-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.wmzl
96 lines (84 loc) · 3.2 KB
/
example.wmzl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
start
perform_import from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, TextDataset, DataCollatorForLanguageModeling done
perform_import import torch done
define_class AGIModel done
start
initialize_method __init__ with model_name='gpt2' done
start
tokenizer is GPT2Tokenizer.from_pretrained(model_name) done
model is GPT2LMHeadModel.from_pretrained(model_name) done
stop done
done done
understand_code_method with code_parameter done
start
inputs is tokenizer(code, return_tensors='pt', padding=True, truncation=True) done
outputs is model(**inputs) done
return outputs done
stop done
generate_code_method with prompt_parameter done
start
inputs is tokenizer(prompt, return_tensors='pt') done
outputs is model.generate(**inputs) done
return decode_tokenizer(outputs[0], skip_special_tokens=True) done
stop done
done done
load_dataset_function with file_path_parameter, tokenizer_parameter, block_size=128 done
start
dataset is TextDataset done
start
tokenizer is tokenizer done
file_path is file_path done
block_size is block_size done
stop done
return dataset done
stop done
main_function done
start
agi is initialize AGIModel done
train_dataset is load_dataset('code_dataset.txt', agi.tokenizer) done
data_collator is DataCollatorForLanguageModeling done
start
tokenizer is agi.tokenizer done
mlm is False done
stop done
training_args is TrainingArguments done
start
output_dir is './results' done
overwrite_output_dir is True done
num_train_epochs is 1 done
per_device_train_batch_size is 4 done
save_steps is 10_000 done
save_total_limit is 2 done
logging_dir is './logs' done
logging_steps is 100 done
stop done
trainer is Trainer done
start
model is agi.model done
args is training_args done
data_collator is data_collator done
train_dataset is train_dataset done
stop done
train_model using trainer done
save_model using trainer with "./trained_model" done
stop done
if main_function done
output to WordMaze
stop done
start
i is 5 done
e is 2.71 done
pi is 3.14 done
sum is i + e + pi done
if sum is inbetween(10, 15) done
print "Sum is within range." done
stop done
try
i is not valid done
catch error
rephrase "Variable i has an invalid value." done
brute-force
i is 0 done
annihilate
delete i done
stop done