-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHomework 5.Rmd
349 lines (293 loc) · 12.3 KB
/
Homework 5.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
---
title: "Homework 5"
author: "Jiawen Qi (jiq10)"
date: "November 13, 2016"
output: word_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## 1. Import the iris data
Iris data can be accessed in RStudio directly:
```{r}
iris <- iris # read in the data
summary(iris) # give a summary of iris data
head(iris) # view the first six rows of iris data
```
## 2. Data preparation for 10 fold
```{r}
set.seed(66666) # my favorite seed
iris$random.number <- runif(150, min = 0, max = 1) # add a random column
iris <- iris[order(iris$random.number),] # order the data by random number
for (i in 1:nrow(iris)) {
iris$group[i] <- (i%%10) + 1 # make 10 groups
}
iris <- iris[,-6]
```
By now, the dataset is ordered randomly and we can do 10 fold.
## 3. Create Naive Bayes Classification Cost and Benefit Function with 10 fold
```{r}
library(e1071) # Probability Theory Group
naiveBayes.CostBenefit <- function(dataset) {
cost.benefit <- c(0,0,0,0,0,0,0,0,0,0) # initial cost and benefit
for (i in 1:10) {
training <- dataset[dataset$group != i, -c(ncol(dataset))] # get training
testing <- dataset[dataset$group == i, -c(ncol(dataset))] # get testing
testing.data <- testing[,-c(ncol(testing))] # get testing data
testing.original <- as.data.frame(testing[,c(ncol(testing))]) # get testing original class
colnames(testing.original) <- "OriginalSpecies"
model <- naiveBayes(Species ~., data = training) # navie bayes model
pred <- as.data.frame(predict(model, testing.data)) # predict
colnames(pred) <- "PredictedSpecies"
predTesting <- cbind.data.frame(pred, testing.original)
confusion <- table(predTesting$PredictedSpecies, predTesting$OriginalSpecies) # get confusion matrix
print(paste("naive bayes fold", i, "confusion matrix:"))
print(confusion)
##### calculate the cost and benefit #####
benefit <- confusion[1,1] * 1 + confusion[2,2] * 3 + confusion[3,3] * 1
cost <- confusion[1,2] * 10 + confusion[3,2] * 10
totalbenefit <- benefit - cost
print(paste("naive bayes fold", i, ": benefit is", benefit, "; cost is", cost))
cost.benefit[i] <- totalbenefit
}
print(paste("naive bayes total (benefit-cost) is", sum(cost.benefit)))
}
naiveBayes.CostBenefit.withoutPrint <- function(dataset) {
cost.benefit <- c(0,0,0,0,0,0,0,0,0,0) # initial cost and benefit
for (i in 1:10) {
training <- dataset[dataset$group != i, -c(ncol(dataset))] # get training
testing <- dataset[dataset$group == i, -c(ncol(dataset))] # get testing
testing.data <- testing[,-c(ncol(testing))] # get testing data
testing.original <- as.data.frame(testing[,c(ncol(testing))]) # get testing original class
colnames(testing.original) <- "OriginalSpecies"
model <- naiveBayes(Species ~., data = training) # navie bayes model
pred <- as.data.frame(predict(model, testing.data)) # predict
colnames(pred) <- "PredictedSpecies"
predTesting <- cbind.data.frame(pred, testing.original)
confusion <- table(predTesting$PredictedSpecies, predTesting$OriginalSpecies) # get confusion matrix
##### calculate the cost and benefit #####
benefit <- confusion[1,1] * 1 + confusion[2,2] * 3 + confusion[3,3] * 1
cost <- confusion[1,2] * 10 + confusion[3,2] * 10
totalbenefit <- benefit - cost
cost.benefit[i] <- totalbenefit
}
print(paste("naive bayes 10 fold total (benefit-cost) is", sum(cost.benefit)))
}
```
## 4. Create KNN Classification Cost and Benefit Function (k = 10) with 10 fold
```{r}
library(class) # functions for classification
knn10.CostBenefit <- function(dataset) {
cost.benefit <- c(0,0,0,0,0,0,0,0,0,0) # initial cost and benefit
for (i in 1:10) {
