-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathms_classification.R
377 lines (266 loc) · 12.6 KB
/
ms_classification.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# for pre-processing scRNAseq data:
library(Matrix)
library(irlba)
library(uwot)
library(FNN)
library(RcppAnnoy)
library(igraph)
#
library(tidyverse)
library(cowplot)
library(scpr)
library(ggpower) # for power-transformations in ggplot
library(rje)
# rowVars for sparse matrices:
colVars_spm <- function( spm ) {
stopifnot( is( spm, "dgCMatrix" ) )
ans <- sapply( seq.int(spm@Dim[2]), function(j) {
mean <- sum( spm@x[ (spm@p[j]+1):spm@p[j+1] ] ) / spm@Dim[1]
sum( ( spm@x[ (spm@p[j]+1):spm@p[j+1] ] - mean )^2 ) +
mean^2 * ( spm@Dim[1] - ( spm@p[j+1] - spm@p[j] ) ) } ) / ( spm@Dim[1] - 1 )
names(ans) <- spm@Dimnames[[2]]
ans
}
rowVars_spm <- function( spm ) {
colVars_spm( t(spm) )
}
# read in data ------------------------------------------------------------
# The matrix with raw UMI counts can be downloaded from [here](http://cells.ucsc.edu/?ds=autism#).
# This section reads them into R.
path <- "~/sds/sd17l002/p/MS/"
counts <- readMM( file.path( path, "rawMatrix", "matrix.mtx" ) )
# make gene symbols unique (by concatenating ensembleID where necessary):
gene_info <- read.delim( file.path( path, "rawMatrix", "genes.tsv" ), header=FALSE, as.is=TRUE ) %>%
mutate(unique = case_when(
duplicated(V2) | duplicated(V2, fromLast=T) ~ paste(V2, V1, sep="_"),
TRUE ~ V2))
rownames(counts) <- gene_info$unique
colnames(counts) <- readLines( file.path( path, "rawMatrix", "barcodes.tsv" ) )
# info per cell (append tSNE we downloaded from cells.ucsc.edu as well):
cellinfo <- read.delim( file.path( path, "rawMatrix", "meta.txt" ), stringsAsFactors=FALSE ) %>%
select(cell, tSNE1=tsne1, tSNE2=tsne2, everything())
# info per patient:
sampleTable <-
cellinfo %>% select( sample : RIN, lesion_stage ) %>% unique
sampleTable
# PCA and UMAP ------------------------------------------------------------
# if RAM/memory is not an issue, this speeds up downstream analysis:
Tcounts <- as(t(counts), "dgCMatrix") # fast: Tcounts[, "SYN1"]
Ccounts <- as(counts, "dgCMatrix") # fast: Ccounts[, 1337] & colSums(Ccounts)
sfs <- colSums(Ccounts)
norm_counts <- t(t(Ccounts) / sfs)
rownames(norm_counts) <- rownames(Ccounts)
poisson_vmr <- mean(1/sfs)
gene_means <- rowMeans( norm_counts )
gene_vars <- rowVars_spm( norm_counts )
is_expressed <- colSums( Tcounts != 0 ) > 100
is_informative <- gene_vars/gene_means > 1.5 * poisson_vmr & is_expressed
plot(gene_means, gene_vars/gene_means, pch=".", log = "xy")
points(gene_means[is_informative], (gene_vars/gene_means)[is_informative], pch=".", col = "red" )
set.seed(100) # seed ensures that UMAP gives reproducible result
pca <- irlba::prcomp_irlba( x = sqrt(t(norm_counts[is_informative,])),
n = 40,
scale. = TRUE)
# Find nearest neighbors for UMAP and Louvain clustering:
set.seed(100) # seed ensures that UMAP gives reproducible result
featureMatrix <- pca$x; k_nn <- 50
annoy <- new( AnnoyEuclidean, ncol(featureMatrix) )
for( i in 1:nrow(featureMatrix) )
annoy$addItem( i-1, featureMatrix[i,] )
annoy$build( 50 ) # builds a forest of n_trees trees. More trees gives higher precision when querying.
nn_cells <- t( sapply( 1:annoy$getNItems(), function(i) annoy$getNNsByItem( i-1, k_nn) + 1 ) )
nndists_cells <- sapply( 1:ncol(nn_cells), function(j) sqrt( rowSums( ( featureMatrix - featureMatrix[ nn_cells[,j], ] )^2 ) ) )
rm(featureMatrix, annoy)
set.seed(100) # for reproducibility, we also have to set n_sgd_threads to 1.
