-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
125 lines (109 loc) · 4.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import grad
import torchvision
from torchvision import datasets, transforms
from torchvision.utils import save_image
import torchvision.models as models
import inversefed
from utils.dataloader import DataLoader
from utils.stackeddata import StackedData
# inverting gradients algorithm from https://github.com/JonasGeiping/invertinggradients
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='Adversarial attack from gradient leakage')
parser.add_argument('--model', type=str, help='model to perform adversarial attack')
parser.add_argument('--data', type=str, help='dataset used')
parser.add_argument('--stack_size', default=4, type=int, help='size use to stack images')
parser.add_argument('-l','--target_idx', nargs='+', help='list of data index to recontruct')
parser.add_argument('--save', type=str2bool, nargs='?', const=False, default=True, help='save')
parser.add_argument('--gpu', type=str2bool, nargs='?', const=False, default=True, help='use gpu')
args = parser.parse_args()
model_name = args.model
data = args.data
stack_size = args.stack_size
save_output = args.save
if args.target_idx is not None:
target_idx = [int(i) for i in args.target_idx]
else:
target_idx = args.target_idx
device = 'cpu'
if args.gpu:
device = 'cuda'
print("Running on %s" % device)
def val_model(dataset, model, criterion):
# evaluate trained model, record wrongly predicted index
model.eval()
# record wrong pred index
index_ls = []
with torch.no_grad():
val_loss, val_corrects = 0, 0
for batch_idx, (inputs, labels) in enumerate(dataset):
inputs = inputs.unsqueeze(dim=0).to(device)
labels = torch.as_tensor([labels]).to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
val_loss += loss.item() * inputs.size(0) # mutiply by number of batches
val_corrects += torch.sum(preds == labels.data)
if (preds != labels.data):
index_ls.append(batch_idx)
total_loss = val_loss / len(dataset)
total_acc = val_corrects.double() / len(dataset)
print('{} Loss: {:.4f} Acc: {:.4f}'.format('val', total_loss, total_acc))
return index_ls
dataloader = DataLoader(data, device)
dataset, data_shape, classes, (dm, ds) = dataloader.get_data_info()
model = models.resnet18(pretrained=True) # use pretrained model from torchvision
model.fc = nn.Linear(512, len(classes)) # reinitialize model output: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
model = model.to(device)
model.eval()
criterion = nn.CrossEntropyLoss()
stack_data = StackedData(stack_size=4, model_name=model_name, dataset_name=data, dataset=dataset, save_output=save_output, device=device)
if target_idx is None:
wrong_pred_idx = val_model(dataset, model, criterion)
else:
if isinstance(target_idx, (list))==False:
wrong_pred_idx = [target_idx]
else:
wrong_pred_idx = target_idx
stacked_data_d = stack_data.create_stacked_data(wrong_pred_idx)
for i in range(len(stacked_data_d['gt_img'])):
gt_img, gt_label, img_idx = stacked_data_d['gt_img'][i], stacked_data_d['gt_label'][i], stacked_data_d['img_index'][i]
stack_pred = model(gt_img)
target_loss = criterion(stack_pred, gt_label)
input_grad = grad(target_loss, model.parameters())
input_grad =[grad.detach() for grad in input_grad]
# default configuration from inversefed
config = dict(signed=True,
boxed=False,
cost_fn='sim',
indices='def',
norm='none',
weights='equal',
lr=0.1,
optim='adam',
restarts=1,
max_iterations=1200,
total_variation=0.1,
init='randn',
filter='none',
lr_decay=True,
scoring_choice='loss')
rec_machine = inversefed.GradientReconstructor(model, (dm, ds), config, num_images=gt_img.shape[0])
results = rec_machine.reconstruct(input_grad, gt_label, gt_img ,img_shape=data_shape)
output_img, stats = results
rec_pred = model(output_img)
print('Predictions for recontructed images: ', [classes[l] for l in torch.max(rec_pred, axis=1)[1]])
stack_data.grid_plot(img_idx, output_img, rec_pred, dm, ds)