training <- dataset[dataset$group != i, -c(ncol(dataset))] # get training
testing <- dataset[dataset$group == i, -c(ncol(dataset))] # get testing
training.data <- as.matrix(training[,-c(ncol(training))]) # get training data
training.class <- as.matrix(training[,c(ncol(training))]) # get training class
testing.data <- as.matrix(testing[,-c(ncol(testing))]) # get testing data
testing.original <- as.data.frame(testing[,c(ncol(testing))]) # get testing class
colnames(testing.original) <- "OriginalSpecies"
model <- knn(train = training.data, test = testing.data, cl = training.class, k = 10)# knn model, k = 10
pred <- as.data.frame(model)
colnames(pred) <- "PredictedSpecies"
result <- cbind.data.frame(pred, testing.original)
confusion <- table(result$PredictedSpecies, result$OriginalSpecies) # get confusion matrix
print(paste("knn k = 10 fold", i, "confusion matrix:"))
print(confusion)
##### calculate the cost and benefit #####
benefit <- confusion[1,1] * 1 + confusion[2,2] * 3 + confusion[3,3] * 1
cost <- confusion[1,2] * 10 + confusion[3,2] * 10
totalbenefit <- benefit - cost
print(paste("knn k = 10 fold", i, ": benefit is", benefit, "; cost is", cost))
cost.benefit[i] <- totalbenefit
}
print(paste("knn k = 10 10 fold total (benefit-cost) is", sum(cost.benefit)))
}
knn10.CostBenefit.withoutPrint <- function(dataset) {
cost.benefit <- c(0,0,0,0,0,0,0,0,0,0) # initial cost and benefit
for (i in 1:10) {
training <- dataset[dataset$group != i, -c(ncol(dataset))] # get training
testing <- dataset[dataset$group == i, -c(ncol(dataset))] # get testing
training.data <- as.matrix(training[,-c(ncol(training))]) # get training data
training.class <- as.matrix(training[,c(ncol(training))]) # get training class
testing.data <- as.matrix(testing[,-c(ncol(testing))]) # get testing data
testing.original <- as.data.frame(testing[,c(ncol(testing))]) # get testing class
colnames(testing.original) <- "OriginalSpecies"
model <- knn(train = training.data, test = testing.data, cl = training.class, k = 10)# knn model, k = 10
pred <- as.data.frame(model)
colnames(pred) <- "PredictedSpecies"
result <- cbind.data.frame(pred, testing.original)
confusion <- table(result$PredictedSpecies, result$OriginalSpecies) # get confusion matrix
##### calculate the cost and benefit #####
benefit <- confusion[1,1] * 1 + confusion[2,2] * 3 + confusion[3,3] * 1
cost <- confusion[1,2] * 10 + confusion[3,2] * 10
totalbenefit <- benefit - cost
cost.benefit[i] <- totalbenefit
}
average.cost.benefit <- sum(cost.benefit)/10
print(paste("knn k = 10 10 fold total (benefit-cost) is", sum(cost.benefit)))
}
```
## 5. Create Decision Tree Classification Cost and Benefit Function (k = 10) with 10 fold
```{r}
library(rpart)
decisionTree.CostBenefit <- function(dataset) {
cost.benefit <- c(0,0,0,0,0,0,0,0,0,0) # initial cost and benefit
for (i in 1:10) {
training <- dataset[dataset$group != i, -c(ncol(dataset))] # get training
testing <- dataset[dataset$group == i, -c(ncol(dataset))] # get testing
testing.data <- testing[,-c(ncol(testing))] # get testing data
testing.original <- as.data.frame(testing[,c(ncol(testing))]) # get testing class
colnames(testing.original) <- "OriginalSpecies"
model <- rpart(Species ~., data = training) ## decision tree model
pred <- predict(model, testing.data, type = "class") ## predict
confusion <- table(pred, testing.original$OriginalSpecies) # get confusion matrix
print(paste("decision tree fold", i, "confusion matrix:"))
print(confusion)
##### calculate the cost and benefit #####
benefit <- confusion[1,1] * 1 + confusion[2,2] * 3 + confusion[3,3] * 1
cost <- confusion[1,2] * 10 + confusion[3,2] * 10
totalbenefit <- benefit - cost
print(paste("decision tree fold", i, ": benefit is", benefit, "; cost is", cost))
