-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_deepspt_sim_temporalpred.py
658 lines (549 loc) · 26 KB
/
test_deepspt_sim_temporalpred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# %%
import numpy as np
import pickle
import matplotlib.pyplot as plt
import datetime
from deepspt_src import *
from global_config import globals
import warnings
from joblib import Parallel, delayed
from sklearn.model_selection import GroupKFold
from scipy.optimize import curve_fit
warnings.filterwarnings("ignore")
class ChangePointLSTM(nn.Module):
def __init__(self, input_dim, hidden_dim,
num_layers, maxlens,
bidirectional):
super(ChangePointLSTM, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.maxlens = maxlens
self.lstm = nn.LSTM(self.input_dim,
self.hidden_dim,
self.num_layers,
batch_first=True,
bidirectional=bidirectional)
self.gru = nn.GRU(self.input_dim,
self.hidden_dim,
self.num_layers,
batch_first=True,
bidirectional=bidirectional)
self.d = 1 if not self.lstm.bidirectional else 2
self.fc = nn.Linear(self.hidden_dim, 2) # Predicting a single value (the changepoint)
def forward(self, x):
#out, (hidden, _) = self.lstm(x)
out, hidden = self.gru(x) # gru
if self.d==2:
out = out[:,:,:self.hidden_dim] + out[:,:,self.hidden_dim:]
out = self.fc(out) # Use the final output
return out
"""
do the rolling deepSPT
do rolling MSD
compare accuracy and frame error
"""
# get consistent result
seed = globals._parse({})
# device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
"""Generate a simulated data """
# variables
n_per_clean_diff = 1 # gets multiplied by n_classes=4
n_classes = 4 # number og diffusion types
n_changing_traces = 1000 # number of tracks
random_D = True
# Drandomranges_pairs = [
# [[4*10**-3, 8*10**-3], [4*10**-3, 8*10**-3]],
# [[3.5*10**-3, 7.5*10**-3], [4.5*10**-3, 8.5*10**-3]],
# [[3*10**-3, 7*10**-3], [5*10**-3, 9*10**-3]],
# [[2.5*10**-3, 6.5*10**-3], [5.5*10**-3, 9.5*10**-3]],
# [[2*10**-3, 6*10**-3], [6*10**-3, 10*10**-3]],
# [[1.5*10**-3, 5.5*10**-3], [6.5*10**-3, 10.5*10**-3]],
# [[1*10**-3, 5*10**-3], [7*10**-3, 11*10**-3]]
# ]
# # Two populations of tracks with Ds due to stochasticity tracks may return lower D if computed
# Drandomranges_pairs = [[2*10**-3, 5*10**-3], [5*10**-3, 9*10**-3]]
# Nrange = [5,200] # length of tracks
# Branges = [[0.05,0.25],[0.15,0.35]] # boundary geometry
# Rranges = [[5,10],[8,17]] # relative active diffusion
# subalpharanges = [[0.3,0.5], [0.5, 0.7]] # subdiffusion exponent
# superalpharange = [1.3, 2] # superdiffusion exponent (not used for dir_motion='active')
# Qrange = [6,16] # steps from diffusion to localization error ratio
# Dfixed = 0.1 # fixed diffusion coefficient (not used for random_D=True)
# dir_motion = 'active'
# Two populations of tracks with Ds due to stochasticity tracks may return lower D if computed
Drandomranges_pairs = [[1*10**-3, 5*10**-3], [7*10**-3, 11*10**-3]]
Nrange = [5,200] # length of tracks
Branges = [[0.05,0.25],[0.05,0.25]] # boundary geometry
Rranges = [[5,12],[8,15]] # relative active diffusion
subalpharanges = [[0.3,0.6], [0.4, 0.7]] # subdiffusion exponent
superalpharange = [1.3, 2] # superdiffusion exponent (not used for dir_motion='active')
Qrange = [6,16] # steps from diffusion to localization error ratio
Dfixed = 0.1 # fixed diffusion coefficient (not used for random_D=True)
dir_motion = 'active'
dim = 3 # 2D or 3D
dt = 1 # frame rate in seconds
max_changepoints = 4 # number of times changing diffusion traces can change
min_parent_len = 5 # minimum length of subtrace
total_parents_len = Nrange[1] # max length of changing diffusion (heterogeneous) tracks
path = '_Data/Simulated_diffusion_tracks/' # path to save and load
