-
Notifications
You must be signed in to change notification settings - Fork 37
/
jTreeSeedAlgorithm.m
109 lines (100 loc) · 2.38 KB
/
jTreeSeedAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
%[2015]-"TSA: Tree-seed algorithm for continuous optimization"
% (9/12/2020)
function TSA = jTreeSeedAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
ST = 0.1; % switch probability
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'ST'), ST = opts.ST; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial (5)
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Fitness
fit = zeros(1,N);
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
end
% Best solution (6)
[fitG, idx] = min(fit);
Xgb = X(idx,:);
% Maximum & minimum number of seed
Smax = round(0.25 * N);
Smin = round(0.1 * N);
% Pre
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iteration
while t <= max_Iter
for i = 1:N
% Random number of seed
num_seed = round(Smin + rand()* (Smax - Smin));
Xnew = zeros(num_seed, dim);
for j = 1:num_seed
% Random select a tree, but not i
RN = randperm(N);
RN(RN == i) = [];
r = RN(1);
for d = 1:dim
% Alpha in [-1,1]
alpha = -1 + 2 * rand();
if rand() < ST
% Generate seed (3)
Xnew(j,d) = X(i,d) + alpha * (Xgb(d) - X(r,d));
else
% Generate seed (4)
Xnew(j,d) = X(i,d) + alpha * (X(i,d) - X(r,d));
end
end
% Boundary
XB = Xnew(j,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
Xnew(j,:) = XB;
end
% Fitness
for j = 1:num_seed
% Fitness
Fnew = fun(feat,label,(Xnew(j,:) > thres),opts);
% Greedy selection
if Fnew < fit(i)
fit(i) = Fnew;
X(i,:) = Xnew(j,:);
end
end
end
% Best solution (6)
[fitG_new, idx] = min(fit);
Xgb_new = X(idx,:);
% Best update
if fitG_new < fitG
fitG = fitG_new;
Xgb = Xgb_new;
end
% Store
curve(t) = fitG;
fprintf('\nIteration %d Best (TSA)= %f',t,curve(t))
t = t + 1;
end
% Select features
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
TSA.sf = Sf;
TSA.ff = sFeat;
TSA.nf = length(Sf);
TSA.c = curve;
TSA.f = feat;
TSA.l = label;
end