cost.benefit[i] <- totalbenefit
}
print(paste("decision tree 10 fold total (benefit-cost) is", sum(cost.benefit)))
}
decisionTree.CostBenefit.withoutPrint <- function(dataset) {
cost.benefit <- c(0,0,0,0,0,0,0,0,0,0) # initial cost and benefit
for (i in 1:10) {
training <- dataset[dataset$group != i, -c(ncol(dataset))] # get training
testing <- dataset[dataset$group == i, -c(ncol(dataset))] # get testing
testing.data <- testing[,-c(ncol(testing))] # get testing data
testing.original <- as.data.frame(testing[,c(ncol(testing))]) # get testing class
colnames(testing.original) <- "OriginalSpecies"
model <- rpart(Species ~., data = training) ## decision tree model
pred <- predict(model, testing.data, type = "class") ## predict
confusion <- table(pred, testing.original$OriginalSpecies) # get confusion matrix
##### calculate the cost and benefit #####
benefit <- confusion[1,1] * 1 + confusion[2,2] * 3 + confusion[3,3] * 1
cost <- confusion[1,2] * 10 + confusion[3,2] * 10
totalbenefit <- benefit - cost
cost.benefit[i] <- totalbenefit
}
print(paste("decision tree 10 fold total (benefit-cost) is", sum(cost.benefit)))
}
```
## 5. All Features (Sepal Length, Sepal Width, Petal Length, Petal Width)
```{r}
dataset <- iris
naiveBayes.CostBenefit(dataset)
knn10.CostBenefit(dataset)
decisionTree.CostBenefit(dataset)
```
## 6. Three Features
Note: To make results more clear, confusion matrix will not be printed out.
### 6.1 Sepal Length, Sepal Width, Petal Length
```{r}
dataset <- iris[,-c(4)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 6.2 Sepal Length, Sepal Width, Petal Width
```{r}
dataset <- iris[,-c(3)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 6.3 Sepal Width, Petal Length, Petal Width
```{r}
dataset <- iris[,-c(1)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 6.4 Sepal Length, Petal Length, Petal Width
```{r}
dataset <- iris[,-c(2)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
## 7. Two Features
Note: To make results more clear, confusion matrix will not be printed out.
### 7.1 Sepal Length, Sepal Width
```{r}
dataset <- iris[,-c(3,4)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 7.2 Sepal Length, Petal Length
```{r}
dataset <- iris[,-c(2,4)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 7.3 Sepal Length, Petal Width
```{r}
dataset <- iris[,-c(2,3)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 7.4 Sepal Width, Petal Length
```{r}
dataset <- iris[,-c(1,4)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 7.5 Sepal Width, Petal Width
```{r}
dataset <- iris[,-c(1,3)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 7.6 Petal Length, Petal Width
```{r}
dataset <- iris[,-c(1,2)]
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
## 8. One Feature
Note: To make results more clear, confusion matrix will not be printed out.
### 8.1 Sepal Length
```{r}
dataset <- cbind.data.frame(dum = 0,iris[,-c(2,3,4)])
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 8.2 Sepal Width
```{r}
dataset <- cbind.data.frame(dum = 0,iris[,-c(1,3,4)])
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 8.3 Petal Length
```{r}
dataset <- cbind.data.frame(dum = 0,iris[,-c(1,2,4)])
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
### 8.4 Petal Width
```{r}
dataset <- cbind.data.frame(dum = 0,iris[,-c(1,2,3)])
naiveBayes.CostBenefit.withoutPrint(dataset)
knn10.CostBenefit.withoutPrint(dataset)
decisionTree.CostBenefit.withoutPrint(dataset)
```
## 9. Conclusion
Note: The results shown in tables are the total benefit-cost of 10 fold cv for each classification methods.
### 9.1 All Features
### 9.2 Three Features
### 9.3 Two Features
### 9.4 One Features
### 9.5 The Best Model