Skip to content

Latest commit

 

History

History
70 lines (57 loc) · 5.06 KB

ReadMe.md

File metadata and controls

70 lines (57 loc) · 5.06 KB

Recommender System - PyTorch

Implementing recommender system models by using PyTorch.

1. Matrix Completion on Explicit Feedback

1.1. Matrix Factorization

  • Original Paper
    • Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.
  • Notebook

1.2. SVD++

  • Original Paper
    • Koren, Y. (2008, August). Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 426-434).
  • Notebook

1.3. SVD++ with Temporal Dynamics

  • Original Paper
    • Koren, Y. (2009, June). Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 447-456). Chicago
  • Notebook

1.4. AutoRec

  • Original Paper
    • Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015, May). Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th international conference on World Wide Web (pp. 111-112). Chicago
  • Notebook

1.5. NeuralCF

  • Original Paper
    • He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web (pp. 173-182). Chicago
  • Notebook

2. Personalized Ranking Prediction on Implicit Feedback

2.1. NeuralCF

  • Original Paper
    • He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web (pp. 173-182). Chicago
  • Notebook

2.2. Caser

  • Original Paper
    • Tang, J., & Wang, K. (2018, February). Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings of the eleventh ACM international conference on web search and data mining (pp. 565-573). Chicago
  • Notebook

3. Click Through Rate (CTR) Prediction on feature-rich interaction data

3.1. Factorization Machines

  • Original Paper
    • Rendle, S. (2010, December). Factorization machines. In 2010 IEEE International conference on data mining (pp. 995-1000). IEEE. Chicago
  • Notebook

3.2. DeepFM

  • Original Paper
    • Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247. Chicago
  • Notebook