output_name = 'tester_set2'+str(dim) # name of output file - change to get new tracks if already run
print(path+output_name)
# Generate data
if not os.path.exists(path+output_name+'.pkl'): # dont generate if already exists
changing_diffusion_list_all = []
changing_label_list_all = []
print(n_per_clean_diff, n_changing_traces)
for i in range(2):
print("Generating data")
subalpharange = subalpharanges[i]
Rrange = Rranges[i]
Drandomrange = Drandomranges_pairs[i]
Brange = Branges[i]
params_matrix = Get_params(n_per_clean_diff, dt, random_D, False,
Nrange = Nrange, Brange = Brange,
Rrange = Rrange,
subalpharange = subalpharange,
superalpharange = superalpharange,
Qrange = Qrange,
Drandomrange = Drandomrange,
Dfixed = Dfixed)
NsND, NsAD, NsCD, NsDM, NstD = [params_matrix[i] for i in range(5)]
Ds, r_cs, ellipse_dims, angles, vs, wiggle, r_stuck, subalphas, superalphas, sigmaND, sigmaAD, sigmaCD, sigmaDM, sigmaStD = params_matrix[7:]
# Changing diffusion types
s = datetime.datetime.now()
changing_diffusion_list, changing_label_list = Gen_changing_diff(n_changing_traces,
max_changepoints,
min_parent_len,
total_parents_len,
dt, random_D=random_D,
n_classes=n_classes, dim=dim,
Nrange = Nrange, Brange = Brange,
Rrange = Rrange,
subalpharange = subalpharange,
superalpharange = superalpharange,
Qrange = Qrange,
Drandomrange = Drandomrange,
Dfixed = Dfixed,
DMtype=dir_motion)
for cdl,cll in zip(changing_diffusion_list, changing_label_list):
changing_diffusion_list_all.append(cdl)
changing_label_list_all.append(cll)
pickle.dump(changing_diffusion_list_all, open(path+output_name+'.pkl', 'wb'))
pickle.dump(changing_label_list_all, open(path+output_name+'_labels.pkl', 'wb'))
else:
changing_diffusion_list_all = pickle.load(open(path+output_name+'.pkl', 'rb'))
changing_label_list_all = pickle.load(open(path+output_name+'_labels.pkl', 'rb'))
# fuse
# changing_diffusion_list_all[:n_changing_traces]
# with changing_diffusion_list_all[n_changing_traces:]
# to get tracks that at a random time switches class
# return list with label per time step
print(np.mean(Drandomranges_pairs))
glued_tracks = []
glued_labels = []
frame_change = []
for i in range(len(changing_diffusion_list_all[:n_changing_traces])):
first = changing_diffusion_list_all[i]
second = changing_diffusion_list_all[i+n_changing_traces]
# move second trace to end of first trace and add noise
second[:,0] += np.random.normal(first[-1,0],
np.sqrt(dim*dt*np.mean(Drandomranges_pairs)))
second[:,1] += np.random.normal(first[-1,1],
np.sqrt(dim*dt*np.mean(Drandomranges_pairs)))
frame_change.append(len(first))
glued_tracks.append(
np.concatenate((first,
second)))
glued_labels.append(
np.concatenate((np.zeros(len(changing_diffusion_list_all[i])),
np.ones(len(changing_diffusion_list_all[i+n_changing_traces])))))
# %%
i = np.random.randint(len(glued_tracks))
plt.plot(glued_tracks[i][:,0], glued_tracks[i][:,1],
c='k')
plt.scatter(glued_tracks[i][:,0], glued_tracks[i][:,1],
c=glued_labels[i], zorder=10, s=10)
# %%
# prep data
tracks = glued_tracks
X = [x-x[0] for x in tracks]
print(len(X), 'len X')
features = ['XYZ', 'SL', 'DP']
X_to_eval = add_features(X, features)
y_to_eval = [np.ones(len(x))*0.5 for x in X_to_eval]
# define dataset and method that model was trained on to find the model
if dim == 3:
datasets = ['SimDiff_dim3_ntraces300000_Drandom0.0001-0.5_dt1.0e+00_N5-600_B0.05-0.25_R5-25_subA0-0.7_superA1.3-2_Q1-16']
modeldir = '36'
if dim == 2:
datasets = ['SimDiff_dim2_ntraces300000_Drandom0.0001-0.5_dt1.0e+00_N5-600_B0.05-0.25_R5-25_subA0-0.7_superA1.3-2_Q1-16']
modeldir = '3'
methods = ['XYZ_SL_DP']
# find the model
dir_name = ''
modelpath = 'mlruns/'
use_mlflow = False # troublesome if not on same machine as trained (mlflow) thus False
