVFhZKSktSkSRMDKwW8IywsTAMGDFBYmHvLk8A3Lfhsn8ZNXn5GuP9zBw8X65opK/TPD3Z5sbL6cblcenHhDkP6fnHhdkP6Bc6msLBQf/nLXyrDfYvFotGjR2v+/PmaMGHCWcN9SYqOjtZVV12l+fPnKy0tTTbbqW/15OXlEe4DAADTYVwMwGxMG/Bv375dCxYsUGxsrGbOnFntOX369JEk9erVq/K+1atXa8SIEYqPj1dwcLASEhJ07bXXavt2Qh34vsTERM2fP1+JiYlGl4IGtm1vgW586Es5na5znutySZMe/682bLN7obL6yzlYpJ1Zxwzpe/m3uXK5zv1vCnhLRUWFZs2aVblufpMmTfTnP/9ZEydOVEhIiFttBQQE6Oqrr9akSZOqLEUVHBysP/zhD4T7AADAFBgXAzAb0wb86enpcjqdmjBhgiIiIqo9JzQ0VFLVgL+goEA9evTQc889p6VLl2rWrFnaunWrBg0apJycHK/UDjQUh8OhwsJCv9wc8aTDIXtpabX/mdHz6dtUVu6s9fkOh0vPvbXt3Cc2AusN/CDip4IS5RwsMqx/4Jfee+897d69W5LUtGlTPfroo+rSpUud29u5c6def/31Kh9klZaW6p133ql3rQAAAI2BP4+LAZiTaQP+FStWSJKGDRtW4zmnA/ufB/xjx47Vs88+q6uvvloXXXSRJkyYoPfee0/Hjh3TokWLGrZooIHt3r1bw4cPrwyD/Mn0nVvVaumH1f5nNscLy/Tmx3vcvu7tz/bJXlDSABV51obthw3tf91W3/imA8xv3759+uCDDyRJNptNU6dOVevWrevc3s6dO6tsqNupU6fKWfvLly/XDz94d2NrAACAhuDP42IA5mTaTXazs7MlSW3btq32eEVFhb7++mtJVQP+6sTExEg69dX1uujbt6/y8/PrdC1wLldddVWtzz106JAkacmSJVq/fn2tr7viiivcrqu+Qq1WbUsd5LH2bk1sr7RWbao9NvrbLz3SR0pKioqdtZ8131BKAxJV2OQW968rc6hz71EKKXf/wwFvKggbI4X0rfZYRvpYxcXWvJZmXGxo5Z/7l1131n7y7SfV7/rFZ9x/82336K7SdW5UjMbgit/eo/CIJsrLz1NCQsIZtxujoKCgGpcZlKQ33nhDzv+95owfP14dOnSoc1+/DPdPr7m/atUq/eMf/5Akvf7663r66aerLN/zcykpKSorK6tzDQ3NF58DAPBzvI4B1XNnTCz51rgYnsXrKBq7uLg4rVvnft5g2oC/qOjUEgrFxcXVHl+wYIHsdrsiIyPVrl27M447HA45nU5lZ2frgQceUFxcnK655po61ZKfn68DBw7U6VrgXE4/12vj9M9DcXGxW9cZ8fwNs9mkVM+1lxwRoV81b+m5BquRm5urk43ha54RUVId9w0/fKRQOt7IX68SSqUalhaPiw1TQsvwczYRYLPW6rzqHD1WqKOHG/m/Ec7g/N/PptPh0IEDB8643RgFBwfXeCw7O1s7dpzabLpVq1b1GnDWFO4HBQVpxIgRWr16tXbv3q3c3Fxt2bJFPXr0qLad3Nzcyk15GyNffA4AwM/xOgZUz52xreRb42J4Fq+jMCvTBvxxcXEqKCjQhg0bNGhQ1VnAeXl5mjJliqRTg9jqZqJddNFFlTP8k5OTtWLFCjVv3rzOtQANJTy89iHl6TcvoaGhbl1XnyUf6irU6nsriLVq1aqRzOCPUF0XkYmJDldIpPf/f7ujIDRYJ2s4lm+v6cgpcbGhCrBZVeFwKt9e/QfA52qrWdMIhYc07n8jnMlqs1X+2bp16zNuN0Zn29R22bJllX+/5JJL6vwtw7OF+5JktVp12WWXad68eZX91hTwt2rVqlHP4PfF5wAA/ByvY0D13BnbSr41LoZn8TqKxq6uGbJpA/4RI0Zo+/btmjVrlkaOHKmUlBRJUkZGhm644QbZ7afir9TU1Gqvf+2113T06FFlZmZqzpw5uvjii/X111/XaZf1uny1AqitjIyMWp+7Y8cOpaena/To0ercuXOtrzsd7HiTq6REFddM9Hq/9bFr1y5ZQmqYWu5FJ4sr1GpEuo6dcC9oCwsJ0J7/LlWzJjXPGm4MHn9xgx57cWO1x6pbUufn9i+7Tgktw5VvL1abkW/Xqf83XntOY4a6/7sAxnryhf/oeGGR4uPilZOTc8btxqiioqLa/X9cLlfla39wcLCGDBlSp/bPFe6f1rdvX0VFRamgoEDr169XeXm5AgMDz2hv165ddf6gwRt88TkAAD/H6xhQPXfGxJJvjYvhWbyOwqx8b4psLU2dOlUxMTHav3+/unXrph49eqhjx47q37+/2rdvr+HDh0uqef39Tp06acCAAbruuuv0xRdf6MSJE5o9e7Y3HwLgccnJyfr888+VnJxsdCloQGGhAfrtuI5uXzfhsg6NPtyXpN5dYg3tv0/XGEP7Bw4fPqxjx45JOvV+JSys5n0nalLbcF86tQdRt27dJJ1awnD//v31qB4AAMBYjIsBmI1pA/6EhAStXr1al112mUJCQpSVlaXo6Gi99NJL+uSTT7Rr1y5J595gV5KaNWum5ORk7dnTuDeeBM4lICBAUVFRjXqGJTzjD9d1VVhI7f8/BwdZNXlCtwasyHOMDNjjYkPVqkXd1u4HPCUzM7Py79XtI3Qu7oT7p7Vv377y7/v27XO7TwAAgMaCcTEAszFtwC9JXbp00ccff6wTJ07oxIkT+u6773TbbbepqKhIWVlZslqt6t69+znbOXTokHbu3KkOHTp4oWqg4eTk5Oi+++7jq2d+IDmxiRbOHaagwHO/zNtsFv37yaHqlhzlhcrqr1WLcPXoaEytl5yfYEi/wM/l5+dX/t3dpQPrEu5LUps2bSr/fvDgQbf6BAAAaEwYFwMwG7/8uHLr1q1yuVxKSUk542vtv/nNb5ScnKzU1FQ1a9ZMu3fv1rPPPquAgADde++9BlUMeEZhYaFWr16tSZMmGV2K11wU20JlY6456znnOu6rLrswUUtfGqXbp3+tnVnHqj0nObGJXnhwkC72seD6jmu76PczvjGkX8BoMTEx6tGjh8rKyhQdHV3r63JycuoU7kunvs2YkpKioKAgtWzZss61AwAAGM0fx8UAzM0vA/7NmzdLqn55noEDB+qNN97QX//6V5WUlKhNmzYaNmyYHnzwQbVt29bbpQJAvVzUN17bP0zTyrV5+ueHu7Tw80yVlTsVGmzT+/NGaOSg1rJaLUaX6bYJl3XQ1GczdKKo3Gt99ukaq37djV3/H5Ck888/X+eff77b18XHx6t379765ptv3Ar3pVMz+KdPn+52nwAAAACAhkXA/wt33nmn7rzzTm+XBAANxmKxaPiAVho+oJVWrs3TgUMnFd00WJdc4Fuz9n8uMjxID09K1bR5GV7rc+bkvrJYfO/DEOA0m82mP/zhD0pKStKoUaNqHe4DAAAAABovU6/BX5OzBfwAAN/wxxu7q3/35l7p67arOmnkoNZe6QtoSDabTWPHjiXcBwAAAACT8MsZ/CtWrDC6BMAQzZs31+TJk9W8uXdCUaAhBQRY9fqMC9Xv+g9VVFxRq2vy7Ser/FkbHdpEas4f+9epRgAAAACNC+NiAGbjlwE/4K9iYmI0YcIEo8sAPKZL+2Za/NxIXfqHpSotc5zz/H7XL3ar/fjmYVr60ig1iWC2MwAAAGAGjIsBmI1fLtED+Kvjx49r+fLlOn78uNGlAB4zfEArLfnbxYoMD/Rou+1aR2r165epfUITj7YLAAAAwDiMiwGYDQE/4Edyc3P14IMPKjc31+hSAI8a1r+VNr0zXkP7xXukvZvGddSGBePUoQ3hPgAAAGAmjIsBmA0BPwDAFNonNNEXr4zWCw8OUnzzsDq10bVDM33ywsX6518uVLMmwR6uEAAAAAAAwLNYgx8AYBpWq0V3XNdVk9I668OV2Xpx4Xb9d+NBlZU7a7wmIixQowcn6A/XddGFfeJksVi8WDEAAAAAAEDdEfADAEwnMNCqqy5up6subqeycoe27C7Qhu2H9VNBicrKHQoOsqlNXLj6dI1VStumsloJ9QEAAAAAgO8h4Af8SHBwsDp16qTgYJYegf8ICrSpd9dY9e4aa3QpAAAAAAzGuBiA2RDwA36kXbt2evPNN40uAwAAAAAAQzAuBmA2bLILAAAAAAAAAIAPIuAH/MjOnTt1wQUXaOfOnUaXAgAAAACA1zEuBmA2BPyAH3G5XCovL5fL5TK6FAAAAAAAvI5xMQCzYQ1+AI1TcLACFv7L6CrcwyZNADzIZrMpLS3NI23NeWmBThQVKTI8XFNuv7bG++rDZrPVuw0AAAAAgHsI+AE0ShaLRQoJMboMADCMxWJRQIBn3qq5JDldp/483WZ19wEAAAAAfAtL9AAAAAAAAAAA4IOYrgX4kaSkJKWnp6t169ZGlwIAAAAAgNcxLgZgNgT8gB8JCQlRhw4djC4DAAAAAABDMC4GYDYs0QP4kby8PM2YMUN5eXlGlwIAAAAAgNcxLgZgNgT8gB85duyYFi9erGPHjhldCgAAAAAAXse4GIDZEPADAAAAAAAAAOCDCPgBAAAAAAAAAPBBBPwAAAAAAAAAAPggAn7Aj0RHR2vixImKjo42uhQAAAAAALyOcTEAsyHgB/yI1WpVYGCgrFZ+9AEAAAAA/odxMQCz4dUM8CN2u12vvvqq7Ha70aUAAAAAAOB1jIsBmA0BPwAAAAAAAAAAPoiAHwAAAAAAAAAAH0TADwAAAAAAAACADyLgB/xIZGSkRo0apcjISKNLAQAAAADA6xgXAzCbAKMLAOA9rVu31vTp040uAwAAAAAAQzAuBmA2zOAH/Ehpaan279+v0tJSo0sBAAAAAMDrGBcDMBsCfsCPZGZmKi0tTZmZmUaXAgAAAACA1zEuBmA2LNEDAEAj5HK5JF+bVRQcLIvFYnQVgCm4XC45HA6jy3CLzWbjNQAAAADwMgJ+AAAao9JSVVwz0egq3BKw8F9SSIjRZQCm4HA4tGjRIqPLcEtaWpoCAhheAAAAAN7EEj0AAAAAAAAAAPggAn4AAAAAAAAAAHwQ36EF/Ejnzp21du1ao8sAAAAAAMAQjIsBmA0z+AEAAAAAAAAA8EEE/IAfyc7O1s0336zs7GyjS4GXOZ0uZR04ofIKpySpwuGUw+E0uCoAAAAA8C7GxQDMhiV6AD9SXFysLVu2qLi42OhS4AVbdh/RGx/t0Xebf9LGHYd1oqi88tjBwyVqev6bOq9zjPr3aK4bLk9WaucYA6sFAAAAgIbHuBiA2RDwA4CJuFwuvf9Ftub9e4tWbzh41nOLiiv0340H9d+NB/XMG1s0qFcLTZ7QTddc0k4Wi8VLFQMAAAAAAKCuCPgBwCTyfjqp3/3lay1e9WOdrl/z/SGt+f6QXv9wt155dLAS4sI9XCEAAAAAAAA8iTX4AcAEPvtvjrpdsajO4X6Vtr7OUbcrF+nDlaxJCQAAAAAA0JgR8AN+JD4+Xo8//rji4+ONLgUe9P4XWRp79zIVHC/zWJvHC8t15b1f6K1P9nqsTQAAAAAwGuNiAGbDEj2AH2natKlGjx5tdBnwoBXf5eraKStVXuH0eNtOp0s3PvylmkYG6rILEz3ePgDAt+Tn5ys4OFhRUVFGlwIAQJ0xLgZgNgT8gB8pKCjQ8uXLNWLECAbnJlBwvFS/efBLt8L9jPSxiosNU779pPpdv/ic5zscLk18+Cttez9NLWJC61MuAMAAP/74o7Zv3659+/YpKytLJ06ckNPpVGBgoFq0aKF27dqpffv26tmzpyIiImpsJy8vT3/5y18UEhKiRx55hPcRAACfxbgYgNkQ8AN+5ODBg5ozZ4569OjBGxkTuGfWt8r76aRb18TFhimhpXub5x4+Wqo7nvhG7zw9XBaLxa1rAQDeV1ZWpm+//VbLli3T7t27azzvp59+0tatWyVJQUFBOv/88zVy5Eh16NChynmnw/0jR45Ikl5//XXde++9DfcAAABoQIyLAZiN6dfgt9vtmjp1qpKTkxUSEqI2bdpo8uTJKioq0i233CKLxaLnn3/e6DIBwC1fbzyoNz7a47X+Fi3P0rI1B7zWX0NYv82uv729TXP++YNefneHMnNOGF2SV3xpP6Sgjxbqmb07ajwn6KOFGv/dai9WBaCh7NixQ1OnTtXf/va3M8J9q9WqqKgoxcTEnDFbv6ysTKtWrdJDDz2kv/3tbyosLJR0ZrifmJioW265xTsPBgAAAMA5mXoG/6ZNmzR69Gjl5+crPDxcXbt2VW5urp577jnt3bu3cqCSmppqbKEA4Kb56Vu93+db23Tx+Qle77c+XC6XFny2T8++uVVrt/xU5ZjFIo0enKBpv+2pC/uywRYA31ZRUaG33npLS5Yskcvlqrw/MTFRQ4cOVceOHdW2bVsFBQVVHjt69Kj27dunH374QV999ZVOnjz1rbCvvvpKmzdv1jXXXKN33nmnSrj/8MMPq0mTJt59cAAAAABqZNqA3263a8yYMcrPz9d9992nRx99VJGRkZKk2bNna9q0aQoICJDFYlHPnj0NrhYAai/fflKLlmd5vd9PVu9X1oETSmod6fW+68Llcune2d/pr/+p/sMQl0v6dHWOPv/mgF565ALdcmUnL1cIAJ5RVlamefPmacOGDZX3dezYURMmTFCnTp1qXF6tWbNm6t27t3r37q3rrrtOq1at0oIFC1RcXKyCggK99NJLlecS7gMAAACNk2mX6Ln77ruVk5OjO++8U3Pnzq0M9yVp6tSp6tWrlyoqKpSUlMRABX4jLCxMAwYMUFhYmNGloB7eW56ligrXuU/0MJdLemdpptf7rasZL2+qMdz/OYfDpUmP/1cfrsz2QlUA4FkOh0PPPfdcZbgfEBCgCRMm6PHHH1fnzp1rvXdKSEiIRo0apblz56pz585VjsXGxhLuAwBMg3ExALMxZcC/fft2LViwQLGxsZo5c2a15/Tp00eS1KtXrxrbGT16tCwWix577LGGKBPwusTERM2fP1+JiYlGl4J6WLfNbljf67cb17c77AUlmvHyplqf73JJU55ZK6fT+x+ceMtJh0P20tJq/wPgu95//32tW7dOkhQcHKwHHnhAY8aMkdVat7f5ZWVlOnToUJX7jh07pqKionrXCgBAY8C4GIDZmHKJnvT0dDmdTk2YMOGMDcROCw0NlVRzwL9w4UJt2rSpoUoEDOFwOFRcXKzQ0FDZbDajy0Edrd922C/7dsc/3t+lsnKnW9fszj6uFWtzNWJg6waqyljTd27V9J3e37sBQMPJysrS+++/L+nUBrr333+/unXrVuf2frmhbnh4uIqKilReXq6///3vevTRR+v8wQEAAI0F42IAZmPKd+grVqyQJA0bNqzGc3JyciRVH/AfP35c99xzj+bOndswBQIG2b17t4YPH67du3cbXQrqYWfWMcP63vPjcVVUuBecGyH9s711u27JPg9X0njcmtheSwZeVO1/AHyPy+XSSy+9JIfDIUkaN26cevToUef2fhnuJyYm6qmnnlKLFi0kSTt37tTy5cvrXzgAAAZjXAzAbEw5gz87+9Q6ym3btq32eEVFhb7++mtJ1Qf8Dz30kFJSUjRhwgT95je/qXc9ffv2VX5+fr3bAapz1VVX1frc01+5X7JkidavX1/r66644gq360LDcMmi0ujHajyekT5WcbE1ryUZFxta+ef+ZdfVeF6+/aT6Xb+42mOJScmyqqxW9Rolr9l9ktX9taLfWvCRPn/t+gaoyH2hVqu2pQ7yWHvJERH6VfOWHmuvOikpKSp2Ns4PgK747T0Kj2iivPw8JSQknHHb7Kp7vP7+b9DYH39QUFCNS01K0tatW5WZeWpflDZt2igtLa3OfVUX7p9ec/93v/udpk+fLkn6+OOPNWLEiBpn8aekpKisrHH/fgB8ma+9jgHe4s6YWGJc7M94HUVjFxcXV7n8pjtMGfCfXiO0uLi42uMLFiyQ3W5XZGSk2rVrV+XYunXr9Morr7j1In8u+fn5OnDggMfaA37OnTVxT/9MFBcXu3Udz99GJsopWaoPV+Jiw5TQMvycTQTYrLU6rzp5uTmSq7xO13pNRLkU5P5lJcVFjeb5HmazSalGV+Ge3NxcnfzfbOLGxvm/upwOhw4cOHDGbbOr7vH6+79BY3/8wcHBZz2+dOnSyr+npaUpIKBub+vPFu5LUteuXdWjRw9t3rxZhw4d0g8//KDU1NRq28rNzVUp+3oADcbXXscAb3F3nxjGxf6L11GYlSkD/ri4OBUUFGjDhg0aNKjq7Me8vDxNmTJFktSzZ09ZLJbKYw6HQ7fffrvuvPPOeq1fWl09QEMJD699SHv6zUtoaKhb17Vubc41yX1VrqtULktotcfy7SfPem1cbKgCbFZVOJzKt1f/IehZ23FVqFWrlrKocW9Ga7ccVali3L4uIuikmjaS53uoD65z3apVq0Y7g9/6v/VVrTabWrdufcZts6vu8fr7v0Fjf/xBQTV/SnnixInKmT3NmjVT375969THucL90y6++GJt3rxZkrRq1aoaA/5WrVoxgx9oQL72OgZ4iztjW4lxsT/jdRSNXV0zZFMG/CNGjND27ds1a9YsjRw5UikpKZKkjIwM3XDDDbLb7ZJ0xuDk+eef18GDB/XYY495tJ66fLUCqK2MjIxan7tjxw6lp6dr9OjR6ty5c62vmzdvXh0qQ0O58KaPtXrDwWqP1bSszmn7l12nhJbhyrcXq83It93uu0+3OK17e7/b13nbws/36dopK92+bsPyeerYtmkDVOQ+V0mJKq6ZaHQZbtm1a5csISFGl1GtJ1/4j44XFik+Ll45OTln3Da76h6vv/8bNPbHX1FRoUWLFlV7bN++fXL+78O0gQMH1mn2fm3DfUnq3bu3QkNDVVxcrF27dtXY5q5du+r8TQIA5+Zrr2OAt7gzJpYYF/szXkdhVr43PbAWpk6dqpiYGO3fv1/dunVTjx491LFjR/Xv31/t27fX8OHDJVVdf99ut+uRRx7Rn//8Z1VUVOjo0aM6evSoJKmkpERHjx6tHEgBvio5OVmff/65kpOTjS4F9dC3W6xhfffp6v6seCOMH962cr+B2ho5qFWjCfcB4Gz27fv/DcE7dOjg9vXuhPuSZLPZlJSUJEk6cuSIjh0zbrN3AADqi3ExALMxZcCfkJCg1atX67LLLlNISIiysrIUHR2tl156SZ988knlzKOfB/w5OTk6ceKEbr/9dkVFRVX+J0mzZs1SVFSUfvzxR0MeD+ApAQEBioqKYnadjxvUq2E3Sj173y0M69sdQYE2/fvJoQqwWc59sqQW0SH6+yMXNHBVAOAZP39P+sv9pM7F3XD/tPbt21f+PTs7260+AQBoTBgXAzAb076adenSRR9//PEZ9xcWFiorK0tWq1Xdu3evvD85OVkrV565nMOwYcM0ceJE3XTTTaylD5+Xk5OjZ599Vvfeey87xPuwMRe1UWxUiOwFJV7tNzI8UFeNdC9IMtKvBrbS4udG6ur7V6iouKLG8xLjw7Xkb5eofcLZwy1fdVFsC5WNueas55zrOIDG5eTJ/98npVmzZrW+rq7hviQ1bfr/33AqKfHu7x8AADyJcTEAszFtwF+TrVu3yuVyKSUlRWFhYZX3R0REaOjQodVek5SUVOMxwJcUFhZq9erVmjRpktGloB5CggN0yxUpmvWPH7za78SxHRURFujVPutr9JA22vPJ1XrtvV166d0d2p9fVHmsZ0q07ri2iyZc1sHnHhcA/3bXXXepuLhY5eXlVd7PnkteXl7l8jruhPvSqUkv/fv3V2BgoCIjI+tUNwAAjQHjYgBmY8oles5m8+bNkqouzwMAvuaOa7soLMR7n9EGBVp196+7eq0/T4qLDdNDt6Uqc8k1ios5tQFsXEyoNr0zXrdf3ZlwH4DPiYiIUPPmzdWqVStZrbV/O9+7d2/de++9at++vVvhviRFRkYqLi5OMTExCgoKqkvZAAAAABqA383gdzfgd7lcDVkOANRJYnyEZk7uq8mzvvVKf4/9vrfPb0Brs1lls1n/93eLLJbarc8PAGbSt29f9e7d260PBgAAAAA0Xn73zp4Z/ADM4s7ru+rCPu7tDZJvP6mcg0XKt58898n/0697rKbc1MPd8gAAjRThPgAAAGAefjeDf8WKFUaXABimefPmmjx5spo3b250KfAAq9Wi9FlDNeSmT7Qv50Strul3/WK3+khoGa535g5XQABhEAAAAADfx7gYgNmQ2AB+JCYmRhMmTFBMTIzRpcBDWrUI1xevjFaHNp7f8LBN3Km227ZiM0UAAAAA5sC4GIDZEPADfuT48eNavny5jh8/bnQp8KCk1pH6778u1yXnt/ZYm8P6xeubN8YoJcm3190HAAAAgJ9jXAzAbAj4AT+Sm5urBx98ULm5uUaXAg+Liw3Tkhcv0auPDVaTiMA6txMeGqC/PXS+lr8yWglx4R6sEAAAAACMx7gYgNn43Rr8AGBWFotFt1zZSeOHt9U/P9itFxdur/Xa/G1bReh3V3fWzeNT1CImtIErBQAAAAAAgCcQ8AOAycQ0C9H9N/XQH2/srq83HtTaLT9p/Ta7tuwpUOHJCrlcLoWHBqh7xyj16RKrft2ba0jvlrLZ+FIXAAAAAACALyHgBwCTslotGtInTkP6xBldCgAAAAAAABoA0zUBPxIcHKxOnTopODjY6FIAAAAAAPA6xsUAzIYZ/IAfadeund58802jywAAAAAAwBCMiwGYDTP4AQAAAAAAAADwQQT8gB/ZuXOnLrjgAu3cudPoUgAAAAAA8DrGxQDMhoAf8CMul0vl5eVyuVxGlwIAAAAAgNcxLgZgNqzBDwBAYxQcrICF/zK6CvewURngMTabTWlpaR5rb85LC3SiqEiR4eGacvu1Z9z2BJvN5pF2AAAAANQeAT8AAI2QxWKRQkKMLgOAQSwWiwICPPdW3SXJ6Tr1Z0BAwBm3AQAAAPgmlugBAAAAAAAAAMAHMV0H8CNJSUlKT09X69atjS4FAAAAAACvY1wMwGwI+AE/EhISog4dOhhdBgAAAAAAhmBcDMBsWKIH8CN5eXmaMWOG8vLyjC4FAAAAAACvY1wMwGwI+AE/cuzYMS1evFjHjh0zuhQAAAAAALyOcTEAsyHgBwAAAAAAAADABxHwAwAAAAAAAADggwj4AQAAAAAAAADwQQT8gB+xWq0677zzZLXyow8AAAAA8D+MiwGYDa9mgB9xOp3auHGjnE6n0aUAAAAAAOB1jIsBmE2A0QUAAAAAwLm4ThZLRwrkKj4pOV1GlwOck8Vmk8LDpNgYWQIDjS4HAACYFAE/AAAAgEbJVXRSrm8z5Pz6W7k2fS9VOIwuCXBfWKgsA/rKesEgWc7rSdgPAAA8ioAfAAAAQKPjyj+kiocel36yG10KUD8ni+VauVqOlatl6dZFtj//SZbQEKOrAgAAJsEa/IAfiYyM1KhRoxQZGWl0KQAAADUi3IdZubZul2P6U3IVlxhdCuC3GBcDMBtm8AN+pHXr1po+fbrRZQAAANTI5XKp4onZNYf7gYGSjXlK8AHlFZLjzGWlXFu3y/HK6wq4+3cGFAWAcTEAsyHgB/xIaWmpDh06pBYtWig4ONjocgAAAM6U9aOUvb/qfYkJsqWNl6Vfb1kiwo2pC3CTy+WSDh+Rc81aOd9eJJ048f/HvvlWrt/fwnr8gAEYFwMwG6a+AH4kMzNTaWlpyszMNLoUAACAajm/XlP1jugoBTz5qKzDhhDuw6dYLBZZYmNkGzNaAX95WLJY/v/gyWK5Nv5gXHGAH2NcDMBsmMHfSLlcLqm01Ogyai84WJafv2GtJ5dLKjnz26yNWoit6nt2AAAAuM+14fsqt61DzpelSRODqoGRXC6XThZXGF1GrYWFBtQ4JrK0T5KlSye5tu2ovM+1fqPUv4+3ygPgY8hF4HPZoNQA+aBLjmqWu2usbDabRx9/bRHwN1alpaq4ZqLRVdRawMJ/SSEhHmuvxCEN+dRjzXnF6kulUH6iAAAA6sV19FiV25buXQ2qBEY7WVyhiIFvGF1GrRV+e6PCw2pecsfSvWvVgP/YcW+UBcBHkYvA17JByfP5oMPh0KJFizzWXkNLS0tTQID3fwhYogcAAABA41FSUvV2eJhHml25cqUGDhyoyMhIWSwWvf766x5pF6i1Xz6Xi4uNqQMAAJgKn6sBAAAAaLzc/Jrz0KFDtW7dOhUWFlbeV1BQoCuvvFIJCQl6+umnFRYWpvPPP9/TlQJnx7oVAACgARDwA36kc+fOWrt2rdFlAAAAeFVGRoaOHj2q1157TVdeeaXR5QAADMS4GIDZsEQPAAAAAFPLz8+XJEVHRxtcCQAAAOBZBPyAH8nOztbNN9+s7Oxso0sBAADwiqSkJE2ceGqDumHDhsliscjCUikA4LcYFwMwG5boAfxIcXGxtmzZomI29IKfOHKsVN9sOqh1W+3asP2wDh05tXHjT0dKdO2UFerTJVZ9u8VqUK8WCg3hVyIAmNG8efO0ZMkSvfzyy3rwwQfVpUsXo0sCABiIcTEAsyHNAACYisvl0nc//KS/LdiuhUszVVrmOOOcsgqnFn6eqYWfZ0qSopoE6bfjU/S7qzurY9um3i4ZANCAxo8fr6NHj+rll1/WyJEjNXToUKNLAgAAADyGJXoAAKaxP79Ql96xVINu+Ehvfryn2nC/OgXHy/TMG1uUMuZd/f4vX+tEUVkDVwoAAAAAAFB/BPwAAFP45we71P3K9/TZ1zn1aufv7+xQj7T3tXJtrocqAwAAAAAAaBgE/IAfiY+P1+OPP674+HijSwE8xuVy6aHn1unmP6/W8cJyj7SZnVuoi3/3mdI/3euR9gAAAAA0DoyLAZgNAT/gR5o2barRo0eraVPWGId5/PmFDXry1e893m5FhUu/efBLvbs00+NtAwAAADAG4+Ka2b94XTsfGmp0GUCj5nQ6jS7hDGyyC/iRgoICLV++XCNGjFBUVJTR5QD19s7STM14eVODte90ujThgVXq2qGZunbgZwYAAADwdYyLAf9TXl6uH3/8UZmZmSooKFBFRYUCAwPVrFkztW/fXm3atFFgYOA52/nwww+1bds23XfffQoKCvJC5bVDwA/4kYMHD2rOnDnq0aMHb2Tg8346Uqw7nvjGrWsy0scqLjZM+faT6nf94lpdU1bu1E2PfKVv3hijgAC++AYAAAD4MsbFZ8qaf6sK/vu2XI4KuRzl2nhthCQp9a1jsthsBlcH1I3D4dD69eu1bNkybdu2TQ6Ho8ZzbTabunXrppEjR6p3796yVfO8//DDD5Weni5JevrppzVt2jRZrY0jI2gcVTQwu92uqVOnKjk5WSEhIWrTpo0mT56soqIi3XLLLbJYLHr++eeNLrNBfGk/pKCPFuqZvTtqPCfoo4Ua/91qL1blXaX5+5T9wm3ackdnbbg6TJt+HaWtf+iizHkTdeKHlUaXB6COJs/6VvaCEreuiYsNU0LLcMXFhrl1XcYWu559c4tb1wAAgMbhibv7yPXDLfrt+I7VHl/52qUqWXeTuiUT9AEwB3dzkKS7XtV5CwqV+Pu/K6LrEJ23oFDnLSgk3DcJf8sGXS6XVq5cqbvuukvPPPOMNm/efNZwXzr1YcAPP/ygp59+WnfddZe+/PJLuVyuyuM/D/clqWvXro0m3Jf8YAb/pk2bNHr0aOXn5ys8PFxdu3ZVbm6unnvuOe3du1dHjhyRJKWmphpbKBpE0e512vXQRbIEBCp66I0KTewmZ1mxSnN36/impbKFRiqy5zCjywTgpsycE3r7s31e7fOZN7do8m+6KSiQN7kA0JitWrXqjPtuuukm3XTTTV6vBY3DY3/bqDEXJeqZ+wdo6ZoDOnDwZOWxe37TTUP7xetP8zK0dU+BgVUCgGeQg8CfHT58WC+//LK+/77qPn2xsbHq0qWL2rVrp/j4eAUGBqq8vFx5eXnat2+fduzYIbvdLkk6cuSIXnzxRX377beaNGmSVq9eXSXcv/766zVu3DivPq5zMXXAb7fbNWbMGOXn5+u+++7To48+qsjISEnS7NmzNW3aNAUEBMhisahnz54GV4uGkLfgcTlLT6rLrE0Ka9frjOPlBfkGVAWgvl56d4d+9mG6V+Tbi/XBimxdc0l773YMAADqpbzCqYkPf6Xv/j1Wrz02RKN+/7kkKSWpqZ64q6++/eGQ5ry+2eAqAcAzyEHgr/bs2aOnnnpKhYWFlff17t1bl1xyiXr06FHtjPvzzjtP0qmNc3/44Qd9/vnn2rhxoyRp48aNuueee1RWVlZ5fmMM9yWTL9Fz9913KycnR3feeafmzp1bGe5L0tSpU9WrVy9VVFQoKSlJTZo0MbBSNJSS3N2yRcZU+0tNkgKj4rxckbHCwsI0YMAAhYW5tzwJ0Jg4HE699v4uQ/p+ZdFOQ/oFAAD1s3H7Yc187XtdckGCJqV1ktVq0RtPXCiLRZr48FdyOr08cwCAYcw+LiYHgT/avXu3ZsyYURnuR0VFaerUqZX577mW07FarUpNTdW0adN0//33q1mzZpLkE+G+ZOKAf/v27VqwYIFiY2M1c+bMas/p06ePJKlXr/9/0Vu1apUsFssZ//n6Ej4nHQ7ZS0ur/c/MguM6yHHisArWvGd0KY1CYmKi5s+fr8TERKNLAepsV/Zxt9fe95Q13x+Sw+E0pG8AAFA/f3l5ozbtOKy59/XX/AcGaUCPFnpo/nrtyjpmdGkAvMjs42JyENTErNmg3W7XrFmzVFJyKifo1q2b5syZo969e9epvb59+2r48OFV7gsKCtKQIUPqXWtDMe0SPenp6XI6nZowYYIiIiKqPSc0NFRS1YD/tBdeeKHKEyE8PLxhCvWS6Tu3avrOrUaX4XXx1zysE98v076n0hTcqqMiugxWeMd+iug+VKFtuhhdntc5HA4VFxcrNDS02h3BAV+wfpvdsL6Liiu0K/u4urRvZlgNAACgbioqXJr48FfKSB+rO67totUb8jXv31uMLguAl5l9XEwOgpqYMRt0uVx65ZVXKmfud+vWTdOmTVNQUFCd2/zwww/13ntVPyArKyvTK6+8oqlTp8pisdSr5oZg2oB/xYoVkqRhw2reOCQnJ0dS9QF/165dNXDgwIYpzgC3JrZXWqs21R4b/e2XXq7GeyI6D1KXp9fr4IdP69j6JTr8xT91+It/njrWdYiSJr+u4Dj/WU979+7duvHGG/XGG2+oc+fORpcD1MmmHYcN7X/j9sME/AAA+KhjhWUqLXMoKNCmT1fv9/qePgCMZ/ZxcX1yEIstUNagUG+WCy8yYza4cuXKyg11o6Oj9cc//rHe4f7PN9RNS0vTF198oaNHj2rjxo366quvdNFFF9W7bk8zbcCfnZ0tSWrbtm21xysqKvT1119Lqj7g96S+ffsqP9+9TUxCrVZtSx3ksRqSIyL0q+YtPdbeL6WkpKjY6bllKyxBoWo5b7dH2gpN6qGkya9LkkoPZatwy5eyL3tVhdtWa8+T49Tl6fWyBtb9h/+0lJSOcpUV17sdd1111VW1PvfQoUOSpCVLlmj9+vW1vu6KK65wuy6goRSEjZVC+lR7LCN9rOJia15LMy42tPLP/cuuO2s/+faT6nf94jPuv+PuKZp6+1o3KkZjcMVv71F4RBPl5ecpISHhjNtmV93j9fd/Ax5/4338G3v2V7OAwMrbaVemKaPouIEVwShOBUrRD3u0zX9OH6KgQJu27S3Qw7elauHnmdqXc8IjbXdMSZFV5TUev6VFKz2c0K7y9pdffqmJCS/Wun1f+jkGvMmdMbHkO+Pi+uQidc1BYoZOUMzQCXWu2ahcpLZ87XXU17JByfP5YFBQUI1Lr1dUVOidd96pvD1p0qR6rcDyy3D/9Jr77dq109y5cyVJCxcu1ODBg2v89k9KSkqVdfvdFRcXp3Xr1rl9nWkD/qKiIklScXH1LywLFiyQ3W5XZGSk2rVrd8bxa6+9Vna7XTExMRo7dqyeeuopxcbG1qmW/Px8HThwwK1rwmw2KbVO3RkiNzdXJx0Oj7VnDQ5TQ7zkBLdoq+DhNyp62A3a+cAQFW3/Wid3r1VE18H1bjs3N1fO0pMeqNI9p5/rtXH656G4uNit69x9/gINKqFECqn+UFxsmBJanvsXeoDNWqvzqnPs2HEdO8zPhK9x/u93lNPh0IEDB864bXbVPV5//zfg8Tfex+/sXnVQ+JP9Jx04YtzybDCQJUiK9lxzd/26q4b1b6UHn1unD1dma8OC8frH9CEaevOnHmk/LzdXctU8qD8WHC79LD8qKSl16+fPl36OAW9yZ2wr+c642FO5SEPmIL9kVC5SW772Oupr2aDk+XwwODi4xmPr1q1TQUGBpFP7rJ533nl17qemcF86NXH7vPPO08aNG3X48GFt3LhRffv2rbad3NxclRqwp4FpA/64uDgVFBRow4YNGjSo6qddeXl5mjJliiSpZ8+eVdZOatq0qaZMmaILL7xQERERWrNmjWbOnKlvv/1W69atU0hIDanSOWpxV+g5dndubFq1auXxGfwNyWKxKDxlgIq2f60yDwV1rVq1MuSTanc+nTz95iU0NNSt61q3bu12XUBDORoapJrehufbz/5mMi42VAE2qyocTuXbz/7zWlNbzZqGKzyEnwlfY/3fDAurzabWrVufcdvsqnu8/v5vwONvvI/f+ov3wc1jm6t1aM2DO5iXU4HK81BbyYlNNHNyX63d/JNm/eMHOZ0uPfbiBs2c3E93/bqr5r+1rd59xLdqddYZ/E2bNq1yOyQk2K2fP1/6OQa8yd0Zu74yLvZ0LtIQOcgvGZWL1JavvY76WjYoeT4fPNtyO8uWLav8+6hRo+rcx9nC/dMuvvhibdy4UZK0dOnSGgP+Vq1a1XsGf12YNuAfMWKEtm/frlmzZmnkyJFKSUmRJGVkZOiGG26Q3X5qFlBqamqV684777wqn/gMHTpU3bt319ixY5Wenq7f/va3btdSl69WuEpKVHHNRLevM8quXbtkqcOHHzUprpCGeGAizfFNyxTZY5gstqpPdWdpsY5vWipJCm3Ttf4dSdq1a7dCDfiJysjIqPW5O3bsUHp6ukaPHu3WWoPz5s2rQ2VAw5j7+mZNeab6JXKqW1Ln5/Yvu04JLcOVby9Wm5Fv16n/99Jf1LD+rep0LYzz5Av/0fHCIsXHxSsnJ+eM22ZX3eP1938DHn/jffzlv75ZKvz/j3IXvbdI1m5sCuiPik6WK2LgG/Vux2KRXv/LhbJZLZr48JdyOk8tvD/7n5t15a+SNHNyX33y1f56L9Wze9cuhYcF1njc8cHHcv7jzcrbF110kXJWLa11+770cwx4kztjYsl3xsV1zUW8mYP8klG5SG352uuor2WDkufzwYqKCi1atOiM+8vKyrR9+3ZJUosWLdStW7c6tV+bcF86tbx7bGys7Ha7tm3bpoqKCgUEnPlk37VrV7X3N7RG/GNXP1OnTtVbb72l/fv3q1u3burcubNKSkq0Z88ejR49WklJSfr8889rtf7+5ZdfrvDwcK1bt65OAT+Ms/+1e1Vx4rCa9R+r0LY9ZA0OU5l9v458+ZZKc3cpetiNCk3qYXSZXpOcnKzPP/9ckZGRRpcC1FmfrjGG9t+7S92WawMAAMa4b2IPXXBeS019dq12ZB6rvN/pdOmmR77y+FI9ABo3s4+LyUHgD7Kzs+X83zcFunTpcsY3QGujtuG+dOobpp07d9Z///tfVVRUaP/+/dUu+W4U3/uuRy0lJCRo9erVuuyyyxQSEqKsrCxFR0frpZde0ieffKJdu3ZJcm+D3Z8v5QPf0ObmZxQ18EoV7fxWuemPKfuF23To4+cUGN1Kbe96TUl3/9PoEr0qICBAUVFRhnyaCHiKkQF7cmITNY2s/6bcAADAOzq3a6q//KG31nx/SE//a8sZx7ftParHXtygi/rG665fN8yMVgCNi9nHxeQg8AeZmZmVf69L0O5OuF9dP3v37nW7z4Zkzlez/+nSpYs+/vjjM+4vLCxUVlaWrFarunfvfs52Fi9erKKiIvXv378hymxQF8W2UNmYa856zrmO+7Im512sJuddbHQZjUZOTo6effZZ3XvvvY1yh3igNppGBuni81tr6Tfe3wTp6pGN5xN6AABwbjsyjym037/Oes5Tr/2gp177wUsVATCa2cfF5CD4JTNmg6c315Wk+Ph4t66tS7gvnVpf/7SjR4+61WdDM3XAX5OtW7fK5XIpJSVFYWFhVY795je/Ufv27dW7d+/KTXZnz56t1NRUXXfddQZVDHhGYWGhVq9erUmTJhldClAvd1zbxesBv8Ui3X51J6/2CQAAAMCzGBcDvq979+6y2WwqLy9Xy5Yta33dzp076xTuS6c2wB03bpwCAwPVtWvj+tafXwb8mzdvllT98jzdunXTW2+9pXnz5qm4uFgJCQmaNGmSHn300bPu3AwA8J7LhrRR21YRys4t9Fqfl1+YqLatzLlOJwAAAAAAvqJbt2512li3U6dOuuaaa7Rw4UK3wn3p1DcFrr/+erf79AYC/l944IEH9MADD3i7JACAGwICrJr/p0Eae/cyr/QXGmLT0/f73jJtAAAAAADg/1155ZXq3r27UlJSjC7FY0y7ye7ZnC3gBwD4hjFDE/Wbyzt4pa8n7+qrjm2beqUvAED9Pfnkk+rUqZOsVqs++OCDKseSkpLUqVMnvfrqq5KkrKwsDR06VE2bNlVqamqVc1evXq3U1FRZLJazrrV69OhR9e3bV9HR0frmm2/qVHNGRobOP/98hYWFafz48VWOPfbYY2revLnGjh1bed/u3bt1/vnnKyUlRf369dPWrVsrjw0bNkzR0dGaN29enWoBAAAwMzOF+5KfBvwrVqyQy+XSZZddZnQpgFc1b95ckydPVvPmzY0uBfCIv04bpI5tm9T6/Hz7SeUcLFK+/WStrxl1QYLunuD+V/8AAMYZMWKElixZogsvvLDa4wsWLNCtt94qSWrSpIlmzJiht95664zzhgwZok2bNp21r+PHj2vUqFG65ppr9Omnn+qGG27Qd99953bN8fHxmjdvnp599tlqj0+YMEGLFy+uvH377bfrtttu065duzRt2jTddNNNlcdWrlxZ5cMAAMD/Y1wMwGz8MuAH/FVMTIwmTJigmJgYo0sBPCK6abCWvTRKbVtF1Or8ftcvVpuRb6vf9YvPfbKkIb1b6t2nh8tqtdSnTABAA1mzZo0GDx6sXr16qWfPnvrwww8lSf3791f79u1r1UZ0dLQGDx6s8PBwt/svLCzUuHHjdPfdd2vq1KkaOHCglixZot///vfKyMio9ppjx47p1ltvVffu3dWrVy/dfPPNkqSEhAT1799fwcHB5+z30KFDWrdunX7zm99IktLS0rR//37t2bPH7ccAAP6GcTEAs/HLNfgBf3X8+HGtXbtW/fv3V5MmtZ/1DDRmbVtF6r+vX67L71qq73ce8Vi744Yl6q2nhikslF+VANAYHTlyROPHj9e7776rIUOGyOl0nnUZnYYQERGhlStXVrkvJSVFGzZsqPGae+65R6Ghofrhhx9ktVr1008/ud3v/v37FR8fr4CAU7+jLBaLEhMT9eOPPyo5Odnt9gDAnzAuBmA2zOAH/Ehubq4efPBB5ebmGl0K4FEJceFa+9ZYPXxbqmy2+s22bxIRqH9MH6L3540g3AeARmzNmjX6v/buPTqq+lD7+LNzTyYJoAQIDCFcJALBJEJACJBQbiGhBrwEz9KDFoRDaYtQ9YWFlka5aIEDr0VccBBaQF9PrQKlnBDQA3gJaIDD0AKKpRYVmuANciFAbvP+4SFtJEAmTGbPnvl+1mLR2Xv/Zp4NMzbz8Nu/nZCQoKFDh0qSAgICdMstt5ic6sa2b9+uJ554QgEB330VY4kIAPAsvhcD8DUU/AAAnxASHKgFP+2nolfv1j0j4l0u+m3hQZp2X4KObb5XPxrfU4bBsjwAAO/UuXNnFRcXq6amRpLkdDr1+eefKy4uzuRkAAAA8DQKfgCAT7mzd1u9uWKETu2YqF9OT9Gwfh0UGRHc6LExbcKUmWbXr+fepTNv/4vWzB8iewfX12AGAHje4MGD9Ze//EXvvfeeJKmurk7ffuu+pdpayt13361ly5aprq5Okpq1RE+7du1055136pVXXpEkvfnmm7Lb7SzPAwAA4IdYewAA4JPsHWzKm3Gn8iTV1Tl18vMyffntRVVV1yksNFCdO9hkb29jpj4AWFSbNm20ZcsWPf744yovL1dAQIAWLFigH/7wh1q4cKFWr16tr776SkePHtVPf/pTHT58uNHlcCorK9WzZ09dvnxZpaWlstvt+td//Vc999xzLZJ7xYoVmj17tvr27avg4GClpqZq7dq1OnHihEaMGKHKykpdvHhRdrtd8+bN04wZMxp9njVr1uiRRx7R4sWLFR0drd/85jctkhcAAADejYIf8COhoaFKSEhQaGio2VEAjwoIMNQzvpV6xrcyOwoAwI3uuusuFRYWXrX96aef1tNPP92k54iIiNDp06fdHe2aoqOjtW7duqu2JyQkuJQjISFB+/fvd2c0APALfC8G4GtYogfwI127dtWmTZvUtWtXs6MAAACYIiYmRg899JBefvnlGx773nvvKTk5We3bt6+/Ka4ZIiMj9cc//lF33313k44fPny43nnnHdlsLDsHAN/H92IAvoYZ/AAAAAD8xoEDB5p87NChQ+VwOFouTBM98cQTeuKJJ5p8/J49e1owDQAAALwJM/gBP3LixAmlpaXpxIkTZkcBAAAAAMDj+F4MwNdQ8AN+xOl0qrq6Wk6n0+woAAAAjQv83kXG1dXm5ADcrep77+Xvv9cBeATfiwH4Gn6i8FahoQp6fYPZKZrOzTenCQuU3sty61O2uLBAsxMAAAD4gMgIqbS0/qGz+KyUbF4cmCciPEgVH0wyO0aTRYRf/+u1s7ik4YZI7pEA4NroRWC5blByez8YGBioe++91y3PtXTN71R+4YKibDY9+W8Tr7ntZgQGmvMhoOD3UoZhSGFhZscwjWFIN/j5GAAAAD7I6BIn55ni+sfOfR9KY0eZmAhmMQxDtohgs2O4hbOmRs6igw22GV27mJQGgBXQi8Dfu0Hpuz+DoCD3fBCckuqc3/1+5Tkb22ZFLNEDAAAAwGsEDBnU4LHzyJ9V+4f/krOuzqREwM1xVlerduUaqbyiwfaAwQNNSgQAAHyJdf9pAoDL4uPj9dprr6lTp05mRwEAAGiU0T9FCgmRqqrqt9Wt26i6LX+U0T9FRps2UiDzlGAB1TVylpyV8+Bh6eLFBruM27rLaN/OpGCAf+N7MQBfQ8EP+JGwsDB1797d7BgAAADXZISFKeDBXNX95pWGO749J+eu3eKWiLC8oCAFPHTz6/wCaB6+FwPwNUx9AfxIcXGxFi5cqOLi4hsfDAAAYJLACT9UwKR/MTsG4H5BQQqc94QCUpLMTgL4Lb4XA/A1FPyAHyktLdW2bdtUWlpqdhQAAIDrCrxvvAJnTJXi7GZHAW6eYcjofbsCfzFHAf1TzE4D+DW+FwPwNSzRAwAAAMArBWSOVEDmSK1c+58qL61QpLNWM2ovSE6nXjIiVCFDkXJqhrPS7KjA1QIDZURGSnF2BQwaIOPWW8xOBAAAfBAFPwAAAACvVl5Vq7LaOikyUkE/+TdJUsWqV1VWcUGKtCnoJz82OSEAAABgDpboAQAAAAAAAADAgpjBD1hcampqk4+12+365S9/qZEjRyo2NrYFUwEAAAAA0PJc+U4s8b0YgO+h4Af8SGxsrPLy8syOAQAAAACAKfheDMDXsEQPAAAAAAAAAAAWRMEPAAAAAAAAAIAFUfADAAAAAAAAAGBBFPwAAAAAAAAAAFgQBT8AAAAAAAAAABZEwQ8AAAAAAAAAgAVR8AMAAAAAAAAAYEEU/AAAAAAAAAAAWBAFPwAAAAAAAAAAFkTBDwAAAAAAAACABVHwAwAAAAAAAABgQRT8XmDp0qUaNGiQ2rRpo9atW2vIkCEqKCgwOxYAAAAAAACAa8jPz1dycrJCQ0MVHx+v5cuXmx0JHvTuu+8qJydHXbp0kWEYWrhwoSk5KPi9wO7duzV58mTt2bNHRUVFGjx4sMaNG6fCwkKzowEAAAAAAAD4noMHDyonJ0djx46Vw+FQXl6e5s2bp9WrV5sdDR5SUVGh3r17a8mSJerQoYNpOYJMe2XU27FjR4PHS5YsUUFBgTZv3qy0tDSTUgEAAAAAAABozPLly5WamqrnnntOktSrVy8dO3ZMzz//vKZPn25yOnhCVlaWsrKyJElz5swxLQcz+L1QXV2dysrKZLPZzI4CAAAAAAAA4HsKCwuVmZnZYFtmZqY+++wznT592qRU8EfM4PdCixcv1vnz5zVt2jSzowAAAAAAAACWUVNbK2eds5E9zvrfq6trGnn8D0FBgTIM47qvU1xcfNWyLFceFxcXy263ux4eblFdU/OPv956jf19X+M9YEjBQdapza2T1E+89NJLWrx4sbZt28Z/CAAAAAAAAAAXfPp5sda/nn/N/WUVlfrF8vXXfHxbfCf9KDdL16/34c327Dus3fsPN7rv+3/fjW0bOaSfRqb1a9GM7sQSPV5k2bJlevLJJ7Vt2zaNHDnS7DgAAAAAAACApfTsategO/s0a2x4WKjuy8pQwA1m70tSbGysSkpKGmw7e/Zs/T6YZ0RaP3Xq0LZZYzvHxmj4oBQ3J2pZFPxeYv78+XrmmWeUn59PuQ8AAAAAAAA009iMgYq5pZXL48aPSlOrqKbdEzMtLU07d+5ssK2goEBdunRhVQ6TBQYGaGL2cAUFBbo0LjgoULnjhiswwFqVubXS+qhZs2Zp6dKl2rRpkxISElRSUqKSkhKVlpaaHQ0AAAAAAACwlJDgIOWOG96kmfhXJPXqrqTePZp8/OzZs1VUVKSnnnpKH3/8sTZs2KCVK1dq7ty5zYkMN2vXto3Gpg90aUz2DwYp5pbWTT6+oqJCDodDDodDVVVVKikpkcPh0MmTJ11Me3Mo+L3ACy+8oEuXLmnChAmKjY2t//XYY4+ZHQ0AAAAAAACwnM6x7fSDwXc26djoSJtyRg9x6flTU1O1detWbd++XUlJSZo/f74WLVqk6dOnNycuWsCgfn3Uo0unJh3bs2tnDUzu5dLzHzx4UCkpKUpJSVFxcbFWrVqllJQUPfroo82J22zcZNcLOJ2N3dkbAAAAAAAAQHMNH5SiE59+ri+Kv7rucfdnpSsiLNTl58/OzlZ2dnZz46GFBRiG7s9K14r1b+jS5aprHhcRFqr7xg6T4cIVH5KUkZHhFb0uM/gtpvLSZa944wAAAAAAAADeLDAwQLnjhiv4OmuxD+6XqNu6sma+r2oVHanxN7g6Y8KYoYpu4r0XvBEFv4U4nU795vUdWv3qNn359Tmz4wAAAAAAAABeLeaW1soaftc1941NH+DhRPC05N49dMft3Rrdl9Knh/peY59V+E3BX1tbq02bNmn06NGKiYlRaGio4uLilJmZqZdfflm1tbWSpLy8PBmGoby8PJ07d04///nP1aNHD4WGhiojI8PUc/jkb6f1RfGX+vvZrxUe7vplQwAAAAAAAIC/uSult3p+b5Z+QIChieOGKziYFcz9wfjRQxQdGdFgW6som+4emWZSIvfxi4K/rKxMo0aN0qRJk/TWW28pJCRESUlJqqur065duzR16lSVl5c3GPP111+rX79+euGFFxQWFqbevXsrNNS8Ut3pdOrt9w9Jku5K6aMoW8QNRgAAAAAAAAAwDEP3jU1X+D+tsz9icD/ZY2NMTAVPiggP031ZGQ223Z+d0eA9YVV+UfBPmTJFe/bskd1u1+7du3XmzBkVFRXp9OnTKi4u1qJFixQcHNxgzOrVq9W2bVv99a9/1dGjR3X48GFt3brVnBPQP2bvBwcFatjAO0zLAQAAAAAAAFhNdJRNE/53LfbOse2UMSjZ3EDwuJ5d7Rp0Zx9J0pD+fdWjSyeTE7mHz1+DcujQIb3xxhsKCgrSjh07lJiY2GB/+/btNW/evKvGBQUFafPmzbLb/3H5Tnh4eIvnbQyz9wEAAAAAAICbc0ev7jr52RkNG5CkwAC/mPeM7xmbMVBlFRc0Jj3V7ChuYzidTqfZIVrSL37xCy1cuFA5OTlNmoGfl5enZ555RtnZ2dq+fbtbMqzcsFnlFRebPb6mtkaVFy9LkqJsETIMwy25AADwF+UXKuV0OmUYhqJsEVc99nWNna+//xlw/tY6f97DgPU/xwDgLa78txP+y1vfA1GR4frZw/e4PM7nZ/AfP35ckjRo0CCXxvXq1cttGcorLqqs4oJ7nutCpVueBwAAf+R0Ohv8f/L3H/u6xs7X3/8MOH9rnT/vYcD6n2MAAOBePl/wl5WVSZJatWrl0jibzea2DFGRzV/ah9n7AADcPH+f9cjsZ94DVj9/3sOA9T/HAADg+prbIft8wR8dHS1JKi0tNS1Dcy6tkL6bifHSpj+o8uKXGpp6h7J/cJebkwEA4B8Wr3pVZRUXFGWL0LyfPHjVY1/X2Pn6+58B52+t8+c9DFj/cwwAAFqGz6/BP3/+fC1YsMDlNfh/+ctfKi8vzy0ZmrsGP7P3AQBwD3+f9cjsZ94DVj9/3sOA9T/HAADg+liD/xomTJigBQsWKD8/X8ePH1fv3r09nsEda/Cz9j4AADfP39ctZv1y3gNWP3/ew4D1P8cAAMC9fL7gT0lJUW5url5//XWNHTtWGzduVHp6ev3+s2fPav369Zo5c6Zb193/Z81ZP4nZ+wAAuI+/z3pk9jPvAaufP+9hwPqfYwAAcH2swX8da9eu1Zdffqm9e/cqIyNDnTp1UseOHVVcXKwzZ87I6XTqxz/+cYu9vquXVrD2PgAA7uXv6xazfjnvAaufP+9hwPqfYwAA0DICzA7gCdHR0Xr77be1bt06ZWRkqLKyUkeOHFFAQIDGjBmjdevWKSoqyuyY9T7522l9UfylgoMCNWzgHWbHAQAAAAAAAAB4Ib+YwS9JgYGBmjx5siZPnnzd4/Ly8tx2c93m+uLvX8qQdFdKHy61BAAAAAAAAAA0ym8KfisZOaSf+iZ0lc3WvHWXAAAAAAAAAAC+j4LfS7WPucXsCAAAAAAAAAAAL+YXa/ADAAAAAAAAAOBrKPgBAAAAAAAAALAgCn4AAAAAAAAAACyIgh8AAAAAAAAAAAui4AcAAAAAAAAAwIIo+AEAAAAAAAAAsCAKfgAAAAAAAAAALIiCHwAAAAAAAAAAC6LgBwAAAAAAAADAgij4AQAAAAAAAACwIAp+AAAAAAAAAAAsiIIfAAAAAAAAAAALouAHAAAAAAAAAMCCKPgBAAAAAAAAALAgCn4AAAAAAAAAACyIgh8AAAAAAAAAAAui4AcAAAAAAAAAwIIo+AEAAAAAAAAAsCAKfgAAAAAAAAAALIiCHwAAAAAAAAAAC6LgBwAAAAAAAADAgij4AQAAAAAAAACwIAp+AAAAAAAAAAAsiIIfAAAAAAAAAAALouAHAAAAAAAAAMCCKPgBAAAAAAAAALAgCn4AAAAAAAAAACyIgh8AAAAAAAAAAAui4AcAAAAAAAAAwIIo+AEAAAAAAAAAsCAKfgAAAAAAAAAALIiCHwAAAAAAAAAAC6LgBwAAAAAAAADAgij4AQAAAAAAAACwIAp+AAAAAAAAAAAsiIIfAAAAAAAAAAALouD3AkuXLtWgQYPUpk0btW7dWkOGDFFBQYHZsQAAwHXk5+crOTlZoaGhio+P1/Lly82O5FHvvvuucnJy1KVLFxmGoYULF5odCQAAAAD8DgW/F9i9e7cmT56sPXv2qKioSIMHD9a4ceNUWFhodjQAANCIgwcPKicnR2PHjpXD4VBeXp7mzZun1atXmx3NYyoqKtS7d28tWbJEHTp0MDsOAAAAAPilILMDQNqxY0eDx0uWLFFBQYE2b96stLQ0k1IBAIBrWb58uVJTU/Xcc89Jknr16qVjx47p+eef1/Tp001O5xlZWVnKysqSJM2ZM8fkNAAAAADgn5jB74Xq6upUVlYmm81mdhQAANCIwsJCZWZmNtiWmZmpzz77TKdPnzYpFQAAAADA3zCD3wstXrxY58+f17Rp08yOAgCApVTX1OgPuwpVVV3dYPvFS5fqf/9/f3j7qsf/bNiAJNljY677OsXFxVctS3PlcXFxsex2+02dx80ocnykk5+dabCtsfO91p+BvUOMhg1M8lBaAAAAAMDNoOD3Mi+99JIWL16sbdu2mVoOAABgRcFBQbLHxmjrrvcb3V9dU6s/ffzpNR/fFt9JHTu0bfGcLen27nEqeKdIlZcuX7Xv++f7/W3BQYEaNaS/R3ICAAAAAG4eS/R4kWXLlunJJ5/Utm3bNHLkSLPjAABgSQOTeymhW2eXx4WFhui+rAwFGMYNj42NjVVJSUmDbWfPnq3fZ6boKJvGjxnarLFZw+9SzK2t3RsIAAAAANBiKPi9xPz58/XMM88oPz+fch8AgJtgGIbuHZuuiLBQl8ZNGD1EraKadv+btLQ07dy5s8G2goICdenSxSuuwLvj9m5K6dPDpTG3xdt1V0rvFkoEAAAAAGgJFPxeYNasWVq6dKk2bdqkhIQElZSUqKSkRKWlpWZHAwDAkqIjIzTBhVnsSb26K6l30wvx2bNnq6ioSE899ZQ+/vhjbdiwQStXrtTcuXObE7dF3D0yrcn/YBEeFqr7stJlNOHqhSsqKirkcDjkcDhUVVWlkpISORwOnTx5srmRAQAAAAAu8uuCv66uTjt27NCzzz6ru+++W7GxsTIMQ4Zh6NSpUx7L8cILL+jSpUuaMGGCYmNj63899thjHssAAICv6Xt7N6X0ue2Gx0VH2pQzKs2l505NTdXWrVu1fft2JSUlaf78+Vq0aJGmT5/e3LhuFx4WqvuzM5p07HgXrl644uDBg0pJSVFKSoqKi4u1atUqpaSk6NFHH21GWgAAAABAc/j1TXbLysqUlZVldgw5nU6zIwAA4JNyRqXp08//rtLyC9c85v6sdEWEh7n83NnZ2crOzr6ZeC2uR5dOSuufqMKDR695THLvHkrq1d3l587IyOBnGAAAAAAwmV/P4A8ICFBycrKmTp2qNWvWqKioyOxIN/Tfhf+jA0c+Vm1tndlRAADwemGhIcrNHn7N/YP79dFtXc1fM78lZQ4boHa3tml0X3SkTXe7ePUCYJaqqsv664lj2rJli3bt2qUL5WVmRwIAAABM59cz+KOjo3X48OH6xzU1NSamubHzZRXave9/VFtXp5hbWyve3sHsSAAAeL3uXTpqSP++ev/gnxtsj7mllTLTB5qUynOCg4M08YfDtWrjFtXVNZxxf3+26zcjBjzt5MmT2v7GRh3a/66qLl/S+pXfbQ8MDFJC3zs1bKR3X0kDAAAAtCSfnMFfW1urTZs2afTo0YqJiVFoaKji4uKUmZmpl19+WbW1tWZHbJY9+w+rtq5O3bt0pNwHAMAFY9JTG8xiDwgwNHHcDxQS7B9zHTq1b6tRQ/o32Da4X6Jui/ftqxdgfTt37lRycrL2792lqsuXGuyrra3RcUeRVv97nl588UWTEgIAAADm8rmCv6ysTKNGjdKkSZP01ltvKSQkRElJSaqrq9OuXbs0depUlZeXmx3TZefLKnTwTyckSSPS+pmcBgAAawkO+m4We2DAdz/6/GDwnbLHxpicyrOGDUxSXMf2kqSYW1prbPoAkxMB17d//36NHz9eFy5c+x4akiSnUz/72c+0YcMGzwQDAAAAvIjPFfxTpkzRnj17ZLfbtXv3bp05c0ZFRUU6ffq0iouLtWjRIgUHB5sd02X/PHu/W+dYs+MAAGA5ndq31cgh/dQ5NkbDB6WYHcfjAgMClDsuQ2GhIZr4w+EK9pOrF2BNTqdTP/nJT3Tp0qUbH/y/Zs6ceeN/DAAAAAB8jOF0Op03PswaDh06pP79+ysoKEiHDx9WYmKiS+Nramrqy/+//e1vio+Pd0uulRs2q7ziYrPHO511Kr/w3XhbeJgCAwPdkgsAAH/jdDrldDoVEOBzcxyarK6uzi/Pv/xCpZxOpwzDUJQt4qrHvs5q5//FqZNavSzP5XHj/2WKUtOufWNtwMqs9jkGAACuiYoM188evsflcT41dWvr1q2SpOzsbJfL/ZZUXnFRZRXumU104WLTZzEBAACgIafT2eDnsu8/9nVWOf8P3tvdrHEH9u1VQhLLT8G3WeVzDAAAPMOnCv7jx49LkgYNGmRykoaiIsObPZbZ+wAAADfP32e+Wu38L1aUNWtcRdl5RUfa3JwG8A5W+xwDAADXNLdD9qmCv6zsuy8CrVq1MjlJQ825tOKKLTvf04eOj9S9S0dNfWCcG1MBAAD4j8WrXlVZxQVF2SI07ycPXvXY11nt/PcX/KdOHHO4PK5VlM0rzwdwB6t9jgEAgGf41Br89957rzZv3qznn39ec+bMcXm8t63Bz+x9AAAA9/D3ma9WO/8//O43Knrvv10e16VbT037+fwWSASYz2qfYwAA4BrW4JfUp08fbd68Wfv37zc7SgPuWIOftfcBAABunr+vXW2V87/9jgHNKvh7pQz0yvMB3Mkqn2MAAOAZPlXwT5gwQQsWLFB+fr6OHz+u3r17mx1JUvPWT2L2PgAAgPv4+8xXq51/dK8+6hTXVWc+/1uTx4SFR2hgWoZCQkJbMBlgHqt9jgEAgGuauwa/Ty3RI0kTJ07U66+/rri4OG3cuFHp6en1+86ePav169dr5syZstmuvvlWSy3R0xysvQ8AAOA+V9aqjo60NVi7+spjX2fF8y8qKlJGRoYuXmzaUpevvPKKHnzQO88FcAcrfo4BAEDLCzA7gLutXbtWGRkZ+vzzz5WRkSG73a4BAwaoc+fOio2N1bx581RdXV1/fE5Ojtq2bau2bduqQ4cO9dvvvPPO+u05OTkePYfzZRU6+KcTkqQRaf08+toAAACANxgwYID++Mc/Kioq6rrHBQQEaM2aNZT7AAAA8Es+V/BHR0fr7bff1rp165SRkaHKykodOXJEAQEBGjNmjNatW9fgS0Jpaam++eab+l9XnDt3rn5baWmpR8/hnQ8dqq2rU/cuHdWtc6xHXxsAAADwFiNGjNCf/vQnPf7442rTpk2DfWFhYXrkkUd04MABTZs2zaSEAAAAgLl8ag3+KwIDAzV58mRNnjz5hsfu3bu35QO5aMTgfgoOClLv2+LNjgIAAACYKj4+XsuWLdOCBQt04MABlZWVyWaz6Y477tCtt95qdjwAAADAVD5Z8FtdpC1cWcPvMjsGAAAA4DXCw8M1bNgws2MAAAAAXsXnlugBAAAAAAAAAMAfUPADAAAAAAAAAGBBFPwAAAAAAAAAAFgQBT8AAAAAAAAAABZEwQ8AAADAowzDUN++fZWfn++x11yxYoV69Oih5ORkj70mAAAA0NIo+AEAAAB43HvvvaesrCyPvFZNTY1mz56tl19+2SOvBwAAAHgKBT8AAAAAU1VXV2vu3LkaMGCAkpOTlZubq3Pnzumrr75SfHy8PvjgA0nSG2+8oaSkJF28eFF79+5VYmKiJk2apMTERPXr108Oh0OStHfvXvXp00dTpkxRcnKytmzZYuLZAQAAAC2Hgh8AAACAqZYuXSqbzaaioiI5HA717dtXTz/9tGJiYrRp0yY9+OCDKioq0qxZs/T73/9e4eHhkqRjx47p4Ycf1tGjRzVnzhw98MADcjqdkqSPPvpIkyZNksPh0P3332/m6QEAAAAtJsjsAAAAAAD829atW1VaWqo333xTklRVVaX4+HhJ0tChQzVlyhQNHjxYGzduVM+ePevHxcfHa8SIEZKk3NxcTZs2TV988YUkqVu3bkpPT/fsiQAAAAAeRsEPAAAAwFROp1MrV67U6NGjG91/+PBhxcTE1Jf312IYhgzDkCRFRka6PScAAADgbViiBwAAAICpxo8frxUrVqiyslKSVFlZqWPHjkmSXnzxRZ07d05HjhzRmjVrVFhYWD/u1KlT2rNnj6Tv1udv37697Ha7508AAAAAMAkz+