-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathodir_plot_input.py
77 lines (62 loc) · 2.55 KB
/
odir_plot_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright 2019 Jordi Corbilla. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import, division, print_function, unicode_literals
import logging.config
import tensorflow as tf
from absl import app
from odir_advance_plotting import Plotter
from odir_kappa_score import FinalScore
from odir_normalize_input import Normalizer
from odir_predictions_writer import Prediction
import odir
def main(argv):
print(tf.version.VERSION)
image_size = 224
test_run = 'zC'
# load the data
(x_train, y_train), (x_test, y_test) = odir.load_data(image_size, 1)
class_names = ['Normal', 'Diabetes', 'Glaucoma', 'Cataract', 'AMD', 'Hypertension', 'Myopia', 'Others']
# plot data input
plotter = Plotter(class_names)
plotter.plot_input_images(x_train, y_train)
x_test_drawing = x_test
# normalize input based on model
normalizer = Normalizer()
x_test = normalizer.normalize_vgg16(x_test)
# load one of the test runs
model = tf.keras.models.load_model(r'C:\Users\thund\Source\Repos\TFM-ODIR\models\image_classification\modelvgg100.h5')
model.summary()
# display the content of the model
baseline_results = model.evaluate(x_test, y_test, verbose=2)
for name, value in zip(model.metrics_names, baseline_results):
print(name, ': ', value)
print()
# test a prediction
test_predictions_baseline = model.predict(x_test)
plotter.plot_confusion_matrix_generic(y_test, test_predictions_baseline, test_run, 0)
# save the predictions
prediction_writer = Prediction(test_predictions_baseline, 400)
prediction_writer.save()
prediction_writer.save_all(y_test)
# show the final score
score = FinalScore()
score.output()
# plot output results
plotter.plot_output(test_predictions_baseline, y_test, x_test_drawing)
if __name__ == '__main__':
# create logger
logging.config.fileConfig('logging.conf')
logger = logging.getLogger('odir')
app.run(main)