if use_mlflow:
import mlflow
mlflow.set_tracking_uri('file:'+join(os.getcwd(), "Unet_results"))
best_models_sorted = find_models_for(datasets, methods)
else:
path = 'mlruns/{}'.format(modeldir)
best_models_sorted = find_models_for_from_path(path)
print(best_models_sorted) # ordered as found
# model/data params
min_max_len = 601 # min and max length of tracks model used during training
X_padtoken = 0 # pre-pad tracks to get them equal length
y_padtoken = 10 # pad y for same reason
batch_size = 32 # batch size for evaluation
use_temperature = True # use temperature scaling for softmax
# save paths
savename_score = 'deepspt_results/analytics/test2deepspt_ensemble_score.pkl'
savename_pred = 'deepspt_results/analytics/test2deepspt_ensemble_pred.pkl'
rerun_segmentaion = True # Set false to load previous results
print(len(X_to_eval))
# run temporal segmentation module of DeepSPT
ensemble_score, ensemble_pred = run_temporalsegmentation(
best_models_sorted,
X_to_eval, y_to_eval,
use_mlflow=use_mlflow,
dir_name=dir_name,
device=device,
dim=dim,
min_max_len=min_max_len,
X_padtoken=X_padtoken,
y_padtoken=y_padtoken,
batch_size=batch_size,
rerun_segmentaion=rerun_segmentaion,
savename_score=savename_score,
savename_pred=savename_pred,
use_temperature=use_temperature)
# pretrained HMM for fingerprints
fp_datapath = '_Data/Simulated_diffusion_tracks/'
hmm_filename = 'simulated2D_HMM.json'
window_size = 20
selected_features = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,
19,20,21,23,24,25,27,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,42])
# run fingerprint module of temporally DeepSPT
results2 = Parallel(n_jobs=2)(
delayed(make_tracks_into_FP_timeseries)(
track, pred_track, window_size=window_size, selected_features=selected_features,
fp_datapath=fp_datapath, hmm_filename=hmm_filename, dim=dim, dt=dt)
for track, pred_track in zip(glued_tracks, ensemble_pred))
timeseries_clean = np.array([r[0] for r in results2])
# %%
# cross-validation
y_groups = np.array(range(len(timeseries_clean))) # no specific groups but can be changed here
gss = GroupKFold(n_splits=5)
gss2 = GroupKFold(n_splits=2)
# split train and test from data_padded into index
train_idx_final = []
test_idx_final = []
val_idx_final = []
direct_idx = np.array(range(len(timeseries_clean)))
for train_index, test_all_index in gss.split(direct_idx, groups=y_groups):
for test_index, val_index in gss2.split(direct_idx[test_all_index], groups=y_groups[test_all_index]):
train_idx_final.append(direct_idx[train_index])
test_idx_final.append(direct_idx[test_all_index][test_index])
val_idx_final.append(direct_idx[test_all_index][val_index])
# %%
# prep data
X_padtoken = -1 # pre-pad tracks to get them equal length, -1 so that it is not confused with 0
length_track = np.array([len(t) for t in timeseries_clean])
maxlens = np.max(length_track)
print('maxlens', maxlens)
data = [torch.from_numpy(t).float() for t in timeseries_clean]
data_padded = [nn.ConstantPad1d((maxlens-len(x), 0), X_padtoken)(x.T).float().T for x in data]
data_padded = torch.stack(data_padded)
print(data_padded.shape, len(data_padded))
# Train the model
torch.manual_seed(0)
num_epochs = 200 # need to be high (>50) for convergence
Fold = 0 # placeholder for cross-validation fold
# Training loop (takes a while if not on gpu)
test_outputs_list = []
test_targets_list = []
test_probs_list = []
train_idx_check = []
test_idx_check = []
val_idx_check = []
X_test_idx_all = []
import datetime
starttime = datetime.datetime.now()
for i in range(len(train_idx_final)):
model = ChangePointLSTM(input_dim=40,
hidden_dim=40,
num_layers=5,
maxlens=maxlens,
bidirectional=True)
X_train_idx = train_idx_final[i]
X_test_idx = test_idx_final[i]
