-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData_science_project.py
196 lines (139 loc) · 4.5 KB
/
Data_science_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#Measurement of single pulse properties
import numpy as np
import math
import pandas as pd
import scipy.optimize as op
import matplotlib.pyplot as plt
df=pd.read_table("Laser_data1000.txt",usecols=['$#ADCS 4'])
a=int(df['$#ADCS 4'][780])+int(df['$#ADCS 4'][781])
j=0
d=[]
for i in range(len(df['$#ADCS 4'])):
b=df['$#ADCS 4'][i][0]
if b=="$":
continue
d.append(int(df['$#ADCS 4'][i]))
f=int(len(d)/400)
n=np.zeros((f,400))
for i in range(f):
for j in range (400):
n[i,j]=d[400*i+j]
print("Number of data point=",len(d))
print("Numper of pulse=",f)
# data and ocilloscope specification %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fullscale=65536
volt_scale=0.5
v_offset=0.2
volt_per_bit = volt_scale/fullscale
print("volt per bit=",volt_per_bit)
#convert data point into corresponding Voltage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i in range(f):
for j in range(400):
n[i][j]=-((n[i][j]*volt_per_bit - v_offset))
x=np.arange(0,50,0.125)
y=n[0]
maxindice=np.where(y==np.amax(y))
g=maxindice[0][0]
mean=sum(x*y)/sum(y)
sigma2=sum(y*(x-mean)**2)/sum(y)
m=y[g]
def gaus(x,a,x0,sigma2): #we can very well define any other func here
return a*np.exp(-(x-x0)**2/(2*sigma2))
#Estimation of pulse amplitude by multi Gauss fitting algorithm
x1=x[g-75:g-15]
x2=x[g-15:g+15]
x3=x[g+21:g+100]
y1=y[g-75:g-15]
y2=y[g-15:g+15]
y3=y[g+21:g+100]
x4=x[g+15:g+130]
popt1,pcov1 = op.curve_fit(gaus,x1,y1,p0=[m,mean,sigma2])
popt2,pcov2 = op.curve_fit(gaus,x2,y2,p0=[m,mean,sigma2])
popt3,pcov3 = op.curve_fit(gaus,x3,y3,p0=[m,mean,sigma2])
plt.plot(x,y,'b+:',label='data')
plt.plot(x1,gaus(x1,*popt1),'ro:',label='fit1')
plt.plot(x2,gaus(x2,*popt2),'mo:',label='fit2')
plt.plot(x4,gaus(x4,*popt3),'ko:',label='fit3')
plt.title("Single pulse profile")
plt.xlabel("Time in nsec")
plt.ylabel("Amplitude in Volt")
plt.legend()
plt.show()
#Estimation of pulse rise time by multi Gauss fitting algorithm
x1=x[g-50:g+2]
x2=x[g+30:g+80]
y1=y[g-50:g+2]
y2=y[g+30:g+80]
x3=x[g+5:g+150]
popt1,pcov1 = op.curve_fit(gaus,x1,y1,p0=[m,mean,sigma2])
popt2,pcov2 = op.curve_fit(gaus,x2,y2,p0=[m,mean,sigma2])
plt.plot(x,y,'b+:',label='data')
plt.plot(x1,gaus(x1,*popt1),'ro:',label='fit1')
plt.plot(x3,gaus(x3,*popt2),'mo:',label='fit2')
plt.title("Single pulse profile")
plt.xlabel("Time in nsec")
plt.ylabel("Amplitude in Volt")
plt.legend()
plt.show()
#Pulse amplitude distribution
a=np.zeros(f)
for i in range(f):
y=n[i]
mean=sum(x*y)/sum(y)
sigma2=sum(y*(x-mean)**2)/sum(y)
maxindice=np.where(y==np.amax(y))
g=maxindice[0][0]
y2=y[g-15:g+15]
x2=x[g-15:g+15]
m=y[g]
popt2,pcov2 = op.curve_fit(gaus,x2,y2,p0=[m,mean,sigma2])
a[i]=popt2[0]
ydata,bin_edges,patches=plt.hist(a,100)
xdata=np.zeros(len(ydata))
for i in range(len(ydata)):
xdata[i]=(bin_edges[i+1]+bin_edges[i])/2
mean=sum(xdata*ydata)/sum(ydata)
sigma2=sum(ydata*(xdata-mean)**2)/sum(ydata)
maxindice=np.where(ydata==np.amax(ydata))
g=maxindice[0][0]
m=ydata[g]
popt,pcov = op.curve_fit(gaus,xdata,ydata,p0=[m,mean,sigma2])
plt.plot(xdata,gaus(xdata,*popt),'ro:')
plt.title("Amplitude distribution of PMT pulse")
plt.ylabel("Frequency")
plt.xlabel("Amplitude in Volt")
plt.show()
print("Mean pulse amplitude",popt[1],"V")
print("Error in pulse amplitude",math.sqrt(popt[2]),"V")
#Pulse rise time distribution
b=np.zeros(f)
for i in range(f):
y=n[i]
mean=sum(x*y)/sum(y)
sigma2=sum(y*(x-mean)**2)/sum(y)
maxindice=np.where(y==np.amax(y))
g=maxindice[0][0]
y1=y[g-50:g+2]
x1=x[g-50:g+2]
m=y[g]
popt1,pcov1 = op.curve_fit(gaus,x1,y1,p0=[m,mean,sigma2])
n1=-math.sqrt(-2*popt1[2]*math.log(0.1))+popt1[1]
n2=-math.sqrt(-2*popt1[2]*math.log(0.9))+popt1[1]
b[i]=n2-n1
ydata,bin_edges,patches=plt.hist(b,100)
xdata=np.zeros(len(ydata))
for i in range(len(ydata)):
xdata[i]=(bin_edges[i+1]+bin_edges[i])/2
mean=sum(xdata*ydata)/sum(ydata)
sigma2=sum(ydata*(xdata-mean)**2)/sum(ydata)
maxindice=np.where(ydata==np.amax(ydata))
g=maxindice[0][0]
m=ydata[g]
popt,pcov = op.curve_fit(gaus,xdata,ydata,p0=[m,mean,sigma2])
plt.plot(xdata,gaus(xdata,*popt),'ro:')
plt.title("Rise time of PMT pulse")
plt.ylabel("Frequency")
plt.xlabel("Rise time in nsec")
plt.show()
print("Mean rise time",popt[1],"nS")
print("Error in rise time",math.sqrt(popt[2]),"nS")