-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblack_box_attack.py
341 lines (280 loc) · 11.4 KB
/
black_box_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 29 23:25:30 2019
@author: jai
"""
import matplotlib.pyplot as plt
import h5py
import math
import numpy as np
import pandas as pd
import cv2
from PIL import Image
from sklearn.model_selection import train_test_split
from sklearn import metrics
from keras.utils import to_categorical
from PIL import Image
PIDs = [0] * 3064
labels = [0] * 3064
output_array = np.zeros((3064,32,32), dtype=np.int64)
for i in range(1, 3065):
f = h5py.File(str(i) + '.mat')
labels[i-1] = math.floor(f['cjdata']['label'].value[0][0])
PIDs[i-1] = f['cjdata']['PID'].value
something = 'scaledTumorImageSmall'+str(i)
img = Image.open(something+'.png').convert('L')
WIDTH, HEIGHT = img.size
data = list(img.getdata())
data = [data[offset:offset+WIDTH] for offset in range(0, WIDTH*HEIGHT, WIDTH)]
output_array[i-1] = np.array(data)
f.close()
X_train, X_test, y_train, y_test = train_test_split(output_array, labels, test_size=0.2)
# Data Preprocessing
classes = np.unique(y_train)
nClasses = len(classes)
X_train = X_train.reshape(-1, 32, 32, 1)
X_test = X_test.reshape(-1, 32, 32, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train = X_train / 255.
X_test = X_test / 255.
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
y_train = y_train[:, 1:]
y_test = y_test[:, 1:]
X_check = X_test
y_check = y_test
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import functools
import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf
from cleverhans.attacks import FastGradientMethod
from cleverhans.utils_tf import jacobian_graph, jacobian_augmentation
from cleverhans.compat import flags
from cleverhans.dataset import MNIST
from cleverhans.initializers import HeReLuNormalInitializer
from cleverhans.loss import CrossEntropy
from cleverhans.model import Model
from cleverhans.train import train
from cleverhans.utils import set_log_level
from cleverhans.utils import TemporaryLogLevel
from cleverhans.utils import to_categorical
from cleverhans.utils_tf import model_eval, batch_eval
from cleverhans.model_zoo.basic_cnn import ModelBasicCNN
FLAGS = flags.FLAGS
NB_CLASSES = 3
BATCH_SIZE = 128
LEARNING_RATE = .001
NB_EPOCHS = 10
HOLDOUT = 150
DATA_AUG = 6
NB_EPOCHS_S = 10
LMBDA = .1
AUG_BATCH_SIZE = 512
def setup_tutorial():
"""
Helper function to check correct configuration of tf for tutorial
:return: True if setup checks completed
"""
# Set TF random seed to improve reproducibility
tf.set_random_seed(1234)
return True
def prep_bbox(sess, x, y, X_train, y_train, X_test, y_test,
nb_epochs, batch_size, learning_rate,
rng, nb_classes=3, img_rows=32, img_cols=32, nchannels=1):
"""
Define and train a model that simulates the "remote"
black-box oracle described in the original paper.
:param sess: the TF session
:param x: the input placeholder for MNIST
:param y: the ouput placeholder for MNIST
:param x_train: the training data for the oracle
:param y_train: the training labels for the oracle
:param x_test: the testing data for the oracle
:param y_test: the testing labels for the oracle
:param nb_epochs: number of epochs to train model
:param batch_size: size of training batches
:param learning_rate: learning rate for training
:param rng: numpy.random.RandomState
:return:
"""
# Define TF model graph (for the black-box model)
nb_filters = 64
model = ModelBasicCNN('model1', 3, nb_filters)
loss = CrossEntropy(model, smoothing=0.1)
predictions = model.get_logits(x)
print("Defined TensorFlow model graph.")
# Train an MNIST model
train_params = {
'nb_epochs': nb_epochs,
'batch_size': batch_size,
'learning_rate': learning_rate
}
train(sess, loss, X_train, y_train, args=train_params, rng=rng)
# Print out the accuracy on legitimate data
eval_params = {'batch_size': batch_size}
accuracy = model_eval(sess, x, y, predictions, X_test, y_test,
args=eval_params)
print('Test accuracy of black-box on legitimate test '
'examples: ' + str(accuracy))
return model, predictions, accuracy
class ModelSubstitute(Model):
def __init__(self, scope, nb_classes, nb_filters=200, **kwargs):
del kwargs
Model.__init__(self, scope, nb_classes, locals())
self.nb_filters = nb_filters
def fprop(self, x, **kwargs):
del kwargs
my_dense = functools.partial(
tf.layers.dense, kernel_initializer=HeReLuNormalInitializer)
with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
y = tf.layers.flatten(x)
y = my_dense(y, self.nb_filters, activation=tf.nn.relu)
y = my_dense(y, self.nb_filters, activation=tf.nn.relu)
logits = my_dense(y, self.nb_classes)
return {self.O_LOGITS: logits,
self.O_PROBS: tf.nn.softmax(logits=logits)}
def train_sub(sess, x, y, bbox_preds, x_sub, y_sub, nb_classes,
nb_epochs_s, batch_size, learning_rate, data_aug, lmbda,
aug_batch_size, rng, img_rows=32, img_cols=32,
nchannels=1):
"""
This function creates the substitute by alternatively
augmenting the training data and training the substitute.
