-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathodir_model_vgg19.py
137 lines (125 loc) · 5.3 KB
/
odir_model_vgg19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2019-2020 Jordi Corbilla. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow
from tensorflow.keras import models, layers
from tensorflow.keras.optimizers import SGD
from odir_model_base import ModelBase
class Vgg19(ModelBase):
def compile(self):
x = models.Sequential()
trainable = False
# Block 1
layer = layers.Conv2D(input_shape=self.input_shape, filters=64, kernel_size=(3, 3), padding="same",
activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.MaxPooling2D((2, 2), strides=(2, 2))
layer.trainable = trainable
x.add(layer)
# Block 2
layer = layers.Conv2D(128, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(128, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.MaxPooling2D((2, 2), strides=(2, 2))
layer.trainable = trainable
x.add(layer)
# Block 3
layer = layers.Conv2D(256, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(256, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(256, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(256, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.MaxPooling2D((2, 2), strides=(2, 2))
layer.trainable = trainable
x.add(layer)
# Block 4
layer = layers.Conv2D(512, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(512, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(512, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(512, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.MaxPooling2D((2, 2), strides=(2, 2))
layer.trainable = trainable
x.add(layer)
# Block 5
layer = layers.Conv2D(512, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(512, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(512, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.Conv2D(512, kernel_size=(3, 3), padding="same", activation="relu")
layer.trainable = trainable
x.add(layer)
layer = layers.MaxPooling2D((2, 2), strides=(2, 2))
layer.trainable = trainable
x.add(layer)
layer = layers.Flatten()
layer.trainable = trainable
x.add(layer)
layer = layers.Dense(4096, activation='relu')
layer.trainable = trainable
x.add(layer)
#layer = layers.Dropout(0.5)
#layer.trainable = True
#x.add(layer)
layer = layers.Dense(4096, activation='relu')
layer.trainable = trainable
x.add(layer)
#layer = layers.Dropout(0.5)
#layer.trainable = True
#x.add(layer)
layer = layers.Dense(1000, activation='softmax')
layer.trainable = trainable
x.add(layer)
# Transfer learning, load previous weights
x.load_weights(r'C:\temp\vgg19_weights_tf_dim_ordering_tf_kernels.h5')
# Remove last layer
x.pop()
# Add new dense layer
#x.add(layers.Dropout(0.1))
x.add(layers.Dense(8, activation='sigmoid'))
# optimizer = tensorflow.keras.optimizers.SGD(learning_rate=1e-3)
sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=False)
print('Configuration Start -------------------------')
print(sgd.get_config())
print('Configuration End -------------------------')
x.compile(optimizer=sgd, loss='binary_crossentropy', metrics=self.metrics)
self.show_summary(x)
self.plot_summary(x, 'model_vgg19net.png')
return x