-
Notifications
You must be signed in to change notification settings - Fork 292
/
Copy pathdemo_lrc_movies.py
42 lines (34 loc) · 1.31 KB
/
demo_lrc_movies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import spacy
from scattertext.Scalers import dense_rank
from scattertext.CorpusFromParsedDocuments import CorpusFromParsedDocuments
from scattertext.SampleCorpora import RottenTomatoes
from scattertext import produce_frequency_explorer
from scattertext.termscoring.lrc import LRC
nlp = spacy.blank('en')
nlp.add_pipe('sentencizer')
corpus = CorpusFromParsedDocuments(
RottenTomatoes.get_data().assign(
Parse=lambda df: df.text.apply(nlp),
category = lambda df: df.category.apply(
lambda x: {'rotten': 'Negative', 'fresh': 'Positive', 'plot': 'Plot'}[x])
)[lambda df: df.category.isin(['Negative', 'Positive'])],
category_col='category',
parsed_col='Parse',
).build().get_unigram_corpus().remove_infrequent_words(5)
term_scorer = LRC(
corpus=corpus,
).set_categories('Positive', ['Negative']).use_token_counts_as_doc_sizes()
print(corpus.get_df().iloc[0])
html = produce_frequency_explorer(
corpus,
category='Positive',
category_name='Positive',
not_category_name='Negative',
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
metadata=lambda c: c.get_df()['movie_name'],
term_scorer=term_scorer
)
open('./demo_lrc_movies.html', 'wb').write(html.encode('utf-8'))
print('Open ./demo_lrc_movies.html in Chrome or Firefox.')