u <- uwot::umap( pca$x, spread = 10, n_threads = 1, n_sgd_threads=1,
nn_method = list(idx=nn_cells, dist=nndists_cells))
u <- as_tibble(u, .name_repair = ~ c("u1", "u2"))
# simplified paper_clusters in UMAP
paper_clusters <- case_when(
grepl("^EN-", cellinfo$cell_type) ~ "excit_layers",
grepl("^IN-", cellinfo$cell_type) ~ "inhibitory",
grepl("^OL-", cellinfo$cell_type) ~ "OL",
grepl("^AST", cellinfo$cell_type) ~ "Astro",
TRUE ~ cellinfo$cell_type) %>% factor()
ggplot() +
geom_point(data = u %>% bind_cols(paper_clusters = paper_clusters),
aes(u1, u2, col = paper_clusters), size=.5) + coord_fixed() +
geom_label(data = u %>% bind_cols(paper_clusters = paper_clusters) %>%
group_by(paper_clusters) %>% summarise(u1=mean(u1), u2=mean(u2)),
aes(u1, u2, label = paper_clusters)) + theme(legend.position = "none")
# Louvain Clustering ------------------------------------------------------
# We use the approximate nearest neighbors computed above.
# matrix has to be sparse, otherwise takes 80 GB of RAM:
adj <- Matrix(0, nrow = nrow(pca$x), ncol = nrow(pca$x))
for(i in 1:ncol(nn_cells))
adj[ cbind(1:nrow(pca$x), nn_cells[, i]) ] <- 1
for(i in 1:ncol(nn_cells))
adj[ cbind(nn_cells[, i], 1:nrow(pca$x)) ] <- 1
set.seed(100)
cl_louvain <- cluster_louvain( graph_from_adjacency_matrix(adj, mode = "undirected") )
cl_louvain <- factor(cl_louvain$membership)
# set up smoothing --------------------------------------------
scpr_list <- list()
scpr_smooth <- function(g= "SYN1"){
# Smooth gene expression with scpr.
# Side effect: saves smoothing to scpr_list so we don't have to recompute.
if(is.null(scpr_list[[g]])){
scpr_list[[g]] <<- scpr(Tcounts[, g], sfs, pca$x, lambda=1,
nn_list = list(nn_cells, nndists_cells)) / sfs/mean(1/sfs)
}
scpr_list[[g]]
}
kernel_weights <- apply(nndists_cells,
1,
function(d) scpr::tricube_fromNN1(d, max(d)))
knn_list <- list()
knn_smooth <- function(g = "SYT1"){
# knn-smooth a gene with tricube weights.
# Returns normalized values of the form k/s/mean(1/s), where
# k are UMIs and s are a cell's total UMIs across all genes (aka library size).
# Side effect: saves smoothing to knn_list so we don't have to recompute.
if(is.null(knn_list[[g]])){
norm_umis <- matrix(Ccounts[g, c(nn_cells)] / sfs[c(nn_cells)],
ncol = ncol(nn_cells))
knn_smoothed <- rowSums(norm_umis * t(kernel_weights)) / colSums(kernel_weights)
knn_list[[g]] <<- knn_smoothed / mean(1/sfs)
}
knn_list[[g]]
}
# Marker examples ---------------------------------------------------------
major_celltypes <- matrix(0, ncol=9, nrow=8); diag(major_celltypes) <- 1
dimnames(major_celltypes) <- list(Class = c("Oligod", "OPC", "Astrocyte",
"Microglia", "endo",
"nNeuron","iNeuron", "eNeuron" ),
Gene = c("PLP1", "TNR", "AQP4",
"PTPRC_ENSG00000081237",
"VWF", "SYT1", "GAD1", "SATB2", "NRGN"))
major_celltypes[c("eNeuron","iNeuron"), "SYT1"] <- 1
major_celltypes["nNeuron", "NRGN"] <- 1
three_celltypes <- matrix(0, ncol=3, nrow=3); diag(three_celltypes) <- 1
dimnames(three_celltypes) <- list(Class = c("Oligod", "OPC", "Astrocyte"),
Gene = c("PLP1", "TNR", "AQP4"))
# Classification ----------------------------------------------------------
get_expr <- function(marker_table) # +.1/50 avoids zeros
data.frame(sapply(colnames(marker_table), knn_smooth) + .1/50)
# plotting function:
em_result_plot <- function(probs=p, ump =u[sel,], p_thresh = .5) {
p_umap <- ump %>%
bind_cols(class=apply(probs, 1, function(x)
ifelse(max(x) > p_thresh, colnames(probs)[which.max(x)], NA) )) %>%
mutate(class = factor(class, levels = colnames(probs))) %>%
ggplot(aes(u1, u2, col = class)) + geom_point(size=.5) + coord_fixed() +
scale_color_manual(values = scales::hue_pal()(ncol(probs)),
drop=F, na.value = "grey")
return(p_umap)
}
# smooth and visualize (takes a while on first computation):
data.frame(sapply(colnames(major_celltypes), knn_smooth)) %>%
bind_cols(u) %>%
gather(Gene, knn, -u1, -u2) %>%
ggplot(aes(u1, u2, col = knn)) + geom_point(size=.5)+coord_fixed()+
facet_wrap(~Gene) + scale_color_sqrt()
# set-up testbed:
ms <- major_celltypes
expr <- data.frame(sapply(colnames(ms),
knn_smooth) + .1/50) # +.1/50 avoids zeros
