-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathadvanced_pipeline_backup.py
567 lines (465 loc) · 20.1 KB
/
advanced_pipeline_backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# Copyright 2019 Jordi Corbilla. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import, division, print_function, unicode_literals
import csv
import logging
import logging.config
import time
import sklearn
import tensorflow as tf
from absl import app
import numpy as np
import matplotlib.pyplot as plt
import os
#from matplotlib import colors
from sklearn.utils.multiclass import unique_labels
from odir_model_factory import Factory, ModelTypes
from odir_predictions_writer import Prediction
os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
#os.environ["CUDA_VISIBLE_DEVICES"]="-1"
from tensorflow.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPooling2D
from tensorflow.keras import Model
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn import metrics
from sklearn.utils import class_weight, compute_class_weight
from sklearn.metrics import confusion_matrix
import seaborn as sns
#from imblearn.over_sampling import SMOTE
import odir
def main(argv):
print(tf.version.VERSION)
image_size = 224
model_type = "vgg16"
epochs = 200
test_run = 'zC'
#train, test = tf.keras.datasets.fashion_mnist.load_data()
(x_train, y_train), (x_test, y_test) = odir.load_data(image_size, 1)
#weights = tf.gather(1. / class_weights, y_train)
#classweights2 = compute_class_weight('balanced',
# np.unique(y_train),
# y_train)
# print(classweights2)
# return
#class_names = ['Undefined', 'Normal', 'Diabetes', 'Glaucoma', 'Cataract', 'AMD',
# 'Hypertension', 'Myopia', 'Others']
class_names = ['Normal', 'Diabetes', 'Glaucoma', 'Cataract', 'AMD',
'Hypertension', 'Myopia', 'Others']
#x_train, x_test = x_train / 255.0, x_test / 255.0
#x_train, y_train = data_augmentation (x_train, y_train, 2000)
# sm = SMOTE()
# x_train, y_train = sm.fit_sample(x_train, y_train)
#fff = tf.convert_to_tensor(VGG_MEAN, dtype=tf.uint8)
#red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=x_train)
#x_train = preprocess_input(x_train, 'channels_last', 'caffe')
x_train, x_test = x_train / 1.0, x_test / 1.0
# x_train /= 127.5
# x_train -= 1.
#
# x_test /= 127.5
# x_test -= 1.
x_train = x_train[..., ::-1]
x_test = x_test[..., ::-1]
mean = [103.939, 116.779, 123.68]
x_train[..., 0] -= mean[0]
x_train[..., 1] -= mean[1]
x_train[..., 2] -= mean[2]
#x_train = (x_train - x_train.mean())
#x_test = (x_test - x_test.mean())
#x_test = x_test[..., ::-1]
#mean = [103.939, 116.779, 123.68]
x_test[..., 0] -= mean[0]
x_test[..., 1] -= mean[1]
x_test[..., 2] -= mean[2]
#x_test = preprocess_input(x_test, 'channels_last', 'caffe')
# vgg_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32).reshape((1, 1, 3))
# x_train[1] = x_train[1] - vgg_mean[0][0][0]
# x_train[2] = x_train[2] - vgg_mean[0][0][1]
# x_train[3] = x_train[3] - vgg_mean[0][0][2]
# x_train = x_train[:, ::-1] # reverse axis rgb->bgr
# x_test[1] = x_test[1] - vgg_mean[0][0][0]
# x_test[2] = x_test[2] - vgg_mean[0][0][1]
# x_test[3] = x_test[3] - vgg_mean[0][0][2]
# x_test = x_test[:, ::-1] # reverse axis rgb->bgr
# assert red.get_shape().as_list()[1:] == [128, 128, 1]
# assert green.get_shape().as_list()[1:] == [128, 128, 1]
# assert blue.get_shape().as_list()[1:] == [128, 128, 1]
# x_train = tf.concat(axis=3, values=[
# blue - VGG_MEAN[0],
# green - VGG_MEAN[1],
# red - VGG_MEAN[2],
# ])
# red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=x_test)
# assert red.get_shape().as_list()[1:] == [128, 128, 1]
# assert green.get_shape().as_list()[1:] == [128, 128, 1]
# assert blue.get_shape().as_list()[1:] == [128, 128, 1]
# x_test = tf.concat(axis=3, values=[
# blue - VGG_MEAN[0],
# green - VGG_MEAN[1],
# red - VGG_MEAN[2],
# ])
x_train = (x_train - x_train.mean()) / x_train.std()
x_test = (x_test - x_test.mean()) / x_test.std()
# datagen = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True)
# datagen.fit(x_train)
# plt.figure(figsize=(9, 9))
# for i in range(100):
# plt.subplot(10, 10, i + 1)
# plt.xticks([])
# plt.yticks([])
# plt.grid(False)
# plt.imshow(x_train[i]) #, cmap=plt.cm.binary
# # plt.xlabel(class_names[y_train[i][0]], fontsize=7, color='black', labelpad=1)
# #
# plt.subplots_adjust(bottom=0.04, right=0.94, top=0.95, left=0.06, wspace=0.20, hspace=0.17)
# plt.show()
# tf.keras.metrics.TruePositives(name='tp'),
# tf.keras.metrics.FalsePositives(name='fp'),
# tf.keras.metrics.TrueNegatives(name='tn'),
# tf.keras.metrics.FalseNegatives(name='fn'),
defined_metrics = [
