-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjHenryGasSolubilityOptimization.m
188 lines (181 loc) · 4.66 KB
/
jHenryGasSolubilityOptimization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
%[2019]-"Henry gas solubility optimization: A novel physics-based
%algorithm"
% (8/12/2020)
function HGSO = jHenryGasSolubilityOptimization(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
num_gas = 2; % number of gas types / cluster
K = 1; % constant
alpha = 1; % influence of other gas
beta = 1; % constant
L1 = 5E-3;
L2 = 100;
L3 = 1E-2;
Ttheta = 298.15;
eps = 0.05;
c1 = 0.1;
c2 = 0.2;
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'Nc'), num_gas = opts.Nc; end
if isfield(opts,'K'), K = opts.K; end
if isfield(opts,'alpha'), alpha = opts.alpha; end
if isfield(opts,'beta'), beta = opts.beta; end
if isfield(opts,'L1'), L1 = opts.L1; end
if isfield(opts,'L2'), L2 = opts.L2; end
if isfield(opts,'L3'), L3 = opts.L3; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Number of gas in Nc cluster
Nn = ceil(N / num_gas);
% Initial (6)
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Henry constant & E/R constant (7)
H = zeros(num_gas,1);
C = zeros(num_gas,1);
P = zeros(num_gas,Nn);
for j = 1:num_gas
H(j) = L1 * rand();
C(j) = L3 * rand();
for i = 1:Nn
% Partial pressure (7)
P(j,i) = L2 * rand();
end
end
% Divide the population into Nc type of gas cluster
Cx = cell(num_gas,1);
for j = 1:num_gas
if j ~= num_gas
Cx{j} = X(((j - 1) * Nn) + 1 : j * Nn, :);
else
Cx{j} = X(((num_gas - 1) * Nn + 1 : N), :);
end
end
% Fitness of each cluster
Cfit = cell(num_gas,1);
fitCB = ones(1,num_gas);
Cxb = zeros(num_gas,dim);
fitG = inf;
for j = 1:num_gas
for i = 1:size(Cx{j},1)
Cfit{j}(i,1) = fun(feat,label,(Cx{j}(i,:) > thres),opts);
% Update best gas
if Cfit{j}(i) < fitCB(j)
fitCB(j) = Cfit{j}(i);
Cxb(j,:) = Cx{j}(i,:);
end
% Update global best
if Cfit{j}(i) < fitG
fitG = Cfit{j}(i);
Xgb = Cx{j}(i,:);
end
end
end
% Pre
S = zeros(num_gas,Nn);
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iterations
while t <= max_Iter
% Compute temperature (8)
T = exp(-t / max_Iter);
for j = 1:num_gas
% Update henry coefficient (8)
H(j) = H(j) * exp(-C(j) * ((1 / T) - (1 / Ttheta)));
for i = 1:size(Cx{j},1)
% Update solubility (9)
S(j,i) = K * H(j) * P(j,i);
% Compute gamma (10)
gamma = beta * exp(-((fitG + eps) / (Cfit{j}(i) + eps)));
% Flag change between - & +
if rand() > 0.5
F = -1;
else
F = 1;
end
for d = 1:dim
% Random constant
r = rand();
% Position update (10)
Cx{j}(i,d) = Cx{j}(i,d) + F * r * gamma * ...
(Cxb(j,d) - Cx{j}(i,d)) + F * r * alpha * ...
(S(j,i) * Xgb(d) - Cx{j}(i,d));
end
% Boundary
XB = Cx{j}(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
Cx{j}(i,:) = XB;
end
end
% Fitness
for j = 1:num_gas
for i = 1:size(Cx{j},1)
% Fitness
Cfit{j}(i,1) = fun(feat,label,(Cx{j}(i,:) > thres),opts);
end
end
% Select the worst solution (11)
Nw = round(N * (rand() * (c2 - c1) + c1));
% Convert cell to array
XX = cell2mat(Cx);
FF = cell2mat(Cfit);
[~, idx] = sort(FF,'descend');
% Update position of worst solution (12)
for i = 1:Nw
for d = 1:dim
XX(idx(i),d) = lb + rand() * (ub - lb);
end
% Fitness
FF(idx(i)) = fun(feat,label,(XX(idx(i),:) > thres),opts);
end
% Divide the population into Nc type of gas cluster back
for j = 1:num_gas
if j ~= num_gas
Cx{j} = XX(((j - 1) * Nn) + 1 : j * Nn, :);
Cfit{j} = FF(((j - 1) * Nn) + 1 : j * Nn);
else
Cx{j} = XX(((num_gas - 1) * Nn + 1 : N), :);
Cfit{j} = FF((num_gas - 1) * Nn + 1 : N);
end
end
% Update best solution
for j = 1:num_gas
for i = 1:size(Cx{j},1)
% Update best gas
if Cfit{j}(i) < fitCB(j)
fitCB(j) = Cfit{j}(i);
Cxb(j,:) = Cx{j}(i,:);
end
% Update global best
if Cfit{j}(i) < fitG
fitG = Cfit{j}(i);
Xgb = Cx{j}(i,:);
end
end
end
curve(t) = fitG;
fprintf('\nIteration %d Best (HGSO)= %f',t,curve(t))
t = t + 1;
end
% Select features
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
HGSO.sf = Sf;
HGSO.ff = sFeat;
HGSO.nf = length(Sf);
HGSO.c = curve;
HGSO.f = feat;
HGSO.l = label;
end