AEAAACYas6cObp8+bIGDhxYPwP/yrZly5bpww8/VLt27fTKK6/ooYce0oEDByRJffr00W9/+1vNnDlTISEheu211+rHAwAAAP6Agh8AAACAqYKCgvTss8/q2WefvWrfqVOn6v/34MGD9emnnzYYt2HDhqvGZGRkyOFwtERUAAAAwKuwRA8AAAAAj2rfvr3S09OVn5/vsddcsWKFZsyYobZt23rsNQEAAICWxgx+AAAAAB5VUlJy08/h6iz92bNna/bs2Tf9ugAAAIA3YQY/AAAAAAAAAAAWRMEPAAAAAAAAAIAFUfADAAAAAAAAAGBBFPwAAAAAAAAAAFgQBT8AAAAAAAAAABZEwQ8AAAAAAAAAgAVR8AMAAAAAAAAAYEEU/AAAAAAAAAAAWBAFPwAAAAAAAAAAFkTBDwAAAAAAAACABVHwAwAAAAAAAABgQRT8AAAAAAAAAABYEAU/AAAAAAAAAAAWRMEPAAAAAAAAAIAFUfADAAAAAAAAAGBBFPwAAAAAAAAAAFgQBT8AAAAAAAAAABZEwQ8AAAAAAAAAgAVR8AMAAAAAAAAAYEEU/AAAAAAAAAAAWBAFPwAAAAAAAAAAFkTB7wWWLl2qQYMGqU2bNmrdurWGDBmigoICs2MBAADgOvLz85WcnKzQ0FDFx8dr+fLlZkfyqHfffVc5OTnq0qWLDMPQwoULzY4EAAAA+B0Kfi+we/duTZ48WXv27FFRUZEGDx6scePGqbCw0OxoAAAAaMTBgweVk5OjsWPHyuFwKC8vT/PmzdPq1avNjuYxFRUV6t27t5YsWaIOHTqYHQcAAADwS0FmB4C0Y8eOBo+XLFmigoICbd68WWlpaSalAgAAwLUsX75cqampeu655yRJvXr10rFjx/T8889r+vTpJqfzjKysLGVlZUmS5syZY3IaAAAAwD8xg98L1dXVqaysTDabzewoAAAAaERhYaEyMzMbbMvMzNRnn32m06dPm5QKAAAAgL9hBr8XWrx4sc6fP69p06aZHQUAAMBSyioqVfLVt1dtr6mtrf/9k7+dvurxP4vr2E5hoSHXfZ3i4uKrlqW58ri4uFh2u73Z53AznE6nTn52Rk5nw+2unH/rKJvatW3jkbwAAAAAbg4Fv5d56aWXtHjxYm3bts20L4YAAABWFRocpK273tO358sb3V958ZLWv55/zcddO8dq6gPZLZ6zpRiGoZOnzuidD480uv9G5x8UGKifPjyhxXMCAAAAcA+W6PEiy5Yt05NPPqlt27Zp5MiRZscBAACwnNDQEOVmD5dhGK6PDQlWbnaGAgJu/CNybGysSkpKGmw7e/Zs/T4zjRrSX7Htbm3W2DHDUtUh5hY3JwIAAADQUij4vcT8+fP1zDPPKD8/n3IfAADgJsTbOyh9YJLL4+4emaY2raKadGxaWpp27tzZYFtBQYG6dOli+lWYQUGBmjhuuAIDXftRv1tcR6Wl9m2hVAAAAABaAgW/F5g1a5aWLl2qTZs2KSEhQSUlJSopKVFpaanZ0QAAACxp5JB+Ls1i79MzXncm3tbk42fPnq2ioiI99dRT+vjjj7VhwwatXLlSc+fObU5ct+sQc4vGDBvQ5OPrr15w4cqHiooKORwOORwOVVVVqaSkRA6HQydPnmxOZAAAAADN4NcF/zfffKO1a9cqNzdX3bt3V2hoqGw2m/r27au5c+fWX2bd0l544QVdunRJEyZMUGxsbP2vxx57zCOvDwAA4GuCAr+bxR4UGHjDYyNt4ZowZqhLy/qkpqZq69at2r59u5KSkjR//nwtWrRI06dPv5nYbjUkta+6dm7ackE5o9LUOjrSpec/ePCgUlJSlJKSouLiYq1atUopKSl69NFHmxMXAAAAQDP49U12x48fr/fff1+S1KpVKyUmJqqsrEzHjx/X0aNHtW7dOhUUFKhfv34tmsPpdLbo8wMAAPij72axp+q/9nxw3ePuG5uuyIhwl58/Oztb2dnee0PeAMNQbnaG/u/6N3S5qvqaxyX27KqUPk2/euGKjIwMfo4FAAAATObXM/gDAwP10EMP6f3339e3336rQ4cO6S9/+Ys++ugj9e/fX19//bXuueceXbx40eyo9b4o/lKVly6bHQMAAMAS0lL7qltcx2vuH5B0u27vHufBRJ7VplWU7h6Zds39Uc24egEAAACA9zCcfjzt5ptvvtGttza+Nuvnn3+uHj16qLq6Wlu2bNH48eM9G64RNbW1WrrmP3XpcpWm5GYprlN7syMBAAB4vfNlFVqx7vdXzWK/tXW0Zv7oXoWGBJuUzDOcTqde2fqWjn1y6qp9P7ovUwk+/A8cgK/461//qkf+baaOOg7oUuUFtW4VrcjWbZXYP013pg7WL2ZOMjsiAAAwiU/O4K+trdWmTZs0evRoxcTEKDQ0VHFxccrMzNTLL7+s2tpaSbpmuS9JcXFx6tWrlyTpxIkTHsl9I4f+fEKl5RcUEhLs0k3jAAAA/Fnr6EjljGo4i9343+VrfL3cl74713vGDFOkreEyRAOTe1HuA16uqqpKjz76qG677Ta9/9/5Ov/NV7p0sVIlJSU6+fFRbX1ljZbn/VwHDhwwOyoAADCJzxX8ZWVlGjVqlCZNmqS33npLISEhSkpKUl1dnXbt2qWpU6eqvLy8Sc916dIlSVJERERLRm6Smtpa7d53WJKUMTBZwcF+ffsEAAAAl6T0uU2JPbvWP864K0ld7B1MTORZtogw3Tc2vf7xrW2ilT38LhMTAbiRmpoa3XvvvVq3bt1173dx/tw3ysjI0AcfXP9+IwAAwDf5XME/ZcoU7dmzR3a7Xbt379aZM2dUVFSk06dPq7i4WIsWLVJw8I1najkcDn3yySeSpKFDh7Z07Bu6Mns/KjJCA5JuNzsOAACApRiGoQljhirKFq6O7W/ViLR+ZkfyuNu7x2lA0u0yDEMTs4crxA+uXgCs7Fe/+pW2b9/epGMrKyuVk5OjysrKFk4FAAC8jU+twX/o0CH1799fQUFBOnz4sBITE5v1PDU1NUpPT9e+ffs0evRo7dy586ZyrdywWeUVN3OjXqfKL1yU0+lUWGiIQprwDxQAAAC4Wk1NjYyAAAUG+Nw8lyZxOp2qrqnh50nAy9XW1mjpL2apvOy8S+PueXCq+g1Kv/GBAADA60RFhutnD9/j8jifWudl69atkqTs7Oxml/uS9Pjjj2vfvn2Kjo7WmjVrbjpXecVFlVVcuOnnkaRLl6t06XKVW54LAAAA/omfJwHv9vGfD7lc7kvSvnd26ba+/d0fCAAAeC2fKviPHz8uSRo0aFCzn2PZsmX69a9/rZCQEL3xxhuKj4+/6VxRkeE3PuiamL0PAAAAAP7k3Jd/b9a4s2c+V2REuAL89ColAACsrLkdsk8V/GVlZZKkVq1aNWv82rVr9eSTTyowMFCvvfaaRo0a5ZZczbm04ooPHR9py873FBUZof8z7QFurgsAAAAAPq744w/07luuj3M6nfr5lHsVERHh/lAAAMAr+VRbHB0dLUkqLS11eeyrr76q6dOnyzAMrV+/Xvfc0/xS/vuavwb/d7P3Jam6ukZL/+N3bssEAAAAAPBOR09+0axxgYGBWrF+swzDcHMiAADQ0liDX1KfPn20efNm7d+/36VxW7du1SOPPKK6ujqtWrVKkyZNcmsud6zBz9r7AAAAAOAf7F0TmjWuW0Kiyi9UujkNAADwZj5V8E+YMEELFixQfn6+jh8/rt69e99wzM6dOzVx4kTV1NTo+eef14wZM9yeq3nrJ7H2PgAAAAD4o6jefRVr76Li05+5NC5teKaiI20tlAoAALSk5q7BbzidTqebs5hq4sSJev311xUXF6eNGzcqPT29ft/Zs2e1fv16zZw5UzabTfv27dOoUaNUWVmpp59+WgsWLDAxeUOsvQ8AAAAA/uvNN9/Ufffd1+TjBw4cqH379nGDXQAA/IzPFfxlZWXKycnR3r17JUmdOnVSx44dVVxcrDNnzsjpdOrcuXNq3bq1EhIS9MknnygoKEgDBw685nNmZWVp3rx5HjoDqaa2Vsv+43c6X1ahH44YrLT+iR57bQAAAACAd/jVr36luXPn3vC422+/Xe+8847atWvngVQAAMCb+Ny08OjoaL399tvasGGDNm3apCNHjujIkSPq0KGDxowZo/vvv19RUVGSpMuXL0uSampqVFhYeM3n7NGjh0eyX3Hoz5/ofFmFoiIjNCDpdo++NgAAAADAO8yZM0d2u13z58/Xp59+etX+4OBg5ebm6te//rVuueUWExICAACz+dwMfl9w+NhftGNvkdIHJjF7HwAAAAD8XF1dnXbt2qXNmzfr22+/VVhYmBITE/WjH/1I7du3NzseAAAwEQW/l6quqZEhQ0FBgWZHAQAAAAAAAAB4IQp+AAAAAAAAAAAsKMDsAAAAAAAAAAAAwHUU/AAAAAAAAAAAWBAFPwAAAAAAAAAAFkTBDwAAAACABxmGob59+yo/P99jr7lixQr16NFDycnJHntNAADQ8rjJLgAAAAAAHmQYhs6dO6fWrVt75PVqamoUFBSkvXv3atasWXI4HB55XQAA0PKYwQ8AAAAAgImqq6s1d+5cDRgwQMnJycrNzdW5c+f01VdfKT4+Xh988IEk6Y033lBSUpIuXryovXv3KjExUZMmTVJiYqL69etXX9zv3btXffr00ZQpU5ScnKwtW7aYeHYAAKAlUfADAAAAAGCipUuXymazqaioSA6HQ3379tXTTz+tmJgYbdq0SQ8++KCKioo0a9Ys/f73v1d4eLgk6dixY3r44Yd19OhRzZkzRw888ICuXKT/0UcfadKkSXI4HLr//vvNPD0AANCCgswOAAAAAACAP9u6datKS0v15ptvSpKqqqoUHx8vSRo6dKimTJmiwYMHa+PGjerZs2f9uPj4eI0YMUKSlJubq2nTpumLL76QJHXr1k3p6emePREAAOBxFPwAAAAAAJjI6XRq5cqVGj16dKP7Dx8+rJiYmPry/loMw5BhGJKkyMhIt+cEAADehyV6AAAAAAAw0fjx47VixQpVVlZKkiorK3Xs2DFJ0osvvqhz587pyJEjWrNmjQoLC+vHnTp1Snv27JH03fr87du3l91u9/wJAAAA0zCDHwAAAAAAE82ZM0eXL1/WwIED62fgX9m2bNkyffjhh2rXrp1eeeUVPfTQQzpw4IAkqU+fPvrtb3+rmTNnKiQkRK+99lr9eAAA4B8M55U78AAAAAAAgBZnGIbOnTun1q1bN/s59u7dq1mzZsnhcLToGAAA4N1YogcAAAAAAA9q37690tPTlZ+f77HXXLFihWbMmKG2bdt67DUBAEDLYwY/AAAAAAAAAAAWxAx+AAAAAAAAAAAsiIIfAAAAAAAAAAALouAHAAAAAAAAAMCCKPgBAAAAAAAAALAgCn4AAAAAAAAAACyIgh8AAAAAAAAAAAui4AcAAAAAAAAAwIIo+AEAAAAAAAAAsCAKfgAAAAAAAAAALIiCHwAAAAAAAAAAC6LgBwAAAAAAAADAgij4AQAAAAAAAACwIAp+AAAAAAAAAAAsiIIfAAAAAAAAAAALouAHAAAAAAAAAMCCKPgBAAAAAAAAALAgCn4AAAAAAAAAACyIgh8AAAAAAAAAAAui4AcAAAAAAAAAwIIo+AEAAAAAAAAAsCAKfgAAAAAAAAAALIiCHwAAAAAAAAAAC6LgBwAAAAAAAADAgij4AQAAAAAAAACwIAp+AAAAAAAAAAAs6P8D6mo19T5qpokAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# View an example circuit with Monte Carlo Prep\n", + "\n", + "n_qubits = 4\n", + "sample = range(16) \n", + "example_post_proc_circuits = build_circuits_dyn(n_qubits, sample)\n", + "example_post_proc_circuits[16].draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "66325a1a-5b3b-41fd-b4d0-e1e1702d89a0", + "metadata": {}, + "source": [ + "## Step 2: Optimize problem for quantum execution" + ] + }, + { + "cell_type": "markdown", + "id": "aa55c1a8-3f16-4483-a90c-1eae1a40e90e", + "metadata": {}, + "source": [ + "For these circuits we do not do any specific optimization. However the results of these experiments could be used to optimize other utility scale circuits." + ] + }, + { + "cell_type": "markdown", + "id": "210a251f-a4b0-43f1-b081-67da215719bb", + "metadata": {}, + "source": [ + "## Step 3: Execute using Qiskit Primitives\n", + "Below, we execute the experiment on the specified backend. If you have already run an experiment, you can load the data skipping to the next Section." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "df49ddfc-69b9-457b-998f-3bacdc10b659", + "metadata": {}, + "outputs": [], + "source": [ + "# Set local parameters and submit circuits for the Unitary approach\n", + "\n", + "SAMPLES_UNI = SAMPLES\n", + "OPTIMIZATION_LEVEL_UNI = OPTIMIZATION_LEVEL\n", + "SHOTS_UNI = SHOTS\n", + "MIN_NUMBER_QUBITS_UNI = MIN_NUMBER_QUBITS\n", + "MAX_NUMBER_QUBITS_UNI = MAX_NUMBER_QUBITS\n", + "NUM_CIRCUITS_PER_JOB_UNI = 256\n", + "USE_DYNAMIC_DECOUPLING_UNI = False " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "f561ce90-32bb-47cc-b0bd-2e910c9e62e3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All jobs submitted.\n", + "\n" + ] + } + ], + "source": [ + "# Submit jobs for using unitarty circuit approach\n", + "job_ids_uni = submit_circuits(MIN_NUMBER_QUBITS_UNI, \n", + " MAX_NUMBER_QUBITS_UNI,\n", + " NUM_CIRCUITS_PER_JOB_UNI,\n", + " QUBIT_LINE, \n", + " COUPLING_MAP_1D,\n", + " SAMPLES_UNI,\n", + " OPTIMIZATION_LEVEL_UNI,\n", + " backend,\n", + " SHOTS_UNI,\n", + " build_circuits_uni,\n", + " use_dynamic_decoupling=USE_DYNAMIC_DECOUPLING_UNI)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "b4dbe4a6-a08c-475e-9e60-132b1269105c", + "metadata": {}, + "outputs": [], + "source": [ + "# Set local parameters and submit circuits for the measurement based post selction approach\n", + "\n", + "SAMPLES_POSTPROC = SAMPLES\n", + "OPTIMIZATION_LEVEL_POSTPROC = OPTIMIZATION_LEVEL\n", + "SHOTS_POSTPROC = SHOTS\n", + "MIN_NUMBER_QUBITS_POSTPROC = MIN_NUMBER_QUBITS\n", + "MAX_NUMBER_QUBITS_POSTPROC = MAX_NUMBER_QUBITS\n", + "NUM_CIRCUITS_PER_JOB_POSTPROC = 128\n", + "USE_DYNAMIC_DECOUPLING_POSTPROC = USE_DYNAMIC_DECOUPLING\n", + "DURATIONS_POSTPROC = DURATIONS" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "5c644035-2457-4a11-8790-662d790893eb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All jobs submitted.\n", + "\n" + ] + } + ], + "source": [ + "# Submit jobs for the measurement based post selection approach\n", + "job_ids_postproc = submit_circuits(MIN_NUMBER_QUBITS_POSTPROC, \n", + " MAX_NUMBER_QUBITS_POSTPROC,\n", + " NUM_CIRCUITS_PER_JOB_POSTPROC,\n", + " QUBIT_LINE, \n", + " COUPLING_MAP_1D,\n", + " SAMPLES_POSTPROC,\n", + " OPTIMIZATION_LEVEL_POSTPROC,\n", + " backend,\n", + " SHOTS_POSTPROC,\n", + " build_circuits_postproc,\n", + " use_dynamic_decoupling=USE_DYNAMIC_DECOUPLING_POSTPROC,\n", + " durations=DURATIONS_POSTPROC)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "d6f5219b-b10d-4f46-bdfb-1fe539496f9b", + "metadata": {}, + "outputs": [], + "source": [ + "# Set local parameters and submit circuits for the measurement based dynamic circuit approach\n", + "\n", + "SAMPLES_DYN = SAMPLES\n", + "OPTIMIZATION_LEVEL_DYN = OPTIMIZATION_LEVEL\n", + "SHOTS_DYN = SHOTS\n", + "MIN_NUMBER_QUBITS_DYN = MIN_NUMBER_QUBITS\n", + "MAX_NUMBER_QUBITS_DYN = MAX_NUMBER_QUBITS\n", + "DURATIONS_DYN = DURATIONS\n", + "DD_SEQUENCE_DYN = DD_SEQUENCE\n", + "NUM_CIRCUITS_PER_JOB_DYN = 16\n", + "USE_DYNAMIC_DECOUPLING_DYN = USE_DYNAMIC_DECOUPLING" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "5b85cae8-a2e3-40cd-a1ea-65a59e7e810e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All jobs submitted.\n", + "\n", + "[0, 16]: Id = cs1rsb5yhpyg008aj38g\n", + "[16, 32]: Id = cs1rsbnyhpyg008aj390\n" + ] + } + ], + "source": [ + "# Submit jobs for the measurement based dynamic circuit approach\n", + "job_ids_dyn = submit_circuits(MIN_NUMBER_QUBITS_DYN, \n", + " MAX_NUMBER_QUBITS_DYN,\n", + " NUM_CIRCUITS_PER_JOB_DYN,\n", + " QUBIT_LINE, \n", + " COUPLING_MAP_1D,\n", + " SAMPLES_DYN,\n", + " OPTIMIZATION_LEVEL_DYN,\n", + " backend,\n", + " SHOTS_DYN,\n", + " build_circuits_dyn, \n", + " durations=DURATIONS_DYN)" + ] + }, + { + "cell_type": "markdown", + "id": "17635f2f-99bd-473a-99a9-d1489601ab0d", + "metadata": {}, + "source": [ + "Check that all jobs have completed before proceeding to analzing/processing of results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "46d5f551-0423-4e81-b4ef-a640de3b17cb", + "metadata": {}, + "outputs": [], + "source": [ + "check_jobs(job_ids_uni)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a74fcd8a-3c2e-4779-85ee-4a437098cd0b", + "metadata": {}, + "outputs": [], + "source": [ + "check_jobs(job_ids_postproc)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3026911d-9761-4546-ba2f-d8ff6bbbd7ad", + "metadata": {}, + "outputs": [], + "source": [ + "check_jobs(job_ids_dyn)" + ] + }, + { + "cell_type": "markdown", + "id": "6a937fbd-2e6b-4209-8af7-0876a0f3c752", + "metadata": {}, + "source": [ + "## Step 4: Post-process, return result in classical format\n", + "Some processing of the counts is required, below some utility functions. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "e10d498d-443f-4875-99bf-bb0b3f6a8e3a", + "metadata": {}, + "outputs": [], + "source": [ + "def make_file_name(name:str,\n", + " min_qubits: int,\n", + " max_qubits: int,\n", + " optimization_level: int,\n", + " use_dynamic_decoupling: bool,\n", + " backend: Backend,\n", + " spacer: Optional[str]='_',\n", + " base_name: Optional[str]='cnot') -> (str, str):\n", + " n_range = str(min_qubits) + spacer + str(max_qubits)\n", + " pre_text = 'data/oplevel' + spacer + str(optimization_level)\n", + " if use_dynamic_decoupling is True:\n", + " pre_text = pre_text + spacer + 'dd'\n", + " machine = backend.configuration().backend_name\n", + " base = base_name + spacer + name + spacer + 'avg' + spacer + 'gate' + spacer + 'fidelities'\n", + " file_name = pre_text + spacer + n_range + spacer + machine + spacer + base + '.pkl'\n", + " file_name_std = pre_text + spacer + n_range + spacer + machine + spacer + base + spacer + 'std.pkl'\n", + "\n", + " return file_name, file_name_std\n", + "\n", + "def parity(string: str)->int:\n", + " return string.count('1')%2\n", + "\n", + "def parities(string: str) -> str:\n", + " strings = string.split()\n", + " parities = [parity(val) for val in strings]\n", + " return parities\n", + "\n", + "def postproc_counts(counts, i, samples):\n", + " P_lkji = PauliList(['IIII', 'XIXI', 'IZIZ', 'XZXZ', 'YZYI', 'ZZZI', 'YIYZ', 'ZIZZ',\n", + " 'XXIX', 'IXXX', 'XYIY', 'IYXY', 'ZYYX', 'YYZX', 'ZXYY', 'YXZY'])\n", + " \n", + " PauliI = Pauli('I')\n", + " PauliX = Pauli('X')\n", + " PauliZ = Pauli('Z')\n", + "\n", + " P_k = P_lkji[samples[i]][2]\n", + " P_l = P_lkji[samples[i]][3]\n", + "\n", + " # determine parities\n", + " counts_post = {'00':0,'01':0,'10':0,'11':0}\n", + "\n", + " for key in counts:\n", + " parities_list = parities(key)\n", + " w = len(parities_list)\n", + " if w == 3:\n", + " parity_of_c2, parity_of_c1, _ = parities_list\n", + " elif w == 2:\n", + " parity_of_c1 = 0\n", + " parity_of_c2, _ = parities_list\n", + " else:\n", + " parity_of_c1 = 0\n", + " parity_of_c2 = 0\n", + " \n", + " # add parity_of_c2 to q0 (key[-1]) only if P_k is 'X' or 'Y'\n", + " if P_k == PauliI or P_k == PauliZ:\n", + " parity_of_c2 = 0\n", + " \n", + " # add parity_c1 to q1 (key[-2]) only if P_l is 'I' or 'Z' or 'Y'\n", + " if P_l == PauliX:\n", + " parity_of_c1 = 0\n", + " \n", + " control_qubit_value = int(key[-1]) # Control qubit q0\n", + " target_qubit_value = int(key[-2]) # Target qubit q1\n", + "\n", + " new_control_qubit_value = (control_qubit_value + parity_of_c2)%2\n", + " new_target_qubit_value = (target_qubit_value + parity_of_c1)%2\n", + "\n", + " new_key = str(new_target_qubit_value) + str(new_control_qubit_value)\n", + "\n", + " counts_post[new_key] += counts[key]\n", + " \n", + " return counts_post\n", + "\n", + "def post_process_postproc(count, i, p, q, samples):\n", + " return postproc_counts(count, i, samples)\n", + "\n", + "def post_process_dyn(count, i, p, q, samples):\n", + " return marginal_counts(count, indices=range(2))" + ] + }, + { + "cell_type": "markdown", + "id": "91ebc921-26f2-4c1a-8eb9-5464941ff342", + "metadata": {}, + "source": [ + "Save or load data from a previous experiment" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "12c9ef74-1c91-4e69-a22d-326d8db1a192", + "metadata": {}, + "outputs": [], + "source": [ + "LOAD_DATA = True\n", + "data_dir_path = ''\n", + "\n", + "if not LOAD_DATA:\n", + "\n", + " # Save experiment parameters\n", + " var_dict = {k: globals()[k] for k in [ 'SAMPLES_DYN',\n", + " 'OPTIMIZATION_LEVEL_DYN',\n", + " 'SHOTS_DYN',\n", + " 'MIN_NUMBER_QUBITS_DYN',\n", + " 'MAX_NUMBER_QUBITS_DYN',\n", + " 'DURATIONS_DYN',\n", + " 'DD_SEQUENCE_DYN',\n", + " 'NUM_CIRCUITS_PER_JOB_DYN',\n", + " 'USE_DYNAMIC_DECOUPLING_DYN',\n", + " 'SAMPLES_POSTPROC',\n", + " 'OPTIMIZATION_LEVEL_POSTPROC',\n", + " 'SHOTS_POSTPROC',\n", + " 'MIN_NUMBER_QUBITS_POSTPROC',\n", + " 'MAX_NUMBER_QUBITS_POSTPROC',\n", + " 'NUM_CIRCUITS_PER_JOB_POSTPROC',\n", + " 'USE_DYNAMIC_DECOUPLING_POSTPROC',\n", + " 'DURATIONS_POSTPROC',\n", + " 'SAMPLES_UNI',\n", + " 'OPTIMIZATION_LEVEL_UNI',\n", + " 'SHOTS_UNI',\n", + " 'MIN_NUMBER_QUBITS_UNI',\n", + " 'MAX_NUMBER_QUBITS_UNI',\n", + " 'NUM_CIRCUITS_PER_JOB_UNI',\n", + " 'USE_DYNAMIC_DECOUPLING_UNI',\n", + " 'MACHINE_NAME',\n", + " 'QUBIT_LINE',\n", + " 'COUPLING_MAP_FULL',\n", + " 'COUPLING_MAP_1D',\n", + " 'MAX_POSSIBLE_QUBITS_BTW_CNOT',\n", + " 'DURATIONS',]}\n", + "\n", + "\n", + "\n", + " # Save to Box folder (avoid Github large file storage issues)\n", + " os.makedirs(os.path.dirname('data/'), exist_ok=True)\n", + " fname = data_dir_path + \"experiment_parameters.pickle\"\n", + " with open(fname, \"wb\") as f:\n", + " pickle.dump(var_dict, f)\n", + "\n", + " \n", + " # No post processing of the counts is required in the Unitary circuits. The average gate fidelities can now be calculated:\n", + " avg_gate_fidelities_uni, \\\n", + " avg_gate_stds_uni = cal_average_fidelities(job_ids_uni,\n", + " MIN_NUMBER_QUBITS_UNI,\n", + " MAX_NUMBER_QUBITS_UNI,\n", + " SAMPLES_UNI,\n", + " SHOTS_UNI,\n", + " NUM_CIRCUITS_PER_JOB_UNI)\n", + " \n", + " \n", + " # Save calculated fidelities\n", + " file_name_uni, file_name_std_uni = save_data('uni',\n", + " avg_gate_fidelities_uni,\n", + " avg_gate_stds_uni,\n", + " MIN_NUMBER_QUBITS_UNI,\n", + " MAX_NUMBER_QUBITS_UNI,\n", + " OPTIMIZATION_LEVEL_UNI,\n", + " USE_DYNAMIC_DECOUPLING_UNI,\n", + " backend)\n", + "\n", + "\n", + " avg_gate_fidelities_postproc, \\\n", + " avg_gate_stds_postproc = cal_average_fidelities(job_ids_postproc,\n", + " MIN_NUMBER_QUBITS_POSTPROC,\n", + " MAX_NUMBER_QUBITS_POSTPROC,\n", + " SAMPLES_POSTPROC,\n", + " SHOTS_POSTPROC,\n", + " NUM_CIRCUITS_PER_JOB_POSTPROC,\n", + " post_process= post_process_postproc)\n", + "\n", + "\n", + "\n", + " # Save post processing approach data\n", + " file_name_postproc, file_name_std_postproc = save_data('postproc',\n", + " avg_gate_fidelities_postproc,\n", + " avg_gate_stds_postproc,\n", + " MIN_NUMBER_QUBITS_POSTPROC,\n", + " MAX_NUMBER_QUBITS_POSTPROC,\n", + " OPTIMIZATION_LEVEL_POSTPROC,\n", + " USE_DYNAMIC_DECOUPLING_POSTPROC,\n", + " backend)\n", + "\n", + "\n", + " avg_gate_fidelities_dyn, \\\n", + " avg_gate_stds_dyn = cal_average_fidelities(job_ids_dyn,\n", + " MIN_NUMBER_QUBITS_DYN,\n", + " MAX_NUMBER_QUBITS_DYN,\n", + " SAMPLES_DYN,\n", + " SHOTS_DYN,\n", + " NUM_CIRCUITS_PER_JOB_DYN,\n", + " post_process=post_process_dyn)\n", + "\n", + " # Save dynamic circuit approach data\n", + " file_name_dyn, file_name_std_dyn = save_data('dyn',\n", + " avg_gate_fidelities_dyn,\n", + " avg_gate_stds_dyn,\n", + " MIN_NUMBER_QUBITS_DYN,\n", + " MAX_NUMBER_QUBITS_DYN,\n", + " OPTIMIZATION_LEVEL_DYN,\n", + " USE_DYNAMIC_DECOUPLING_DYN,\n", + " backend)\n", + "\n", + "\n", + "\n", + "\n", + "else:\n", + "\n", + " fname = f\"data/experiment_parameters.pickle\"\n", + " with open(fname,'rb') as handle:\n", + " experiment_parameters = pickle.load(handle)\n", + "\n", + " \n", + " SAMPLES_DYN = experiment_parameters['SAMPLES_DYN']\n", + " OPTIMIZATION_LEVEL_DYN = experiment_parameters['OPTIMIZATION_LEVEL_DYN']\n", + " SHOTS_DYN = experiment_parameters['SHOTS_DYN']\n", + " MIN_NUMBER_QUBITS_DYN = experiment_parameters['MIN_NUMBER_QUBITS_DYN']\n", + " MAX_NUMBER_QUBITS_DYN = experiment_parameters['MAX_NUMBER_QUBITS_DYN']\n", + " DURATIONS_DYN = experiment_parameters['DURATIONS_DYN']\n", + " DD_SEQUENCE_DYN = experiment_parameters['DD_SEQUENCE_DYN']\n", + " NUM_CIRCUITS_PER_JOB_DYN = experiment_parameters['NUM_CIRCUITS_PER_JOB_DYN']\n", + " USE_DYNAMIC_DECOUPLING_DYN = experiment_parameters['USE_DYNAMIC_DECOUPLING_DYN']\n", + " SAMPLES_POSTPROC = experiment_parameters['SAMPLES_POSTPROC']\n", + " OPTIMIZATION_LEVEL_POSTPROC = experiment_parameters['OPTIMIZATION_LEVEL_POSTPROC']\n", + " SHOTS_POSTPROC = experiment_parameters['SHOTS_POSTPROC']\n", + " MIN_NUMBER_QUBITS_POSTPROC = experiment_parameters['MIN_NUMBER_QUBITS_POSTPROC']\n", + " MAX_NUMBER_QUBITS_POSTPROC = experiment_parameters['MAX_NUMBER_QUBITS_POSTPROC']\n", + " NUM_CIRCUITS_PER_JOB_POSTPROC = experiment_parameters['NUM_CIRCUITS_PER_JOB_POSTPROC']\n", + " USE_DYNAMIC_DECOUPLING_POSTPROC = experiment_parameters['USE_DYNAMIC_DECOUPLING_POSTPROC']\n", + " DURATIONS_POSTPROC = experiment_parameters['DURATIONS_POSTPROC']\n", + " SAMPLES_UNI = experiment_parameters['SAMPLES_UNI']\n", + " OPTIMIZATION_LEVEL_UNI = experiment_parameters['OPTIMIZATION_LEVEL_UNI']\n", + " SHOTS_UNI= experiment_parameters['SHOTS_UNI']\n", + " MIN_NUMBER_QUBITS_UNI = experiment_parameters['MIN_NUMBER_QUBITS_UNI']\n", + " MAX_NUMBER_QUBITS_UNI = experiment_parameters['MAX_NUMBER_QUBITS_UNI']\n", + " NUM_CIRCUITS_PER_JOB_UNI = experiment_parameters['NUM_CIRCUITS_PER_JOB_UNI']\n", + " USE_DYNAMIC_DECOUPLING_UNI = experiment_parameters['USE_DYNAMIC_DECOUPLING_UNI']\n", + " MACHINE_NAME = experiment_parameters['MACHINE_NAME']\n", + " QUBIT_LINE = experiment_parameters['QUBIT_LINE']\n", + " COUPLING_MAP_FULL = experiment_parameters['COUPLING_MAP_FULL']\n", + " COUPLING_MAP_1D = experiment_parameters['COUPLING_MAP_1D']\n", + " MAX_POSSIBLE_QUBITS_BTW_CNOT = experiment_parameters['MAX_POSSIBLE_QUBITS_BTW_CNOT']\n", + " DURATIONS = experiment_parameters['DURATIONS']\n", + " \n", + " \n", + " \n", + " # Load data\n", + " file_name_uni, file_name_std_uni = make_file_name('uni',\n", + " MIN_NUMBER_QUBITS_UNI,\n", + " MAX_NUMBER_QUBITS_UNI, \n", + " OPTIMIZATION_LEVEL_UNI,\n", + " False,\n", + " backend)\n", + " \n", + " \n", + " file_name_dyn, file_name_std_dyn = make_file_name('dyn',\n", + " MIN_NUMBER_QUBITS_DYN,\n", + " MAX_NUMBER_QUBITS_DYN, \n", + " OPTIMIZATION_LEVEL,\n", + " USE_DYNAMIC_DECOUPLING_DYN,\n", + " backend)\n", + " \n", + " file_name_postproc, file_name_std_postproc = make_file_name('postproc',\n", + " MIN_NUMBER_QUBITS_POSTPROC,\n", + " MAX_NUMBER_QUBITS_POSTPROC, \n", + " OPTIMIZATION_LEVEL_POSTPROC,\n", + " USE_DYNAMIC_DECOUPLING_POSTPROC,\n", + " backend)\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "982f8e1b-5cd8-440f-af89-8b81eed1a15d", + "metadata": {}, + "source": [ + "### Plot the Results" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "4961942c-c704-4133-812e-dd2a6d5d228d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Set which approaches to plot\n", + "plot_uni = True\n", + "plot_postproc = True\n", + "plot_dyn = True" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "8b9075d6-19b4-4a46-934a-0fcfee93ee3d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Load the data for the plots \n", + "plots = {\"uni\": plot_uni, \"postproc\": plot_postproc, \"dyn\": plot_dyn}\n", + "\n", + "try:\n", + " file_name_uni\n", + "except NameError as e:\n", + " file_name_uni = \"\"\n", + "try:\n", + " file_name_postproc\n", + "except NameError as e:\n", + " file_name_postproc = \"\"\n", + "try:\n", + " file_name_dyn\n", + "except NameError as e:\n", + " file_name_dyn = \"\"\n", + " \n", + "files = {\"uni\":file_name_uni, \"postproc\":file_name_postproc, \"dyn\":file_name_dyn}\n", + "proc_fids = {\"uni\":[], \"postproc\":[], \"dyn\":[]}\n", + "\n", + "for key in plots:\n", + " if plots[key] is True:\n", + " try:\n", + " with open(files[key], \"rb\") as read_file:\n", + " proc_fids[key] = pickle.load(read_file)\n", + " except FileNotFoundError as e:\n", + " print(f\"Warning: {key} file {files[key]} failed to load.\") \n", + " plots[key] = False \n", + " \n", + "try:\n", + " file_name_std_uni\n", + "except NameError as e:\n", + " file_name_std_uni = \"\"\n", + "try:\n", + " file_name_std_postproc\n", + "except NameError as e:\n", + " file_name_std_postproc = \"\"\n", + "try:\n", + " file_name_std_dyn\n", + "except NameError as e:\n", + " file_name_std_dyn = \"\"\n", + "\n", + "files_stds = {\"uni\":file_name_std_uni, \"postproc\":file_name_std_postproc, \"dyn\":file_name_std_dyn}\n", + "proc_stds = {\"uni\":[],\"postproc\":[], \"dyn\":[]}\n", + "\n", + "for key in plots:\n", + " if plots[key] is True:\n", + " try:\n", + " with open(files_stds[key], \"rb\") as read_file:\n", + " proc_stds[key] = pickle.load(read_file)\n", + " except FileNotFoundError as e:\n", + " print(f\"Warning: {key} file {files[key]} failed to load.\") \n", + " plots[key] = False " + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "a992694d-d71d-4d21-a5f3-0f5f7f9ffdd6", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAF8CAYAAAD/xqB3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADJRElEQVR4nOydd3gUVduH7930smmkQSCBUBJKgNA7KCIgKAiConyKKIpgxYKo2N/XAqK8dkFBLCioICiCBgMoSoeEQOgJpEN67/P9cbKbbPqGZDYk5841V3Znpzzzy2T32XOeogEUJBKJRCKRSMyI1twGSCQSiUQikUiHRCKRSCQSidmRDolEIpFIJBKzIx0SiUQikUgkZkc6JBKJRCKRSMyOdEgkEolEIpGYHemQSCQSiUQiMTvSIZFIJBKJRGJ2pEMikUgkEonE7EiHRCKRSCQSidkxu0MycuRItmzZQlxcHIqiMGXKlHrtt2DBAqKiosjLy2Pfvn0MHDiwiS2VSCQSiUTSVJjdIXFwcCAsLIyFCxfWe5+ZM2eyYsUKXnnlFfr160dYWBg7duzAw8OjCS2VSCQSiUTSlCjNZVEURZkyZUqd2+3bt095//33Dc81Go0SGxurLF682OzXIBe5yEUucpGLXExfLLnGsLKyon///rzxxhuGdYqiEBISwtChQ2vcz9raGhsbG6N1bm5upKamNpmtEolEIpG0VHQ6HfHx8Y12vGvOIXF3d8fS0pKkpCSj9UlJSQQGBta435IlS3j55Zeb2DqJRCKRSFoPPj4+jeaUXHMOSUN54403WLFiheG5TqcjLi4OHx8fsrKyzGhZ62Hw4MHs37/f3Ga0GqTe6iL1Vhept7pU1lv/GdqYn5/XnEOSnJxMcXExXl5eRuu9vLxITEyscb/CwkIKCwurrM/KypIOiUrs3buXvLw8c5vRapB6q4vUW12k3uqiht5mz7IxlaKiIg4fPszYsWMN6zQaDWPHjuXff/81o2WSuhg/fry5TWhVSL3VReqtLlJvdVFLb7NG1To4OCh9+vRR+vTpoyiKojz++ONKnz59lA4dOiiAsnDhQiUkJMRon5kzZyp5eXnK3XffrQQGBiqffPKJkpqaqnh6etb7vDqdTlEURdHpdGaPLJaLXOQiF7nI5Vpamugz1LwXNXr0aKU61qxZowDKSy+9pERFRVXZb+HChUp0dLSSn5+v7Nu3Txk0aFBzEFMutSyzZs0yuw2taZF6S71b8iL1Nq/eTfEZqil70OrQ6XRkZmbi5OQkY0gkEkmzR6PR4OLigk6nQ6PRmNscSQtGURSysrJIT09HUap3EZriM/SaC2qVXLuMHz+eHTt2mNuMVoPUW12aUm8PDw/mzZtXa2mD1oadnZ0Mam1iTp06xapVq7hy5Yoq7ydyhESOkKiGLESnLlJvdWkqvS0tLfnoo4/Izs5mw4YNXL58mZKSkkY/z7WGhYWF1KGJsLCwwNPTk5kzZ+Lo6MiCBQtwcnIyur/lCInkmsbPz09+QKqI1Ftdmkrvtm3bYmtry/Llyzlz5kyjH/9aRY6QNC0XLlwgNTWVF154AW9vbzw8PJr8/eSaS/uVXLvINw91kXqrS1PprdWKt+mCgoImOf61Sk2xDZLGQ3/PWVhYqPJ+Ih0SiWrIqTF1kXqri9RbXeR0jbqocX9Lh0SiGp07dza3Ca0Kqbe6SL3VpXKzVEnTosb9LWNIJKohK+mqi9RbXcyit4MDqPXBXFAAOTnqnKsSUVFRvPfee6xcudKwLsdMtrRW1Li/pUMiUY2pU6eyceNGc5vRapB6q4vqejs4wOzZ4OKizvnS0+Hrr01ySkJDQzl27BhPPPGE0fp77rmH9957D1dX13odZ+DAgUYOiKIozJ49m2+++abetkiuDjXub+mQSFRDfjiqi9RbXVTX28ZGOCMFBZCf37TnsrUV57KxMcsoSXJycpV12dnZV31cKysrioqKrvo4rQE17m8ZQyJRjVmzZpnbhFaF1FtdzKZ3fj7k5TXt0oQOz5o1a9i0aRNPPvkk8fHxJCcn88EHH2BpWf59OSoqiscee8zwGGDz5s0oimJ47u/vz+bNm0lMTCQrK4sDBw4YNWHV7/vCCy/w5ZdfkpGRwWeffcbOnTt5//33jbZzd3enoKCA66+/vsmu+1pDjftbOiQS1Vi/fr25TWhVSL3VRerdcK677jo6d+7Mddddxz333MOcOXOYM2dOtdsOHDgQgDlz5uDt7W147ujoyLZt2xg7dizBwcFs376drVu30qFDB6P9n3rqKcLCwggODua1115j9erV3HnnnVhbWxu2mT17NnFxcfz5559Nc8HXIGrc39IhkahG5W8rkqZF6q0uUu+Gk5aWxsMPP8zp06f59ddf+fXXX2vUUz99U1BQQFJSkuF5eHg4n332GSdOnODcuXO8+OKLnD9/nltuucVo/z///JMVK1Zw4cIFLly4wE8//QTAlClTDNvMmTOHtWvXNsGVXruocX9Lh0SiGsePHze3Ca0Kqbe6SL0bzokTJygtLTU8T0hIwNPTs9Z9CgsLjZ47ODiwbNkyTp48SVpaGllZWXTv3h1fX1+j7Q4dOmT0vKCggK+++oq5c+cCEBwcTK9evaRDUgk17u9W55AsWLCAEydOcODAAXOb0urw8vIytwmtCqm3uki9q5KZmYmzs3OV9S4uLmRkZBieVw4sVRTFUKG2JirGmAAsX76cW2+9leeee46RI0fSt29fjh8/bjQVA9WnC69evZpx48bh4+PDvffey59//smlS5fqvL7WhBr3d6tzSD766CN69uzJoEGDzG2KRCKRtGhOnz5Nv379qqzv16/fVfXlKSwsrOKwDB8+nLVr17J582YiIiJITEykY8eO9TpeREQEhw4dYt68edx555188cUXDbZN0nBk2q9ENZKSksxtQqtC6q0uZtPb1rbZnuPjjz/m4YcfZuXKlaxevZqCggImTZrErFmzuPnmmxtsTnR0NKNHjyY0NJSCggLS09M5e/Ys06ZNY+vWrSiKwmuvvVbnKEtFVq9ezQcffEBOTg6bNm1qsG0tFTXu71Y3QiIxH0FBQeY2oVUh9VYX1fUuKBDFymxswNm5aRcbG3EuExv8RUVFMWrUKAIDAwkJCWH//v3MnDmTGTNmsGPHjgZf+pNPPsm4ceOIiYnh6NGjACxatIi0tDT++ecftm7dyo4dOzhy5Ei9j7l+/XqKi4tZv369bGRYDWrc3xqgVbZM1Ol0ZGZm4uTkJJtiSSSSZoufnx+vvfYaS5cu5eLFi8YvtpLS8Wrg5+fH+fPnGThwoMHJae3Udu81xWeoHCGRqIYs1KUuUm91MYveOTmQmqrO0sycETc3t0Y5jqWlJV5eXrz++uvs27dPOiM1IAujqYmTE7i7m9uKFo0sHKUuUm91kXqrS2pqaqMcZ/jw4SQmJjJw4EDmz5/fKMdsicjCaGowZw588QVs3gzr18OIEea2qMUyY8YMc5vQqpB6q4vUW13q25ivLnbv3o1GoyEwMJCIiIhGOWZLRI37WzokM2ZAp06g0YClJTz0EFhZmduqFsnmzZvNbUKrQuqtLlJvdUlPTze3Ca0KNe5v6ZCkp8O5c7BvH5SWQrt2MH26ua1qkQwdOtTcJrQqpN7qIvVWFwcHB3Ob0KpQ4/6WDsn27bBqFSxfDjt3inV33CFiSiSNyvnz581tQqtC6q0uUm91kam56qLG/S0dkm++gQMHICUF3n9ftNl2dob77ze3ZS0OnU5nbhNaFVJvdZF6q4uFhYW5TWhVqHF/S4ekQkMnsrJgwwbxeNw48PMzj00tFDs7O3Ob0KqQequL1FtdNBqNuU1oVahxf7d6h0RDpZv6q69Ezr2tLSxcKIJdJY1ClaJOkiZF6q0uUm91qdztV9K0qHF/t3qHxN660rBfcbGIKQHo1w9kE75GY+DAgeY2oVUh9VYXqbe6tOag1jVr1qjeb0eN+7vVOyTuLtX0F9y+HaKjwcIC7rtPdZtaKlfTu0JiOlJvdZF6V2XNmjUoioKiKBQUFHD27FmWLl161fEfo0ePJiMjA2dn50ay9NriscceY86cOaqeU437u9U7JJ5ONcyLffqp+N2hAzg6qmdQC0aWMlcXqbe6SL2r57fffsPb25uuXbvyzjvv8PLLL/P000+b26xasbSs5otqMyIzM5OMjAxVzylLx6tAO6caIoePHIGSEhFL0r27uka1UGRpbXWRequL1Lt6CgoKSEpK4tKlS3zyySeEhIRwyy234OLiwpdffklqaio5OTls27aNLl26GPbz9fVly5YtpKamkp2dTUREBBMnTsTPz49du3YBojiaoiisWbOmxvNHRUXxwgsv8O2335KdnU1sbCwLFiww2kZRFObPn8/PP/9MdnY2zz//PADz58/n3LlzFBQUcOrUKWbPnm20n7OzM5988gmJiYnk5eVx/PhxJk2aZHh9+PDh7Nmzh9zcXC5dusTKlSuxt7c3vP7QQw9x5swZ8vLySExMZOPGjYbXpk+fTnh4OLm5uSQnJ/PHH38Y9q08ZRMaGsrKlSt56623SElJISEhgZdeesnI1oCAAP766y/y8vI4ceIEY8eORVEUpkyZUuvfT48sHa8CnvY1zEMWFoppG4Bhw1SzpyUzdepUc5vQqpB6q4vUu37k5eVhbW3N2rVrGTBgALfccgtDhw5Fo9Gwbds2w+jEhx9+iI2NDaNGjSIoKIjFixeTnZ1NTEwM06ZNA6Bbt254e3vz2GOP1XrOp59+mrCwMIKDg3nzzTdZuXIlN9xwg9E2L7/8Mps2bSIoKIgvvviCqVOnsnLlSt555x169erFp59+ypo1axgzZgwgsnx+++03hg8fzuzZs+nRowfPPvssJSUlAPj7+7N9+3Z+/PFHevfuze23386IESP44IMPAOjfvz//+9//ePHFFwkICGDChAns2bMHAG9vb9avX88XX3xB9+7dGTNmDD/99FOtmUX33HMPOTk5DB48mGeeeYYXX3zRcI1arZbNmzeTm5vL4MGDeeCBB/jPf/5j0t9NrftbaY2LTqdTFEVR/jPtupq3e/xxhdBQhQ8/NLu9LWGxs7Mzuw2taZF6twy9/fz8lHXr1il+fn5mv0ZTlzVr1iibNm0yPB87dqySl5en/PTTT4qiKMrQoUMNr7m5uSk5OTnKbbfdpgBKWFiY8uKLL1Z73NGjRyuKoijOzs512hAVFaVs27bNaN369euVX3/91fBcURRlxYoVRtv8/fffyqeffmq07vvvv1d++eUXBVDGjRunFBcXK127dq32vKtWrVI++eQTo3XDhw9XiouLFRsbG+XWW29V0tPTFUdHxyr7BgcHK4qiKL6+vvXSNTQ0VNmzZ4/RNvv371feeOMNBVDGjx+vFBYWKl5eXkZ/C0VRlClTptTr3qt8f+s/Q3U6XaPdL61+hMTFupbc6hMnxG9PT9C2eqmumuDgYHOb0KqQequL1Lt6Jk+eTFZWFvn5+fz22298//33rF27lqKiIvbv32/YLjU1ldOnT9O9bIr8f//7Hy+88AJ///03L7/8MkFBQbWe58477yQrK8uwjKjQKPXff/812vbff/81nEfPoUOHjJ53796dvXv3Gq3bu3evYb++ffsSGxvL2bNnq7WnT58+zJkzx8imHTt2YGFhQadOnfjjjz+4ePEiFy5cYN26ddx5552GWh9hYWGEhIRw/PhxNmzYwP3334+Li0ut1x8eHm70PCEhAU9PT0BM18TExJCUlGR4/cCBA7UerzJq3N+t/lNWZ2Vb84uRkeK3qyu0aaOOQS2YuLg4c5vQqpB6q4vUu3pCQ0Pp27cvXbt2xc7Ojjlz5qAoSp37ff755/j7+/PVV18RFBTEoUOHePjhh2vcfsuWLfTt29ewVHYw6iInJ8ek7fPy8mp93dHRkU8//dTIpj59+tClSxfOnz9PdnY2/fr1Y9asWSQkJPDqq68SFhaGs7MzpaWljBs3jokTJ3Ly5EkeeeQRTp8+TceOHWs8X1FRkdFzRVHQNuIXaTXu71bnkCxYsIATJ04YvEMHbS0OSWws5OSI9F9ZY+CqsZJdlFVF6q0uUu/qycnJ4fz588TExBjiKyIjI7GysmLw4MGG7dzc3AgICODkyZOGdbGxsXz66adMnz6dd955h3nz5gHlRdEqpg9nZ2dz/vx5w5Kfn294bciQIUY2DRkyhEj9F84aiIyMZPjw4Ubrhg8fbrAvPDyc9u3b07Vr12r3P3LkCD169DCySb/onYeSkhJ27tzJ4sWL6d27Nx07duT66683HOOff/7h5ZdfJjg