-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
88 lines (72 loc) · 3.39 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from re import X
import matplotlib
matplotlib.use('Agg')
import os, sys
import random
import yaml
from argparse import ArgumentParser
from time import gmtime, strftime
from shutil import copy
import torch
import numpy as np
from frames_dataset import FramesDataset
import modules
from modules.model import MRFA
from modules.util import convert_dict_to_attrit_dict
from train import train
from reconstruction import reconstruction
from animate_ddp import animate
#from animate import animate
if __name__ == "__main__":
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--mode", default="train", choices=["train", "reconstruction", "animate"])
parser.add_argument("--log_dir", default='./log', help="path to log into")
parser.add_argument("--checkpoint", default=None, help="path to checkpoint to restore")
parser.add_argument("--device_ids", default="0", type=lambda x: list(map(int, x.split(','))),
help="Names of the devices comma separated.")
parser.add_argument("--verbose", dest="verbose", action="store_true", help="Print model architecture")
parser.add_argument("--local_rank", default=-1, type=int, help="distributed machine")
parser.set_defaults(verbose=False)
opt = parser.parse_args()
with open(opt.config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
distributed = opt.local_rank >= 0
# distributed = False
if distributed:
torch.distributed.init_process_group(backend="nccl", init_method="env://")
rank = torch.distributed.get_rank()
local_rank = opt.local_rank if opt.local_rank != -1 else torch.cuda.current_device()
device = torch.device('cuda:{}'.format(local_rank))
torch.cuda.set_device(device)
print(local_rank, device, torch.cuda.device_count())
world_size = torch.distributed.get_world_size()
print("world_size : ", world_size)
config['train_params']['batch_size'] = int(config['train_params']['batch_size'] / world_size)
else:
device = torch.device('cuda:{}'.format(opt.device_ids[0]))
world_size=1
if opt.checkpoint is not None and opt.mode != "train":
log_dir = os.path.join(*os.path.split(opt.checkpoint)[:-1])
else:
# log_dir = os.path.join(opt.log_dir, os.path.basename(opt.config).split('.')[0])
log_dir = opt.log_dir + '_' + os.path.basename(opt.config).split('.')[0]
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
if not os.path.exists(os.path.join(log_dir, os.path.basename(opt.config))):
copy(opt.config, log_dir)
cfg = convert_dict_to_attrit_dict(config)
model = MRFA(cfg)
model.to(device)
dataset = FramesDataset(is_train=(opt.mode == 'train'), **config['dataset_params'])
if opt.mode == 'train':
print("Training...")
train(config, model, opt.checkpoint, log_dir, dataset, opt.device_ids, local_rank=rank, world_size=world_size)
elif opt.mode == 'reconstruction':
print("Reconstruction...")
reconstruction(config, model, opt.checkpoint, log_dir, dataset)
elif opt.mode == 'animate':
print("Animate...")
animate(config, model, opt.checkpoint, log_dir, dataset, local_rank=local_rank)