X_val_idx = val_idx_final[i]
print()
print('Fold', Fold)
Fold += 1
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
train_idx_check.append(X_train_idx)
test_idx_check.append(X_test_idx)
val_idx_check.append(X_val_idx)
# split train and test from data_padded into index
X_train = data_padded[X_train_idx]
X_val = data_padded[X_val_idx]
X_test = data_padded[X_test_idx]
train_length_track = length_track[X_train_idx]
val_length_track = length_track[X_val_idx]
test_length_track = length_track[X_test_idx]
temporal_y = []
for i,f in enumerate(frame_change):
offset = maxlens-length_track[i]
f = int(f+offset)
ty = np.zeros(maxlens)
ty[:f] = 0
ty[f:] = 1
temporal_y.append(ty)
temporal_y = np.array(temporal_y)
y_train = torch.from_numpy(temporal_y)[X_train_idx]
y_val = torch.from_numpy(temporal_y)[X_val_idx]
y_test = torch.from_numpy(temporal_y)[X_test_idx]
from torch.utils.data import TensorDataset, DataLoader
TrainDataset = TensorDataset(X_train, y_train)
ValDataset = TensorDataset(X_val, y_val)
TestDataset = TensorDataset(X_test, y_test)
# Assume we have some DataLoader objects for the training and validation data
val_batch_size = 32
train_loader = DataLoader(TrainDataset, batch_size=16, shuffle=True)
val_loader = DataLoader(ValDataset, batch_size=32, shuffle=False)
test_loader = DataLoader(TestDataset, batch_size=32, shuffle=False)
# Train the model
best_val_loss = 0
for epoch in range(num_epochs):
model.train()
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = 0
for i, (o,t) in enumerate(zip(outputs, targets)):
tl = train_length_track[i]
loss += criterion(o[maxlens-tl:], t[maxlens-tl:].long())
loss.backward()
optimizer.step()
# Validate the model
model.eval()
with torch.no_grad():
total_val_loss = 0
total_perc_correct = []
total_recall = 0
total_samples = 0
changepoint_pred = []
changepoint_true = []
for inputs, targets in val_loader:
targets_pre = targets
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 2)
total_samples += targets.size(0)
for i, (p,t) in enumerate(zip(predicted, targets)):
vl = val_length_track[i]
sgl, cp, v = find_segments(p[maxlens-vl:])
changepoint_pred.append(cp[-2])
sgl, cp, v = find_segments(t[maxlens-vl:])
changepoint_true.append(cp[-2])
total_perc_correct.append((p[maxlens-vl:] == t[maxlens-vl:]).sum().item()/len(p[maxlens-vl:]))
recall_0 = torch.mean((p[maxlens-vl:][t[maxlens-vl:]==0]==0).float())
recall_0 = recall_0 if recall_0>0 else torch.tensor(0, device=device)
recall_1 = torch.mean((p[maxlens-vl:][t[maxlens-vl:]==1]==1).float())
recall_1 = recall_1 if recall_1>0 else torch.tensor(0, device=device)
total_recall += (recall_0+recall_1)/2
outputs = outputs.view(-1, outputs.shape[-1]).float() # shape : (batch_size*sequence_length, num_classes)
targets = targets.view(-1).long()
val_loss = criterion(outputs, targets)
total_val_loss += val_loss.item()
val_attempt = total_recall/total_samples
print(f'Epoch {epoch+1}/{num_epochs}, Validation Loss: {np.round(total_val_loss/len(val_loader),2)}, total_perc_correct: {np.round(np.mean(total_perc_correct),2), np.round(np.std(total_perc_correct, ddof=1),2)}, total_recall/total_samples: {val_attempt.item()}, frame error {np.mean(np.abs(np.array(changepoint_pred)-np.array(changepoint_true)))}')
if val_attempt > best_val_loss:
best_val_loss = val_attempt
best_model = model
best_predicted, best_targets_pre = predicted, targets_pre
torch.save(best_model.state_dict(), 'deepspt_results/analytics/usage_ex2_GRU_CVfold{}.pt'.format(Fold))
print(f' Best Epoch {epoch+1}/{num_epochs}, Validation Loss: {np.round(total_val_loss/len(val_loader),2)}, total_perc_correct: {np.round(np.mean(total_perc_correct),2), np.round(np.std(total_perc_correct, ddof=1),2)}, total_recall/total_samples: {val_attempt.item()}, frame error {np.mean(np.abs(np.array(changepoint_pred)-np.array(changepoint_true)))}')