tf.keras.metrics.BinaryAccuracy(name='accuracy'),
tf.keras.metrics.Precision(name='precision'),
tf.keras.metrics.Recall(name='recall'),
tf.keras.metrics.AUC(name='auc'),
]
factory = Factory((image_size,image_size,3), defined_metrics)
model = factory.compile(ModelTypes.vgg16)
def plot_metrics(history):
metrics2 = ['loss', 'auc', 'precision', 'recall']
for n, metric in enumerate(metrics2):
name = metric.replace("_", " ").capitalize()
plt.subplot(2, 2, n + 1)
plt.plot(history.epoch, history.history[metric], color='green', label='Train')
plt.plot(history.epoch, history.history['val_' + metric], color='green', linestyle="--", label='Val')
plt.xlabel('Epoch')
plt.ylabel(name)
if metric == 'loss':
plt.ylim([0, plt.ylim()[1]])
elif metric == 'auc':
plt.ylim([0.8, 1])
else:
plt.ylim([0, 1])
plt.legend()
plt.savefig('image_run1'+test_run+'.png')
plt.show() #block=False
plt.close()
print("Training")
# evey instance of class 3 as 10 instances of class 0
# class_weight = { 0:1.,
# 1:1.583802025,
# 2:8.996805112,
# 3:10.24,
# 4:10.05714286,
# 5:14.66666667,
# 6:10.7480916,
# 7:2.505338078 }
#
class_weight = { 0:1.,
1:1.583802025,
2:8.996805112,
3:10.24,
4:10.05714286,
5:1.,
6:1.,
7:2.505338078 }
#fmnist_train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train))
#fmnist_train_ds = fmnist_train_ds.shuffle(5000).batch(32)
#train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(1000).batch(32)
#history = model.fit(train_ds, epochs=2)
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)
#process twice the data and see what happens
history = model.fit(x_train, y_train, epochs=epochs,batch_size=32,verbose=1,shuffle=True,
validation_data=(x_test, y_test)) #, class_weight=class_weight
print("plotting")
plot_metrics(history)
print("saving")
model.save('model'+model_type + str(epochs)+'.h5')
# Additional print for metrics
#return
#Hide meanwhile for now
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
#
# #plt.ylim([0.5, 1]) --no
plt.legend(loc='lower right')
plt.savefig('image_run2'+test_run+'.png')
plt.show() #block=False
baseline_results = model.evaluate(x_test, y_test, batch_size=32, verbose=2) #test_loss, test_acc
#print(test_acc)
test_predictions_baseline = model.predict(x_test, batch_size=32)
train_predictions_baseline = model.predict(x_train, batch_size=32)
for name, value in zip(model.metrics_names, baseline_results):
print(name, ': ', value)
print()
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true.argmax(axis=1), y_pred.argmax(axis=1)) # >= 0.5
# Only use the labels that appear in the data
#classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
#xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plot_confusion_matrix(y_test, test_predictions_baseline, classes=class_names,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
plot_confusion_matrix(y_test, test_predictions_baseline, classes=class_names, normalize=True,
title='Normalized confusion matrix')
plt.show()
def plot_cm(labels2, predictions, p=0.5):
cm = confusion_matrix(labels2.argmax(axis=1), predictions.argmax(axis=1)) # >= 0.5
plt.figure(figsize=(6, 6))
sns.heatmap(cm, annot=True, fmt="d")
#plt.title('Confusion matrix @{:.2f}'.format(p))
plt.title('Confusion matrix')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
plt.savefig('image_run3'+test_run+'.png')
plt.show() #block=False
plt.close()
# print('Legitimate Transactions Detected (True Negatives): ', cm[0][0])
# print('Legitimate Transactions Incorrectly Detected (False Positives): ', cm[0][1])
# print('Fraudulent Transactions Missed (False Negatives): ', cm[1][0])
# print('Fraudulent Transactions Detected (True Positives): ', cm[1][1])
# print('Total Fraudulent Transactions: ', np.sum(cm[1]))
plot_cm(y_test, test_predictions_baseline)
def plot_roc(name2, labels2, predictions, **kwargs):
fp, tp, _ = sklearn.metrics.roc_curve(labels2, predictions)
plt.plot(100 * fp, 100 * tp, label=name2, linewidth=2, **kwargs)
plt.xlabel('False positives [%]')
plt.ylabel('True positives [%]')
plt.xlim([-0.5, 20])
plt.ylim([80, 100.5])
plt.grid(True)
ax = plt.gca()
ax.set_aspect('equal')
plt.legend(loc='lower right')
plt.savefig(name2 + 'image_run4' + test_run + '.png')
plt.show() #block=False
plt.close()
#plot_roc("Train Baseline", x_test, train_predictions_baseline, color='green')
#plot_roc("Test Baseline", y_test, test_predictions_baseline, color='green', linestyle='--')
#return
#print(predictions[0])
#print(np.argmax(predictions[0]))
#print(y_test[0])
def odir_metrics(gt_data, pr_data):
th = 0.5
gt = gt_data.flatten()
pr = pr_data.flatten()
