-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathtrain.py
542 lines (418 loc) · 22.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
"""
Main function for training
"""
import os
import argparse
import numpy as np
from opt import *
from data_provider import *
from model import *
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
sys.path.insert(0, './densevid_eval-master')
sys.path.insert(0, './densevid_eval-master/coco-caption')
#from evaluator import *
from evaluator_old import *
def getKey(item):
return item['score']
"""
Loss evaluation
"""
def evaluation(options, data_provision, sess, inputs, t_loss):
val_loss_list = []
val_proposal_loss_list =[]
val_caption_loss_list = []
val_count = min(data_provision.get_size('val'), options['loss_eval_num'])
batch_size = options['batch_size']
count = 0
for batch_data in data_provision.iterate_batch('val', batch_size):
print('Evaluating batch: #%d'%count)
count += 1
feed_dict = {inputs['rnn_drop']:0.}
for key, value in batch_data.items():
if key not in inputs:
continue
feed_dict[inputs[key]] = value
loss, proposal_loss, caption_loss = sess.run(
t_loss,
feed_dict=feed_dict)
val_loss_list.append(loss * batch_data['caption'].shape[0])
val_proposal_loss_list.append(proposal_loss * batch_data['caption'].shape[0])
val_caption_loss_list.append(caption_loss * batch_data['caption'].shape[0])
if count >= val_count:
break
ave_val_loss = sum(val_loss_list) / float(val_count)
ave_proposal_val_loss = sum(val_proposal_loss_list) / float(val_count)
ave_caption_val_loss = sum(val_caption_loss_list) / float(val_count)
return ave_val_loss, ave_proposal_val_loss, ave_caption_val_loss
"""
Generate batch data and corresponding mask data for the input
"""
def process_batch_data(batch_data, max_length):
dim = batch_data[0].shape[1]
out_batch_data = np.zeros(shape=(len(batch_data), max_length, dim), dtype='float32')
out_batch_data_mask = np.zeros(shape=(len(batch_data), max_length), dtype='int32')
for i, data in enumerate(batch_data):
effective_len = min(max_length, data.shape[0])
out_batch_data[i, :effective_len, :] = data[:effective_len]
out_batch_data_mask[i, :effective_len] = 1
out_batch_data = np.asarray(out_batch_data, dtype='float32')
out_batch_data_mask = np.asarray(out_batch_data_mask, dtype='int32')
return out_batch_data, out_batch_data_mask
def evaluation_metric_greedy(options, data_provision, sess, proposal_inputs, caption_inputs, proposal_outputs, caption_outputs):
print('Evaluating caption scores ...')
word2ix = options['vocab']
ix2word = {ix:word for word,ix in word2ix.items()}
# output json data for evaluation
out_data = {}
out_data['version'] = 'VERSION 1.0'
out_data['external_data'] = {'used':False, 'details': ''}
out_data['results'] = {}
results = {}
count = 0
batch_size = options['eval_batch_size'] # default batch size to evaluate
assert batch_size == 1
eval_num = batch_size*options['metric_eval_num']
print('Will evaluate %d samples'%eval_num)
val_ids = data_provision.get_ids('val')[:eval_num]
anchors = data_provision.get_anchors()
localizaitons = data_provision.get_localization()
for batch_data in data_provision.iterate_batch('val', batch_size):
print('\nProcessed %d-th batch \n'%count)
vid = val_ids[count]
print('video id: %s'%vid)
proposal_score_fw, proposal_score_bw, rnn_outputs_fw, rnn_outputs_bw = sess.run([proposal_outputs['proposal_score_fw'], proposal_outputs['proposal_score_bw'], proposal_outputs['rnn_outputs_fw'], proposal_outputs['rnn_outputs_bw']], feed_dict={proposal_inputs['video_feat_fw']:batch_data['video_feat_fw'], proposal_inputs['video_feat_bw']:batch_data['video_feat_bw']})
feat_len = batch_data['video_feat_fw'][0].shape[0]
duration = localizaitons['val'][vid]['duration']
'''calculate final score by summarizing forward score and backward score
'''
proposal_score = np.zeros((feat_len, options['num_anchors']))
proposal_infos = []
for i in range(feat_len):
pre_start = -1.
