This repository has been archived by the owner on May 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathSymGS.cpp
316 lines (263 loc) · 7.78 KB
/
SymGS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#include <algorithm>
#include <cstring>
#include "CSR.hpp"
using namespace std;
using namespace SpMP;
namespace SpMP
{
void splitLU(CSR& A, CSR *L, CSR *U)
{
int oldBase = A.getBase();
A.make0BasedIndexing();
L->dealloc();
U->dealloc();
L->m = U->m = A.m;
L->n = U->n = A.n;
const int *extptr = A.extptr ? A.extptr : A.rowptr + 1;
if (A.extptr) {
U->extptr = MALLOC(int, U->m);
}
L->rowptr = MALLOC(int, L->m + 1);
U->rowptr = MALLOC(int, U->m + 1);
L->idiag = MALLOC(double, L->m);
U->idiag = MALLOC(double, U->m);
// Count # of nnz per row
int rowPtrPartialSum[2][omp_get_max_threads() + 1];
rowPtrPartialSum[0][0] = rowPtrPartialSum[1][0] = 0;
#pragma omp parallel
{
int nthreads = omp_get_num_threads();
int tid = omp_get_thread_num();
int iBegin, iEnd;
getSimpleThreadPartition(&iBegin, &iEnd, A.m);
// count # of nnz per row
int nnzL = 0, nnzU = 0;
for (int i = iBegin; i < iEnd; ++i) {
L->rowptr[i] = nnzL;
U->rowptr[i] = nnzU;
for (int j = A.rowptr[i]; j < extptr[i]; ++j) {
if (A.colidx[j] < i) nnzL++;
if (A.colidx[j] > i) nnzU++;
} // for each element
nnzU += A.rowptr[i + 1] - extptr[i];
} // for each row
rowPtrPartialSum[0][tid + 1] = nnzL;
rowPtrPartialSum[1][tid + 1] = nnzU;
#pragma omp barrier
#pragma omp single
{
for (int i = 1; i < nthreads; ++i) {
rowPtrPartialSum[0][i + 1] += rowPtrPartialSum[0][i];
rowPtrPartialSum[1][i + 1] += rowPtrPartialSum[1][i];
}
L->rowptr[L->m] = rowPtrPartialSum[0][nthreads];
U->rowptr[U->m] = rowPtrPartialSum[1][nthreads];
int nnzL = L->rowptr[L->m];
int nnzU = U->rowptr[U->m];
L->colidx = MALLOC(int, nnzL);
L->values = MALLOC(double, nnzL);
U->colidx = MALLOC(int, nnzU);
U->values = MALLOC(double, nnzU);
}
for (int i = iBegin; i < iEnd; ++i) {
L->rowptr[i] += rowPtrPartialSum[0][tid];
U->rowptr[i] += rowPtrPartialSum[1][tid];
if (A.extptr && i > iBegin) {
U->extptr[i - 1] = U->rowptr[i] - (A.rowptr[i] - extptr[i - 1]);
}
int idx0 = L->rowptr[i], idx1 = U->rowptr[i];
for (int j = A.rowptr[i]; j < A.rowptr[i + 1]; ++j) {
if (A.colidx[j] < i) {
L->colidx[idx0] = A.colidx[j];
L->values[idx0] = A.values[j];
++idx0;
}
if (A.colidx[j] > i) {
U->colidx[idx1] = A.colidx[j];
U->values[idx1] = A.values[j];
++idx1;
}
}
L->idiag[i] = A.idiag[i];
U->idiag[i] = A.idiag[i];
} // for each row
if (A.extptr && iEnd > iBegin) {
U->extptr[iEnd - 1] =
rowPtrPartialSum[1][tid + 1] - (A.rowptr[iEnd] - extptr[iEnd - 1]);
}
} // omp parallel
if (1 == oldBase) {
A.make1BasedIndexing();
L->make1BasedIndexing();
U->make1BasedIndexing();
}
}
bool getSymmetricNnzPattern(
const CSR *A, int **symRowPtr, int **symDiagPtr, int **symExtPtr, int **symColIdx)
{
int base = A->getBase();
int m = A->m;
const int *rowptr = A->rowptr - base;
const int *colidx = A->colidx - base;
const int *extptr = A->extptr ? A->extptr - base : rowptr + 1;
size_t symRowPtrBegin = 0;
if (A->useMemoryPool_()) {
symRowPtrBegin = MemoryPool::getSingleton()->getTail();
}
*symRowPtr = A->allocate_<int>(m + 1);
(*symRowPtr)[0] = base;
*symRowPtr -= base;
int *cnts = NULL;
volatile bool isSymmetric = true;
//#define PRINT_TIME_BREAKDOWN
#pragma omp parallel
{
int iBegin, iEnd;
getSimpleThreadPartition(&iBegin, &iEnd, m);
iBegin += base;
iEnd += base;
#ifdef PRINT_TIME_BREAKDOWN
unsigned long long t = __rdtsc();
#endif