sel <- TRUE # take ALL cells, i.e. 104k
# sel <- male_controls_pfc
expr <- expr[sel,]
p <-learnClasses(ms, expr)
p_bak <- p
em_result_plot(p, p_thresh = .5)
# export for experiments --------------------------------------------------
ms_smoothedMarkers <- sapply(c(colnames(major_celltypes),
"RBFOX3", "GAD2", "THY1"), knn_smooth)
ms_markertable <- major_celltypes
ms_markertable_multiplegenes <- cbind(major_celltypes,
RBFOX3=major_celltypes[, "SYT1"],
GAD2 =major_celltypes[, "GAD1"],
THY1 =major_celltypes[, "NRGN"]
)
data_path <- "~/sds/sd17l002/p/MS/savepoint/data_for_expectation_maximisation/"
write_rds(paper_clusters, paste0(data_path, "ms_paperClusters.rds"))
write_rds(u, paste0(data_path, "ms_umap.rds"))
write_rds(ms_smoothedMarkers,paste0(data_path, "ms_smoothedMarkers.rds"))
write_rds(ms_markertable, paste0(data_path, "ms_markertable.rds"))
write_rds(ms_markertable_multiplegenes, paste0(data_path,"ms_markertable_mulitplegenes.rds"))
# manual EM ---------------------------------------------------------------
marker_table <- major_celltypes
expr_table <- get_expr(marker_table)
p <- scpr:::priors_geometric(marker_table, expr_table)
# number of iterations:
iter = 0
maxiter = 1000
# other housekeeping:
loglik = rep(-Inf, nrow(marker_table))
delta = +Inf
tolerance = 0.001
miniter = 10
while ((delta > tolerance) && (iter <= maxiter) || (iter < miniter)) {
if(iter %% 5 == 0){print(iter)}
logp <- sapply(1:nrow(marker_table), function(class) {
loglik_mat <- sapply(1:ncol(marker_table), function(gene) {
probs <- p[, class]
return(scpr:::Lgamma(expr_table[, gene], probs,
log = T))
})
log(mean(p[, class])) + rowSums(loglik_mat)
})
# o is picked such that 15 % of cells will have p<.5 for all classes:
o <- quantile( apply(exp(logp), 1, max), .15)
# normalize to probabilities:
logp <- logp - log(rowSums(exp(logp))+o)
# p is used to compute logp in next iteration. We add a small number to
# numerical zeros and then normalize again:
p <- pmax(exp(logp), 1e-05)
p <- p/(rowSums(p)+o) # correct for adding 1e-05 to some
loglikOld = loglik
loglik <- colSums(logp)
delta <- max(abs(loglikOld - loglik))
iter = iter + 1
}
p <- exp(logp)
colnames(p) <- rownames(marker_table)
# seems like we are excluding doublets. Still, 90 % of
# excluded cells come from MS, which is clearly artificial and
# needs more work:
classes <- apply(p, 1, function(x)
ifelse(max(x) > .5, colnames(p)[which.max(x)], NA) )
table(na=is.na(classes), treat = cellinfo$diagnosis)
# p_0: o=0 in above code
# p_1: o is hardcoded to 1 in above code
# p10: o is quantile( apply(exp(logp), 1, max), .15)
plot_grid(
ggplot() +
geom_point(data = u %>% bind_cols(paper_clusters = paper_clusters),
aes(u1, u2, col = paper_clusters), size=.5) + coord_fixed() +
geom_label(data = u %>% bind_cols(paper_clusters = paper_clusters) %>%
group_by(paper_clusters) %>% summarise(u1=mean(u1), u2=mean(u2)),
aes(u1, u2, label = paper_clusters)) + #theme(legend.position = "none") +
ggtitle("Clusters from Nature paper (simplified)") +
# colors differ from other 3 plots, so make them less intense:
scale_color_manual(values = scales::hue_pal(c=50)(nlevels(paper_clusters)),
drop=F, na.value = "grey"),
em_result_plot(p_0) + ggtitle("o=0 (unregularized EM)"),
em_result_plot(p_1) + ggtitle("o=1"),
em_result_plot(p10) + ggtitle("o is the 10%-quantile of max(p(x|c)p(c))")
)
scale_hist <- function(x = expr[, "SYT1"], probs=p, highlight = "eNeuron"){
ggplot() +
geom_histogram(data = data.frame(Gene = x),
aes(Gene, stat(density)), bins=100)+
scale_x_log10(limits = c(min(x), max(x))) +
# add all classes (dashed):
lapply(as.data.frame(probs), function(ps){
param <- scpr::mom_gamma(x, ps)
geom_density(data=data.frame(theo = rgamma(10000, param[1], param[2])),
aes(theo, mean(ps)*stat(density)), linetype = "dashed")}) +
# emphasize class in red:
geom_density(
data=data.frame(theo = rgamma(10000,
scpr::mom_gamma(x, probs[, highlight])[1],
scpr::mom_gamma(x, probs[, highlight])[2])),
mapping = aes(theo, mean(probs[,highlight])*stat(density)), col = "red")
}
scale_hist(expr[,"SYT1"], highlight = "eNeuron")