for j in range(options['num_anchors']):
forward_score = proposal_score_fw[i,j]
# calculate time stamp
end = (float(i+1)/feat_len)*duration
start = end-anchors[j]
start = max(0., start)
if start == pre_start:
continue
# backward
end_bw = duration - start
i_bw = min(int(round((end_bw/duration)*feat_len)-1), feat_len-1)
i_bw = max(i_bw, 0)
backward_score = proposal_score_bw[i_bw,j]
proposal_score[i,j] = forward_score*backward_score
hidden_feat = np.concatenate([rnn_outputs_fw[i], rnn_outputs_bw[i_bw]], axis=-1)
proposal_feats = batch_data['video_feat_fw'][0][feat_len-1-i_bw:i+1]
proposal_infos.append({'timestamp':[start, end], 'score': proposal_score[i,j], 'event_hidden_feats': hidden_feat, 'proposal_feats': proposal_feats})
pre_start = start
# add the largest proposal
hidden_feat = np.concatenate([rnn_outputs_fw[feat_len-1], rnn_outputs_bw[feat_len-1]], axis=-1)
proposal_feats = batch_data['video_feat_fw'][0]
proposal_infos.append({'timestamp':[0., duration], 'score': 1., 'event_hidden_feats': hidden_feat, 'proposal_feats': proposal_feats})
proposal_infos = sorted(proposal_infos, key=getKey, reverse=True)
proposal_infos = proposal_infos[:options['max_proposal_num']]
print('Number of proposals: %d'%len(proposal_infos))
#
event_hidden_feats = [item['event_hidden_feats'] for item in proposal_infos]
proposal_feats = [item['proposal_feats'] for item in proposal_infos]
event_hidden_feats = np.array(event_hidden_feats, dtype='float32')
proposal_feats, _ = process_batch_data(proposal_feats, options['max_proposal_len'])
# run session to get word ids
word_ids = sess.run(caption_outputs['word_ids'], feed_dict={caption_inputs['event_hidden_feats']: event_hidden_feats, caption_inputs['proposal_feats']: proposal_feats})
sentences = [[ix2word[i] for i in ids] for ids in word_ids]
sentences = [sentence[1:] for sentence in sentences]
# remove <END> word
out_sentences = []
for sentence in sentences:
end_id = options['caption_seq_len']
if '<END>' in sentence:
end_id = sentence.index('<END>')
sentence = sentence[:end_id]
sentence = ' '.join(sentence)
sentence = sentence.replace('<UNK>', '')
out_sentences.append(sentence)
print('Output sentences: ')
for out_sentence in out_sentences:
print(out_sentence)
result = [{'timestamp': proposal['timestamp'], 'sentence': out_sentences[i]} for i, proposal in enumerate(proposal_infos)]
results[vid] = result
count += 1
if count >= eval_num:
break
out_data['results'] = results
resFile = 'results/%d/temp_results.json'%options['train_id']
root_folder = os.path.dirname(resFile)
if not os.path.exists(root_folder):
os.makedirs(root_folder)
print('Saving result json file ...')