4mMLCQm699dZaba6J06dP06FDB8OICZheV0SN+7t55zY1AR999BEfffQROp2OzMxM7GpzSABOnYL+/WHwYNi2TR0jWyiurq7mNqFVIfVWF6l3/Tl37hybN29m1apVPPjgg2RlZfHmm28SFxfHzz//DMC7777Lb7/9xpkzZ3B1deW6664zOBEXL16ktLSUyZMns23bNvLy8mod4Rg+fDhPP/00mzdvZty4ccyYMcMoG6Y6li1bxoYNGzh69CghISHcfPPNTJs2zRAoumfPHvbs2cOPP/7IokWLOHfuHIGBgSiKwo4dO3jrrbfYt28f77//PqtXryYnJ4cePXowbtw4HnnkESZNmoS/vz979uwhLS2Nm266Ca1Wy+nTpxk0aBBjx47l999/5/LlywwePBgPD486naia+OOPPzh//jxffvklzzzzDDqdjtdffx2gXqNVoN79bfbAJ3Ms+oCckDkP1b7tPfeIwNYvvjC7zdf60pjBT3KReje3pan0bklBrRUXFxcX5csvv1TS0tKUnJwc5bffflO6dOlieP1///ufcvbsWSUvL09JSkpSvvzyS8XNzc3w+tKlS5X4+HilpKREWbNmTY02REVFKUuXLlW+//57JTs7W4mPj1ceeeQRo21qCu6cP3++cu7cOaWgoEA5deqUMnv2bKPXXV1dlc8//1y5cuWKkpubq4SHhys33XST4fUBAwYoO3bsUDIzM5WsrCzl2LFjypIlSxQQAa6hoaFKSkqKkpOToxw7dkyZMWOGAiiBgYHKb7/9piQlJSl5eXnKqVOnlIULF9aoa2hoqPLuu+8a2bZp0yYjXQICApS//vpLyc/PV06ePKlMmjRJURRFufHGG+t171W+v5siqBVz37DmWvRi7p69SNFqa9l20CDhkGzZomBlZXa7r+Vl8uTJZrehNS1S75ah97XskDTlUp8MGxAOyWOPPWZ2e5vbMmzYMEVRFMXf37/GbSree5Xv76ZwSFrdlE1lNLkOODtDWloNG5w6JX7rdKL777lzqtnW0vjll1/MbUKrQuqtLlJvdVG7Uum1ztSpU8nOzubs2bN06dKFlStX8vfff3PhwoV67a/G/d3qglqrkGOPm1str2dmQkKCeDxypComtVRkaW11kXqri9RbXdxqfeOWVEan0/Hhhx9y6tQp1q5dy8GDB+tdpRXUub9b/QgJuQ7UGatz4gS0bQu9e6tiUktFltZWF6m3uki91SU1NbVe23Xq1KmJLbk2+Oqrr/jqq68avL8sHa8GOfbUUW/GuECapMFMnjzZ3Ca0KqTe6iL1VpfW2unXXKhxf0uHJNeBNq419wcAQJ8X7+4umu1JGsTu3bvNbUKrQuqtLlJvdcnKyjK3Ca0KNe5v6ZDk2uNWl0Ny4QIUFYG1NfTrp45dLZDAwEBzm9CqkHqri9RbXWzll0NVUeP+lg5JtgNurnXIUFxcnl1TqXKfpP6k1ZjKJGkKpN7qIvVWF33VV4k6qHF/S4ekyJo2jvUoiRsRIX77+xuvd3eHdu0a364WSOVeC5KmReqtLlJvdalvhVFJ46DG/S2zbAA3Wweg9kZJhkZ7+sBWV1d44AG48UbIy4M77xQpwpIa8fHx4eLFi+Y2o9Ug9VYXc+htjTVWqNNDp4giCilU5Vz1wcrKytDTRtL0qHF/S4cEcLayr3sjfWCriws89BBMmQI2NmKdgwN07w4VWmlLqnL06FFzm9CqkHqri9p6W2PNcIbjiKMq58smm73sbTZOSW5urirniYqK4r333mPlypWqnK+5osb9LadsAEcLu7o3SkqCjAzQamHmTOGM5OSA/p+iQtdKSfWMHz/e3Ca0KqTe6qK23lZY4YgjhRSS1cQ/hRTiiKPJozFr1qxBURQURaGwsJDExER+//137r33XjSaOpIJ6kCttN+BAwfy2WefqXKu5owa97d0SADLAgcc6/Ml48AB8Ts/H44ehc8/h8OHxbrKsSWSKmzevNncJrQqpN7qYi69C1T6aSi//fYb3t7edOzYkYkTJxIaGsrKlSv55ZdfsLCwaPBx09PTG7yvKSQnJ5OXV8eUfitAjftbOiQA2Y51V2sFWLkSvvpK/F62DDZtgiNHxGseHk1qYktAltZWF6m3uki9q6egoICkpCTi4+M5evQob7zxBlOmTOGmm25izpw5fP7552zdutVoH0tLS5KSkpg7dy6AwYl56623SElJISEhgTfffNNonyeeeILw8HCys7O5dOkSH374IQ4ODobX77nnHtLS0pg0aRKnTp0iJyeHjRs3Ymdnx913301UVBSpqamsXLkSrbb8ozEqKorHHnvM8NzZ2ZlPPvmExMRE8vLyOH78OJMmTWoK6ZoVsnS8WuSI8vExMXVtlwNffGG8Tp8O7OICdnYiwFVSLbK0trpIvdVF6l1/QkNDOXbsGNOmTeP1119nz549eHt7k5iYCIiqoPb29nz//feGfe655x5WrFjB4MGDGTp0KGvXriUkJISQkBAASktLefTRR4mKisLf35+PPvqIt99+m4ULFxqOYW9vz6OPPsodd9yBTqfjp59+YtOmTaSnp3PTTTfh7+/Pjz/+yN69e9mwYUMVuzUaDb/99hs6nY7Zs2dz/vx5evTo0SpSkGXpeLXIqUc/m5rQd0q0txfdgCU1ImMa1EXqrS5Sb9M4deoUHTt25N9//+X06dP83//9n+G1e++9l40bN5KTk2NYFx4ezquvvsq5c+f46quvOHr0KGPHjjW8vnLlSnbt2sXFixcJDQ3lhRdeYObMmUbntLa25qGHHuLYsWP89ddf/PDDD4wYMYL77ruPyMhIfv31V0JDQ7nuuuuqtfmGG25g0KBBTJs2jZCQEKKiovj111/Zvn17I6vT/JAxJGpR3ymb6sjNhTKvnoEDG82klsjBgwfNbUKrQuqtLlJv09BoNIZaIqtXr+bee+8FwNPTk4kTJ/JFpdHo8PBwo+dxcXF4VugvNnbsWEJCQoiNjSUzM5OvvvoKd3d37OzKkxZycnK4oP8SCSQlJREdHW3k+CQlJRkdtyJ9+/YlNjaWs2fPNvCqr13UuL+lQwJXN0ICoL85g4IaxZyWip8cQVIVqbe6SL1No3v37kRFRQGwbt06/P39GTJkCLNnzyYqKoq///7baPvKhbk0Go0h1sPPz49ffvmF8PBwpk+fTv/+/Q1TNdbW1jUeQ1GUatdVjCGpSGsOblXj/pYOCVy9Q3LmjPjt7t4o5rRUWvM/szmQequL1Lv+XHfddfTu3Zsff/wRgNTUVDZv3sy9997LnDlzWLNmjUnH69+/P1qtlieffJL9+/dz9uxZ2jVBBe3w8HDat29P165dG/3YzR017m8Z1AqQ44CLy1Xsf/68+O3mBpaWoveNpAqyO6e6SL3VxVx622DTrM9hY2ODl5cXFhYWeHl5MWHCBJYsWcLWrVtZt26dYbvVq1cbUoG//PLLOo9bsXT8uXPnsLa25pFHHmHr1q0MHz6c+fPnN9jmmtizZw979uzhxx9/ZNGiRZw7d47AwEAURWHHjh2Nfr7mhBr3txwhgauLIYHyTBudTqb/1kLnzp3NbUKrQuqtLmrrXUQR2WRjjTW6Jv6xxppssinC9H4mEydOJDExkejoaLZv3851113Ho48+ypQpUygtLTVsFxISQkJCAjt27CAhIaHO41acVgkPD+eJJ55g8eLFREREcNddd7FkyRKTba0P06dP5+DBg6xfv56TJ0/y9ttvX1U9lWsFte5vpTUuOp1OURRF2aPbo4R2+0T55uurPObWrQqhoQqTJpn92prrYmVlZXYbWtMi9W4Zevv5+Snr1q1T/Pz8qrxmjbXigIMqizXWTaqfg4ODkp6ertx666312l6j0Zj9b97Sl4r3XuX7W/8ZqtPpGu18coQExJTN1YyQQPm0TXDwVZvTUpk6daq5TWhVSL3VxRx6F1JIjko/TdXDRqPR4OHhwdKlS0lPT2fLli312s/lqubZJaaixv3d6mJIFixYwMKFC42jqHMcsLcX7WkKGloh+fRp6NMHfHwaxc6WyMaNG81tQqtC6q0uUu+G4evrS3R0NDExMcyZM6feRcbS0tKa2DJJRdS4v1vdCMlHH31Ez549GTRokGGdkiPKC1+Vw62PI2nTBq6yaVRLRZbWVhept7pIvRvGxYsX0Wg0+Pr68ueff9Z7Pzc3tya0SlIZNe7vVueQVIemyBoKrbiq+7tiCXknp8Ywq8UhS2uri9RbXaTe6pKammpuE1oVsnS8CpRSFuV9tZk2ly5BURFYWUGPHo1iW0ujYplnSdMj9VYXqbe66HQ6c5vQqlDj/m71Dkk++eJBtuPVTdmUlAinBGDAgKqvt4K0sLo4fvy4uU1oVUi91UXqrS6yEJ26qHF/t3qHJIeyHgZXW60Vyiu2+vuXr9No4KmnYN066NTpKk9wbePl5WVuE1oVUm91kXqri5WVlblNaFWocX9Lh6SCQ3LVMVL6njYVi6MtXAiTJkG7dtCv31WeQCKRSCSSlonJDsmcOXOMuide61R0SK46rV0f2OrqCra2MH26WPS08tiSpKQkc5vQqpB6q4vUW10qN8WTNC1q3N8mOyRvvvkmiYmJrF69mqFDhzaFTapicEiuNqgVQN/W2t4epk0ToyMAhWUFhWpoad1aCJLdkFVF6q0uUm91qeuLsaIoTJkyRSVrWj5q3N8mOyQ+Pj7cc889uLu7s2vXLiIjI3nmmWeu2fnTXHLFg8aIIcnJAb0XOW+eiB+5fBkOHRLrnJ2v8gTXNjt37jS3Ca0Kqbe6SL2NWbNmDYqioCgKhYWFXLhwgbfeegsbm8ZpBtiSm0eOHj0aRVFwbkafGWrc3yY7JCUlJWzevJmpU6fSoUMHVq1axV133cWlS5f4+eefueWWW9BcQ4XBGjWoFcrjSADS02H7dggJEc91OtENuJUiC0epi9RbXaTeVfntt9/w9vbG39+fJ554ggcffJBXXnmlUY4tC6OpS7MvjHb58mX+/vtv/v33X0pLSwkKCuLLL7/k/PnzjB49urFsbFIqOiTOzo2QnatPjcrJgR07YPPm8tgSR0fhlLRSZOEodZF6q4tZ9LaqZan83edqt20ABQUFJCUlERsby88//0xISAjjxo0zvO7m5sa3335LbGwsOTk5hIeHc8cddxgdIzQ0lJUrV/LWW2+RkpJCQkICL730klFhtC5durB7927y8vI4ceIEN9xwQxVbevXqxc6dO8nNzSU5OZlPP/0UBwcHw+tr1qxh06ZNLFmyhMTERNLS0li6dCkWFha8/fbbpKSkGMrb14ajoyNff/012dnZxMfH8/jjjxMaGsq7775r2Gb27NkcPHiQzMxMEhIS+Oabb/AoS4bw8/Nj165dAKSnp6MoCmvWrAFE359nn32WCxcukJuby7Fjx5heMU6xCWm2hdE8PT158skniYiIYNeuXTg5OTF58mT8/f3x8fFhw4YNfPnll41ta5Ogn7JRshyBRphV2bwZfvwRfv8dNm2CtDRITITSUjE64ut7lSe4dpkxY4a5TWhVSL3VxSx6P1/LMrPStk/Xsu3sSts+Xs02V0nPnj0ZNmwYhYXlTfpsbW05fPgwkyZNolevXnz22Wd89dVXDBw40Gjfe+65h5ycHAYPHswzzzzDiy++yK233gqID+mffvqJwsJCBg8ezPz583nrrbeM9re3t2fHjh2kpaUxcOBAZsyYwQ033MAHH3xgtN31119Pu3btGDVqFIsWLeLVV1/ll19+IS0tjcGDB/PJJ5/w6aef4lNLz7IVK1YwfPhwbrnlFsaNG8fIkSPpVynD0srKiqVLl9KnTx+mTp1Kx44dWbt2LQAxMTFMmzYNgG7duuHt7c1jjz0GwJIlS7j77ruZP38+PXv25N133+Xrr79m1KhRJvwlGoZa97dJ7YG3bNmiFBQUKMePH1cee+wxxdXVtco2Hh4eSklJidlbJ9e26Fsn3667XQklVNkx4HUlNBTlppsa4fgODgqVddmwQSE0VGHWLLNfu7mWpmrPLhepd3NYmkrvii3gq7z+ci3LnZW2fa6WbedU2vbparYx0e41a9YoRUVFSlZWlpKXl6coiqIUFxcr06ZNq3W/rVu3KsuWLTM8Dw0NVfbs2WO0zf79+5U333xTAZRx48YphYWFStu2bQ2vjx8/XlEURZkyZYoCKPfff7+SkpKi2NvbG7aZOHGiUlxcrHh6ehrsjYqKUjQajWGbyMhIZffu3YbnWq1WycrKUm6//fZqbXd0dFQKCgqU6dOnG9Y5OTkp2dnZyrvvvlvjNffv319RFEVxcHBQAGX06NGKoiiKs7OzYRtra2slOztbGTJkiNG+q1atUr755psmv/cq39/6z1CdTtdo5zM5oOHy5cuMHj2affv21bjNlStX6HSNFAHTT9lkX3TDDbj/fti9W8y4NPygOVUPEBcn6pN07nwVB762GTp0KHv27DG3Ga0Gqbe6mEXv/9TymlLp+TITtn2vQdZUITQ0lIceeggHBweeeOIJiouL+emnnwyva7VannvuOWbOnImPjw/W1tbY2NiQm5trdJzw8HCj5wkJCbRr1w6A7t27ExMTQ0JCguH1f//912j77t27ExYWZnTcvXv3YmFhQUBAAJcvXwbgxIkTKEq5GElJSURERBiel5aWkpKSgmcNGZP+/v5YW1tz4MABw7rMzExOnz5ttF2/fv14+eWX6dOnD66urobu876+vkRGRlZ77C5duuDg4MAff/xhtN7a2pqjR49Wu09josb9bbJDsnv3bo4cOVJlvZWVFXfccQdfffUVAJf0ZdSbOXqHpOCKMxcvgp8f3HMPfPRRI5/o0iXo29e4aFor4/z58+Y2oVUh9VYXs+htSimOptq2FnJycgy6zJ07l7CwMObOncsXX3wBwNNPP81jjz3G448/zvHjx8nJyeG9997D2tra2JxKNUf02TuNTXXnqW6d3oFoCPrpox07dnDXXXdx5coVfH19+f3336tcd0UcHUVYwaRJk4iLizN6raCgoMH21Bc17m+TVV2zZk21qUg6nc4QeHMtoY8hscGWTz4QEa233iock0YlPl78bkZpXGojm2Gpi9RbXaTetaMoCv/97395/fXXsbW1BWD48OH8/PPPfPPNN4SHh3PhwgW6detWr+PpszkjIyPp0KED3t7ehteGDBlitG1kZCR9+vTB3t7esG748OGUlJRUGb24Gi5cuEBhYaFRDIyTk5PRNQUGBuLu7s6zzz7L33//zenTp6uMuOjjbCwqZFmcPHmS/Px8fH19OX/+vNESGxvbaNdQE2rc3yY7JBqNplrPtH379mRkZDSKUWqiHyGxwYZjh6z4+28Re/rww418Ir1Hq9PBVXjX1zItqcLvtYDUW12k3nWzceNGSkpKWFhWNPLs2bOMGzeOoUOHEhgYyKeffmpyTauQkBDOnDnDl19+Se/evRkxYgT/+Y/xXNY333xDfn4+X375JT179mTMmDG8//77fPXVV4bpmsYgOzubL7/8kmXLljFmzBh69OjB559/TmlpqeFz89KlSxQUFPDII4/QqVMnbr75ZpYuXWp0nIsXL1JaWsrkyZNxd3fHwcGB7Oxsli9fzrvvvsvdd9+Nv78/wcHBPPzww9x9992Ndg01ocb9Xe9PxiNHjnD48GEURWHnzp0cPnzYsBw7doy//vqLEH29jWsIvUNiiy2WWPLRR6Kw6oABMHx4I55I75C04tTfixcvmtuEVoXUW12k3nVTUlLCBx98wDPPPIO9vT2vv/46R44cYceOHezatYvExEQ2b95cr2OVlpYCYuTl1ltvxc7OjgMHDrB69Wqef944LSgvL4/x48fj5ubGwYMH+eGHH9i5cycPN/o3T1i0aBH//vsvv/zyCyEhIezdu5fIyEjy80Vn+eTkZObMmcOMGTM4efIkzz77LE899ZTRMeLj43nppZd48803SUpKMmQDLV26lNdee40lS5YQGRnJ9u3bmTRpElFRUY1+HZVR6/6uV/Triy++qLz44otKSUmJ8vbbbxuev/jii8qzzz6r3HHHHddUVL8+QthL56WEEqqEEqp4460Ayty5KKGhKN9+i2Jt3UjntLUVWTahoQrdu5v9+s2xjB8/3uw2tKZF6t0y9K41y6YVL05OTma3oT6Lvb29kpaWpsydO9fstpi6VLz3Kt/fZs2yefXVVwGIjo7m+++/VyWIRg3yyKOUUrRoccGFRBL59luYMAHatoWZM+HrrxvhRPn5oiaJq6tosldDJHVLZseOHeY2oVUh9VYXqbe6ZGZmmtuEaunbty+BgYEcOHAAZ2dnXnzxRQB+/vlnM1t2dahxf5sczLBu3boW44wAKCiGwFYXXADhO3z2mXh96lTTQj48PGDJEujYsZoX9dM2Xbo01NxrGllaW12k3uoi9VaX5lw6/qmnniIsLIyQkBAcHBwYOXIkKSkp5jbrqlDj/q7XCElKSgrdunUjJSWF1NTUWtOt2rRp02jGqUUuuTjiiBNOhnW7dsGjj0KbNhAUBGFh9TvW7Nlw441QUgJvv13pxZgY6NULrtFGhFeLLGWuLlJvdZF6q0vF0vHNiWPHjjFgwABzm9HoqHF/18sheeKJJwydFZ944okmyf82J9lk44knzjgb1hUXw99/w8SJcN119XdI9Nle1foc+hESF5ersvdaZerUqfUOWJNcPVJvdZF6q4uLiwvp6enmNqPVoMb9XS+HZN26dYbH10qPGlPIJhsAHcbZL6GhwiEZORL+9z/RjqY2OnQQcSdQQ/0zfS0SfepvXQdsYcg5dnWReqtLU+mt/wJo2Yo7hVfHtVhm4lpDf88pitJ8Ykh0Ol29l2sRvUPigIPR+iNHICMD3NygT5+6j1OxH1S1lYUrpv46OFSzQcsmODjY3Ca0KqTe6tJUeutjDwIDA5vk+NcqFYucSZoG/T2XnJysyvtJvVxufQvk2tAXTGuIF79gwQKefvppvL29CQsL45FHHuHgwYO17tOuXTveeustJk6ciL29PefOnePee+/l8OHDJp+/Yi2SipSUwF9/weTJMGYM1NUuoKJDYmMDTk5gFAiud0hsbcUQStk0WGuhcrljSdMi9VaXptI7JyeHXbt2MXOmaN976tQpiouLm+Rc1xLW1tZGnYMljYelpSWBgYHMnDmTXbt2kZubq8r7Sb28h+uuu67JDJg5cyYrVqxg/vz57N+/n8cff5wdO3YQEBDAlStXqt3HxcWFvXv3EhoaysSJE7ly5Qpdu3YlLS2tQTboHRI7qlai27VLOCSjRsHKlTXPslhZiVY1IBwZCwsRR2LkkOTkCCdEp4Pu3eHChQbZe61iZWVlbhNaFVJvdWlKvfVtOW6//fYmO8e1hqWlpXTMmphdu3YZ7j013k/q5ZA0ZYe/RYsWsWrVKtauXQvA/PnzmTRpEnPnzuWtt96qdp/FixcTExPD3LlzDeuio6NrPY++i6SeitNLNY2QgBgVSU8XcajBwVDTAExQkBj4SE6GlBQICBDTNmfPVtowPl68GBAAv/5aq80tDVdXV3Ob0KqQeqtLU+qtKApffPEF3333He7u7oY+Lq2ZoKAgjh8/bm4zWiSKopCcnGzUHVmN95MGNVUZMWIEX331FXv37jW0gJ49ezbDTay1bmVlRf/+/Y1KziuKQkhICEOHDq1xv1tuuYVDhw6xYcMGkpKSOHLkCPfff3+t51qyZAmZmZmGRT/81LlzZ6xchOdnb2HP1KlTgfKc63HjxrN/v3Bkpk51xsfHh1GjRmFlZcWMGTMM2w4aJM4TEWFLXp5IH/b3d2Ts2LFGx/MteyPp5O+Pj48PgYGBBAcH4+bmxvjx4422nTp1KnZ2dgwbNgw/Pz+6dOnCwIED0el0TJ482WjbyZMno9PpGDhwIF26dMHPz49hw4ZhZ2dX5Zr0JZSDg4MJDAys8ZoAxo4di6enJ0FBQQQFBeHp6VnlmmbMmIGVlRWjRo2q9ZpOnTrV4q6pOf+d3N3dW9w1Nee/k36YuymvaeTIkVy6dIlhw4Zx8eJFgoODuXz5Mj4+PoB4T/X09CQ1NZWgoCAuXrxo2DYoKIjU1FQ8PT0N33Z9fHy4fPkywcHBRtsGBgaSlZWFm5sbdnZ2FBcX4+fnR3x8PIMGDTLatkuXLuTl5eHk5ISTkxN5eXl06dLFaJtBgwYRHx+Pn58fxcXF2NnZ4ebmRlZWFoGBgUbb1veadu/e3eKuqbn8nTp27Iirq6vRvadvXljxf6QpMKm067Rp05ScnBzls88+U/Ly8pROnTopgLJw4ULl119/NelYbdu2VRRFUYYMGWK0/q233lL27dtX4355eXlKXl6e8p///Efp27evMm/ePCU3N1e5++67a9zH2tpa0el0hqVdu3aGsrc3c7MSSqjyMR9Xu29wsCglv3kzioVF9cf//HOxzXXXoSxcKB4/8EA1286ZI8rHr1pl9rLAai+TJ082uw2taZF6S71b8iL1Nq/eTVE63uQRkhdeeIH58+fzwAMPUFRUZFi/d+9e+vXrZ+rhGoRWq+XIkSM8//zzHDt2jFWrVrFq1Srmz59f4z6FhYVkZWUZLXpqm7IBUYMkNRWcnaG6S3R3B39/EV9y+DDom0fWmmnj5AStbNj1l19+MbcJrQqpt7pIvdVF6q0uauhtskMSEBBQbUxJRkYGLiYW/EpOTqa4uLhKu2kvLy8SExNr3C8hIYGTJ08arYuMjMTX19ek8+vRp/3aYosFFlVeLy0V2TYgiqRVRp9dc+qUCGLVx+LWmfrbytLWZGltdZF6q4vUW12k3uqiht4mOySJiYl0qaYXy4gRI7hgYtZIUVERhw8fNsyhgkgfHjt2LP/++2+N++3du5eAgACjdd26dWtwe2T9CIkNNtU6JCCKpAGMGAGVM5v18SP6TGWrJDFPWGtxNDs7UZe+FSFLa6uL1FtdpN7qIvVWFzX0NtkhWbVqFStXrmTQoEEoikK7du248847Wb58OR9//LHJBqxYsYJ58+Zx9913ExgYyMcff4yDg4Mh1WjhwoVGQa8A7777LkOGDGHJkiV07tyZWbNm8cADD/Dhhx+afH4wdkgsa0g8On5cZM/odFAx806rLZ/GOXAA2tCGiVELIdYHD49qGvOlp0Nenpiu6dChQfZeqzRVEJSkeqTe6iL1Vhept7qopbfJgSfPPfeckpWVpZSUlCglJSVKbm6u8uqrrzY4kGXhwoVKdHS0kp+fr+zbt08ZNGiQ4bWXXnpJiYqKqrLPpEmTlPDwcCUvL085efKkcv/995t0zooBOe64K6GEKiGEKE441bjPrFkiWDU0FOWpp1AsLVF69BDPt2xB0WpRXuZlJZRQZef4Z5TQUBR396rH0Xy+Srkz9H6lx2PjzB6opObSmMFPcpF6N7dF6i31bslLZb2bIqiVhu5oZWWldO/eXRk4cKDi4OBgdrEaIq5eTDvslFBClVBCFW+8a93vtttQQkKEE/LeeyiPPCIev/QSig6d8ju/K6GEKn90+VgJDRUOS+VjDH1/lhIairJmSxuz66DmMnDgQLPb0JoWqbfUuyUvUm/z6t0UDkmDuzUVFRURGRnZ0N2bFXnkUUIJFljQhjYkUnNA7Q8/QEwMLF0q+tvoe9wcPAg3cRNWiLxxbVx7UERga6X4W7qWnAbA1zEVe3uoUHumRdPQSrqShiH1Vhept7pIvdVFDb3r5ZD8+OOP9T7g9OnTG2yMOckjD0ccaUPdgab798PDD8N//gNldeE4sB9WcothG22eI6S74OGRXmX/TrYisFWrUegaaEHYkZJGuYbmTsU0cUnTI/VWF6m3uki91UUNvesV1JqRkWFYMjMzGTt2LAMGDDC83r9/f8aOHXtNt4NOQXTUbEe7em0fHQ0PPQQ7d8J334FPSh/a0Y4iigxpxMR0oFJGMwD+zimGx91GVpcb3DLRVymUqIPUW12k3uoi9VYXNfSu1whJxZ4xb775Jhs2bGD+/PmUlnWa02q1fPTRR2QadZK7tkggAT/86u2QgKg58vrr4vErTAPgPOfRoqUb3SCmAx4exr0WrK3Bx70Ito+HHicJGOYMHyVDK/D2j9bVLlnSqEi91UXqrS5Sb3VRQ2+T037nzp3L8uXLDc4IQGlpKStWrDByXK41YokFwB13k/d1wYVhDAPgIAc5xznxQkyHKsXR/PzAIqwfvPUsvP0MAe6p0KvXVdl+raDvLSJRB6m3uki91UXqrS5q6G2yQ6JvIFWZwMBAtFWKblw7xCEqqLahDVoTZZnABCyx5ApXOMYxznBGvHDJt4pD4u8PnOwhnlzwp70mHsfbxkMraBW/efNmc5vQqpB6q4vUW12k3uqiht4mexBr1qzh888/54knnmD48OEMHz6cRYsWsXr1akMxs2sRvUPiimuNPW2qQ4OGKUwBIIwwLnGJGGLEizEdcHMz9jU6dQLOdhVP8uwhzZVufR2gZ8/GuIxmjSz1rC5Sb3WRequL1Ftd1NDb5LTfp556isTERJ588knatm0LiN4yy5Yt45133ml0A9UiHpH54oILNtiQS/1ycfvTH2+8KaCAPewxBMcCKPHt0BRZ4uFRbKgY7+8PbO5afoDY9nTrHcORW2+FEydadCyJLPWsLlJvdZF6q4vUW12aZel4RVFYtmwZ7du3x8XFBRcXF9q3b8+yZcuM4kquNZJIopRSrLDCG+9676cfHTnNac5xDgWFZJLJJx9NqQUktDXqaePv4QiJbctXxLYngNOioEk1U2EtCTnnqy5Sb3WRequL1FtdmmUMSUWysrLIyspqLFvMSjHFJJMMgC+1dw3WoOEGbuBTPmUEIwDYy16SSDJsox9xqRhH4uQEbdIqNSaM8yFAOQ3OznDTTS06luSgvvugRBWk3uoi9VYXqbe6qKF3vaZs9B1509PTOXLkCIqi1Lht//79G804tYknHk888cOv2tctsWQa05jOdDwRXkYJJYQRxj72UUr5CNElLuGPv1GmjVH8iJ6YDrTVJOJEBpn9+0PXrlVLu7YQ/Pz8SE1NNbcZrQapt7pIvdVF6q0uauhdL4fk559/pqCgAGjZkc1xxNGXvrSlbbWvP8zDhimaAgqIIIJwwjnLWRJIMNo2mmjxIKYDnmUzMf7+GBySS1zCF1+KoztgCQRwmoPuA6FbtxbrkOTl5ZnbhFaF1FtdpN7qIvVWFzX0rpdDkpaWZogPWbNmDbGxsbWOklyr1FWLpD9i9CeMMA5ykEtc4jznSSTRaHQEhMMhHvjiNUoDKMIh+UE4JOGE44sv2oR2UKqhW+o/HHQfBEFB0EKdvpYyvXetIPVWF6m3uki91UUNvesVQ7JixQqcnJwAiIqKwt3d9OJh1wL6uA833AxN8vTYY0972gMQQgh72MM//EM88VWcEcAo9dfLQwOAv48NxHQARMxJMcVoi20gpQ0BxSfE9m2rH51pCXTu3NncJrQqpN7qIvVWF6m3uqihd71GSOLj45k+fTrbtm1Do9HQvn17bG2rr9URExPTqAaqSeVaJEWUp+B2QQSjZpLJPvYZAmBrQj/aQqYzHnY6NJoM/BV/KLUgV5vFudJzXOayKFUf256ALqIDME5OoNFACxyB+vfff81tQqtC6q0uUm91kXqrixp612uE5PXXX+e9997jwoULKIrCwYMHiYqKMlqio6OJiopqanubFP0IiR12uOJq9FpXxFRLEknkkFPnsfLJJ0UjnBaH1PZ06gS2MWXHKL1MDjkGB6j0Ugc8dXm4kgoODmBn12jX1JyYOnWquU1oVUi91UXqrS5Sb3VRQ+96jZCsWrWK9evX4+fnR3h4ODfccAMpKSl173iNkUce6aTjggt++JXHgVDukMQTTx71C+6JUWJpgzvEdGDQoBOGgNY4Esgjj4tcZCADyY/siP0UEdi6z66fcEpy61eY7Vpi48aN5jahVSH1Vhept7pIvdVFDb3rXYckOzubEydOcO+997J3717Cw8OrXa519NkynehktL4b3QCMnJS6uMhF8SCmA0OGYHBI9PEl+mmd4gt+Zec4AzY24OLSUPObNbLUs7pIvdVF6q0uUm91UUNvkwujrVu3jsLCwqawpVmgn0bxwcewzgYbQ7G0E5yo97EqOiS9Ai0gSjg5+uZ7eofEIrEdAAElZem+ftXXQbnWkaWe1UXqrS5Sb3WReqtLsywd39KpLvXXH38ssCCbbM5zvt7HqphpYxHrB0XWFFnkcYpTRueyzfaAEq2o2IpSVkGt5TF27Fhzm9CqkHqri9RbXaTe6qKG3tIhqUTF1F8NIl3X1IBWPQaHJM4HTonqaJc1SWQh8rmvcIUiirBQLClJ8KSNZQbuJEOHDo11Oc2K48ePm9uEVoXUW12k3uoi9VYXNfSWDkkl9A6JK67YYAOUOyQJZcGo9eUylynSFkCxFfw1EoC44iRDJ+FSSg39b9KO+AMisLWlxpB4eXmZ24RWhdRbXaTe6iL1Vhc19G6wQ2JlZUW3bt2wsLBoTHvMjt4hccIJBxyAhgW0AqLzr7WISeHQAABiiEWhvMaIftqmIFI4JG1JAJ2u4RcgkUgkEsk1iMkOiZ2dHatXryY3N5cTJ07g6yuCPf/3v/+xePHiRjdQbdJII598NGjoSEcssTRk3OhjP0zBMG1TIjKsz3Gu2tctE0QVWGcywNERLOuVkX1NkZSUVPdGkkZD6q0uUm91kXqrixp6m+yQvPHGG/Tp04cxY8aQn59vWB8SEsLtt9/eICMWLFhAVFQUeXl57Nu3j4EDB9a6/UsvvYSiKEZLZGRkg85dHRVTfzvSESusyCOP05w2+VhnCy8aHpdoC4kgwuh1/aiLVbLItHEhXRRGc3BooPXNl6CgIHOb0KqQequL1FtdpN7qoobeJjskU6dO5eGHH2bv3r1GDfZOnDjRoFr3M2fOZMWKFbzyyiv069ePsLAwduzYgYeHR637RURE4O3tbVhGjBhh8rlrQj+N4ouvYbomifJgVFOILi0vpZ9mnUQGGdWeyzZdzM85kSkcEkfHBtnenNm5c6e5TWhVSL3VReqtLlJvdVFDb5MdEg8PDy5fvlxlvYODQ4M6AC9atIhVq1axdu1aIiMjmT9/Prm5ucydO7fW/YqLi0lKSjIsdVWOtba2RqfTGS01oa9F4o57gwNa9VSMO4nJT66SpWNwSHLaQLEFzko6aLXg40NLQxYyUhept7pIvdVF6q0uzbIw2qFDh5g0aZLhud4Juf/++01uvmNlZUX//v0JCQkxOl5ISAhDhw6tdd+uXbsSFxfH+fPn+frrr+lQR6rskiVLyMzMNCxxccLp6Ny5M35+fgwbNgw7OzumTp1qCGxtQxsGOovpoyy/LAIDA/Hx8WHUqFFYWVkxY8YMoPwPNXbsWDw9PQkKCiIoKAhPT086jy4fNYollukzpmNlZcWoUaPw8fHBI8CDIk0RWiwg0RvnklSxsb8/U6dOxc7OjmHDhuHn50eXLl0YOHAgOp2OyZMnG5178uTJ6HQ6Bg4cSJcuXapcU8Vtx48fj5ubG8HBwQ26Jn0+un6bGTNmGF1TYGAgwcHBuLm5MX78eMO269evb3HXBDTba9J/cWhJ19Sc/06nTp1qcdfUnP9O69evb3HX1Jz/TqmpqVXsbAoUU5bhw4crmZmZykcffaTk5uYq7777rrJjxw4lKytL6devn0nHatu2raIoijJkyBCj9W+99Zayb9++GvebMGGCcttttylBQUHKjTfeqOzdu1eJjo5WHB0da9zH2tpa0el0hqVdu3aKoiiKTqersm0/+imhhCo/8IOyne1KKKHKDdxg0rVVXL7lWyWUUGU846t9fS1rlVBCldA3Biub/nBQCA1VePbZBp+vuS4zZswwuw2taZF6S71b8iL1Nq/eOp2uxs/Qhi4mj5Ds3buXvn37YmlpyfHjx7nxxhu5fPkyQ4cO5ciRI6YerkFs376dH374gePHj/P7779z00034eLiwsyZM2vcp7CwkKysLKOlJiqOkNhgQwEFVYJRTeE1XuM7vuM41ReW0Z+P2PboLHLRUgLu7tVuey2zefNmc5vQqpB6q4vUW12k3uqiht4NqkNy4cIFHnjgAQYPHkzPnj35v//7PyIiTP/ATk5Opri4uErBFS8vLxITE+t9nIyMDM6cOUOXLl1MtqE6LnOZYoqNnqeT3uDjRRLJNrZxhSvVvm6IM4nzwUKj4Eg2ODk1+HzNlbqm4SSNi9RbXaTe6iL1Vhc19DbZISkuLq42A8bNzY3i4uJq9qiZoqIiDh8+bFQjX6PRMHbsWJPiURwcHOjcuTMJCQkmnb8mSinlMuWBu/HEk09+LXvUTQwxFFFU7Wv6Jnyl0aKmi6EWSQvj/Pn69wGSXD1Sb3WRequL1Ftd1NDbZIdEo9FUu97GxqZBXYBXrFjBvHnzuPvuuwkMDOTjjz/GwcGBNWvWALBw4UKjoFeAZcuWMWrUKPz8/Bg6dCibNm2ipKSkUbsR6rNfKj9uCgzHj6tQHM3BQaT/tiBqy2ySND5Sb3WRequL1Ftd1NC73uVAH3nkEQAUReH+++8nOzvb8JqFhQWjRo3i1CnTK5lu2LABDw8PXn31Vby9vTl27BgTJkwwZAi4u7tXqW/Svn171q9fT5s2bbhy5Qp///03Q4YMITk52eTz14QhrgO4wIVGO2516B0STbIHFFrhbJ1RXhwtz/RU4+aKXQtzsJo7Um91kXqri9RbXdTQW4OIbq2TCxfEh7Kfnx+xsbGUlJQYXissLCQ6OpoXX3yRAwcONImhjY1OpyMzMxMnJ6dqA1xnMIMFLKCIIuYyt8lHSbaxDTvsYO09LPObyTYmwYIFUKkCrYUFVJD+mqJi6pik6ZF6q4vUW12k3upSWe+6PkMbQr2nbPz9/fH392f37t306dPH8Nzf35/AwEAmTJhwzTgj9UE/KpJIIsk03shLTSRSFsQb2x6X/LLHlUaGBgyAbdvg5pub3Jyrxp2qWUJ1tQSQNC5Sb3WRequL1Ftd1NDb5BiS66+/nvT09CYwpXlxhCN8xEd8x3dXHdBaHwwOSaI3znllTYw6dTLapl8/sLaGUaNMP74bbobuxU1NJzoxhCE4YZwptGPHDlXOLxFIvdVF6q0uUm91UUPvBrWU9fHx4ZZbbsHX1xdra2uj15588slGMczcKCj8wA9YNkwik0mhrPR9hjPOhWUxK+3aGW2jL03SkOzmAAJIJbVBDQJNwQIL3uM9LLHkGMfIJNPwmr66YnNl0iSwt4eNG81tSePQ3PVuaUi91UXqrS5q6G3yp+3111/Pli1buHDhAoGBgURERNCxY0c0Go1qhdHUQkGpMVW3sTE4JGmuOJeWzdNVqkXSpo347eIinJP6xvDO6d2PO5jCl5d3cDqxaR0SV1wNIyO++BrF3jTnNw97e1i0SLQR+ucfKOsscE3TnPVuiUi91UXqrS5q6G3ylM0bb7zB8uXL6d27N/n5+UyfPp0OHTqwe/duNraUr5ZmII008SDDGRdtWYBQpVokFYu3mjJKclvhLGzCBzPRoz822FylpbXjhpvhcQeM+wvp+zA0R7p0Ec4IQPfu5rWlsWjOerdEpN7qIvVWFzX0Ntkh6d69O+vWrQNEkTQ7OztycnJ48cUXWbx4caMb2FowOCTpLjhblaX6OjqKtJoyKtajq69DYmMD9kn+ALind0FH0+aSu+JqeOyPv9FrzXnOt2vX8scBAeazozFpznq3RKTe6iL1Vhc19DbZIcnJyTHEjSQkJBjVCHFvgf1X1CKDDPEg3QVnu7ICc/paJIgphYpp4PV1SPp3cUaTJkYtbOP9jUYwmgIXXAyP3XFHQ3khveDg4EY/n48PfPopjBlzdcepqGdg4NUdq7nQFHpLakbqrS5Sb3VRQ2+THZJ9+/YxYsQIALZt28Y777zDc889xxdffMG+ffsa3cDWQsUREnu7UqwoFB6IszNQtddefR2SEW3LRyk0JVYEa/s0hrk1UnGEpA1tsMXW8DyuCQIzbrkFunWD22+/uuNUHCHp2tVoYOqapSn0ltSM1FtdpN7qoobeJjskixYtYv/+/QC89NJL7Ny5k9tvv53o6Gjuu+++RjewtWBo3pflBMUWOBeUNeLzL5tuKXNI9IGsPj6GwZNa6WlvPG0ywDEAbcN6KtaLig6JK66i2FsZVlZWjX6+/v3F765dxShSQ7CyAj8/8bioSExzdezYKOaZlabQW1IzUm91kXqrixp6m/zJFBUVxfHjxwHIzc3loYceok+fPtx2221cunSp0Q1sLWSRRSml4kmGM87p0eJxJYckKgqSkoxeqhGtFtrli1omipvI4vHT+OJI0zXuq+iQ6NAZ1SJxdXWtbpeGn8u1vHachQX06tWw43TqBJaWkJEB4eFiXUsIbG1svSW1I/VWF6m3uqihd9N9VZaYhIJSXrMjzRXn9DLnzld0ANY7JCkpcO6ceFxxmqE6/P3B8pLwWi73/BMAt2w/I6ehsal4bA0a2tPe8LwhvY5qo/KUZu/eDTuOXsezZ0FvYksIbG1svSW1I/VWF6m3uqiht8kOSWpqKikpKVWW5ORkYmNj2bVrF3PmzGkCU1s+hsDWDGecc8rm61xcgPIaJMnJoO8CXVccSVAvDUR3BOCU4yFwTseixJpeVD+UYIWVUcxHQ6js7HSivNrs6NGjr+rYldFP15T1YaRPA8Nj9A7JuXPlDklLGCFpbL0ltSP1Vhept7qoobfJDsmrr75KaWkpv/76Ky+99BIvvfQSv/76K6WlpXz44YecOXOGjz/+mPvvv78p7G3RGOJI0lxxzi/7lC0rjlYxhuTsWfG4UqubKgxq3xby7SjVFnE8NQ56i/mIvvStsq1WCzNHeTPEPsgoM8ZU9Fk8VxAxMBVHSH755RfDYy+8uJ7rsca40q8p9Osnfn/9tfgdGAi2DfCn9I5dxRGSjh1FLEllOneGadNA03CJVKOi3pKmR+qtLlJvdVFDb5MdkhEjRvDCCy9w991388EHH/DBBx9w991388ILL9C/f38eeOABnn76aR599NGmsLdFY3BI0l1wLimr3FpWHE1fgyQ5uXzKpmNHEftQE91txXRNpk0y5y4VQp8wADrjbxRsCvD4kCHcf+BTHhjWq8GpwVq0hpiRM5wRduOBFSIYatasWYZtX+ZllrKUKUxp0LnatQNvbygshD/+EHE1lpbQo4eJNmvLY3HOnhX6JieLmJTKU2IaDbz2GjzyCIwc2SCzVaWi3pKmR+qtLlJvdVFDb5MdkvHjxxMSElJl/c6dOxk/fjwg0oH964q4lFQhlbKS8ekuOCtl0zf29tChg9GUTWIiZGeLRnv67JDKtG0Lzsnib5BYkEp0Yj4FgcIh8dH44IyzYVsNGsadexDy7fDeN5Uulr4Nsl+HDgtEvuwJTgBixETv/OhLD9tjTze6AXALtzSoWJt+uubECcjPhzBxaSZP27RvL7Kr8/LKy8WfLquuX7keSXCw0LUh5zEHsrS2uki91UXqrS7NsnR8amoqN998c5X1N998M6mp4gPVwcGBrKysq7eulVFxhMTFKls8trdH+/wS2riLOYIUWx+wtTWMktQURxIUBESJ+I340iSylVwuWkSBYxbWig09KB9KuFFzA7aXOwKgyXZils9o7DE9h1YfP5JLLtFEG9bpHZLJkycDotGfPvW4Pe0ZwxiTz6V3SA4fFr/12TGmOgr6UZDz56G0LMkpMlL8ruyQ3HRT+eOgINPOYw70ekvUQeqtLlJvdVFDb5Mdktdee41ly5bx888/8/zzz/P888+zefNm3n77bV555RUAxo0bx+7duxvd2JZOxX42zjYFcPQoaLU4B3hhoVUoKdWQet00mD6dc1FiJKKmOJKgIOCCGCGJI44SSoi+VApBImW7HyIAQ4uW+6zuFjv5i2jZHqkjjGI/KlNTPxz9VE8uucQQA4AjjoYREP090R3jiNHJTDYp80erLc+w0fdz1I+QdO8u6opUJiiofHSjInqHTu/gQfUjJDqd8TRN5871qwNjTuT/oLpIvdVF6q0uauhtskOyevVqRo8eTU5ODtOmTWPatGnk5uYyevRovvjiCwBWrFjBHXfc0ejGtnQMWTZprrg4a+C//4WwMDwK4wFI1bahtEcQ9OjBOWvxoV7jCEk3a4jzAcqnTy5exBDY2o1uWGLJ9VyPR2F7cMwi57nnwTUVq6w2TNJMMEy/VGQUoxjJyGoDX/Vl43PI4QpXyCcfLVqDcxNY9gmvH50JQ3gRXenKQAbWW6cuXUSsb3Z2ufMQGytSoq2tq2bI9O8P//sfvPdeVWelYsqvHv0xfXyEIwJwww3i2OfOiakdrRZ69qy3yWYhsKXUwL9GkHqri9RbXdTQu0F1SP755x/uvPNO+vfvT//+/bnzzjv5999/G9u2VofRCIkzImBk7VrcI/8CIEVpIz5Be/TgnLco31+dQ+LkBH5KRyi1IF+TRzzCobl4EUNgawc64IILc5gjdpqxkV0hlhRM+gmAMTbD8cbb6LizmMUrvML/8X/VjpLoRzlyyKGIIhJJBKAjHcX1pYnr04+Q7GUvEUSgQcNN3IQ79euFpJ+uOXZMTLPo0OGBR7XTNlotPPSQeOzpCWVhTgaqGyHJyhIODpSPkkycKH5v2wZldQEbXPdELfR6S9RB6q0uUm91UUNvWRitGVEx7dfJWRGPjx2jzck9ACTH5kFuLri4cNH/OopKtOh04OVlfJxevTDEj1xRkslGxKNERwNdz6LY5mGLLXOYgw8+KI6ZMP1H/jySwd8uv4BDNk75noxjnOGY13M99yNSub3wqtUhySabUkqJQ0SJtqMdGjQUFRXhgQduuFFKKRFEsIENAPSkJ73pXa+U48rxI4EE0oteHA8T+1Z0FCZMMJ7WuuMO4aSAcFCcnaG4WFTArYh+lCQgQPiAXbuKjJ6QkHKHpLnHkRQVFZnbhFaF1FtdpN7qoobe0iFpRhgckhxHrLA09GZxLxIjDcmXFfFpmJ9Psasn0aUiG6ZLT+NaHhXjR5JIIpdcABISoLC0BE2vCAAmMQkAze0byFPyOXYumx37M+DmrQDcwA244koQQSxmsSEQ1QYb2tCmiv16hyTPOgOdDmIRwwzuuGOLLT4+PobRkRRSSCONv/iLWGKxxJIbuREvvKoctyLW1uWOwOHDIhbmWZ5lKEO5GCbO37OnSNu1tYW5c8W2n38uSsP7+JR3BtZP10RHix42FakY2KoPZv3rLzF6oh+JCQysPl6lvvTq1fD+O/XBx8en6Q4uqYLUW12k3uqiht7SIWlGZJNNCSXiSbqLvtFveQ2S08kQEwMREVBYyDkrMZ/QdZinUUGSig5JAgkUUACI6Y2YGAzTNgBF1jkw7SfCj4vXjx6FnIk/gFUhPvgwjWn8l/9ijTXnOGdwbvyomm+sd0gG3HOC1ashwfIiILr+2mHH0aNHCSLIYJf+WD/zMwC96V0l4LUyvXoJp+TKFXEt93EfbrgxlKEUR7cjI0Ok8QYEiA7AbdqImI/vv4cffxTHuPNO8btiQbTK6EdIevSAsWPF423bxO/YWEhNFXY0tMT87Nnw/vvwxhtNV2Tt6NGjTXNgSbVIvdVF6q0uaugtHZJmhFE/mwxnfdX48hokF/Po8N1ebI6fhchIzpUIp6PL4DYiBcTSEltb6NYNg0NyCeOGh9HRGAJbAbJHbwX7PI4cEzmvxcWw91Qq3Pg7ALOZjSOOJJDAbu2f5LmJaRhfqtYq0TskDh0v4+kJDoFihMQFF+ywY/z48fRERILGEEMOOQD8wi+kk44ddgxlaJWibRWpOF0TRJAhQNYRR4Yy3DBtc/31wiEB+OwzMQKyaZOY8ercGYYMMS4ZX5mzZ6GkRDTw0+lE7ZeK/4+1xZEMGAAffyzOUR2DBsG995bvP3VqjZd7VYyvHDAjaVKk3uoi9VYXNfSWDkkzo2KmjX6ERF823ufcaNalvMvz33RE+9c/nIsWWTBdHBMImNmbR15w5rvvwCrHGdJECq4+wwZLS9BoRGBr4CnynBPJJAPb+78BRIConj17gNu/R9EIJyWddP6w3MagV3+hTV/h4FQOeIXytF9c0oVdo4Xz4lj2s2XzFvwRjtJZzhpGg/LJ53eEAxRMMA7UnE9b0SGZhagcqO+S3I9+XAgXaTHTp4uRkoiIsutBZOVs2SIe33VX1QwbHTr60Q8bbCgoMI4r+e03UJTy5zXFkWi1opJrYKCo6qqfHtLj7Q3PPy+2u3BBrJs3r2ocUGOwefPmxj+opEak3uoi9VYXNfSul0Py448/1nuRXB1G5ePLHBL9CEm7K30BGFYyiL6bozm/WXwqenGZTwJXMm10Cs7OkBHmbzhWsn0ezJoFH3wAd93FxXgrsC4i9tV7+cH/bew8s8nJMR4lOHQI8txj0dz+PWk2CWy3/pnBb24iaHgWtE0AwNOianl5fdovbqJAXr8bUg2pv7748tCEh7DBhkIKDaXl9fzGb+Jay36qw8Wl3IlIOexnSBX+F5Hh5Y8/WUeM044+/tj4GBs3iuDUXr1EUCuIomiWWPIJn/AyLxviWPR9bUpLYft24+PoHZJevcqDZAFGjDA0aMbSEl54oTyzx9oaXn1VZEFFRorsn7Aw4Tg99VS1l3xVyNLa6iL1Vhept7o0m9LxGRkZhiUzM5OxY8cyYMAAw+v9+/dn7NixZGRkNJmhrYXKqb/W1hgcE9ccEVRkgQX3lNxF8S/7OB8nsl3ysSGEsTxz5A6+XiO6Ml52zCPtnRfggQdEsMP//R/RI+4CwKdLPhb9RSzJ8ePlVUoBCgpg/37gwc84N/9pBr3zPQH9c8jNhXzXMofE1skQ5AqiHLyhUV7ZCImzC2TYioBcP/yI3y7Sjy9z2ZD5oyeaaDLIQIOGAKoPzBg8WHz4nzkD49NmYYkl8cRziENc4QqWWNItejzZZYcODYWTJ42PkZoqRjv0xMaKaZwhDKEd7dChM8S56EeNDhwo7yis59w5sZ+jI3Qqb2jMXUJe1q2DX34RwbXPPgs33wxPPCEcqrQ0eOkl4RgtWyb0HjCgPLW4sZCltdVF6q0uUm91aTal4+fOnWtYkpKS2LBhA506dWL69OlMnz4df39/vvvuO5KTk5va3haPwSEpm7LRT9fk50Pb0vLqqUEEMYTBvPhMAUvfa8P046/wH17gYO/76OggAhuO3uhOcWBZzmtuLlhbEzdqFkWlWuztYdg4EcNRcbpGj36aY+DUOPx75ZGVJb7FRxcIB8MFF2wpb62rjx9RbHPBtoBEsRml7UQciRde3OBzAyACWvXxI3o0Gkh1F5GkNQW26mMyIv52ZiSibGo44SSTzF+IWi1BSm9+3+jM+fPw6afVHobvvxfxIVA+MnQz5e0Q9N2Q//xTjHD8979Vj1FaKvroQHkcycCBIn4nL08E0K5YAT+Jsi4sWiRSkEtKxFTOFdEMmbg4WLNGPF6woHw0rDGoOOfr4QGyW3vTImMa1EXqrS7NMoZk7ty5LF++nNIKX6lLS0tZsWIFc/U5lpIGU3mExBDQmmiJJ2KO4SIX0aBhFrPIitfx988p5H78pQiGsLTEv1hkwEQGWYmv3wcPiiGPy5cp0VoTqxVzCvrpj7AwqrB/v/gGD+Ib/RNPiGmGc1nC07DPdzOqRWIo/e4m7P/uO/HUqZeIOXHHnTaJ4mJiiTVk2OiZNQs6TRaf8B1ob+TsgJj+GFhWzNXpj+nYY0866UQTzSUusZWtlFKKN95cWjeG++8XHYD1eOJJEEFYYUVCgugQrL92J5wMpfRBjOZYY42iwN69ItW3OvTpv/o4ktmzxe8tWyAzU8ScvP8+fPNN+T6rVhkHx4KYRjp1Soy2PP549edqCAcPHgREZ+SPP4aXXy7PGJI0Pnq9Jeog9VYXNfQ22SGxtLSstoRsYGAgWq3Jh5NUonJQq36EJPtMWyywoJBCPuETFBQCCChvTHfhAuzdiyYtg46XxN8h0S4ddu8WBTh+/13UTj9zhosVUnZzc8UUSGVyc8UH6cmT8NhjIs4C4PjlJNCWoC2xNqoZondINK5pZGXBjh1iVMehmwhs9cILzxLhUJ3nPPnkG/bt37+sXkg3YYivrWeVwNbevUXvmPQUDX0TxdzGUY6SQQaXuUw00ZxGjLAMZ7hRN2NffJnFLEYwgi6IGJMVK2DxYuE83MzNWGJJIcIDa0c7nHCq7c8ktKgQ2Nq7t1gKC4WDUZHVq+E//4GVK8XoTGVKS+Htt0Um0IgRYvrGFDp3rn4fPz8/3N3FtJDesa3YIFDSuPjV1Hpb0iRIvdVFDb1N9iDWrFnD559/zhNPPMHw4cMZPnw4ixYtYvXq1azRjz1LGkzFERJXF035lM0FH8Pr4YSzn/0ATGMaHnhAQQHa0N1ct+4SdvlQaFlK9qkjIuhi507Ytw/+/RfeeYfoi+WFL8IvexnFj1Rk3TpYuLCsdkkZ56JLwEPMN3Sgg2G9YYTENY2L0cIZOXQIaC+mbNrSFg0assk2FEwDEVi6dKmItcj2EQ6FY757ecZOGfrpmpjvRuCOOwUUcJ7zxBBjcG70mTo96IEXXmjQ0ItevMiLTGUqN3MzwQTTjnYUFYnYkNJSuJEbATjEIYopxgEHOtGJuoiMFE6Euzs8+qhYt3276KlTmZAQqC1IPSqqPANoypQ6T22ga1f48EPhdLz9thgN0aPVZrFsmVinn0Lr27dpMnokkJeXZ24TWhVSb3VRQ2+THZKnnnqKt99+myeffJI9e/awZ88eFi1axLJly3j66aebwsZWRcXy8c5O5SMkpTHlDkk++axiFSWU0JGO3FD28+ml51m6uazwmFMuWa4W5c6InjNnuPjTYcPTMMcRYILne+kSKJ5iLqS7rvzTr6JDEhUtHv79N+ATZ7R/EklkIeZArKzENIKzsxilWbIsDdyvoEFLb9uuRvsNGyZ+u4WI4iJHOUo22SSQYNjmd34nl1wccGB02c/LvExnRByNvs5JT3riiCMgStb74ksJJRzmsKFLcR8qNMSpgcLC8gJqnTuL+BD9VFVD0DskQ4eW/91rw8lJZO3YlM2cDRwoKtLecYeonbJgwUU6dhTxKo8/Ljoja7Uwblz1x+vQAZYsEdVsJaaTVdPcnqRJkHqrixp6m+yQKIrCsmXLaN++PS4uLri4uNC+fXuWLVtmFFdiCgsWLCAqKoq8vDz27dvHQH2wQD1YvHgxiqLw7rvvNujczQ2DQ5LhjFOFKRvLJPEpkUIKpZRygQv8wz8A3MM9PM/zdKELJZRy3C2eLcEx5Pzzh7EzUkZ0ePmNFeZ+vYi2tKja2bc6ioshWyecgE4u5RGYBofEJV0UX0MMyJS4pIBtuWedSKIhoPXhh0Vn3owMePFFUTMkr70oCjLav3z0pUMH8SFZlOCOT3pPFBROcpLLXC4fUQJyyWUf4npv4AYWs5g2tCGTTLYiyuH3ohcBBNCTnlhgwRTEcER02Y++bks3ulXb7bgy+jgSEEGwCQk1b1sXly6JmBYLi7qnVrRaEXDr7S0CYx98UDgctrbi8YYN4O9fRHq6CEZOSoI/doiRsZpi05YsgRtvFA6NxHQ6V2yaJGlypN7qoobeDQr6sLCwYOzYscyaNQulrFpU27ZtcXCouaBVTcycOZMVK1bwyiuv0K9fP8LCwtixYwce+nrptTBgwAAefPBBwqqLyrxGqdjPxtHG0lArwz5VOCSXKc8/Xc1qiinGBhtKKOEoR1nPt2zL3sChc99Rsn9vteeIjRXTMNF5Xpyhm6jy2r2azJbevUUAiZvx9Mlli7LUX+vyOA2jEZKygmKZmXA8AmgXb9hOX6F1yhS45RYxZfKf/5QHoEYWibQXfwdvrBCNYvTTNYk/iGGSWGIpoIBYYlGoUK0MUfUVRBCrLbZc4hKrWEUssUQiGtQMZSh++NGTngxlKABnOMMVrhCO8DDa096kOBKAb7+tc/M60Y+STJpkXN+kMnPnihGRvDwx5XXmDDz5pChFn5EhHJOcHHjmGeHouOGG265p5OdpaN++rAFjBUaMKL8FqrsVJHUjO56ri9RbXdTQ22SHxNfXl+PHj/Pzzz/z4YcfGhyHxYsXs3z5cpMNWLRoEatWrWLt2rVERkYyf/58cnNz68zYcXBw4JtvvmHevHktqg11NtkUUwyANsuZjh3FepdskfKbRHnqyCUusYY1HOMYX/Ile9lLGGHsLfyTSxf31HiO4mK47z548K1OlGApvmaPGiWKnujp3h2WLxd1zW++2Wj/i4UiIMGpxNXgNLTR6LNsUg0jJGA8bVOqKSVZd55FL2YbsknWrBFJQHp2XBROg8PljnRpJ0rIDxU+A9p/RKrvBS6QTrqRFnqOccww7XKYw2xgA3bYcZ7zbGQj+eTTjnb44891XIcjjuSSSySRpJJqGCHxwKPcyaqFw4dFivTatRhdd0P56y9ITxexNTWVnh81qrzeybJlxhVlf/8d7rlHlMv/5ZdxnD0rasS8y7vMK3yYc18NBoxHSbRauP/+8ucdOwqHRmIaU5uqB4CkWqTe6qKG3iY7JCtXruTQoUO4uroaBbls2rSJsSbmFFpZWdG/f39CQkIM6xRFISQkhKH6T6Ea+PDDD/n111/ZuXNnvc5lbW2NTqczWporhn42aa44OgJFlrgViUjEC1ww2vYXfuF3fieBBPazn8McNsRo1EZRERTu3icCDCwsRKqLPn+1fXsxbKFvZTtypNHX9dMZwiGxy3E3pP56WJZ1+rXKpKJ/uHcvhsDWbMcE7lm7m+uuE/EWa9YYp8QCHMouS/mJ6cCE661xcCir85Fvg2eiKPiRSCIxxBiyYiqioPA2b7OJTfzDP2jQcIQjHOUoxzluqOo6ilGGeiOnOc0VrpBDDvHEk0UWllga+uTUpeNLL8GXX9a5ab0oKiqvClvJDwREuM/ixeLxhg2i+FtlMjJg/Xr45JM/sMKKR3nU0Hso/08xyjRmTHnsyfjx4rgZGaJwnIVFw5sGtmY2Vk6vkjQpUm91UUNvkx2SkSNH8vrrr1NUqV97dHS0ye2J3d3dsbS0JCnJ+JtuUlIS3t5Ve6Xouf322+nXrx9Lliyp97mWLFlCZmamYYmLE9/aO3fujJ+fH8OGDcPOzs7gBerL5I4fPx43NzeCg4MJDAzEx8eHUaNGYWVlxYwZM4y2HTt2LJ6engQFBREUFISnp6fBSdNvM2PGDKysrBg1ahQ+Pj4EBgYSHByMm5tbeeEZlzKj08seJHmhxYIiTRGOAxzR6XRMnjwZgEmzJnGYwzhMdiBDl8GAgQPo0qVLva/Ju2x4wrpdOyyHDGHG3Lnwyiuiq1xZ9TBt+/b0GjXKcE1WvmK0RpvqgZOlHTNmzMBZEQ5JSmGB0TX16TOeeB9xDqdZv6BzK+LiRQ2ffNKb3bv96Ny5CwMHDjRcUyqpFDhmQakFN/TsyJgxtlhYQMrOgVhhTbZ1NpdtLxM0NajGa9IGaonxiUE3Sschq0P0m9GPUkoZN2sc29lOmi4NO+zoSEcALrpepN3YdobjnUXEsfTW9mb0qNE1/p305546dSp2dnYMGzYMPz8/unQxvqaK206ePBmdTseIgSMY5z+O0b6jq/ydQOwzeDAEBDgb7r1+/bz43/+ssbeHuDgPPv209nvvkUceYTzjGactj2LVXe5GWpotjo4wc2ZbBg7sw9y54m3gm28gPV3E7kyf3tPkaxo4cKBJ955a/09X83cy5ZoefPDBFndNzfnvNGvWrBZ3Tc357/RoWSphRTubAsWUJTU1VenevbsCKJmZmUqnTp0UQBk+fLiSmJho0rHatm2rKIqiDBkyxGj9W2+9pezbt6/afdq3b68kJiYqQUFBhnWhoaHKu+++W+u5rK2tFZ1OZ1jatWunKIqi6HQ6k2xWY3mHd5RQQpXQ525QQkNRfnlhsBJKqPI93ysOODTu+Tw8FH77TSE0VOGjjxTeeUc8/vNPhfffV9ixQzy/807DPlq0yp+WvyuhhCoT/QIVK6yEvYQqL8/3rHKOOXdrlNBttsqff2iURQ84KlZWdVy/Zrk43sPTlHXrUEJDUdZ0f1oJJVRZyUplJCMVDZpaj+GGm2KLbZX17rgrD/Kgwd7v+E65mZsVJ5wM28xlrhJKqPIxHys6jO8PK6yUnvSs9tj1WXTolCCClDd5U9nJTuUt3qr2b7p8ubjuuXPFcy8vlPXrxbovvkBxcqr9PFq0Sj/6KRvZqIQSqvzET0ooocomNikPzLFWQkNR3n4bZcYMcczvvkOxskK54w7x/OWXzf9/IBe5yKX5LjqdrtE/Q00eIfn99995vEI5SUVRcHBw4JVXXmHbtm0mHSs5OZni4mK8KhVG8PLyIlFfOKES/fv3x8vLiyNHjlBUVERRURFjxozh0UcfpaioqMbibIWFhWRlZRktzZWK5eMB8s6Vp/wWUNC4J7typbxUa/v25XXQz54V1dD09dFHjhTlUhHddQtdRHBtL0/v8lgLq0LOJRhXYAVY/73Czm+82fnVVNZ8ZkWlwbUqRCplXe3OdKNDB0CBNmdFQEUMMcQTT+Vg1sqkkmpUfE1PMskc5jARRAAQQQTppJdPk4EhsFXf26Yiy1nO//gfIxhR+0VUQouWnvRkMpN5jucYzGC0aOlHP0MH5IpsFUlB3HSTCPFZsUL8vnRJBK9mZlbZBcBQQ2U4w7mv0324404OOWxHzAO54MLR7SLuq39/+L//E/utXSumiyJFCA/V1D407Xq1oh1Aa8LUKWvJ1SH1Vhc19DbZIXnyyScZPnw4J06cwNbWlm+//dYwXbNYP7ldT4qKijh8+LDRhWo0GsaOHVtjRO/OnTvp1asXffv2NSwHDx7km2++oW/fvg1OPW5OVCyOBlB8sTzlVx/w2qj89JNId9HphNORkCAqae3fXx7Q0KGDcFjK0DfN6+zoaZTyGxVd1VEoKIBt37gRuV1TpYdNdegDSznTDYDssM7oit0ooojznOcKV67iYiGKKEII4RM+4QxniCfe6PVIIimlFCec8KF8GnIc4+hNb7RoGc94o+aCdeGLL5OYxP/xf3jjTT75ZJCBJZbcxE1VjrV3r4jnaNNGlJtv106k9z75JFQXw+2FF/3oxxjGMIABBBBAYJTwKv7gD+KIM2RwuSb2JCxMOA06nQjG/V3UlOP0aTFT5+VVJbmq3rRtK+qxfPhhvbPJWwTHK6ZcSZocqbe6qKG3yQ5JXFwcffr04T//+Q/vvvsuR48e5dlnnyU4OJgrV0z/oFixYgXz5s3j7rvvJjAwkI8//hgHBwdD1deFCxcaBb1mZ2dz4sQJoyUnJ4eUlBRO6L/NX+NULI4GoE0QH4pX+0FcI+Hh4qs3iJrxp09DfLxourJ3r/iEcnAwqk+eqBEOiYelK55W5Q7JhWocEhDZQ1ovbbWBqJU5gwhsVS76Qp4tVzYNByCOOK5wxWg0oyGkkEIssWjRUkABqaQavZ5DjqHgmr5Amg02PMiDhm160ENUyK0HDjjwIA8ykYnYYUcMMaxmNcc4BsAgBtEG4656xcXlXYkdHYV/uGgRVNe/0hVXBjCATnSihBIsseQGbkCLluMcJ4EEoonmPKL+fyCB7NhRvv/q1eXdnvPzy7OFGpL+a2sLr78umvl17y5Su1sLlUd668LZGZ5/3ri6rqT+mKq35OpQQ+8GBbUCfPvttyxevJiFCxfy+eefU1RUZHjNFDZs2MBTTz3Fq6++yrFjx+jbty8TJkzgclm/d3d391ZXAKdicTQA2xThkFSsStqo5OeLuubx8aL3jaKIqmb5+aKYhb7ZzahRhsyb83liVEFX1IbObsIhKXZMJzmj+vmYFFLq7VClkEIaaWgUC7KPdsXqgJgeiSaaOOLq2Lt+RBFFLrlkkFGudwX0TlFnOmOPPXOZSxvakE02ueRij329pm00aJjOdIYgppz2sIev+RotWrawhUIKccON4Qyvsu/WraLOyOXLYmTk8uUqmwAwjGHcwA3cwi08yZM8wAN44UWuZS6hhJJFFtFEG4J1ffElNFRMz4SGlmVCVeBU2YyZqQ6JRgPPPgv+/uWNGefMERVlm5JevYSzpk+Rbw7cfLOYBuvWreZt7r0XbrhBOCUSiaQBDkloaChu1YzlOjs7E1pdDmI9+PDDD+nYsSO2trYMGTKEAwcOGF575ZVX6NSp9r4i1113HU888USDzt0cMRohKbbAMbstUDXlt1EJCxOd9HQ649gREIU2AHx9xdQNcDpdjJBYpXrSw0t8u8+zzK5xSimFFCKTIuttjv7b/KHnp9E+X5SRP81pUqimUUwDSCWVS1yqtrgaYIgxaU97etDDUNH1AAcMMSYjGIE11lX2rUgXujCTmQDsYhd/8RfOOBNBBEc5alRZtnKH46QkEeMxZ47wFasjkEAe5VH60hdffLHEkiyyiCCC73TfYY015zlPDjkGJ6stbSHflgULROn5yjQ0jmT2bBg9WjgjTz4pbiMnJ1EXpaHccosoh3/XXeLWrIhOJ87z/vvCAXjttfJUZnOgzxbs00fUE/TzE4Xpqpu26twZ9EkKn36qopEtiMrZmZKmRQ29TXZINBqNoTprRdq0aUNOTt3xAZK6MRohSfJCq1hQRBGXuNR0J710SXwC5uWV1XwvKX/tjz/Eb2dnQ9DrpeKy0ZpEb7p5iJGcrJLcWoNNg/R1TurBKcTXdP3IQjLJXOLSVU/XVCSMMIPjUxn9dIoXXtzO7dhgQyKJHOIQv/IrIJwBb2pOT7fFlod5GAccuMxl9rMfF1yIIIJTnEJB4Ud+BCCAgGqDW1NSxJ+kJh7hEayxJp54NrCBZSzjDd7gW77Frp8daaQZ7hv9tbrjbujlUx36EZKAgPoHpg4fXtaxGdHVOCICPvhAPJ8ypWGjF926iaaF/v6icNv338Mjj4jg3rFjxQiE/kM9N1eEON13X/XHcnISTsLo0bWf09OzvDOyqQQFBeHqWt4sEoTjcdttVbdduFBsExpq3H5AUn9MeT+RXD1q6G1Z3w1//FG8cSqKwtq1aykoKM/2sLCwoHfv3vzzzz+Nb2ErxGiEJLa9YV0eTdhtsbQUjh0T0YwXKo3EpKSIWvMdOohsm23bSCyr1soVD5yLRcOdtPyqGTYVqW8RO4CTnAQwjBpc5GKV4NOrpZSaA6CjiSaffGyxZQAidmYf+4gmmtOcJossdOgYyUi+4Ztqj3ELt9Cb3pRSyha2oEPHcY5zmtMGxy2ccGKIoQMdmMQkIomsM4NIzyQm0YMelFDCBjYYtRXQoiV9ZzrnOGfINoollkIKscaajnQkmWoCUhCVX/PyROxKhw7l4UU14ecHzz0nHv/0E+iT7Y4dE5VnR46EBQvEaEF9sbYWvXUsLMRxHB2hSxeYNk0seqKjRQaSnR289RZMny7OWTH+zs4O3nxTTEFNnSpGVH76qeo5b7pJTP1kZMDdd4vZSlMIDd3J8uXCoblwQbQBePxxMUK0a1d5e4RRoyA4WAR7y9GRhmPK+4nk6lFD73qPkGRkZJCRkYFGoyErK8vwPCMjg8TERD777DNmz57dlLa2GgwOSZ49XBDfmtNIa1qHBODQIfj11+pf0zfp8/MDX1/SSKPYokBkjp8SY/tJmbXbpy+oUx/00wt6IolstOma+lBKKVFEGZ6f4hTnOU8ccZRSaphqGcIQHKjaw8kXX2Yj/h/2spdiijnHOSNnRM9v/GY4Vn3K1YMoBz+PeQD8xV9YYIEPPrQv+2lHO7xmeRnK6OuvST9aEkjN8zGlpeVhQ3XFkWi1whmxtxcx0B99ZPz6J5+IKZyBA2suhV8d990nRlVSUkQl3HnzxPSMvs1AYaEIxp03TzgfBw6IIGCtVjg++qkba2tRdLh79/K4lkceqdpA8N574emnhQPk5lZ7c0MHBzF7WZnly3sQHCxGa15+GX7+WThTdnZipAdECNb8+eLx99+XOykS0zHl/URy9aihd71HSCr2lnnkkUfk9EwTkkMOxRRhiRWFR3tijZiyKKKOAh5NyY4dMGOGqODavTucO0e6dRLueb6QJKYtYlJqd0jWr19f79OlkEI66bjgQi65nORkvUriNyanOEV3ulNMMYc5TAwxhimj7WxnHOPoSle88Taa+nHFlSd4Ah06kknmGMfIIMMwTVOZLWzhHu7BDTdGMIItbKnTtoUsxBlnUknlFKdIIYU44iimmCKKKKaYrPVZVe6Z85ynS9lPdejTjyMjS+nTR/ypK2bkVGbCBDG1kp0tYjgqzvSBiH358UeYNUuMkhw6JDKIaqNPn/JpjuXLy2uuHDkilvbtRbx15YyjDz8UiWDt24spnk8+EV2kg4PFaMeiRTBsmBixePBB4bR8841wdCZMEMc4dgz69hUjLT/9VPV6LC3FCEunTqKEz/79wle3tITg4JMGm2PK/MAVK0QMzLBhYqTI11ekRV+5Isr7SxqOKe8nkqtHDb1NiiHRaDTcddddtG3btqnskZSRUfbBl39IzNs1WcpvfTl/Xnxd1WpFa1gHB+JKjIvXxeWl1rCzQF/KuN6nLPuQv8jFpsswqoU/+IM88tjLXq5wxWi0Qe9k2GDDGMagQQRbtKENd3InfelLKaX8yq8oKJzkZI0jXDnk8A9iuvNGbqwzUDaAACYgPkH/5E8yySSccM5xzpCJlEQSk2ZMqrLvaU4DouibBcbRlmMYw+/8zp3cWa9MG3v78piNdeuqr48C8PXXoqZKhw7iw3zqVHBxqX5bOzvRq0erFYN1+oG5isTGVp/+nJMjnAEQ0zpvvy1iWwoKRCbLmTMi7mTVKrHNnDni+YQJwvFYvlyMrqSmipnLMWOqnmPKFOGMgEhtnjxZpDm//LJY99NPxv2FYmLKHY9HHy1vivjpp8KpkjQcU99PJFeHGnqb5JAoisLZs2dp09CoL0m90U/bOCkiYDSR6ivXqsqRI+J3p04QGEh0oXFMR3XddyuyefNmk073Hd9xkYv8y781xjs0Jac4xXKWE0UU8cQb1SupOG3Tn/644IIHHtzDPdzKrQDsZz+55HKWs3U6VD/wAyCmUkYxqkqFWD0WWPAsz6JFy0lOkkACEUSUF9OrQHV66508L7yqTDXdwz1YYME4xnE2Ugye+vsbN4GuyF13iemNmBjYtKnma8vNFYGuxcUic+exx+CHH0Rcx7RpIvV12DAxMvL442IEISGh6vRPfThwQMSwaLXQr58458svlxcjBvj22/KAWx8fES/z/PPCASoqKr+WmTONj63TidgSENfz9NNi9KesLRYnTmj45JOqNn3zjdjG3V04XBERIMMfrh5T308kV4caepucZfPss8+ybNkyevbs2RT2SMqoXBujYjyD2dBn27RpAyNGEK8td0AUSuscxamrg3NlDnGIz/mcs5wlm2yTzb1aFBRSSCGLrGoznH5HlDftTGe60pUFLOBmbsYCC8II4zCHSSKpSjxMdZzkJFFEYYEFT/M0D/MwXemKFaLuiwUW9Kc/K1lJRzpSQAEHOEAkkUYjNxWpTm+9Q+KEk1Fht+50NzQbbE977C77kpoqpiK6dq167HbtyqdVPv647mmYPXvg9tuFI3DqlIjVGDxYxHM8/7yI83jvPbjxRhHD8tZbwpEJIICHeKjeRehAODIJCeI4b7xR/SjLjz+Wv/b442LqRc+WLWL0ols3MX2j5557RLbO+fNim0OHxPXMni2clx9/HF5tW4TCQnj33fLn779f70uR1IKp7yeSq0MNvesdQ6Jn3bp12NvbExYWRmFhIXmVchLl6EnjUPHbeBFFXOSiGa0p4+BBERTQrh0MGkRi21/Q1ykrsMyloLj2Pjvnz1efYlsb0UTXq7prU5FBBvHEV+tsHeWoIc7lMR6jHaLk5h72sJe92GDDSU7W2/7/8l9e4iXa054buZGe9ORHfiSeeG7ndvrQBy1aFBT2spdIImt1dqrTO4ccrnAFDzzoRjeDg3IT5VGcWrSMZgyRkRcYPlxM21Qugvzgg2Lk5OBBkSVeH1JThSPw448izuP660VarL29CBS1txdxHVu3ihENN9x4i7dwxpkbuZHXeZ0jHKkzCyknRwS7OjrWHjT6++/lJfMrkpkpOiZMnSocjWPHxHTTFFGKho8+Kq9sq+fKFThzpuYvDYcPi6mdoqLygGHJ1dGQ9xNJw1FDb5MdkoqN9SRNR8URkgwymj7Dpr5s3So+jby9SRjsC2Xpk1nFeXUG3eoqV7aqBzV9+1eLS1wyZNZURkHhX/5lIhNpRztKKWUb2zjBCXToiCDCpNifc5xjOcsNlV198OEhHkKL1hDvEUkk4YRzhjNEEEEJJTUerya9L3ABDzzoQQ9+4zdssWUsop/URS7ihx8DGMC+yLUMH15apUBanz4idbWkpGHTKiDiQNatq32bxSzGGTFl6YILr/M6X/AFf/BHtdV1K5KTY3rabkU2bhRF2YYOFYGoDzwgRov++ad85rIydd3fcpqmcWnI+4mk4aihd4NGSCRNT8U33DTSqu1caxZ274ZbbwVPTxIm9DE4JLnk1umQ2NnZqWBg41Ja9lMT29nORCZSTDEb2UgSSVhjzTGONaiybjjhhoycm7jJ0NzvPOfZz37SSSeWWCKJJJfa677UpPcZzjCYwbRH1LgZwxjssCODDL7ma57neTrTmS0n3IHL9Owppi/0Ixn33iuOs3Vred+b2rDEEoeyHxAOdl1NFqcylUEMophi1rGOcYyjAx14kAfxxZcd7CCDDPLJp4AC8qjbIa4OV1zJJ7+Kwx8fD3//LRyv558X119cTLUxInquxfv7WkbqrS5q6G2yQwKg1WqZOnUq3ctC8E+cOMGWLVtaRKfd5kJFhySZZAqofTpENRISxCfRffeR3dmbXMsi7IutyCa7zqmJixebwbRTIxNOOGtZizXWhlox+oZ2DUFBIZpoMsgglliGMYxUUskggxRSOMMZYomt1UnSU5Pe5zgHgDfe2GLLLdxiuJaDHDRMQ7lHjgJ+wNu7agGvrCwo63+JJ55MZzo55BBNNNlkk08+pZTiiitOOGGLLTbYoKCQRx4ZZJBEkuG6KrYc8MWXh3gIgN3sZitb+Z3feYVXCCCAyUzGF18SSTT0SMonnytc4SxnySCjXlpbYUUwwaSTzhGqDnts3CgcEn0/mi1bytN5q6Ml3t/NGam3uqiht8kOSefOndm2bRs+Pj6cPi1SCJcsWUJMTAyTJk3iQuUqn5IGUdkhaVZs2gTjx0P79iS0g86XRGxCXR+SAwcOZEdtRS2uUfawh0EM4gpXCCOszumE+pBGGvvYRwYZtKMdF7nIBS6YNFJWk956h8Qdd3rQg+50p5RS/uIvMsjgIAcZxzj6Fgxh+68/MXxUKbm5IhtFPxWyeXN5fZAneMJQ4r+YYq5whUQSiSWWKKLIIYc00iiiCA0abLHFBRe88EJBIY00oogigQSKKWYpS7HGmhhi2MAGg56v8RpP8iTBBNO77Ed/zmSSOcIRvPDiPOeJIqpOJ94HH9xxR4eOS1yq8n8WESFiZ3r2FNf65ZcN01vSNEi91UUNvTVQzzrVZfz666+GeiRpZYUH3Nzc+PrrryktLWWyvrlEM0en05GZmYmTkxNZWeoW3KoPPejBh3wIwGpW11ie3GzceCMsWcKrS2Hk37CDHbzJm6K85owZoiTlRx9Berq5LW1y7LHHDz+iiGr0qTUNGuywq3N6xtRj/sqv2GFHOOH0pjfRRPMiLxJDDMMYxn/4D1lkMZ/5dZbs38pWHHE0dEGuSC65nOAE4YQTRRROONGRjnSiEx3piA02hu7OMcSgQ8f1XE8++XzAB+xgh9HoSWc6M53peOKJO+54440N5R31drGLU5wimWTDaFJ1QbAWWDCSkTjhhDXWXOQiBzlYZbs+fcSUzWefQUiIqUpLJC2XpvgMNXmEZPTo0QwZMsTgjACkpqby7LPPsrdyH3NJg6n4Lbs+aaOqExIC06ez6dZu6FKL2OkF3LlKpE3oO7IlJ4v63mVTebNmzWqR1RVzySWS+ncyNgUFpcHOSE16Kyhc5CKBBBpGGY5wxBCAe4hDFFKIDh3BBNfqkHjhhSOOlFDCOtZhhx0uuNCWtvSgB444MrDsp4giQxpzRZxwohOd6Ec/w7o/+IP97K/SPfoCF9jGNrrTnRJKyCMPa6wZzGCGMpQxjMEFF/awhwEMwAILoomuck5vvOlOd9rSlr3spT3tuchFo35AILJ9Ktcj8cKLG7gBHTrsy35sscVioAWfHvyUQgopKfvJIaf5BKS3MFrq+0lzRQ29TXZICgoKqo22dXR0pLDQfOmZLY0rXDGUKY/T59Y2J0pL4eOPObpiBUc/tALGl79WUCDyN8eMEfmOhw8DstSz2tSm93nOG/rZ5JLL3/xtGN0ppJDjHKc//RnMYHays8aRn26IAIsUUjjKUZxwwhtv4onnb/7GGWeCCKInPXHAgRJKiCOO6LKfHHJoW/bTjnZ44MFZzrKd7dVOVSoonOIU2WTjVvZjiSVHOUouuYxhDH3pSxvasJWtdKc7qaQadYnWoqUHPbiJm3DEEXvs+Yd/8MefK1ypM634bd7Gl2qa2RwU9VwOcYjTnKaUUvLJJ4UUkkginXQyyKhX/I+kbuT7ibqoobfJDskvv/zCZ599xn333ceBAwcAGDx4MJ988glbttTdg0NSP4oo4lEepQc9mu83rGPHhLMxYAAWuYWUXI4XhR+KikR5eS8v0Sc+NhaSkpg6daqsrqgitel9mtNMQpSWjySyyijIP/xDf/oTQADuuBNLbLXHCSAAEJWE44jjDGdwxBEvvPDHHxts2FL244EHqaQasmFsscUdd+LLfg5ykBJKSCPNEOdSHcUUGxwaLVoccMAZZzLIIJ10JjKRDnTgTu5kK1vpSU8OcMCQIu2BB9OZjiOOgKi0G064aEiIV61VkdvSFl98KaGEM5yhiCJDMHcvm144FzgzlrEEEcROdnKBC3jjjS++FFBAGmkc4lCjTsG1VuT7ibqoobfJDsmjjz7Kl19+yb///ktRWVlCS0tLtmzZwmOPPdboBrZmLnOZtrStM0XSrLz0ErbzHqFEAyUx5+D0adG//vPPhUMSECBqg2/YIAPQVKY2vSs2A9zP/iqdlHexi4d5GE886Ua3Gh2S7ohMu3jiDY5zdtnPFa4QTDA++BBPvFFrARdcsMeeM5whmWSKKaaEEoopJpfceheTK6WUrLKfQgqxworv+I6buRkPPJjIRIooIplkznIWgMlMJoAASinlAhfoQhdu4iY2shF//LnM5RpHMfrTHxAO2BrWkE02BWU/nTSdmMQk+tAHTzyZxSyiiWYrW4khBmus8cabrnQljLBqjy+pP/L9RF3U0Nvk0vEZGRlMnTqVgIAAZsyYwW233UZAQADTpk0jMzOz7gNI6k0eeRzggFkrldZJbi75az6maO2nogRnRIRIw9CXwPTyEnmTQ4cSHBxsXltbGbXpfYpT/MM/HOEIxzleJVYjlVRDu4LBDK4SrKrHH39AtDao/CGeSSYHOUgMMfjggxVWaNHSlrZo0XKYw4QTbmgGmEwy6aQ3+H6/zGVD9dwf+IE00nDHnfGMpxe9aEMb/PFnGtMAkVK8nvXkkIMXXnSjG21pizfeNZ5jIAMB4dAd5SiRRHKBC2JatR9sZCPrWc9udlNIIR3pyEIWMoUpWGBBMsl0pnOt55DUD/l+oi5q6N2gOiQA586d49y5modVJY3DNTHfXJ0j+vPPIhrQwQFsbWHIEOJ271bftlZMXFzNsUellPI//kcQQTU2RdzPfvzxJ4AAvPCq0k/JDTdccKGUUkMX4crkksthDlNEEZ3pDIjRheMcN2qP0FjEE48llgQTzI/8yJ3ciQ8+3MItpJLKdKZjjz0JJPAnf1JCCb/xG7dxG2MYQyyxdKYziSRW+d/ToiUY8aZ8ghNVnLiYuBhDjZgCCjjCEcYylt70ZjCDCSKIbWwjjjgCCCCV1Ob9ZaOZU9v9LWl81NDb5BESgLlz53L8+HHy8/PJz8/n+PHj3KfvQy6RAKSkiNESELW3bW2x6ttXtGGVqIKVVdWMloqkkso5ztVYN2UXuwBRr6MzndFWervQT9fogzVropBCjnKUE5zgDGfYz/4mcUb0XOISxzlOHnn8xE+GkYoFLCCIIEoo4Qd+QIMGH3yIIopoorHGmiEMwRNPvPCqctwudEGHjkIKqy2kZmVlRQklHOc4pzmNLbZsZjOrWEUCCdhjz23cRic6GWJsJA2nrvtb0rioobfJnw6vvPIKK1euZOvWrcyYMYMZM2awdetW3n33XV555ZWmsFFyrbJtm8jG8faG/HxcvbygSxdzW9VqcHV1rfX1IoqIJrrGrJIznCGFFCyxpC99q3Tc7Yno+H2FK3UGXpdQQgQRHOWoKm0QLnCBoxwliSS2s50SSvDEE4A/+ZMMMmhLW5JIwhZbwzY96IFv2U9l9PEjscRW68Tp9dZf62lO4447l7nMh3zIbsQI4WQm0452dKUrbrg1kQItn7rub0njoobeJjskDz30EPPmzeO5555j69atbN26leeee44HHniABQsWNIWNkmuViIjydqudO3MKoH//8jolkibl1KlTV30M/UiAP/6Gvjp69Cm/CSQ0y0ywKKLYxz7CCOMv/qKUUqKJJpxwnHHmJCfZxz7OcMbQKBFgJCNpR7sqzsIgBgEifqRiGrGeinrrR0oiiMAZZxxxZAc72Mc+tGiZzGS60pUAAgyNEyWm0Rj3t6T+qKG3yQ6JlZUVhw4dqrL+8OHDWFo2OCRF0hK5ckWkBgN07szQkhLw9xfVXCVNzujRo6/6GH/zNyD6y7SjnSFVFqATnQDjDJvmRjLJ7GMf29jGV3zFDnZQQgkHOUgEERRRxGlOE088JzlJNtm44kp3uhs5YNZYG0aEIoioNvajst6llHKKUxzjGHbY4YYbW9lKGGFYYMF4xjOQgXSgQ9OK0EJpjPtbUn/U0Ntkh+Srr77ioYceqrL+gQce4Jtvmll5c4l5URTYu1d0YrOw4Hc3N9HDvV+/uveVXDW//PLLVR9jH/vIJx8HHPDH35Adoi9KBhBNdIM67apFLrkc4Qj72EcssexjHzGUd8kroojjHCeddI5yFIDe9MYXX0OH4l70wgorcsipsSpvdXorKJznPIc5jAYNHnjwIz9ymtNYY81EJhoK1ElMozHub0n9UUPvBkUY3nfffRw/fpxVq1axatUqwsPDmTdvHqWlpbzzzjuGRSLh0iUo6xJp3auX6G3TtSv4+NS+n+SqmTVr1lUfo5BCTnISgHa0ww8/LLE0lJxPJ73GLJ3mRAklnOIUe9lLGmlVXs8ggwgiiCSSQgrxwotAAmlHOwBD88BLXKp2ugZq1zuGGA5xiDzyaEtbfuZnLnIRW2y5kzsb4QpbH41xf0vqjxp6mzzH0qtXL44cEfPKnTuLNL7k5GSSk5Pp1auXYTtFMalnn6SlkpAAp05Bx44UOjqKjJusLAgOBpm216Q0VqnnAxygH/3oRCdcccUTT0OGTTLJzbtwXyVqKwsfQwwRRHCKU/SmN0EEEU440UQbAlovcKFGh6QuvRNJJJNM/PGnE50IIYTruK75Nc68RpCl49WlWZaOv/7665vCDklLpbhYVG/t2RO6dxe/f/9dPD5wAC5frvsYkgYxefLkRhlm/Yd/mMc8PPFEhw4ffAwBrfXJsLmWOM1pdrObXvTCDz+60pVYYulIR0DUH6npeuujdy65RBBBHHF0pjO55FapkiupH411f0vqhxp6N7goROfOnbnxxhuxtbVtTHskLZGLFyExEW16umi616EDODqK3u6SJmN3IxWiSyTREHPhXfajD8RMJLFFOST6min6Xjq96c1oRqNFSxppXOBCjfuaoncaaRzmMHvZaxTPIqk/jXV/S+qHGnqb7JC4ubkREhLCmTNn2LZtG23btgXg888/Z/ny5Y1uoKQFEBMDmZl0iiqr9NmjB2RnQ1AQlN0/ksYnMLBxgiX1QZ8gioM54UQb2gCiE3VLaxQXRxx72ANAV7oaxY9kkVXjfqbqraCQRFKTFolryTTW/S2pH2robbJD8u6771JUVISvry+5ueVvRN9//z0TJkxoVOMkLYT8fLhwATIyIDUVrK2hfXtwcoI774RRo0SJeUmjkpZWNXizoexlLwB++OGMMyB61aSRRgEFjXae5kAhhexjH5e4hBYtfvgBtcePQOPqLakbqbe6qKG3yQ7JjTfeyOLFi6vUtT979ix+fn6NZpikhXHqFMUlJXBSZGzQvTvEx4tKrjfcAPfcI9KBZTnoRkPfjbsxiCKKZJKxwMIwYnCFK7WWjL+WiSPOUIMFyrN0agvgbUy9JXUj9VYXNfQ22SFxcHAwGhnR4+bmRkFBy/qmJGlEzp7FJzkZSkogOVk4Hr16iRGTqCjQ6eDmm+G228BCVq5sDHwaMbU6k0zOchbAED+SQkqtUxjXMvnks4tdXOEKAEkkEU98rVk6jam3pG6k3uqiht4mOyR//fUXd999t+G5oihoNBqeeeYZQkNDG9U4SQtCUTj6xx+Qlwdnzoh1PXrArbfCpEkiDTggAIYPF9VcJVfN0aNHG+1Y+eQTRpjRupaWYVOZOOLYyU6yyDIUTquNxtRbUjdSb3VRQ2+THZJnnnmGBx54gG3btmFtbc3bb79NREQEo0aNYvHixU1ho6SFMD4oCMLDRSpwYqIYCXF2hjZtwMtLBLgGBEDfvuY2tUUwfvz4Rj3eMY4ZBbAmkdTiAlorkksuu9nNd3xHJJG1xo9A4+stqR2pt7qoobcGahmDrAEnJycefvhh+vTpg6OjI0eOHOHDDz8kMTGxCUxsGnQ6HZmZmTg5OZGV1TKHnZslbm4iXsTCQsSPWFqKxcICBg0S6cBHj8Kbb8oaJc0Mb7xZylJ60INssvmUT/mTP1u0U+KAA2MYQwEF/MmflFJqbpMkkmZBU3yGNqgOSWZmJv/973+5/fbbmTRpEkuXLr2mnBGJeZg1a5aIGTl4UMSMpKWJbsBxcSI1WH8Pdegggl4lV0Vjl3rOJJPjHEdBIZpoCikkn/xGPUdzI4ccoojiMpfrdEZkKXN1kXqrixp612uEJCgoqN4HPH78+NXYoxpyhMSM2NvDnDki7TcxUUzZODmJgNfrrhO/f/0VPvlExJw0dxwcRIBuWJhIcW7BjGY0vviSSy5xxLGPfeY2qcnRokWDhhJKzG2KRNJsaIrP0HqVjj927JgheLU2FEXB0tLkavSSVsL48ePZsWMH5ObCv//CLbeIANbUVNi5E44dE8GtLi7QrZtYwsLqOqz5GTMGhgwR8S/btzebqSaD3o3IZS7jiScaNC025bcy9Z2maQq9JTUj9VYXNfSul/fQqVOnJjVC0jo4ePBg+ZOICOjUCVJShCOSUfbhdvgwjB0LHh6itPzx4yLWpLni6wtPPCFGdWxshDP1xx8QWX2LejUx0ruR0Ad2atG26AybhtAUektqRuqtLmroXS+H5NKlS01th6QV4OfnR2pqWZnsoiL46aeqG/3+u3BI3Nygc2fxgR8draqdJjFzpgjItbAQjQMLCkQqs6cn7N0rMorMhJHejUQmmeSTjw02LTqYtSE0hd6SmpF6q4saejcoqHX27Nn8/fffxMXF4evrC8Bjjz3GLbfc0qjGSVoWefWJBzl2TEzhaDQiDbhnzya3q8FotTB6tHicny9iY/r1E8+vuw5GjjSfbdRTbxPJJpscciikUI6QVKIp9JbUjNRbXdTQ22SHZP78+axYsYJt27bh4uKCRVlVzfT0dB5//PHGtk/SgqhX4FNhoXBKQIySBAaCq2uT2tVghg8XacpFRXDiBKSnC6dk2DAxMtKnjwjWrQl3dxEn00Q0RbC2gsJlLlNAgXRIKiGD49VF6q0uauhtskPyyCOPMG/ePP773/9SUlIedX7o0CGTsnEkrY/OnTvXb8OdO0FRRPaNp6cYbWiOZaKnThW/r1wRMSORkcIpcXAQQa7e3qIabXVoNGJqauLE2p2Wq6DeeptIOumkkEIx5puOao40ld6S6pF6q4saepvskHTq1KnaErIFBQU4yI6tklr4999/67fhiRMi2BXA1hZ694bZs0WvG2/vxjPIza3hzoCTkxgBAYiNhX37ROPAkyfLnRI/PzGFY2tbdf8uXaBrVzFKUpPTcpXUW28TiSOuShl5SdPpLakeqbe6qKG3yQ5JVFQUfasp7T1hwgQiG5hZsGDBAqKiosjLy2Pfvn0MHDiw1u3nz59PWFgYGRkZZGRk8M8//zBhwoQGnVuiHlP1Iwp1kZFR3hW4fXvRfC8nBwYMgLvvhgkTxFRJQ9FqhaNwzz0wa5YInDWVm28WgazZ2XD+PJw6JVJ+4+KE7aWlwnnq3FmkA1fEwgIGDxajJJmZNTstV0m99TYRBYUiZKfVyjSV3pLqkXqrixp619shWbp0KXZ2dqxYsYIPP/yQmTNnotFoGDRoEM899xxvvPEGb7/9tskGzJw5kxUrVvDKK6/Qr18/wsLC2LFjBx4eHjXuExsby7PPPkv//v0ZMGAAf/75Jz///DM9muibpqRx2LhxY/03/vNP8aHu5iZiSLKy4MIFETw6dCjMmNGw0ZL/b+/M46qq1j7+OwcOCHgYFDkiKppMKgqomKSJiVNpV+2tNL1pN/OWWenbcJU07dotr9XbcLlWVuZQ6TVvqQ0OpaImTokiOEIIDswgM4dJnvePp3PgMAkK+zA8389nfeDsvfbea//YZ+8fz3rW2o6OwOTJwKRJPGW9iwvvyxDtaCgGA5yWxkOYDW8x3rOHDdX167zeECWp+gZjHx8e8mxpyUbLxYWXNTGN0lu4Y0RvZRG9lUUJvRtsSJYvX46OHTti7dq1WLRoEf7xj3/A1tYWmzZtwrx587BgwQJs2bKl0Q148cUX8dlnn2H9+vW4cOECnnnmGRQVFeHJJ5+sc5sff/wRu3btwu+//464uDgsXboUBQUFGDZsWKOPLyhHo6YejovjBzwAjBnDD22AH/ZXrnBU49FHGzfFfL9+wIwZ/PK+9HQuV6+yWZg0iXNVGjKxX58+HLmpqODoTVxc5br4eODgQY6UVFRwHoyvL28DABoNv7PHwwMYOZInVSst5QnhqpqWJkCm1lYW0VtZRG9laTFTxwPAzZs30bVrV2RkZBiX2djYoGPHjibLGoNGo0FRUREefvhh7Nixw7h8/fr1cHR0bFCISK1W45FHHsGGDRsQEBBQZ7eRlZUVrK2tjZ+1Wi2SkpJk6viWilrNE46NGsXdMxUVPGnauXOVdbp14+TXX3/lmV/rmkBNp+ORL/36cf3kZP5ZFQcHjsacOQOcPMkRjup1DCxaxBGSrCzgm2+4VG/7Aw8A06dzMm5uLrB5M7BlC5uhZ54x7cY5doynyN+yBbh0qbFKCYIgKI7ZX65H1W7Qer3+ts0IADg7O8PS0hJpaWkmy9PS0tD1FuF4X19f5Ofno6SkBJ988gmmTp1abw5LaGgo8vLyjCUpKQkAZw67u7vjnnvugY2NjdEEGdzg+PHj0alTJwQEBMDHxwdubm4YOXIkNBoNHnnkEZO6ISEhcHFxwYABAzBgwAC4uLggJCTEpM4jjzwCjUaDkSNHws3NDT4+PggICECnTp2Mr3c21J0yZQpsbGxwzz33wN3dHR4eHggMDIRWq8WkSZNM6k6aNAlarRaBgYHw8PBokecUEhLS8HOqqMCk/Hx0jIpCp2vX+CEfGIhO48bBWqvFfb17AyoVAnv2BJ54AiNffhmdRo5EwKhR8Onbl89p7Fhoxo7FI3PnAn5+eNDKCrC2htvIkbCYPBnqGTPQacQIOHfsiBC1GkhJwWN+fsDjj+ORl1+GZuhQjBw3js+pXz8E3HMPnPr1g9WoUQCAkSkpwPnzNc/prrsQmJsLu6goqG/eBBwcMDIoCPD0RNC0aZzMCsD6j8Rdy4AAdLC0xJQHHgBUKtO/k78/Ah5/HD5+fo3+OxmijHLtKXNOM2bMaHPn1JL/TiEhIW3unFry32nu3Lk12tnUNCpCkpubW8OUVKdz584NPrirqyuSk5MRFBSEY8cqX9K1atUqBAcH19sFo9Fo0LNnTzg4OODhhx/GU089heDgYImQtGBcXFyQ3pj3vHh6ctLp9evcxTF0aN3dGiUlQHQ0v0H4xg3uijGMYiktBQYP5vyR2igr4zyQc+d4/hAbG46WWFtz0mlODkdprKw4KuPvz/vctQtYs6buFwD6+QEvvsjdSwUFPAvtgw9yt83ly8Dhw/w+H0dHIDaWu6K++orbrtFwVCcoiN+MfPIk8OOP3NYG0mi9hTtC9FYW0VtZqutttpfrGVi+fDlyDe8caQIyMzNRXl4OnU5nslyn0yHV8Cr6OigrK0N8fDwA4NSpUwgMDMSCBQvwzDPP1Fq/tLQUpaWlTdNw4bbQ6XSNu4Fcv87JrPb23JWRmcl5Fw4ObAKKirjY2/Oyfv2A8HD+PHQorysoAEaPZnNRUcHdLIb8kfJyzt1wduafPj48l0h2NhuR1FQ2Il27cmJt586VibRpaWxg6pu9MCaG32szezbvx2BGMjN5WvmKCuD4cWD8eDZcublsYoqLgbFj2VBlZ3Px9+dz2bu37q6kO9VbuCNEb2URvZVFCb0bZUj+85//3FEXTXXKysoQGRmJkJAQYw6JSqVCSEgI/v3vfzdqX2q12iQCIrQB9HpOEh08mI1JVhawbRt33xjyRays+I3BAwbw3B+jRlW+cbdHD57a3dKSP+/bx5GUqiQlAb168UgYe/vKqd8BPoZez/utSkkJRzGqJrPWRkUFG5IRIzhnRKNhk7R/P4/KsbRks5GYyG3o1YsnWevThw3Q9esciQF4+bBhrEOVaKIgCEJbocGG5FZdNbfLe++9hw0bNuDkyZM4ceIEFi5cCDs7O6xbtw4AMH/+fEydOhVjxowxbvPWW29h165duHr1KrRaLWbMmIFRo0YZ++2Elkn1XKEGceAARz88PNgElJdXmhGNhk1HVBQ/vO+/nyMR48dzF0hAAJuXa9d4P1VmFjYhMZH37eHB78+xt+ei0bAZIWIzlJLCCbFqNUdIGvLSybQ0TlZdtIi7m/bvZ5Ph5sb7V6m4u6h7d37Dcc+efC5Xr7IpcXRkU5SczPVHjeLojWGeFgNWVly/UycuLi5Is7TkUUAFBQ3XOyiIf8qkU43mtq5v4bYRvZVFCb0bbEhUKlWzNOCbb75Bly5dsGLFCnTt2hVRUVGYMGGCMTTk7OxcY8paFxcXbNy4Ea6ursjNzUV0dDTGjx+PvXv3NksbhaZhwIAB2LdvX+M2yssDduzgadr79OE8C0N0oUcPnpDsxx/5Qd61K3d5aLUcVQHYmBw9yg/2Tp1428JCfkhX7W6pqOC6sbGVy2xt2eDk5nJURKPhbhuNhk1EXaN6qnPkCLB9O7fR2prNR1IS8Ntv/Pvdd7PBGDiQTVGPHmyIqn7nSkr43HNz2XA5OfFkagYTYmfHn62t2UDdvIkBlpbYZ28P7NzJZupWuLjw+3kAjkxJOLxR3Nb1Ldw2oreyKKF3g5Na2xrNkZAjNCMODsDUqTyh2PXr/CCPj+cunPx8jloYJjjz9WVTcuYMcPo0J6nqdGxMLCx4H/b2/AAnYnNSUMC5G7VhZ8d5JgDnlURFcWlMTlKfPjwhW34+cOIEG5CyMjYQU6fyW40NZspAUREn1Do6sjkyUFLCxunGDd5HaSmX4mIuajV3/xQU8Ha5uZxQWz2qUp0//YkjJKWlnET7ww8NPz9BENoVZk9qFYQ74bHHHsPmzZtvb+PcXI4yTJ3K+RixscD33/MDHuBoxZEjbDb272ejkZPDkZRu3XgOk717uZ5azd0jrq7cddKrF0cZOnTg9SpVZeKoSsWRlAsXOEk1Pr5RI12MxMdz101GhqmRKSnhCIadHXe7EPG53rhRaZBUKjZUvXtzW62tOYF3/36OtFTFwoIneOvenT9nZbGJ0mrZVEVE1N511bs3Tw7n6cmjlXx9+XwTExt/ru2UO7q+hUYjeiuLEnpLhEQiJK0LJyfu4jh5snIm16pMnMgjbC5f5s+9e/NDdetW7qqpDQsL7q5wdWWjUlrKJqS4mH/m5HAuSHOi03GEx9GRc17qQq3mtwS7ubGx2LeP80sANjQhIbyv8nI2MoZh0mVl3AWzdSvw00+8vuo+58/nbjG1muueOMGjiLZsqdk1pdFw1CkvrykVEAShFWH2idEE4U4wTNRzR2Rn8yia2swIwCNQcnM516NbN4407NpVtxkB+MGekgKcOsXvogkP5/1ERfFwYyWS59LSuJ16PZsoR0fTHBKAl/XqxV1RmZlsNkaPZiNlY8Ozx+p0HHXZswd/2rePjUVuLpsINzfg8cd5FlmNpnK/vr48zFit5giNRsP5OB4eNafmd3ICHn6Yp+A3dGMJAJro+hYajOitLEroLRESiZAohkajQdntdHc0lpEjgXHj2IRs387dLa2FXr14CLOnJ+e5lJWxSXFw4O6pM2d45MzUqTyKyNWVox16PXfLFBXxUOPsbGjs7FBmMDWurjxs2MKCc3D++182QGo1sGoVJ9QWF3O31+jRbEyOH+eupi+/ZJPTpw8n1BrmDYqL4/3UlXvTzlDs+hYAiN5KU11vySERWjVBQUE4dOhQ8x8oMhLw8uI8k9ZkRgDuXkpMZDPi4cG5Is7O/L6eqKjKyNDZszwCqLycR+VotWxYfv6Zf/bsiaCbN3HIkK+Sk8NmZtAgzi+ZOJHNiFrNERKADYjhTcXdu/OooJISNj4AGz0rKzZEFhas8ZgxnAPT0BFHjcXamhNtDbq0YBS7vgUAorfSKKG3GBJBMQwz6zY7hYU8BXtr/s89L4+7kE6f5ody9XM5c4ZH5Zw4wabBxoanojdM5FZRgfiDBzlBlYhLly48H4qPD0c7Ro9m46FW87wnGRmc3JuUxBGVbt3493vuqTQ8hu6r8nLu5ho0iE1Sc0zWZm/Pc8sMGsRatHBDotj1LQAQvZVGCb3FkAiKoa06pLW5ac1mpCpEtZ9LcjJ3mfTvz0akKjodcOoUtFlZlaOQADZqX3zBb1F2deVtVSo2NJGRvN2RI5xr0rUr4O7OXUe5uZwQq9ezSXFz49E7hknXgoP5861mrm0MLi7A//wPd71ptdzOX3+tTOBtgSh6fQuit8IoobcYEkExbGxszN2EtkVUFHfpWFtXTonfuTMbiIgI2PToUXObyEjg22+BP/+58mWDJ09yt9D58zyUuE+fyonmHB15nU7HU/RXnUZ/wACOXFRUcG5Jfj4PMb5TevcGHn2UjY7hmvH25gTbFmxI5PpWFtFbWZTQW0bZCIpx5coVczehbZGQwLO3dunCny0sOPn1+HEgM7N2vQ3v19m/n7tozp3jYc5JSTx6qbSURxadP185Nb6/f+W7goqLOdG1pIRH3ISEcNfRXXexiRgwoPa2Wllx10tgIOe+1IadHXcPzZ3L+7WxYZNTXs7dN6NG1XyvUAtCrm9lEb2VRQm9xZAIihEYGGjuJrQtKio4QmFpyaVrV44gnDoFoB698/J4hM2pU9zVUljIiak5OZX7PXKEDU92Nn++epVNzDffcNfJt99yfkp5OXevBATw/C//8z8cLenQgfelVnPOysyZPBPspEnAk09ygqyTE9exs+MRQH/5CzBrFs8zo9FwN9GuXZVRkX79OJG2hSLXt7KI3sqihN4y7FeG/QqtGY2GH/Bdu7Jx2LaNR+A0hOBgjlj88gsnyVbngQfYKFy5YjqRWlVsbDiC4uXFeR7FxTwp3YkTXHx9OWrSpQt3LeXncxSmooITZOPiuA19+lTOlguwGTp+nHNWCgo4uVWl4vcWvf9+043q8fWtfKu0IAgNRiZGE1o1jz32mLmb0PYoK6uMksTGmryv5pZ6R0TwzK21mRGAR85kZ3M3UF3o9fyOoN27OcLSoQNHMiZOBBYu5MjIiBEcJendm+c7GTKEoynjxwMvvADcey8bjw4d2KycPs0vHnRz43PavLmy+2joUM5vuVPUajZkU6YA06YBDz7IhugOkOtbWURvZVFCb4mQSIREaO3Y2XE0IyKi6ZM+R4zgWVxzcnhGW0NRq/nFfba2/HtFBZsiZ2dOQFVX+18nI4PzVGxtOfHW0bFyWnu9ng3H1as8lFirZXMQGcnRm+JiNjgvv8yjjtat48nabheNhnNUJkxgs3X+POe1ZGezCTt1qnEvThSEdkhzPEPFkIghUYwpU6Zg+/bt5m5Gu6FJ9La15VlhnZ3ZZFhYcKmo4O6X69e56yU7m43IgAGV0/arVGwyrlzhGWQNqFSc5OrszCamsJBNgpVV5bt0IiI4V8XwIkArK+Dzz3kSuGvXgAUL+Jh14eTEEZnCQh75k5vLyzt04MhMcDBHaywseN2uXWyEOnbk/UdHA7//Xv8xqiHXt7KI3spSXW8xJE2IGBLlsbGxgV6vN3cz2g1NqrdazabBUACOmlC120fPnjxSxsurcp0hEkJU+Sbl8nIuZWU8YicnhxNs8/M5mhIbW7MN998P/O1vbIbefpvfO1S9je7uPL9K//4chSkuZlNimDdFp+PRPgMHsjkxtCk9nfenUnGSbocO3Jb4eODiRf55i6hJo/W2tORkYL2+4Xk/ghG5nyhLdb3FkDQhYkiU55577sGRI0fM3Yx2g9n0Noys6dePH+IFBWw6iov5p15v+jbl4uKaxqau/W7cyLklv//OI30qKipLz54886yrKyfJajRsJmJjOfm2Qwc2R76+bFaysng00bhxnHB79Sq/WNFgUrRajrSoVDwU+rvv6jYl3brhnjFjcOTSJY6q5ORwqat+ly7cbdS/P88Ds2PHbYrdfpH7ibJU11veZSO0apKSkszdhHaF2fSuqOC8jCoJtk22302bgFde4ff8PPssdwdlZrJpUKnYiLi5VW7Trx8blePHeer5MWPYjBQWsvnQ6Tipd/BgrjdsGCfpEvHw6Lw87i7q25eHKu/dW7NdTk7Agw8iqXt3no8FYJNVXMw5MZcvc/6MYdI4f3/el6Njw4yYUCtyP1EWJfQWQyIohqbqK++FZqdN6r1zJzB8OM9VotVytCMnh6MbPj5sHm7eZJNx40ZlvZAQNheGNyjv28dGIjWVE2iPHeOuJm9vjpYUFVW+A+jmTTYWw4Zxd1LVUUkdOnBCcbdu0CQn83YqFe+jQweeer9fPzYn2dncBg8Pjgxdv85GyDCxndAo2uT13YJRQm8xJIJiOBkmwhIUoc3q/cEHPIGary8nzzo6Vk6Dn57OCbEqFT/ojx3jKIivL5sRIuDQocrRQnv38rqBAzmKMmwY0KtXzWN6e/NU/SEh3NVz/Tp3/4wbx/ky167ByTCHChGPfOrUiQ1IairXtbfnNt28yUalVy/uVjIk7gqNos1e3y0UJfQWQyIoxsWLF83dhHZFm9U7I4NnjC0p4ciInR0nsxoSUJ2dOTpx9ChHJwzdJgMGsJFISeHumUOHOL8kJ4dH5OTlsUHp0oUNDcA/XV15n4GBnEsyYQIff9AgLikpQFkZzjk4VBoNe3vTNufmcsTG0bFyhlqAu44Mb1AWGkWbvb5bKEroLYZEUIzg4GD8+OOP5m5Gu6FN633tGieZTpnCBmLnTs4x6daNf+7cyfOJJCTwHCYdOvAwYoANQ0ICR1IAjqocO8bDgRMT2bRUxcKCcz7c3dng2Npysqq7O4+UGTAAcHNDUdUJ5MrK2DjZ2/NQYgeHygnmysv5OLGx3LUTE9O8WrVR2vT13QJRQm8ZZSOjbASh9aLTsSlxdeWuj4ICnlOk6n9zvr6c5wGwUbC0BP7zHzY1Bjp04Dcgu7hwAmpVVCoe4RMQwPsCOLJhGLVjoLyczYzB1Bim27e25rlZOnXiqM6VK5Wjb3r0YEMio2yEVoZMHS+0amSqZ2VpF3qnpfHw3+vXObfju+9MzQjAc3zs2sXGwsmJh/pWNSMAJ51GRLDxMLxm3c6ODUOvXvwzNZWntK+o4HUWFmxMYmOB/fvx8P79wIEDbEjKy/l4FhZsQpKTuR1xcTILbBPRLq7vFoRMHd+MSIREENoQWi0//A1vLK6NAQPYXOzezZGS6qhUwEMPcSTk5s3KKe3PneP1AQFsTBwd2bgkJtZ9PFtbjtqUldWcGK7q70RscnbuvK3TFgRzIfOQCK2aSZMmSZ+vgrQrvRtyQ4yJqT9fwzACx8aGu1Xi4irnDjFs37s3zyPi6Vk5n8kf5mZS5874MSuLc0U6dWKjER3N+7O1rZyczTBJnGFiuPT0Ozr19kq7ur5bAEroLRESiZAohlarFa0VRPRuRnr0AEaN4onY8vKArCxoLSyQ7+TExiMionJ4sdAsyPWtLNX1lghJc6D5o1SHAJRXq1cXzVUXAKpGlhtT1xJsN1tQXc/+njgVear2uhaoP6OpMXXLUWmzW0Jd9R/16+ImgIqmr+vV1wuRJyIbv18V6r8zVPxRv6XUBer/bjSmbkO/n6nXgK2bgYBAnlCtd2943tTjVGkp8MtPwKnTrLnhGpF7xJ3Xrfadu6P7idwjGl3X5H6iwq2vtdtADMnLAGrLMYsFsKnK51cAWNWxj0QA66t8XgjAro66SQA+q/J5PgDHOuqmA/ioyue5AFzqqJsD4IMqn/8CwK3WmkAhgHeqfP4zgF511C0F8FaVz48C8KqjLgC8XuX3qQD6V348hVPAhCrr30TlTeRBAP717PdtAIYXxo4HMLSeuh+A9QCA0QCG11N3NYCMP36/F8Coeup+CiD5j9/vBjCunrrrwdcFAAwGMLGeul8DiPvj94EAptRT9xsAhhnZfcB/jzq4dqRK4mYfADPr2e9PAH7743d3AE/UU/dnAIZXWrgC+Gs9dQ/8UQDAGXy910UEgF/++N0B/D2qixMADGkXtgD+Vk/dKADb//hdA2BJPXXPAdha5XN9dWPLgU1HeQjxfffhtNdWwKYcuB9cqpIIuUcYeL3K79XuETWo5x5R434i9wimEfcIbAd/P4Bb3iOunLhS+cEd9X/vbxMZZSMIbZSb0l2gDKmpPFGa6C20YSpuVty60h0iOSSd6+j/ki6bJq9797C7cfzY8drrSpdNk9cdNnQYjkUca/x+W0I3TEvvsqml7t33Vru+m2i/7ekeUW/dat+5O7qfyD2i0XVN7icqQOukRV5W0+aQiCGRpFbFsLGxgV6vN3cz2g2it7KI3soieitLdb1lYjShVTN+/HhzN6FdIXori+itLKK3siiht0RIJEIiCIIgCI1CIiRCq0amelYW0VtZRG9lEb2VRaaOb0YkQiIIgiAIt4dESIRWjfT5KovorSyit7KI3sqihN5iSATF+O23325dSWgyRG9lEb2VRfRWFiX0FkMiKIa7u7u5m9CuEL2VRfRWFtFbWZTQWwyJoBgyZ4CyiN7KInori+itLEroLYZEUAxJHlYW0VtZRG9lEb2VRQm9xZAIitGnTx9zN6FdIXori+itLKK3siihtwz7lWG/iqHRaFBWVnbrikKTIHori+itLKK3slTXW4b9Cq2aKVOmmLsJ7QrRW1lEb2URvZVFCb0lQiIREkEQBEFoFBIhEVo1MtWzsojeyiJ6K4vorSwydXwzIhESQRAEQbg9JEIitGpCQkLM3YR2heitLKK3sojeyqKE3mJIBMWIiYkxdxPaFaK3sojeyiJ6K4sSeoshERRDp9OZuwntCtFbWURvZRG9lUUJvcWQCIIgCIJgdsSQCIqRlpZm7ia0K0RvZRG9lUX0VhYl9BZDIijGgAEDzN2EdoXorSyit7KI3sqihN4y7FeG/QqCIAhCo5Bhv0KrRiYyUhbRW1lEb2URvZVFJkZrRiRCIgiCIAi3h0RIhFbNI488Yu4mtCtEb2URvZVF9FYWJfSWCIlESBRDXheuLKK3sojeyiJ6K0t1vSVCIrRqgoKCzN2EdoXorSyit7KI3sqihN5iSATFiI+PN3cT2hWit7KI3soieiuLEnqLIREUQ6vVmrsJ7QrRW1lEb2URvZVFCb3FkAiKYWNjY+4mtCtEb2URvZVF9FYWJfQWQyIoxpUrV8zdhHaF6K0soreyiN7KooTeYkgExQgMDDR3E9oVoreyiN7KInorixJ6y7BfGfYrCIIgCI1Chv0KrRqZ6llZRG9lEb2VRfRWFpk6vhmRCIkgCIIg3B4SIRFaNVOmTDF3E9oVoreyiN7KInori1J6U0sozz77LCUkJJBer6djx45RYGBgnXUXL15MJ06coLy8PEpLS6Nt27aRl5dXo46n1WqJiEir1Zr93NtLsbGxMXsb2lMRvUXvtlxEb/Pq3RzP0BYRIXn00Ufx3nvv4e9//zsGDRqEM2fOYM+ePejSpUut9YODg7F69WoMGzYMY8eOhUajwc8//wxbW1uFWy40hoCAAHM3oV0heiuL6K0soreyKKW32Z3XsWPHKCwszPhZpVLR9evXadGiRQ3a3tnZmYiI7r333gYfUyIkyhd3d3ezt6E9FdFb9G7LRfQ2r97N8Qy1hJnRaDQYPHgwVq5caVxGRNi7d2+DX+bj4OAAALhx40addaysrGBtbW38bJgGV6YfVg4nJ6d6/0ZC0yJ6K4vorSyit7JU17s5np1mNyTOzs6wtLREWlqayfK0tDT4+PjccnuVSoUPPvgAhw8fxrlz5+qsFxoaitdff73G8qSkpEa3WRAEQRAENiZNNcrG7IbkTlm9ejV8fX0xYsSIeuutXLkS7733nvGzVqtFUlIS3NzcZNivAojeyiJ6K4vorSyit7LUpbdWq0VycnKTHcfshiQzMxPl5eXQ6XQmy3U6HVJTU+vdNiwsDJMmTcLIkSNvGekoLS1FaWlpjeX5+flyQSuI6K0soreyiN7KInorS3W9m1p7s4+yKSsrQ2RkJEJCQozLVCoVQkJCcPTo0Tq3CwsLw9SpUzF69GgkJiYq0FJBEARBEJoLsxsSAHjvvfcwd+5czJo1Cz4+Pvj4449hZ2eHdevWAQDmz5+PvXv3GuuvXr0af/7znzFjxgzk5+dDp9NBp9OhQ4cO5joFQRAEQRDuELMPJwJA8+fPp8TERCouLqZjx47R0KFDjeuWL19OCQkJxs91MXv27AYfz8rKipYvX05WVlZmP/f2UERv0bstF9Fb9G7LRSm92+27bARBEARBaDm0iC4bQRAEQRDaN2JIBEEQBEEwO2JIBEEQBEEwO2JIBEEQBEEwO+3KkFhZWeGf//wnkpKSUFRUhGPHjmHMmDHmblarZ8iQIQgLC8PZs2dRUFCAK1euYMuWLfD09KxR18fHB7t27UJ+fj6ysrKwceNGODs7m6HVbYtXX30VRISYmJga64KCgvDrr7+isLAQKSkp+PDDD2FnZ2eGVrZuAgICsGPHDmRlZaGwsBAxMTF4/vnnTeqI1k2Dh4cHNm/ejGvXrqGwsBAXLlzAa6+9BhsbG5N6onfjsbOzw+uvv45du3YhKysLRITZs2fXWreh92uVSoVXXnkFly9fhl6vx5kzZzB9+vTbap/ZhxQpVTZt2kSlpaX09ttv09y5cykiIoJKS0tp+PDhZm9bay5bt26l5ORk+vDDD2nOnDm0ZMkSSklJofz8fOrfv7+xnpubG6Wnp1NcXBw9//zzFBoaSllZWXT69GnSaDRmP4/WWtzc3KigoIDy8/MpJibGZJ2fnx8VFRVRZGQkPf300/TGG2+QXq+nnTt3mr3dramMHTuWiouL6ejRo7Rw4UJ66qmnaOXKlbRq1SrRuolL9+7d6caNG5SQkECLFi2iuXPn0hdffEFERNu3bxe977C4u7sTEVFiYiLt37+/zikzGnO/fuutt4iIaM2aNfTUU0/RDz/8QERE06ZNa2z7zC+QEiUwMJCIiF566SXjMmtra4qLi6OIiAizt681l6CgoBoXqIeHB+n1evryyy+Ny1avXk2FhYXUo0cP47KQkBAiIpo7d67Zz6O1ls2bN9PevXspPDy8hiH56aefKCkpyeQV4XPmzCEiorFjx5q97a2haLVaSklJoW+//ZZUKlWd9UTrpimhoaFERNSvXz+T5evXryciIkdHR9H7DoqVlRXpdDoCQIMHD67TkDT0ft2tWzcqKSmhsLAwk+0PHjxIV69eJbVa3Zj2mV8gJcqqVauorKzM5OIFQIsXLyYiou7du5u9jW2tnDx5kk6ePGn8nJqaSlu2bKlR7+LFi/TLL7+Yvb2tsdx7771UVlZGvr6+NQyJVqul0tJSk//iAZBGo6G8vDz67LPPzN7+1lCefvppIiLy8fEhAGRra1vDmIjWTVdWrlxJRESdO3eusby8vJxsbW1F7yYq9RmSht6v582bR0REffv2Nak3ffp0IqJG9UC0mxySgIAAxMbG1ngZ0IkTJwAA/v7+ZmhV20an0yEzMxMA0K1bN+h0Opw8ebJGvRMnTiAgIEDp5rV61Go1wsLC8Pnnn+Ps2bM11g8YMAAajaaG5mVlZYiKihLNG8iYMWOQm5sLNzc3XLx4EYWFhcjLy8NHH30Ea2trAKJ1U3LgwAEAwNq1a+Hn54fu3bvj0Ucfxbx58/Cvf/0LRUVFoncz05j7dUBAAAoKCnDhwoUa9QzrG0q7MSSurq5ISUmpsdywrFu3bko3qU0zc+ZMdO/eHVu2bAHA+gOo82/QuXNnWFlZKdrG1s4zzzwDd3d3vPbaa7Wuv5Xmcs03DE9PT1haWmLHjh3Ys2cPHnroIXzxxReYN2+e8X1bonXTsWfPHixduhRjx45FVFQUrl27hi1btiAsLAwvvvgiANG7uWnM/drV1RVpaWm11gMa92y1vJ3GtkZsbGxQUlJSY3lxcbFxvdA0eHt7Y/Xq1Thy5Ag2bNgAoFLfW/0NSktLlWtoK6ZTp05YsWIF3njjDWMUqjq30lyu+YbRsWNH2NnZ4eOPP8aCBQsAANu2bYOVlRWeeeYZLFu2TLRuYhITE3Ho0CF8++23yMrKwsSJE/Hqq68iNTUVq1evFr2bmcbcr5vy2dpuDIlerzeGV6tieEOwXq9XukltEp1Oh59++gm5ubl4+OGHUVFRAaBSX/kbNA3/+Mc/cOPGDYSFhdVZ51aai94Nw6DT5s2bTZZv2rQJzzzzDIKCglBUVARAtG4Kpk2bhk8//RReXl5ISkoCwAZQrVZj1apV2Lx5s1zbzUxj7tdN+WxtN102KSkpxjBUVQzLkpOTlW5Sm8Pe3h67du2Co6MjJkyYYBLuM/xe198gKytLoiMNxMPDA3/961/xr3/9C926dYO7uzvc3d3RoUMHaDQauLu7w8nJ6ZaayzXfMAw6VQ9Lp6enA4Bo3cQ8++yzOH36tNGMGPj+++9hZ2eHgIAA0buZacz9OiUlBV27dq21HtC4Z2u7MSRRUVHw8vKCVqs1WX733Xcb1wu3j7W1NX744Qd4eXlh0qRJNRKckpOTkZ6ejiFDhtTYdujQoaJ/I3Bzc4OFhQXCwsKQmJhoLMOGDYO3tzcSExOxbNkynD17FmVlZTU012g08Pf3F80bSGRkJADWvSqGvvGMjAzRugnR6XSwsLCosVyj0QAALC0tRe9mpjH366ioKNjZ2aFv374m9W732Wr2oUdKlKFDh9aYh8TKyopiY2Pp6NGjZm9fay5qtZq2b99OpaWldP/999dZ76OPPqLCwkKTIdajR48mIqKnn37a7OfRWkrnzp1p8uTJNUpMTAwlJibS5MmTydfXlwDQzp07KSkpiTp27Gjc/sknnyQiovHjx5v9XFpD8ff3JyKir776ymT5119/TaWlpeTq6ipaN2H5/vvvqbi4mDw9PU2Wf/fdd1ReXi56N2Gpb9hvQ+/Xbm5udc5Dcu3aNZmHpK6yZcsW49j1uXPn0uHDh6m0tJTuvfdes7etNZf333+fiIh27NhBM2fOrFEM9bp3704ZGRkUFxdHzz33HC1evJiysrLozJkzZGVlZfbzaO2ltonRAgICSK/Xm8xmWVRURLt37zZ7e1tT+fzzz4mI6D//+Q/NmzePtmzZQkREb775pmjdxMUwt05qaiotXbqU5s2bRz/99BMREX366aeidxOU+fPn05IlS2j16tVERPTf//6XlixZQkuWLCF7e3sCGne/XrVqFRERffLJJzRnzhzjTK2PPfZYY9tmfnGUKtbW1vT2229TcnIy6fV6On78OI0bN87s7WrtJTw8nOqjat1+/frR7t27qaCggG7cuEFffvklubi4mP0c2kKpzZAAoOHDh9Phw4epqKiI0tLSKCwszOS/Sim3LpaWlrRs2TJKSEigkpISio2NpQULFojWzVQCAwPpp59+ouTkZCopKaGLFy9SaGgoWVhYiN5NUBISEuq8X7u7uxvrNfR+rVKpaPHixZSQkEDFxcUUExNDM2bMaHS7VH/8IgiCIAiCYDbaTVKrIAiCIAgtFzEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkQqvA3d0dRAQ/Pz9zN8WIt7c3jh49Cr1ej9OnTzfbcRpy7sHBwSAiODg4NNlxZ8+ejezs7Cbbn9D8rFu3Dtu2bTPLsYkIkydPNsuxhbaBGBKhQaxbtw5EhEWLFpksnzx5Mvh1Ne2Pv//97ygsLIS3tzdCQkLM2pYjR46ga9euyM3NBdCyzIQ8qOqmJRrt5iI8PBzvv/++uZthQktsU3tGDInQYPR6PRYtWgRHR0dzN6XJ0Gg0t71tnz59cPjwYVy9ehU3btxowlY1nrKyMqSlpZm1DULzcSfXaVtDtGi7iCERGszevXuRmpqK0NDQOussX768RvfFggULkJCQYPxsCCuHhoYiNTUV2dnZeO2112BhYYG3334bWVlZuHbtGp544oka+/fx8UFERAT0ej1iYmIwcuRIk/X9+/fHzp07kZ+fj9TUVGzcuBGdO3c2rg8PD0dYWBjef/99ZGRkYM+ePbWeh0qlwmuvvYZr166huLgYp0+fxvjx443riQhDhgzB8uXLQURYvnx5rfuxtbXFhg0bkJ+fj+TkZLz44os1/iurLYKQnZ2N2bNnN/jcq3bZBAcHY/369XB0dAQRmbRv3rx5iI2NhV6vR2pqKrZu3Vpru6syefJk4za7d+9G9+7dTdb/6U9/QmRkJPR6PeLj47Fs2TJYWFgAgPHvvn37dhAREhISYG9vj/LycgwePNiodVZWFo4ePWrc58yZM3H16lXj5+7du2PLli3Izs5GVlYWtm/fDnd3d5N2zJkzB+fPn4der8eFCxcwb9484zpDJGLq1KnYv38/CgsLERUVhWHDhtV77g4ODvjkk0+Qmppq1H3ixInG9Q899BDOnj2L4uJiJCQk4MUXXzTZPiEhAaGhoVi7di3y8vJw5coVzJ0717g+MTERABAVFQUiQnh4OIDK78irr76KpKQkXLp0CQDg6+uLffv2oaioCJmZmVizZg3s7OzqPYeqdOrUCZs2bcL169dRWFiI6OhoTJ8+3aROeHg4PvzwQ6xatQpZWVlISUmpcX17eHjg4MGD0Ov1OHfuHMaMGVPvcdetW4dRo0Zh4cKFxmvS3d0darUan3/+OS5fvoyioiJcvHgRL7zwQo1ta9MiKCgIp0+fhl6vx2+//WaM1laNNtV3P6irTYJ5MfurkKW0/LJu3Tratm0bTZkyhYqKisjNzY0A0OTJk4m4z4YA0PLly+n06dMm2y5YsIASEhJM9pWbm0thYWHk5eVFf/nLX4iIaNeuXRQaGkoeHh60ZMkSKikpMR7H3d2diIiuXr1KDz30EPn4+NCnn35Kubm51KlTJwJADg4OlJaWRm+++SZ5e3uTv78/7dmzh/bt22c8dnh4OOXl5dGqVavIy8uLvLy8aj3fhQsXUk5ODk2bNo28vLzon//8J5WUlJCHhwcBIJ1ORzExMfTOO++QTqcjOzu7WvezevVqSkxMpNGjR5Ovry99//33lJubS++//76xDhHR5MmTTbbLzs6m2bNnN/jcg4ODiYjIwcGBNBoNvfDCC5STk0M6nc7YvsGDB1NZWRlNnz6devbsSf7+/vT888/X+TefPXs2lZSU0IkTJ2jYsGE0aNAgOnbsGB0+fNhYZ8SIEZSTk0OzZs2i3r1705gxY+jy5cu0bNkyAkDOzs5ERDR79mzS6XTk7OxMAOjkyZP00ksvEQAaOHAgZWZmUnFxsVHHTz/9lL788ksCQJaWlnTu3Dn6/PPPydfXl3x8fOirr76iCxcukEajIQA0Y8YMSkpKoqlTp1KvXr1o6tSplJmZSbNmzTLR8Pz58/TAAw+Qp6cnffPNN5SQkFDjlfaGolKp6MiRIxQTE0Njxoyh3r1708SJE2nChAkEgAYNGkTl5eW0dOlS8vT0pNmzZ1NhYaHx7wbwa94zMzNp3rx51KdPH1q0aBGVl5cbr7shQ4YQEdHo0aNJp9ORk5OT8TuSl5dHGzZsoH79+lG/fv3I1taWkpKS6L///S/179+f7rvvPoqPj6d169bV+J7W9Tft1q0bvfTSS+Tn50e9e/em5557jsrKyigwMNDkO5KTk0PLli0jDw8Pevzxx+nmzZs0ZswYoy7R0dH0yy+/0MCBA+nee++lyMjIWq9jQ7G3t6eIiAhas2aN8ZpUq9VkaWlJr7/+Og0ePJh69epFM2bMoIKCAnrkkUdMzqm6FlqtljIzM2njxo3Ut29fmjBhAl28eJGIiPz8/Bp0P6irTea+17bzYvYGSGkFpeqN7siRI/T5558TcPuGJCEhgVQqlXHZhQsX6ODBg8bParWa8vPzadq0aQRUPlD+9re/GetYWFjQ1atX6ZVXXiEAtGTJEtq9e7fJsd3c3IiIyNPTkwC+2UZGRt7yfK9fv06hoaEmy44fP07//ve/jZ9Pnz5Ny5cvr3MfdnZ2VFxcTA8//LBxmZOTExUWFt6WIanv3KsaEoDNRHZ2tsk+p06dSjk5OdSxY8cG/c1nz55NRERDhw41LvP29iYiMj7AfvnlF1q8eLHJdjNnzqSkpKR6z+/dd9+lH374gQDQCy+8QJs3b6bTp0/T+PHjCQDFxsbSU089ZdzfhQsXTLbXaDRUWFhIY8eOJQAUFxdH06dPN6mzZMkSioiIMNHwySefNK7v27cvERF5e3vXev5jx46l8vJy47VTvXz11Ve0Z88ek2WrVq2is2fPGj8nJCTQxo0bTeqkpqbS008/bdIuw0O06nckJSXFaLgA0FNPPUVZWVlka2trXHb//fdTeXk5ubi41PieNrT88MMP9M477xg/h4eH06FDh2pc+ytXrjTqUlpaSq6ursb148ePr9eQGPZb9bqvq4SFhdHWrVvr1eLpp5+mjIwMsra2Ni6bM2eOiZYNvR80pE1SlCnSZSM0mkWLFmH27Nnw8fG57X2cO3fOJBk2LS0NMTExxs8VFRXIysqCi4uLyXZVw/o3b97EyZMn0bdvXwCAn58f7rvvPuTn5xvLxYsXAXC+h4HIyMh626bVauHm5oaIiAiT5REREcZjNYQ+ffrA2toax48fNy7Lzs42hpwbS33n3hB++eUXXLlyBZcvX8bGjRsxY8YM2NjY1LtNWVkZfvvtN+PnS5cuITs720TzZcuWmWj+2WefoVu3bvXu++DBgxgxYgTUajWCg4Nx4MABHDhwAKNGjYKrqys8PT1x4MAB4zE8PDxMjnHjxg106NABffr0ga2tLTw8PLB27VqTOkuXLjX5uwNAdHS08feUlBQAqHGNGfD398f169cRFxdX6/q+ffvWeo14enpCra68tVY9JgCkpqbWecyqxMTEoKyszOR4Z86cQVFRkcnxLCws4O3tfcv9AYBarcbSpUsRHR2NrKws5OfnY/z48ejZs6dJveptTklJMba5b9++uHbtmlE/wPTabCzPPvssTp48ifT0dOTn5+Ovf/1rjfZU18Lb2xvR0dEoKSkxLjtx4oTJNg29HwgtB0tzN0Boffz666/Ys2cPVq5cifXr15usq6iogEqlMllWWxJa1ZsLABBRrcuq3thvRceOHfHDDz/UGAkEwOTmWVhY2OB9KkFDNbtTCgoKMGjQIIwaNQrjxo3DihUr8PrrryMwMNA4OqexdOzYEcuXL8d3331XY11xcXGd2x06dAharRaDBg3CyJEj8eqrryI1NRWLFy/GmTNnkJSUhN9//914jMjISMycObPGfjIyMtCxY0cAwNy5c03MH8DGrSpVrzGDIa7rGtPr9XW2vzHc7nXdHNfpK6+8ggULFmDhwoWIiYlBYWEhPvjgA1hZWZnUu9PvYkOZNm0a3n33Xbz00ks4evQo8vPz8corr+Duu+82qXc7WjT0fiC0HCRCItwWixcvxoMPPoigoCCT5RkZGejatavJMn9//yY7btUkRAsLCwwePBgXLlwAAJw6dQr9+/dHYmIi4uPjTUrV/ypvRX5+PpKSkjB8+HCT5cOHD8f58+cbvJ/4+HiUlpaa3FwdHR3h5eVlUi8jIwOurq7Gzx4eHrUmKtZ37tUpLS01JpZW5ebNm9i3bx8WLVqEgQMHolevXhg9enSd56DRaDBkyBDjZy8vLzg5OZlo7u3tXUPv+Ph44wO/trbk5uYiOjoazz33HMrKynDp0iUcOnQIAQEBmDRpEg4ePGise+rUKXh6eiI9Pb3GMfLy8pCeno6kpCTcddddNdYbkkZvh+joaHTv3h2enp61rr9w4UKt10hsbCwqKioadIzS0lIAqPVvVdvx/Pz8YGtra3K8mzdvNjjqNnz4cOzYsQNff/01oqOjcfny5RrXY0Pa0aNHD5Pv+a2Sg4Har4Phw4fjyJEj+PjjjxEVFYX4+PgGRS8uXbqEAQMGmBipwMBAkzoNuR/U9T0RzIMYEuG2OHv2LL7++usaGfEHDhxAly5d8Le//Q133XUXnn32Wdx///1Ndtz58+djypQp8Pb2xurVq+Hk5IQvvvgCALB69Wp06tQJmzdvxpAhQ3DXXXdh3Lhx+OKLLxr9390777yDRYsW4dFHH4WXlxdWrlwJf39/fPjhhw3eR2FhIdauXYt33nkH9913H/r374/169fXeFjt378fzz33HPz9/TF48GB88sknxgdVQ8+9OomJidBqtRg9ejQ6d+4MGxsbTJw4Ec8//zz8/PzQs2dPzJo1C2q1ut6HWWlpKcLCwjB06FAMGjQI69evx9GjR43dOCtWrMCsWbOwbNky9OvXDz4+Ppg2bRreeOMNk7aEhIRAp9OZDBk/cOAAZs6caTQf2dnZuHDhAqZNm2ZiSL7++mtkZmZix44dGDFiBHr16oXg4GB8+OGHcHNzA8Cju0JDQ/H888/D09MTvr6+eOKJJ/C///u/t/gr1c2hQ4dw6NAhfPvttxgzZgx69eqFCRMmGEdb/d///R9CQkKwdOlSeHp6YtasWXjuuefw7rvvNvgY6enpKCoqwoQJE+Di4gJ7e/s663799dcoLi7Ghg0b0L9/f4waNQphYWH48ssvkZ6e3qDjxcXFYezYsQgKCoKPjw/WrFkDnU7X4PYCPNouNjYWGzZswMCBAzFixAi8+eabt9wuMTERd999N9zd3dG5c2eoVCrExcVhyJAhGDduHDw9PbFixYoaxqI2Nm3aBLVajU8//RQ+Pj4YN24cXn75ZQCVka+G3A9qa5NgXsyeyCKl5ZfakuXc3d2puLjYJKkV4ISzK1euUH5+Pq1fv55CQ0NrJLVW31dtyWUJCQm0YMEC47GIiKZPn07Hjh2j4uJiOnv2LI0aNcpkGw8PD/r222/pxo0bVFhYSOfPn6f33nuv3uPUVlQqFS1btoyuXbtGJSUlJgmXhnKrpFaAE1s3btxIBQUFlJKSQi+//HKNNri6utLu3bspPz+fLl26RBMmTKg1qbW+c6+e1AqAPvroI8rIyCAiouXLl9Pw4cMpPDycsrKyqLCwkKKiokxGM1QvhsTYqVOn0u+//056vZ5+/vln6tGjh0m9cePG0eHDh6mwsJBycnLo2LFjxoRUADRp0iSKjY2l0tJSk+vAkBBtSPAEQO+//z4RUY3RTzqdjtavX0/p6emk1+vp999/pzVr1pBWqzXWeeyxx+jUqVNUXFxMWVlZdODAAZoyZYqJhlWTRx0cHIiIKDg4uE4NnJycaO3atZSRkUFFRUUUHR1NDzzwgHH9Qw89RGfPnqWSkhJKTEw0jhyq7Rqu67qZM2cOXblyhcrLyyk8PLzO7wgA8vX1pX379lFRURFlZmbSmjVrTEZ43Sqp1cnJibZt20Z5eXmUmppKK1asoPXr15tsU9t3ZNu2bSajeTw9PenQoUNUXFxMFy9epHHjxt0yqdXT05OOHDlChYWFRETk7u5OVlZW9MUXX1B2djbduHGDVq9eTW+99ZZJYnxd5xQUFERRUVFUXFxMv/32G02fPr3GtXOr+0FtbbrVvUFK8xXVH78IgqAQ4eHhiIqKuqP/3gVBMGXGjBlYt24dHBwc6s1fElouktQqCIIgtDoef/xxXL58GUlJSfDz88OqVavwzTffiBlpxYghEQRBEFodXbt2xYoVK9C1a1ekpKRg69atWLJkibmbJdwB0mUjCIIgCILZkVE2giAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYHTEkgiAIgiCYnf8HPtXLXd2pVdAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import