:param sess: TF session
:param x: input TF placeholder
:param y: output TF placeholder
:param bbox_preds: output of black-box model predictions
:param x_sub: initial substitute training data
:param y_sub: initial substitute training labels
:param nb_classes: number of output classes
:param nb_epochs_s: number of epochs to train substitute model
:param batch_size: size of training batches
:param learning_rate: learning rate for training
:param data_aug: number of times substitute training data is augmented
:param lmbda: lambda from arxiv.org/abs/1602.02697
:param rng: numpy.random.RandomState instance
:return:
"""
# Define TF model graph (for the black-box model)
model_sub = ModelSubstitute('model_s', nb_classes)
preds_sub = model_sub.get_logits(x)
loss_sub = CrossEntropy(model_sub, smoothing=0)
print("Defined TensorFlow model graph for the substitute.")
# Define the Jacobian symbolically using TensorFlow
grads = jacobian_graph(preds_sub, x, nb_classes)
# Train the substitute and augment dataset alternatively
for rho in xrange(data_aug):
print("Substitute training epoch #" + str(rho))
train_params = {
'nb_epochs': nb_epochs_s,
'batch_size': batch_size,
'learning_rate': learning_rate
}
with TemporaryLogLevel(logging.WARNING, "cleverhans.utils.tf"):
train(sess, loss_sub, x_sub, to_categorical(y_sub, nb_classes),
init_all=False, args=train_params, rng=rng,
var_list=model_sub.get_params())
# If we are not at last substitute training iteration, augment dataset
if rho < data_aug - 1:
print("Augmenting substitute training data.")
# Perform the Jacobian augmentation
lmbda_coef = 2 * int(int(rho / 3) != 0) - 1
x_sub = jacobian_augmentation(sess, x, x_sub, y_sub, grads,
lmbda_coef * lmbda, aug_batch_size)
print("Labeling substitute training data.")
# Label the newly generated synthetic points using the black-box
y_sub = np.hstack([y_sub, y_sub])
x_sub_prev = x_sub[int(len(x_sub)/2):]
eval_params = {'batch_size': batch_size}
bbox_val = batch_eval(sess, [x], [bbox_preds], [x_sub_prev],
args=eval_params)[0]
# Note here that we take the argmax because the adversary
# only has access to the label (not the probabilities) output
# by the black-box model
y_sub[int(len(x_sub)/2):] = np.argmax(bbox_val, axis=1)
return model_sub, preds_sub
def mnist_blackbox(train_start=0, train_end=60000, test_start=0,
test_end=10000, nb_classes=NB_CLASSES,
batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE,
nb_epochs=NB_EPOCHS, holdout=HOLDOUT, data_aug=DATA_AUG,
nb_epochs_s=NB_EPOCHS_S, lmbda=LMBDA,
aug_batch_size=AUG_BATCH_SIZE):
"""
MNIST tutorial for the black-box attack from arxiv.org/abs/1602.02697
:param train_start: index of first training set example
:param train_end: index of last training set example
:param test_start: index of first test set example
:param test_end: index of last test set example
:return: a dictionary with:
* black-box model accuracy on test set
* substitute model accuracy on test set
* black-box model accuracy on adversarial examples transferred
from the substitute model
"""
# Set logging level to see debug information
set_log_level(logging.DEBUG)
# Dictionary used to keep track and return key accuracies
accuracies = {}
# Perform tutorial setup
assert setup_tutorial()
# Create TF session
sess = tf.Session()
X_test, y_test = X_check, y_check
# Initialize substitute training set reserved for adversary
x_sub = X_test[:holdout]
y_sub = np.argmax(y_test[:holdout], axis=1)
# Redefine test set as remaining samples unavailable to adversaries
X_test = X_test[holdout:]
y_test = y_test[holdout:]
# Obtain Image parameters
img_rows, img_cols, nchannels = 32, 32, 1
nb_classes = 3
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, 32, 32,
1))
y = tf.placeholder(tf.float32, shape=(None, 3))
# Seed random number generator so tutorial is reproducible
rng = np.random.RandomState([2019, 4, 30])
# Simulate the black-box model locally
# You could replace this by a remote labeling API for instance
print("Preparing the black-box model.")
prep_bbox_out = prep_bbox(sess, x, y, X_train, y_train, X_test, y_test,
nb_epochs, batch_size, learning_rate,
rng, nb_classes, img_rows, img_cols, nchannels)
model, bbox_preds, accuracies['bbox'] = prep_bbox_out
# Train substitute using method from https://arxiv.org/abs/1602.02697
print("Training the substitute model.")
train_sub_out = train_sub(sess, x, y, bbox_preds, x_sub, y_sub,
nb_classes, nb_epochs_s, batch_size,
learning_rate, data_aug, lmbda, aug_batch_size,
rng, img_rows, img_cols, nchannels)
model_sub, preds_sub = train_sub_out
# Evaluate the substitute model on clean test examples
eval_params = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds_sub, X_test, y_test, args=eval_params)
accuracies['sub'] = acc
# Initialize the Fast Gradient Sign Method (FGSM) attack object.
fgsm_par = {'eps': 0.3, 'ord': np.inf, 'clip_min': 0., 'clip_max': 1.}
fgsm = FastGradientMethod(model_sub, sess=sess)
# Craft adversarial examples using the substitute
eval_params = {'batch_size': batch_size}
x_adv_sub = fgsm.generate(x, **fgsm_par)
# Evaluate the accuracy of the "black-box" model on adversarial examples
accuracy = model_eval(sess, x, y, model.get_logits(x_adv_sub),
X_test, y_test, args=eval_params)
print('Test accuracy of oracle on adversarial examples generated '
'using the substitute: ' + str(accuracy))
accuracies['bbox_on_sub_adv_ex'] = accuracy
return accuracies
def main(argv=None):
mnist_blackbox()
tf.app.run()
tf.reset_default_graph()
main()