for ti, (inputs, targets) in tqdm(enumerate(test_loader)):
targets_pre = targets
inputs, targets = inputs.to(device), targets.to(device)
test_outputs = best_model(inputs)
_, test_predicted = torch.max(test_outputs.data, 2)
for i,(tp, tt, to) in enumerate(zip(test_predicted, targets, test_outputs)):
tl = test_length_track[i]
test_outputs_list.append(tp.cpu().detach().numpy()[maxlens-tl:])
test_targets_list.append(tt.cpu().detach().numpy()[maxlens-tl:])
test_probs_list.append(to.cpu().detach().numpy()[maxlens-tl:])
lower, upper = int(ti*val_batch_size), int((ti+1)*val_batch_size)
X_test_idx_all.append(X_test_idx[lower:upper][i])
print(datetime.datetime.now()-starttime, len(X_test))
print(datetime.datetime.now(),starttime, len(X_test))
acc = [np.mean(test_outputs_list[i]==test_targets_list[i]) for i in range(len(test_outputs))]
pickle.dump(acc, open('deepspt_results/analytics/usage_ex2_testacc.pkl', 'wb'))
pickle.dump(test_outputs_list, open('deepspt_results/analytics/usage_ex2_test_outputs.pkl', 'wb'))
pickle.dump(test_targets_list, open('deepspt_results/analytics/usage_ex2_test_targets.pkl', 'wb'))
pickle.dump(test_probs_list, open('deepspt_results/analytics/usage_ex2_test_probs.pkl', 'wb'))
pickle.dump(X_test_idx_all, open('deepspt_results/analytics/usage_ex2_Xtest_idx_all.pkl', 'wb'))
# %%
# evaluate DeepSPT
acc = pickle.load(open('deepspt_results/analytics/usage_ex2_testacc.pkl', 'rb'))
test_outputs_list = pickle.load(open('deepspt_results/analytics/usage_ex2_test_outputs.pkl', 'rb'))
test_targets_list = pickle.load(open('deepspt_results/analytics/usage_ex2_test_targets.pkl', 'rb'))
test_probs = pickle.load(open('deepspt_results/analytics/usage_ex2_test_probs.pkl', 'rb'))
X_test_idx_all = pickle.load(open('deepspt_results/analytics/usage_ex2_Xtest_idx_all.pkl', 'rb'))
test_changepoint_pred = []
test_changepoint_true = []
for i in range(len(test_outputs_list)):
sgl, cp, v = find_segments(test_outputs_list[i])
test_changepoint_pred.append(cp[-2])
sgl, cp, v = find_segments(test_targets_list[i])
test_changepoint_true.append(cp[-2])
print('test_changepoint_pred', test_changepoint_pred)
print('test_changepoint_true', test_changepoint_true)
frame_error = np.abs(np.array(test_changepoint_pred)-np.array(test_changepoint_true))
MAE_frame = np.mean(frame_error)
MedianAE_frame = np.median(frame_error)
print('MAE_frame', MAE_frame, 'MedianAE_frame', MedianAE_frame)
plt.figure()
plt.title('True vs predicted changepoint')
plt.scatter(test_changepoint_true, test_changepoint_pred)
plt.xlabel('True changepoint')
plt.ylabel('Predicted changepoint')
plt.show()
plt.figure()
plt.title('Absolute frame error')
plt.hist(frame_error, bins=50, range=(0, np.max(frame_error)))
plt.ylabel('Frequency')
plt.xlabel('Absolute frame error')
plt.show()
plt.figure()
plt.title('Accuracy (percentage correct per track)')
plt.hist(acc, bins=50, range=(0, 1))
plt.ylabel('Frequency')
plt.xlabel('Accuracy')
plt.show()
i = np.random.randint(len(test_outputs_list))
tidx = X_test_idx_all[i]
track_to_plot = glued_tracks[tidx]
fig, ax = plt.subplots(1,2, figsize=(10,5))
acc_i = np.mean(test_outputs_list[i]==test_targets_list[i])
print('ACC {}:'.format(i), acc_i, 'frame_error {} :'.format(i), frame_error[i])
ax[0].set_title('Ground truth track '+str(i))
ax[0].plot(glued_tracks[tidx][:frame_change[tidx]+1,0],
glued_tracks[tidx][:frame_change[tidx]+1,1], c='green', lw=2)
ax[0].plot(glued_tracks[tidx][frame_change[tidx]:,0],
glued_tracks[tidx][frame_change[tidx]:,1], c='purple', lw=2)
ax[0].set_xlabel('x')
ax[0].set_ylabel('y')
ax[0].set_aspect('equal')