rc\n", + "\n", + "fig, ax = plt.subplots(figsize=(6, 4))\n", + "plt.rc('xtick', labelsize=12) \n", + "plt.rc('ytick', labelsize=12) \n", + "\n", + "# Unitary CNOT data\n", + "if plots[\"uni\"] is True:\n", + " gatefid_uni= proc_fids[\"uni\"]\n", + " std_uni = proc_stds[\"uni\"]\n", + " plt.plot(range(MIN_NUMBER_QUBITS_UNI, MAX_NUMBER_QUBITS_UNI+1), gatefid_uni,'k-',color='c')\n", + " plt.fill_between(range(MIN_NUMBER_QUBITS_UNI, MAX_NUMBER_QUBITS_UNI+1), \n", + " y1=gatefid_uni-2*np.array(std_uni), \n", + " y2=gatefid_uni+2*np.array(std_uni),\n", + " alpha=0.5, edgecolor='c', facecolor='c', label='Unitary', linewidth=1)\n", + "\n", + "# Post Proc CNOT data\n", + "if plots[\"postproc\"] is True:\n", + " gatefid_post= proc_fids[\"postproc\"]\n", + " std_post = proc_stds[\"postproc\"]\n", + " \n", + " plt.plot(range(MIN_NUMBER_QUBITS_POSTPROC, MAX_NUMBER_QUBITS_POSTPROC+1), gatefid_post,'y-')\n", + " plt.fill_between(range(MIN_NUMBER_QUBITS_POSTPROC, MAX_NUMBER_QUBITS_POSTPROC+1), \n", + " y1=gatefid_post-2*np.array(std_post), \n", + " y2=gatefid_post+2*np.array(std_post),\n", + " alpha=0.3, edgecolor='k', facecolor='k', label='Post-processing', linewidth=1)\n", + "\n", + "# Dynamic Circuit CNOT data\n", + "if plots[\"dyn\"] is True:\n", + " gatefid_dyn= proc_fids[\"dyn\"]\n", + " std_dyn = proc_stds[\"dyn\"]\n", + " \n", + " plt.plot(np.arange(MIN_NUMBER_QUBITS_DYN, MAX_NUMBER_QUBITS_DYN + 1), proc_fids[\"dyn\"],'m-')\n", + " plt.fill_between(np.arange(MIN_NUMBER_QUBITS_DYN, MAX_NUMBER_QUBITS_DYN + 1), \n", + " y1=gatefid_dyn-2*np.array(std_dyn), \n", + " y2=gatefid_dyn+2*np.array(std_dyn),\n", + " alpha=0.3, edgecolor='m', facecolor='m', label='Dynamic', linewidth=1)\n", + "\n", + "plt.axhline(y=1/4, color='g', linestyle='--', label = 'Random gate')\n", + "plt.yscale(\"log\")\n", + "plt.legend()\n", + "plt.xlabel(\"Number of qubits between control and target\")\n", + "plt.ylabel(\"Teleported gate fidelity\")\n", + "plt.ylim(0,1)\n", + "plt.xlim(0,101)\n", + "yticks = [0.25,0.5, 1]\n", + "ax.set_yticks(yticks)\n", + "from matplotlib import ticker\n", + "formatter = ticker.ScalarFormatter(useMathText=False)\n", + "formatter.set_scientific(False)\n", + "ax.set_yticks([0.2,0.3,0.4,0.5, 0.6, 1.0])\n", + "ax.set_yticklabels([r'$0.2$', '$0.3$', r'$0.4$',r'$0.5$',r'$0.6$',r'$1.0$'], \n", + " fontsize=12, font='Palatino')\n", + "plt.grid(which='major', axis='both',color='gray', linestyle=':', linewidth=0.6)\n", + "plt.ticklabel_format(style='plain', axis='x')\n", + "\n", + "# If you would like to save the figure as an image then uncomment the following lines\n", + "\n", + "#plot_includes = \"uni\"*plot_uni + \"postproc\"*plot_postproc + \"dyn\"*plot_dyn\n", + "#pdf_filename = plot_includes\n", + "#plt.savefig('./exp_cnot.pdf', format='pdf', bbox_inches=\"tight\", dpi=1200)" + ] + }, + { + "cell_type": "markdown", + "id": "0c1ffc24", + "metadata": { + "heading_collapsed": true + }, + "source": [ + "#### Data from Paper\n", + "\n", + "The results from the paper are likely to vary from the results of the paper due to different calibrations, and or machines used. The code presented above also uses a slightly different method to calculate parities then was used in the paper as well as some other differences to make the notebook cleaner and more accessible to a wider audience." + ] + }, + { + "attachments": { + "6b35f96a-af69-439b-ac65-a8b167e2e510.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAFMCAYAAAB1Zu6mAAABX2lDQ1BJQ0MgUHJvZmlsZQAAKJFtkD9IAnEUx7+KYKT0h6SiGtyzkjuh2SwqcLgswRqC87w0OPXH3VU4ZUNjW1u0NNXS2BRBQ3sguBY01FRDZEN/fr2fV5xW78fj++HLe+/3eIA3qDJm+AAUS7aZmp0KZ5ZXwv57BDAML0KYVDWLxRUlSSX40fZo1OERWhsTs7jRd3i0sz03+Fh92s3Y6t/6tujM6ZZG+k4pacy0AU+UWNmymeAqccikpYj3BecdPhacdfi8WbOUShBfE/doBTVHfEscybb4+RYuGhva9w5i+6BeSi+S9lOOYBozSNILI40YZEiIYoFu9H9PrNmTQBkMFZhYRx4F2NQdJ4fBgE48jxI0jCNCLOZJkMWtf9/Q9VY3gYk6fXXgesYncPECdN+53mgW6KUdLk+Zarr39jR81posOTx0BQQqnD8MAF3PwMcZ5681zt9OAH8HsHfzBRMZZOwMsqaiAAAAOGVYSWZNTQAqAAAACAABh2kABAAAAAEAAAAaAAAAAAACoAIABAAAAAEAAAIRoAMABAAAAAEAAAFMAAAAAKNQAmcAAEAASURBVHgB7J0HmF3Fke9rcs6jnEYZCUQSKAACIQQi2ERjgrENNjg9A35v7V0M9i5+9rLrb9cf+7wP/IyxccaAySIIITJCCQkRhEBZGo2k0eSc59WvRy2Oru7M3Llz7ujemS44umfO6VOnu7pP97+rqqvjOpXEkZOAk4CTgJOAk4CTgJNAHyUQ38f0LrmTgJOAk4CTgJOAk4CTgJGAAxGuITgJOAk4CTgJOAk4CYQlAQciwhKbe8hJwEnAScBJwEnAScCBCNcGnAScBJwEnAScBJwEwpJAYlhPReCh9vZ2aWpqkubmZmlra5OEhARJS0uT9PT0Ht+GX2hra6vU19ebXxKnpKSYZ5OTk3t81t10EnAScBJwEnAScBIIXwJRAyJKSkpk6dKlsnz5ctmyZYuMHTtWrrrqKrn55pt7LB2gY/369fKrX/3K/AIcFi1aJFdffbXMmzevx2fdTScBJwEnAScBJwEngfAlEDUgIj4+XjIzM+XMM880v42NjVJXV9drydatW2fAR1xcnNxxxx3S0NBgwMTDDz8s48aNk5EjRxqtRq+MXAInAScBJwEnAScBJ4E+SSBqQER2drbMnj1bAAOJiYmyefPmXguC2WPjxo3y8ccfy5VXXimf//znjTmktrZWABdr166VJUuWGNNGr8xcAicBJwEnAScBJwEngT5JIGpARFZWlsycOdNk/t1335WkpKReC4IfRHFxsfGFACzAIzc3V2bMmCE7duwwIOLcc8/tFkRUV1fL/v375eDBg+Zd+GSgEQHEdHR0GEDjzQQABx8MDs45wk1necDfnnv5Bb7Lm86e80t+vXmy92z+7L3AdJY/6S2RNtR0PA958865l+w977Xu3mv5kdabD++zgfy86ew9+ATWSSTSefNLHrt7b7B05MdLNu9cs+c8500XjD/pbTrvc4Hl7y1dIA/SB/LjWmDbCEzHMxw9peMZKFg6m4+uFF3/etPZ692l4zrEM5z3ls6mtfk1Dx/6x/Kw17z5sPfgHyjrcNLZd3THj+tQb++16ULl500H7574k9bmz57bv4O9tzd+9l3wsudefpx7eQSms/ds3Vke3nScQ9wLTGf5d6Xo+jcS6byy8fIPfK9NR3vCH3Du3LnGt8+bLlrPowZEhCOgsrIyY/LIyMgwZgvLIz8/X3JycmTPnj2Cw2Z3tGvXLnnuuefk1VdfNUnwxcApc/jw4YedO7lBxUKAC/jZiqbi0YbQQDm36WgEnNt03Mf5kzTexmzPbTru2/xaHrbh8X7SWR68FyJPpOEe/CBvOvhxH1DGdf4mHQfnlh/3OALTkQ/7Lsvf5tG8TP+BB/kIlo7nIXhDoaQjv/i2wM+Wn3fwN3ngHH62XN503PemI40tF/nmnDTkizqx/Gw68kcaDlsub91RBvh45W7TtbS0HJanTdeX8sPXlhf+3r+DlZ93wN/ml3PKY8vFOffgGZjO8uPX3rPvhi/PWdkgT8hbZu5BVk78bfNr0/G35eFNxzlHYFuzPODLubdO7LnNr80T6SDeRTnsOenIh60T7z17Th7g211b6y4dz/FejlDaWnfpyJ/Ngy2Xt63ZMtt09r3ecgUrP+kg0nn5Wdl4y2XTUQ7exz3ywt+B6fjbyhPeNp2VhS0L6Tjn4Jz73nzwHg6u2zKSDn7UI2R52HRcgx9peM6bjjTB2hppbZ66a2uWn80v5fLyIx/B2po3HTz4O1g6nrd5hy/58KbjGrLhOnww4ZOXZcuWHTGmGSZR+k9MgwicKqHU1NQjxEunQKXgV0EldUfHHXecTJgwQb7+9a+bJHfeeadMmzZNvvrVrx5+joq1PLznPBD4t32P9zrnUHc87DP8Bj7nfYb73r+7O+8pXU/3vPxCSVdeXm46X7Q/UDh5Nw9284+XXyB/7yM9pfPe854H8vPe856Hm86bv8BzL3/OISt7ZEq7xbTXUzovz57SBd6z7+H57u5xHbJp+5vOMPP8E8ivu3d5HjF57S5dID+bb9Jzj4kGMmVSYe9xvTt+9jlv2mDnkU5nMnjoH28Ze3qv95lg6bgWrCxe/j3JhsHtwIEDkpeXZ/rcwOe6493de7nupZ74ka47/va6lxfngfy4ZtMG3gt2PRgPb7pQ+XWXjutembIacdWqVXLfffcdBnCkiXaKaRBB5wCBjr0E0gOZolXoiQAbHJaoRAbFESNG2EvutxsJWKBmQUQ3ydzlPkjAybQPwgoxKX0Eh2unIQqsh2R2to/JOHDi1sNj7lYPEgiUKVp0q73o4bGouhXTwaZsY2ZFRlVVlUF1SLempsaohTBL9KVCWhV4tCnadtS7BNDyBIK33p9yKXqSgJNpT9IJ756TaXhyC/YUs3D6WquOD5bGXeubBAaDTKMKRCBQa5vi3P7NbzACRAAUeAZnTBwjWZmxc+dOqaiokBNOOMHMQoI9G+xavWo06vRocUAimHiOuGbr6YiL7o9+ScDJtF/iC/qwk2lQsYR9EQDRXX8cNtMh/mCsyzRqzBk4l+BUwlFZWWl+0S7s3bvXxI0ghgSqH/wgUE9ieuAXv4ZNmzbJI488IsOGDRNWXBB8ihnIOeec06tJw9t+qxWE7NQVH7v1HVOUv6PuJYBdtC9anu45uTtWAk6mVhL+/Q6ETOmXhsLACiCjj6XfddqI/rVR64zKL+bzWDYPRQ2IYCXFX/7yF3Ow5BJVOR6vgIMvfelL5iAmBCspTjnlFPniF78orMo466yzTG0+8MADcu2115pnTj/9dOMcidMkPEImBTIP79snTbpq4yF1sKSCHQWXABofG148eAp3ta8ScDLtq8R6Tx9JmQIcGExx3uQ9Q2FgpYxMHnBMdBSeBPB9QovOAaE1Z5wCnMUi9WGEjWzxMEtcccUVBiB4P0aEW1RUZMwWp512mowfP954B1unSTzZ58+fL4WFhUaDYZEd0Sr7BCAongKXWtV+vKZA4g7ds+POMWMk99ASnciWPva425gasZfz6M2xk6n/dRNJmTIzB0CgiWBAsH2S/6WIDo6AJiZ3DHZughV+naAlp12iaWfVEH/ThmKVogZEYK7Ah4GjOyIN4MBLoGIABEe/iYrUTmHf9u3y9/Q0OUGXjs7R1RpjFDlmqFYi3qHvwyIGvMUqcj5ciCg7cTL1v0IiKVMGVTQQmEwYDLwrvfwvybHnaDUv9LkORIRfH7QTtA84qdJ28vPyY7rtRA2ICL9K/HsSFV2qroOO37pFSiaMl9+qP8aWnGyZrv4ReYq+0/SYnZEpWXxEQxxQpCSnSEJiVyAV/2pgaHNyMvW//iMpUzuoMigMdgBBzdA/2sP/mho6HPF/AIih1TFjTlrX37EqAQciPDWH+aNAA/6k7ymWg1rJq8oOylsHS8Us+tS/h6km5C/TphvtRI6mHcq0/8B+s007Dq6O/JGAk6k/cvRyGQiZMhAMBQI04diO2abPpuKhIKAQy+htL5gxdu/ebcz01kciRDZRk8x5DnqqAoTYqCqm8bpC5NdFE+WsESMlO0edX9LSicMrFRp/4su6MdhqVWEOdUpXmQx2G/BA17GTqf8SdzL1V6bOqdJfeQIosjKzYto0PLSn0wHtAZUkzlKVJSXSvGGD/EhXfjSoCaNZr21SYPGQbta1u65WHiktlUzVRJxxKORzAJsh8addYjskCjtAhXQy9V/QAy3TOp1Z/lm1l582t0iDztwjQRgRxyUlytUFhTI5IOR/sPdhf1++fLlxPP/Wt751OMl7770nH3zwgfHnOP/887vdqBDnUXZK3rp1q3F+Z9NDNj/ED6RInd4dhS8BQASrDBMTYncojt2ch19v3T7JzBpnwSo1abz/zjvy+UWLjNc1aryTtaJB4T/XD2lFeZlM1Y93mh6Fmn4oUlNzk2g4sKFY9IiV2cnUf9EOtEybtK94sbpGynQpZCRpozJfkJ0TEohgJcBm1aDu01VnXirVyRAxdoj9wG7H3RF9IoDBbgcAL3Y/njhxYlgggv6Uwzlndu3l0dDYIBmZGZKi/8UiORDhqTXsfMTYp4GD0LH/cQ5anKiA4SZdhvqOBsJ6S5H5qwokpusy0Mt0VchQdLLEKQhQ5cg/CTiZ+idLy2mgZdqu/cV+1UbkqPkzL0LfR4u+4yPtmwAsfhAyIuIvKwVYXs+qAQb4yZMnC3s5WBBBQEAAyfvvvy+ffPKJoJFI1z4QMEEfyQZyaD0g+tJJkyaZ53mGOED0p5xDpOcdPAtA4R0EGWQnZZ6z10ziQf4PckEDHqvkQISn5mjYoG2cXWj0RL+0HxGuUwXa0O/RBv4/W5rllcoq9ZNIkAW6PjxfP5ihBiRwAnLOVZ7G48Opk6kPQgxg4WQaIJAgf7LX0L/8y7+Y5fMACqIEQ5g+MHMQRZitqVesWCF33HGHARGrV6+WtWvXCr/f+c53DCB48803zS6U9J+Agv/xP74rCxcu1J0/98tvfvMb06eyJBbgwQSE+Ai844wzzjAAhmCCP/vZz+RHP/qRiRcEkBjsBJAiPEEs+5c5EBHQSovUxscH8Pzzz8vKlSvNtswjR440qRIVZEzTD+ACdbg8oIj9vZpq+V8a3fK/9BmAxFCipsYmSU7R+Blq5nHkjwScTP2Ro5eLk6lXGj2fMxu+8sorZcaMGQIgeOqpp2SaRu4tKCgwDzLw0xcSJZjf6dOnm/RobwEaJ598stx+++1Gk7F06VLZsGG99p8aZ0eD9gEs0Fz8wz/8gwENbCmOn8Zrr71mNA+8oER90dD8Tp06dcjsukp56+vqjT9KrC4THlojX8/fkLmLKg213mOPPWY+IrQTJ510kowaNcogxmT9kK5U5LhNHYt+p41+rarw6g5FthxK2gjseM4nIoQG1YckTqZ9EFaISZ1Mu0wHcYIutWdiHyIAxMSJk4wW9uGHHzbaAu9T9IesYmPygJbH+klgymDSxb5FaDZ26eQKmjlzpgERTMzgTf9KX0oQMEwbP/nJT0zUT6I3btcgf/PmzTN7JQ0VfwmAW6066+fmdYXA9so6Vs6HPIjAy5h1upgvQMJFqlUACaNiQl2H+o1Q2zgfsRfH5ZddLuPVN2KOqtrerK6S/fr8Cv0ALlK0PlJXdwwVMsuSkoemU2mk6tjJ1H/JOpmKpKakquU1/qi9PfB/QEOAJoFBm60HMCEwI2Yiha3euwUBtYMJEyARSO+oIzq+Emgr8KUANLCaw/pAcH306NEGfPAuQAj+EJg26Htx1MSMcs0118T0ZlSBcuntb2SRl5tn5NVb2mi9P+RBBDZAljBt27bNAAY+ID6CSy+9VNasWWMQNR7MfFCg57FjxsqCBQvkFP3wFuuH9mv1m/iTejnP1EBUQwlEsHSOjsGRfxJwMvVPlpaTk6lIekZXTBf6MDQGAASzlF0dGZlEoYFgMON75heMAFBA1e4lrpHGfvdeZ8BVq1aZZ9gYcdasWUaLCzDwpgFYwB/iFyCB5oHlozhqYjaZPXv2kIj+aeWKTFmZEcv+ZUM+2BQfFKDg29/+trHxUZmo4P7t3/5NfvzjH8vNN98sl1xyibEN4nn8yquvSKmuAz9eB9GzdYlVe1y8vKrX96pqri3go7MNZTD+Hig9IJVVlYOxaMesTE6m/ot+oGXKHB1ozfBLfxCJgxUgvONofYBeDEI47eEgDmFyYGknWtcdO3YYEMF+RaHY4wEVTLoAZhAmCA67usAOhPB//fXXhd2YeyL4LFmyRD788EOjjUAzgVYkmKajJz6xfM868bMiJlZpyGsiglWcQYeKks877zzjRMSH8sILL8hdd90lBGjh7yRF0sP1IzhR0fOHqsnYUFsjx6s2gn02hgLR6TCzcOSfBJxM/ZOl5TTQMjXO12rm+6CpWXbrkshIEO+YpN9e1qFZfSjvIA4Epon77rvP/KIhwGyLxpVNDa12oTde9I34iKGd/eMf/ygvv/yy3HLLLTJnzhx5TZ0kv/e97xlNB6aL3voHO2GzGyjOnTu3t9cPuvvI0+6lEauFcyCim5pD3Ya9joPdQ6dMmWochLDboZFo0w5ikjoY3axeyndVlMsjCiTGK/AYKiACmfTWSXQjWne5Gwk4mXYjmH5cHmiZZqq6/zZ1HKxs75DWCGkm0UBka/9EwLtQiUH9oosuMtpWwARaBbQTY8eONQ6Sd955p/FZwPeL7xo/sP/4j/8wuyrTB/LsaaedZuz3OFRee+21ZoJFWsAIgyFmEbQPXCMNSzhZmYGZ4itf+YoBKuTDEnlgVQf5gceJJ55obw2ZX8YZZBXLfakDESE0Vyp42LBCY+Z49dVXjZ8EQGKYOiItUD+JFN1HYouqo7bpUp26gjYTEjsEtjGdBBUmnYBb4ulfNTqZ+idLy2mgZZqsg+kpGZn29VHzy2wXYMARjIjV4CX8vxZpxF5LgDHMDZgz6A9ZacHhJS9A8F7nHJOJl4jBgzbjrbfeMn3I8ccff9jk4k032M/pQzFlANRilYa8T0SoFQeaRmUHarY2PDqMEarWP0ERfbaGuv30402yUj8Mljh5HYpCfUcspWOWQYfiyD8JOJn6J0vLycnUSsKfX/o1Br7+Eqs20OriUImGAxMJ2oyhRsgTEMG4EqvkNBEh1hyqP2x2OCnhF8FqDhp/lqov/0FVgP+89Fl5Tp2WKnVTnH++/nqDvHESArWHam8MMStRkWwohaUdKIE7mfovaSdTf2WKH4Mfgz3xJb7whS+Yw98cxhY3zBmMLS5iZWzVW1i5Rd1UVFRkgqtgymCplAnvquj5eEWT2evelVZ1LFqtttCbNBIb9r2rrrpKFi5caFSIfnx4YWU8Qg+BnPkAHPknASdT/2RpOTmZWkn48+uHFsKfnAweLuxJEsuaa6eJCLEtWkdLnIfYrIawrZgt8P5e8dxzUqobx3QqyOhQR6UmXTq1XrUVqOuefPJJE6QKAMLSUdR2OC/FunaC9eU0fGZ6jvyRgJOpP3L0cnEy9Uqj/+dMnGK97+q/FPzjQB/KOILW2i6d9Y/7wHByIKIPcgYwYMLAJ4I11tjz8D5+9tlnpU4bQrr6TLSeMV8SFGAsLiuXbboTKGnZERQPXJZSEVyFtdHEmY9l7QSaGeThyD8JOJn6J0vLycnUSsKfXyZTsdxv+SMF/7ggTwCEjbHhH+eB4+RARB9kzaCJXwQb0xDn/e233zbLmgiPna9hsjt0mdIu9VhuOWGWfFEdMffoDnebNBQsceTRSrCpDR7J2L+mTJliGk8fXh9VSUHNsdzwo0qYhzLjZOp/rTiZ+idTwANaCAci/JUpK9xiuS91IKIP7QEQccopp5gY82gYXnnlFRMvnuBTRL0sU1NHqTaIDlX1l6nJ4rIbbpDrdCnkvn37DHh48MEHjSmEGPPElYdXrBKhwpnlxaoKLhrl7mTqf60MtEzxGbA27kj5DzCIc+C0HYpfEvv/4BtiB3+e4bvl+b6QLZu3XH3l0Zf3Hcu0mBlsPdLvR8qEg3mI8YF4HbGq2XUgog8tlY8Q1EiFAyJYpcE1Nq4555xzZLTGfZ+mncj9atr4gWoeRuqHuljXV7NzHVvnDhs2XH74wztk3bp18uKLL8a0ScOpNfvQcEJM6mQaoqD6kGygZUpcCmLJEPqZ80gQAxrm0TPPPNP0K7294wc/+IGZvOC/RH9FPIfvfOc7cuqpp/YZSPC83WsIMMHkaTASQbPYVAwt8uc///nD25X7XVbkGevaHQci+tgq6JSmTZsmq9VUwe6fmCbwc8Bpcrp+nOUKIDriE6RUw2CX61roFgURqYr4s7Ky1anyRLP0Ew0GfhIgUJY6RQrl9rFofUoe61HW+lTYAUrsZOq/oAdapnZmyUw2UjNLBm82tyIGRijEajJWi7E5Fo6mjz322OEgT4FBoHrix4CH2p2VaWz5TRn9AhHwguhfo4EItgXIoq/HET5SRHkJ++2WeEZKwlHKl+hqOFSiiSAI1dlnny3jx42XQlXvT9DlOjO0AW6prpL3VY14koKImXo9Pj7O+ECcddZZ8umnnxqnzBUrVphloJgFYo1coCn/a8zJNPZlygCPBiKSpj6ACiZUO/D2JjUGf3ywcOgmUiQAoLi4WHbu3Gk0q+zACbggHYMmwIJBFD8uVqKheYAwgVxwwQVmAvWaLmdH3Y92A00rO3faTb5sfpgsAWAYKAEeyIZdOglxTVvfuHGj2TmZ0Ne8e5SGCycKJr5jmGB4jn6WSRoRM5ErO37iV2YBFCZhysbz9KvchzcaY/I15/Q5JjurVq8ysX0I7AQQYqdm8ky54Ycs4IGTIyvoeC8r8Cg7fbwNjEWeKBPvx1EeWU2YMMGUDd84zNS8gwih8CPKJ/lDWx2MkAmBt2JxDLDlcZoIK4k+/E6fPl0AEjRYPrr58+dLQWGBaTRjtPFcpsj1PgURr+gul7O0UU7Wa/WKtMv0o8PkMV7VZFueeUaefvpps8kXDY7GGUvkls75X1tOpk6m/kvgaI4MWAzcAIlK3Q78Ge2LGDwZzHAYZxBm4GYnTsJSkxYAwcA8b958M6CiCSEdplkGSwbKQHr++efNZMnO5HkXz1188cVm0GRVG0H7AB+kYdDGDPScLpmnP8SPg+uco/H45JNPzYZf+JTRZ7JVKrswM8izTJLneB5ww7NTJk+R0aNGm3exgSIgg7Iz629vazcgAyBD+SmLNRMx4JOOHU8/+ugjA2549vHHHzfPIgfKAoAClGHexvxh32H7c54FuJG+OxABEIQH8o9V/zIHIgJbfgh/Y1M8e/7Z0lHXrvtnDJOJY4okNbmrUU9QJ5zrVT310M4dsqamVt7Vxn2qNqJP9ANdrsCiIC1VWjVmRLI2GhrwDkXAoH6QdiwR+Y2UujaW5OBnXp1M/ZRmFy8n0y45MItn4EMjwCCMNgB7P7Pq008/Xb797W+bAZ2dOf/+97+b2TiDIhMk9tAo0j6LgRlHSjbjYqBmFv2zn/2sx0ojDaYU+AM47r33XuPPwQ7JDKDM9G+//XbjU8ZMHn6XXHKJ8UNgYAZoPPDAA8YJ/amnnjSDNZEuL7/8chPsD40AwIG+lHL9/Oc/N+YB8g4IeHHZi0a7AXhZqIH/7EZgjQ2NkpGZYUw7gKT//u//NsABMEG/BqAJJDRAaDF++tOfGmBFvtAmkxc0M2gzAA1XX321ASzXa+RiqzEJ5GX/BiABhGK5L3UgwtZmX37VfDd9f5GkfbhAkoYlS/vyemmdlyZx49XjOU2dnrQRxqsPhCho+N3uXfL3kr3Sog2wUT+aBEXtrTnZ0qRqu1SNbPngn/8s//O735UT1aciliguDs1JXCxlOerz6mTqfxU5mYoZ/B9++GGzJJ1Bi9n94sWLjakCvywGPmbPmBJwAMdfC9BBYD2cRImHw1biaCfQGqB5CJUAK8TWYZDElMGsvF43KkTlzzXu4RfG4IwmrqSkxOSNfOArANABSDCAc46JYqGCAQjNARoDQARmF8zL3/jGNwwvzCHcw0RC3tGyoKlAY8EeSAAn3ok2ASBz1113mfLhrNrdJmVoPHgOWeFrA0AFOACocLQHaJE/7pN/5ImGoTfqizx743Us7jsQEYbUO+oUkddqA65IlZaSFinZt0vKnj8gKcNSJXV0mnRMSpPvjMySP3TUy1ZplioNha0tXiQ5RfRrEG3ZikKmSYfGmXhJ7ZHF8+fJZG3QM7TBzdeGebJ+aMn6sUcz1dXVGvVbdnbvH0k0lyOa8uZk6n9tOJl2Dbb4YuFYycCL5pPBHbCApoDBkIEMNT/30RAwEDKjZiDEgRxHcmbdX/va1wwACKwpYuds2LDB3GMAZTCHAAqo6eEPT0BMR2fXJl6cMxiThvu8F20HQIMBnryQJ7QD5JPB2gIH+3548AzvAACw1QDggfQ8ixkBzTH5AQzh24CmZc2aNWbfDrQswwqHyfYd22WLRh0GjJx//vnG18G+w/6SJ0AB7+TclEXzzLusH4wtC/d5P2l6IsqMfwtlRj6xSEMeRIB+9+zZYw5QOf4OvVFcYrxkzMqWggtGSO0HVdJW0SqNm+qkoa1WEjISJGFUiswvSpKapDb5NEOkeViCJE/IkGGTcyQjLV5KFWF/WFUtH6o/RYk69ZQoil2rCL9Il4C+m5EuU/Ujv6qgUKbph5GoH1c0Eh/IYF0jfqzk7WTqv+SdTFVfqH2Idaz0SphZON8wvl04EjIjZwbPYMagjIaAQR7V/htvvCFPPPGE8Zmw2ggGdUuo5OHBjJ8ZO4M9hEkCEEKEXrQMAALqhMEWIh35g7jO+xjsATZWM2H9Ingv+WOwxyets0OBRVurGdhJg48Hmg1AjB3YARicY1LBdwHemDnQsACsyFfqnFSZPGWy4YuJAodJfN0CiXx6QQF8OSgDGg/Kh7mId9aoKRsTSjBfES9f+AF6rLy892LlfMiDCBo16jAcZ3BwoVH0RvEKFLLPLJCU8emStaZSmnY1SHNxkzSVNErTwSZp1r8zNrfL55RVpS68qBvTJukndMjEpngpGJEhu1JS5eXsyZI09xzZtPF9adv8idROKJKNen1jTbVoS5RGdfy5Vj+M6drAUnpBs73lNxL3afigbUf+ScDJ1D9ZWk4DLVMGGgZIBhIG1EgQs1cGf++AFs57WDnAaoLX1J4PaGAQZOBmAGVQw8+Ad/AuAAezer55BnqABrN6NBSABtT8xMoJJPpWNBQAgM2bN5sZN4O0BRHe9JgvTpt9mnHoxE+B/hhHTwZ7AAZLLnFWJMZOtU7C0GgAHsgbZgSADlGEARHIKF5NruQ5Lb2rbIAeyoNmwmoUdqo5gi0MKBNAiDwgCwBKqERZMNWQV0wqPL9//wEDoEw+eui/aS8ApljuS4f8KEDDYYkmB4081MqMS42XlCm6f4T6QXRUt0rrwRZp2dsozTv12FYvjQokGvXvlLJGaf1I13O/3ygNDx+U9rwUGTY1S64/JVvmzlgit2U9JlUffCrtM0+S9pNnq7mjVWqbGuTftGGXK8D5vqLniQzYh9B6qA070ulQwfGx0Ek78kcCTqb+yNHLZaBlyiDFwMYstDenOm8++3LOO/oSW4BBKpiqnEGZSdQvf/lL+fGPf2wGWJwaMWMAgF5++WXB2REZwgMfCQZLBmYGc8wbd9xxh1lhdt1115llk4HlYIBlcF2u/l/4Ndxyyy1yxhlnGLMH/Qf5ojwQQODGG2+Ue/7tHhMNmL4Y/wUCY6Huv/TSywwPVkk8+uijRoOBeeXCCy806dB6oEkACDE4s/zypptuksamRvnDH/5gHC+ZJAIgeA4ws2zZMnOPuuIejqRoJ3C6BLjwXgAV5aCv4xfeEHlHLqRj9QjmIfix2gOTEQcAK5jsDQP9B5CBBgigBu9YpDgVXOiQKxZL2Ic833rrrSZoFJ7EIZNKz6DWdlVttXVKR3OHtNe0SvvBVmneqxqKXaqd2N7Qpa3Yp8GnKlrMLKVD4VtzQptsrdwi77V+LKMWTJdTr10s7WeOkq8d3CPlisKz1XHxPEXG/6wzhuO1MSdFEZAAvdMJgPod+SMBJ1N/5OjlEkmZMrNFtY6anAEDojvFaRBNRCSJgZfvL5RJD9oABihm214ir4AFQAIDPMSgycDIwMlqDu7b2TQDHQMpgyJlxLQAkQ8GZu576fvf/77JHxEfbSwFtAbwgCfaBjsT51nyA6jhvciPe9bEQTnb1besvr7OPGfzi9zJMwR4gCe8eZYyc59ztBrw5h3Ijuvkm3LgbMl1yAID8gM/6pi0/AI0eIb8wxO5wRNQBQEcrbwwkRMplJUnLGllsuolCzJpO942RIyMe+65R1glAxiNBRrymoh+V5KC0rgE/UePOAWS8bo6IyErQToL1e5XpA3upDZpr1JNxQHVVBxQU0exgordCi5US9FU2iQTmsdKZp1+uB9nSv7vykVeaJS74lpld3KHbM5qk73DS+Xe8S3ytamj5cRJuZKbo0FMeF83ZD8GbtPQI0Ug7FA6sEi9fzDydTL1v1YHWqZ8c3ZQ87804XG0g1zg0+SVQZEjGCG7QGJwB2AwsHL0RgzkmDIYLAOJ614iP4CG7iYmCQldg3937wWgcASj7mTQUzm8vChHYL0GgjKWlbJKA8ABuGA1C46pgLLuCFlS3p60Fd09Gy3XHYjwuyYAFep4GaeSxXcisSBZOsd2Surkdmlv0KNSAYWCh5aSZuNDkb4nWz595WXZWrJdxteVy8zdx8kCteUdTOyQKWkdsjujUVpyWqR6dKuUjKmQ+txUSUxVz+W0REnM0iNXj7wkScxPltaMdlm9fo3sVDsfy5RQywXrCPwoMh+JI38l4GTqrzzh5mTqn0yZoFitRCgTFJZWMvhGqg/yr2T+cAKo0O8CtJhg0f/idxKoofG+DZnalR3e67F07kBEpGvLgArVUuiAH69H0ogUSZmaIZ3NCiiq2yWvYrjsqPiTrKpcJSckTZcZGi8irSNDxtS3y4j6VjlJtRhlB9vk4NYyqWk7KPlqB8lP1GVTWQAHtaONVI3HmFRJHpcqzXlt8vYzb8jKd1fKcbNmSNJV8SZoTHquev/mqiNWitoefdJOoMpkBtPdrCDSYh2M/J1M/a9VJ1N/ZWo1EaFwxb9iKFE45QWUEfALLUesaiMciDgGrRxzRFy6ggo9knQ56CmLZ8u6HetlXcUHsmRRuZyjDkyJ9QnqrNksuw/Uy0fayJ5vr5NCBROn7Rc5uaJdCqrapXN/nXR+qLY8DUMBom3taJPJraMko32BlO+rkFUb35CkszS865lTJOuMfLOaJEHf6QfR6JllOPJPAk6m/snScnIytZLw55cZdihaCH/eNvi54J+B2aQnbUW0S8GfESXaSxnl+cOzl6VSTz35pDy/9kU554pzJSsnTzrVWTNTNRY5NaNlx6498lpVmbzd2CynNabI7TX5clydOjKVa5z4yhapK6uTPSXFsn3PLilMLJAxcQomqtOl7ZUm2fHOp5I9XZdo3TBW8j8/UuKTu9Zw90csAAjnE9EfCR79rJPp0TLp7xUn0/5K8MjnHYA4Uh79/cv6gdgVKv3ldyyedyDiWEg94J0EKmFXuXSd3X+4+SMpr6uQ7GE5ZqafoOaLcWqK+GbeBGnenygvlx2UtQ1t8qvkdvm/oxQUNGukt9o2qft4q6x84l15dffrcvnxn5OCvELZdmC3rP1onZyQOFNOajxedJ2omlE6peALoyQ+SYFEP/wu8WjGnNGT01BAMd2fvUjAybQXAYVx28k0DKH18AjmjFge8Hoo2jG5hTmD1SiYMnAqjUVyICIKao3GQxhagrwQmIWQrHj+EjEuTrcQT1HNweyCbLkhoV2qO1rlWfWNWJ1WL9tHx0lumq7s6IiXhpY2WVX7rhSn7ZeMBbky4aSpIiUp0vb8elm2+hWJr4uTxPe0utXsEZeiz10wXBIyw1dNon7Ds9iRfxJwMvVPlpaTk6mVhD+/BHBSY6w/zBwXIwG0ZbEMzByIiJKGTLhtor6x9e5LL71k9rrH29eqDwnHcrq6PxxXVi7P60Y0jaNGyjPqKzFSfSqK1K52sK5MPt25xawtLpozWWaed6IU1U+RtmGd8k8f/5Osan5XcptzJeujTOl4sF2XoSZK5uxcXdmhwVMUqPSVWCvtzBl9lVrP6Z1Me5ZPOHcHXKYa6bCtrFU6WtRRqQ9RD/tUNpy1k3T/Bl2VFYezdC/E7pbESQBQ4TtFn2InKYHxC3piBXhg4mD7pJ7ShnuPmTmxHggfjZYzVmIlhFtewAPljOW+1IGIcGvf5+eI1gaIoNN75513TEhZ1hh7VVwbNaRq8UMPSZqCiNqvfkXuzciUM9QpJ0UDpmzbts0EPyGiHBoMTA04lS2+YLHM+ussWashbMdkjZZZmTOl+sMq6fzXLTLmjqmSs0Dj3GdoM+gjjuBDJ2+8w5E/EnAy9UeOXi4DLVOCzdW+qfsnHGjuAhLezPh0DuhntVXWokJJHtv7pk1333232ViKfsEu0SRa5RVXXCELFy48oo/pKYsaTk/aO9olXuM1REobgbmEUNxMpNjvgkBNg5moDwCeM2cM5loeoLLZoCMEKHlNY9kTQnWmLvecOHGiyQEzCIKZvK3x4RuIyf/MsyIKJD7SvTZqtmw1MduZaRDqlSAuVj0GmGC/ezbB+SRrh2w+bqfMTp4htbtqpeT/bNNlpq1ScIX6SKT0zTRBZDb7jgES0aB/jZOp/1U84DJVBQSxYOLTNeicagoiQmg7KnRjqVZ9WQhEv0BYasJHWxv8QzoZIXw0PiOEuQ6ViBQZyVkzeWVzraKiopDBTah5j8Z09OtEzbQROKMxj73lyWkiepPQAN5nFzxmB5g0CH8KIABEEDCHWPVsiFOtoVbTVQVWp1oJOWO+PFJQKMMVcDTqBmKYP9BmeFWUaAsWL14sbNW7fdt22Zy4VS6+VdH9A2oS2dMgpY/u1c6oUwqvHt0FJELUSPCuSHYmAyj2qHmVk6n/VTHgMiUMvq6qikvWubo6MkeCOjVCtQm13xWpOaRXsIyQQEgMWkRIvOyyy+RJXQ2G1nPJkiVy//33m/0nCJDEJARwcd9995moi0wWrKaTfR4IB00Ya/bAYNIDsZcFEx8GRPoFrnMf7QebUv3qV78ywZfYKZngSlbzysSIPS/QurKBFw7maCLYSAsTL5tv4XjIDqK7MONq6GnyT9pTTjkl5peZM3kkmieTvVil3g1qsVqyGMw3gz8bzrAxDB8S29aijmU2tXTpUrNdOaDitJNOklT9yOP0Q/tYtxJfp+mIxc5zbD3rNTHwQdN5gO5Rg245uE3qjmuSwi+NlrQpGdK4tU5KHy+W0ieLpU33/Ah19zpCu6J6dOSfBJxM/ZOl5eRkaiXR9Ys/A6pztswmkmRx8V6zbTXbfa9bt87saMmkhcGeDbYYwBnkWYLO9tmYWwEZ9E3cR7MBMQjCj5Vm9D/0V+xbgvzZHRTAwi/2f3jyLLtxkpZnmSSxCyf82OuDvOzUyLuAFt7LRmAMuOzAyXsGixYUUIe8rRy7aim2/nUgIorqCy9dZk5z5841AzS7ivKxAhBA7IAJdpljQ5tpOhNIXLNW5J2VUq9pmrUhjlEVIB8YfLzEBwdPQMbOXTtl1QdrJOvyQsm7ZLg0D9d9OtbvkuJfb5Oy1/dLS1lzSECCzWcAOI78k4CTqX+ytJycTK0kjvxFMwEg6AJZrUZbydbeTF6QGYM6m2oxaNuotKT/0pe+JLfddpvpS0iD5oGBEE0CmgcOfBnWr19vdu9Ea8EACXjBX+vmm282u37yXvq266+/3phZcPQEOAQSeQKQkI8bbrhB2NTrq1/9qtlRFNNHrBOyAaShnYlVciAiymoOVI6qka1+UQM+/fTTZhbAB8c1VHjEpL/6qqskQ0FF3EvLRXd9kST94HN1mWiK/sYHWXrJVucnqQYDQPLEk09IfYvuNHheouw4aZ+837RJqjZXyaa73pXKlaXSoSG31YeqRyKfXqfPHhO7myFJwMk0JDH1KZGTaXBxMXgx+OvYrpqJNKF/YFJQXFxszAavvPKKAQRMaiAGeUwdAAsACAeaAUI2M5NGW/Dzn/9cvve978lPf/pTo3VA8wAgYRLDc0xk0GKgcUVjCvCgflDnA1DsrqDeHGNWQaNxwQUXGC0H99Cuwi+Sq0S8eYjkOWVwqzMiKeEhyJuB+cwzzzQ2w1WrVhkNBKo8i+QxS/Dx8dGxb/1HCi4aVE77VcuwVG2I56vN8Cz9MPMDUDofLvZGNBXsNIffxTNPPyOr31gl6fWpUp5QIYvLzpED/3eXxNfHSeFV6iOR2r2zJWpI5xPhbwN1MvVXnnBzMg0uU0wGrAqgvyks7DIPEKsGzcHy5cvNBObGG280/gdoJ+h/mPkDHLyEjwIaBPoo/CD+/d//3fBAY0B6HAZ5luf4tcTfVpPAdQANx1AjABaaHiuLWCy/00REWa3xQdHxsQSLgR8NBAGocFDiGg5N2DRR7335y1+WiQoe4rURtqmzUYmCh3/XVRiPqHpsu2opvMRHCwDBFsps4xe/+IW8+dabkpytW++ePlp2T9wnrzevlJ2f7FJny2Ip+9te6WjsXiNBB4Qq05F/EnAy9U+WlpOTqZVE1y8aCGb3OFoDJDA9MBmwJk+0AWgh0Hri6E1fA9EvceAH5R3sAQnEdEAbgZYBnwiuwRvzqzdtVw66/rX8+LUULC0aB/q8119/3fAkLXlAaxIsveUVK7/Uh5VfrOQ5MJ9udUagRKLgbz4svJIBD2gN+HvWrFlGA4EmAUINyBpqVH3Z6oC0T/0hdqYkyzuqPsSBMkvXco9OHi6pinQtMdNApUgH8vHHHxuVIu+ZOWOmVB6okBfuXypJDbq1+Ps629BJAcs+8y7SyJbZ2kwCAlLR6Xg7APsO9xu+BJxMw5ddd08OuEx1TGR5Z6fGi2iPlOMx32aqfn+6kV8oxECFj8Lvfvc7M8CjPfhUV3NhUjjvvPMOs2CSwfJyJgdcR82O/LwU+M0DQDBHkJagVgzwDIpWA+F9NpxzQMn5559vVquxJJX+D1MKeSe/sTyDt/II1O7Y67Hy60BElNYU/gtoHgiBzYeCicNqIcgyHy/miSsuv0ImbdsqHyuoWFtQKBsrymVlRaWcrIGozsnNk3GqrrRE9Dc0ERdeeKGxVeIExVIpllJhu3zqhadl1bb1ktage2Js0siWv9bAMlkJkjUnT5IK1VnTAyQwpwyGD9jKJhp+nUz9r4WBlinLOlOKdOO78hazdNr/EilHHdcB9vEZR5oWunsX8Wa8qx8YtJiULFq0yPhJ2efQfDJAo+XknvV5QsPAkkz8InDaBkgAHNAGoClg9Rf9FWYNDtLxPAM9kx0Gfkwd1uHby88OoPRtABBAC/k4TncyBkCggaW/QrPBMtNNuhqNd9vAWTbvsfpLeQFgsdyXDnkQgUqMxgty5ogWovMj5gOOkCD7s848y6gLA/OHo+W48eNksc42mvWDu2xLpxQrkChpbpItOuPwggg+fpyj7tc125tUEzFeTSHDFVjwcaO25GP94x//KBmN6TI5dZIkbIuX3T/5RMb/aLrknFtoQmVrqDpDsexNHCjDaPnbydT/mhhomRKGOnNBvv8F6QfHn/zkJz0+bftAlnVi6mCyQd9jtRBMPDhIh9kCIp6Nl2655RbhCEaYRVi6bsnys3/zyyoNS/RRHJZw7sTHYjASMkUzBJCIVRryIIIBGqcgEDSmAxBwtJANYY3JgplAmnpRB1J6RrqMSR1jFlM0Kki4U9H7LxvqZYOqJJdrh7BIZwVeatc0LaqdyNbNvrLU98IiYPwwbrrpJhMe970170tefK7cPuMWqfu0Xor/z9auyJZfUGdLVdVCOGDxATjyTwJOpv7J0nJyMrWS6P4X34Vly5bJI488Yhy2L7300sMAIvApJlrOoTpQKuH/bX1U0N7EKg15EAECJDIk6jH8BKx6LRoqlIG9qKjIODllZql9Uv0cAonZgp0xxOugfq6qFx9OTJJtjQ2yo6kxMLlsVBXkPep8qTuIy4/HjZe5qCc1FeVGfYiPBI6Xr+15W9q0w5jaVCQnb50ldX/U6JaVB2Xa106QxMwkkyfXmRwl3n5dwJnNybRfIjzqYSfTo0Ry1AUmEsz8WSWABtSG2g9MiCYTraXtbwLvu7/7LgH6XcxHmH1ilYY8iECNTxAmDmx30fSB8NGSP+sh3VsjS9D04zR9enKSNNV3Sr0GdGlXYMF1qF5BwSeqQXjqwH61q8bL9VreExWoZGhDhhjAsGXu2bNHnn/+eVlZv1b2Je6X5sYWmfbBJBnf1io52Tky4rJxXRvxKA9H/kmAWV40tT//SnbsODmZ9i57vvsinaxw9ERoHu1B3+So/xJAnrRRNBKxSkMeRMRqxQXLN581qzFSUlIlQX/bWnUplDbQLO0kGO73t7Z0aScUXKh3lOxSW1yp2jgnelAwMxJMPDTqnbrqo6mxST4p2yFJ5UmS8UmGpP56u6TlpUn5qBrJHq9bi6vmw5E/EmA5IjMSJ1N/5AkXJ1P/ZAkn6/zoL9ehy41+ltDefZksRpu0HIiIthrxIT/5DEQKHBoUIBSrvXOaahviFTRs1fN3VRNhSBHwWjVtnKbXvCAC9RrR61gOSthtOuEtn26RbS9/KmXvlcsVuy6WXXdvlqRvZEv88DyzFJQtgulcIJ53s2kjij7/g1rZmTP6LLYeH3Ay7VE8fb7pNBB9FlmPDyBPVsHEcp/ZbxABkkIQrnH12FYG9OYcBREfasyIgxqP/fXaGpmgfyfp4P5eU7OsIECU1pfqJWWFBpaZr9qIJbqkyks0apZR4RWNqq1lcYv8Rv9buuVpSWtNlfNLz5Gcv3RKa0q+dFzbJi0JbSYYDKo5lnWx9NS1B69EQzvHuQoQ5sg/CTiZ+idLvmlAbiwPeP5Jwx9OyBK/Hbuc1h+uA8ulXyCCWep//ud/mtCoqMFZ2WCDIQ1sMdzbvBI4QUHDhOQUeUE1DX/X+A9XFw6TdB2cGlTrUNegzpbqeCkd7VLX0qp7aLRImw7+iQCLQ0RnwQyOw9L0E6bLWzPy5aU1r8rJo2dJUmmSVD5zQKPSNUrxjDK59957zfIv4lng3c0yLgckrPRC++V7ojOJZSer0Eo6cKmcTP2TNZMENI581w7s+iNXa87Asd/b3/rDfWC49AtEgKIIDEKgopUrV8rGjRsNqmImioev3aRlYIri3mIlMFmdK0epF3WtahE+qdeNtvTjP6hgoVpjR2gYPRH1mTB2CPWNqFM/iSrtGAo9gMHy8f4SsOaUM06VlatXysq0dXJe0gJJ25EmJY/tk9VF78v6teulua3ZtAXW5tPRENAmRcGMjS3h5efOj5YAnbQjfyXgZCpmEz82w7IO2qzAmDd3nowZO8Z38xmgjb028KtiYmk38PK3Vv3hxpbkxMVg8GaFxLGiWG+j/QIRLI/89re/bcADm0Wx6yRrjlkqSAQzYhvYqGPMsNzMdGCa6TD9KHIURKjANWpeq7SqyWm7AohiNWck6bUsBRnZWh+lGpRqv15jn43eQERRUZHRLmTkZaoZ5E058YRZkl+aL2Ufl0nlR6VSlDxOOsfESUV1pTz77LNGK3HjV2+UKVOnSKZGz3RAove6H+joir3nKPZTOJmKCSC3a9cuEyYaTQKDZ2dHpyw8d6HRIvellpk49tSPw5vN/YiQCYCIZhCxW5e6E/6bpa3HCkQgSxypY9kXql8gAgGgeiW6GSGa2Rf97bfflnvuuUf+9Kc/Gds4URCvvPJKYyuPVXVNXz6yaEiLE2WCAokEBRKd2mlU67Gqtk62KpDIVbPGfAV/p6uz5V8VhX+s8STeUbPHnF5WWTCLIfIcG/YAGA98sVKyC8qlc2unLGlbKKPyR0j2pcNkdfFaefGlZfLnP//ZRGL75je+aTQSSbrs1FHPEsD/xKmJe5ZRX+86mXYt3b7qqqvkhz/8oQEQd9xxh6x8Z6UUDis08XGM35NqKu2MmDZo40EAOrjPwX0iVnKPSSEDH9dI06qTFc6ZRJLWEte8/BkzeM6OBTaiKOlQ7UPwtu/kb4BLd5NQ0vFufuFNWnjxDg7vu+Fly0banbr6jECDROhcsGDBEc9QJpsf8goveEeCeBd5jlXqF4ig0AiaSI9vvvmmifrIcpUlS5aYveipMLQTP/7xj+XXv/6185cYwFYyLjVFpivAK1WgsF39Fl5RJ8rN2gHMVDBwncaHmKL3lmuY2zWACL13u2qPeiNAxGWXXSarV6+WpS88J3G60CO/JktuSL1ajq+cLuObJ8qMc4+T0aomZbOfp59+2nQ6N9xwg9mjgw/RUfcSQLXKzBkzoCN/JOBkeqQc+QYxTWJyIJon5gf66N/+9rcGYDBQnqBaxptv/rrZE4NJIX07+1YAEJgo8jwTw4ULF5prxJRB+3jgwAETvpmZvR2A4f/OO+/IQw89ZPbaoH2zcSB+UwzO+NQR9hkNBiH+GTO+9a1vyQcffGA29OIeG2394Ac/MBqDI0sjJg0bCjKxgTeryngnk9dzzz03aNm+/vWvq+ZhlLz00kvy8ssvG1BEn0bfRrA93r106VKTH0AI+b3gggsM78D39/dv5ETZ0erHqi9Uv3p1KostpUFSeJiy2xrqK1RDmDEsIkRtFCkU199KHKzPF6kvwiwFCku1gT6nPivbaqqlWeNGZGtjJcDUaJ1NZOjRVF8nterD0KSNOUU7kBqty2cqKmS9Xl+ggaUuUp+XNL0OsXHO/Pnzzexl2/Zt6l6hES3zJ0vNjEYZ+fEIaVnZJCOy8uVzsy80H8Tvf/97s2qD9kGHBbhkFsMswNHREkC+doZ29F13JRwJDLRMq5tr5T9W/VZqWmqPyu6swily1rjTZHrBZClrqJRfrvujpqs7Kt2pI46TM8fOlqLc8bK/rlT+34a/SW3LoaXZmjonJUt+MPdmNUn2bb8F+mNm7czAceQbOXKk+R5ZiQXQ5zsFCBCxlhDY3/3ud813u337dgMAvvSlL5lJAZMD/N8Y3BkDSMsePgy2+F4899xzpv+nYO+++67pA9jkjzSffPKJMSG88MIL8rnPfc68r0L7G+4x6LNzMRNONge8/PLLTeC7FStWyJYtW4zjPlF8IcpCfgEv9C3kDRDB32zWBXikrwlWtkcffcSY4YlUzLsBPYAi/PjYiZRtBrgHqGhQnzK2IQfYs0kYPP0kQBNjpvVX8ZP3QPHqF4ggk1Qk0R5Rc4MCrQ0MxxoEjnMNFKsoy2Q+Bv8Zn5IiMxVEPK7g4BXd1bNUPwZ8JNIUXIzReiGORKZqJZLjE6RJnSsPqJZijD7zjIKO3+wrkU1q4tij4OIc/XgsiLAmDcxXxNoHGI4/uUjGXTxJho8fIQ2rahVI1MvI3EK5cvHl0tbSJk8985RxurUb97BrKDZAByqPblRoNGNYq3l0gaLgykDLtEmdi5dtf1NKG8qPKn2jAoZp+UUKvCepQ3ODvKjpDjZUHJWus6NVpudPlPHZY6S6qVZe3PamlDVWHk43IqNAbj3ty5ItoYEIZrsMzr/77e+ksqrSDOSAhiL1c7LqfWb8DLxoGgAZ/NoNtejH6eOZjTN4v/rqq8Zxkskhmmf6evb5wSSAVpqdh+33jc8BoOS2224zY8E03bPnL3/5i9FaAyIgJqA8z4ouxglAyLXXXmveBz9ABHlit1ALIigTYAGAM2PGDDPgMzkBpLC7KNRb2QAF+O0xZjHBgf7+978f3imUfopgex9v/liGDR9m5ENe/STkOdBt1M/8w6tfIIJZEw6UoEYamZdQkbHcExCBasnRwEpghNbNRF2FQQiobWquYFVGZlq6DE/RzbcU/aILGK+ofph2EFUKINbph1evH+bvdSbyZrl2bKrGeyepRpr1mpf4yPn4UT3yAZx17lly6sWnS8ZJSVLSslOq12hn90KFjB5fJF+//mvm0aeffdo4W/Fxs5qHNgP6d3SkBOjEkW+W7pPiyB8JDLRMkxOSZPao46WyqeaoAkwv0O20U7ONJi4tMUVmjzxeqlRzEUhTFGhkq7YhPi5etYVphl9182cai7zUHEmKD93HiAEXx8oVr6wwq6eYfQMMWDlVq30DfbU1PZIWUMB1ziG+WQZP2iY+DPbbpQ9Ac4FGA40P90nLoA7AgCwfNA2YUggDwPOE1rfEYG5n42ixGbzRlDD7xxfCrgC0ExGew8zAuwEKvJu0ACE0CJheoJ7KxvPBiJ1MAT28i3MInwnKiBbHb0LG1AeyS1UTdCxSWCCCwYPCs7QTW5oVshUA92mUqLusJsLec78DI4FM/bhytaOQBK1i3fMCuHucNtJ5qvKz5oSFCiI2qTZigwakelg7jmFq8thepQCipVm9mRJ0ZYc6TOnH1qHP4qwJoTJE9UdI7WZNh0PtyLEjRcaKjChVJ6wGdeRcXSEl926JyS0VAABAAElEQVSXSfeeIN+86RuSkZUhv/nNb+SNN94wzpl0Cnzsjo6UACI+JOYjb7i/wpbAQMuUAf7/Xfi/e83vqMzh8uuLftpruolq0njgop/1mq6nBAzeOFb+4z/+o+zdu1duvfVWo6Kn32Zm/7e//c0M/Nddd50ZjPEHuP/++w+zRKtg/Zno2/nbjgGcMxZw2GsM0JxDViPBAAwPNNfcs30QabgOGOCafZf3Pudenjxj03IOP/s+0pEXCO1Fb2UjnX2Wc96PtvQrX/mKWRjANfjxPm+euO4XDXQb9Svflk9YIAIEiNoIuxhobfny5QbpwpQKARFSgTjgODqGEtCPU3sJEQUHgIKp6RlymvpEWDpZ701SELG8vExeUvVlooKNOv3IFf7rV6qdg/5dqh8/2os0WvohSlBei85bZP7KzvpMo5C1sECBSIt0VLdLzeZq2XPPpzLitiK56rIrTUfxr//6r0YjccUVVxjTF7MMR59JgE6dztSRfxJwMv1MlgyQaBS+853vyIMPPmgcCJkE4DCJ1pjvkZ2McYQMRgyiaDAsMGD2D79f/epXZhzAN4GxAWdMfOIg+AISGCMwh+DAiAkEX4X+EN/JRPVhAJzgh4H5hby99tpr5hzeAIqeymb9EOwKEZ6x4f7hg6mDMqPFQVOANsJvQjbIwubFb/4DwS8sEIGqx3rTUkk0ClRQlqhgnGzmzp1rL7nfYyCBQm2gCxQ0rFFNQ3OiOvBoJ4GvhCXiSaCtaNMPpVZXaSjkRtUgExRcZOn5XlWvb9COYYwCjTRNd5gUT/Dxpqq5JDWNwFVdlJCVKNlnF0p7Y4e0/lqDW31QJclPHJCcy4fJ7JNny5w5c0wHtW7dOrPklw/W0WcSQLNHR+7A1Wcy6e+Zk+lnEmRAZLDCpwltA1oJBjBWJDBo4n+AphEzQDBigsh3z8wcIMHAihkbh8gXX3zR+EpwH+2GnbWfftrpOoepkccff9xoP3DExHzBM/0h3s+KhkW66/D69evl7rvvNnnHNICZnQOTSE9lAyQAaohrgamVtJhdKB9AatOmTSaLlBufiUiACIAOAAhzDoAiFimsXAMYqAAqEgFjtrAOlQgBREhDoRIdHTsJjNRGeUF2lmw8EC/N+lFl6H4auZ6GymqMHB20ctQ2Wt2g3t+a5vScXJmt9Vun2qRtOqi9pEDidLVhsprDS3xobLxlOwt7L3lMquSeq0CirEVK/rJLqt4qk4TsRBl1xjC57POXmnXZLMfCzEVkUzursc8P5V9UvW51hr8twMlU5JJLLjFmRCTL94YPAZM8JoCAAPa7sQABzQ0+S0wMARTM9iEGbIh0hLZnwEPbAC/MmwzkAAQABD5yvAdemC7bNcQ+TljM+HGO5NvnYLK5ePFik460tH0GapwqrY8dYwg+dfQVNg8mI/oPz/MugBErKsgbIAJe+F3wa51BATf87S0bmhRWm1EW3k15WUVCGThHBvDk70hu52CBmS1XrP2GBSIQLBWCwGkkCDxw9oRqC3THPUfHRgJEoTxHl2ku1Q6gUsHCSNUcABy8NFnr55TcHHlDV2gUarprVP04Wz+alZoIp8rXdVbyDUwcAUS9AhYDKS5ed6WbkC7DbhgrzXsapfyNUql4tVTykofJ2eecJePGjDOmMCLa4c3NBkmOuiTQnUydfMKXgJOpGPt+oAQvuuiiIy5156OEkyQHRL9vtcxe8I+GkaM7YuDmCEZf/OIXj7jM5PP2228/fA0wwfLN7ghtCPkDZKBB2blzpzFJoGFh8Kdc3ZUNngsXLjSHlz8mmoHy5WMSBjiKVS0EcgsLRKCOxoOVdbx/+MMfjGnDWwn2/JprrpHARmLvud/ISyBLkfpsReT/S7VGdQoITg4C6M7X+/Xto+T91jZZoueLdFCfpsh+n2oicE8q00BVzapyCyQ6kUAthE0Tl6gbeI1KlXH/NFXa1NGy/PWDUrnsoGSm5MrcE0+XF15/0agKCXjDsi5HXRLoSaZORuFJwMk0PLnFylMsJ8WJH1MMdV1UVGS0E7Hkjwcw664vjYV6CAtEYMtG7QTKx+sXtVgwsgg22D13bWAkkKpId1GuqhTV9JChDpGBlKEN+Cw1edw7bqzMSE2TSaqxSNNr6Zg9EnUZ2SFvZwCFV4eBrZn69/rCeHmjkUhUIDHyxgnSqarMytcOStsTZXLVRZfK+xveN+vWiRbH+vBY/oC8Ze7veW8y7S//ofi8k6m/tY55iEEvWogAh/PmzTOmEvoRzBKYWGLFLIhZGJ8ITDKx6lwZFogAQKDyQZ2Nkw6CCEaok0IlHExYn0wIUxxasJ+BKs877zwTyCqY6tzyxsmTtc4EQSEACYgUUwvxDFCPxbKqyJYx3F+WZuYd8oOwyzS9vLg2KilZlqgGIlNBRqrKDrAQzzPasDXailmxQUTLdL1nCZtjT3WCDTQuKU7jR2RL4SUjpaOuTSpWl0n226mi4alkTd0GM3vAmxvTWDR1TLaMA/3bq0wHOkOD4H0DIVPU/EOF6EujCfRTvxyxSoxVdmVMrJYhLBBBFDLCg/ZG2MGIZBkKMfgzMyVOu7UREY2MgCYImX0bgg1aOPMQje2JJ54wA5F9lkHJG5wklDwM1jQJChR6IoBDavyR/g2YQqaqpmGHOlzuZzWOzkDSPT4QoaqJE3KTJGtevrQriGg52CwNWxpkdvKJUtxcIls+3WJiR2Cfpd6iqXPqSV6RuheqTCP1/sHIN5Iypb3afoa+Jlj/NNhkqtESBluRBrw8aO6ZNNuJE200liksEEEcczZd6Y1Qd4cCIkDyeNc+/PDDJqIZgT6YnbJs6L777pOzzz7bqM3RfgQS0ckIYsRa3jvvvNOsFKFyiFVB5cR6BQWWd6D+Znno2apJKik7KJsbGkwIbMJlW8JpFqem7swZNh2/rNjIWagrNiraZO+fdsgpNSfIjpZd8sqet0zcfeoVExlOuqj0hqrmqC8y9crXnXcvgUjKFBAB+EVrilMfzuWDGQjTT1NWTAV2AOxe8u5OoASsxqpB+1O09/SfXGMizFg5pMwZ2KG83rgIwgrIO2izhCYUYokLAUPQbvzoRz8yAwqmEOzlaDMIXkK41GAggqVFmD9YFoQJgwGIPPDu3uxiVCQ2PlAhxK8tC7+2Q7Bl42/vOc94/+7uPDCd/dvL33vOfe/f3Z37kc7y8Oada9kqwxO1kT+uZV6pHeR8bfhztcOESEudIV9ryiKPgTz42+Y9SYFE/vWjpHmXfkCvdBogcbCxTJ5fttzU/Re+8AWzTpslZdg0qUcvb/tey8++i7oOJZ33Oe85fL1/e8+5Fyp/P9IhU1tu8mHL6M2T99zmPVi6nu4F40F6b30Fnlt+/UlnefiR32A8gpXLytSmD1aucOuO5+iT0KJiluNd4ZaR58LNB8/2p1zIzcrHK0PvOe/gbzQuAAgLIrzPec/VBeuIJeDee97z7vLufXd35zZPPfEI+i5ja+2SmeURLF1P97x56ks66phvnD6OlWn0XQAz79gDv1iisDQRzD5BTpZYm4vZAQExkNPQEErgsk+bPvAXJMaaXNSBmC1AaBBAAp8GomOyZDSQqAC7CQuajBtvvNGk4xmADuuX4WkrPPB5orNhQiHYCMR7GMRseZgZU+G8m0aGdgS/DSqdBkD5CNiCTQ4UCcIElGB+IWY/z9FYKA+x4pEZaUmHSot7dhbDddIhR9vI0KbAI0djN/D+Go08iUzgQz6QMfE5SMdMiHphYMeZjPyQDtnyjjGjx0iDBpTiXmZGpqRnpJtykp507FZXV18nY8fo0kxNf7BCw2DrO+NVxtv0Xdu0rAcPdSLwpPyUlRUW8CAfdKQQeezo6NRVO11rtqkn5NHZ2inDbxkpVXXVMu71sbKoeoG0JLXKax+8LQ9WPWjMUjhJsbwKXxtkQV6Y7SEboqPyXjowZMi9oqIi0waQJ+9FBtSJlQXXScv69ArdiKxRZQAvZE98f8qOrBgAkCGx+5m9Infql3XqtC0rT8qCD87IESPN+5EZ5ec50pE33g1RRwwy1BP8uIc/EfmjPqlzvhkcqygX9U4eyDNtjW+CfFlATPl5hnxRJvjCnzqlDVAm7rFyijpGbvVqjuJ75B7PUDbeRXngR3r+5h48OKdeqS/KgXwOHCg13xB5Qn7wIB+Uh3cjT9IhF96FLOBFOyEPvIt7fIvUEWVEHizfo6x8bzxPOSkzfEnHPfIBP/jyLnhQZmSmw5pJ1677wpg6UdkiE97LN2+f41nkzDVbJ8iffFCfRROKpEQ3nUPWvJd30K/w/bN/BXlt0SXQ9A20cdod+SUtkx/OKSdl5qBcvIf823Lx/ZMmOTnFlKWurtYEeqJ8yB4ZUS40qratUQ+UhXgMpLFtkr/RwNLuqCPKYuMj8Az1Q1uirfFeyk198Yvc6J8g+HGNNs63xrO2HfI39YEsSIecyB/1gzy5R9uh/JSLcpJHZFiQX2D6EtvWaB+0ecpFPkiHbJAvvKgHykE65Gv7P1tm3gUhC2TOuygv+bX9H3Lskm+yaQtWhlznXYwr1A3thHTwKdc+7nD/p3kiv7QZ6pe2Bg/ySJlpPzxDfskHsuX9pLOyJu/UBekg2gDfDNfIB7+0DdKRD2RKW4cnMua9Xe3aPB4z/4QFIhAoB4Vmq1cGYQYTdmhjaQ2VgSmCj4445L0RfDhoRDRMeEP2I4EfFRZINDIaIJ0h2giCqlDxnLN9K42NYCPwDUZ8jOSPfEPs78D7aQTcs3mBJw2Av+mM6ag4pwGQjnzSkEhHw+CXe3wYpOMe6fjlo+Qa5SEdB/njOvf5oCk/abhGXuh4wPVs0GLfxcdPnigj6SwPnrVp4Me5eZdGlkxMSjR87X3Skk/SEX2S/BKBMik5SSbokah5TCrVTjOuTeI0P3x8lI938iHBh48EHuSBToY8cV1/9F1d+bKyQ8YZqRky9obJGq9C63l5nFzYtEiS85JlfcX7JkocfCk7a7vp0Cw/8siHyz3KTnmpB97Fh845acgHMuSX8pFXysXfeXm5et61Jtum43nyb8sFX/5G7lY2vNee27LAN0XrIy09zbyH+3RoVv6UFd7ws7zJN9eQE0QeuMazlIuOm1/KQ7ugs+dZWxbaEOek5z554Zc2SR3zLDIwbVJX1vCuZK0DZEM6nqVcpIMHcrLv5h71yz3eadPDb7juYGhlnqztgjKRzpaHNBzwss/ybtLY/HKPg+scpq1pnniOv/klLbKxfHkP+TWy9vAib8iGdDxn5UA6Ky8rX+oDvgxeEO/ieYhfnk3QaK7IkGe5Tz55zpaRb4J7vMu2NZtn2gb8SU8dIGvKxn3bJuFj2wW829s1omtrvpE3ZeQ5rnPOBIhzWy6+AWQATwZo7vE36SxPysJ9niefPMM90jFoQeQReXHNlp90XOM5+CILWxbScM51BnHuUSYGQOoIeXGPNFYWpOP9PJup3xn5peyUxR6kJ51tr6RHplwnjZUVv5SJdNyDeM7ysXXNL+koC+koN+3YpuOceuCXg3ZAfjnst0taeFsQSXrS2fyQF9smuUd+7ftJxz3+Jr2VE/m1dcI12/64Rh4pN3ngHn+Td+qGPMYahQUibCFBeGzbipBBUjhCWmHj7IjAQwERlh8CDUbwDEbw56Dy6DgBETQmDvarf+mll8z7+UiCER8Chw0sgp8HFctHYD80nvM+bxu05UfZg1Hgdd7THdF4LAU+Z6/zS0O15E3HuZeHN7/ecpB3Lw/vPQkQEelAyPEKLnSJhnQoAInX96RrxwEB3uDHB2UJ2XkpQ7UdlrzvzT+9UOJrtK5rtQN/UweWFJV5Woqsqd9gACDAhJDpRNLzPucts+XLLx+ml7qTdWD+uksXWMfeMvIer6y97w1M5827Nx3t00u2vmjHnNOhQYH59daXfYZ0gXLxlktbMkmCUuBz3kTeMnrTce69582HN3/w8pbfe897Htgmve/y5ieQn5WRTePNU+B7yaO9Zn/tc/bXdvL2b28e7TV+A9tad/kNTOetEy+/UNta4Hv629a8eeA8UJ7e8ts6ZpClTZLWyjEwX5Zv4PXuyk96b90FPmf58Wvfybk3fzzj5WHzG5gu3LYWWEfwteTNU+D36r3nPfe2NWRKfikPabzp7Dui/bdfIIJBhsBTd9xxh0GnmANAVTQYBnfuh0IIEEFadSDPgnJ5npkpQg+sIPhSuTQgZlSowZmdwAfNAqaKV155xSDZUPLg0hwtAZZ/5mjDLmtuknpt7JWqNh51CEQg554++KO5fXYlPkP32DhTZ9ktHdKyt0mm7tAZSKHOgBM75fXKlcYHBnMGgy2R52hT4RAgF7UnakU+TtolnQ1tqTtgGs57/HqmPzL1Kw+DjY+TqX81ynfITBmw68gfCQwGmYbXOx+SHx0xA4nt5NEkoH4CDED2+qHk3f6AbFGRAR6wU2OmgBez3Z0axtSGMA1kQAcBcGCw4Vme4eAcdRFAxFH4EkjW+j1NB9087TwqFETsa+lyHIMj9d6fziSxQNWaZxXI6K9PUHOGbgxWPkbmxc2W43OPkz2795iVOps3bzb2zHBLgD34scceM1sf/+IXvzDLhzF90T5pH9FG/ZVptJUnGvLjZOpfLdDf0+e6ftXJ1CuBfkFKZnSzZs0ymyqxFwIzP3wRli1bZgAEzmyhEIMRDi2YFR555BGjMkSljZYDswjhs9E2BCMcOVnVQZAqZq+ACp774IMPzAqSnlRRwfi5a59JwIAIncGvUzD2SWOTBoiqk1MP2eyY4dOheNWInz0Z2llioQKJ84fJaNVG7H9qr0w9MEkuiF8oFVkVsvmjzbLsxWUGXLJdcTgECKEtrl271rSHFStWGBsxm/Zcf/31xlzSHyAUTp56esYPmfbEfyjeczL1r9aZnOG3Q7/v+lV/5DoYZJpwt1K44gCRMrijOcDhBs0B5gfMEwsXLjTbqobiKALCpVFi52PwX7lypTFF4PkLMMDXAVU027ayhS2erXjbMgDAn2cxX+DgyUCBlzxOnYTkBpyEipzxowC88E5HuHLqlt+q2XmrvEK2qHd6robFvvSQDwS2PLMVuNZ1uERo7PhU9YkYoaaMqjbpLFOnrCrdya9zhGS1ZEpNJStJ1BFTQ3KnZKUe1myhRbCmLtoIHyJtIRAQ2PZAejboQUuGlzgdIW2CbX+ZqUYL+SHTaClLtOTDydTfmkCe9LnBzMv+vmnocPPKFE08ARevuOKKfk3QBlJ6vmgiGMQxSdjlWUW67A7v+kDnn54KhgYB4MEqDVZ6MEhgxmDbWTygabR0+DRgQIq1aXOPNAwkAAkGDIAD8SXYojxwYOkpD+7ekRJIVHDHZlxZ6r1eqSaAA1o3lhIT1NEyoV/WMMMqLkmjZU7LlAINjW027lqdKLn7cqWwLF92Fu+Rppdq5d2G1RJfpEtRR+tKlewUqamvNUvyME2wFI/6B/jRXixh1gLQAmzxZCcOBWkBFjgA86F++ctfNh9qqGY3yztSv37JNFL5i0W+Tqb+1lqSrvqxfa+/nIcut1iXaVgggs6bw0sM3ByW0AZg3mDVRCjEzBAggZq5OyL4FIeXaNBoJa677jrvZXfugwQIlz1SAWKqAjh1NpE2nYXU6Ww+Q2f9xJxI7exaFtrfV8UlaOS/eXmSkKVLHUemSu36Kon/WJfPHhwhZR+qaUO1U2Vq4kiamSrNw9s1bsUO2bxjs5Qe1G3G1azCGmzApBdENKn5pbqqK0YG1y+++GIDUAGjPAOQoA0DdDHLRAP5KdNoKE805MHJ1L9aAJiz3D4j87PVZP5xH5qcBoNMwwIRzz77rDzwwAOm1tEAQAzmdkZnr33zm9+Ub33rW+a++yc2JcAKjUSNUxGvpocaXaWxSU1XJ6s2CIBo69uPksWlxEva8bo2e5guQ52RKVkf5cial9dI2+Z2mVynmq3a42T328Wyovktea91g5QnV0p2frbRQLGXC2YNL+1X81qpCUgkxkQFyMABl2AuaKzYrA1fGm9wM+/zx+Lcb5keizJE2zudTP2rEQY8gpfZ/t0/zkOX02CQaVgg4sILLzRBpfByJ6gUvzg4cvDRoirGLBGqY+XQbUKxUfKFuTmys7ZGPlAAcdf+ffLXiZPMrD9UX5NQSxmXrIGyVBORkKvaj5lZMuf4M6VkVbEcWFsiFVurJLsySy5PuEgulvOkMb1JynOr5L+rH5CKsnKp1GiUmLIssNm7t9iY1zB9ASDsddooMSjwf8HpEr8I7kcDERjI5jMa8jMY8uBk6l8tYhpmjxvnVOlk6pVAWCCCThfTA2rhP/zhD0ZVPH/+fKMaxnlt0qRJ5johQR3FvgQu1LDbH6qT4/vqX/Cx1vlWrf8RdfWSp2aAvvi99CoJjSmGj0SCHvFpat5KHyGp43SJ6Sm6P8HGfXJw7X7pLO6QzKoMSWxRp97q4XJT0nWyvWK3JGzrkPrdGvp2fI7gsIlmgrDb+Oqw74p1BMNxliBWxB5h9QYxJGiz0eA7Y8M6+yrTXoU+uBM4mfpXv4B0NHksx4/FoEj+ScI/ToNBpmGBCJAoB6sycFajQdGwiNKGqouDCJY4tTmKfQlM0VUZJ2jdjqxIkSqt89/rao1LVeN0mvqxRIqMk6XGj8jJUfPGaDVvTMqRzGnZUru5WmS3hoLep+GDD7TJ7NaTZETLcMlblymlfy2WtpN0X4Pjdf+M7cWm/QF2WZlhQYLVTDCjYjdaVmvQTqNh4LbxVSIl06HI18nUv1pnwKNfD4y46t8bhh6nwSDTsECErWo65iJdiUFnzMoJgASzup0aIIp7PYU6tTzcb/RLIEFn9rN05n6WbqzzqJoJHtD9NAAVp2kdR5rQKrAio3DmCMmfXijVu6uktbhJgYQC1U01smtFsWTs0T0TPtBgWLt3SeOkGsm/aIRUbdBNcxTDDptQKCOGd+1HYvNKO0VzxnJi9lnBWfcIEGGjrwePtm7Z+P4LwHGqYn/F6mTqnzwxtREXxgJy/zgPXU6DQab9GgVYbnnbbbfJf/3Xf8mf/vQn4w+BgyWq4ltvvVUWLFgwdFvHICv52VqnVern8nfd7bBDV0NUZGZJrWoigocAi0zh4/V9eRN1B8KJIh2NugnanExpS14vj/31WSkq1xUYLedL50bdPXRjhWS3pcrk5PEyKmWUpMenSVznZ4iAjbLOO+88eeihh8ymXywPZTkwxMyAddtx+h8blg2kjwLfk99+JpGpidjh6mTqX13Zvt2aBv3jPHQ5IVNMrrEs036BCBAp9uWf/OQnZktUnCkRCmYNZnt8wI4GhwRY7jlafSAWDhsubx/YL4+V7JVxOnOepB8AKzgGmuJTdYfOsZly6pVz5bcr/ijrGjbKhGkT5IpRl0jNR9Uy68AMmdgyXtI26N4fd++SpK/rRmozdfvqrK4AZeyvQqA0gqQRfAoNGgCCFRtsKocWbdGiRYfBxUCUD3szpsFoWXI6EGWO9DucTP2TMGZqfI1YMh3Lg55/Euk/J2SKSTWWZRoWiGBPAtYL40D5zjvvmJUY1hcCEAG4IGAUAIPDUexLAJgwRUHDNzXux3sV5bJdfSI2aUCw/TprH63+MQNOtLPUJBkzaaxkFWbLrj27pHRUpeReN1JK36ySFU++JekHUmV2zUlS+VaZtNa2SsHiEZKt+3WkTu7aPpiAZLRf2jNmDZaKPvroo8bMgQMmPj95efkKNoYPiIYA8ODMGf62JCdT/+Q5GFTv/knDH06DQaZhgQg82jlYPkXn250DJZoIByL8aWzRwCVfAzWdqWaN6Xq8rwh6a0uziRtxTECECgTAysydAV+S4qQyvlo6ZybIwZIqWZm4TkbkFMpxE6brSo4kqVldKe1VrdK8r1Fyzx4mSVMTZMFZC4zmgb1WAMG05Y0bN5pzAlixlTwzhAsuuMD4TETaFszsLtLviIZ2NJB5cDL1V9r4vg2kic/f3Ecnt1iXaVggArMFszSIBoW3brAZVH82Z4rO6h7auSLIdaZqmRYXDpP9Wv92U67FWv/HigASLDnGga6iqlLK6ytlZ80eqWivkoJJBZK+OEdGxI2R8hWlUr+9XppLmqR5pwKJK4bL3MmnySM5n23YhkmDVRvwwzmYoFTsAkrUVTaHo51HsgO15sBjJcvB+F4nU/9qlcBIrHbBXO3IHwkMBpmGBSLYk8Duk0EHi2Makf8cDX4JpCtovEaXTb6uQafe0A5l1SEweSxLTlAznHmJW1JcXCzbtm0zzpGjp42VqZceLyPGFEmGLvtkCWjV+kopXbZPat+rltE3jZeRiarF0F3BO9UfglUaOAMTV4I9Np588kmzGRxtG60aO9ZG0l/BAvNjKcvB9m4nU/9qlAEPDd0RK5n8Yz8kOSHTaFliHm4FhAUisCETqIc1w9iQmbk5EBFuFcTWc2zKNVFn/eks79SBt1N9IvgQ0AgcK8I3hxUX+DSw7Te/EM6ROXk5kpCpzpRnF0iCbj2etuygVLxcKnW7amXPb7bLJRmLZdSckVI9ql5OmXeqsE04Jgy7DwyrjtgZll1h6TzRVESKAOTOnOGvdKlHt+LFH5kiR76DSAJpf3IaO1ysTNGkxiqFBSJQ6xJk6vvf/76ZsQEmvBtt2UHlc5/7nHA4GjwSACqkaWfCag1ABCaAGvUnyFJQ0f89PcOTU1FRkVlpgW/Dhx9+KLt27TIDB0un8Jlgg6/EbN0F9ARdnaGRMJNHpUilmjdq0EY0DJf07DmSMD5JJk2crqHaJ0pGTqZZlbF48WIDltesWSOrVq0ymohIggiclbGPcjjyRwLM8pxM/ZEl/TpaaICuW53hn0yJqkpQvFiVaVgggjX1qLXee+89s8aVzhp1ciC5zjBQIoPjbwMk4nUw1qBMzQoiDqo2IkOBxbFY6olEWaqJJgJAw6oglm1i4qBdehE+Gom0GVmSmJskyYUpklSgx3tVkl6RLknbkiVzdbJ0prZIx8w23dwry/hBXHrppbJhwwYDTFguGEly0RX9l66TqX8yZQk0QJfvypE/ErARK2NZpmGBCGzGHAAJOu8rr7xSZsyY4Y9UHZeYkMAonS3nJyZInQIIlnuO1b8xdRwLQtuA6QLnXkxtzD7xYeDDDHT4ZZOv5HFpklCQLEljNELk8FSpWlkm9TvrpfRve6V1d5PkXzxSMk/NkeG66oOgVL/85S9NIDU2l4skAbpjdTYSSbn0h7eTaX+kd+SzmCwxZTjz0JFy6c9fyJSJTizLNCwQYYWG9uGuu+6yf7rfISSB2eqhvUFVm/taW2RVXa3M07ZwLK16+CsAGggWBQEqaJ9BfTU0lDZaiYw5uqpITRupRelS8dx+qVhTLvtfLJGGLXVS+LlRknfpCMnJzpGM9Axp0m3Q0XREkiK9+iOSeY9W3k6m/tUMAx1BBJ2G2cnUK4FjZcb25sGdx6AE8tQPJrOpUfaoJuIxBRONquo8lkSsCO/W8zhHYmfsiQAYSaNSJfeCYTLylgky5ppxkqlRMBv3N8q+R/fI3l9sk9oXNIpkgobN1v8Ih008iUgRZhi3862/0nUy9U+egOjdu3cfXt7vH+ehywmZoj2N5VVE/dJEDN2qdyWfqGrNkap+b1EbaUVTs7Sr09WxJPwi8BwHGDBTKlJnSxOEqpdMsfV44vAUyTg11/hKJI7QnUrfLpf6rXVSuVq3CdcdQ8dXj5K6tjppaW4x2ohIqR4xvbjVGb1UWB9vO5n2UWA9JB8MqvceindMbtn+KlJ9ykAUyhcQweyMoC44ifRnvwy8f1s0lDJRA1nrb23bJ554ohkUuuO9b98+efvtt00UTXhAdMaouC+++GK3JCkCLWmY2vFyUtSAUd9glnk2axsASJhVG/o+zku0LnNUBYrTpb0egawYliwzBjjwUdJOABXBnH2DvZ9txxMLkiQ+U1dv5KjnOf4SCiRq31cNy6e1Mqf1FI0j0SkZ+1KkeXeDJBclSVyiKvF8dgFhwHM+EcFqKPxrTqbhyy7wSb4t5xMRKJX+/T0YZNovEAFowLmSAD9sYkTnPXfuXBPVDE92IlZiQwuVUO188skn8vjjjxvbNo5sOM0ROfCaa66R6dOnB+1kd+zYYZzfCDaEDZSZKMeECROMY5xb1xxqDfQhHWp9DTylaE06tN6q9Bh1CEQ0a7vYqwDiea2POdomjtM6zNZ0kSR8IGzQKcwY+Ef0yXarHWR8aoKkTNOdNHN09YZqJFJ09Ubcm3Eyc5e2u5ZEGbWpQGpeLZeUhUmSNDpV4tMTVAb+IQnafyzPSCJZv+HydjINV3LBn8OkR7/vyD8JxLpM+9WzozVg/fyDDz5oNi0i2h9R/3ZqyGC2WT711FPluuuuC1naLB+6//77zVrkr3zlK3LOOefIu+++K9/73vdMACDU08wwgxGA5eqrr5bLLrvsCNt4sLTuWv8lgJaoSQe9+JRk6VCwd0A7l4nauaQqsABA/PlgqfxCweXto0ZLjgKISIMIPJwJLER4atoCQIJZaF+JmUHSyFTJOluBxNg06RwRJ2t/t17Glo2W/Pez5GDVXpG9bZJ/2UhJmaqAQx00/dJIIFM6aBcRsK+11n16J9PuZdPXO7TNyspKo+Fjcueo/xIYDDLtl2MlQab+/Oc/myWeaAqY8WNGIIIg5g20FKESJhECmRBueM6cOTJ//nxj0waIAE62b98uW7ZsCZWdSxdhCQDm5uvy3vmpadKqdfeRhr8m6BS0Vc/v371H6hUUvqqBVN7X8NgDQSwzvvvuu2XJkiUGUPTHvyA+LV5SJmdI5kUFsu/Ecvlr4pPyVtNqadhXL/ueKpaS/94u1S8cMOaNznZ//EGQKZo0R/5JwMnUP1miJUPb5wCEk6lXAv3SROB/ADIlWiVe5YAAZnLMCrnXF7UXoAOTCMCD3UHhiX2YzV6ISQGI6CnYD6aPpUuXyvr1600YbiILnn322VKkdvLuBhM0Jmg6iHII4YuBcx55wDSCeYZn4U1Z6OC5h/qJe+SPPUT4qFCdkw4whC0eb1v+Jv/cI8Inv8ySuQ4P7vFLWsuD9/KxwgOZkDYjI9PIs76+zgA1+JAP8sSslXSWB/ll9kUaDoAeGiPMSqRD25OmAz91VFNbY8qXqr4NvKdRV1sM0821WnTZJumYyVNO6pWNp3iG/MKTd2cqv7F6vKvnL2m+pyuPCn3nu1qeA5pGOhRc6Ds2aL2eqtfQUqBNoozICdAJX/hb/wWCA3GP+ke2qKNJR15snfAMZaFc+ELQBskXcgPAssMs7Q++pCEt8UxqamrNeYpqT3ifrRN48x5kiJzIA/JIStRdNQsSpXm47vAZ/6nkaACq00acIh2lHVK+ukwaa5skcfcByTgjV0bMHC2lNQclPiH+cCdLHWFWQVbwJN+YXSgXRJ1zjfzTFviGKDsyp175m3zZdki5aD+0O/IHX8pBfVBGeFAWvhPqGLmRrrWt9XB7oozwIx384MXfPG95kAd42jZJ/viuaf+kgQf5IO+0E9oZbYN2R37RApEOHrbuuMe7SMfz5Is6IR33uA7PYG0NfvDlXfBApjZPPIcc4IFsbd7JL3WJvxT5hAfXbJ3QPsgHvwANZME7kFtiUqKRPXKJj4s/LMNRI0dJRWWFaWu8l8PWCW2PstDeutpajTlHNvChrSEL8t/a2qbtocF8C7buqA/KxWoSznnOloW8Iy8OnufvkpIS8+3CE6Jc1A/P0NbID/LgvZSbuuQ38FvjGm2tokJ3uTVtL8M8a781b/9H+9q7d68pN3kgL4H9HzJkWTR5oD+xbZJ0lMv2f8iJe3y3pPW2NerL9n/c4xnItidkE6z/s/KlLfAu6odneBdtgV/u2W+juqYr+ibpkC3vIh15sv0feeQ7JE+ks+3QtrW6uvpDss4zbZL25K0T6tTb1mgb3v4P+WOOR4tKuXhXrFG/QASCRZgU3HbkNBY0BgiOjydUooLhQcPkOQQK8TEgeLZppkEEI/Iwb94800ioFBoAIZBZOnPzzTebTiIYkIA3jc1WOml4noN7lM/+bc/5tefc8/7NOeUOvB7Iz/tMYNpg90ij/x+RJ9JBXfe68tHdOWUx79EO0cv/8Lna9Q+fU6bu0nnKS10Uah6mpqdJS3WVrNe/q/UjK9UP8UX9ONUT0fhMVGrHuluv7ddObJLet3nmfYH55R7Xu5Oh9xlTnkMysHmn7RDTAd8ZPn6bhvtdvKnXz+rPPmfTWTnZvwEECUkJkjc6X5pTWqRqeJ20nxonOQfypOXTJqn9UIFcebU0lzVLZkOadOQrkClMNe+1ZYHXYX6HymzzY+/Z99KJ2bT2eXvPXrfPeHnYcvBr09nzuEN1a5/z8uPcprM8bDp73fKz1wP/9j7nPbfpLB/vPXtuy2jTBP5tedh3B6bruk6Z1aHXtnGVgTedHXi742HamtqjbJ6Ql32v5WPvYbay5957Xt7e6zYt923+unh/9vf/Z+/Ng+M+rnvfAwxmBsBgBwFwFcFVJLXvqyVKXiTbkq9tyY63FyfXde377KSc5P7hl3quynuVl8qLk3LZsSt2ylnkxH7xIu+2bC2USO3UQi0URUoixX3BvmMADJb3/fSwyZ/GA2AwA4AYaFoazmDm9+tf9+nuc759tg5eM9lzg99zfSqd/N9cF7zWf/bfB//+/XuKtO7Ozp+3tveswpp1D8/0dfr++rr939n0K7UO/vZzlPama1PwnnTPnmk7qM/Xybunk6+b73ybAK/B+vnseZe/L1iH/y14Hd8BZgFwXOuvdw/Ok39yAhEwbXwgQMWcVwA6fOyxx2znzp0OZbOrz7QwIBDSC/LgfXwHsfk9XeHwrz/6oz9yaI4JDrLjBMbvf//77kAlQAmIMLWg8eB15513up8AHaBNBBAvX4L3esDhf/Mo2f/t31O/5zm+BOv23/n34H2pICyo6g7+FryHevyuns/BZ4H2a2rPqssrKgMgLyVreXXNWXpxX7CwC2FHUi1an9DOY1y7vXZ2cfV1tlfRGo+2DDsAYWH5JEircVzC+Ih2zDfoPgo7v2AJ0jf4PeAxWIJ9Dn6fGsp5QfUFwZ/PfGZsg4VcEulKsL8scK5j3Icr5VR2UchW3NhsvY92WNeuThs5qqgkaSS6+lqt7j1NFqurspLSqHxFQpOaJoLnzPB8P16ACNoIfSmpc22y/qeOfzBfhmayq4t/Uu9Pve/MhfoQ9MsIXhf8zPXBsQvWDw2DdQTnYfBzah2p9fO7L8H5n0obNhK+BNvEzhKa+rYE6wh+Tp1rfkx8nf49da5N1l6/CfL3TTbXUvuRep3vV+pzUq8L9sU/k3d/kJz/Lkgb/x3vaPSCJTiW/nt24fQfWvnfU9vlr41VJLUH/u/gmkodf38N78H6/DP878E+Bn/jHj++XBscu+CzaEOwjtQ2+ufwHrwu2HZ+8+sz9bpUvhasI/g5ONegKWPEuNCnycaHZy3UchZiZtFCOv3Zz37WCSoQKkDi61//uquJVNhoBzItAAUWO4wUwvrikRq/AxDSFSaK332yeDF/3HrrrbZ+/XpnokB9VCizSwGYyVKpQSsEJC0kLCqAd0r5IrqkBdIgmlRJFhJIKdK4bdd3/193lwOCM20F3gaz43Ew0ycnr2dnAFMCMA8kBq2/ashq3ttoS+5ebo3vWWblq5WcqmXITv36hLX8+xHrebDNRg7FbTwxcw92aJqPTCQ7ys7PXQWazh6d2YGzYUsVqrP3hLdfTYuBpjlpIjBBcMIhYGHr1q1nzAlMskPyNwBUrFu3LqOZASL3x4lj08V2B0MFUOAPAWAJos2MKtVFgJBCmX0KoH1yzAQQgV1WNt4fdrRbZ1znS0jzUCOzwv+1fIX9u+yLL0k7MaxXqz4v0fWZ5ozAUbND96BUbE7RIsx+j9LXiOrRgwgAbr/8UorLS6z8ihrllQi5/BKRxyM6EVQmvZdlLx9I2NBx2YJvrrPSi2SWq1O2ywzDQD1NgzuV9K0qfJspBQo0zZRS018HL/b2++Buf/o7C1dMRoHFQNOcNBEw1Z///OfOpoMKlZ0/oAF1LSaN3bt3T0a73/seTQMg4ZJLLnE5InByxNfi9ddfd3VhDkhnHsEJBj+Mffv2OS0GJg/MEjhMkqIVB8ugSuv3Hlz4IisKMF5OwGp3skV+EWGBtZc1XgcFJqoEFC6Pldu7BQIbtIu3kpDARdyelUYikQGoG9c17RrXrytE9H8JjN6j8SX3xLmAg/QRMIsmwjsVcrR4qFKas/MrrfrWBlty51Kru6nBShvLLH5MTqUPnLA37nnVnv/uTus/IL+JeHozXCrhPU1Tvy/8nT0FCjTNnnapd6KVK9AzlSq5/b0YaJqVJgItAV7POFA+9dRTDjzg9Uph5w+6QojPRO0FMRH2d999t8s98ctf/tKeffZZ5/2MXRNwge0I72XqRk25ceNGZ+JA4/Hb3/7W2bGY5IAPbPaEh3JseQFE5DbR092N6QnzUp3ofbVskock6Lvl4SyvI1svTdStGssV+v0mAcOjAg/H9dvPZFa6XqCCKI3JCkChT0Dwuxrn70nb8frIsHUm6u0PZPPeII3HfJ8UyrwERDCv0LzhqOcLQCK6ThEWSjoVqlICKiWp6nmpy3qP9lrv4702dDBhnWXLrei6Jitbo2iGKjnuTqGV8DT19XstGm0olOwokErT7Gop3AUFmIfwdFTwhTI7FICm+HTkM02zAhGENb344osOQGB6IOEUQpsC44PZ4puAoJ9JYYLiS4F2Yfv27c6fgTo+9alPOUAAGEC7wG8ACJyB+B3GjsYCYMPzcWIBdOAw2dzc7HaRM2lH4drpKQCdeXEc+BVaBD/XYhiUtqAkErUV+vsWhXmVCSx8rEYgQqDuOwKZv+3ssP9TNlVSYU9m0ugRAH1S1/6/AobtcmokyuNUv+5VHSs0pyp173yK1KA5g3mJNiJYyHLpjhZXuuwSJZ6akOLl+LaTdnJ3izXGl1j7z09YiGCVG+Xgt1khwzXybFeabedIPJrUUIQjMgmpeJry2YctwmRYS7wKZeYUCNJ05ncX7kilAPQslNmlAGs9n0tWIALkhHcwzow7duxwZgaEOsWjVc67SPUgno5Q3AtQICyTV7qCZuErX/nKW3664YYbjFehzB8F0PYwD6rlq3JxWbmFNXYafKuRQNwof4hLBAjDAhFoD1bo96LikI3KpHFYr1qZBoJgwIEC7heDekYOuv9D0TVdgwrn1T3YMF7TPf+gePcPKmohpjonAyBz0XtABHMSTQQaNgByanFnb9QqBv4ddTovpMUe2vW4vTC4yz5pd1v5i8qF0Vtkoy0jViPTR8V1dRaqk5Om+tfTncy/sXzFclflGZpK8wFYQePGczHjBaN7Up9f+HtyCgRpOvlVhV8yoQDCDtMx6z41qiST+wvX/D4FFgNNswIRhLjg6EgUBKmp8WUITioYL2pE7MiFsjgpgAaI8cU0sUpjHSKcUzqCzQIQN8JkAhqDTZor10owPtveZp/V2SjMlZW6Z5Ne60n8pGsrFOHRpp3+DuUKaVNCn3EleqrUdaMKEY2TxEfaiGdlRqvSXMM5cz4Lqka0ZIDcdCDCtUUYqFiHch0ePW4HE0dsV+Jl6x3os881fNrspDQLO8Yt0T5iibZhC18Rs3/66T/bic6TLjsr6dpZL56maPcIlSYFPKCZVO44Wxa0ETMfdU/Tmd9ZuCOVAqwDTMpBXp96TeHvmVFgMdA0KxDB7ogXjA8kRapq/CPIE8FuzZd3v/vd9q53vcv/WXhfRBRAtY9QRStQL6H+BTm+/lgAYIt27ZcKRBSjWThdrhKIeJ+A51NKQrVfmgYiOQ6KIb2qOVSrV0QAIqK/B8dGrUVaB04ArZCz5jXyn4hrPu3TvOqXyeqb2gWt1Pf4YQTr98+Zq3f6yVwHHNNvVLp893tFX7157E071dViiUjCjoZO2MNFj1t9Q71VJaqs+8UuG+yU4+WeLtu+42E73HfMHS9+5ZVXOgdg6qYcwpn0nntc9lV20mj00EbwChYADYnVvKYkbZuCN6T5TF9Yw9xL/xZb8fN0sfXrXPSHucKcY74UyuxQYDHQNCsQ4cmHL8L999/vTvF84YUXXLrdiy66yIUBASb4XCiLkwI+ZTC9Q+vwIWkmuiVEN8l00SyBGyznyZ7/LmkQnhtssue7uq1NaZj7xYj6xZAOOx8DBLLsFjAnCbMImgq9bquusXIJtkcEMu49dtQeF0jZJzCyRamJAR/zWdACIGgxM8BEJ3OEIgQOx+OaulqLhpUCfPhlu331uy1apDNGDkno7+2z7mPtFjpq1jPcbaybx7Y/5vx7AAS9Pb0ubJqj7Sk4DRNGjbmQqCffDp5DBBOOxuREAWjMZIdIFBOgn+egVSSyaqbmx/mkf7bPCs7TbOso3JekAAIPB/pCeOfszYjFQNOcODEhnj/+8Y+dMySLFYfGv/iLv3CqWI70Dmb2mj2yF2paCBRg1+p3rmgjcHp8n4R+UyRpngi2kYiKC6Wd+PKq8+weAYAXhofsxPCI9QpEDApQTMjBMCQthPN1kFYjIqFGxMfWqkpbp3M9yLn4s1MnbUzz7XlpM7bItHCFrsEPA/gxHwUBTX8BEQBkPgd3/jADvj+msFTWBTlPiOrAr6GtXmdPNOvMhyXlFn9C5wScKrUrxy+14YkRO3m41R687wG79sprLFpRai/vftm2bdvmdnyYMgALnO1CFBQnlCLocWz+3e9+Z//1X//lbNRoBW+//XYHMvyYTEUTQBB1UOc//MM/OA3HJz7xCdfmYJ98HfQt3ff+94X8Dj0yoclC7sNCahvgOV/nwkKiY7AtrN98pmlOIALmgnqLQ49gnJx9Qb4Ioin+/M//3EVSBIlV+Lx4KICQ9BMfJXiNFsKtApGTlQoxHwQ/DpevSYP1uHbB2/V6SZ/JHVElZl+pF/EKGMQ+29DotBrc1yABHpNA7pfg+4HCRCul6VgmsLJcgAOAQjvmGkwAIljszHdU5KnZUxHM+DKgGaA9PmcKWoTd8X122crLbeOatTagkNVX7ttnl4cvtvMj623H6FP22HNP27O/espuvvtWOyTQgHDHkRJT4MMPP+ySrZF3haRuhDv/5Cc/ceYOQqDRTPzoRz9y+VkA7ZhdpisAISKqAPxEO5GQibp92vng/RPjyXTzwTM4gr8v9M/BebrQ27rQ28f8h9cXQNnsjRQ0xUyZzzTNCUTALHGu4x0VF8z13nvvdYdywZhI9FQoi5MCJPRCsM4kuyKCvkRAYT0gQPPmnQIGJyWUD0iocZT4bgFR5tJ/ExjZJLCBKYNyqT5/TTvw/yUzQa98Ku5ROPE2+Qqsk1bjnfLBuFovDvfCQXOuSlATwTxP3Z3zHeYFZ8pQ+4lOuvHGG+3f/u3f7LU3XrOTt7Za09pldl/vNvvdwP32iZq77NKiC+zWwRtt5ehye+HXu2z3G0pQ9eYuB1Cuv/56Z8IAnKDh2L9/v1tbhDJzLgwn3pLYDQ3gnj17XE4VgMd0GWIBQdz/7W9/2wEe/Ckwo3DaI6rq1Kyw7cpC+vLLLzu/C0wqwTMA5orWs1lvNvN0Np+/mOpiHh44cMA5VzJvCiV3CiwGmuYEImCsH/rQh9yBSqhuYWjsjhAEMFHUr4WyOCnAGPOaaeEOIjp4ob1YLo3COgEAnDFPSRBTNp8GBN55sl7X3VBZZc0yl+yVOaNVQo8MmIf0/X6dyfGrikq7RYL7ds3B8zUn5yIElLC2s5qIs87DrsH6B+EMiEAgI8g3b97stHLshDEdnGg7aXUNdfb460/ZQCxukQ1Rq69YYo2tClk9ELIlp+psZ9cuG0wM2MqlK+z8dRvdGkKjgXAnM+yTTz7pTBs4WzY3NzttB34NDzzwgDMh8lxyp9DWdAXgQz2YQfC18D5LpJUnzwuvIIgAqKAJ+d73vufytHz84x93/hPQIV9KtvM0X/o33+3MZs3Pdxvz7Xn5TtOcuAGq0/e85z1OC4E6BtUqL9SlJHvyuSPybVAL7Z2eAoQ8RlxY5/TXTnYFwj4m7QEvfCpId03x4MHfh+/DUv1+lwTkD5R86oDAKiaQDu2MOqSd2KVzOY4q4qNFphFMKphNACiYOmar0F+EJ87Ew/LpQCAHCzsKfBfQSAAcMOvhsLhlyxaXS4Wj7AHZB48dtLXNa3US6GprrFtmY28krGuo2+yE2caetVYuEBSTL8iG2Fpb3XSehSsiTrijgSAKCpMhvhJXXXWVAxnYqHHO3Lt3rwPwhF0DYFIZEyCH6zB90BacNKmDjQBmGEAFz7jwwgvPdAtw8dBDDzkfDZ7LpgCQkk++TrMxT88Q5G3+gTlVKcAeVvh1ocwOBRYDTXMCETBSAAM7FgoE8Sd3AirYQXENWop8tvnMznRZXLUUF8mxcIoUztn0NhU8BOsgydRnFAHSMZqwsHb7LRLWXSMJ52w5qs8vScgdkZB+UQdkfappqd0o89oKmUwium82itdE4PuDtiEIIvw6wOTAGuBIYAQtfhOsB/winnvuOefbANjYuGmjNd+83pbUr7B4U6+Vj7fZ/gcO2qaBDXZBySYrHgtZc9cKi3SFrKyy1K64/Ao7dvsxO6TQT9TIV199tREWirYPHwlSvj/66KPOiRPQsnr16jN5Leg7z8RcgWll165dTtsAgADoY49Fw4H5EWdozCd+rQIiMGXQP86mQcuItgNthb9mNmg7l3XMxTydy/Yu9LrduM8eNl/o3Z2X9uU7TXMCEahS//qv/9o4ahvm6QtMB6bLbgwmiuc4WovgNf7awnt+UqBDKawZ4/myjaK1WCqh/L9JaK6TVuJJCfKXdWJor+ZVm7QQQwIQXfKXeECaggf6B+wrmnt/IEG+SteenZnZ09rtaPV8QATmCRzMvFofIc1aQBADmBHs0IU5T/jlD37wAyeo0dIhgK+44gpbvX611a7SdSuqrUhncDx2+Cmz/S12Xv9yazq5xKK7BMJr2q3onUW2qnmlvfe973VaEDQd+D6gjSBjLH//4R/+obNVe20FZ8agBfTJ3mgb4OHXv/61AxcAjcsuu8yBEfyWSCCEKYO08dTnnUb5G8dLxpk6HnnkEfdM7kHLkg9lvudpPtAk2zYCME8qSipaGs3IgTfb57yd7oOmp1pO5TVNcwIRqFJRb+LVze4H+633/AZdob5ll8MO5/Of/3whvngRrQ522l5IzWe3yEOxSudzvE/CuEehoUekCXtQPgLbZNbYK2BhMjVYf5997cRx5aMYtf8ugY6TZq4FQQoowB8BEMHi9wVnSvwhmO/s1NFEcD3rg3WBeYN7WRPs/NEAADbQ5JTUhq1eB3R9eOJue+03eyz8qkLoOoqsa0+3jY+O2/jIhFUqnXbTyka77bbbZYrY4zQQzc3Nrj4E/jXXXOPqRCOIxuNXv/qVyySLWQMwg/mCUE5MMYB6QAwAhLZyPyCCd7QVmC3I8gh4OCTNB8AfEwcOioAkQlYBKfni73Su5qmfG4vpnfkLv2cuF8rsUACawi/ymaY5gQjAA4xl69atTr3KLovv2CX98Ic/dMwT7312QJOdhTE7Q1GoZb4pgBANqvTn6/kc6sVLEMbGIhO2Wrv7VRKA5KF4SAL+EWnFumTSOCFT2s+kg+AI8U8LSFyID4fuy7YACtAk4FvA+QFBEAGwQO3P3Ef7hr+Bj1riHoQ16wCAjUBGi4Fmg8K5G5HaqK29br0NjQoArUhYxRulNrCnz/r2Yw5UDq7hMYvdUGNr1kp7cX2NLWlY4kAKAp4XkVFkhyVHBSCCE3ABNgACfkeDAJAAVKCh4B1tAv4QFIANdQBCyEtRpxNT8e84JBCBxgHAAPAhsRwaDXwzACEwPupfyOVczdOFTJNc2lagZy7US39vvtM0ZxCBypMEODAmdjMIFhgmHuCEg8FAYWjnQuCkH7LCLtuhkQAAQABJREFUt7NBAXbd53JMEV04TpK5skaCjiiPZgls8kf8SurBkzJt7AdI6MIigYcv6jqOJs8WSHhNBEAA810QRDC/EbqYN5qlIWAnHxSuhGtiLiCHBL4MmDuCWhw0EmVLdJjZ+XVWXG1WuSqqs0hCOla82wYPDdjEmDQSiXGrsQZbdcFyC5UqrDoAiHgW2giEPs8ACHizC+0lBBTQAoBJgph1rg1+HgAs2A15Hwh8LXbv3u02CPTF+04Q3ocDJ3kstmrjAJAI9sPXt5Dez/U8XUi0yLUtrHf8gebLhJlre/Ph/sVA05xABKoYmAzMBfUsoAH7MDsamCyMCybDNVxbKIuLAucSRAQpCaAgU+Y7Nde2aHdNAOYvT56w4wI6RwUkvq+5d4s0CdUS8nVZzkMPIvAZCIJiaIC/AGfHsGvHdJGaS4F8EQh6hDu+CGgAgiDD9yVSoeimDRGrPK/SaShCkZB17eq0AQGJsbjMJ8NSS4xNWNkWnSq6REeKR86uKZ67VYKdk0Hv++19DhDQTkwYPAtggPbhwgsvcuaL4HoEROBn8eKLLzpzBQd+4V/B/ZddepnbIKCN4KRcwBCgBEdO7kGDkdoXeAAaG3gAmhjAVeo1vs/z8b5Q5ul89HWun1Gg5exTON9pmhOIgGlipvja175m//Iv/+KYpzdx8D27LpgHqtZ8tvnM/rTJ/xqxo59LwZCOgmgm0Ej8pdr2hoTYidFTNiEhmujts1ekmbhEQILDu7IpHkQwv9mNeU0Ef3unyubTWghvqvDPYZ3gh4CwRgvhHTL97/7d07R4Qrkj5GyJT0VxabF1PtNh/W/22WjPqE0kdGBWfMzKL6+28PKz5gTGYq0yYhJyHSoJOW0B/gsD6jdhn+94xztcXoiVK1fIFPJWHxHvt0FfADq8CPmkjyt0/coVK936/eAHP+h8JX7xi18Yr9tuu+3MRsH3gXfABz4VaAE8TehzELgEr5/Lz56mc/mMt0vdzEdMcbwXyuxQYDHQNDuOepp+mC8IFcNpC+0DIZ0QBUbJzsgnrsG84e2vs0P6Qi3nmgKYsQCGaJkWUiFMFK3EF9SuktGE/U45EAYTI/Yj+QfcJE1Zc5ZOYQAB+ssuG1OB3z2QYwEzAjtvH9qZDjCjnWDXzvqYDHydoekStb0ubLGtddI2yO8hXGwlZSXW+1qvtW9rdaaNCWkmABKRdckjyhmDquoq27xls4UjYSfc8c2gXTjD8cJXiTakFoQ7fhBoExH+JK/CLMI6xhzJb1zDZ0wbOEsTzgpIoT4/BwAdAAj4Ab4ZaCFoA34imFvQhtCOuSr4gKApgv6+n2dousDm6VzRYC7rBWQy1xlT1kOh5E6BxUDTnEAEzBD7GLs0QAP2V75jggVVmOmYau7kL9RwLimAwPCC9Fy2I/XZmDYimoPXa14eHq6z4xL4r8iHYf/ggFJsD+u4ce3is9hJBTURQRCBkyWRC8x7b8pI5ycwmfYh2P4zNFUnAA7hhqiVX6XzSGS2KArrS20AB94YsO6nO2xiBD8JhVIrgiO6NuauB6AAVtA8ANoBNQhR1ijZKYlUSNcO2s61CAeAAVkq2RBg/miWdqVMx69zDXUSmUGEBwfvPfjgg067wmaBeqELGgocORE2gAh8K9DMEL3CIV/vf//73ffBfuf6GbqhHSKZFv4qjBX9wVcLcw7tKJTZoQBCbyGu+9np3bmp5cy6PzePz/mpOYEI/3R2KSxcXoXy9qAAggFN1EItjfKP2FpVbYeVzXK3jh8fFMA9LoHSLU1CNiCCvgKGmesIJs9ICfdEC4egIsSZHTDXZFNSaUrkRnhFqZUDKvS5GB8IuUXEDw9az64uFwI6IYfLiQlFeKwqtVAs5DQdtMFHTwBwEPAAAvoAGEhXUPvT/h07djgnUdqCEOYVBB7Uc91117n02STRwnyCOYRnIsBJq02oKIAEDSSaCaJGOHIccINfBQI+WKAljNQL/ODzgtel+8x9mJM41RTwwnjQFp6B6p13nos2Zbp6Mb8AntDe0P7prk/XnsX8HXMHQFqgy+yNMjT1m+7Zq3V+a5oVEDG/TS48bSFQgN32QmcmOFliwviOkuMMSPC/LkBxvHrElmexM2WXD1BAEKNx8yACFTpCE0aAsILJZlvS0bQolAQSRVFpIwQkeO/c0WYDB/qt+5lOd+Tp+NC4VVxfa9E15RaqSJpLaCsCH3CACSbV2TO1jThJ0n4KYADhixnCmyr89Zg4uA7AgUkDTQPJq6AHESo+IyYRKWg/8MkAQBDRga/FIWkoUkEE9ESjAy09IPHPm+qdZxJeC5j5x3/8R9ceQAWbGUAQmhPML5yGCj2gBXM2FUhxD2YpnGNpI3+jMUHDwrhPVWgDwIMdOnODV7pnTFVHvvwG3aBjtiA5X/o5n+1cDDQtgIj5nDGL6Fkw3YWufQpLI9AopnexDu56buiUPS5mf41U7ldlKei9kEfoIWgQIAg+BCD+BAhHmGy2ZTKaEgKKaSN0g3wTBCKK5SeBVoIQ0NbtioQakYqZ12idi9woLk0KPr/LyaQ9+CoADNC2YJZA4AIs0oEPrsWpknBPAAJhowjSf/3Xf3VCHYdq/C/woYBOCGLSZpN0Dl8J/COCBf8LclCgCfjABz5wxp8heE26z/g/YH750pe+5OoHNCH4qQda4t8BMOC5mHU+8YlPaowa3wIMaB/Xc6YILyLNaHuzzDhE0qDVmKww/gA0QAz9h2bch9mIPqeClcnqyZfvAUpolehjLvM8X/o7H+2EpkQ8AZ7zlaZZgQiYJq/pCrsWXoWy+CiAcGHXtdDLWgn1/yG1+t62Vjug9NiHpZEYkuDgFNGZFr/TBEQgwPwuFHU6gjVXteSUNJUVokiRGmWXKtNlidqu9odKS5xZo+M5ZdBUZssJXoNyuLxUJpWYlrbuybSwu0SLgvkCgQtT43M6EyXC8s4777Tvf//7TqigfUC4IEwxAwA+MKfgP4EwveTiS84kvDokTQSC12uxEL6cyfHVr37V3YejNs+eTgMA/TGd/PM//7MDC5hYMJVgtsAcARACnDz99NMOGNxzzz3Gs0kRDtijv2hJiELhlFLaAPCgbYSwch4JYGCqXBg847777nOHlHEfmhtow304keIjs5j8waAZmql8FXaZroX5vA6aIiPzmaZZgQjiybdt2+aYKIsHdS67NFC7/5uFREgYNtNCWXwUYJeVDzstQjqvrKxwgKdLgqd1KG6tej9P4GKmJRVEYMNHnY4wYgeMwJ1O+E31zOloikaC0M/oJvkegRHkbKlz0Kz35W7rU+TGeGLMxpTdksRU5RcrEqRaSalkAsmk8GyE3t133+1MDySPQ2Ck6w+CEaCAoET44kcBAIEWAAd28vyOdsaDE3avaCPYdeEnAb34jZ0/2gzMCOzKMKUAAiaL5gK4AeLQGnAmCfdjNgF8wIx5Ju0DpNAHgBnghuvInAtAgk/RL29GwQzDdRxsxrMBReTBwEwDKAEYpCuAiJ/+9KdOuwKooV76BZBibpAfBDrMtEAH6oOX0k54K+8LYb0xZguhHTOl6UK+Pt9pmhWIgFniNMVCIQUuKAoUzndMfpgEqB+Hs0JZnBRg7POhkKGyQUeWr9QRxr3dOulTh3a9KvV1riACYYPAw5yBYEPY5AoiMqKpMEFJnTRAGwUgTjtbAi569/ba4MEBByDwkcABs2yToqRSklJNNWZoU9Aw0B9yWiBY0xWECH0l/wtJqTBr4IMADTCJsHsHgMAcKVxPfQhzhDj3kDcDUIapYefOnU5gQkte0CEdiEC4AlQIQf3P//xPl1ALbQkAAtMJ/IfNC8LcAz6EOt9hRsH0AUDwTJt+UuBdtBtHTIABWlb8PQhl5TfqSG0PZhAiQqgTTZTfQMH3yPwJmAF8ZOKgSb/oM1oZ6sS8wt8eRHitDc+Ev/LiHvpO/bn44dB/6OC1N4wV/DydBoXrAMy5Po9nFkqSAtCU8c5nmmYFIlAd8oKJkpP/rrvusptuuskxESY+qs1vfetbZ1SWhQmz+CgAE4Op5UOJhort5rpaa+3vs9dk0nhGjPo2CYbM9uhne+iZK4IORs6umjXA9whNGK8XnGfvyvzTTGhaUhO24vOV2TKqHSoaCflI9O7usYE3dQjZkISjwj+J3Ci7sMrCjYrKUMjodAVzDLt3BGGzNAf8PVmhr/hFoPZHaCLocGJk541wS2WKaAv4nl0/Jgb+hlcgrAES7LYRopggEMoI7mCBNmg8cdD8u7/7O2d6wAcC7QHv1I0GBCAEgJgYp/8TFhqVX0x9owM2mDEwX1CXL4ADsnECmAAbzOnh4RH7j//4rtOyAC4wr0CP4A4coQvYANSgwaE/0AsfDPoHYIIevCYDY7SBeUQ9+G/4Q86IMAFE0BaEDO3lOr4D5CB0eD4Oo4wBGpPUwr1cQ5uhbbp5SZ3UBXChDdAXegCceKUrjBltKpTZo0C+0zQrEOHJ5wEDi4RdCAVmwqJjYrLAZlpSJ2hw4WZSl79/pvdlUnfhmrMUYAeUjjGdvWLhfIoVh+wzSuD0nATUo5qXz0hYjYkRkuFyJsWDCNTgMGgPImC87Dr9jnEmdQavnSlNixXSWXp+hfwfiNyQj4QARfeuTuve121jAzhaSghh2iAp1fLkYVvB56V+ZjzRKGCmoC1oGyYr9JWdO0KW3T2gAu0CAg0AkEoLhCnXYrpA8/DpT3/aCU20EghHBDz0RAh7n4zgswEWmFD/8i//0oVx3nzzzU5Ao/Xwp5ICHlj3AAi0MYnjcVsyUmPLVy61TRdsctoQng9Y8XyCZ2AqoN28qqqqXWrwRx/d4QQ713uQgjD2hTpoKzyQ8Yf/AaCgG4cS0gd8K+jTVCACEEq/HnrooTMACpBK/dCFucZ7OoDJb2t0eFo6EAE44NnQBNoyrqkF0MDBceTXwNREu6Enzq3pQAR04nlBOqTWWfh7ZhSAps0CqPlM05xABIyCScXRw5guWGxMeNSAqL08sMiErCxGdiHf+c53nOoRxM2uCC0H4WIw8KkKi4w2/O3f/q3bHb7vfe+zT33qU1PdUvgtBwrghIbgYPe20AtgYa0YfSyqI4wFIuKao0fFgFdpTs0ESNBfBAZznPmJxs3b92G+qYJzpnTJhqaEgAIQKq4zp20gw2XopZANHNHBXY9rF4uPBCGgV5vLOcH1UxUPDibbvabei8CBLghNtDEAhXTgg106WgJ+QxsA3fClAEQgeIno4PRRfCPgA8ECrfE9+Pa3v+2EKn5WhJlyDxEUADiEJWeLDCn0tfcpAalHO2zgmNKTN01Y0x0rrem2lY5X1dfV25COiwcEshOH79AmeBXvMHW0Gh/+8IedwyVaErQKJNgKmmjYJHkQwaYJjQi8EMGMRoFoE0wdjz32mBPMqXOD56OVwamT/Bbc4wEJ7QB4QFf6xb28AwSgIwAIh04PNoK04jP0AsBAM8w8mJ0ABfTNF9qGYyrgBfAAv6ZNgBr6j2aZ5wc3Y/BY5jygZCotlX9G4X16CiwGmuYEIpjseDvjaIlZg4lLYeKhZmORZ1qYnEx6FiYhYCwYkDRncjBp2fUwqScrIG+OH8c+yyJLZUST3Vf4PjsKwIBLSs7uzLKrZX7uQmwSjbFGDLixr9dOyrnyN9rt/TcJDlJkk+EyWIje4AhxlLYsEIAG4aJRzT9ABMwWIYgKGmHC/ERA5qqZyYqmajqmDJJSxdRgZ9qQrwTmi/iJQet+VieOSq3PwV2xq2p13obi/E+HgAb77D+zdqdaZ/46/84uGPU76xZhCqhMt6tCgCHsUf0DFLgetT/ACeHLmt++fburC+EIc/VCD6DBtWwSAA1sLvCDwISwvFEaoF6Fuz7SZv2v9Njg6302+OaADR+LK2Jl3MZOjFtfRadVLqm0ypvrHRAYG5cDqupH5c+L9iKo/fhVVVUamxA0LPhSwFPgJwANfw2aAkwx3Ee/8flAYCOAAQCYePidXT6mAgAI/eF5AA36Q3ZP3mkLfUHQYwby4MH3n9/hafwNmEADwXVeS8FvQWEPL4WWgDJMPNAdnw1vrmHu/uxnP3OmKEADbeM62gvtcULle+a0bwPjzXNGRhKuD3785+Kd/tI3399g3+bieeeyzvmi6Vz2MScQgXYAD2QmNElnWCw4FLEYUF/i6JRJYWGxO2HSv/Od77SPfOQjbsGSfveb3/ymW8gsYCZ1ugKKhimBrrkuHRNLd1/hu+wpUF4ek3ZIu788Kjdqbr7a020v6qTLH0ootIlZXS0gvE7goEIgoVd/n0yM2JsCCXGpxOldWEKVRcKR4x1iolGBCHaMzHVALrs+5jwvL2CyJUkuNAUYRFbJZAGAkLahWKYNe0HuERKmPc91yrQhHwG5sMSukGljZZkVl5/dlWbbXu5jvQHwEaYIUUDWZHRobm52AADhjC8FqbAREAhgTCiAMTYDCDKAGnVRULkj4Ni0YLqAt1ywerPVd1dbfI+ykQo09D/bJQDRb2NDAh+KYClfF7Niha5wcNngi/3WVdsmjU2pRTfK2TRS4trrKk/zD30BqBBpAoBBS4BGAk2r5y3wnEPyHUHgo0mB1wEemAcIZUAOwpzNFREs+C9QLwKayA80CXyPYCfPBposhD31BYUmn7mP5wIgePFsnsHc86YOrvEFrRBaDngi16IdgrYACejqw1L5DbrDr6mPAmCCF9NOol2CIIJxhdd7GgBGAIT0Gd7sx8u3Y6bvCFTGH80PbfPAB61HLFahZyejrIL0mekzFtr1qTRdaO3LpD1nZ14mV6dcg/Bn0NEawCBAs2gfmNjsTvCJgMlMV0CdTHwm7t///d87ZM+EZJdDnewGWNDpQAQTj3uxK7LLYZFhP82keIblr2dRgILZESZ3hcnsdnxHYfHwPf1m0TIBWJQsND77HQPX8ZkX1/E7feQaPnO/r4P2I5SC9bFIfB1cFwoxTEkHK/8s2sG99JdreBa/cS/18SzfJn6PRqLGDozfuI4XdaReR33YlBOjibdcR73c458VDidpAyPz7aU+CnVSeBb9oJ20jwLwhGZ859vLfZ4Jch2/Mf7QzF9Hndznr6MdvGC63M9nruF3v4uhXf7ZPPc6vZ5T/55T3x5vb7PHNXdv0a7zlopKW6Z2HtC8fUFnbDyn546KBtX0Q3WocmvWfeswhah+nsXOlHnHs2GstJd572lLX1P7T3ugL+2jpPYfmtJe6vFzLbX/3EM/PZ38POFvPoeWKqxzImrhkTKrDNfYWEinjr4h4fqE6Ko+jSS0i726zqKryi1RlJwn0Iz76RefPc38s/y4Uj/XcK1vO31EACHg8YVgjOgn1/Eb9fE3n1m/rGmu+clPfuLAAusb4YwgxqcAIQbvYC3ST+5DIKKxWFJTb2vqV9vFNTpI7HC59T0rx8bHO2zw2IAlSkYtqqPUS5vLrGx9uZWuLRcADFv8fp2X8vqAFT/ZbpFlEYtVjFnZUvkHCGjRD0q6OUn70Q7gyAkQQKMAEPBzivYBIuF91UpmBm0YN+6jPswbaGhpO+ZeBPmgMqYiwH/xy1844UufyW0B+GIOQVNoQ7/5zIv5DbiAtghTroMm3/3udx2wQtjCx6AzbWDsAGHQkIL2BtCy+jxpiWTK6RaIxiyECQOeyumuPrIEMAjwATSxIWNs/FhSF+1h48B8oK9sHO+9917X/ve+971OC8P1tAPa8qJd3JcJ//N1fuMb33AAifnSLLkCyFm9uln8fbkDNqw1Pw7QCh4U5EP8xnN5UaAJdPRz0tOWfnA/L36jvZ6fQmO+py9+/nNf6nXc4/vsr+M+CnXwG4U28Dl1rvGbX/eMPa98KzmBCDqMOo5IDCbU1q1bnaczqrx7lNyFSfrxj398WpqwINnZMYCoA5kkFBgTqkImNAslXaEN7BK8zZRrWbyZFBgW92G/pKDCg8mxCFlIIHEmEapLJg+LHlUkE9YnCAG1swOBmaDaZiKB+gFQ3OcZLAAJJsC1XEcd/MbC4VqYBP1lETP52dlwHa86Lf4JbSNpHwueehBiTFKAE4wEGlI37YWB0B6u4x6e1axFyHXtHdIWyXksVhFzjBmac11/n2zJUvWvaV4jn4FkmBt10E+EJQsIBgYzoE7oTjtZFNRBO2CqLBauG5fAgvGz8Flo0JQCo/L2X/pCHdQPzSj0AxqyE8RcwPO4jrZwHzs37vE0ZBcLQ6SPnr6HtEOEFrSL7xkHmPi42rNWjPwygbLHBCREeHtENHktpOybauMbutaUIludcMChhyQMoqcaYePqf2+XaKnP0J1xgkEzL2hfRGGk7JahPzszGAZjBCOk/wBV2s38pn3QiTGHrtANOvNO3cwLBAf103/6TF+gB/fAEOk/11I/4836oA7odKDjgFVuqLAQ3TAJ4mJpIZ4bspYHT9jx/uPWNLzCqi+pt5Zwh6uL+qmPOvgM/ZmT9IM5CX2LRAvm/8BAvxsj2kF/WLee7ow38wKmz1xjnlAHbWLd0G7q4G/6yn3Qgz4wTtyHwIZujDXtoX40EX29fbal6Xxrbllmg79ps67D8iHoF6OX2SbUIDZ2YciqNyrRVKny1ox1aRwGbN3l661/cNjiqqfoTbMjPzloibKj1nzrejmjhlw/GJsN6zfYkaNHbERRGZUClbST9jVLgGFqYWcMr2Ae0Q/WLOuetvE7Y8j48qLNzDXmL9oFtC5oVFkThMPTP+YGv+PvxTygQCdAC32HLvyNMGJcAFe883zGHNrDIxkn1hVzkTYxZ6C/9ythXrI+4Y/bHt5m/Ro7TM60CW0O19N2eA199msd0IFDKQCDsWEsmef8Dn+lL8xNABFghrXPd5iamKdNjU2urT29Pe4e5hBtYtxpO31hvKmP+e35H/P7r/7qr9yz+Z77mB+AGdY5z4Cm0Le4OKR1pXNwVCd9guczH+kTbWANMZcZX2jM/TyTMYP/UVdLa4u7ls+0Cd6DvIGWnofSRvrKWHAd9OU3xgT6d3R0ujW/cuVb+R9j6uc8z+daaA1g9PyP+qgXmjIf6C/ty7eSE4hgwXxfWetwQkL4ekaJoGASMOkzKRCYxcGE8MiN+5gUfofHZEhX0FKwKLBhMuFA/pkWBu4LX/jCGQdMnDJZwGhPeOf5tMdrUxAQLDYmhf+NNjM5mAxc53/jftrMPfzGs3jnWgQci5I6uJ5F7OugPooXRtThr2NR+OuYcP46mIWvg/ZSv38Wv/EsNBEAh7r6OlcH9fhJ7NpeW+c0FSxAGCl94Xue7UEd91AXAh8B4a7VQuCZtLdZTJfCApckFpM4ax/3NISpsVCT1yUT18AwuZ9CH6EJfyNU+Bzss6c719EWxoMFzWffXhiNv4fvoSHPhdndKeZSLGaxT4KxQ0x/XNqZNqn6dS6miK7lQNt1rTolPwLNOc1LCxVbq9rRKVqMAzL0/RsCAr1iPLVqO22hD9AXWrTq9xfFeF8Sbe7WPFh5mqnRP2jG+qDQFwpjxGfazLsHg9DJzyfqZcx9vzw9uZ7v6SefoQFrUfsrm1g2ZnUNAgjlXRavkEpfZ20Uvawdog1Zkdbc6muVUXFlhYVLk8DH18EzYcL+WW+da5XTzjX6yPyHAfs6/FxDSKK+RzAzj1CnY6KAhmw6cETkGpjp5k2breXAKavvq7FbBq63m968ziInimxIwqCsrkyZOWNWulrrT4BgPCrt1aqYlaySz8dy+Tgol0ZprNTWlG+0/kS7jcS1Y5ePSPWOmJWtCVnscoV0rk3OtYh218G5Bq1pL+/MLdYkAgEhw3XwNXgWL/oIUGZu0VdoyJxk7HBOxKSA8yJ8kkLfEeDUQ/2AEDQx8C7ozPeMIXXxO3MXejJH+MxvCEPmEOAKoQatm7X2WDOMHc+Hn9I2fE3Y6MEj2cggAPmeNYKzKIKfPlIv9QM4MLMEBR3XU7iGtgIot8vnAu0v64rxeuihbQ4gAjx4PjykaWmTaxP34QjLO/1Kx/8AGdQJGPCaKegMQMLxFE0QfWTDAahlvnAPm1ciS5gvjJOnJ33iOb6wsaUfHrSGI2FHN3KsQDMK9THu8FLqp72sKc//oA8yDtrRR+5jHTJOb+