-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcommons.py
246 lines (190 loc) · 7.23 KB
/
commons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from librosa.filters import mel as librosa_mel_fn
from audio_processing import dynamic_range_compression
from audio_processing import dynamic_range_decompression
from stft import STFT
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def mle_loss(z, m, logs, logdet, mask):
l = torch.sum(logs) + 0.5 * torch.sum(torch.exp(-2 * logs) * ((z - m)**2)) # neg normal likelihood w/o the constant term
l = l - torch.sum(logdet) # log jacobian determinant
l = l / torch.sum(torch.ones_like(z) * mask) # averaging across batch, channel and time axes
l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term
return l
def duration_loss(logw, logw_, lengths):
l = torch.sum((logw - logw_)**2) / torch.sum(lengths)
return l
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def shift_1d(x):
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
return x
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def maximum_path(value, mask, max_neg_val=-np.inf):
""" Numpy-friendly version. It's about 4 times faster than torch version.
value: [b, t_x, t_y]
mask: [b, t_x, t_y]
"""
value = value * mask
device = value.device
dtype = value.dtype
value = value.cpu().detach().numpy()
mask = mask.cpu().detach().numpy().astype(np.bool)
b, t_x, t_y = value.shape
direction = np.zeros(value.shape, dtype=np.int64)
v = np.zeros((b, t_x), dtype=np.float32)
x_range = np.arange(t_x, dtype=np.float32).reshape(1,-1)
for j in range(t_y):
v0 = np.pad(v, [[0,0],[1,0]], mode="constant", constant_values=max_neg_val)[:, :-1]
v1 = v
max_mask = (v1 >= v0)
v_max = np.where(max_mask, v1, v0)
direction[:, :, j] = max_mask
index_mask = (x_range <= j)
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val)
direction = np.where(mask, direction, 1)
path = np.zeros(value.shape, dtype=np.float32)
index = mask[:, :, 0].sum(1).astype(np.int64) - 1
index_range = np.arange(b)
for j in reversed(range(t_y)):
path[index_range, index, j] = 1
index = index + direction[index_range, index, j] - 1
path = path * mask.astype(np.float32)
path = torch.from_numpy(path).to(device=device, dtype=dtype)
return path
def generate_path(duration, mask):
"""
duration: [b, t_x]
mask: [b, t_x, t_y]
"""
device = duration.device
b, t_x, t_y = mask.shape
cum_duration = torch.cumsum(duration, 1)
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:,:-1]
path = path * mask
return path
class Adam():
def __init__(self, params, scheduler, dim_model, warmup_steps=4000, lr=1e0, betas=(0.9, 0.98), eps=1e-9):
self.params = params
self.scheduler = scheduler
self.dim_model = dim_model
self.warmup_steps = warmup_steps
self.lr = lr
self.betas = betas
self.eps = eps
self.step_num = 1
self.cur_lr = lr * self._get_lr_scale()
self._optim = torch.optim.Adam(params, lr=self.cur_lr, betas=betas, eps=eps)
def _get_lr_scale(self):
if self.scheduler == "noam":
return np.power(self.dim_model, -0.5) * np.min([np.power(self.step_num, -0.5), self.step_num * np.power(self.warmup_steps, -1.5)])
else:
return 1
def _update_learning_rate(self):
self.step_num += 1
if self.scheduler == "noam":
self.cur_lr = self.lr * self._get_lr_scale()
for param_group in self._optim.param_groups:
param_group['lr'] = self.cur_lr
def get_lr(self):
return self.cur_lr
def step(self):
self._optim.step()
self._update_learning_rate()
def zero_grad(self):
self._optim.zero_grad()
def load_state_dict(self, d):
self._optim.load_state_dict(d)
def state_dict(self):
return self._optim.state_dict()
class TacotronSTFT(nn.Module):
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
mel_fmax=8000.0):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.stft_fn = STFT(filter_length, hop_length, win_length)
mel_basis = librosa_mel_fn(
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer('mel_basis', mel_basis)
def spectral_normalize(self, magnitudes):
output = dynamic_range_compression(magnitudes)
return output
def spectral_de_normalize(self, magnitudes):
output = dynamic_range_decompression(magnitudes)
return output
def mel_spectrogram(self, y):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert(torch.min(y.data) >= -1)
assert(torch.max(y.data) <= 1)
magnitudes, phases = self.stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(self.mel_basis, magnitudes)
mel_output = self.spectral_normalize(mel_output)
return mel_output
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1. / norm_type)
return total_norm
def squeeze(x, x_mask=None, n_sqz=2):
b, c, t = x.size()
t = (t // n_sqz) * n_sqz
x = x[:,:,:t]
x_sqz = x.view(b, c, t//n_sqz, n_sqz)
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c*n_sqz, t//n_sqz)
if x_mask is not None:
x_mask = x_mask[:,:,n_sqz-1::n_sqz]
else:
x_mask = torch.ones(b, 1, t//n_sqz).to(device=x.device, dtype=x.dtype)
return x_sqz * x_mask, x_mask
def unsqueeze(x, x_mask=None, n_sqz=2):
b, c, t = x.size()
x_unsqz = x.view(b, n_sqz, c//n_sqz, t)
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c//n_sqz, t*n_sqz)
if x_mask is not None:
x_mask = x_mask.unsqueeze(-1).repeat(1,1,1,n_sqz).view(b, 1, t*n_sqz)
else:
x_mask = torch.ones(b, 1, t*n_sqz).to(device=x.device, dtype=x.dtype)
return x_unsqz * x_mask, x_mask