ax[1].set_title('Prediction, Acc: '+str(np.round(acc_i,2)))
ax[1].plot(glued_tracks[tidx][:test_changepoint_pred[i]+1,0],
glued_tracks[tidx][:test_changepoint_pred[i]+1,1], c='green', lw=2)
ax[1].plot(glued_tracks[tidx][test_changepoint_pred[i]:,0],
glued_tracks[tidx][test_changepoint_pred[i]:,1], c='purple', lw=2)
ax[1].set_xlabel('x')
ax[1].set_ylabel('y')
ax[1].set_aspect('equal')
plt.tight_layout()
plt.show()
# %%
# fun with umap
import umap
# fit timeseries_clean with umap
umap_model = umap.UMAP(
n_neighbors=10,
min_dist=.1,
metric='euclidean',
random_state=42)
umap_model.fit(timeseries_clean[i])
embedding = umap_model.transform(timeseries_clean[i])
embedding.shape
plt.scatter(embedding[:, 0],
embedding[:, 1],
c=glued_labels[i],
s=10, cmap='Spectral')
# %%
# test rolling MSD and RF classifier
rolling_msd_series = [t[:, :2] for t in timeseries_clean]
i = np.random.randint(len(timeseries_clean))
plt.scatter(rolling_msd_series[i][:, 0],
rolling_msd_series[i][:, 1],
c=glued_labels[i],
s=10, cmap='Spectral')
# linear classifier on rolling_msd_series to predict glued_labels
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# split train and test from data_padded into index
original_trackidx = [np.repeat(i, len(timeseries_clean[i])) for i in range(len(timeseries_clean))]
acc_all = []
pred_all = []
true_all = []
y_original_all = []
for i in range(len(train_idx_final)):
X_train_idx = train_idx_final[i]
X_test_idx = test_idx_final[i]
X_val_idx = val_idx_final[i]
X_train = np.vstack(rolling_msd_series[X_train_idx])
X_val = np.vstack(rolling_msd_series[X_val_idx])
X_test = np.vstack(rolling_msd_series[X_test_idx])
original_trackidx_test = np.hstack(np.array(original_trackidx)[X_test_idx])
y_train = np.hstack(np.array(glued_labels)[X_train_idx])
y_val = np.hstack(np.array(glued_labels)[X_val_idx])
y_test = np.hstack(np.array(glued_labels)[X_test_idx])
print(X_train.shape, y_train.shape)
clf = RandomForestClassifier(max_depth=2, random_state=0).fit(X_train, y_train)
pred_all.append(clf.predict(X_test))
true_all.append(y_test)
y_original_all.append(original_trackidx_test)
acc_all.append(clf.score(X_test, y_test))
print(clf.score(X_test, y_test))
np.mean(acc_all), np.std(acc_all, ddof=1)
# %%
pred_per_track = []
true_per_track = []
for i in np.unique(np.hstack(y_original_all)):
pred_per_track.append(np.hstack(pred_all)[np.hstack(y_original_all)==i])
true_per_track.append(np.hstack(true_all)[np.hstack(y_original_all)==i])
for i in range(len(pred_per_track)):
assert len(pred_per_track[i])==len(true_per_track[i])
assert len(pred_per_track[i])==len(timeseries_clean[i])
test_changepoint_pred = []
test_changepoint_true = []
for i in range(len(pred_per_track)):
sgl, cp, v = find_segments(pred_per_track[i])
test_changepoint_pred.append(cp[-2])
sgl, cp, v = find_segments(true_per_track[i])
test_changepoint_true.append(cp[-2])
acc = [np.mean(pred_per_track[i]==true_per_track[i]) for i in range(len(pred_per_track))]
frame_error = np.abs(np.array(test_changepoint_pred)-np.array(test_changepoint_true))
MAE_frame = np.mean(frame_error)
MedianAE_frame = np.median(frame_error)
print('MAE_frame', MAE_frame, 'MedianAE_frame', MedianAE_frame)
plt.figure()
plt.title('True vs predicted changepoint')
plt.scatter(test_changepoint_true, test_changepoint_pred)
plt.xlabel('True changepoint')
plt.ylabel('Predicted changepoint')
plt.show()
plt.figure()
plt.title('Absolute frame error')
plt.hist(frame_error, bins=50, range=(0, np.max(frame_error)))
plt.ylabel('Frequency')
plt.xlabel('Absolute frame error')
plt.show()
plt.figure()
plt.title('Accuracy (percentage correct per track)')
plt.hist(acc, bins=50, range=(0, 1))
plt.ylabel('Frequency')
plt.xlabel('Accuracy')
plt.show()
# %%