V/SQ0atMZEz1j4ec5Y+nXt5wvrlWfSftZdvpWcQAREZfAYGAYcNAdBIToE5vdMCoPFi0UZLCxIBsAzx+BvfObZTDreP/OZz7iFRj2ZFgaNF+iVgiBgYHkeL1+8gONvfg+W4HVTfc9zMimT1Zd671TXBdsbvE4KUseQfF3B3ywpw/1PblH4P1L7zPcwMhaEX2B8l3odv/sSbBMLMFiCvwU/p14XbG/wOhhZsExGa9q3XG3aqrH93zU/vyOc0CbNREJAokTgoRZhot/7xSQxOER0Dcdp8fuRwbj1S9tgIc0Nzeu92in3CiggPOrEcGhPSIzpSa2D+zUfn9ROHh+Kk3rW3WI0l0tA4FdBCdKMv31f+B6a+X6n0nOy/ge/pz7f/wkJ1pILkp79A2WikXhl355eG9orh8vxDqubCFlZRLkt1kQsHHsrDanHl9T6/fe8+7bzearr/G/sbG+99Vbna8DucMvmLW79UQ8CFibedqzNDm57wy4+oGivp7rtHaeutmixQGVohdUu1UFjciKNVMs/YIm0YPJziOjvknpFMegVqhVorxSoP+08GltaaZGbZeIa0emcPzhmw6/EbeDRHiut1tonPXhZcj17mtMPiu8XQAfhA49BWCLk2ZnzmUJ/vGYgyHuoD78INBoIOsaEXSjCnznDffBNBCMCBCAA78ykABy4n/kBsPHgxt/L76xPBNztt9/u+CpAAhDBWsGPDcAGvWmPB4nc79uH8MYfBKEMX6TAz7mWZF+APf4GpNC/l156UZqUC12dCHA/3u5G/ePnpP87+A49n356p/OTYf4DbKANGgG0WwhjtBQIeUAEgII2QVs0MdAaGnI9gMJrhwFe1MdYcg1jh8AeUsK5DRs3uL5AK+qlP/QXupADCTr4Ap3ZNAFEAFe33HKLk1eMt58nXBtcr2yiAT9oa+gfddMPzFfIG+jDJpxx4h1TI98F6/PPX+jvZyVlFi2FiCwgJjEqKUAAhGKyAiJYGJkUJhjXMglAeixaCMpAUB+LISiQfJ1MFlRZoH2QNo5a2DBRK9MeBhCGlcog/P2F9+wpwNhkyvSyf8rs30mkxRox0o9J8B8bTdjDxV02oHlbqflWKoZTESq2JgEKIjbYn8QFIAY0l+v097jm6KDmKszzhIRIQgxoQEz1iL7Hl+Ko/v6VmN4j7W32phhDsZjPSYFgIj16dM91um6ZnjFZmW2a4mDpMlZK5U+0BmdvFKl/fXt6rO/V3tPOlhNWJU1MVI6IOCTOdWGnRYgmaxft3Lr1SWdMIilWhpbZlvBGGzjab+FHJ+zUk0dltmizYpmJY0vKrXKtHFg3SpUvfwcHGKoF6KRxIOLE9VPAITWEdWR0xMJrolb+zlIbemPAunbK3+JJqaDrdU9d2PU79Z4gDQARCDT4CoKANgMoELLwpGaBAK9lCd7HZ4TF1q1bnQBkk8UOFnMOwg2ehqDyWqfUe6f6G2FFu3g+wg1AgymEwsYLoQQvhTeTSAtezNxiw8XzATcIanbEQQDB/YAGzAdodNHy4uPGmMHr2dAhSH/zm984Hk/74a/0n7rJ/wF94N+0DRoxzqwXvvfaLZ4TLAAcTMoABfqBpgaTBe0GRHhzJ++YFqgXYQ4gor2AMtrAJpZrGB/kBu+0mxd1IZcADNyP6RYgBhABQKBVAZAg8Gkn9PW0of30j34j69AqILPSySTfL8AJc4ZnMh7UjQaF9gHeGBvaBIhAVjFuzCW+y7eSE9eAiExGBuKQ1LssFGxp5IlAHcQkzaQwAUCSCHtshiwwvkOFCCBgIbDwUgvPA2ww8NjmKF7tSJsYaFBlAUSkUi73v1kkQeSde43zVwPhnuu06//ckgYb0eLdLwYrVy05JMrxUL9dEiu31dI69Oq3XWIARWIiazSXSjQvj0hFOqrvh7XwhaLsmOblg2JmPWLkJLF6Xam142K2pNse0X1tmps/Vr3t+m5Ufi131sinQUIg3Z5zLmiKuraE3fkl2nVzAmhYzxag6NnVqVNAlbJbwlsNsyq9lepMjuLynFjCtIPIOkYwwTvYdS2tabLRkyM2rMRQxU8m7IaBq2xkcMhWHG+yrvJue2Vor+0r2m+XN19qF9x4kcWWa3cpABBeU2rhZaXJ80EEliYrjqbSNsQuqLHGu1e4aJXBI2Lqj7XpZFSZPZQWPKTsn9ApXUFAoV7HJIEgwUQBj0EgIGQQdpNtlhBe3Punf/qnboMDT0SI88492YJw6kXIwdcQTghWXwAL8EM2dNAagY7TI8KJz7zgpwAa+GxqQVvCbpxweXb81M138Fm/MWPDxthhhmJnDQ0AMgAP6MT1PI+dOC8KycXQigS1cAhOhD1noDz77DNOqFMfQpY2IrwRwm6eSODTN0AJm0Y2mzwXbRZaCWjJC6EMwEBY017GnxfCnzYybsgGfoeGyBtADHQEePkxBSDRD+rkPkAOMgY5BThhHKcCEbSd59B27oEe+D7QftoNMAVAUgd8FKABPfBNy7eSE8dgIXz+8593E45BZcC/8pWvOMHNQT6ojjIpTFAGhYnD5IXoDDBImInMIuS71AJAALUyuXwh/pnBQqX2J3/yJ2dUcf73wvvsUIDxgZnla0HTcJXm70fEYL4lRvZMfNCuUTKqv9A8u1YAloO7JFdtQAt7rxb4Ds3vh8UI+iU48I8QpzZxZOsTc3tezPp5MRpthXSHfFxUb1lpmR1WnXzXPzhh2/Q9guqisnJbLwBD6GhqmUuaAiBKL5Yjl7JbFksjEVJuiY4dbdb5gk4AJSHVyJjVFgvIX1w1qUBNbW+2f8NYWbdQYHjPgLX+4rC1/PCYDXbKuXJ8ub1ZdMgO1B+2dVett3/64b/byqrldv2q663uyiY5hDZaWIJf8ZsZPd7TNKRnVm6tt8a9/XbiZ0ddTomwTjqNrlCirutl1z5t/kit1KvA2YXjL4CwAUTwQnjBt1LNacE6+A1exGu2itdEACLguwhiX2gfAhPhB4hASLHrBUgAaNiFwzf5jWtSC3wWwcw9CDwEITt8nonW98c//rF7JnUQgQKQoB2ABQ44YwNJ3ThnAipoC3UiK7y/hH8ughPHdu6BToCX5uZmBzIRsDwTrQDtwf8DLQL0BtjRL4S+py/X8BlfG+pHQ0E7mGsUwAXyhHYCGgAiAC0ABqCOhIaMLwAEnxDMbGua5TRbEnJ+DdwHbXkGIAKZM5WJBhCBFoVrvDYHuQQAQ5tDu3gu7UTu0R+ARnAsU8dmof6dE4hgABg0HHRA6BCWAWTCMFkPSTsBmsukgM5wciS51Je//GU3wKib/uzP/syp1xgMYsuZcCBVnykPAAKC84VnM6m5nkWez4LO92khvoPyWVC88rUwV8kdUa45dFJz+WLNmdXqTwWaAv0GRIoJKF3I93KofI+u/Z3sqv+3QMCwGNhEVMKMlzQMNiAAIZ7cXKUIGdVRovu2KvTvKdUxLBvskHwqukoHrUfCaDKF5VzTlD5FFNqJo2hRmV6RIut6QpkdyW55f4tNDI1bLRqJCwQ2BDrmrEjzkdiryIufnrSenYp4OSabsDQitRfX2Y6BJ+y3RxVJ0DNgN7XeYPGxIVuysdFW3Ljaaq9qtJKKzAEE7T9D0zqNSVXYau9SJMhJjcVj7danQ8ui97UmnTAVzULERmqBnyAEEWoIBQQIO1PqRaDBY7ygSr13rv5GuMIb4XOAGTQPviCEABa0CSDg+R/th28ibNHy+u/9fcF37kOwoeZHeFMfGmG0zAhZzCEIXbQZ7NypC5ACzycChSycAA8AGMIUIMGOH0Di+TMCE00yob60HxMKWm18LILtg7+jMeF72k9djAEvns0zGB/4PfN7q8xHgB/ayzjxHAoygvEieydOngh0fsPMQl8BHIwl7QdMPPf8c0kHyrJS9x11IugBI4Ap2gKd0hXADRocaIBJC8AMQEL7wMaaecS48c7Gm7ai+eA6+gu48u1OV/9C+y4nEAFB8T4layUDEywgTMwZmYIIJg5E/OM//mOncgIlgkIZZI9KARoILSYNxGbSsKB4+QJCZkCoj2sKZW4oAGCcihHNzVNnv1acHa8UMxoWMKgT48Vnwu/PeA/p75jmF6/6krAd0byCYY2o/2ViKmORqA3L9FGie5vF1IvlXHme3q+tiNnF0kZw//PWZd1iLIO6h2PIObdDk/f3OjMfNC0SOAjLGTEmEwDOh2S77FHUxvCpIWvf3upOAa0dVeIgnckRktA9Q4zfa+3MvxhXSGZcfgk929ut52Ulh3qlT+BBURVNZVYqcBOVo2RFZ5UN9Y3IcfU1Gz8kOmkJb7hA0Qvnr5IzZdSt+Zk8OUhTzDjRtYpQur3JEr06bVjZPDufUmi5HDPxFyldo+iaFPAEb0G4oElACGK3RyWOoGAnyW/zzWfgezwXIYqQTgURCGf4JPzTr1HaiADPpMBfcR5EoPoIDMAJ/B4ejdBF6CPAPe8FWAA48BthcwkfRmNA+xCSODyymwcQQEt8OfChIHQWOlIfL34DANFHCu/8zYv2I7jpF4IWoQ4d6Ku/nt/pK98D9AAP/MbLC3fa4rUUmHeoD3lBHhDGGMAAyFi7dp2A0VHnOMrvXHdIG2NABjSerNA26oAOtAM64UcBiAF80GfmEOPGtWgn+Js6AYbQdNGDCJApSMujU4R7cCIDAFAdQZBMC5OdgQVJTlZQx/GaqtAWXoUytxRAkLKI873AqmoyBJuYIGJiZuUCHD1iUI0xZdLTnMXE0aM6YmJmNVJ/vkPM7oNiZhw33icm2qL10D2iExNHE3K+HE6CiDSEmy+aomXAn6AYbYROAC0WkOje2WlDpxRHv63VaUpqJWjLtigBUm0SrKdpbmZfCQdMDI9bXNkkB/b0Wt9zUrfrXItEf0LOjYruWVNusTUy/2yUY6f+Xt+zyRrb5A+x73Hbc0JHjFcoqmHDemtUuKAXFJk9OHnVW2iqwQY4VVxdY8MtOj9Dr/43+qxLKbPDDbJNy3cirGyeqY6WCBB23fA7dqEICIoXPucCRLD2PChAECEs4aFeE0G/2fl6IZ+kRmb/IugBAWzeUL0DVjALIeTZGAIk2Kjxuy8IyOuvv0G7a5xOj7prABHwdH4DYABIqJfdOT4JmD9oO+p+6mTDybMmK/QPmcIL4JGuMEd4JrQBwCCMgyCCttQqnH39uvUuHw708QABQAHAQEOAoN+27SEHIBDuyB38ORh7gCRaBl93ajuQhYANTGDMEV60F3oB0AAW1IF5BKDB8wFf3AOIYdzyqWS1VUeVBFLD+xS1DIjVLywIC/pncCYb6HwiUKGt6SnAIs2GQaWvLX++pc8waBjTKjGGS8SURsV0d4oZENB8U0WlnCdr7CJdM6Fr7tI1D4vhHNGrX4z+gNbGZAaN+aQp4KGEnf+1OhJdIIKdeLdU/P06Srz9V3LUG1OCqjGdAHqpdtrZaCQEHsaVgnq0fcSGjsatU6aL7ifabahFDpSKAqlYp7MsVHdUh4cRaRGV8I5uiNn54wr53K0d7G/G3M4MDSdMFcabTUlH05KmqFXLDyLRqhMyjysiTGduRJoUJlorwVyliA+9Bwu7W4QcQg++xyYKQYYwROjlvA4U3kdacofe8PWQYtUBJhDuFMX3DaGFMGJHzg6fv/mNHXA2AIc+ITRRweM7gOnEC3meA5ig78F+I+AxR9CG55571q0RrqMeQAm+bt6vYc2aNU6NjxMmApTrUPMDVGar0B5ewQJN6NuK5UoMpZ0/5pfy8jI3vxD00BwNDH3Gp4MXm2UiRmgfoIRxB6hBY/5OR1+viUAWAqToPwV68RlaAii8RgLtRHNzs6MPzrtu7IMNX+CfswIRMFGIg32Nz6BTkDoFAvAdhMo3RLXAx2pBNQ/E7OfBgmrYHDcGpgEjYp43aufyPjFq1kK9GAs8n9DRTdqx8Dt/V+v6j0oIdSh735Oy574s/whSaiMoUsu801QNLK5Qf65RcjLlVihRZEbRb2Xvf73bWn52wsb6lLZX/8Wul229RAyZDmVYACDx/QIk3z1mLb8+YSM9CrWsCFvVJoVpXquEZ9r1l2j3z1HmpZxnISBBqZ9IqpehMRpN1NsIMeZaNiUdTRmb0vVKKvfuRhs+MGgtD8k3Q6aNcI0iRtSO0NVvjdbwO3N2/2gj2GGyE0cYombPtYwPCmx1KY29/EJCGo+iimSei1SNSOpz2HEzHxFabNxoHwIOQc+Om11vqiBNrWOyvxHuX/rSl5xGGT8EhCd9ZTyam5vTgrqammrJgvO0sWxxwAAQw7gxfvhQkCIbR3naiQofAY0/Hap+1lAQlEzWrly/Z+xJLrZmTbN7pdaHpgRtE8IcR07mIbINgIRGAm0F9ABIQvN0IAKAwaaafiIbuSdYAFqAK77H+RSzDgXQxsYb8JJPJSsQQUchKpMDx0oOzQI0UBgkJq5PnJNPxCi0NXMKsLhYDG+3AtNgR8M7u7EGrQWiLf7n6V1UvRhtsdZAsKwTncgPQaTHQTF45cBMW84VTTFnIFSLBBSKEWD3lVjfGz3WoTDIMZkiGiTc0FiQGXK6qAh2X4NP6+yGB1rltCnNg0I3i+SsWXd1vZWvjlmkQcmhlNcB5018EVxyqEBkBPzDq33Rcvr8AtkK68loivYF/4j6jyx3bRw4qLTHLwhIYNZQyGd0vYBiSXIcEYQIT8CE17jCAxEQ6YRI2sFN/VI4ciw+aoMvyMSjvBVDbw5aSIeiRRrIeaHEZdL+hAB2AjaORqI9jp8kx3L5Pk7TCUEFiMBfgXmJihzbP21mfULPbAr9AiTRX7RAfAYUoMafDNDB95EJtyp3RJD/s5n86Ec/6pJU4RjPTp+xhZ44TCKkg6aRbNo7W/cAzDCv3Hzzze7MEwQ7AIcXJiPefdQJYI35lVoYC3wcoAG0S8cnGReehZaDuQ0wxYcDM0++laxABJ3mBRJDpQOxmBDZot58I1qhvfLgP70zebvRAkYN04NJACKqxQjKxTzLpwBUDVor1SEdciUBO0R0ht7TlXNGUzE0dsBRJXECUJBLovghJaVS9ELXM0oIjqo9IdPGlTXJpE5pwivRWgzroK+uRxT18KJO1tSR3GOD4xY7T2BTjpNl5+kloR2VD0TJUuV5aFR6apk1vKAO0gOfJrIqwqzZrCBgshWGk9JUshWwEJNJZckdS230J8dt+ITOsXmqwyJqG4m3ShojLqcGfM0DCZg84+eBzkx5HpkJxwd01PXhQevdocRXOmGV00dHuxPOrBSSnwonrJbEdGqnAARZOdHSENZKvg/aRYgu+TxiAwoVHhfg6+6znlPdVl9d53bJCKRcQQT0RgBCf/oLf0c7gbZgMuDEPYAaXsHCfZgD8HlAM4SfBXQDmOCQCfDIFiQGnzMbn+kf65tjFNCEodHxJjXkXXNzszNpoUVBI5EuQgMQB0gCYMAvUunh2wkdARLemZTnoe0AaGU7333d8/meFYjwDWQi8EIdA+GYaEGVFDYuVGqFsvgoAArPp4k+WyPAfL7tttvcfPfq2unqrhKzKA/JHAB4EOierJxTmiJUlTeh+DSQIPyTSIXeF7usUydgSj5YvYBE7KpaCwsE+ORMDjwcHLT+l5QFc5eiUAQiXArfagloOUzGNuhAK2XDDEsgcwR5+LT2wd+fjhYw8fe///1OtcvndLu9dPel+24qmgJgwhLSNe/SQXj4bTyicEk5WnbvaLeSJp34qfM1XCZMRbLA8GkLdmyYPbwOITsTEIHZYkSamcE9fdaro8t79JyRTp3aKe1PdKXOYpAfypgARkJ+JIlT8iUpUqIzjQMaihC+GgIQIYGLkjKlR64XMD1SZjVDimZp1ynIzxy1hmFlDz7epbwf0hwVieaD8vLXZ4tq8NIAv3T08t+xthHsCE0+0082jNCTHflMCrSDXqQBIM8EjosAcLTX+ENAx4XES/CPQAOB1oUXZntkGaABMwSg6pCcIAEK0CdYPBBAI+TDaScDEf4+6AnQAvihtclFg+TrnM/3nEEEKJLQHXYN2AmDqhvsYAUQMZ/DOX/PAjQupIU/Xz1nPpN5D4YCiGCnO12JigmHi523HAHrNi4mhC5CrP0tJZWmXIf05rrUa99y4yz+QRhkRNqCagEIckkUS9ACItoebrFx+TmMSytReUOdlQgk4DQZl/ahU34UXQ+32VCnjjCX30PlBnnHb9EJkqvlNKnrooq8iOgzKvrp7Px0BUaKwEG48Hk6JjxV91NpmnotDqZR5YiofVejJTpGrOvxduuSfwRaiJDaXk5iLrWbNiD0duzY4UwHCBrAzbRrQEM4IfAF2Bo6oJNyH+t0tCLtOMK9fFm5VV1c41J5TySUMbVl2BJtwzbSoZf8SBIDo5boHraJtiEjsyimshAgolJ5IEYrbNPAOmvTOSjtv1O65/06tfKAwgqHdU5Lv059OaBDwkZ1n5xGMYVkQvtU+gQ3hQg7hGo2pgfWyR133OGc8QERrB38D1atXPUWmZH6/HPxN+CJ8QXgoDnBhIHGgP4DJPkdMw8gIrXgD0HgAfOO+YsmYiotC3Vyj6cp82naOZX60HP8d04gggmGugdCUVCj8fIFVFYoi5MCOAUFGczi7GX6XrErY+cwHYPwdzumoHs4IXRCTGNE4ACAQA6JYAnSFJAxiPe3rgnr3tRrg/fNxWdySVTL8TCssykY59ZtElIK/xzrlTmmTybMy5SW/ltHrP0JHY0tAReWoK27SCpv7d7RaES0sy7dXOEiLnCinOlOGJ8DhAyCeia7/VRaBGma+pv/G40EYZ+jCG/ly+iSb0SPknBF6LvMPGWnDzEjJTNRBtiu2Zky/tMxfABEQsCg72EBsV/IgXO3zhgaSFhpjY7eFn1LBdjwRdGkcKakqOgeVfgtbSpCg6DfxnoSSgs+ZMPH4jZ8UonLRO/eg71WPVZpH5p4nwCp5tPT49a2r8U2ta23ppIltqpNSbWe0NHhe5XK+RqlWifvh84ayaUwD9AgYL6eaWFzyXjiRInPAO/4Q5QqmdN0NJzps2bjekADoBFtAuPMHOQdUxuaFQAE8wCtRLD9OLZi6uR6NhzTzV8vQ7Oh6Wz0czbqyGlWoX75xCc+4RAagIEXBAV18g6jLZTFSQHQM4whnyd/tiMDg2CXAaPJdJdchDlDL0BEv8AB/hGpwKBPu7we1d0ilfHzyoC5c1AnMeqeW/ScrVXV1qgd0HwWVOjll1VbAxoJOfmRJrtXh3cNHtfhYlKxI9DCpSVWf80SK18r26+yQpZuKHfRFslzLeTzoJ38TAEEfYS5wl9yARDUk+k8xT8jdlWN1ck0gDZgQH2MPt/lzB3O4XFd8pjpT37yky5rY3Nzsxv7oADheb5woFhC9Bl8vse6HmzTOSVK6KWQUsBWzZV1VnGRTCEu4Zd8UdYovLVZfVUbxgXQSMo1Jh+JUZk6xjqTPBU/DQBdxUVVNqH7Jop0HsvxNnt85xN28I1DdlmZkhkNN9kVoYudxij2ZsxO9By1mi21NkaobfeIlQnUuTwY4s3ZFAQmUQnM+al215PVDa0+97nPOX8X7l+5Irs8FpPVP5vfM+/gb7STuUjhMxoDAC7OrIAIzDtB7TshtvhLcA8ajOn4Y640nc0+Z1tXTiCChzIxSCKCxy0qHIgPeCC9KJ7VhbI4KcAiersWmIm35WYKItBCiLM4Bj8gEIG+zrufASiOiRndIzXvnsSI9QmEn9Dfx2Q+WKZntSZ0euLwiL2rqlIpuOWcqDWWnRiY2Yih/sb5sPzC5DkLAAfSRcd1gBXahQqZAcqaBBokAEvXKxpgdblLYoUjYLbqc99C+Ipn3v67bN4znaf0lWiRyuvqbFj+EYnfnLT+13TAn0wanPYJHcrqSp2DIPwNQfJ7AAfThfwa0GgM7u51fg99z3fLz0Ip0TEDycRDhEq0UeGSohEhrt5PBJrh/zBRJ72CAMhEXEBTPhQT8pEYP/0Zn4pxmTfwm8DXQZk27GSFgMT4TpuoKLILV4zarr0vWn1RnV1Vd5m0GybNR5eycyoiSOYU7i/rH3PmKpfWfIZgIhdzhh87dvLQzjnkK0fDZCDMX38u3xnf4BjTVgADWiiSRWHSRKsSBBH4QqClAAB7LcZUfZgNmk5V/3z8lhOIADRwuhlxtXiuQkyIgjoH2yEDQLhMoSw+CrBIgotn8fVw8h75XcZMGGCZAESlIjQmEnGFegpECDj4Qujn92VH/Z5OAN2vNaUtT/InAY9xqU7b9N0bep0UwLhjdMyuqFDq5pL50Uo4IKHdc/nlSvbEzlm29f4XdcCTWshuuhTgIBV8ZIV2bTrMCvX/vCAcT7xp3mcyT4l4KFVoZ8275Wh5OG69EsB9SkQVVvIpoiPKFMnR1NDoBB/1BguCH+3B8NEhG1B0So+iPPpf6ZU/w6julZOpolTKNyqslcgPnCQFGqLSbkA7wJl3NC0qFWXR3nANDwCYqG4AwBgAQuYkzBtjAgM1Tbpid7GdKGmx10oOWKy60rZPPGlbKs+3qzdcqYigaoXq9tngQSVGAohIwzGu+9CSRM4rd+2YiZ8E/ByVPur8bAugGyE8pwWanV5fnq6z9TzWPtEUh+RYiSYi1UcEEIHPB3Tiuuk0EdAUUJoLTWerb9nWk/1s0BNBYT/60Y/srrvuch7r2MswaeDB/I1vfMOFvxRARLZDs7DvQ50/GzvFhd3LyVs3EwBBLfWoN8V821EJCwgEQQTmjW9KBXoSIK7fowIVEiOWkCaijzBq3dcxmrDjAhFHhobt/wgtF5CQkJnhTnLy3kzzi+Qa6aIBEoQZVlxQ5ZwqEYTY2om4IMJgpjSZ5qmz8vOM5qn6ieah4vJaq79tyBI90igo8qTnmS53/HhI5oSa+hqd8yGH0XCSdaJ5QGswcmrY4kRdPN6hzJwdipiQ47GcVMsV1lpzaY0LbaVDhGhiuijdrHBJfXYDPVVP1SaiZEK8RHtfCLvF7FHzUr2FH41Yd6LHTvW26MCyuJXXllvD5iaBDP1WFbGul5XF8tCAjep67kvIRFJ59bhAjLJt1sjkpHZmUhB4+Jics82D1gZn3bnjdQEJ+kwkkByMkt8zFnzmXf0EgTFv0bq4PuJnMsMolVS6IOzXrFnjHERxoMQHAudfX9BOYNLA1MncQ2s5VYGmaGbOGU2nalyGv+UEIkB7aCOIygBAUCAaCTRAYEEnywzbU7gsTyiQTBlbfmbc86TZ56yZdQIRy8SAWgQQ2gS0h/R+psAQ0UDIbLFCu5KNdbVWJubSIrDxquLGu2U6GtN7p95/IcflO5QBc6PWF4eHzWcplrBB8ODvMNaXcGmz+W4haR5S6THjeYoJR8K66l1LnDPjaO9J+YDo0LAnO5xjYvVtDVa9SiGJOEOS80E7+7hMF4RrdunVu7fHRhNjVr220mquk6/IpgpnephQzoyyCxXuKr8E8mTkKsxwvHR5LpYo42dlqXUX9VprtNOKpCmq2VivE08l7E3aEpk0SmSK6X5ep3sq78eITC0NtzY64FMujUbZJfLrWTp9hBF0hZ+TsZPICh9NkErvufrbgQPMPDLjjMf1rhNnJ3SEPaYd50NyWsuCtmZctDZFuqDKKZZGx4UYS1NGmndnZssBfAMiMFMg39C4k9XSJ1qk7+R54AXQyERrcy5pOltjlRMXYidKiCdHxrILIYYWUMGZGjg0FRwrZ2uYFl49IOfpUPbCa/W5axG5IshmiQbitfigbR1LHl7EfmkUQCFNA8J4TOChR8Lp+JiYoa49X6aLuDzYTylddmu/Tr0UkNgjJsXJo9mACPwv9JjkKwtmivCDEZPwyAlSKlvAJZt5ioo/rDM9qrO0o2cAAEAASURBVLbWuzwOHNDV85rO1xB4wqwhZudMAaTM7peWouepTut7DdOFnOxqZTNXCGzpqpjSiCsaRzvi8DI5IG+ptDChlnJQzRVABMmNWYUIAI69bm1rdXy4oqnSYltqZN5QTo+VEpy7FE4qTh9W23qUy6P1sVarlgPp2KBMIxK+5dIsRU7nBwnWnfoZHo/wnG3VO2esYK5JAgNAQvJv5wOCGUaviSGtFGkYXJixrh/DAVUvZ+JRH3gfFaBw7+oX15Yo3LhM5raRk3Joxa9F2juAF+PoQngFFtFUuMWQ2tlJ/k6CiPOdbMNsgW+EL2jmMXHwDsgCREynrZ0rmvo2zcd7TiCCCYy3MnnG77vvvjPqTDQUhEORsKNQFicFYFwFEJH52FYIHNQJSCS0Nl4VIOiVCYMyLADRLs3EGEBCv1+r8wfe39ik0z4xXQy595OWUPifhJeAm8mccb/O4dgsdekFWn/TmTQAKYSKcpLom6pvr14J6YRX6vhyDgnjpFG0Hqmpul3j0v2Deh3wkaNaOF3Vc/FdVvOU7ilzJ4K/WhEV5G3oko8DAphdPceXw+P6dsn3Qcm4hiWkQhJGVRfVWLmcTUuVuhr/ihIlhHL+IjJ/hHXol3NmnGW60T82a2SBRL2OerysUv5K1RKUEpxFEdKZK1mVzDS0Ec1RnyJsBnSuCeaNUflY2HBSoxJZK58WXTeZnwTjjpo+ZxChSelyZ/QoB4ZCahOtikLR0exk8gTU4O9xBhz4z/iESPMwLu3cuMJm8etw48BnTBd6FU0kzRW0H5NGQj4q8RY5AQsARqtlepNDa1RjgR8P/QQMAyqc46wABeYl8oYAEicr9H1Nc/LsEBwoARI4iQIW+Iwpg8+YKABcmYCIWaHpZA2eh+9zAhGg/K1btzp7zu7dux0RESyYNwAROJYUyuKkgF84i7N3s9+rSjGWJIgw2ys/h97T5oy43o+dPh68XBqIS0rL7C5l92sViDgogb9bu5o39RmHy90SXMf1/qq0fHsGB+QnUWNNU9hcASgHdP1L0nzs0/s+3QeAEY+1dYoAeVV1r9f7+WJ2a7SW0ZRMzj5nnybzUWMu87REPhCkxU60jbiU2P1vyufhhW73mV38gJJHjer8i9JlZRZTiCv+Dy6bp8Jy8R2JKNW3S7Klzw54zUGHARAIITS/FHITsLlzUUMShs4HQ5EzRH4AYnDqJLS0/0CfDUuAYxpg518pMIFGAGdPl6UTM1WagvrdOy2m+XnKrxDszkFUwp3cGcOH4hbf26ezSwaT0SOABNrDO2YLAQXMEhPCOc6cofk/oWYVSWrh40B/ipXBM0yqdr1CEYEk3qPSAOlZo9JOjChRV6IjYYPtcnolJFnPCu/vs0ilnGXlMBvBKVhnueDvAm2gF6G2SW2btEYyGwULIK2mtsZqaxQ6K/AAaED7Ds1PKiU6fyMXcR5lDDIZ91EB/GxpGmzbufqcE4jwjSYnOsiLCA2QFwSdb5uZb0vhfX4ogFcySBvnoUKZngJJEBHSceETdlgOkoOnQQThnocVvomZYYlMGDX6m7M4miXced0o+p4UiHhBQuJ+Caf/kBZiYCRhx/Q3ZpGmcHr6o4EAePxQu9OfdnXaYdUxoBfMCjNIj/wvnlUeiiVarzdI7fpeqV+vlUDit7eyzen7tpCvyGWesqMlBLNKYZ8JOU6SkZMdPCGb2vRK0BQnTyW9slZ+BVF39HuRhFxU4KFUvhCEcGbqtJgtDQERnN/gzzEiN0Gq9gWVvTsXRaYUk58fjpoApF4lvho8NujMME7oykcCbUCpfDc4iMy1PTAZiLxDXc8zWfsZFQFj5wQqHwb8aEYUPhvf12+DAg9xmYPib+oY877TqbSlpSnCuqB5Du2d34fOcQnJaZcTZt3Jr0pkRjIzvnPmCQl8DipzB5Mh8NFy0DDhD/wnOJMk/saAcywd7hiyfh20NvG6nEorpJlYJQfXTmmJTigkGVCisGXGEZ8f0p5DIwcmBErQUDhAoTYCJOrqk0c8dGh9tba06iC+JXbsyFHr6uyyWJnSVzcpB8ZYsQNori1ad7zjR+PaePpvAhE6DrdbRZnCpTOlaUaEn7+LcgIRoNLXX3/dvvrVr7rTPJnIEBhb0Be/+EWXHpiMloWy+CgA4yqYMzIfV6+JcHco6kLS3H0ETCDgAREN7CpTGElYu0lMDqu0q7k8Vm4/105nQAl/cLh8Qq+blIQqtVAzfhbflp38XqlcWwQ4JgRc/DO7VGeXtA7RWIWtlTr8AdVzXGs5LgDzQW0GUpNgpdafT3/nOk8RLJz2WavskiPHhqz9KamvtcOtkONkvRwUS2UCcPZ5CUm0EOVXVgt4kIUyIH3nkGDwWn8IFPwYQcR37IaDBf+VyFL5M3DceVWv00ZwFkdEvhwdT7RZi9JmL7mhISl4u3Q65bU1FpGQDZo22CCyw06tO/ic1M9oFEbROuwfdMBhcI9OLX1VYadHBywxmLCQQELFeTIBSSOAWQFzEUey8+4ifgR4PCVZMqQGJ+QVDQVmDQdQ5EiJBsMVveFzguaFgiagfEuFMpJWS9OibLEK3e17ucf6BQY75Ww68bx8VkjVfp78SASeuHdMZpaJPTKPCMgQgRRRMrCIwpf5TJsoaHxIqnjsyDF75tGd1rxqtb26a491tHZYbazWNtXqjI1jOFD3uec6fw+AlPPvwCk0qXEZkxNumUBeaJXQZ72rOu/+yQlE4IX69a9/3SXeIXMlEwxkdeDAAZcnggn9sY99LO+IUmjw9BTw2Umnv7JwBRSIiQFXa5fvBLnyROiDIww5Ig4JfGPWXadt7DIxvXQFZkieiY8pT8G9uv6QtAzP9vXbKQEQTgkNCn5CRr+lkNHtAhEd0hhNiDGGBBaWR5XKWu3o0P0nh5RQqa/XXpA2Y0QJrHSVa9GwOPWdMqdU6Lr0LUnXuoX73WzMU3ajUWkWat7Z4AQd9qCIfBxCci4d7RpV7gcEjUwInA8iARgUvHNNGbQCHG7lCwACvptWja4BxQRQepGEpYRhMTk9EJTyD+hUWGrXi51S/49YFREOMimUXaj03MqbwdkhTAa0WGwU0XRMVSZGBRxkQhjRSaXDh6Rt2D9ggwIO/TL/YF6YkA8x2U3rrl2SzKIpMOMyujqUoJq1FsYBC71jEuro7pLfeXAAsCuu00uaIPdZQhjtCse7k2cDDYpz+lUdaCJGZMZI6ITWIoH3sPxVam9VhM2tS5xJJa4cGuQE6T+kw7ZO9LtzSUrrS61ceTSI6rCyIhvfN2ZDrw84UwlzgQbVndDhcsOK0Gg5YY//cLt1NJ5ve97Ybf2tvba0Ya1VHyy1+FDvWZ8IFtOZBcVA6H8cb8eLbFihxOOiWb6WnEAENqGjR4/aBz7wAeOwLSY0361evdodyoXqq1AWJwXIBJjPdrz5HhUcICPS0klVJw6pnQhqXjWiR59fEWNOiK9gzqjS35MVzBwflabgaTlwHRUAOCa/iJekZbiZnB2nwUendqNPyORxL+Fn+r0mGrGlMi9G5UgZkZp4WM+tVT1RAZp+AZBOgZFxXUfY6TO6d0ROl7TrHbKzL5f2YzrHzcnaulC+n415ilahRPkUOF8DATnWJUdXolP0wtwR8Y6TThiekRTzQoJUEIF/xJRCHnW8wANHsiN02VmHJIwpfdISDJ2IuzTZCaXcdn4JcnSMCkjgGDquucHGkWekFkcXoiXkPzKiOoaPKOW3TBYD8r3A5yEBzQSSyxW1EhXNoopUicgnAZME9MWXwYEAaRBcuwAFgAH3Ek1lTiiWNsX9zTV8f/pa7ncghHckGqYQrQdMNCG0G4qoGdVZLqQQH1U7xuibtAIlcjhF61Guk2bJ6gnYIJJj6GTchmT6CB9WxlIddBYV4IkqDBbgWDKSzPuwuel8O3/ZBjt66qg99vwTtrdsn6Kn2qxYThtNJQ1WOhRV5lKZh5Sb1vFJLSowkvtHS9x/HpW8HBjsk4Yif8+ZyglEYLpA+wBYAEyAiAERnHwGGsaTlWQcXIftnPdCWRwUwGkoZy/txUGKjHqBaCnCYC5tAnZRzA2YMIicODI85EI7G7TDq05RQwcr5yCuy3TNCr1KBR5OyDHyZ1p750mtWiWAQOTHnv4B+4+TJ+yVnm4HHBoEIOrkrFki4cFibxDjJDqjU2uzUxoMNCStAhJxOXe2SEPylLzfE2pbqwDFNdrV4ni5RNdmHL0RbPAC+Dxb89SZA/B1aI85u74GU5EXnBUi3wccJyXUzkVB8wDfxdQA7yUZVDohn9o2gESE8zpcqG4y50RIfejbJ4dLhX/2DnQ7bQSqfRwvJ4Z1CFVT2Knwz/BxzWOEMZEVoxLQIzogbEj+B4OqY4jPAhNEgKAlwP+gTOaUMr0DSPBpoOCv4ZwZcWp0ocPSKnBWC9oF/BAcWAA8ABC0ik6D5dT+pPsbjVCRdvvs+PFPwalzVCe14t8ypndyTJTImRSTCK/EyuS5KRxwBg0AHCPHZIqJxRUWKiAh4IM/Bv4wtTqC/arRS220WEnG+nXcQ3+xNSjdeHW0yjbFz7eR10XDkm4XMcJ5OQAa5xuh9+Tn5Dt+JmNR+Sr1gzDys+QEIhAiOPI8+uijRlIX8kSg7nr66afdhAa1kjMC29GNN97o3vOTTIVWp1JgRpkAU29+u/4NiJbgVtYel2wKYU1oZ1waAeltrV4e35VTqIoBIlEJiy0C5C9obR2QBuEHcppsjoSdmWJA9b6gjHk/kZd4RNc1qa5KgRKMJ2Wqf5WuI79El4DCLt07IYZcKTA4oeyLrdIsjcjBs0sOlw8KZJBm+5bBKrtdz7pSgmqpritV+8+NqMx+wszaPEV+IQyVobNEKnHwIKmjnWDLvnk53wlvBTSwaSM/AT5o3kdiusoxbaBJcUe0R7qdc2GJQiH7dvdY7xs9ltipnTS+B4RXCkyQsbROczRSFD4TjjkqzcOQHE3jr8ksICfJQWXGjMt5clTOvwjvcuXbqFgv7YjCZQmnnMAfSBOySHOJbJmlG6TlIPX3HGtxABSAFRetohBPQkkJLx05orZK+4CWJSKQQAhoheT5mNKVD70pPw5F5Ay2ytwhU0yfknXp3DOnqUOTcMnEZruwYqONltMhASK0H/qveKDYhl4WPYoUMQPoYeHyxjvFf8dHWILaVTyabyvL9cT9kxOIwJGH+GS0DYeUS/yRRx5xlXo1N4dygVqJ3LjssssKIOIs3fP+E8ltYFwkGyuUDCkA8xDwluOQc2LE/wDThonhYuaIax2NSHMgffSUFX5S6+mknCsPyKTR09tnX5bAd/pRrccJ1Y03wyox+7iAxGqdsfFeHdx1e3WNi/bApMJzX5Em4z/b2+y38plYrXGsEkg4oO/iqleqRTssp8ufa2cL2LhYv39x6TLbpHc0F/lUZnue4rFfIjW8K14onEOCoLZH2+I1vTj8ZaKJONNkhKuEe8WN9TakzJsI22JpAqJyEm17pMU6H2+zUUVtsHseaovbqdWdtqr5PCvridiQnBNHDitiRZoHNBhD7XGXDCoSi1jdJfVWdZUAhzJFIkBJDAXgwP+CMNKowEOJNBLOf2S+6ajnOUAhcBxdE0smqMKMoQPXEicEKJTYqljHsFfISbbyuhoHmABI8QNKHS4w5UJMpdEbGtWx8dLYdA+IbtL0RaJKJlek6KqKmDWvWZE0t2CCcWYWtCpJbQpaLacl0ffK1GGHuo7aWIN4QZ6WnEAEE/dv/uZvpk1vjRc/1xbK4qEA4PCMWnPxdGtOe4I5olq7/j55kxMJQXjniAS/y1YpAV2m39A0TFeI1mjQCYhOq0GOCSIvfBFIKRJzHBBTu0HXfFBgYqt2quSA8Kd/RiV4tgisfEEAcEtPr0te1SHtxDKZPVirBwQsRmVi6RUgOVgatWHV/SMBnM9IQJFuO5/KnMzT+RZ60xAcEMFGjc1bhcAff8+oqD/4JOA8io+Ei0DQHFl6xwrr2tmpSAYJ1wGdt3FxlY3IIbdvf7sNniiyAQndwSOKspAjZokOi6vaoFNKpakpVTQLx6cDcMZwjpTvApErkWaZ1aTFcYmeMKMIsLhd+owaO4sX83hAlEw7xasV9orfhwATYMc5YwpYYOYQKk/m/JCWwoVoql8UxVdY7UiDLelXavoeHbzV2e7MlDVLSi22SX4jXKZr3eWnP/Pdmb/188SozIxxrVmt13wtOYEI7HCcmYH54vDhw06Vdvvtt7vMaeQVZ2IXEk7l69SYut3sdgohnlPTKPXXmEDEGjH4PWL2g/I/IFNlJ+mu2YSICdcoXDOGJmKaglnhBl37fgn1+xWXvkbgo1ycCfNEPy8BgRtUz0dq6+x6OTvjIAlD9wXFKRqFdQINZXouv+9WlMaryhuxVyrxOkVrdMvEMqJXv/4+KrDzC9m/b9SYrxSAwcEzX8rbYZ5iUv7oRz9qL730kvNRy8pXSdPDOTlKUOKHUFwedjtzlGX9r8rh8pRSOj/TaXZw3LqG2vEIlplj3CV2quY01+WKThFACBOaqegJZhsmChe2qTMrcG7kTBJ3Yim+DQulqClOK0DEh14TAhS0E0Axep78JmTWwI9iTEepu9BShL2mv6CB3vSftAqEqZaVRa2CwIJxmX209s4uNxk4WN9k02Sh63b+5N29yRJSFVZejuKkw2by2/z6NycQQaau7du32759+4yMlQCK2267zflDPPHEE8bZ8QUQkV8TItPW4sQFiCyUzCngQIQE/GviKp3yPTgiLcIpvTuGIloSF4GjVSblcmkbPqAENy/KFEImTE6QJqfECgn4Sv39BwIQN4ipNQIgJqmQyAu0GmS93CINw8ulg/a0tBCvy6/peYGHHr0mtPPsF7h4TWBjt8wdF+q6NbLD50t5O8xTnNvvuOMOl7+hoVFhqJjMsizFchyMKGcBabtR2zunR2kNil8ptoEjCgTukFkirFBJmXTKN5Zb+TKFQspB0zmXnnZ89Jkx0T6QuIkICXdGRZZtms/bMDm4FOEKa8VXwzmNtsgZU+nPOeqdrJ5JFKBWCQ0IQshhWQ6nE2VWM1F3Zv0WwRsdejjbevwpXNF78qNyUQBKFEaKtiNfS/azTT0mfOp73/ue3XzzzdbQ0OBSryJYsMtxHHhB3Z2v02L6dvfKdg7inpH9dfpqF/UVZWIY7PoJxzymXT4ZJU/JFMG+vkJOj4PK+zAodXQmNCU3xKXynXiHXj0CdGx9iNDYIFBABsqbpakoyxDkYeZYL3DQLHDwDgGPHRrbiKI79uv+Lr36E106X2HYntP3V6ju1XpGvkRrvB3mKeuQsHo0Ek7zIj+YXAohlgCAUEWtDRAlod12WEK1RKaOriPdVrFCZ4ps1pHoRHfIbIHzpTu7QvM7xPHw8nkIy2HTaR0wWeRjUbPxZXA+MPKDiahPaCPGFR7qojmkmXNIAMyvj+NEXwg0OKBweh9AGDffOSyhj+56d5372v2TGEtIbioSJKI1nKclJxDBrolFesEFF7juo5GgACR4BVWo7ofCP4uGAvi4hJV7oFAyp0CpXLEbxeBlDVaCKeXbj0ecSSOq72+SaWGtAES5TAmZFIDIBRL8/8/KlY431Wj3iYkCbURS4zpz5o1mYolAzodlhmyWL8T35AfxU4EHeYzp4K+4Paz8E5dp3G8U0MgXB8u3wzxls0YWSY4aiGn+lMi8lXPR9MEcEbuq2mWPdP4L7JjfFbWqCp36OVbiHA45PAsfijL5U5DZM6RQyoV+PHw2tMFnpFhgwnhNVwAMZ8pb/jjzrf8wpmiV5W06HbVmejOmv2ehvec02wAJTF7COn1mOCI2yFjJ3zN28Flo1Cm0ZxoKTL1Aprn5bfczO/6l0iCwOdun9TEiTUSxNBJhSf0rldK6Vju+5HYlM9Jw+iY+ChQAANqBmUOHtz6L+1nXm5X//48bkqDnn+TfdEqgh+RURHC8LjPHZdJITFc4AIzTQ3fJRLJH92zUkeZoSBpFg/kti3+ewoevvfZal2hqNjXAxTrUyp27oYgN2/v/t3cm0HUUV94v27Ita9+87xvGxmYxZokBY/YlELYQCJkQJiELZJIJJzNZmfnm5MyXzHxMSCYJOVkGQshAYICEEGBMAsQYx2CDN7zviyxLtmQtlmTZsmx//1+JtltPT/KT1Lbfk26d86T3uqurq/5V3fdf99661dtVb9zrmvZrlYUCVPkdShU7I22QtBYsU1QeHymyq4Pw5A6OxO+WaLta5Gvxo/W9GJqoL46TrfWFyXOkSySCJX7Y4pYuXeqdK9nB7Ac/+IEPPIUvxNSpU5OnpVaTSBFg10D631LiCKRLOCNAEfbVItsbFJehjxwr00QGxkoT0UvC9kA/1kIkliiHlRYnIqFpmESd8nu5RplLfqD+3qs6r5YnOn4TZ8mMwv3jJcJurxNpWKRr3pPJc4vyY7aZILX7Xs28blFwJDQnUKYTnXrKOIU4JBofokOYq4sxS/Qdnu7S+xzWfheK9Jij1QeD8o45SypIVCqvLugQHhFnZkUN8ZQIGkbMj1RMXSIRNBpHytdee82NkFoV1SF7rHOcrcBPP/30VMTE6pwAAjhvRTnjSeCWKZ8FTYQnEWpJk4RpFUsztbRyoAQ2Pg6ZEAzlSZbEKpBJepZvk3njWT3XmxTIapNIwUKRAo7FRrJkUoX24V2df0U+FW8o/yr5eTRKU0mUP/b5OKgpF/tyXKGVHhCJEx1W28ZpNKMJx0g2oco6QyaTAq3GyNdyUB2z1HUEWOWWTM99R1vUKRKB+YIPCUeem266yc2aNcuHv8YXgqhpmDI6sttbRytu+U8tAhBG+tpS4ghAIor0wvD7XChCHkGntJRJS8zSvEAtwqat5yaZEnXGZHKRdm2tEoFgW/LVIgnL9JmpZz9DYyAwwkAgMHU8qSBWc6prXImWjfbSb/w0CPNdJZaxoFeNa9DsK0flEgmzEDLahkYjChxsnEaBYnMZveW4O3DkYK+B7K1ljZa6jgDkgVAIqWz67xSJ2LJli1/WGQthEKmS8yQ0EaaNiEWpe/wmSinmjFRVwZ2KXmDWnSWhSchf77JNoClpJHp/sLtmbUWFYv1ryVySqTXRHHxRK67WKsR2qXZh3CmTxu8q93hywXJPfDOaRAxKtWT1P3aWuNcUu6Ksvk5aliZtFaLQ+Ap4tVtkol6fvYqAuUgrUf5fWan7xtBhJ9xJ08ZpdCMdR/oy7Q7LJNFixESDa3fAtFMkgsBSb7311nFRZOmRkYjjwpSSGRj8fCx1AgE24fpAC4EjJTsQZktQs5dGMmIK+cGfAa1jL2kjyhWb4o/SNBTLFHOljl0sjQKbf/1aJo/XtcNohcjCEWZYOjdF1zVo9UklY0W7lCqClWvUiq41gu3l6iqXp3ZfoNUeJyrZOI0OWSaJxN0IJovRldxzS+oOmHaKRLDR1vFU2Xh4jx07tueOjm7e8ualcyfby74bgIrqniV4mrVrcTnroaWZUMAaCd0smTOScYanGvslnTfLIXKPdgl9Z0+FK9O+HfNFCHbKrPmmTBuHpXVYKu3ELhGIQzLJDNXqjpFaJkrbWBl4lcxfG9Tu5dqX47Cuq6zf5+ap7ThvEko7XxqLE5FsnEaHaqB6NzO1YRpGoFNP7rhx4xwfWBS+ESzprJAqlnXK06ZNc3V6qbA9OB6nlgwBQyAGAflFeHOGZue9JTz7aTMfSHeyp2u1PHNzXq1bL1NFpYjAXvk8LJNGZZk0C2gZWK7KVuaZeu4Hy0SD3wO7Gp6n+BcXalOihTJ91Eh7sVUOlwe1vHWj2o2T5jnSVuBfYckQMARSD4FOkYigmcSEYKfOV1991S1ZssSNHz/eB55iqSfmDogGqzQSSRASYkuUSx3KsizUkNiGCzT7gYy05b1KsCvuRwhuyiAf+ZmBGIlJBPnO5amqqvI+EYZxx/CDLAxQwKk+UvETo44VEMSOwDkx2TEdpnpO13N1psjDfD13/fbLwZoNwBSZL02xLth2fJwmEoVqX7Al2HlaCvo5+VMQqXOQgpNV6hl/Qp/90mTUi3QQQ+JNPefnKF86WpmOwXnc3MmO6XEbkEQZeCez+g5NhGkjoumY7oBpl0gE61u///3ve+0Dwr5GMwzMHIRfXbRokScDiZIICElJSYn77ne/6958800fUpvtw++991539dVXtxmT4I033nCPPvqo33wGIgF5mD17trvjjjvclVdeGU1PWymtEIA8pLJHcasGnaQDGIBOl0CtFHmo1neWd85SlEFWQYj1JjWmrKJA2F+rlRoEyxqTle332agUkchXO6bLtwGShK9EoX5fod+f1b4OLOVkRcpZ0jh8RNe+p/fGCpk92OBrmxwtFzRkuGv17E7VeVZyRJlsnEaHJhM0Mw9FhycldQdMO0UiYE8k/qMFmDx5sn954HDJS4S12R1Vz2ISefzxxz3x+OY3v+kH67Jly9yPfvQjH4OCe+CoGZswn3zlK19pXnakQc7Mg7gVzz77rPfJIKZ8Vzakib2f/W5GAEyP5xdjWLVGAGE6SiRimWbukAgELMIV4XkoBTBFo3BVbp62MT/s3hYZKJB2gjYMUP13yukuWxqW62WaYA8OAlLl0iadI6F1maa2fkbE4lsygzZKG7FPZGStNI/Pyc9iTP/hvqwoaYSNUw99ZH+YOLSlFY7sJj2soFTHtFMkYsGCBW7Xrl1+4y3IAqotHML4jvcu24DzP1HhTd7i4mKHVuGee+5xl112mY++RplsM75w4UK/qVc8EsHOoWz+lakXFkJtx44dbt68eW779u2+TIJgJVqPHjZ2u9RcNl/D3JR9Aj3ru1TBJL0YgYpZgGWRemC0SZaWQOr5YdV9KmAKEZiofr9Da9vPFiFYLw3CZhGCWmkSB2npJoToTGlWxqlNkItwDAi+E2zrMmkLr5NG4nVdt1tajF0aS/OU/2qRCTYVy9F1URGJVMA0SYdqq2phLkb7zLvWUjQIdAdMO0UiVq1a5XfpvOqqq9yMGTPc5s2bHccgFq+88op3tCQEK1qARBIPOteyBhnzB+uQISas7mCJKNuMX3zxxXG3FSdWAWYMyAZEhHLQakA4GOztaURYQw7ZwIxCgoCw8oTy8MugDrBufDVIwb0gPZyDtOBECpOEqJAP7Qz5UNXyG0HLOR4+/nMdx4My+M/voAzuyz25DhMP57iGhBMrxIpPA8vo9FDTTvJxv4DRko+6kY/v3CNLzm3k2689EPrJNs0mPbSTe5GP+/BB/Uv+oAzqwb3AkfrTPs7x4TuaH8qgHvQjifKoG+VznO/Uj0T55ONa8nEtv8GMRD7yozYFW+pCPu5NPrCgLtSVcyw7pH60jXxgEPQJZZOHvJCd/bLhNxFmWmXRrqBPgnZxb8ZMgAUYUn/8bgI8qRtt5/ghqe3JSxAeriMfdaMOJOpFu7iGfH4s6ne27pOm9uuA6yWHxDRd16B7kZ860A6u4zc40WbawtigbOpCezlHPurD7/BYoww+HAeDYDxRPuXRZsqjLH6Tjw/fKZd83CvAXZVVmwf4djSpLWN0bpQwHK/vm3SfWv0erHZKJ6lNxjROdH21xnxQBmOBe1Fevup7tfBZqet2K2rnPp1br7wvyR+qXMs+h8kpM0vlsfAzTXXKh6iCoa4DhwAbMKaN4NvWWGMs0BauAf+gT7iW41zLGAKLw9KuUB79yVgDs/BYY0xyHJwCfIM+oV4Bhs1jbf/RfGDKWOMaMAjGJM8CdWBsgAt1ZAzxnU/QD7FjkutwXOee4bHGmOQaPyZ1jt/cNxiT/A8/a+QjkY/jXEtdg7EWfKdd4ET9wTN45mlL8KxRX8qjjAFaccP3RvVteEySh/pSHhhQfoBFME6oB/UMxivlkI/EOKcOlEN/UyfqTnngGOBLvmCscZzz9An/uY73H3kbtKkcbeV7UEbw/iMf96EejBnqxG/aR/n0SfCdMgIMqSflkbiO49QzGGvUI8CafJSBGwBji3I4l2qpUySChgMQH4jEU0895R0rAf7HP/6xH7if/vSnE44REQxMBgvbiAeDhg5A04B/BWW3lXDGhLzMnTvXrxLhOurF7qJBh8a7FsKBA+j8+fP9acjHzJkz/QuFc6w2YeAEnY7GA/MNg4hz1JN8DAwGG/kYjEQg4+HlBQOZ4uVAPv7zwiIfZXCO/+TlOOdpC/fkHPjWaykcA4x4Agw2Bjn5IEA8gIOlGiYfLx/K4FpeMOThw3H/QAxL8/mq9JKGUGRowyfawsOboeV41LVOXvcjho/wdSIfbaIerLzhoQRXHgbKDB4i6gvG3JfyeGCazx3Ry6bS9yf1pI0kyiQfx8hHuZQBZiTGAhjSTl5W3I98tAUMwYJraDPtok7kA0e+0xdBn1AvjoM3fQUuXDdAG0FxP5zEKJc6cU/axXijDsE14BM4k1E+Y59yBg8a7MsGM/JQBu2gbtSdRB8VFRX5a8CXl0Se+muA6pCm9vukl+Qh4VGn67iWNnFdMNZ4idJm7kG76GPaQnlgSPnUh+voK+oBGacO9HO9fA7AEJ8l2k7bKC/Ak7IYy7SX83wHC/oLLMlHuyAR1KlBTpWUQT2ob4byna88QT80qF6NKpOygvFKnegj7kW+fbpmis6zpfhmkTraUiXs/6T2rNZ4H6jjg3TvYbprhtp1mvbh6atzBzT+B+hcgfqurHy3nFEVAVT5cqW28H0ibMGE+waCk99gQ3s4FvQJ45R2+HEozQljEqzBrK80KrQZLOgz6heMw/BYY1wGfcL45z60m/YGfQJ+lMMYou1gQFncm2sYc1zDcX6Tj+u5LmjLkCFDfB7qwTjgHPkY38FYo/70D20gH2WRl2eXdtOXtCX8rJGvWTj29bjQ74wNyg2eNb4zNhj3jCH6HHwpmzoz1ijb96vyHVQMEZ4t2sezwZgM6ku7GDeUF4xXsAi//2gXdT/2/qv3deJZ4b7Bu4B+oL7h9x/1oF6c417UKXj/0Q5w5hx9DG6MBfo6qDv1wJ+Pdwb9RxnUg3xgRz7wpR70SfCd+qbJmTj8/qO+wXMMdpTNmAML8lH34P1HP4MD+cAt1VIvNYyQ9x1KDz/8sHvxxRfdLbfc4oEBTEAAGAYlHcYAQyCzs9zxEtqA3/3ud+5Xv/qVX+lBB5HwsXjhhRf8sQcffNCXF68smsC9qce6deu8kyWD6fbbb/cDkjrFS3Ra8OH8Aw884DcN+8IXvuDbFXsdv2Ph4ndsvuBe4XPh78H5k/W/xb3p7fhwxG1zvDpSHiYrHrJA+CeKTZT5qAcPN//DqUV7dSJePupB34f7LvY6yuxIvuPVg/IaVdelelF8dc1qt0D7Slwj0vxbadty9MyUSiMWYJooTpQZm+K1IzYPvxPNF+/ato4lWib5ntXL+Rdq8xvyh2DroUv03GPm2ad+qZZWoJb+1XH6eLCE10hhlKv/9TpfKw3OAPlfXCjB8RlhiJko3JfUj99oFwNMORavfolgzXWpNtYSaVeAE+0Lp3g4Iex4JzPRC8hLvHxHywm9a9rNd/SCE/Olxb1DdYq9W4t8sSdDv+Pl6yzWyC0wReZBKpjUfu9733NPPPGEJ4Wh2ybt105pIgAxYNN8J4WBBZiAXSXScpgcDBemGJTHdZQBY4WQcL6tRAdCXChn0qRJvlOWL1/u5syZ41dowP7iJV4KfIIUfKc8PvFS7PHY3+FrwufC38N5Tsb3FveO3yxfjRb52qkY+SBs4B2+Jvydy2N/B0XGHo/9nWi+4Lrg//Gui80X9Hdb1wXHE80XW37sb8rjgWMvigGMZ8VJSNO4zWb8x8E09vrY30H9Yv9HnS+2/PZ+d+Te54kA/EUz0zc0S2uUxuRdzUJ7C5dDwqJJQap6C5+J0pIV6FhfjdsyjTk+PLE8njsJ1qV3xiWaORKwKt7Kjthx2lb9Yo+39but4wEmwfngf3A80TGUaL7Y8mN/B/eNPR77uyP5eDfzPg6/69sqz5cbete0my+oxAn63+LeoTrF3q5FvtiTod9t5Ys9Hvs7KCL2OJqPYEITey64Jpn/d4pEINRHjRp13CWUqIYSSbBa1GiAiQqI2S2aBEgF6jKYL7OJ4yU6AJUThAM13tq1a93s2bOPd5md7wQC+doPAb8KSx1DAOfCQhGHywtl5tAYZ+8JolWSehqmrPRAk7BEz/67aB+YkOi/LHdKh1yfxiOuROrx6v79XL7eOflSGePYCYYgltbrkEJwN7o3ZRLANNIXYhaTAkwpskFls0U5q2OIkBl2+oy5zH7GQYD36qCBx8zNcbLYoQ4i0B0w7ZQUYNaP+uWCCy7oIGTxs6PGwbYFecD/ARsipAIzB+YJthvnWGxCG4LNC80HtmE6BHsT12H7QyuRiswutp3J+LuXligath3vGSZCqOwvkn35kGbaOVqdEaSehimEYIae/Sv1bK/Ts4xvQx8FrtJUV1xCPhDSOpTLOW+X/CaK9P1AP0XDhCgAokwZ+0Umqnsfdm9Jk3GdyiDWRqw2AkxRW5Trepakvi57NrEq2EGU1SOWOoYAmhI9+R27yHK3i0CqY9qppwgBjxNPVAnhz1LMSy65xMd4QDOBQ8u7777rnVg+9KEPeZKAQwsOKmgbIBVoKlauXOlKS0s9YUB7gXPk4sWLvbll+vTp3swRVT2tnGMIoOmhHyCAljqOALPwKVLVB1oISuiJmI6RBoENuP6s57pIAqq/hD5iCt+Ravk9HMSpcZ8ch/WsV8ghz9sxRAogEXKzl6Nlujus36t1jpgUBTHEAEz3a9KzVmP1Ye0w+h7OicJ6sI4ZiejYuMW8vLN0pxvVd5TrJ+2Qpa4j0B0w7RSJuOGGG7xNvOsQHithwoQJ7v777/dOJThR4sFLIKm///u/96ssEFZPP/20d7I877zz3N133+0vXrNmjXfIRPuArQ5tBg6dn/nMZ7xTZ6yN8dgd7VtXEGBFB2YtS51DYKRIBE6CRxCIH6SeiCmahUky6VyqicPL0irivcRLCRKBbwTmjkZ502+UqXOrPn7TMjldOmkn8Ic4KC1kucjEa3tr3Hj5RcSSCPyh/qhyn6god8ulndSV7k1pNIhHcYaIhZk0Phh8CfxD85itKKX4QlmKBoHugGmnRgMz0LADZBRwokUgrsS3v/1tv7wGRxM0EphNAsfIK664whEKO1h6xn1vvvlmTxbwp6BOmFrQlGDeMAIRRc/ELyNdyyTB2lLnEOinWXe+PuHUEzGFQg3VOPqINIt7pXnQI+wyhUs/Cax9+vGWNAe5+j5BRGM8flFk0KdOebdLe1Gm2B9V7AgqR8yrcvd7f4cMTB5KvA+eF9H4Hy01xhfiMHhrNr2GjcPkyHlpY64baUTYY5XIH96nmVmZRiISASvBPN0B006RiBMhnGFkOE8S7KmthAkl1oxCYCo+lk4uAmiK6K9gqdfJvXvq3y1wDgy3pKdiijZimjQDn5IpA5cICESaPjhCDtLkYlFdratTYK8s5cv6gHhlH1Y8FGkhSvVpVNCgjSIiy0Q4TtOYhBiUyAfiMTlp/0kfCARbko9TPIjtKouNv1aLgCzPqY+ERByG2CjFajUO6XiV6rdNE5w6kZfTNfkaqFl8bL7wGEjm70zs8EFjUmdayGh6qjtg2ikSEQ18VkoqI8Dg52MpOgR6KqYQBlZLXJTdcjvwJglhtBSZOv+OYmuUy4SxX8fQf0E08mSWKEo/6CpECPZq6SGOkwOVf7g+b0vY/WhXmavVdRkiEAMlwPNEMIoxgyjv2rp6N1/5Z0trCYk5ZlRKvD8Z/TUiCe+LUBPbokCOsgO1ggTfjAaRhh0iK2tEYFbrU6Pfl4vYXCjtKiQn2E/koNpTpnw75UDaKAaFrwYmmWzVyW/Klnh1TkpOe+ajhznVMTUSEf2Y6BElYlIyc0a0XW2YtsQTcoGfw90SqgO1nPglRREsOdjkDkjwsuFXnoQ2Atk7XCqc+3siDmgnMFnM1yotxSX3QayGSAMxVCSil7QYo7U0eaeCW21R/gUiGJtFKCbrXOyqjpY1af0LAoF2ASLyX/K1qBAJOE11OVNljVPYZ1aDLFL5S0QwqkUw8H2BLOzTNdfKdDNYGhb8PoqlpZinev9Vm5HVKd85quvpavM4EZ7hygOhCAhH61p0/gjkpVZ1QdsDIcsQNpAWH7QrTrHoWoSs66u4Hk0iOBA8+iecyHNQ5UH0MEmdiHqH79cdvqPVZxFBKr9LjUR0h5F4Ctqwv0FBZzRzstUZ0YFvmMbHskiz81sLCt2FcrBcLdPFeq3WWKXZ/UoRgS1couOuplobedW7cn3k9d1ckJwAJyo/i8MxJXxGflKc+bp8IhZIcJfL/PEX/Udgx4sx0VxI/L/7JSzRMnxRETEPiKwMk2DdKP+MRXouEK2YOPDlyEHQSlAU6FMsEvG0yA3ai0/KNLtJBOJXIiAQDfLnKA/nCYg+RG2+UgL784qRE7uRWfwadewohOYV+Yq8KwyIsXGJtEBThBGkJZYcUPIBtXeH6jtXK+HGqq5T1N6hIjnhBIGAFKGZuVSTjFy1wYhEGKHW39FC1EsrhlO1S1E/dSMRrfvVjiSAwD69iC1Fi4BhGh9PhDIzZTb8KpLgOk/koF6z6A3SIszRqoz/rtjj9ur4YWkpEMAZWvY5WD4WjbpmhMbplTIhzFYcGlaBeOGu2b42dnDbdO432iPmcpk02HWU+B2J+CtAINAy/JtCdpdXNu9hUy+BWYgWQloEzCeVIgplql+1iAabvqHpaNT9K1Q3NBArdQ6/jQOKh4HsYKlvHhu5STgzoye0N/EvDh457O5VgCd8Q+IJd2VNOFEumodFaE/kK/KOCMQR/R5zoNH9VXhAIMbpPqel93fDZCoiKFp/1XuryNoi5V2uMO0ZCv73oq6ZIfxvkkYFzQv+bPh+vKm+eEHaopUiErvVthsUCwVtSjiBPxoQNBncj2t7csL5t1Z+Onn5reMgpQouRiJSpaeSrJ5EAkxlFVySwemrY5i23SsI93Q+ErZBwn8Awb9XAuw5ffalNbqBCt5VKMF1SOfOlNC+TjPii6UuxiwSXDtbL+xivbhXigisk2D8ucJt45NBWbn6sPz2ImkB8iTQY2fSCD8cOJ/XBmBvKwbFAc3ojygfS00PSzj31u++8ovYJyFare+QAUXB86YVlqQ2cayhr1un++3TNRkqL020gValk0/15oNPBJq++apfjkjJDWrDGLWno0QCoY2/xl4J7lLdGy3BH7UJ1XyRp3IJe+2J6+rU3r4iUcNlMqpRvdnevb/ujyMrAgLNyUYRiTVsBqg+OCTTTbli9oD7NcKJMO4QngXClKW4CMYXdR7SRzty9CFxfKXuP0/5KnTtTBG9c6VFwoeko+3yBXaDP5gzUj0KqJGIbjAQT0UT+sgezZbJlqJDwDDtGJYIn3PQOEhI4ivxvoR0plZ44FyJxuImaRjOlZAcFSIQ3OEaHV9VpRmzBF+DhNpzMiGwLBQCwT4dOGYyYydGBUHB0CIwi8efYa3u8YLIw5zyClcrU0mGZuw5Wu7cS7Er6iRot4pgYL5gGSp7oozQ9ul9lEfqCFej8/WqZ5U+jmdHefbq05w0I+c7x3X/YfoM0ZbVWk/pXpZApn6XKSPBufpSfjsJ0wOagVIRAvYa4Tuaka0iBwvV5nelMTgg04tu6A6obQj0LGlE9h7q5+p1P/YtQfPjtScqq17nqxu1s6U0FtWqR6bKZPa8R2QCjQN+KW+KkJWofelqAuRj66EDbr5MRWwLT0wOWok55GVpKv6iOuzV/UpUh50Ka8552kV/9jS9BJoY4m6ciBWP7QyRSE8ZiYgUzp5TWBBdkZghlqJBwDDtOI5oEGZpNox549ciA9sk7BD8d8uHgpUXZdohkXPZElRBmiz782kycWRJSNcp/y4JV67po7IaZD5YLMGIqWG/vl+ak+tXTDCbxwfiKWkgXpUfw2YJzTQJ26G69zBFb0Sslx/Q6g8d137Yim0+wI3GvCEnSxwW0QhsOTjA7RRpqZffhA+aJY0FJMF/qJw0BUdUHyLx7tQHDcFo3X+r7v282gaxuUptoq6YPZi9I3QR0CwnxVkSZ8+dKgefEVaoLNN/tBDUHy1DuYgPq1MG6N5p0hQQAfSIzDq10jKspV5qS4FMLlP1P0NanRpdBz7lqncvCf4sLbVtkA9IvcpCk1Kh//iZNOjeh/Qdp1b8S6ZIwzBPzqJoi7xJQ/f5gwjE7+SHwcqVQpW9WGUuxdwkf4yr1a5z1Cf4f/QkIkHEytKyUjcibYTfL0pQplwyEpFyXZYcFSY4mEWui7YvDNPO4cmOqDfK/o5AhDDgIIiGAlNEPEwJ9HWmtAwXyazxqmz8TsKuVLcuU/5eEmJ9IMa9Mt0vd5drlUWTmyXhhlD+hfwI1irvXgk/OU+43hJ+gyQk10p4ssIBf4LJcoQMkg55gXhIZAQ/gKEqe5SEZW99vNZBobvDArOZDMhnQTP2Us3Wa3WfVSIETkSClRG7pAHBEZTAXFeqjCG6H21BE1OlOpQo75+ltZgnIrNNv1nBMlSajf69+rhN9QdcBQSH8uTzMDVXK0REFLj//pxsBfXa5/ajRdE9q/T/r1QeTYgIg1+CqHamZ+e52arXYpk9dqo9B1Vete5PW/Ct8AkyI3K1QiRhsLQL+F0QhTRdmst/273L7RaRcNLaDBLJOic3x/ugvCTNyHq1+WOq80cLC1uEgm8utPv+DeIjsfVDqiYjEanac6e43rYcMfoOMEw7hymCEBU/mgdm5OHlhW1hepZIxrVarbFCwqtQQm+bhOVeCTFWdhyWcNwq8nBQef4g/4GXJJh36nipjjdoJo+4LJA243SZKqolED8mgYwD5DrN5Mk3VEI2TQQBzUGVhC2z+REiELXKSxRO6nhEle4l1sCKjBwJ+nQIhQR3Hwn8M6UJGKs6lUmIb0LwQ3KkxegjwbtHef5bWon/FZkYIxKBIynmCO7Fp1H3I42S0GYp7GKtZMFks1/kgWWm/aU5mZEpkqTyS1WfA6o3WpKzZJLpL3JRp7IwMZRJIyJHD+/PMVQ4jJIzapbaQN3HKsx4lv7vloaiWh/KQoPB7qhZqsNq+XGAYT+1a63Ob9C9uc+emr3uMCRGefZIq7FYDqdoWgarrsQA+R8RDHxOPiJCiCmIfm0rUWc0LJhrMNOgfTkkncz5crodK/JyvOvbKvdkH8eMwT5QkN1UTUYiUrXnTnG9ia5I1DozZ0TXEYZp57FE4BRK8MSmtjBFzX6mVO6TpWWolIp+TC/NyiXcaiVAN2ts75N9f5cEX7mEKd4DDSIb+DXI5uEGywwwREK3SWJupq6/SU6PrGLwu4RKuO9UviM610+VYqnm1RLCU5T/oBwliQWByWGv/mMK2CXhVykCU6EPmhRECVE58evIUIjp/hLEGzSbP6B6lKvcfRLgByVwRopgYJ7A4RQzBloMPmgl0MZgamjkGtW7Sfct0DU4Zg4QUcBnA3+HaSJCI3QcAbxaZoVDKiC3nxwqdWxok0wdHxCSHNUlU9juV5n9hE1m31y3T/cvEPFhFUc/zaLR4GBaStP9wWtbdY2rFoHxYbx0frvKb5Kw74uZhH5S2RX6rap5U1Ou2tVb7XlOREJVczOl5cHRlXgbaFh2yES0X5lpa736pVL36cd3ESHIBG3GcXOJ7jlRbaRtE9VeVphAKhNZdaNqn/SElocooET/TVUi0fqpO+kw2g1TEYGDerjNnBFtzxmm0eJJaW1hip8CM9arNRNG/c9SS1ZR9Neseq+kWJMEGeGxWXWB0O0tIVUgwUnI54G6Llez534iFLeKQEwXSfCCX8IRE8pcqfyhEWMkYC8UEbhMAnG4ruGcF/ISHATFYha9SYJ0swQ94bsRhmgCcIxUFBYfqnu4TCsHdP86mVNqVZ/ShiaXpuvy+2urdNUXDQwmDb+KREJ0r2b0ZSJClcrbS8QkU3XMyUh3Q+WbwaoV/BfQgsxQuddIg0JgK8Jyv1KT5n0+WImBaWZE/zS/GkZWGy+8IT/66s5SGX1EnEolnInIuU/36CUyAYHBL+SI6jJEZUJeauWI2Vf1HiCsmvC30P9BwqpQuBzRdbt0nz1qf4WuHn54gEtT2bXqh99J+1MqLQjOnbsgEeAjElEisler33zQZOTpevxS8MGA5OAYu0112qB7rtdnotrM0lhW2bBChA3v+I/jZxBcS1X2AbJYdgtB4TireDyenAwlT2DURyRICQYI8kHI4uX3GRP4wxhN5aiVRiIS6GTL0hoB9sywJZ6tcenKEcO0K+jFv7Y9TAmWdJtU5wiZtzXbJxgUAvl0CfxqCckymRHqWMUg4ZIpoTtZZCBHwqpWAhUScqN8CS7SJ1uCGgF7moQnQqtIefh9pgQmO4UiZIJE+XyYtY/V7PND8s2ANOyRIGGXUnwvlmq2v0V1QWPRR9IZR9BqCd4SCdxyZvTK55dSYkZQWX7qzi00K8dhk7DgOF72kxAdqud0jGb/EAPMKphTrpAG5s7CIjdJ9aUuOGpCJl7Rss/X9jYv0zyociAENAQzTJrYxLkiRDfKZDROZqDdugeRNufoU6F6IoTBqdmy38vl6r6Nh2pchepLIlpoZlaebzPC/qAIRb4wXiWNRY1MRCWQJ9VhqjBbpXau9qtHdKHKREhBGNBG7BE+zveJtBEULBz9klgIntoxSOU2qKy3ag+6V2VWYVkwK3ZG6DzmHwJrQegG6zr6gOQ1Q2oD/cryXvIQ4CzoN8xXrMwhQNdG1Y0EeUP7xDhA0wHe5AdnNCh8EtF+YMJiw0jepRAxzDQfeJf4+6TCHyMRqdBLSVjHJj2oqewMlISQSltumEbdL+1hyoxzrATX30qY3yEhsV3C+W0tXXxJM+FdjYfdWBwas6UR0It+rIQLRoNizZBZFTFd/hAfLxooDcSxfTcQGgimuxSNkoRATUSQIIiGIth0j/NEKj4hQUJMBwJaEdNhsQQna6AmqK6E6MbvYpUicx7EZ0GCz3+k4ve+CfJdGK72EIIbvwDuj5p/u8YWAa0+Lvv7x0UCCiS0gtgM5OE3xOJiESXMMoQY5751KneMVnJco+P3yOmxUc6dCM+JqgtxIIhfAaFpXkbaTISWy6TA0tUq5fF1E7b9RSrY7r1S39dKU0IaLsE7UyTu3fo6ETYtGRUhWSiCMFnHhsivBP+IMmkftki7wl4nh3QfeXBq4xQZfQZkN28HL5yc7ld3pN6tUJn4GBwRYTiiPDnCYKL+D9Z9IAE4eb4hTCEmEC90CmhP4F/cq0H9O1KY3aI2ESEVMkE6oGvBhKXAc1UGR4N+RfCTBukeI4UhG8DNEBGaKd8THH6P0cfmfPH+oomgj4j4ySoalt0G5cbLn2zHjEQkW4+kSH3q9TChgoNFW4oGAcM0GhzDpRwPU4QIAoGgSAhpZqDTJIjnSIi+IcGBo2KGzhfrRc8yxikSErMk6C+RkEArEQiT4J4IjWAGGxxL5D/XoRKHeCDc8VXg2ZqmOjEzJ0z3Cgn1XaoPs9yLVIejazsQikHSOcgRannKQzhu0wwercs1IkX4b4QJRHCZr7euYTnmVR9Eolyt+2JuwWGSjcPQ2GxWPfJVr96qF/cZqHM4XHIf1P3M6rmGzc/6HEl3ddLS9FXhQySQCbzVT1qB67NyRbb6uD9LC4FvCJoWYkRsY4WIyNF6EZWtqjukrVFNY6ktDp1ywvIxPwrkP7FD/hF9de8RqlcfndslQrVFfXRYhMP7rkibUyctyFrVcbM+h1SPQ6r/IdUFB1OpRppXlGCOEVE5Is0LGoA9aH2kedkkU8zNwoF+mKOQ6v8r59rlMslgcqLug1VevvxV0Dkh+ImXsUEkZ57u+apI0XnCCTKCJopxQqKXGE84wEKj0DpAIDaovQt0fLXq+U5pqasSftQlVZKRiFTpqSSXdqxBAAAuIElEQVSrJ17vqeoIlGRQHq2OYXoUisi+JIopZIAlkekSGmgTAufGhZq5lkkIF2k2jkA4W58pEqA+rgTC6AQkSkU7wYe6sJRztD5nikSwI+gmfTAhQDioZ0AYwlVBAGMmKZFQRRBeJQJBkC1U+e3VGvPGQH0ISQ3xoL0QLBw9cTwtkJYgeO4pB8LD+SBhyiHWw0cPFrgXKqvczl6Nvn7eSVJ1Zj8QYkLkSAhnSpC/KuFMOUNkrsEsUC3BjEaoDtIgLQ/1KdJ/dkjlvn24Tve7VPWBAO5S3zCLHy3tQ67q5+NviBQgrH3ocZEE7yCqfF5yBxVt8V81oC91TaNIwHpdQ4CtncKOEOarRQg2a9JUozKIzFEtInSIuupDyzHl1InUYA45pHPVqmdjZpMrV3kXSivBap2Dag6OsXwgWxAISAVxIqpFJGo0zjbo2FaRnyG0Q99TJRmJSJWeSrJ6YsMzc0a0nWKYRosnpXUUUwQaM+xpevmjlSB6JRtljZZfwYVaPkhcCIT7yUpoE6gHH/wWztYs9V0JnKUQCQkf1PTV+iAEqVV4BntYM3i0DtdKaBNXYrx8JBJN3JeVDXyCdFjHwBPzTlsJMobG4jqFxcfBc77MQwjORtVlsuqPMyfqfsgHjo5oJxZLQPO/SESgIFtz+377pdnQHYQz4beLRCwG6j9LVht0nAiZRCOlFq9JW0RI7kMS4iNUN3kmuF5aWMK26jnCpb/u7TUTaCjCwhkhTTtEEnCoPSzhj3moSmURynybri3V9/3SShyBgOja/iI9uX16eY1UhfJ67QhUgHL4kBqbV8bsUF5IBKtvilQ+jrZ7VBd2dIWIfJDbE7O+6scykYcyaUP2655Dg7KaS0z6v0Yikr6LkrOCVbLV4qluu3hG1z+GaXRYBiV1BVNm4rfID4CZbnuCM7jXif7PDP9cqe/PknYAJ1DIxDv6rBHJ8bNgCShkLwIaopObpvpDIPJypVVotu93pY7MmndrnxE0AizvbitBJCBbN0udj7niJZkDCqRBuFtYotlAk0Ai1PXntDHaL1Um27LvkxDNlTDHuRIzgZelNEiJOByVEuhslPZhaTNulkYEooPfwvN6F83X9ZhScGzkOoR0ocjHoDRpXsQq8E6AZHEO/kAAsGbC1SzOQa5B5a9oSPPROfG/aMDfAvIgLPuKgBUovsZ44bhbx3aLEOzX/XxhkErVm/IaRe6Iy1Eqp9zJaQVut8qo0nkcPLNUn9Hqw2YTWLPfw2GVc1jmj/XCCz+SfjKjpFoyEpFqPZYk9cWBKRlerEkCRyTVMEwjgbFFIVFgmmzjHAfJ0fLNYOOr6yWomeGypHG9hBe+Bfg1DNM5YmGw50ZnfDRagPjBD3BA+5goHjhf4lcwTj4MuTIHXSATaEAgKBISgFnoi4ryeYGIA34or0uzgDAukvkC8xKJOBf4goxR3htEiG5Um8GARKhs9kmBWL2m6/dLEGNewO8ADc0uNBBKhap3roQ45IRdWNF8KD6nNy0ExGu07pkn3OqUl11ZnTQkCuDgTlO9RyoAWLOj5BGnmJrudN0znDBOEJV0g+q1VfU+qHas0g6vE1XX0fKxQetCam5R85WYNei7xfq5TxomfD4UyKP5ZAr9NRKRQp2VTFXN50HWC8tSdAgYptFhGZTUXTFFhDKjTZNwwm8AE8JUCdJAC8EKCpYhNovaAI2u/YeQDZbmgMBIiSTqx2qSUQr+RARPfDfCQpQy+M1ST5a6suT1apEOtirfJLU+gp4resuEMFzmpBtkIpmpfAjzIAVEBHMN8TogIP4jAc31LMvcLAGNLwmxJgiohZYEsoWDJJucQWQgXAj6ZSJiL0pzshTThYhDrs5xD4JbseeHFA4+0ij3gJxRE3QH+DhgthijctLU5o06d0jake1yHt2tlSV9dNwvR6XuKgsTyxERHEwoEJ4jIkNjVf9CEQ4tYk2pZFIgpboreSqL1zsqTUwalqJBwDCNBsdwKd0dU4QwKvx+Eoonep0UZh2iK2LOwDcikURgJz7tJYgPphocNNm9lNUgBOJiVQbeAwjuARLq+ITg4NlsDjhWIu0P/EaOHZWchkiImECupmNWwHSgY2hDIDSYF3JlZoGAcW/qQfmQiRHSnCzRO44oF5m6/wSZMSA5EA6EPmURqpuImZSFVohlwKT3RESe0n3QelQqaihmGG2bqo9O6h7HnCYJlqU9V1RehghLtu7RpPOx7fOFJvEfIxGhztnfdMCt2L3O/WH9a6GjYsrpOW507jB9Rki1dsi9W7rC7a6vaJGHH4UD8twY5RueM9QdaGp0S8pWyb7mQ6K0yDswo8CNzR3uhmQNcvsONrhlu9e4in1VLfLwY3BmoRubN8INzChUtLo61W29gq1oA5uYNDRroBunfAUD8hXLvsatrNjoqhpqYnJpXXb2YDc+f6TWT+e4ParXmj2blX9vq3wjVf8J+aNcZr8Mt6u+3K3fs03bGNe2yLdTS5EmDRrnzs88WxHp0t3OujK3sarY7T2gddgxaWzeSDexYLRmRn1d8d4St6W6RO1Bmdgyjdc9TysY6x+irTXFbltNqXZZbA5WE845sWCMm1Q41tuqN1ZtVZm7PI7hPHyfVDjOna7PwcNS9+7Z5Erqyl3DweZgMUHePnoBTNI9J+pz8NBBt6Zigyut36MQvzzxxxLRCanb+PzR8p066FaWr3W71Wf0czilyw59muo3Nm+Uz7d812oF3Kn238P5MvumuwnKN0ZjqvFQo1usMbVqy3rXu28fVyh7b5By+mW68cJuVM4wrVeXHXzncvVFnR+HQR7+56Vnu/G65wjGnvK9vWOJMN6nlyZzpmOpcICCBSnfMI0F2vjXHe9pR0bFR9RLL5wGZeSrDSP9GCXfm9sXtcKE/EOyijSWm8dovcby/B2LhUlL7Mg3PHuQb2u+npFa1f+dnctaYUe+Uao/zxpjtEZj892yFXHzjc0b7jFhjFYK3yVlq1thTHn96nq50waNdZk5mXrGKt1yPd/0X2yizxj3fXunacxX+GeI8RCbJheNdyOyh3iVfmndLrd2zxaNGznvxaSpAyf65w2hVVJb5jZUbYub76xBp6svBvkxur2mxG3Ws9Gk8RqbzhkyxQ3T+4K+aH42yuLmmzF0mgJMDVSf7nObdM8dtbvldNgcZTFc5gXDz3ZDMov0vNa6DZVb/JhvkU/CDO0B5Q1WPvpild4/i9e97wr3FMkXisgVyEQRGD0b5w6Z6t9TVXr/8AztadA+GaGxR74M+SecPXiKK9L7jz5bVb5e24trn40W+XpLmA5w04VL4YAClVPl3t+9VmO5wS0K5eutuuX1z3JnDDxN770837fL9KztEz7hsUy+wgE57syiiS4/p0Dv4z1ucdly7Wmi7dFDY76PHCwHqZxJhePdZfK5ONxY497cstgHwWITs+EiMDkiI0XyjchV/fOzR7jaXjluXU2ZW7truZ4/Rdz8ILZFb5GING0137dfnhuUPlCGjnTXoHdPRcXaZi2EsPAOnSJOvfvIaVZbsBf2ypd5BSfZRk9yEjUZhfv0VH03EhFCHkE5d+089/Kfl4WOOjd98CR35+Tr9NIarhf0AfezJU+5uXqpxqYLhk11d53xYb0UhviH85ElT7r5xVi8WqZLRpzj/uaMG91APZwM6h+/9xv3dknLe3LF5aPPd5+aepMrGHWBK9lb6n747q89gWlZmnPXjpvp7jnzFndu/7P1EtrmfrDoV/6lGpvvxgmz3WfOus1N0YO3pmK9+/6ix/VSXR+bzd026Sr32bM/5oXI8l2rVL+n3KqKTS3yoYa764wb3NihEjSZA92inUvdL5Y9p5fq1hb5+PGpqTe7+6bf5XLSs9z87Qvdr1e+qJdqcat89551u/u7GX/jX+RvbH3LPbV6jgjHzlb57ldZ4/Lu9i/eORvfcM+vf91tF5GITV857x5PIhok3P6wfo57aeNbIhItyV+6HuIvn3e3JxH7mva7Z1f/0f1p20JXVt+S/OX3z3RfPPeTnkRA/J5c8bybW7xUBKElWRuSkefun/4JTyJ4kT+27Gn3dulKrf2ubVG9MTmD3OfPucsLVojSz5b8xi3csVohfRuk9Tw2cztdpO+z59zpBWadiNd/LnzUrZTg4mUZTmcPHO8+fdbHPIlASD/0zi88xgdiBOEFEkZ/e9ZHPYnYK2L6r/MfEXYSSKEXNOXOGnm2+9S0Wz2J4Ln4p3k/lHDdE76l/371mAvc36h/C0bmi1Ttcf/05g/0vyV2ZPzIhFkaLx9x04dMczs0lr+tfPGI8+2TrnR3TrnRTZYQRgh+a+7DcYnzJ/WcfWzyh90YEZ3V5RvcN5UPARab7hh7lRus4Er56oulGsvfevM/4xLnvzv34+7WSdeIvGSL4Cxx//rXn3uyFlveP17wt+6m0670Y3Te9nf0DD2hZ701IX7woi+4Gydc7snen7fMcz9d8j9xifP/nfUVd72eSyYJr2x43T2mZyMecf6Py7/urhs/y09efr/uf91vV/9JRKG14vuRa/6PhPlF2ixst3tm1R/cCxvniWC3JM606dEPf9eTCAjOEyueda9uWaRIj8fGFBqADM3Gf3rtdzyJKN670/3q/Wfca5sXa7bc5IM6UQ5CukjP9cNX/ZMnEdtrdrifvvdrt6hsrd6Vx0gYhGS4JkX/fsU3PInYUl3sfrDwv9wKTWQaQySsr4T5hLxh7juXflXCP9+PgX9f8FO3Ue8BomgGCeIyTROEb1/8JU8iIELfmfefrkRjNDyW++v5Pn/I6e4fP/QFTQZz9X7a7P5p7ve1b0dL8gL5v1TE6svnf9pNFYHJPbDL1az7jauTCWSXZP48Cf55uvkAEaFrxp7vvjD9bjdDxORQ1Sr3vUU/Dqrl/+OXUXWkj+tTdKY7Z/z1bnDWUD07la5i+/PNWghIxAfpcJ9+rrJoupwzRrg0mWwyhS17lURphgrudaL+G4k4UchauYaAIXDSEAi9l1vek/f1sXd2y3P2yxBoAwGEOH4lxMyQ5G8jV/zDrMQYJi1DkXxBakQoestccTTFDlQVjdmlVP4WV0ibMV6+HW+FNCRHr0viL72k+ukYQkncmK5W7fP3f8HljSp0t3zy9hZFZUllOkgqrEHSHLA0aEPl1rizmRzNVgfJ9FAoVXCT2PXGqu2tzAAUnCs1HCrCfKmWUYdvFiuPZwZARY3KMVeq3X1NDW5rG2aAApVDvux+WWLO9TID7Iw7m8Hcgqozo+8Af79izULq45gLBqr+Q6U6TRfrxjxSIpVo7KynuLjYjSoc7s4aO0XqzH5e7VgqlV28WQ9tRZ3dR6riCs1Wy6QNCM96ArCpGyYXVHmolHeLvceaFciLKn6EPgxdVMrlUo3GmhXINyJniFc9o6bdUVuqOta0UmVjfxwuzRH3xVSFuaVKqtvw7Iiy2OiHPOCCunmbZlzVms1gKgknZkjDsgZrBj/Q59tcvd3PVCk7nJj5oJ5mTFHGJo2p1ZvXSwXa1w38IGwy+TP69vf3xKTVbJbZ7M0PYRUw+bLUp9wTVTH51sqkFavaJV+OxjL5MH2hrl8l1TPmj9i3AGMUU0V+ep7HbIVUz/HU+5j66N9cjVX6YJXuGy8fZhTyZck80yCNDzPCeGYAxt4gzVgz+mb4sbleuMRT72PqwyyYLlNanWbxmNLi5WvcU+/H6YihI/yzuKV6h/K17AtwYXyCXZq24q46sNc/Qy3U+2RSGqkxVSTsGKOo5Itrd8U1F2CSYSaN1z6mQ0xp8crDXMlzSZ3QSpZp3B8KC53m20oDNsoVaCbdePig10Yws40dA2TF1MeM+4AwLq3freetJm4+TH30HVq1nXoPVEpTFlseWgbMPHnKh1Zta2WxW7p2pRs8ZLDLliNgkDABTZDJLVdaHLRlaC326r0SFi3g1V/5xqkdaHswZ6K1qIsxpZFvgJ6NMbmYXbP8ewrzTYPGVmx5WTIJjpIpLVtjCrPMZr1vD2jsx+ZjzI+UOZCxh1ZtY6VMS8oXTrwHGPOYAzM19jDzMvbiYVKgsY62mfco74p1Gsutkso70ifD/bbusFuyX/4dum9Gwy7vdxGwWpaVHlRgrL4Vte6MiWe660eMcm7pUveTh77vnnjiiRbvgVblJ9EBIxGhzvjSl77kpkyZ4u67777QUfsaD4Hy8nLvYGVhr+Oh07ljhmnncGvvKsO0PXQ6do44EWVlZT5qpTlUHx+7JpFBIp6+pdUmSxTOm9geROlMlzOlD5ylpavpmpRO1d4f14wa5aYrjsb6d95x3/3ud1OKRJg54/hjwXLEQQDvbFviGQeYLhwyTLsAXhuXGqZtANOJw16boFUILPW0dHwEiGVxvjQ2rPggcNlfRCbYWI04FURFHaLt1kfp3DSZMc7KzvJLT1t7qB3/Pqc6h5GIU90DKXp/lnqxXtwiVkbXgYZpdFgGJRmmARJd/8+Ge3v27PFLu9uLWNn1O3WfEojVwRbxhOqGUDwr/LYpGia7fV6mmBdsO79z61aXLa1EqrruGInoPuP1pLYE1SYvFUvRIWCYRodlUJJhGiDR9f/4GrC1etjnoOul9owS0DxAHL42dKj20WiO1kl8C8JeH0pxTI1E9IwxHHkrcf4zc0a0sBqm0eJJaYZpdJgS8nrEiBEWYK4TkKJlIPIlGLKSIdA69OoGmJpxqxMDwi5RrHcFVNlPvHdLkSFgmEYG5dGCDNOjUHT5CxoIzEMHFU3SUucRCAgEJXQHTI1EdH4s9OgreTkfkG3PUnQIGKbRYRmUZJgGSHT9P+bLOq02wKRhKRoEugOmZs6IZiz0uFJwqCSGvqXoEDBMo8MyKMkwDZDo+n9WZWTLGTDRfTO6fsfuX0J3wNQ0Ed1/nJ6QFtrSuehhNUwN0+gRiK5ElniyIsuWeBqmYQSMRITRsO8JI1BdXe1VmwlfYBmPi4BhelyIOpzBMO0wZG1ewEqXiooKM2O2iVDHT3QHTI1EdLzf7QohQMQ6M2dEOxQM02jxpDTDNDpM0UBkaCdLW5VlmIYRMBIRRsO+J4wABMJsownDlVBGwzQhmDqUyTDtEFztZvb7WmjywDJFS9Eg0B0wNRIRzVjocaXU19fbEs+Ie90wjRhQFWeYRocpKwlqampsiWd0kPqAfamOqa3OiHBA9KSiiBFhDlbR9rhhGi2elGaYRocpMQ1YMosd31I0CHQHTI1ERDMWelwpw4YNM7VmxL1umEYMqIozTKPDFF+IsWPHWsTK6CD1/iWpjqmZMyIcED2pKGYkFrEy2h43TKPFk9IM0+gwxZxRq50oLWKlYRpGwEhEGA37njACvEwaGhoSzm8Zj4+AYXp8jDqawzDtKGJt54dEVFVVGYloG6IOn+kOmBqJ6HC32wUgwNI52w442rFgmEaLp43TaPHEBypL21nbEs/ocO0OmJpPRHTjoUeVRDhhe5lE2+WGabR4UpphGh2mLEfMzc215z46SF13wNQ0EREOiJ5UVGVlpbeP9qQ2n+i2GqbRI2yYRocpqvddu3ZZxMroIPVLPFMdUyMREQ6InlQUQXxMExFtjxum0eJJaYZptJhiwrSl3YZpGAEjEWE07HvCCPAysYiVCcOVUEbDNCGYOpTJMO0QXO1m7g7RFdtt4Ck42R0wNRJxCgZOd7jlgQMHzEs74o40TCMGVMUZptFhSmAkVmRZsCnDNIyAkYgwGvY9YQQsnHDCUCWc0TBNGKqEMxqmCUN13IyQiFQP0XzcRp7kDN0BU1udcZIHTXe53ZAhQyxiZcSdaZhGDKiKM0yjw5SNt0aPHu1XvERXas8uqTtgapqInj2GO916olVa5LpOwxf3QsM0LixdOmiYdgm+FhcH+zw0NTW1OG4/Oo9Ad8DUSETn+79HX1lXV2cRKyMeAYZpxICqOMM0OkxZ4lldXW2Th+gg9Us8Ux1TIxERDoieVJQtnYu+tw1TwzR6BKIrkZUE6enpZsaMDlIfbCrVMTWfiAgHRE8qKi8vz14mEXe4YRoxoCrOMI0OU+JDDBw40MLdRwepj7mR6piaJiLCAdGTiqqoqHB79+7tSU0+4W01TKOH2DCNDlPMGaWlpWbGjA5Sb85IdUyNREQ4IHpSUXgVW+S6aHvcMI0WT0ozTKPFlCi1mDUsRYdAqmOaVOYMPFXx/N2wYYPbsWOHZ7zsbDhhwgQ3dOhQv3NkuOsCZrx169ajDj9EqBs2bJgbNWqUy8/PD2e37xEiQL9YxMoIAVVRhmm0eFKaYRodppCHjIwMC3cfHaSekKU6pklFIoiEBnl48skn3VtvveXYPKegoMB9+MMfdrfeeqsbN25cCzs8+d999133zDPPuM2bN7t9+/a5nJwcd/755/trZs+ebQM+wgEfLorlnaaJCCPS9e+GadcxjC3BMI1FpGu/wZPJm6XoEEh1TJOKRLAc6yc/+YkrKytzn/rUp9zMmTPd8uXL3Xe+8x03aNAgr1koKio62nsMZljcrFmz3IMPPuidflatWuV+85vfuF/84hdu8uTJFmzmKFrRfqmtrfXhb3FcsxQNAoZpNDiGSzFMw2h07Tvv26qqKj9R61pJdnWAQHfANGlIBGDiqDd37lx3++23u0suucRHR2P5y1lnneU2btzoNm3a5MIkAnX6ueee68444wxXWFjovYb5vXDhQrdo0aKj+bGLWooWATyKzZxhmEaLQPSl2TiNDlPeo8OHD29lVo7uDj2vpO6AadKQCDbKYV/18vJyN3bsWDdy5EhPCiAHkATMHGgowgl1OufDibX2+FagIoKAtOcEVFJS4tBcrF+/3hexcuVKhze3bTATRjT+d0xHPAD4oFiKBgHDNBocw6UYpmE0uvad9yraYvxMcAa01HUEYjHFLM/+JBxPlZQ0IwESsWfPHj848WtgoJIQVMS/x9kS1WR7CeDff/99t3PnTk8ucK7k+rZScM/i4mKfBQdOZtfB77aus+POvfPOO34N/umnn25wRISAYRoRkKFiDNMQGF38SghxNMVnn322fyd3sTi7XAjEYooMu/DCCx2T4VRJSUMiMGegPQC8sOAPoqShHWhPQ8A5tAjPPvusJxuXX375cQc6jpp8Pv7xj6dKfyVNPR944AHvc/K5z30uaeqU6hUxTKPvQcM0OkzREqO1vffee725ObqSe25J3QHTpIkTEajG2a8+vMEL5AKVJOqztmzwsDf8KR566CHvB4E/xW233dZzR6a13BAwBAwBQ8AQOAkIJI0mAvMF8R0gBGgUMF1kZ2d77QNxILKysrz6PB4m2JGefvppz5IhD2ghWLVhyRAwBAwBQ8AQMAROHAJJo4lA00BMCGzsq1ev9g6PEAkIwnvvvecJBnvZx6a1a9e6l156yS1dutRdd9117tJLL/UexO05VMaWYb87jsBpp53mce74lXZFWwgYpm0h0/njhmnnsYu9ElMz/hC2rDsWmc7/7g6Y9vkXpc5DEN2VCH0+OJps2bLF7d6926/GgBxs377dB48688wzvWlj2bJlXlPB6ozXXnvN/fa3v/VOmQSZwrMVJ0xWcmD+yMzMtKBI0XXT0ZLAdsSIERYV9CgiXf9imHYdw9gSDNNYRDr/m/czGmNWz/FetdR1BLoDpr1kPkiatST4P7CE6LHHHnNz5szxm70MHjzYB5664oorvKMkBOKRRx7xyz7xfXjllVfc448/7n0m8KugU0hoND772c86olay1NOSIWAIGAKGgCFgCESLQFKRCJoGp8G5srGx0ftDoG2A/aL24TtOl2FHS/KRPyAPATyYR7iOmUjsuSCP/TcEDAFDwBAwBAyBziOQdCSi802xKw0BQ8AQMAQMAUPgZCKQNKszTmaj7V6JIRCYl+bPn+9YIYPWB43QlClTfChyVsxs27bNzVUAGpxgWREzffp0f458ltpGAI0bodnx+SHqKpvMgTe/2S8GjRshm9kXhlDDaOEsxUcALAkc9/bbb3t/qPr6eq+FZJUWe+4Q2wBc0WCy4mu2TJxjxoyxqIvx4fRHedYZh0T0xc+MyLTspAymJMzKNk49FHH/4Nv3xhtv+PEIlpMmTXIf+chHfF7GKti1NSa5lg0oWVSAlp3nH9M974NwDKW4Nz4FB41EnALQU+WWvJx5IbNvCR8SQb1YEYNjFatp2EUVEsHLmQHPA0LEUR4aS20jQFRVXhT49OCgis8PGEPY1q1b54XgkiVLXG5uridnseHd2y65550hSB1CbcGCBd6PCvMlhLa6utoLQMgFL2zMm5Bdxi5+UuBuqTUCPONstPX73//ex9+BwILx4sWL/XYEkAoigdo4bY1dcAS8eE9CFpiAMdkKSAS/2xqTEAUWErz88st+kQF9wW/+c30yhi5ImtUZAfj2P7kQgEXzsr366qvdLbfc4qZOnep+/vOfe3bM4Gamct555zkiAzLAYc/E+ZgxY0ZyNSSJasMLAcdhSEOgYbj22mt9rBNePnfddZePosoMmoh2kDL2krHUGgGILkLt4Ycf9svAP/axj7m7777baxvy8/M9SSOc/pVXXuk+//nPe6LLEnIIxcSJE1sXaEe8xhGh98Mf/tARkfa+++7z2P71r3/1msg///nPHj8bp20PFogsZPWCCy7wZIAJ1vXXX+8veP755/1zHW9MMmlgIrFixQp3//33u5tuuslP5J588kl/PWUmm4+f6UjbHgc9/gwCDm0DocHZPRVVGhoH9iRB2EEgEHI8DMzsIBM4srKRmaX4CEAgIFnMjCFdxMknIQwhDaiN2bWW/+DKUmdmLpbiIwCeaBx46bIiiw/jlnGIuW3NmjVe8DE2GaOGaXwc4x0FWyYRPOuY1/gPMYNg2DiNh9ixY5hzp02b5k1AYBVOvB85H29MQnjRQGLGZGUiH8wZaNB4b9AfyZbMnJFsPZJk9QlmylQLUwU7rQaqOV7K2O8Y6AHhgCXzUrcUHwHs8r/+9a89McPGDEmAQLC0GezAlBcML3DOk58XiKX4CDD+ILJg9uqrr/pZHC9aNtP76Ec/6iorK70mDTLMGMVHglkheFuKjwBYEj34hhtu8DF4GK+QMjRi4EqwKRun8bELH2WFYDjsQHCO9yPEIN6YZDxDFhinaMsYs/xHQ4GJibEdS0qCck/Vf9NEnCrkU+y+CDVMFajiYNhoJ3iRcJyXDgIwWE4b3vskxZp5QquL4MKOjBkIVTpBe0iQCGZ5YBi8dPjOywJ8Dc+2uwV8wJUZHJihJYPUYo9+8803fdA5rg7GJpjiwMp1luIjwHgEIyYNPOfMmIn8CWYQNsajjdP42CVylGedFG9MgntAFIIJHP95x3I8GcetkYhEer2H5+GlgvYBmyhC8Oabb/YCkBcyLxNeNuRhkJN4OCy1RoCZBM5pCDxMF3xHtYl2h/+c5yUBlnyYlYAvMxpL8RHgBct4Q1tzxhln+I33sCPjoAaJAFMSYxNMGavgaZjGx5OjaGogujt27HDXXHON93e6/fbbvSnz/fff9zNlG6dt43e8M8H7Md6YZDzzXuXZDwgD/xm3wfv2eOWf7PP2djrZiKfg/XBcI7w4SxJxDpo5c6a352NzRtVWWlrqVcYIR5g0dlNLrRHgRUA4dlZmPK4oq7xEwJaXNt7YHOflwW/IQ0lJiXfOQo1sKT4CvFhR/aJ9wPmUsccYnDx5sidmjE9+MzYhFoxVNGiMXUvxEUCzw9YB+Oww9sALEwb+JjgDQ9hsnMbHLpGjmDHaGpOMV8Yz7wneAxAI/rNLNWMbjUSyJdNEJFuPJFl9mL2xNwkzEGJA3HrrrZ44UE02ROPFjLc2ApLlnghGVnBYao0A5ouvfvWrfukcpOHRRx91X/7yl/0a8AcffNDboHk5syyM/xA38B2jmAaW4iPArI7lr5AIXrTYmwNHS3xK2E8nGJv8Z6wapvGxDI5CzBBYaMsgX5gvwpji+GvjNECr4//RmLU1JhnLbHI2b948r6FES4lGCId2nNuTkURYxMqOj4EecwUvj02bNrlvfetbfmYCacDmTCKuATM/zr/wwgueWEAgWNKEtgIHLEvtI7BVqy5ef/11r3ZnOR0bz/3pT3/yKw14kYPnJz7xCfehD33ItDvtQMlMDadK1t4H5gs0OXfeeafX5GCGW7hwoVcHk5elygTvwXnQUmsEsNkzE/7Rj37k8cTXhMkEAoz9iNBUBMsQbZy2xo8jYIS2kZUWQVApdphmp2kILxOueGMSElFcXOx+/OMfe1LMOxjNxcUXX+wD0iVjnAgzZ8QfA3ZUCPDygAET5AQv97AKGO9iCAWDnpcODw2qOHZaDYiGgdg+Asz2zj33XD8zBjsCdEEcmCnz8gBbZn14ZltqGwEE2UUXXeT9HBB+EAhmbcFSWezMYAiBYAyjnUBlbCk+Amh3EHS33XabN1/wbGPSQLODgyWqeHxKbJzGx4+j4DN+/Hjvr4NpDRKGaYj3JhpJ8Iw3JrmOuDz4neGHxpiF7LIUnHGejMk0EcnYK1YnQ8AQMAQMAUMgBRAwn4gU6CSroiFgCBgChoAhkIwIGIlIxl6xOhkChoAhYAgYAimAgJGIFOgkq6IhYAgYAoaAIZCMCBiJSMZesToZAoaAIWAIGAIpgICRiBToJKuiIWAIGAKGgCGQjAjYEs9k7BWrU49AgOBI9fX1PpYBSw9ZikgQGj4sr+UY/6NMRBtkuRnLxU7FkjEi8BGoiGWDtI2tjflElQL8wDLetsncn3uzjJFldiylZckiv1kaaskQMAQ6hkCff1Hq2CWW2xAwBKJAgIAy//zP/+xJA/E1EOoEpiGaJXtpsL486gh17MhIoBvKZc36yU5s4DRnzhzHa+ePf/yjjy0SZYRTQrNT7lYF8mKTszB+kAXinRApFAJH+wnjTGRG1vAnYyCfk90/dj9DoKMImCaio4hZfkMgIgQIJMPOqH/5y1+OhhMncBfaCWbGaAyiTmwtzoegVl1NzOqZ8XdEW0IwqLfeestHNWUvhilTpnS1Gi2up13gR/CuWPyoJ2SBQD5oedBIrFmzxkddhVAQoMqSIWAIdAwBIxEdw8tyGwKRIYAARpgRmZIZdLyZMKGcIRZjtH9GEAn0mWee8dEDZ8yY4UPkollAYEJKKJOIeITKZROliooKn/eyyy7zApTKExqakLvsh4LQZU8UhDn1oAzOsYsjQpaoemgKOM8sftWqVT6SHpH1+H3jjTf67aLDoKAFWLFihc+HiYBw6WwnjXBnZ03aRD2pI1tNxyY0A8uWLfOhl8GHexG1j2iJXPPkk0/6sNVoGiAybFxGmYSyJmEuoQ5PPPGEPw9BQNPDvTiHlofoixC1F1980d8HYkV4cfJANgiVjWmEBO5XX321z98RwuQvtj+GQDdHwEhEN+9ga17yIoBAQjhefvnlfg8NwuSicg8nBDoCDmEckIjnnnvOnXPOOX7r67Vr17pf/vKXfodFSAi7gi5YsMCfZ/MkhCmhyyEI7GtC2r17tycSCGg2VkI7wH0JwU1+9kVA3Q/BoI6E3x0yZIjfAZM9KtgPAAIT+HQE9YXIcA2bB0ECICTUm+/4J2CuoU7UkXuyoyZEJZwgJrR57ty5Pj/XrV692ocER7tAGY899pgPWw2x4n7UGWIFeSJBViBBEAY+YES5YM29MXdAnMCQDY4gVbQRfKkve5iwTTv3gsCQICuQDkuGgCHQEgEjES3xsF+GwElFgD0KZs2a5QUjggzB3pGE8Ecgf/GLX3TXXnutJxAPPPCAF5j33HOPF5BvvPGG39iLvSRICF5m9V/72te8IP/617/uBTd7IbBzKIKX3VoRqu+884575JFH3JVXXumJBkIYwf6lL33J76+A0A0SdYGgsFMm2ov77rvPz+bZufS9997z9bvmmmu838f999/vBTlbTIcTWgKEPgThG9/4hic5tA2yk2hCg0Ab/uEf/sETqJ/97GdeA0IbgoQmhPbdcccdnqR8+tOfdtOmTfP1fOqpp/x+MWhP0HyQF98K00IE6Nl/Q+AYAkYijmFh3wyBk44AQhhBhYBbt25dC0fARCrDTBlCgMoejQMkJDAfIKARfJSPaYPZNAmVPbNwZtZcx4Y/nOP+aDHYmRWzA+fRJiCU2Y6YDcPYuAq/AshPmEBQLmYXTBGc4x7UhzxoWtAWoHmIZ7Lh2iBxb0gK2yFzfzQobJ1M2YkmrgnwoK7UBYdO2oe2p71EfsgF2g5MN7Nnz/aEiDpZMgQMgdYIGIlojYkdMQROKgII1ptuusn99Kc/9QIboReozpkFQwQCJ0H+I/ADswfnUPNDJvgezJoRehxDiHMsLIQ5Hqxa4HxABljuyPfbb7/dC25ICPejXLZ2x/eA6ygvuCYWqKCMoD5ci1kgqHds/tjfXM81Qf24F1iE28sxEmXyCbeN49SNe5KPsgIcwI387SXIB9uvo7VBw/OHP/zBm2fuvfdeT6Daand7Zdo5Q6A7I2Akojv3rrUtJRBAyKFNYAaPvwHCLjA9BH4L2PQRsNjrMSkEQpUGBsIy3NhA0AbHwsKTWTk+A9yHuBH4BKBlwNkQLUZg7qBOCGj8FiAlXEe5sWUH90DAUga+EuTFpEBZrICAKEFKuGd7CU0HZAXNBXnRhJSUlBz1TYAUUA73oO5oSTB/hIkE9YUAcH8ICHUBM/w6wiSAdnCeawN8IC/0A9oM6hH4lRQXF/tj4evba4edMwR6CgJGInpKT1s7kxYBBCOBj1gdgDkAtXtAInAWRIji6IcgRrB1xD8gXqO5HmfFuXJexIcBAYrTIar+Cy+80L3yyiverIEJA+KCoJ45c2YL4hKvXAQspgDMJwjd119/3RMBCAH+GphN8PtoL02aNMnHbqB+XM/9qQcEgISQxxRDmfh6cE9iPZAvSJAH7s8KC86TF+IBQQo7coI5pAWCAb4kyudarqNfwBxfkbaIU3BP+28I9FQEjET01J63dp9yBPAZQOAGCUHNSgZmzmggEGKsmMBP4Pe//70XdPxGIKI5QLAhCCkjUP/zn1l0oM5HGKJFCPJTLip7VjA89NBDfuXHnXfe6S666CIvqPFfQGizCoN6MFMfOXKkF9xoTKhzWGAHdec/9aFuLPtk6eTDDz/s63X++ef7JZ7cF7+IcP3C1/MdEgFpghh873vf8wIcHBDkJEw3mFtwlmQVCOQC8kOMB9pO3oBwEFgLwoR/BbEhqBuECCzABP8HAnqh1Xn66ac9zmhf8IVYvny5byd1vfTSS/0SUbCwZAgYAi0R6KVZSPtGwpb57ZchYAhEhACCHFU6wo2EMOMYgg5hySyYx5OZNWp9EoIMEwHn+XA95xCKgWo+MD/wmzLJzwcCQFmB+h5zAeVTTrCckd8sKaUOXItQhohwbVAWeSAjbSXuxX34z/XUg7ZAQrh3uH6cj03cmzZBViAmLGHl+2w5OUK0+A5O/KdufGgLdaJuXM9v6suH+0O2aCPHuT/HaDfnMY0E+agj5QYYcX+uo/7x6hpbd/ttCPQ0BIxE9LQet/YaAimGwA9/+ENPbNAIoDGxZAgYAsmDgJkzkqcvrCaGgCEQBwF8RdBq4G9hyRAwBJILAdNEJFd/WG0MAUPAEDAEDIGUQaB5wXXKVNcqaggYAoaAIWAIGALJgoCRiGTpCauHIWAIGAKGgCGQYggYiUixDrPqGgKGgCFgCBgCyYKAkYhk6QmrhyFgCBgChoAhkGIIGIlIsQ6z6hoChoAhYAgYAsmCgJGIZOkJq4chYAgYAoaAIZBiCBiJSLEOs+oaAoaAIWAIGALJgoCRiGTpCauHIWAIGAKGgCGQYgj8fwo/zLOsIGbYAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "8a3adfa1-7fa1-4632-be7f-a316c26c844d", + "metadata": { + "hidden": true + }, + "source": [ + "### Plot from Paper\n", + "\n", + "![image.png](attachment:6b35f96a-af69-439b-ac65-a8b167e2e510.png)" + ] + }, + { + "cell_type": "markdown", + "id": "f3809ec3-742c-4388-b0c1-7fec552c248b", + "metadata": {}, + "source": [ + "## References" + ] + }, + { + "cell_type": "markdown", + "id": "c3413d5d-89b2-40e1-a86e-c85ac9cf80ae", + "metadata": {}, + "source": [ + "[1] Efficient Long-Range Entanglement using Dynamic Circuits, by \n", + "*Elisa Bäumer, Vinay Tripathi, Derek S. Wang, Patrick Rall, Edward H. Chen, Swarnadeep Majumder, Alireza Seif, Zlatko K. Minev*. IBM Quantum, (2023).\n", + "https://arxiv.org/abs/2308.13065\n", + "\n", + "[2] Quantum Computation and Quantum Information, by *Nielsen and Chuang*, Section 9.2.2, (2010)\n", + "\n", + "[3] General teleportation channel, singlet fraction, and quasidistillation, by *M. Horodecki, P. Horodecki, and R. Horodecki*, Phys. Rev. A 60, 1888 (1999).\n", + "\n", + "[4] Practical characterization of quantum devices without tomography, by *M. P. da Silva, O. Landon-Cardinal, and D. Poulin*, Phys. Rev. Lett. 107, 210404 (2011)." + ] + }, + { + "cell_type": "markdown", + "id": "804dcf16-7a26-477d-b9eb-34e383fc983d", + "metadata": {}, + "source": [ + "## Appendix: Calculating the Average Fidelity" + ] + }, + { + "cell_type": "markdown", + "id": "e9e8a1f4-64f7-431a-a188-789590ab2357", + "metadata": {}, + "source": [ + "The *fidelity* [2] of two states $\\rho$ and $\\sigma$ is defined by\n", + "\n", + "$$\\mathcal{F}(\\rho,\\sigma) = \\mathrm{Tr}\\left(\\sqrt{\\sqrt{\\rho}\\sigma\\sqrt{\\rho}} \\right)^2$$\n", + "\n", + "If one of $\\rho$ or $\\sigma$ is a pure state then this reduces to $\\mathcal{F}(\\rho,\\sigma)=\\mathrm{Tr}(\\rho\\sigma)$. \n", + "*Gate fidelity* is a tool for comparing how well the implemented quantum channel $\\xi$ approximates the desired unitary channel $\\mathcal{U}(\\rho) = U\\rho{U^\\dagger}$. Gate fidelity is a function defined on pure states as follows:\n", + "\n", + "$$\n", + "\\mathcal{F}_{\\xi,\\mathcal{U}}(|\\phi\\rangle) := \\mathcal{F}\\bigl(\\xi(|\\phi\\rangle\\langle\\phi|), \\mathcal{U}(|\\phi\\rangle\\langle\\phi|)\\bigl)\n", + "= \\langle\\phi|(\\mathcal{U}^\\dagger\\circ\\xi)(|\\phi\\rangle\\langle\\phi|)|\\phi\\rangle\n", + ":= \\mathcal{F}_{\\mathcal{U}^\\dagger\\circ\\xi}(|\\phi\\rangle).\n", + "$$\n", + "\n", + "Here $\\mathcal{F}_{\\mathcal{U}^\\dagger\\circ\\xi}$ can be thought of as measuring how noisy the channel $\\mathcal{U}^\\dagger\\circ\\xi$ is. The average gate fidelity of a channel $\\mathcal{U}^\\dagger\\circ\\xi$ is defined by averaging the gate fidelity via the induced haar measure (the Fubini-Stufy meaure):\n", + "\n", + "$$\\mathcal{F}_{avg}(\\mathcal{U},\\xi):=\\mathcal{F}_{avg}(\\mathcal{U}^\\dagger\\circ\\xi) := \\int\\langle\\phi|(\\mathcal{U}^\\dagger\\circ\\xi)(|\\phi\\rangle\\langle\\phi|)|\\phi\\rangle d\\phi$$\n", + "\n", + "To calculate the average gate fideilty of the channel $\\mathcal{U}^\\dagger\\circ\\xi$ we use a result of Horodecki et al. [3] which relates the average gate fidelity to the entanglement fedilty of a channel. The entanglement fidelity of the channel $\\mathcal{U}^\\dagger\\circ\\xi$ is defined as\n", + "\n", + "$$\n", + "\\mathcal{F}_{ent}(\\mathcal{U}^\\dagger\\circ\\xi) := \\mathcal{F}_{ent}(\\rho_{\\mathcal{U}^\\dagger\\circ\\xi}) :=\\langle\\psi_+|\\rho_{\\mathcal{U}^\\dagger\\circ\\xi}|\\psi_+\\rangle = \\mathrm{Tr}(\\mathcal{U}^\\dagger\\circ\\xi)/d^2.\n", + "$$\n", + "\n", + "where $\\rho_{\\mathcal{U}^\\dagger\\circ\\xi}$ is the density operator obtained from the channel $\\mathcal{U}^\\dagger\\circ\\xi$ via the Choi-Jamoiłkawski isomorphism\n", + "\n", + "$$\n", + "\\rho_{\\mathcal{U}^\\dagger\\circ\\xi} = \\bigl(I\\otimes(\\mathcal{U}^\\dagger\\circ\\xi)\\bigr)(|\\psi_+\\rangle\\langle\\psi_+|)\n", + "$$\n", + "\n", + "and where $|\\psi_+\\rangle$ is the maximally entangle state\n", + "\n", + "$$\n", + "|\\psi_+\\rangle = \\frac{1}{\\sqrt{d}}\\sum_{i=0}^{d-1}|i\\rangle \\otimes |i\\rangle.\n", + "$$\n", + "In our specific situation, where $\\mathcal{U}$ is a unitary channel, the entanglement fedility of $\\mathcal{U}^\\dagger\\circ\\xi$ can be written in terms of the *process fidelity* of the two Choi states $\\rho_\\mathcal{U}$ and $\\rho_{\\xi}$ as follows:\n", + "$$\n", + "\\mathcal{F}_{ent}(\\mathcal{U}^\\dagger\\circ\\xi) = \\mathcal{F}_{proc}(\\rho_\\mathcal{U}, \\rho_{\\xi}) := \\mathcal{F}(\\rho_\\mathcal{U}, \\rho_{\\xi})\n", + "$$\n", + "and so we see via Proposition 1 of Horodecki et al. [3] that \n", + "$$\n", + "\\mathcal{F}_{avg}(\\mathcal{U},\\xi) = \\mathcal{F}_{avg}(\\mathcal{U}^\\dagger\\circ\\xi) = \\frac{d\\mathcal{F}_{ent}(\\mathcal{U}^\\dagger\\circ\\xi) + 1}{d+1} = \\frac{d\\mathcal{F}(\\rho_\\mathcal{U}, \\rho_{\\xi}) +1}{d+1}\n", + "$$\n", + "Calculating the process fidelity between two states can now be achieved via Monte Carlo state certification. \n", + "\n", + "As per [4] a direct implementation of the quantum Monte Carlo state certification would\n", + "prepare a maximally entangled state $|\\psi_+\\rangle$, apply $\\xi$ to half of\n", + "the system, and then measure random Pauli operators on all\n", + "qubits. A more practical approach consists of preparing the\n", + "complex conjugate of random product of eigenstates of local\n", + "Pauli operators (corresponding to the resulting state after half\n", + "of the entangled state is measured destructively), applying the\n", + "transformation $\\xi$ to the system, and finally measuring a random Pauli operator on each qubit. This can be seen from the following equality:\n", + "\n", + "$$\n", + "\\mathrm{Tr}\\bigl[(P_i\\otimes P_j\\otimes P_k\\otimes P_l)(I\\otimes\\xi)(|\\psi_+\\rangle\\langle\\psi_+|)\\bigr]\n", + "= \\frac{1}{d}\\mathrm{Tr}\\bigl[(P_k\\otimes P_l)\\cdot \\xi(P_i^*\\otimes P_j^*)\\bigl]\n", + "$$\n", + "\n", + "The following three experiments use the modified and simplified version of Monte Carlo state certification combined with the relations derived above to calculate the average gate fedility of the channel $\\xi$. For more details see [1] and associated references." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/notebooks/longrangecnot/data/experiment_parameters.pickle b/docs/notebooks/longrangecnot/data/experiment_parameters.pickle new file mode 100644 index 0000000..13abbcc Binary files /dev/null and b/docs/notebooks/longrangecnot/data/experiment_parameters.pickle differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_0_3_ibm_pinguino1_cnot_uni_avg_gate_fidelities.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_0_3_ibm_pinguino1_cnot_uni_avg_gate_fidelities.pkl new file mode 100644 index 0000000..7861e69 Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_0_3_ibm_pinguino1_cnot_uni_avg_gate_fidelities.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_0_3_ibm_pinguino1_cnot_uni_avg_gate_fidelities_std.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_0_3_ibm_pinguino1_cnot_uni_avg_gate_fidelities_std.pkl new file mode 100644 index 0000000..0a273db Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_0_3_ibm_pinguino1_cnot_uni_avg_gate_fidelities_std.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_0_63_ibm_sherbrooke_cnot_uni_avg_gate_fidelities.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_0_63_ibm_sherbrooke_cnot_uni_avg_gate_fidelities.pkl new file mode 100644 index 0000000..c98716d Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_0_63_ibm_sherbrooke_cnot_uni_avg_gate_fidelities.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_0_63_ibm_sherbrooke_cnot_uni_avg_gate_fidelities_std.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_0_63_ibm_sherbrooke_cnot_uni_avg_gate_fidelities_std.pkl new file mode 100644 index 0000000..4b2064b Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_0_63_ibm_sherbrooke_cnot_uni_avg_gate_fidelities_std.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_dyn_avg_gate_fidelities.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_dyn_avg_gate_fidelities.pkl new file mode 100644 index 0000000..6051a5e Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_dyn_avg_gate_fidelities.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_dyn_avg_gate_fidelities_std.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_dyn_avg_gate_fidelities_std.pkl new file mode 100644 index 0000000..a54efd6 Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_dyn_avg_gate_fidelities_std.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_postproc_avg_gate_fidelities.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_postproc_avg_gate_fidelities.pkl new file mode 100644 index 0000000..7861e69 Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_postproc_avg_gate_fidelities.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_postproc_avg_gate_fidelities_std.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_postproc_avg_gate_fidelities_std.pkl new file mode 100644 index 0000000..0a273db Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_3_ibm_pinguino1_cnot_postproc_avg_gate_fidelities_std.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_dyn_avg_gate_fidelities.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_dyn_avg_gate_fidelities.pkl new file mode 100644 index 0000000..1bd7c49 Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_dyn_avg_gate_fidelities.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_dyn_avg_gate_fidelities_std.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_dyn_avg_gate_fidelities_std.pkl new file mode 100644 index 0000000..a637253 Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_dyn_avg_gate_fidelities_std.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_postproc_avg_gate_fidelities.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_postproc_avg_gate_fidelities.pkl new file mode 100644 index 0000000..338517f Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_postproc_avg_gate_fidelities.pkl differ diff --git a/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_postproc_avg_gate_fidelities_std.pkl b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_postproc_avg_gate_fidelities_std.pkl new file mode 100644 index 0000000..d66330c Binary files /dev/null and b/docs/notebooks/longrangecnot/data/oplevel_1_dd_0_63_ibm_sherbrooke_cnot_postproc_avg_gate_fidelities_std.pkl differ diff --git a/docs/notebooks/longrangecnot/experiment_parameters.pickle b/docs/notebooks/longrangecnot/experiment_parameters.pickle new file mode 100644 index 0000000..8ba55d6 Binary files /dev/null and b/docs/notebooks/longrangecnot/experiment_parameters.pickle differ