-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdist.hpp
211 lines (176 loc) · 6.92 KB
/
dist.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#pragma once
#include <immintrin.h>
#include <chrono>
#include <unordered_map>
#include "oneapi/dnnl/dnnl.hpp"
#if defined(__GNUC__)
#define PORTABLE_ALIGN32 __attribute__((aligned(32)))
#define PORTABLE_ALIGN64 __attribute__((aligned(64)))
#else
#define PORTABLE_ALIGN32 __declspec(align(32))
#define PORTABLE_ALIGN64 __declspec(align(64))
#endif
namespace avs {
using vecf32_t = std::vector<float>;
using matf32_t = std::vector<std::vector<float>>;
using tag = dnnl::memory::format_tag;
using dt = dnnl::memory::data_type;
static bool is_amxbf16_supported() {
unsigned int eax, ebx, ecx, edx;
__asm__ __volatile__("cpuid"
: "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
: "a"(7), "c"(0));
return edx & (1 << 22);
}
static void read_from_dnnl_memory(void *handle, dnnl::memory &mem) {
dnnl::engine eng = mem.get_engine();
int32_t size = mem.get_desc().get_size();
if (!handle)
throw std::runtime_error("handle is nullptr.");
uint8_t *src = static_cast<uint8_t *>(mem.get_data_handle());
if (!src)
throw std::runtime_error("get_data_handle returned nullptr.");
for (int32_t i = 0; i < size; ++i) {
((uint8_t *)handle)[i] = src[i];
}
}
static void write_to_dnnl_memory(void const *handle, dnnl::memory &mem) {
dnnl::engine eng = mem.get_engine();
int32_t size = mem.get_desc().get_size();
if (!handle)
throw std::runtime_error("handle is nullptr.");
uint8_t *dst = static_cast<uint8_t *>(mem.get_data_handle());
if (!dst)
throw std::runtime_error("get_data_handle returned nullptr.");
for (int32_t i = 0; i < size; ++i) {
dst[i] = ((uint8_t *)handle)[i];
}
}
static void amx_matmul(int32_t const &r1, int32_t const &r2, const int32_t &c,
const float *a, const float *b,
dnnl::engine &engine, dnnl::stream &stream) {
avs::vecf32_t dst(r1 * r2, 0.0f);
dnnl::memory::dims a_dims = {r1, c};
dnnl::memory::dims b_dims = {c, r2};
dnnl::memory::dims c_dims = {r1, r2};
auto a_in_md = dnnl::memory::desc(a_dims, dt::f32, tag::ab);
auto b_in_md = dnnl::memory::desc(b_dims, dt::f32, tag::ab);
auto c_out_md = dnnl::memory::desc(c_dims, dt::f32, tag::ab);
auto a_in_mem = dnnl::memory(a_in_md, engine);
auto b_in_mem = dnnl::memory(b_in_md, engine);
write_to_dnnl_memory(a, a_in_mem);
write_to_dnnl_memory(b, b_in_mem);
auto a_md = dnnl::memory::desc(a_dims, dt::bf16, tag::any);
auto b_md = dnnl::memory::desc(b_dims, dt::bf16, tag::any);
auto c_md = dnnl::memory::desc(c_dims, dt::bf16, tag::any);
auto pd = dnnl::matmul::primitive_desc(engine, a_md, b_md, c_md);
auto a_mem = dnnl::memory(pd.src_desc(), engine);
dnnl::reorder(a_in_mem, a_mem).execute(stream, a_in_mem, a_mem);
auto b_mem = dnnl::memory(pd.weights_desc(), engine);
dnnl::reorder(b_in_mem, b_mem).execute(stream, b_in_mem, b_mem);
auto c_mem = dnnl::memory(pd.dst_desc(), engine);
auto prim = dnnl::matmul(pd);
std::unordered_map<int32_t, dnnl::memory> args;
args.insert({DNNL_ARG_SRC, a_mem});
args.insert({DNNL_ARG_WEIGHTS, b_mem});
args.insert({DNNL_ARG_DST, c_mem});
prim.execute(stream, args);
stream.wait();
}
static void amx_inner_product(int32_t const &n, int32_t const &oc,