with open(resFile, 'w') as fid:
json.dump(out_data, fid)
# Call evaluator
evaluator = ANETcaptions(ground_truth_filenames=['densevid_eval-master/data/val_1.json', 'densevid_eval-master/data/val_2.json'],
prediction_filename=resFile,
tious=options['tiou_measure'],
max_proposals=options['max_proposal_num'],
verbose=False)
evaluator.evaluate()
# Output the results
for i, tiou in enumerate(options['tiou_measure']):
print('-' * 80)
print('tIoU: %.2f'%tiou)
print('-' * 80)
for metric in evaluator.scores:
score = evaluator.scores[metric][i]
print('| %s: %2.4f'%(metric, 100*score))
# Print the averages
print('-' * 80)
print('Average across all tIoUs')
print('-' * 80)
avg_scores = {}
for metric in evaluator.scores:
score = evaluator.scores[metric]
avg_score = 100 * sum(score) / float(len(score))
avg_scores[metric] = avg_score
# print output evaluation scores
fid = open('results/%d/score_history.txt'%options['train_id'], 'a')
for metric, score in avg_scores.items():
print('%s: %.4f'%(metric, score))
# also write to a temp file
fid.write('%s: %.4f\n'%(metric, score))
fid.write('\n')
fid.close()
combined_score = avg_scores['METEOR']
return avg_scores, combined_score
def train(options):
sess_config = tf.ConfigProto()
#sess_config.gpu_options.allow_growth=True
sess_config.gpu_options.allow_growth=False
os.environ['CUDA_VISIBLE_DEVICES'] = str(options['gpu_id'])[1:-1]
sess = tf.InteractiveSession(config=sess_config)
print('Load data ...')
data_provision = DataProvision(options)
batch_size = options['batch_size']
max_epochs = options['max_epochs']
init_epoch = options['init_epoch']
lr_init = options['learning_rate']
status_file = options['status_file']
lr = lr_init
lr_decay_factor = options['lr_decay_factor']
n_epoch_to_decay = options['n_epoch_to_decay'] # when to decay the lr
next_epoch_to_decay = n_epoch_to_decay.pop()
n_iters_per_epoch = data_provision.get_size('train') // batch_size
eval_in_iters = n_iters_per_epoch // options['n_eval_per_epoch']
#############################################
# build model #
print('Build model for training ...')
model = CaptionModel(options)
inputs, outputs = model.build_train()
t_loss = outputs['loss']
t_proposal_loss = outputs['proposal_loss']
t_caption_loss = outputs['caption_loss']
t_loss_list = [t_loss, t_proposal_loss, t_caption_loss]
t_reg_loss = outputs['reg_loss']
t_n_proposals = outputs['n_proposals']
if options['evaluate_metric']:
print('Build model for evaluating metric ...')
proposal_inputs, proposal_outputs = model.build_proposal_inference(reuse=True)
caption_inputs, caption_outputs = model.build_caption_greedy_inference(reuse=True)
t_proposal_score_fw = proposal_outputs['proposal_score_fw']
t_proposal_score_bw = proposal_outputs['proposal_score_bw']
t_rnn_outputs_fw = proposal_outputs['rnn_outputs_fw']
t_rnn_outputs_bw = proposal_outputs['rnn_outputs_bw']
t_word_ids = caption_outputs['word_ids']
#############################################
t_summary = tf.summary.merge_all()
t_lr = tf.placeholder(tf.float32)
if options['solver'] == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate=t_lr)
elif options['solver'] == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(learning_rate=t_lr)
elif options['solver'] == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate=t_lr, momentum=options['momentum'])
elif options['solver'] == 'adadelta':
optimizer = tf.train.AdadeltaOptimizer(learning_rate=t_lr)
else:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=t_lr)
# get trainable variable list
trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
if not options['train_proposal']:
trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='caption_module')
if not options['train_caption']:
trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='proposal_module')
if not options['train_proposal'] and not options['train_caption']:
trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
# gradient clipping option
if options['clip_gradient_norm'] < 0:
train_op = optimizer.minimize(t_loss + options['reg'] * t_reg_loss, var_list=trainable_vars)
else:
gvs = optimizer.compute_gradients(t_loss + options['reg'] * t_reg_loss, var_list=trainable_vars)
clip_grad_var = [(tf.clip_by_norm(grad, options['clip_gradient_norm']), var) for grad, var in gvs]