// construct symRowPtr
for (int i = iBegin; i < iEnd; ++i) {
(*symRowPtr)[i + 1] = rowptr[i + 1] - rowptr[i];
}
#pragma omp barrier
#ifdef PRINT_TIME_BREAKDOWN
int tid = omp_get_thread_num();
if (0 == tid) {
printf("counting fwd dependencies takes %f\n", (__rdtsc() - t)/get_cpu_freq());
}
t = __rdtsc();
#endif
volatile bool localIsSymmetric = true;
for (int i = iBegin; i < iEnd; ++i) {
for (int j = rowptr[i]; j < extptr[i]; ++j) {
int c = colidx[j];
// assume colidx is sorted
if (!binary_search(colidx + rowptr[c], colidx + extptr[c], i)) {
// for each (i, c), add (c, i)
__sync_fetch_and_add(*symRowPtr + c + 1, 1);
localIsSymmetric = false;
}
}
}
if (!localIsSymmetric) isSymmetric = false;
#pragma omp barrier
#ifdef PRINT_TIME_BREAKDOWN
if (0 == tid) {
printf("counting bwd dependencies takes %f\n", (__rdtsc() - t)/get_cpu_freq());
}
t = __rdtsc();
#endif
if (!isSymmetric) {
#pragma omp single
{
// FIXME - parallel prefix sum
for (int i = base; i < m + base; ++i) {
(*symRowPtr)[i + 1] += (*symRowPtr)[i];
}
*symColIdx = MALLOC(int, (*symRowPtr)[m]);
*symColIdx -= base;
*symDiagPtr = MALLOC(int, m + 1);
*symDiagPtr -= base;
if (A->extptr) {
*symExtPtr = MALLOC(int, m + 1);
*symExtPtr -= base;
}
cnts = MALLOC(int, m);
}
#ifdef PRINT_TIME_BREAKDOWN
if (0 == tid) {
printf("prefix sum of symRowPtr takes %f\n", (__rdtsc() - t)/get_cpu_freq());
}
t = __rdtsc();
#endif
// construct symColIdx
// forward direction
for (int i = iBegin; i < iEnd; ++i) {
cnts[i] = extptr[i] - rowptr[i];
memcpy(
*symColIdx + (*symRowPtr)[i], colidx + rowptr[i],
cnts[i]*sizeof(int));
}
#pragma omp barrier
#ifdef PRINT_TIME_BREAKDOWN
if (0 == tid) {
printf("construct forward symColIdx takes %f\n", (__rdtsc() - t)/get_cpu_freq());
}
t = __rdtsc();
#endif
// backward direction
for (int i = iBegin; i < iEnd; ++i) {
for (int j = rowptr[i]; j < extptr[i]; ++j) {
int c = colidx[j];
if (!binary_search(colidx + rowptr[c], colidx + extptr[c], i)) {
// for each (i, c), add (c, i)
int cnt = __sync_fetch_and_add(cnts + c, 1);
(*symColIdx)[(*symRowPtr)[c] + cnt] = i;
}
}
}
#pragma omp barrier
#ifdef PRINT_TIME_BREAKDOWN
if (0 == tid) {
printf("construct backward symColIdx takes %f\n", (__rdtsc() - t)/get_cpu_freq());
}
t = __rdtsc();
#endif
// sort colidx and copy remote
for (int i = iBegin; i < iEnd; ++i) {
sort(*symColIdx + (*symRowPtr)[i], *symColIdx + (*symRowPtr)[i] + cnts[i]);
memcpy(
*symColIdx + (*symRowPtr)[i] + cnts[i], colidx + extptr[i],
(rowptr[i + 1] - extptr[i])*sizeof(int));
if (A->extptr) (*symExtPtr)[i] = (*symRowPtr)[i] + cnts[i];
for (int j = (*symRowPtr)[i]; j < (*symRowPtr)[i + 1]; ++j) {
if ((*symColIdx)[j] == i) (*symDiagPtr)[i] = j;
}
}
#ifdef PRINT_TIME_BREAKDOWN
if (0 == tid) {
printf("sorting symColIdx takes %f\n", (__rdtsc() - t)/get_cpu_freq());
}
#undef PRINT_TIME_BREAKDOWN
#endif
*symColIdx += base;
if (*symExtPtr) *symExtPtr += base;
} // !isSymmetric
} // omp parallel
*symRowPtr += base;
if (isSymmetric) {
if (!A->useMemoryPool_()) {
FREE(*symRowPtr);
}
else {
MemoryPool::getSingleton()->setTail(symRowPtrBegin);
*symRowPtr = NULL;
}
}
FREE(cnts);
#ifndef NDEBUG
if (isSymmetric) {
assert(A->isSymmetric(false, true));
}
else {
CSR sym;
sym.m = m;
sym.n = m;
sym.rowptr = *symRowPtr;
sym.colidx = *symColIdx;
sym.diagptr = *symDiagPtr;
sym.extptr = *symExtPtr;
assert(sym.isSymmetric(false, true));
sym.rowptr = NULL;
sym.colidx = NULL;
sym.diagptr = NULL;
sym.extptr = NULL;
}
#endif
return isSymmetric;
}
} // namespace SpMP