int32_t const &ic, const float *s,
const float* w, dnnl::engine &engine,
dnnl::stream &stream) {
dnnl::memory::dims s_dims = {n, ic};
dnnl::memory::dims w_dims = {oc, ic};
dnnl::memory::dims dst_dims = {n, oc};
auto s_in_md = dnnl::memory::desc(s_dims, dt::f32, tag::ab);
auto w_in_md = dnnl::memory::desc(w_dims, dt::f32, tag::ab);
auto dst_out_md = dnnl::memory::desc(dst_dims, dt::f32, tag::ab);
auto s_in_mem = dnnl::memory(s_in_md, engine);
auto w_in_mem = dnnl::memory(w_in_md, engine);
write_to_dnnl_memory(s, s_in_mem);
write_to_dnnl_memory(w, w_in_mem);
auto s_md = dnnl::memory::desc(s_dims, dt::bf16, tag::any);
auto w_md = dnnl::memory::desc(w_dims, dt::bf16, tag::any);
auto dst_md = dnnl::memory::desc(dst_dims, dt::bf16, tag::any);
auto pd = dnnl::inner_product_forward::primitive_desc(
engine, dnnl::prop_kind::forward_training, s_md, w_md, dst_md);
auto s_mem = dnnl::memory(pd.src_desc(), engine);
dnnl::reorder(s_in_mem, s_mem).execute(stream, s_in_mem, s_mem);
auto w_mem = dnnl::memory(pd.weights_desc(), engine);
dnnl::reorder(w_in_mem, w_mem).execute(stream, w_in_mem, w_mem);
auto dst_mem = dnnl::memory(pd.dst_desc(), engine);
auto prim = dnnl::inner_product_forward(pd);
std::unordered_map<int32_t, dnnl::memory> args;
args.insert({DNNL_ARG_SRC, s_mem});
args.insert({DNNL_ARG_WEIGHTS, w_mem});
args.insert({DNNL_ARG_DST, dst_mem});
prim.execute(stream, args);
stream.wait();
}
static float inner_product(void const *vec1, void const *vec2,
int32_t const &dim) {
float *v1 = (float *)vec1;
float *v2 = (float *)vec2;
float result = 0;
for (int32_t i = 0; i < dim; i++) {
result += ((float *)v1)[i] * ((float *)v2)[i];
}
return result;
}
static float
inner_product_avx512(const void *vec1, const void *vec2, int32_t const &dim) {
float PORTABLE_ALIGN64 TmpRes[16];
float *pVect1 = (float *) vec1;
float *pVect2 = (float *) vec2;
size_t qty16 = dim / 16;
const float *pEnd1 = pVect1 + 16 * qty16;
__m512 sum512 = _mm512_set1_ps(0);
size_t loop = qty16 / 4;
while (loop--) {
__m512 v1 = _mm512_loadu_ps(pVect1);
__m512 v2 = _mm512_loadu_ps(pVect2);
pVect1 += 16;
pVect2 += 16;
__m512 v3 = _mm512_loadu_ps(pVect1);
__m512 v4 = _mm512_loadu_ps(pVect2);
pVect1 += 16;
pVect2 += 16;
__m512 v5 = _mm512_loadu_ps(pVect1);
__m512 v6 = _mm512_loadu_ps(pVect2);
pVect1 += 16;
pVect2 += 16;
__m512 v7 = _mm512_loadu_ps(pVect1);
__m512 v8 = _mm512_loadu_ps(pVect2);
pVect1 += 16;
pVect2 += 16;
sum512 = _mm512_fmadd_ps(v1, v2, sum512);
sum512 = _mm512_fmadd_ps(v3, v4, sum512);
sum512 = _mm512_fmadd_ps(v5, v6, sum512);
sum512 = _mm512_fmadd_ps(v7, v8, sum512);
}
while (pVect1 < pEnd1) {
__m512 v1 = _mm512_loadu_ps(pVect1);
__m512 v2 = _mm512_loadu_ps(pVect2);
pVect1 += 16;
pVect2 += 16;
sum512 = _mm512_fmadd_ps(v1, v2, sum512);
}
float sum = _mm512_reduce_add_ps(sum512);
return sum;
}
static avs::vecf32_t ip_distance_avx512(const float* query,
const float* data,
int32_t data_size,
int32_t dim,
dnnl::engine &engine,
dnnl::stream &stream) {
avs::vecf32_t result(data_size);
for (int32_t i = 0; i < data_size; i++) {
auto d = inner_product_avx512(query, data + i * dim, dim);
result[i] = d;
}
return result;
}
} // namespace avs