kappa = metrics.cohen_kappa_score(gt, pr > th)
f1 = metrics.f1_score(gt, pr > th, average='micro')
auc = metrics.roc_auc_score(gt, pr)
final_score = (kappa + f1 + auc) / 3.0
return kappa, f1, auc, final_score
def import_data(filepath):
with open(filepath, 'r') as f:
reader = csv.reader(f)
header = next(reader)
pr_data = [[int(row[0])] + list(map(float, row[1:])) for row in reader]
pr_data = np.array(pr_data)
return pr_data
prediction_writer = Prediction(test_predictions_baseline, 400)
prediction_writer.save()
prediction_writer.save_all(y_test)
gt_data = import_data('odir_ground_truth.csv')
pr_data = import_data('odir_predictions.csv')
kappa, f1, auc, final_score = odir_metrics(gt_data[:, 1:], pr_data[:, 1:])
print("Kappa score:", kappa)
print("F-1 score:", f1)
print("AUC value:", auc)
print("Final Score:", final_score)
##Additional test against the training dataset
# test_loss, test_acc = model.evaluate(x_train, y_train, verbose=2)
# print(test_acc)
#
# predictions = model.predict(x_train)
# prediction_writer = Prediction(predictions, 400)
# prediction_writer.save()
# prediction_writer.save_all(y_train)
#
# gt_data = import_data('odir_ground_truth.csv')
# pr_data = import_data('odir_predictions.csv')
# kappa, f1, auc, final_score = odir_metrics(gt_data[:, 1:], pr_data[:, 1:])
# print("kappa score:", kappa, " f-1 score:", f1, " AUC vlaue:", auc, " Final Score:", final_score)
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array, true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
#if predicted_label == true_label:
# color = 'blue'
#else:
# color = 'red'
# plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
# 100 * np.max(predictions_array),
# class_names[true_label]),
# color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array, true_label[i]
plt.grid(False)
plt.xticks(range(10))
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
# Plot the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
# TODO for later
# num_rows = 5
# num_cols = 3
# num_images = num_rows * num_cols
# plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows))
# for i in range(num_images):
# plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
# plot_image(i, predictions[i], y_test[i], x_test)
# plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
# plot_value_array(i, predictions[i], y_test[i])
# plt.tight_layout()
# plt.show()
# TODO for later
# x_train = x_train.reshape(x_train.shape[0], 28, 28, 1).astype('float32')
# x_test = x_test.reshape(x_test.shape[0], 28, 28, 1).astype('float32')
return
# Add a channels dimension
# x_train = x_train[..., tf.newaxis]
# x_test = x_test[..., tf.newaxis]
train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(1000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(16, 3, activation='relu') # , input_shape=(28,28,3)
self.max = MaxPooling2D()
self.conv2 = Conv2D(32, 3, activation='relu') # , input_shape=(28,28,3)
self.conv3 = Conv2D(64, 3, activation='relu') # , input_shape=(28,28,3)
self.flatten = Flatten()
self.d1 = Dense(512, activation='relu')
self.d2 = Dense(10, activation='softmax')
self.dropout = Dropout(0.2)
def call(self, x):
x = self.conv1(x)
x = self.max(x)
x = self.dropout(x)
x = self.conv2(x)
x = self.max(x)
x = self.conv3(x)
x = self.max(x)
x = self.dropout(x)
x = self.flatten(x)
x = self.d1(x)
x = self.d2(x)
return x
# Create an instance of the model
model = MyModel()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()
tf.keras.backend.set_floatx('float64')
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
@tf.function
def test_step(images, labels):
predictions = model(images)
t_loss = loss_object(labels, predictions)
# logger.debug(predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
# print(test_accuracy.result().numpy())
EPOCHS = 5
# summary_writer = tf.summary.create_file_writer('./log/{}'.format(dt.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")))
for epoch in range(EPOCHS):
start = time.time()
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
test_step(test_images, test_labels)
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}, Time: {}s'
end = time.time()
print(template.format(epoch + 1,
train_loss.result(),
train_accuracy.result() * 100,
test_loss.result(),
test_accuracy.result() * 100,
str(end - start)))
#
# for i in test_accuracy.metrics():
# print(i)
# Reset the metrics for the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
if __name__ == '__main__':
# create logger
logging.config.fileConfig('logging.conf')
logger = logging.getLogger('odir')
app.run(main)