train_op = optimizer.apply_gradients(clip_grad_var)
# save summary data
train_summary_writer = tf.summary.FileWriter(os.path.dirname(options['status_file']), sess.graph)
# initialize all variables
tf.global_variables_initializer().run()
## test model variable shape
if 'print_debug' in options.keys() and options['print_debug']:
print('*********** Variable Shape *************')
for v in tf.trainable_variables():
print('%s:'%v.name)
print(v.get_shape())
if 'test_tensors' in options:
print('********** Tensor Shape ************')
tf_graph = tf.get_default_graph()
for t_name in options['test_tensors']:
t = tf_graph.get_tensor_by_name('%s:0'%t_name)
print('%s: '%t_name)
print(t.get_shape())
# for saving and restoring checkpoints during training
saver = tf.train.Saver(max_to_keep=200, write_version=1)
# initialize model from a given checkpoint path
if options['init_from']:
print('Init model from %s'%options['init_from'])
restore_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
if options['init_module'] == 'proposal':
print('Restoring parameters only for proposal module')
restore_vars = [v for v in restore_vars if v.name.startswith('proposal_module/')]
elif options['init_module'] == 'caption':
print('Restoring parameters only for caption module')
restore_vars = [v for v in restore_vars if v.name.startswith('caption_module/')]
elif options['init_module'] == 'all':
pass
# for restoring from another graph (contain different structure) at the beginning
saver_part = tf.train.Saver(var_list=restore_vars)
saver_part.restore(sess, options['init_from'])
# save loss/evaluation history
json_worker_status = OrderedDict()
json_worker_status['options'] = options
json_worker_status['history'] = []
json_worker_status['eval_results'] = []
json.dump(json_worker_status, open(options['status_file'], 'w'))
if options['eval_init']:
print('Evaluating the initialized model ...')
val_loss, val_proposal_loss, val_caption_loss = evaluation(options, data_provision, sess, inputs, t_loss_list)
print('loss: %.4f, proposal_loss: %.4f, caption_loss: %.4f'%(val_loss, val_proposal_loss, val_caption_loss))
combined_score = -1 # denote not evaluated
all_scores = -1
if options['evaluate_metric']:
all_scores, combined_score = evaluation_metric_greedy(options, data_provision, sess, proposal_inputs, caption_inputs, proposal_outputs, caption_outputs)
print('combined score: %.3f'%(combined_score,))
t0 = time.time()
eval_id = 0
train_batch_generator = data_provision.iterate_batch('train', batch_size)
checkpoint_filenames = []
for epoch in range(init_epoch, max_epochs):
# manually set when to decay learning rate
if not options['auto_lr_decay']:
if epoch == next_epoch_to_decay:
if len(n_epoch_to_decay) == 0:
next_epoch_to_decay = -1
else:
next_epoch_to_decay = n_epoch_to_decay.pop()
print('Decaying learning rate ...')
lr *= lr_decay_factor
print('epoch: %d/%d, lr: %.1E (%.1E)'%(epoch, max_epochs, lr, lr_init))
for iter in range(n_iters_per_epoch):
batch_data = next(train_batch_generator)
feed_dict = {
t_lr: lr,
inputs['rnn_drop']: options['rnn_drop']
}
for key, value in batch_data.items():
if key not in inputs:
continue
feed_dict[inputs[key]] = value
_, summary, loss, proposal_loss, caption_loss, reg_loss, n_proposals = sess.run([train_op, t_summary, t_loss, t_proposal_loss, t_caption_loss, t_reg_loss, t_n_proposals], feed_dict=feed_dict)
if 'print_debug' in options and options['print_debug']:
print('n_proposals: %d'%n_proposals)
if iter == 0 and epoch == init_epoch:
smooth_loss = loss
else:
smooth_loss = 0.9 * smooth_loss + 0.1 * loss
if iter % options['n_iters_display'] == 0:
print('iter: %d, epoch: %d/%d, \nlr: %.1E, loss: %.4f, proposal_loss: %.4f, caption_loss: %.4f'%(iter, epoch, max_epochs, lr, loss, proposal_loss, caption_loss))
train_summary_writer.add_summary(summary, iter + epoch * n_iters_per_epoch)
jstatus = OrderedDict()
jstatus['epoch'] = (epoch, max_epochs)
jstatus['iter'] = (iter, n_iters_per_epoch)
jstatus['loss'] = (float(loss), float(smooth_loss), float(reg_loss))
json_worker_status['history'].append(jstatus)
# every 30 secs write once
if (time.time() - t0) / 60.0 > 0.5:
t0 = time.time()
json.dump(json_worker_status, open(status_file, 'w'))
if (iter + 1) % eval_in_iters == 0:
print('Evaluating model ...')
val_loss, val_proposal_loss, val_caption_loss = evaluation(options, data_provision, sess, inputs, t_loss_list)
print('loss: %.4f, proposal_loss: %.4f, caption_loss: %.4f'%(val_loss, val_proposal_loss, val_caption_loss))
combined_score = -1 # denote not evaluated
all_scores = -1
if options['evaluate_metric']:
all_scores, combined_score = evaluation_metric_greedy(options, data_provision, sess, proposal_inputs, caption_inputs, proposal_outputs, caption_outputs)
print('combined score: %.3f'%(combined_score,))
jeval_results = OrderedDict()
jeval_results['loss'] = (val_loss, smooth_loss)
jeval_results['score'] = combined_score
jeval_results['scores'] = all_scores
jeval_results['lr'] = lr
json_worker_status['eval_results'].append(jeval_results)
json.dump(json_worker_status, open(status_file, 'w'))
checkpoint_path = '%sepoch%02d_%.2f_%02d_lr%f%s.ckpt' % (options['ckpt_prefix'], epoch, val_loss, eval_id, lr, options['ckpt_sufix'])
if options['evaluate_metric']:
checkpoint_path = '%sepoch%02d_%.2f_%02d_lr%f%s.ckpt' % (options['ckpt_prefix'], epoch, combined_score, eval_id, lr, options['ckpt_sufix'])
saver.save(sess, checkpoint_path)
checkpoint_filenames.append(checkpoint_path)
eval_id = eval_id + 1
# automatically lower learning rate
if options['auto_lr_decay']:
# review val loss history or score history
eval_results = json_worker_status['eval_results']
view_end_eval_id = eval_id
view_start_eval_id = view_end_eval_id - options['n_eval_observe']
view_start_epoch_id = (view_end_eval_id + init_epoch*options['n_eval_per_epoch'] - options['n_eval_observe']) // options['n_eval_per_epoch']
review_results = [result['loss'][0] for result in eval_results[view_start_eval_id:view_end_eval_id]]
if options['evaluate_metric']:
review_results = [result['score'] for result in eval_results[view_start_eval_id:view_end_eval_id]]
if view_start_eval_id >= 0:
if options['evaluate_metric'] and review_results.index(max(review_results)) == 0:
# go back to the state of view_start_eval_id, and lower learning rate
print('Init model from %s ...'%checkpoint_filenames[view_start_eval_id])
saver.restore(sess, checkpoint_filenames[view_start_eval_id])
print('Decaying learning rate ...')
lr *= lr_decay_factor
if lr < options['min_lr']:
print('Reach minimum learning rate. Done training.')
return
elif not options['evaluate_metric'] and review_results.index(min(review_results)) == 0:
# go back to the state of view_start_eval_id, and lower learning rate
print('Init model from %s ...'%checkpoint_filenames[view_start_eval_id])
saver.restore(sess, checkpoint_filenames[view_start_eval_id])
print('Decaying learning rate ...')
lr *= lr_decay_factor
if lr < options['min_lr']:
print('Reach minimum learning rate. Done training.')
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
options = default_options()
for key, value in options.items():
parser.add_argument('--%s'%key, dest=key, type=type(value), default=None)
args = parser.parse_args()
args = vars(args)
for key, value in args.items():
if value:
options[key] = value
if key == 'ckpt_prefix':
if not options['ckpt_prefix'].endswith('/'):
options['ckpt_prefix'] = options['ckpt_prefix'] + '/'
options['status_file'] = options['ckpt_prefix'] + 'status.json'
work_dir = os.path.dirname(options['status_file'])
if os.path.exists(work_dir) :
print('work_dir %s exists! Pls check it.'%work_dir)
else:
os.makedirs(work_dir)
train(options)